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Goals for post-COVID era

▶ Better short-term predictions for health-care demand of ARIs

▶ Better understanding of mortality and morbidity burdens for
prioritization

▶ Readiness to detect and respond to the next new ARI threat



Data streams

▶ Virological tests

▶ Serological tests

▶ Coded physician visits, hospital admissions, deaths

▶ Wastewater

▶ Genomics



Serological testing data

▶ What do we think if testing goes up but positivity remains
level?
▶ * Nothing has probably changed in the population



Virological testing data

▶ What do we think if testing goes up but positivity remains
level?
▶ * It depends!

▶ Maybe tests have become available in a wider geographic area
▶ * no evidence for increase in incidence

▶ Maybe there’s a huge demand for tests because of symptoms
▶ * if positivity is level, this means incidence has increased



What is the best proxy for incidence?

▶ Observed cases?
▶ Number of positive tests

▶ Early in the COVID alpha wave, in some places

▶ Test positivity
▶ Proportion of positive tests

▶ Omicron wave

▶ Some combination



Patterns in data

▶ https://www.canada.ca/en/public-health/services/

surveillance/respiratory-virus-detections-canada.

html

▶ https://github.com/dajmcdon/rvdss-canada

https://www.canada.ca/en/public-health/services/surveillance/respiratory-virus-detections-canada.html
https://www.canada.ca/en/public-health/services/surveillance/respiratory-virus-detections-canada.html
https://www.canada.ca/en/public-health/services/surveillance/respiratory-virus-detections-canada.html
https://github.com/dajmcdon/rvdss-canada


Data cleaning
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Why did I get a flu test?

▶ Because I had flu-like symptoms
▶ Due to flu or other virus?

▶ Because I had a close contact diagnosed with flu
▶ Virologically or otherwise?

▶ Because I took a multiplex test!

▶ Modifiers
▶ Is there a flu scare going on?

▶ Is it flu season?



Interactions between pathogens

▶ The flu outbreak increases the number of RSV tests
▶ Decreases positivity

▶ Is it expected to increase the number of positives??
▶ * Maybe I get tested because my household has flu, but I

come out positive for RSV.

▶ Flu outbreak may also decrease the actual amount of RSV!
▶ Non-specific immunity

▶ Staying home



Guidance

https: // www. who. int/ publications/ i/ item/

who-2019-ncov-adjusting-ph-measures-2023. 1

https://www.who.int/publications/i/item/who-2019-ncov-adjusting-ph-measures-2023.1
https://www.who.int/publications/i/item/who-2019-ncov-adjusting-ph-measures-2023.1


Incidence

▶ Incidence is not an end in itself
▶ Incidence × severity to predict burden

▶ Incidence × immunogenicity to predict short-term protection,
dynamics

▶ Incidence * immunity kernel to predict longer-term protection



Some modeling approaches

▶ Direct estimation
▶ Infer incidence from positivity and cases each week

▶ Phenomenological fitting
▶ Make use of smooth latent curves through time

▶ Mechanistic fitting
▶ Make use of dynamical models underlying latent variables

▶ SIR, information flow, policy changes



Top-down approach

▶ Inspired by early COVID; limited tests, active discussion of
how to use them

▶ Imagine risk prioritization; people in each risk class have a
certain probability of testing positive
▶ The mean of this distribution corresponds to prevalence in the

population

▶ Variation corresponds to the information gained by risk
prioritization



Beta-distributed risk
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Beta-distributed risk
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Bottom-up approach

▶ Model the probability of people seeking care for various
reasons

▶ Corresponds better to seasonal epidemics
▶ Policy shifts could be modeled as parameter changes



Hazard approach

▶ PmissingConference =
1− (1− Pforgetting)(1− PmissingAirplane)(1− PgettingLost)

▶ Define: H = − log(1− P)

▶ Hevent =
∑

componentsHc

▶ e.g., Htest = HfocalSymptoms + HfocalContact +
HnonfocalSymptoms + HnonfocalContact



Hazard response
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Log odds approach

▶ The odds corresponding a probability P is θ = P/(1− P)
▶ ℓ = log(P/(1− P))

▶ Principled justification for adding on the log scale in many
cases
▶ But not quite in this one

▶ e.g., ℓposterior = ℓprior + BayesFactor
▶ Probability positive given positive test

▶ Prop of positives among test seekers

▶ Example: Black people accounted for 10% of recreational
marijuana users and 40% of convictions in Philadelphia when I
was in high school
▶ OR: (4/6) / (1/9) = 6



Log-odds response
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Constant odds ratio
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Interpreting observations
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Prevalence-incidence gap

▶ We are thinking about the asymptotic properties of these tests
as measuring prevalence when we test the whole population

▶ But what we’re trying to measure is incidence of new cases

▶ Consider the population we consider eligible to take these tests
▶ Does not include people with recent positives

▶ Although sometimes they do take it



Modeling approaches

▶ Top-down models to fit a beta shape parameter together with
disease dynamics
▶ Could also use odds ratios and a single shape parameter to

describe relationship between testing propensities in groups

▶ Bottom-up models to fit to likelihood of observed testing
numbers and observed positives

▶ False-negative and false-positive results



Combine with other data streams when possible

▶ Medical screening, hospital discharge

▶ ILI surveillance reports

▶ Seroprevalence



Simulation-based validation

▶ Simulate scenarios with realistic sources of variation

▶ Test how well different modeling approaches can fit



Data curation

▶ Work with provincial and federal health agencies to improve
connections between models and data

▶ How data are collected:
▶ e.g., what multiplex tests do people take?

▶ How data are shared
▶ Bringing models to data

▶ Make shareable products as part of the research project



Thanks for your patience!

▶ Also:
▶ Key collaborators: Bolker, Brown, Champredon, Li, Zhao

▶ CIHR, PHAC, NSERC


