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Goals for post-COVID era

» Better short-term predictions for health-care demand of ARIs

» Better understanding of mortality and morbidity burdens for
prioritization

P> Readiness to detect and respond to the next new ARI threat



Data streams

» Virological tests

» Serological tests

» Coded physician visits, hospital admissions, deaths
> Wastewater

» Genomics



Serological testing data

> What do we think if testing goes up but positivity remains
level?

» * Nothing has probably changed in the population



Virological testing data

» What do we think if testing goes up but positivity remains
level?

> * |t depends!

> Maybe tests have become available in a wider geographic area
> * no evidence for increase in incidence

> Maybe there's a huge demand for tests because of symptoms
» * if positivity is level, this means incidence has increased



What is the best proxy for incidence?

» Observed cases?
» Number of positive tests

» Early in the COVID alpha wave, in some places

> Test positivity
» Proportion of positive tests

» Omicron wave

» Some combination



Patterns in data

> https://www.canada.ca/en/public-health/services/
surveillance/respiratory-virus-detections-canada.
html

> https://github.com/dajmcdon/rvdss-canada
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Why did | get a flu test?

» Because | had flu-like symptoms
» Due to flu or other virus?

» Because | had a close contact diagnosed with flu
> Virologically or otherwise?

» Because | took a multiplex test!

» Modifiers
» |s there a flu scare going on?

» |s it flu season?



Interactions between pathogens

» The flu outbreak increases the number of RSV tests
» Decreases positivity

P |s it expected to increase the number of positives??
» * Maybe | get tested because my household has flu, but |
come out positive for RSV.

» Flu outbreak may also decrease the actual amount of RSV!

» Non-specific immunity

> Staying home



Guidance

I cator Description/Rationale Major Emitations
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Incidence

» Incidence is not an end in itself
» Incidence X severity to predict burden

» Incidence x immunogenicity to predict short-term protection,
dynamics

» Incidence * immunity kernel to predict longer-term protection



Some modeling approaches

» Direct estimation
» Infer incidence from positivity and cases each week

» Phenomenological fitting
» Make use of smooth latent curves through time

» Mechanistic fitting
» Make use of dynamical models underlying latent variables

» SIR, information flow, policy changes



Top-down approach

» Inspired by early COVID; limited tests, active discussion of
how to use them

P Imagine risk prioritization; people in each risk class have a
certain probability of testing positive
» The mean of this distribution corresponds to prevalence in the
population

» Variation corresponds to the information gained by risk
prioritization
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Beta-distributed risk
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Beta-distributed risk
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Bottom-up approach

» Model the probability of people seeking care for various
reasons

» Corresponds better to seasonal epidemics
» Policy shifts could be modeled as parameter changes



Hazard approach

P missingConference =

1-— (]. - Pforgetting)(]- - PmissingAirplane)(]- - PgettingLost)
» Define: H = —log(1 — P)
» Hevent = Zcomponents He

> €.g., Htest = HfocalSymptoms + HfocalContact +
HnonfocalSymptoms + HnonfocalContact



Hazard response
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Log odds approach

» The odds corresponding a probability P is ¢ = P/(1 — P)
> (=log(P/(1—-P))

» Principled justification for adding on the log scale in many
cases

» But not quite in this one

» e.g., Lposterior = {prior + BayesFactor
» Probability positive given positive test

» Prop of positives among test seekers

» Example: Black people accounted for 10% of recreational
marijuana users and 40% of convictions in Philadelphia when |
was in high school

> OR: (4/6) / (1/9) =6



Log-odds response
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Constant odds ratio
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Constant odds ratio
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Interpreting observations
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Interpreting observations
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Prevalence-incidence gap

» We are thinking about the asymptotic properties of these tests
as measuring prevalence when we test the whole population

> But what we're trying to measure is incidence of new cases

» Consider the population we consider eligible to take these tests
» Does not include people with recent positives

» Although sometimes they do take it



Modeling approaches

» Top-down models to fit a beta shape parameter together with
disease dynamics

» Could also use odds ratios and a single shape parameter to
describe relationship between testing propensities in groups

» Bottom-up models to fit to likelihood of observed testing
numbers and observed positives

> False-negative and false-positive results



Combine with other data streams when possible

» Medical screening, hospital discharge
» |ILI surveillance reports

» Seroprevalence



Simulation-based validation

» Simulate scenarios with realistic sources of variation

> Test how well different modeling approaches can fit



Data curation

> Work with provincial and federal health agencies to improve
connections between models and data

» How data are collected:
» e.g., what multiplex tests do people take?

» How data are shared
» Bringing models to data

» Make shareable products as part of the research project



Thanks for your patience!

> Also:
» Key collaborators: Bolker, Brown, Champredon, Li, Zhao

> CIHR, PHAC, NSERC



