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Abstract

A meta-analysis provides a convenient way to integrate findings from multiple

studies. The conventional methods of conducting a meta-analysis use inverse

sample variance as weights, which are biased. However, this bias can easily be

remedied using a multiplicative correction factor under a fixed-effects model, when

the outcome is continuous and the treatment groups share a common variance. To

investigate the effects of the bias-correction, Taylor series approximation is used to

derive new estimators for the variance of the summary treatment effect. Results

obtained from a simulation study show that the Taylor-approximated estimators

return superior coverage with near-maximum precision. The bias-correction leads

to increased coverage in some cases, although the results are inconclusive. The

conventional inverse sum-of-weights estimator for the summary effect variance

always underestimates the variance, decreasing the coverage. The work here

demonstrates how the bias-correction impacts the precision of the overall treatment

effect estimate and provides improved estimators for the variance, with which

confidence intervals can be constructed, for example.
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사랑하는가족들을위해
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Chapter 1

Introduction

A meta-analysis is a statistical method by which results from multiple studies with

similar protocols can be condensed, usually into one summary statistic. Compared

to a single study, meta-analyses can provide more accurate results with a greater

statistical power. These results are often used to help answer important questions

informing policy, evidence-based research, and practice. The celebrated statistician

Karl Pearson was among the first to implement meta-analyses in the early 20th

century, and it was later popularized by the American statistician Gene Glass in

the 70s who coined the term [7, 19]. Ever since, meta-analyses have been widely

used in many disciplines such as education, psychology, business, criminology,

ecology, evidence-based medicine, and healthcare [2].

Meta-analyses with normally distributed continuous outcomes often use raw

mean-difference (MD) for its interpretability and convenience [2]. Say a researcher

has identified k studies from the same population with the same mean that satisfy

her eligibility criteria and has decided to use a fixed-effects model. The studies

report the effect of a new drug A on blood pressure on the standard scale, in

1
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mmHg. In other words, all studies report the outcome measures on the same scale

(or different measures that can be easily converted into a common scale). Each study

reports the mean blood pressure of the placebo/control group (Y2) and of the drug A

group (Y1). The raw mean difference is then Y1−Y2, and the researcher would have

k mean differences. To summarize these k measures into one statistic, weights (wi)

are given to the studies to calculate the weighted mean Σ wiMDi/Σ wi. Historically,

guidelines, handbooks, and textbooks have recommended the inverse variance

weights wi = 1/Var (MDi) [1–3, 11, 12] as it is shown to maximize the precision of

the summary statistic [20]. In this thesis, it is assumed that the treatment groups

share a common variance, thus the natural estimator for Var(Y) is the pooled sample

variance

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
.

As such, the conventional study weights are given by

ŵi =
1
̂Var (MDi)

=
1

s2
p,i

( 1
n1i

+
1

n2i

) .
Walter and Balakrishnan [20] show, however, that this ŵi is a biased estimator

of the intended true weight. The reciprocal operation is nonlinear, which results in

E

 1

s2
p,i

( 1
n1i

+
1

n2i

)
 , 1

Var (MDi)

despiteE
[
s2

p,i · (1/n1i + 1/n2i)
]

= Var (MDi). It can be shown that ŵi has a multiplica-

tive bias with factor 1+2/(n1 + n2 − 4), where n1 and n2 are the sample sizes of the

2
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two groups [20]. Without correction, study weights are always inflated as this bias

factor is always greater than 1. Since the bias factor increases as n1 + n2 decreases,

this overestimation is worse with smaller studies. In other words, without the

bias-correction, the relative contribution of smaller studies to the summary statistic

is too large. Such disproportionate overestimation potentially introduces noise

from the smaller studies into the overall treatment effect estimate, while inhibiting

bigger studies from contributing their due amount.

An easy solution to obtaining an unbiased estimator for wi is to divide the

estimator by the multiplicative bias factor [20].

Let ŵi∗ =
1

1 +
2

n1i + n2i − 4

·
1
̂Var (MDi)

⇒ E [ŵi∗] =
1

1 +
2

n1i + n2i − 4

· E

 1
̂Var (MDi)


=

1

1 +
2

n1i + n2i − 4

·

(
1 +

2
n1i + n2i − 4

)
·

1
Var (MDi)

=
1

Var (MDi)
.

Walter and Balakrishnan [20] showed that this correction usually results in a small

change in the overall treatment effect estimates. The biggest changes were observed

when the meta-analysis included a study with a small sample size– particularly

when there were few other studies, or when the small study reported treatment

effect estimates far from the center [20]. In addition to the changes in the point

estimate, the variance is also affected by the bias-correction. With the new corrected

3
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weights, the variance of the summary treatment effect estimate is

Σ w2
i · Var (MDi)

(Σ wi)2 [20].

The authors stated that the conventional estimator of the variance 1/Σ ŵi will

inevitably be negatively biased (i.e., expected to underestimate) due to the inflation

of the individual study weights [20]. The underestimation of variance can lead to

unreasonably narrow confidence intervals and thus poor coverage probabilities.

As an extension of Walter and Balakrishnan’s work [20], this thesis aims to

obtain an approximate expression for the variance of the summary treatment effect

and investigate how it is affected by the bias-correction. The works below also

study the extent to which the conventional estimator deflates the variance and

adversely affects coverage. Comparisons between the coverage probabilities using

biased and bias-corrected weights will aid in improving meta-analysis protocols

for optimal inference.

4
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Chapter 2

Methods

There are two principal criteria in optimal inference: bias and variance. Sections

2.2 and 2.3 below explore how the bias-correction affects them.

2.1 Notation

Let the random variables Y1 and Y2 denote the continuous outcomes from the two

treatment groups. One assumes that the two groups are independent and that

the studies are independent. If the treatment groups are homogeneous in their

variances, Y1 ∼ N(µ1, λ2) and Y2 ∼ N(µ2, λ2). For a given study i ∈ {1, 2, . . . , k}, the

estimator for mean difference ∆̂i is then given by

∆̂i = Y1i − Y2i ∼̇ N
(
∆ = µ1 − µ2, λ

2
( 1
n1i

+
1

n2i

))
. (2.1.1)

Given the sample sizes for each treatment group n1i and n2i, the degrees of freedom

5
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is vi = n1i + n2i − 2. Let ŵi denote the study weights such that ŵi = ci/
̂Var

(
∆̂i

)
, where

ci =


1 if ŵis are conventional (i.e., biased)

1 − 2
νi

if ŵis are bias-corrected (i.e., unbiased).

As seen in Equation 2.1.1,

Var
(
∆̂i

)
:= ϕ2

i = λ2
( 1
n1i

+
1

n2i

)
,

which can be estimated by

̂Var
(
∆̂i

)
:= ϕ̂2

i = λ̂2
i

( 1
n1i

+
1

n2i

)
.

Since Var (Yi) = Var (Y2) = λ2 under the homogeneity assumption, its estimator is

λ̂2
i =

(n1i − 1)s2
1i + (n2i − 1)s2

2i

n1i + n2i − 2
,

i.e., the pooled sample variance. The summary treatment effect estimate ∆̂ is the

weighted mean of the individual ∆̂is, and we let

θ̂i =
ŵi

Σ ŵi
=

ci/ϕ̂
2
i

Σ ci/ϕ̂
2
i

, such that

∆̂ =
ŵi∆̂i

Σ ŵi
= Σ θ̂i∆̂i with Σ θ̂i = 1.

If the studies are heterogeneous, λ2s are simply replaced by λ2
i s †.

6
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2.2 Bias

Given the independence of θ̂i and ∆̂i,

E
[
∆̂
]

= E
[
Σ θ̂i∆̂i

]
= Σ E

[
θ̂i

]
· E

[
∆̂i

]
= ∆ · Σ E

[
θ̂i

]
= ∆ · E

[
Σ θ̂i

]
= ∆ · E [1] = ∆.

Therefore, ∆̂ is an unbiased estimator for ∆ with or without the bias-correction as

long as Σ θ̂i = 1. This results in Precision(∆̂) = Var
(
∆̂
)

+ Bias(∆̂)2 = Var
(
∆̂
)
, which

justifies the direct comparison of variances.

2.3 Variance

Under the homogeneity assumption, the variance of the summary treatment effect

∆̂ is given by

Var
(
∆̂
)

= E
[
∆̂2

]
− E

[
∆̂
]2

= E
[
(Σ θ̂i∆̂i)2

]
− ∆2, where

E
[
(Σ θ̂i∆̂i)2

]
=

∑
E

[
θ̂2

i

]
E

[
∆̂2

i

]
+ ∆2

∑
i, j

E
[
θ̂iθ̂ j

]
, (2.3.1)

and E
[
∆̂2

i

]
= Var

(
∆̂i

)
+ E

[
∆̂i

]2
= ϕ2 + ∆2 = λ2

( 1
n1i

+
1

n2i

)
+ ∆2.

However, the exact expression for this variance cannot be obtained. Multivariate

Taylor series expansion is thus employed below.

†There are two types of heterogeneity in meta-analyses. One is when the treatment groups, Y1
and Y2, have different variances (λ2

1 , λ
2
2). The other is when the studies have different variances

(λ2
i for i = 1, 2, . . . , k). In this thesis, heterogeneity refers to the latter kind. See Section 2.3.3.

7
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2.3.1 Inverse χ2 Parametrization

Let zi = ci/ϕ̂2
i , then θ̂i can be written as a function of the zs: θ̂i(~z) = zi/Σ j z j. Then,

E [zi] = E
[
ci/ϕ̂

2
i

]
= ci · E

[
1/ϕ̂2

i

]
since ci is a function of νi only

= ci ·
1

1
n1i

+
1

n2i

· E
[
1/λ̂2

i

]
= ci ·

1
1

n1i
+

1
n2i

·
Ni − 2
Ni − 4

·
1
λ2 , where Ni = n1i + n2i,

using results from Walter and Balakrishnan [20].

=
ci · n1in2i · νi

λ2(νi + 2)(νi − 2)
, where νi = n1i + n2i − 2

:= αi with common λ2 across studies

(νi > 2,Ni > 4).

Similarly,

E
[
z2

i

]
= E

[
(ci/ϕ̂

2
i )2

]
= c2

i · E


1

λ̂2
i

·
1( 1

n1i
+

1
n2i

)2


=

c2
i( 1

n1i
+

1
n2i

)2 · E
[
1/λ̂4

i

]

=
c2

i( 1
n1i

+
1

n2i

)2 ·
ν2

i

λ4 · E

 λ4

ν2
i λ̂

4
i


8
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=
c2

i ν
2
i

λ4
( 1
n1i

+
1

n2i

)2 · E
[
1/T2

]

where T =
νiλ̂

2
i

λ2 ∼ χ
2
νi
.

E
[
1/T2

]
=

∫
∞

0

1
t2 ·

1
2νi/2Γ(νi/2)

· e−
t
2 t

νi
2 −1dt

= 2−2
( 2
νi − 4

) ( 2
νi − 2

) ∫ ∞

0

1

2
νi−4

2 Γ(
νi − 4

2
)
· e−

t
2 t

νi−4
2 −1dt

= 2−2
( 2
νi − 4

) ( 2
νi − 2

)
=

1
(νi − 4)(νi − 2)

⇒ E
[
z2

i

]
=

c2
i ν

2
i

λ4
( 1
n1i

+
1

n2i

)2 ·
1

(νi − 4)(νi − 2)
.

This gives

Var (zi) = E
[
z2

i

]
− E [zi]

2

=
c2

i ν
2
i

λ4
( 1
n1i

+
1

n2i

)2 ·
1

(νi − 4)(νi − 2)
−

(
ci · n1in2i · νi

λ2(νi + 2)(νi − 2)

)2

=
2ν2

i c2
i

λ4
( 1
n1i

+
1

n2i

)2

(νi − 4)(νi − 2)2

:= β2
i again with common λ2 across studies

(νi > 4,Ni > 6).

Note Cov(zi, z j):=βi, j=0 for all pairs (i, j) since all studies are independent.

Using these results for a second-order Taylor approximation with respect to the

9
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zis, one obtains

θ̂2
i (~z) := ui(~z) function ui of ~z

=
z2

i

(Σ jz j)2

⇒ θ̂2
i ≈ ui(~α) +

k∑
p=1

(zp − αp) · u′i(~α)

+
1
2

k∑
p=1

(zp − αp)2
· u′′i (~α) +

1
2

∑
p,q

(zp − αp)(zq − αq) ·
∂2

∂zq∂zp
ui(~α)

⇒ E
[
θ̂2

i

]
≈ ui(~α) +

∑
p

(E
[
zp

]
− αp) · u′i(~α) +

1
2

∑
p

E
[
(zp − αp)2

]
· u′′i (~α)

+
1
2

∑
p,q

E
[
(zp − αp)(zq − αq)

]
·

∂2

∂zq∂zp
ui(~α)

= ui(~α) +
∑

β2
p · u

′′

i (~α),

as E
[
zp

]
− αp = E

[
(zp − αp)(zq − αq)

]
= 0.

Given

u′′i =


2(Σ z j − zi)(Σ z j − 3zi)

(Σz j)4 if p = i

6z2
i

(Σz j)4 if p , i,

E
[
θ̂2

i

]
≈

α2
i

(Σ j α j)2 + β2
i ·

(Σ j α j − αi)(Σ j α j − 3αi)

(Σ j α j)4 +
∑
p,i

β2
p ·

3α2
i

(Σ j α j)4 .

Second-order Taylor approximation is used again to obtain an expression for the

last term in Equation 2.3.1:

E
[
θ̂iθ̂ j

]
= E

[ zi

Σl αl
·

z j

Σl αl

]

10
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= E

[
ziz j

(Σl αl)2

]
, i , j.

Let gi, j(~z) = θ̂iθ̂ j =
ziz j

(Σl αl)2 .

⇒ gi, j(~z) ≈ gi, j(~α) +

k∑
p=i

(zp − αp) ·
∂
∂zp

gi, j(~α) +
1
2

k∑
p=1

(zp − αp)2
·
∂2

∂z2
p

gi, j(~α)

+
1
2

∑
p,q

(zp − αp)(zq − αq) ·
∂2

∂zq∂zp
gi, j(~α)

⇒ E
[
θ̂iθ̂ j

]
= E

[
gi, j

]
≈ gi, j(~α) +

k∑
p=i

(E
[
zp

]
− αp) ·

∂
∂zp

gi, j(~α) +
1
2

k∑
p=1

E
[
(zp − αp)2

]
·
∂2

∂z2
p

gi, j(~α)

+
1
2

∑
p,q

E
[
(zp − αp)(zq − αq)

]
·

∂2

∂zq∂zp
gi, j(~α)

= gi, j(~α) +
1
2

∑
p

β2
p ·
∂2

∂z2
p

gi, j(~α)

With

g′′i, j =



2z j(3zi − 2Σl αl)
(Σl αl)4 if p = i

2zi(3z j − 2Σl αl)
(Σl αl)4 if p = j

6ziz j

(Σl αl)4 if p , i ∧ p , j,

one obtains

E
[
θ̂iθ̂ j

]
≈

αiα j

(Σl αl)2 −
2β2

i α j + 2β2
jαi

(Σl αl)3 +
3αiα jΣl β

2
l

(Σl αl)4 .

Therefore, Equation 2.3.1 yields

Var
(
∆̂
)

= E
[
(Σ θ̂i∆̂i)2

]
− ∆2, where

11
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E
[
(Σ θ̂i∆̂i)2

]
=

∑
E

[
θ̂2

i

]
E

[
∆̂2

i

]
+ ∆2

∑
i, j

E
[
θ̂iθ̂ j

]
≈

k∑
i=1

 α2
i

(Σ j α j)2 + β2
i ·

(Σ j α j − αi)(Σ j α j − 3αi)

(Σ j α j)4 +
∑
p,i

β2
p ·

3α2
i

(Σ j α j)4


×

[
λ2

( 1
n1i

+
1

n2i

)
+ ∆2

]
+ ∆2

·

∑
i, j

 αiα j

(Σl αl)2 −
2β2

i α j + 2β2
jαi

(Σl αl)3 +
3αiα jΣl β

2
l

(Σl αl)4

. (2.3.2)

It is important to note that the total sample size of Ni ≥ 7 is required for all studies

i = 1, . . . , k due to the 1
νi − 4 term in the second moment of zi. Hereinafter, this

approximation in Equation 2.3.2 will thus be referred to as N7.

One may instead opt for a first-order approximation to avoid the sample size

restriction:

E
[
θ̂2

i

]
≈ ui(~α) +

∑
p

(E
[
zp

]
− αp) · u′i(~α)

= ui(~α)

=
α2

i

(Σ α j)2

E
[
θ̂iθ̂ j

]
≈ gi, j(~α) +

k∑
p=i

(E
[
zp

]
− αp) · g′i, j(~α)

= gi, j(~α)

=
αiα j

(Σ αl)2

⇒ Var
(
∆̂
)

= E
[
(Σ θ̂i∆̂i)2

]
− ∆2

≈

k∑
i=1

α2
i

(Σ α j)2 ·

[
λ2

( 1
n1i

+
1

n2i

)
+ ∆2

]
+ ∆2

∑
i, j

αiα j

(Σ αl)2 − ∆2 (2.3.3)
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Without β2
i , this approximation only requires Ni ≥ 5. Equation 2.3.3 will thus be

referred to as N5 in the following sections.

In practice, the terms involving the unknownλ2 inαi andβ2
i have to be estimated.

Without the bias-correction, one simply replaces λ2s with λ̂2
i , i.e., 1/λ̂2

i and 1/λ̂4
i

as estimators for 1/λ2 and 1/λ4, respectively. On the other hand, with the bias-

correction (ci = 1 − 2/νi), one uses ci/λ̂2
i to estimate 1/λ2 given

E

 1

λ̂2
i

 =
1
ci
·

1
λ2 .

Similarly, given

E

 1

λ̂4
i

 =
ν2

i

(νi − 4)(νi − 2)
·

1
λ4 =

νi

ci(νi − 4)
·

1
λ4 ,

one uses
ci(νi − 4)

νi
·

1

λ̂4
i

to estimate 1/λ4. Then, with the bias-correction,

α̂i =
ci

λ̂2
i

·
ci · n1in2i · νi

(νi + 2)(νi − 2)

β̂2
i =

ci(νi − 4)
νi

·
1

λ̂2
i

·
2ν2

i( 1
n1i

+
1

n2i

)2

(νi − 4)(νi − 2)2

.

13

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.Sc. Thesis – H. Seo; McMaster University – Mathematics and Statistics

2.3.2 χ2 Parametrization

An alternative parametrization is proposed to address the sample size restriction of

N7. Define the reciprocal of zi as z′i = ϕ̂2
i /ci, and θ̂i(~z′) =

1/z′i
Σ j 1/z′j

. The first moment

of z′i is:

E
[
z′i
]

= E
[
ϕ̂2

i /ci

]
=

1
ci
· E

[
ϕ̂2

i

]
=

1
ci
· E

[
λ̂2

i ·

( 1
n1i

+
1

n2i

)]
=

1
ci
·

( 1
n1i

+
1

n2i

)
· E

[
λ̂2

i

]
=
λ2

ci
·

( 1
n1i

+
1

n2i

)
:= α′i .

Similarly, the second moment is given by:

E
[
z2

i
′
]

= E
[(
ϕ̂2

i /ci

)2
]

=
1
c2

i

·

( 1
n1i

+
1

n2i

)2

· E
[
λ̂4

i

]
,

=
1
c2

i

·

( 1
n1i

+
1

n2i

)2

· E
[
T2

]
·
λ4

ν2
i

,

where T =
νiλ̂

2
i

λ2 ∼ χ
2
νi

again

=
1
c2

i

·

( 1
n1i

+
1

n2i

)2

· νi(νi + 2) ·
λ4

ν2
i

=
λ4(νi + 2)

c2
i νi

·

( 1
n1i

+
1

n2i

)2

.
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⇒ Var
(
z′i
)

= E
[
z2

i
′
]
− E

[
z′i
]2

=
λ4(νi + 2)

c2
i νi

·

( 1
n1i

+
1

n2i

)2

−
λ4

c2
i

·

( 1
n1i

+
1

n2i

)2

=
λ4

c2
i

·

( 1
n1i

+
1

n2i

)2

·
2
νi

:= β′2i

(νi > 0 or Ni > 2)

It is seen here that this parametrization only requires Ni ≥ 3 †– This approximation

will hereinafter be referred to as N3 (See Equation 2.3.4 below). For all pairs of

i , j, Cov(z′i , z
′

j) = 0 again given the independence of studies.

The λ2 term in α′i can simply be estimated by its unbiased estimator λ̂2
i . Without

the bias-correction, the λ4 term in β′2i is estimated by λ̂4
i . However, given

E
[
λ̂4

i

]
=
νi + 2
νi
· λ4,

the bias-corrected N3 uses
νi

νi + 2
· λ̂4

i

to estimate λ4 in β′2i . Thus, the bias-correction results in

β̂′2i =
νi

νi + 2
· λ̂4

i ·
1
c2

i

·

( 1
n1i

+
1

n2i

)2

·
2
νi
.

†Although the second moment of z′i only requires Ni ≥ 3, the effective lower bound for Ni is
5 under the heterogeneity assumption. A sample size of at least 2 is required for both groups to
calculate the sample variances (n1 ≥ 2 ∧ n2 ≥ 2). This gives Ni ≥ 4 for all i, but Ni = 4 leads to
invalid bias-correction factor 1− νi/2 = 1− (Ni − 2)/2 = 0. Therefore, Ni ≥ 5 is required. Technically,
the assumption of homogeneity in treatment group variances permits ni = 1 for the estimation
of pooled variance, in which case Ni = 2 is possible. However, as mentioned, the conventional
estimator for the pooled variance (λ̂2

i ) requires a sample variance for each treatment group.
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Now let

fi(~z′) = θ̂2
i (~z′)

=
1/z2

i
′

(Σ 1/z′j)
2

⇒ fi(~z′) ≈ fi(~α′) +

k∑
p=1

(z′p − α
′

p) · f ′i (~α′)

+
1
2

k∑
p=1

(z′p − α
′

p)2
· f ′′i (~α′) +

1
2

∑
p,q

(z′p − α
′

p)(z′q − α
′

q) ·
∂2

∂z′q∂z′p
· fi(~α′),

using second-order Taylor approximation again.

This gives

E
[
θ̂2

i

]
≈ fi(~α′) +

k∑
p=1

(E
[
z′p

]
− α′p) · f ′i (~α′)

+
1
2

k∑
p=1

E
[
(z′p − α

′

p)2
]
· f ′′i (~α′) +

1
2

∑
p,q

E
[
(z′p − α

′

p)(z′q − α
′

q)
]
·

∂2

∂z′q∂z′p
· fi(~α′)

= fi(~α′) +
1
2

k∑
p=1

β2
p
′
· f ′′i (~α′).

Given

f ′′i =


6z′−4

i (z′−1
i − Σ z′−1

j )2

(Σ z′−1
j )4 if p = i

2z′−2
i z′−3

p (3z′−1
p − 2Σ z′−1

j )

(Σ z′−1
j )4 if p , i,

E
[
θ̂2

i

]
≈

α′−2
i

(Σ α′−1
j )2 + β′2i ·

3α′−4
i (α′−1

i − Σ α′−1
j )2

(Σ α′−1
j )4 +

∑
p,i

β′2p ·
α′−2

i α′−3
p (3α′−1

p − 2Σ α′−1
j )

(Σ α′−1
j )4 .
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Similarly, let

hi, j(~z′) = θ̂iθ̂ j

=
z′−1

i z′−1
j

(Σ z′−1
l )2 (i , j)

⇒ hi, j(~z′) ≈ hi, j(~α′) +

k∑
p=1

(z′p − α
′

p) · h′i, j(~α′) +
1
2

k∑
p=1

(z′p − α
′

p)2
· h′′i, j(~α′)

+
1
2

∑
p,q

(z′p − α
′

p)(z′q − α
′

q) ·
∂2

∂z′q∂z′p
· hi, j(~α′).

Taylor approximation gives

E
[
θ̂iθ̂ j

]
≈ hi, j(~α′) +

k∑
p=1

(E
[
z′p

]
− α′p) · h′i, j(~α′) +

1
2

k∑
p=1

E
[
(z′p − α

′

p)2
]
· h′′i, j(~α′)

+
1
2

∑
p,q

E
[
(z′p − α

′

p)(z′q − α
′

q)
]
·

∂2

∂z′q∂z′p
· hi, j(~α′)

= hi, j(~α′) +

k∑
p=1

β′2p · h
′′

i, j(~α′).

Using

h′′i, j =



2z′−3
i z′−1

j (Σl z′−1
l − z′−1

i )(Σl z′−1
l − 3z′−1

i )

(Σ z′−1
l )4 if p = i

2z′−1
i z′−3

j (Σl z′−1
l − z′−1

j )(Σl z′−1
l − 3z′−1

j )

(Σ z′−1
l )4 if p = j

2z′−1
i z′−1

j z′−3
p (3z′−1

p − 2Σ z′−1
l )

(Σ z′−1
l )4 if p , i ∧ p , j,

one has

E
[
θ̂iθ̂ j

]
≈

α′−1
i α′−1

j

(Σ α′−1
l )2 + β′2i ·

α′−3
i α′−1

j (Σ α′−1
l − α

′−1
i )(Σ α′−1

l − 3α′−1
i )

(Σ α′−1
l )4
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+ β′2j ·
α′−1

i α′−3
j (Σ α′−1

l − α
′−1
j )(Σ α′−1

l − 3α′−1
j )

(Σ α′−1
l )4

+
∑

p,i∧p, j

β′2p ·
α′−1

i α′−1
j α′−3

p (3α′−1
p − 2Σ α′−1

l )

(Σ α′−1
l )4 .

Therefore, under this parametrization Equation 2.3.1 yields

Var
(
∆̂
)

= E
[
(Σ θ̂i∆̂i)2

]
− ∆2, where

E
[
(Σ θ̂i∆̂i)2

]
=

∑
E

[
θ̂2

i

]
E

[
∆̂2

i

]
+ ∆2

∑
i, j

E
[
θ̂iθ̂ j

]
≈

k∑
i=1

 α′−2
i

(Σ α′−1
j )

+ β′2i ·
3α′−4

i (α′−1
i − Σ α′−1

j )2

(Σ α′−1
j )4 +

∑
p,i

β′2p ·
α′−2

i α′−3
p (3α′−1

p − 2Σ α′−1
j )

(Σ α′−1
j )4


×

[
λ2

( 1
n1i

+
1

n2i

)
+ ∆2

]
+ ∆2

·

∑
i, j

[ α′−1
i α′−1

j

(Σ α′−1
l )2 + β′2i ·

α′−3
i α′−1

j (Σ α′−1
l − α

′−1
i )(Σ α′−1

l − 3α′−1
i )

(Σ α′−1
l )4

+β′2j ·
α′−1

i α′−3
j (Σ α′−1

l − α
′−1
j )(Σ α′−1

l − 3α′−1
j )

(Σ α′−1
l )4

+
∑

p,i∧p, j

β′2p ·
α′−1

i α′−1
j α′−3

p (3α′−1
p − 2Σ α′−1

l )

(Σ α′−1
l )4

]
. (2.3.4)

Again, unknown λ2 in α′i and β′2i needs to be estimated.

2.3.3 Heterogeneity

All three approximations (N7, N5, and N3) are readily applicable to heterogeneous

meta-analyses. Rewrite 2.1.1 to

∆̂i = Y1i − Y2i ∼̇ N
(
∆ = µ1 − µ2, λ

2
i

( 1
n1i

+
1

n2i

))
,
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where λ2
i , λ

2
j for some (i, j) ∈ {1, 2, . . . , k}2. The common variance λ2s are simply

replaced by λ2
i , yielding

for N7 and N5


αi =

ci · n1in2i · νi

λ2
i (νi + 2)(νi − 2)

β2
i =

2ν2
i c2

i

λ4
i

( 1
n1i

+
1

n2i

)2

(νi − 4)(νi − 2)2
,

for N3


α′i =

λ2
i

ci
·

( 1
n1i

+ 1
n2i

)
β′2i =

λ4
i

c2
i
·

( 1
n1i

+ 1
n2i

)2
·

2
νi
,

andE
[
∆̂2

i

]
= λ2

i

( 1
n1i

+ 1
n2i

)
+∆2.All else remains the same as the homogeneous case.

In practice, αi, β2
i , α

′

i , and β′2i are all estimated by using the pooled sample variance

λ̂2
i in homogeneous settings. One likewise uses λ̂2

i to estimate these parameters

under the heterogeneity assumption. The approximation procedure is thus the

same for homogeneous and heterogeneous meta-analyses.

It should also be noted that, under the homogeneity assumption, an alternative

choice for the weights exists. Since one assumes that the studies share a common

variance, each wi contains a λ2 term. Given that all weights are scaled by the

common factor λ2, the term can be dropped entirely, yielding ŵi = 1/(1/n1i + 1/n2i).

The treatment variance λ2 can then be separately estimated by pooling all studies

(Σ n1i + n2i), in which case n1i = n2i = 1 is permitted. However, such a procedure is

uncommon in practice, and most meta-analyses (although they may not explicitly

state so) assume heterogeneity by choosing to pool the treatment groups in each

study separately instead of pooling all the studies.†

†To reflect the conventional meta-analysis procedure, this alternative choice of weights was not
used in the simulation study presented below.
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2.4 Simulations

In order to investigate the effects of the bias-correction on Var
(
∆̂
)
, a simulation

study was conducted. For a chosen set of values for parameters k, n1i, n2i, ∆, and λ2

(λ2
i if heterogeneous), ∆̂i and λ̂i were randomly sampled from their distributions–

normal and χ2:

if homogeneous


∆̂i ∼̇ N

(
∆ = µ1 − µ2, λ2

( 1
n1i

+ 1
n2i

))
νiλ̂

2
i

λ2 ∼ χ2
νi
⇒ λ̂2

i
d
=
λ2
· x2

νi
νi

if heterogeneous


∆̂i ∼̇ N

(
∆ = µ1 − µ2, λ2

i

( 1
n1i

+ 1
n2i

))
νiλ̂

2
i

λ2
i
∼ χ2

νi
⇒ λ̂2

i
d
=
λ2

i · x
2
νi

νi
.

Var
(
∆̂
)

was estimated using the methods in Section 2.3 with and without the bias-

correction, which was then used to calculate ŵi = ci/ϕ̂2
i . The gold standard (GS)

variance 1/(Σ 1/ϕ2) (i.e., variance obtained by assuming that the true λ2 is known)

and the conventional plug-in estimator for the variance 1/Σ ŵi were calculated as

well for comparison. 2,000 simulations were run for each set of parameter values.

Scenarios with a small number of studies (k = 2, 5) and small to moderate sample

sizes were explored. The true effect size ∆ was set to zero to explore null cases

(where treatment has no effect on the outcomes, i.e., µ1 − µ2 = 0).
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Chapter 3

Results

3.1 Homogeneous Meta-Analyses

Tables 3.1 and 3.2 show results from the simulations. As expected, one observes that

as the studies get bigger the variance estimates decrease overall while the coverage

approaches 95%. Similarly, it is not surprising that the differences in the estimates

become negligible as the sample sizes increase. When the number of studies

increases, the variance estimates decrease when the sample sizes are comparable

(e.g., N1 = N2 = 20 with k = 2 and N1 = · · · = N5 = 18 with k = 5). However, when

Nis are not comparable, having fewer but bigger studies is preferable to having

many small studies. This is demonstrated by, for instance, comparing case 6 from

Table 3.1 and case 1 from Table 3.2– The total number of observations Σ Ni is the

same (42 for both), yet k = 2 reports better coverage for all estimators.

An important result is that the conventional plug-in estimator 1/Σ ŵi consis-

tently underestimates the variance across all cases. Even when compared to the GS

estimates (a lower bound for the variance), the plug-in estimator gives smaller
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results. The underestimation is more severe when the studies are small. For

example, the first two cases in the tables above show that the plug-in estimator

underestimates the variance approximately by 25%-40% compared to the empirical

variance with biased weights. This is reflected in its coverage as well, with its

probability being smaller than those of the approximation methods in almost all

cases.

Comparing the estimates with and without the bias-correction, empirical results

show that bias-corrected weights give more precise ∆̂s almost always, although

by a small margin. The margin is the greatest when the studies vary in their

sample sizes, although the gap closes when at least one study has a sample size

≥80 (see cases 3-5 in Table 3.1 and cases 4-5 in Table 3.2). On the other hand,

Taylor series-approximated estimates show more fluctuation. N5 exhibits superior

coverage probabilities with the bias-correction almost always. Meanwhile, the

bias-correction is often observed to decrease coverage in N7 and N3, particularly

when the studies are small. However, the bias-corrected estimators, even when

they perform worse than those without the correction, often show better coverage

compared to the plug-in estimator.

Now comparing the three approximation methods, N7 outperforms N5 and

N3 (as well as the plug-in estimator) with or without the bias-correction. N7 con-

sistently returns the best coverage probability with ≈ 10% improvement from the

plug-in estimator in some cases. N7’s outperforming N5 is expected, since N7 has

the advantage of the second-order terms in addition to the first-order approxima-

tion N5 uses under the same parametrization. However, N5 remains advantageous

when the sample size dips below seven– N7 cannot be used even when there is
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only one study in the meta-analysis that does not meet the requirement Ni ≥ 7 ∀ i.

N3’s poor performance compared to N7 can be explained by its parametrization.

Unlike N7 and N5, N3 has a χ2 random variable in its numerator. χ2 distribution

is right-skewed, particularly when the degrees of freedom (νi) is small. The heavy

tail near zero indicates non-negligible probabilities associated with values close to

zero with a small νi. This pushes its reciprocal towards large values, yet the Taylor

approximation around α′is only allows finite results. Limit issues near zero thus

explain the bigger margin of error in N3 than in N7. Following N7, N3 without

the bias-correction performs better than N5 according to the coverage probabili-

ties. With the correction, N3 returns worse coverages than N5 when the sample

sizes are small, since the correction tends to reduce coverage in N3 as mentioned

above. However, when the studies get bigger (Ni ≈ 20) the trend reverses, and the

bias-corrected N3 reports slightly better coverages than N5’s.

3.2 Heterogeneous Meta-Analyses

Tables 3.3 and 3.4 show results from the simulations under the heterogeneity as-

sumption. With control variance λ2
1 = 1, heterogeneous studies with 25%, 50%,

75%, and 100% increase in the variance (λ2
i,1 = 1.25, 1.50, 1.75, 2.00) were explored.
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Overall, similar trends are observed as seen in Section 3.1. Coverage probabil-

ities approach 95%, and variance estimates decrease as the sample sizes increase.

Similarly, with bigger sample sizes, the results from the estimators exhibit negligi-

ble differences. Meta-analyses with fewer, bigger studies again show better results

than those with several smaller studies when the degree of heterogeneity is similar–

See for example cases 10 and 1 from Tables 3.3 and 3.4, respectively. Otherwise,

bigger values of k report better coverage and precision when Nis are similar, as

expected.

As in the homogeneous case, the plug-in estimator is seen consistently underes-

timating the variance and reporting poor coverage. The degree to which it under-

estimates the empirical variance is similar to that in homogeneous meta-analyses.

However, when the studies vary in their sample sizes, the underestimation is

slightly more severe under the heterogeneity assumption (e.g., case 3 from Table

3.1 and 5-6 from Table 3.3).

Contrary to what one might expect, coverages often increase with the degree of

heterogeneity, particularly when the sample sizes are small. One can potentially

attribute this phenomenon to the fact that the variance estimates also increase with

heterogeneity. If the heterogeneity results in only a slight change in ∆̂, increased

variance simply leads to a wider confidence interval, hence greater coverage. The

variable that has the biggest influence on coverage is therefore not the degree of

heterogeneity, but the sample size.

Empirical results again show that bias-corrected ∆̂s are almost always more

precise than those calculated with biased weights, though the differences are scant.

As in homogeneous meta-analyses, the bias-correction makes the biggest difference
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in the empirical variance when the studies vary in their sample sizes. However, this

difference diminishes quickly when there are one or more larger studies (Ni ≈ 80).

The approximation methods on the other hand show mixed results under the

heterogeneity assumption as well. N7 and N3 report worse coverage with bias-

corrected ∆̂s in both Tables 3.3 and 3.4. The only exceptions to this trend are cases

5-7 in Table 3.3, where the studies vary in their sizes– In these cases, the bias-

correction improves coverage. N5 often gives worse coverage probabilities with

the correction particularly when Nis are small with k = 2. These differences seem

to disappear with an increase in k, as Table 3.4 shows that the correction makes

little change in N5’s coverages.

Comparisons among the three approximation methods remain mostly the same

as those in homogeneous meta-analyses. All three approximations generally report

better coverage than the conventional plug-in estimator does, regardless of the

sample size and the degree of heterogeneity. N7 provides the best coverage among

all the estimators, reporting improvements greater than 5% compared to the plug-

in estimator in some cases. Behind N7, N3 without the correction reports better

coverage than N5 when the studies are small. The exception to this trend is when

(N1,N2) = (40, 5), where N5 without the bias-correction returns better coverage. N3

with the correction performs worse than N5 in general, however this trend reverses

as the sample sizes increase (Ni ≈ 20).
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Chapter 4

Discussion

Senn et al. [15] (independently from Walter and Balakrishnan [20]) also raised con-

cerns about the bias in study weights, suggesting that it can be a source of variability

in treatment effect estimates. Their results are congruent with those presented here

and in Walter and Balakrishnan [20]– That is, the conventional inverse variance

method can cause serious digressions from the true weights when small studies

are being integrated. The works in this thesis extend the propositions by Walter and

Balakrishnan [20], exploring the effects of bias-correction on the precision of the

summary treatment effect estimator ∆̂. Meta-analyses with normally distributed

continuous outcomes sharing a common variance are considered, under a fixed

effects model with the mean difference as the measure. Three new estimators for

Var
(
∆̂
)

are developed using the Taylor series expansion, and simulation studies

were conducted in both homogenous and heterogenous settings.

The simulation results show that the conventional methods of using biased

weights and ̂Var
(
∆̂
)

= 1/Σ ŵi lead to underestimation of the variance, particularly

when the number of studies or the sample size is small. The N7 approximation
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reliably increases coverage probabilities compared to the conventional estimator

in both homogenous and heterogenous outcomes. N5 and N3 are also available

when the sample size requirement Ni ≥ 7 is not met for all studies, although their

performances vary depending on parameter values. On the other hand, the results

are inconclusive with respect to the bias-correction. The estimator ∆̂ is empirically

more precise with the correction. However, the bias-correction does not always

lead to a better coverage probability when the variance is estimated with Taylor

approximation. The changes are slight especially when the sample sizes are not

too small (Ni ≈ 20). Overall, one learns that sample sizes drive the coverage

probabilities, more than the degree of heterogeneity or the bias-correction.

The methods presented here have some limitations, and there are many po-

tential avenues for extensions of this work. For example, one can evaluate the

methods presented here using real meta-analyses instead of simulated data. Walter

and Balakrishnan’s original paper evaluates the effects of the bias-correction using

meta-analyses from the biomedical literature available in the Cochrane Database

of Systematic Reviews [20]. The paper presents changes in the individual weights

wi, summary effect estimates ∆̂, and its variance with the correction. In addition to

these initial results, the new Taylor-approximated estimators can give variance es-

timates with biased and corrected weights, and comparisons among the precision

estimators can be made using published meta-analytic data.

The raw MD may not be an appropriate effect measure when studies report out-

comes on different scales that cannot be easily converted. Cohen’s d and Hedges’

g, both forms of standardized MD, are often chosen as a measure in such circum-

stances [2, 4, 12]. The identification of optimal weights in meta-analyses using these

31

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.Sc. Thesis – H. Seo; McMaster University – Mathematics and Statistics

two statistics is thus another potential path to supplementing the propositions here.

This thesis focuses on meta-analyses reporting continuous outcomes with a

common variance, which does not cover the vast literature with different types

of data. For instance, Song [18] investigates meta-analyses with binary outcomes

and different association measures (e.g., log odds ratio, risk difference). Similar

Taylor approximation methods are used to estimate the expected value of the

individual study weights, according to which different bias-correction methods are

suggested for each measure. Walter and colleagues are also studying heterogeneous

(Var (Y1) , Var (Y2)) continuous outcomes in meta-analyses and associated biases

in weights (unpublished) [21].

A fixed-effects model adopted in this work assumes that the studies in a meta-

analysis all come from the same population and have identical true effect sizes.

This assumption is implausible in most cases due to the diversity in study designs,

demographics of the participants, and locations of the trial sites, among many

factors that affect treatment effect estimates. Therefore, a random-effects model is

generally more appropriate as it allows different effect sizes for each study [2, 5, 6].

Many have discussed optimal inference in meta-analyses under the random effects

model, though they focus on improving the hypothesis tests associated with the

conventional DerSimonian-Laird methods [5, 8–10, 13, 14, 16, 17]. Identification

of optimal weights in random-effects meta-analyses could also contribute to these

efforts, and even improve the estimation of the between-studies variance.

Study weights should not be treated as constants when they are in fact random

variables whose estimations should be approached with rigour. In that, the works

in this thesis make two contributions: The first involves further investigation into
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the bias-correction proposed by Walter [20]. The results show that the treatment

effect estimator is empirically more precise with the correction than without. Situa-

tions where the correction has the biggest impact on the precision are also identified.

The second contribution is the provision of three new estimators for the summary

effect variance. The simulation study has demonstrated that the conventional in-

verse sum-of-weights estimator for the variance consistently underestimates the

standard error, especially when the sample sizes are small. Thus, they return a

confidence interval too narrow and a coverage too low. The Taylor-approximated

estimators N7, N5, and N3 are shown to improve coverage probabilities in many

cases.
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