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ABSTRACT
Software evolution and maintenance is a real challenge in modern
software engineering. In the context of model-driven development,
which heavily rely on interconnected (meta-)models, tools and gen-
erators, evolving both models and their associated meta-models
is particularly complex. This issue is also prevalent in language
engineering, where evolving a language’s grammar or semantics
must remain consistent with the pre-existing models. In this pa-
per, we explore how techniques inspired by repository mining can
help a model designer/language engineer to build a deduplicated
dataset of existing models available in open source repositories.
Deduplication is essential to ensure the evolution made on the meta-
model/language can be efficiently assessed. We apply the method
to the P4 language, an industrial domain-specific language (Intel,
Linux foundation) used to model software defined networks.

CCS CONCEPTS
• Software and its engineering→ Software development tech-
niques; Open source model; Empirical software validation; Com-
pilers.
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1 INTRODUCTION
In the software engineering world, Git is the industrial standard for
version control. It enables development teams across the world to
collaborate on software projects. A lot of these projects are open-
sourced and available to everyone through Git forges like GitHub,
GitLab, and Bitbucket to name a few. Many of these forges provide
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Application Programming Interfaces (APIs) to query projects, au-
thors, issues, etc. This provides researchers with easy access to a
vast amount of data. For example, on GitHub alone, 52 million new
public repositories were created in 2022 [20]. These projects can pro-
vide incredibly deep insights into the software field, as advocated
by the Mining Software Repositories research community.

Extracting information from projects can be complex since many
pitfalls must be avoided. The reason for that is the fact that software
projects are inherently very complex structures. For example, in-
consistent coding practices, the evolution of projects over time, the
large size of some projects, the lack of documentation, and duplicate
projects can all be challenges when analyzing Git projects.

Interestingly, Model-Driven Engineering and model evolution
trigger new challenges when mining repositories. This is mainly
due to the domain-specific aspect of MDE tools and models, which
makes them less mainstream and, as such, different from main-
stream applications using fashionable languages or frameworks.
In this paper, we will focus on the challenge of deduplication, a
prototypical example of a situation that exists in classical mining
but is amplified by the specificities of working with the evolution
of MDE models or Domain-Specific Languages (DSLs).

This paper is organized as follows. In Section 2, we motivate
the need for specific deduplication mechanisms when mining ar-
tifacts in an MDE/DSL context. Section 3 focuses on the related
work regarding mining and deduplication, describing the different
inspirations used in this work. Section 4 describes the solution
we defined, as well as its implementation. In section 5, we apply
the proposition to the P4 language, an industrial DSL and de facto
standard for implementing Software-Defined Networks (SDN), to
validate it at scale. Section 6 sketches some perspectives of this
work, and finally, Section 7 concludes this paper.

2 MOTIVATING SCENARIOS
In this section, we describe two scenarios exemplifying how the
evolution of both (i) models and (ii) the associated tooling is im-
pacted by the existence of duplicates. Based on these scenarios,
we express a “problem statement” to emphasize the importance of
dataset deduplication when working with model-driven tools.

2.1 Model(s) Evolution
A trending research field in the MDE community is to leverage
Machine Learning (ML) for several purposes, to ultimately help
model designers with, e.g., model completion and analysis. In this
context, research can rely on pre-trained MLmodels (e.g., GPT [10]),
fine-tune such models with domain-specific elements, or train their
own from scratch [18]. Building a dataset of MDEmodels to support
training is crucial for the last two options. Moreover, for all these
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options, building a dataset to support the validation of theML-based
tool is also essential.

When encountered for the first time, this might seem like an easy
problem to solve; however, it is far from trivial, especially when
model evolution is taken into account. Some research has been
done on this specific subject and found that some results could be
inflated by up to 100%. Although the complete effects of duplicates
in this type of dataset are still not entirely understood [4][21], it
allows researchers and industry practitioners to provide less biased
data to train ML models. So, when building your dataset, if you
aggregate all the MDE models you can find from a forge, you might
end up with duplicates and, as a consequence, train or validate your
approach incorrectly.

This situation is emphasized by how designers interact with
their MDE models and implement their evolution. In an ideal world,
software modellers would rely on a version control system (VCS,
e.g. Git, SVN) to version their system and, as such, record their
evolution. However, as classical tools are not really supported by
VCS (which only provides a syntactical way of handling conflicts), it
is common for software modellers to rely on copy-paste and clones
of their models, recording only the final results in the VCS without
version history. As such, classical methods to identify duplicates
cannot be used, as they rely on VCS’mechanisms to support internal
traceability to decide which file is a duplicate of another one.

The naive solution to this problem would be to compare every
single model of the projects in the dataset to every single other
one. Due to the complex nature of code repositories, this is com-
putationally unfeasible: for a set of only 200 MDE models, one
would have to compute 19, 900 comparisons (𝑂 (𝑛2)). Even if syntac-
tical comparisons can be fast (e.g., calling the diff command), this
method cannot be used on models, as two models can be duplicates
while not holding the exact same syntactical structure (e.g., a set
of model elements not recorded in the same order when serialized
as XML). Semantic diffs are usually computationally intensive, as
they are, in the end, a specialization of the graph isomorphism
problem, which is NP-intermediate. Even if it is possible to solve it
in quasi-polynomial time using heuristics and problem restriction
(e.g., GumTree provides semantic diffs on some programming lan-
guages in 𝑂 (𝑛2) [8]), identifying two models as a duplicate from
each other is a computational-intensive task.

Summary. In a context where VCS cannot be leveraged to their
full potential and duplication detection is cost-intensive, it is crucial
to reduce the search space of duplicates when building a dataset of
MDE models to avoid bias.

2.2 Tooling Evolution
This scenario is the dual of the previous one. In this case, we are not
necessarily interested in the evolution of the MDE models but in
the tooling used to support them. For example, consider the Docker
ecosystem [7]. This tool creates and deploys containers, providing a
de facto standard for modern application deployment. At the heart
of the ecosystem, Docker relies on a DSL used by developers to
model Dockerfile(s). Such files model how a given Docker image
is built in a prescriptive way. For example, start from an Ubuntu
image, install Java 22, copy a JAR file from the local computer to the
image, mount a file system directory from the host to the image, and

run a given command to start the application. This DSL is widely
used, as it was first launched in 2013. The tooling relying on the
DSL has substantially evolved over the last 11 years1. Consequently,
what was considered a practice at a given time can have evolved
into an anti-pattern later on [5].

An interesting aspect of these successful DSLs is that they often
rely on tutorials to support their success. In the case of Docker,
“Docker Birthday” tutorials are released yearly. These tutorials have
been instrumental in Docker’s success, accelerating the growth of
people who wanted to learn how the platform works. But, some-
times, for logistics reasons, participants cannot always leverage
the VCS when attending these tutorials (e.g., flaky internet connec-
tion at a conference venue). As a consequence, like in the previous
scenario, they might obtain the source code used initially by the
tutorial on a USB stick and finally publish their code to the forge
as soon as they can access a better internet connection.

As a consequence, if one wants to evaluate the retrocompatibility
of a tool to detect anti-patterns in Dockerfiles, one will have to
sort the wheat from the chaff and identify among the thousands
of Dockerfiles available in the different forges which ones come
as an immediate outcome of a “birthday” event and which ones
are genuinely independent artifacts. These artifacts might rely on
something other than the classical fork mechanism offered by VCS
to trace repository origins.

Summary. In a context where the success of a DSL is enforced by a
large number of easily accessible tutorials that developers are encour-
aged to publish, it is crucial to be able to sort out all the codes coming
as derivative from such tutorial setup not to introduce immediate
imbalance in the collected MDE models.

2.3 Problem Statement: Deduplication
The two previous sections illustrate scenarios where building a
dataset of MDE models is necessary to assess “something,” such
as how tooling or models react to an evolution-driven situation.
In these scenarios, we focused on the evolution of models or the
evolution of their associated tooling, but overall, the problem en-
countered is amplified by the very nature of model-driven artifacts:
models available in a scattered way and often originating from the
same set of sources.

If leveraging the artifacts available in the open-source commu-
nity has become a common way of approaching quantitative evalu-
ation, it might not be immediately suitable when evaluating MDE
artifacts. Not only do duplicates lead to unnecessary redundancy,
consuming and wasting valuable storage and computational re-
sources, but they also compromise the result of subsequent research
that is based on them.

Based on our motivating scenarios, we identified the following
characteristics of the problem:

• Models to be collected might originate from a set of common
sources (e.g., tutorials)

• Version Control Systems (e.g., Git) tooling is not always used
adequately due to the nature of the artifacts

• There is a need to reduce the size of the dataset collected
as tools working on MDE models (e.g., diff, model checking,
compilers) can be resource-intensive

1https://docs.docker.com/build/dockerfile/release-notes/
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• Assessing the retrocompatibility of tools or models is a clas-
sical task in MDE and DSL engineering.

As such, we have to refine classical mining techniques to consider
these characteristics. We should assume that a “regular” contribu-
tion to a forge exists: user can create new repositories to share their
models, pushing their code to it. A repository can also be obtained as
a fork of an existing repository, i.e., the classical way of expressing
a divergence from a common origin in a VCS. Finally, the specificity
of MDE artifacts triggers the last situation, where people classically
rely on sharing artifacts outside of the VCS before sharing them,
breaking these existing links.

The approach proposed in this paper adapts state of the art
(which focuses on the two points) to support the last situation,
which is a bad practice in regular development but quite common
when working with MDE models and DSLs. We summarize in
Figure 1 these different kind of interactions.

Figure 1: Types of Duplication in Model Repositories

3 RELATEDWORK
In exploring the subject of deduplication of software repositories,
it became evident that little work had been done on the subject
yet. There is, however, a lot of previous work on code duplication
detection. This section will discuss the few truly related works and
how the tangentially related work can help us with this problem.

3.1 Code duplication
Some work has been done to identify the issue of duplicate code. For
example, a study found that 70% of files on GitHub were duplicates
of other files [11]. More relevant to this paper, the same study also
found that between 9% and 31% of projects were made up of at least
80% of duplicate files [11]. While this study [11] doesn’t address
the problem of complete project duplication, it may hint at it. More
focus studies are required to understand the scope of the issue
better.

Furthermore, the impact of code duplication cannot be ignored.
There has also been work on analyzing the problem of duplicate
code when training ML models. A study found that some results
could be inflated by up to 100%whenmodels are trained on a dataset
containing duplicates as opposed to a deduplicated one [4]. These
results show the importance of addressing the duplication issue
when working with code data-trained ML models. It is essential to
know that duplicates only affect training in some fields and con-
texts. A study on malware detection models found that duplicates
had little effect on the efficiency of the final system [21]. Further
study on whether duplicate impact ML models trained on projects

(or repositories) might be necessary. However, the impact of em-
pirical tool testing on duplicates cannot be denied due to the bias
introduced in the results.

3.2 Repository similarity
Another essential part of this paper and the proposed approach is
how the similarity between different projects is calculated. Some
projects might not be 100% duplicated and still be considered dupli-
cates depending on the application of the dataset. It is then essential
to find a set of metrics to evaluate similarity and set a threshold for
these metrics on what is considered a duplicate. The state-of-the-art
tool for this is CrossSim [14]; it is a tool that enables computing the
similarity of different Open Source Software (OSS) projects. How-
ever, the focus is not on finding duplicates. It was made to make
it easier to find similar projects, and it is not suitable for this use
case. A major limitation of this tool, and similar ones, is its im-
practicality for general deduplication. Most, if not all, approaches
focus on projects with a singular programming language: Java [14].
Modern-day projects use, on average, five programming languages
per project and Java is only a part of it [12]. We then need to find
a quick and language-agnostic way to compare projects for our
approach.

There is, however, another approach that is interesting for our
use case. This approach vectorizes repositories and all associated
data into comparable embeddings. In Natural Language Processing
(NLP), embeddings represent words or phrases as vectors that cap-
ture semantics and enable more accessible computational analysis.
This has been used successfully for the deduplication of complex
texts [9]. The same principle can be used for repositories. It has
already been implemented by Rokon et al. [17] and has proven very
effective. Their approach captures the semantics of the associated
metadata, the structure of the repository, and the entire source code
[17]. If the generated vectors genuinely represent the full seman-
tics of a repository, as the authors propose, the distance between
vectors would be an ideal metric for repository similarity. However,
their code has yet to be available and is, therefore, unusable in our
case. The reproduction of such an approach falls far from the scope
of this paper in terms of complexity and the size of the work.

3.3 Repository deduplication
There has been some work on the specific subject of Git repository
deduplication. It mainly consists of a single paper by Spinellis et
al. (2020) [19], in which the authors found 30 thousand project
duplicates out of 1.8 million projects. The approach consisted of
geometric mean-based grouping and denoising of project clumps
[19]. They used various metadata points like stars, Git history, fork
information, etc. However, their approach has a lot of limitations
and problems. First of all, the authors only focused on GitHub when
there are a lot of different forges available that could provide a vari-
ety of projects. This might be fine on a large scale, but the extra data
provided by other forges could help make the final dataset more
versatile and helpful when working on a smaller scale. Secondly,
their approach could have been clearer and depended on much
manual work to denoise and clean the data. While this led to better
results, the approach took time to reproduce, even on a smaller
scale. Also, the liberal approach to denoising is not applicable in
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smaller-scale scenarios since it would remove many potential candi-
dates. Thirdly, their method only examined surface-level metadata
about each project and never examined the projects’ actual content.
For this reason, the authors only found duplicates with common
Git histories and fork relationships. Because of this, many dupli-
cates were likely missed and are still present in the final dataset.
Metadata is also unreliable; for example, they used stars as a metric
to determine attractor projects. One study looked at the correlation
between GitHub stars and code quality, and the authors were un-
successful in linking the two [13]. Lastly, their choice of technology
could have been more optimal. They used a relational database to
represent graph data, leading to convoluted SQL queries. However,
We can draw some inspiration from this paper to build our own
approach, notably using Git history and fork data.

4 PROPOSED SOLUTION
This section describes the complete proposed approach in detail,
including its strengths and weaknesses. The approach is structured
as a pipeline, composed of six sequential steps, spanning from the
creation of the initial dataset to the final deduplicated dataset (you
can refer to Fig. 2 for an overview of the entire solution pipeline).

The approach relies on creating a relationship graph to reduce
duplicate search space at each step. That is the sole focus of the
three steps that follow the initialization of the dataset. The final two
steps are used to delete (or flag) duplicates. The Simple Duplicate
Deletion step uses metadata to delete projects that are obvious
duplicates, further reducing the number of project pairs that need
to be compared in the final step. The final step (Full Similarity
Metrics Deletion) is a very computationally intensive step because
of the intrinsic complexity of software repositories. This is why
the whole approach focuses on reducing the search space before
reaching it. It involves a complete comparison of project pairs.

The rest of the sectionwill focus on describing the process behind
each step and the thought process behind all those decisions.

4.1 Initial Dataset
To start the construction of the dataset, we first need to acquire the
initial repositories. To do so, we use the different REST APIs the
different forges provide. The two main Git forges that provide APIs
are GitHub and GitLab. Using their query features, we can build a
dataset that focuses on whatever characteristic of the repositories
wewant. This could be the programming language used, the number
of stars, the license used, the description of the project, etc. However,
since this approach relies on the existing relationships between the
different projects, it is better to target a known community. For
example, targeting the community that uses a specific programming
language would be better since there will be clearer links between
the different projects.

There are some limitations with the different APIs that make
collecting repositories difficult. For example, the GitHub API only
allows up to 1000 repositories per query. This can be circumvented
by splitting the query into multiple queries. The easiest way to do
so is to split the whole span of your query into multiple date ranges.
Splitting can be implemented to be done automatically. The GitLab
API is also very unstable, often returning errors. This can make
collecting data more strenuous. To prevent missing relationships

with the following steps, if the metadata of a repository dictates
that it is a fork, but the parent is absent in our collected data (that
can be for various reasons), we add these missing projects to our
data. These APIs only return the metadata of the repositories that
match our query to us.

The schema of this metadata is very similar across forges, but
some terminology varies. Therefore, we need to do some schema
matching before proceeding. Some fields do not serve any purpose
for deduplication, we delete those. We also want to keep track of
which forge each repository comes from, so we add a field for that
(see Fig. 3).

For our approach, we also need the actual code and full Git
history of each project. To do so, we need to clone all of these
repositories. This can be a problem since, depending on the number
of repositories, it can take up a lot of storage space. Luckily, be-
cause of the nature of code (text), most repositories are only a few
megabytes. In case of storage constraint, this could be optimized
by deleting irrelevant files for each project, such as PDF documents
or ZIP archives.

After all these steps, we have a unified multi-forge dataset ready
to be deduplicated.

4.2 Forks
This is the first step of the pipeline that starts building the relation-
ship graph and, therefore, starts reducing the final search space. It
addresses the first type of duplicate, forks (see Fig. 1).

We start by loading all the metadata that we get from the first
step as nodes in a graph. The different types of relationships will
be represented as different edge types between nodes (reposito-
ries/projects). In this case, it is better to use a graph database. It
will make the data more accessible to work with since the database
will be adapted to the structure.

This step involves connecting the projects that have been forked
to their parent. It is simple since the different repositories already
link to their parent in their fields. After linking those, we can start
to see a graph forming. We can also see which projects are "source"
or central projects (projects that are parent to others and that are
not the children of any other). These projects will be crucial to the
next steps.

4.3 Git History
This step aims to add to the relationship graph by using the infor-
mation given by Git, more specifically, the Git history. It addresses
the second type of duplicates, projects that were cloned and then
pushed as new projects (see Fig. 1).

Projects that are cloned from online forges keep their Git his-
tory. We can then use this information to link them to the original
repository. To do so, we need to compare a project’s first commit ID
to the first commit ID of central projects found in the last step. We
only need to compare them to central projects since projects that
were forked from them will have the same starting commit history.
Commit IDs are designed to be as globally unique as possible [2],
there is then a very low chance of false positive. However, some
projects could have diverted significantly after the first commit
and would no longer be considered duplicates. This is why we still
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Figure 2: Diagram of the full solution pipeline

• forge: The project’s forge.
• id: The project id.
• name: The project name.
• full_name: The project name with name space.
• description: The project description.
• created_at: The project creation date.
• updated_at: The last time the project was updated.
• allow_forking: If the project allows forking.
• forks_count: The number of times this project was
forked.

• stars: The project’s amount of stars.
• owner_id: The id of the project’s owner.
• owner_username: The username of the project’s
owner.

• fork: If the project is a fork.
• parent_id: If fork, the project’s parent id.
• parent_name: If fork, the project’s parent name.
• parent_full_name: If fork, the project’s parent full
name.

• parent_creator_id: If fork, the project’s parent cre-
ator id.

Figure 3: Repository Node Metadata Fields

do full project comparison at the last step within the relationship
graph.

4.4 Quick Similarity Metric
This step aims to finalize the relationship graph using additional
surface-level data about the project. In this case, we use the name
of the project and the project structure. It addresses the second
type of duplicates, projects that were downloaded/copy-pasted and
then pushed as new projects (see Fig. 1). In this case, we can no
longer rely on information provided by the Git forge or Git itself.
This is because the projects are downloaded directly from a forge,
they lose all Git related information and are downloaded as an
archive (typically a ZIP file). Therefore, we can only base this step
on the information contained in the project itself. To identify the
project pairs we need to compare, we compare central projects to
disconnected projects. In doing so, we risk missing duplicates of

other projects that are already in the relationship graph. However,
it is less likely that a project was duplicated from a child project
than a more popular central graph. We can partly circumvent this
limitation by setting a lower similarity threshold in this step and
relying more on the last step to weed out the true duplicates.

It would be too computationally expensive to compare all central
and disconnected projects using their file content. This is the reason
we only use surface-level information for this step. We identified
twometrics to quickly calculate the similarity between project pairs:
the similarity between the names and the similarity between the
file trees. If better ones are identified (in a framework approach),
these metrics could easily be swapped out for different ones.

The name of a project represents the purpose of it. It then makes
sense that the name would be similar if the code is the same. There
are multiple ways to calculate the similarity between two project
names. The most accurate is to use natural language processing
(NLP) techniques, like word embeddings, that capture the seman-
tics of the words. That would allow completely different names
with similar meanings to have a high similarity score. However,
incorporating this into our solution involves adding a lot more
complexity and computations. Instead, we chose to go with the edit
distance between the names, precisely the Levenshtein distance.
We also normalized the distance between 0.0 and 1.0 to make it
comparable across project pairs with varying project name lengths.
This technique is much more straightforward to implement and
requires no additional computational resources. It, however, does
not capture semantics and is less accurate.

The file tree structure of a project usually reflects the composition
of it. Projects with a similar structure, while the content of the files
may vary, are more likely to be duplicated. Therefore, by comparing
the file trees, we can capture the surface-level project similarity
without diving into the actual file content and code, making this
operation very fast and efficient. The best way to compare trees
is to calculate the distance between trees. Tree edit distance is the
minimum number of operations (add, delete, replace) needed to
transform one tree structure into another. The state-of-the-art way
to calculate this is using the APTED algorithm [15][16]. To get a
similarity score out of this, we normalize the distance between 0.0
and 1.0.

To combine these two scores into a single similarity score, we
weigh both of the values and add them up (𝜔0 ·𝐷𝑡𝑟𝑒𝑒 +𝜔1 ·𝐷𝑛𝑎𝑚𝑒 ).
If this score is over a configurable threshold, we add them to our
relationship graph.
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We also add a heuristic to reduce the amount of computations
and time needed by a very significant amount. When project trees
contain a lot of files and are structurally very different from each
other, calculating the tree edit distance becomes very expensive.
The similarity is calculated only if the file count ratio between the
two projects (𝑚𝑎𝑥 (𝑛𝑎,𝑛𝑏 )

𝑚𝑖𝑛 (𝑛𝑎,𝑛𝑏 ) , 𝑛 being the number of files in a project)
is below a specified threshold (𝜃 ). The threshold ensures that the
similarity computation is only performed for project pairs with a
reasonable file count ratio, preventing unnecessary and computa-
tionally expensive comparisons for projects significantly different
in size. The entire quick similarity algorithm can be seen in equation
1.

4.5 Simple Duplicate Deletion
This step is the first of two that deletes (or flags) duplicates, but
it also reduces the search space of the next and last steps. This
deletion is done using the Git history of a project. It compares a
repository with its direct parent in the relationship graph. The only
thing that it looks at is the commit history of both. If the latest
commit ID of the child is present in the parent’s history, then no
changes have been made since the project was forked or cloned
and pushed as a new project. It is then a duplicate and is deleted
(or flagged), reducing the search space one last time.

4.6 Full Similarity Metrics Deletion
Now that the search space has been reduced as much as possible, we
can now proceed to a complete project comparison. We look within
the relationship graph to identify pairs that need to be evaluated
for duplicate identification. This graph contains all projects that
come from others and, therefore, contains all potential duplicates.
The pairs are then picked by looking at every child-parent pair in
the graph.

We want our approach to be language-agnostic and fast. This
rules out state-of-the-art techniques for software project compari-
son. Most of them are either language-specific (mainly Java) and/or
not made to be used at this scale. The next best technique that could
be considered is an NLP approach. However, because the number
of file comparisons that need to be done per project can be in the
hundreds or thousands, depending on the project pair, this is not
computationally feasible and adds a lot of complexity. We then need
to look at simpler methods to compare projects.

To simplify the problem, instead of comparing the project as a
monolith, we split it up by comparing the similarity of each pair of
files that have the same path in the two different projects. To prevent
unnecessary computations, we give the option to only compare
specific types of files. We can then do the average of all the file
pairs similarity scores (see Eq. 2). If a file exists in one project and
not the other, the similarity score for that file pair is 0.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑆1 + 𝑆2 + ... + 𝑆𝑛

𝑛
(2)

where:

𝑆1 + 𝑆2 + ... + 𝑆𝑛 = Sum of scores of 𝑛 files
𝑛 = Number of files

We use a sequence matching algorithm to evaluate the similarity
between the content of two files. More specifically, we use Python
standard library’s "difflib.SequenceMatcher", an improved version of
the Gestalt Approach [3] by Ratcliff and Obershelp. This algorithm
compares two sequences by recursively finding the longest common
subsequence and assigning similarity scores based on the lengths
of the common subsequences between the sequences. It has a linear
best-case complexity and a quadratic complexity for the worst-case.
There are better algorithms for the use case, but given its speed and
simplicity, it is a good compromise. Given better resources, an NLP
approach could be considered and swapped, given the framework
approach.

The source code implementing the approach described in this
paper is publicly available on GitHub2.

5 EXPERIMENTS
To validate the proposed solution, we set up an experiment using
the P4 programming language ecosystem. We chose this system
since it is small (around 2000 public projects), which allows us to
experiment and iterate on our solution more quickly. This section
is divided into the experimental setup (software and hardware),
results, and analysis. Finally, at the end of this section, we illustrate
how the deduplication approach was used to support the evolution
of the DSL compiler frontend.

5.1 Experimental Setup
In terms of hardware, experiments were done on a computer run-
ning Linux, equipped with a 9th-gen Intel i5-9600K (6 cores, 6
threads) CPU and 32 GB of RAM. This is consumer hardware, and
the results could be enhanced by improving the hardware to a more
professional level. However, the impact would only be in terms of
computation time.

For software, multiple choices were made. As the general imple-
mentation programming language, Python was used for its simplic-
ity and useful standard library. Javascript was also used to query
the GitHub since the language has libraries developed by GitHub
themselves. As we recommended in our approach, we chose a graph
database for the database. We went for Neo4J for multiple reasons.
Firstly, it has a free-to-use community version that implements
every feature we need. Secondly, it also implements many algo-
rithms by default, like the Levenshtein distance, that we would
have needed to implement otherwise. Thirdly, the query language,
Cypher, is straightforward to use and adapted to graph queries,
making working with the graph simple. Lastly, it implements some
visualization technologies by default, which are very useful for
better understanding the data and showing how the approach is
working.

5.2 Results and Analysis
5.2.1 Building the dataset. The dataset comprises 2610 repositories
sourced from bothGitHub andGitLab. ForGitHub, 2529 repositories
were found with a query for P4 programming language projects.
We then found that these projects also referenced 33 repositories
that were absent as their parent, so we added them. For GitLab, the
API identified 72 repositories, but we were only able to retrieve
2https://github.com/AlexandreLachanceGit/git-deduplication

https://github.com/AlexandreLachanceGit/git-deduplication
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Similarity(𝑛𝑎, 𝑛𝑏 , 𝐷𝑡𝑟𝑒𝑒 , 𝐷𝑛𝑎𝑚𝑒 , 𝜃 ) =
{
𝜔0 · 𝐷𝑡𝑟𝑒𝑒 + 𝜔1 · 𝐷𝑛𝑎𝑚𝑒 if max(𝑛𝑎,𝑛𝑏 )

min(𝑛𝑎,𝑛𝑏 ) < 𝜃

0.0 otherwise
(1)

where:

𝜔0 = weight of the tree edit distance
𝐷𝑡𝑟𝑒𝑒 = normalized tree edit distance

𝜔1 = weight of the name edit distance
𝐷𝑛𝑎𝑚𝑒 = normalized name edit distance

𝑛𝑎 = number of files in project a
𝑛𝑏 = number of files in project b
𝜃 = maximum project file ratio

a maximum of 48 before encountering an internal error that was
difficult to debug. While GitHub projects vastly outnumber GitLab
projects (see Fig. 4), this isn’t a problem since they are both repre-
sented with the same schema in the dataset and won’t be processed
differently.

Figure 4: Graph of repository distribution across forges

5.2.2 Fork Relationships. The Forks step in the pipeline created
a total of 1600 relationships in the relationship graph, resulting
in it containing 1864 connected nodes. This means that a total of
71.41% of the repository nodes were connected. It highlights how
interconnected the P4 programming community projects are.

5.2.3 Git History Relationships. TheGit History step in the pipeline
added 71 new relationships in the graph, resulting in a total of 1904
connected nodes (72.95%). This step’s execution time was only 7.5
seconds, which highlights its effectiveness and efficiency.

5.2.4 Quick Similarity Relationships. The Quick Similarity step in
the pipeline created 9 new relationships, resulting in a total of
1913 connected nodes (73.30%). This step involved a substantial
amount of computations. As shown in Fig. 5, the results follow
something resembling an inverse-square relationship. This is in
line with expectations. Given that most project pairs are likely to
differ unless the dataset is saturated with duplicates, it is logical
for the similarity scores to show a trend toward 0. The threshold at

which a project was considered "similar" or a potential duplicate
was set at 0.7, which resulted in 9 new relationships.

The problem with this step is the return on investment in com-
putation time, as opposed to new relationships. Most relationships
were already found efficiently using Git metadata in the previous
steps. This step of the pipeline looks for outliers that do not have
metadata linking them. This step, depending on the use case, could
be skipped. It could also be improved by parallelizing the algorithm
since this method of doing independent pair comparisons lends
very well to parallelization.

Figure 5: Graph of quick-similarity score distribution

5.2.5 Simple Duplicate Deletion. The Simple Duplicate Deletion
step in the pipeline resulted in a total of 1412 projects flagged as
duplicates. It involved comparing 1680 pairs Git history and the
whole operation, a single Cypher query in the Neo4j database, was
completed in only 87 milliseconds. This took down the final search
space for the next step to 256 pairs.

5.2.6 Full Similarity Metrics Deletion. The final step in the pipeline
found 115 new duplicate repositories in the dataset. This step’s
computation time is notably higher: 22 minutes to compare the
256 pairs left. It initially took a lot longer, but parallelizing the
algorithm was straightforward, reducing the time to what it is now.
The similarity score threshold was set at 0.75. This could be adapted
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based on the use case for the dataset (see Fig. 6). The system only
compared files of type Python, Bash, and P4 since those were the
relevant plain text files. This saved computation by preventing the
comparison of other file types like PDFs and ZIP archives.

Figure 6: Graph of full-similarity score distribution

5.2.7 Total. After all the steps of the pipeline, 1527 duplicates
were found. This represents 58.51% of the original dataset, showing
the prevalence of duplicate projects on Git and the need for this
solution. Overall, the deduplication took around 25 minutes on
the previously specified hardware for this relatively small dataset,
ignoring the initial dataset collection. Depending on parameters
and the use case, this approach could prove difficult to justify for
larger datasets. The number of project pairs to comparewill increase
exponentially, even if the pipeline aims to reduce the search space
as much as possible.

5.3 Threaths to validity
The validation of our results presents several challenges that may
affect the validity of our findings.

5.3.1 Internal Validity. One significant issue lies in the scale and
thoroughness of our approach compared to previous studies. Earlier
research worked with datasets containing millions of repositories,
while our analysis was limited to thousands. They were also not
as thorough. For one reason or another, the datasets used in these
earlier works are no longer available online, as all copies seem to
have been deleted. This prevents us from directly comparing our
findings against a well-established ground truth.

5.3.2 Construct Validity. Manually verifying false negatives or
identifying duplicate projects that were missed is an overly time-
consuming task to complete within a reasonable timeframe. This is
because there would be a total of 6,812,100 pairs to verify, and even
with random sampling, it would be tough to have a representative
sample that a person can evaluate. However, while looking at the
data, we found that projects that were nested inside a repository (i.e.
tutorial/ vs mytutorial/tutorial/), even if the content of both

directories are the same, were not found as duplicates. Some false
negatives are then to be expected. We then focus on attempting to
find false positives or repositories that were flagged as duplicates
but were not. To do so, we randomly sample duplicate and original
project pairs and then qualitatively assess whether the projects are
duplicates. We evaluated 50 project pairs out of 286 qualitatively
by looking at project structure and file content. No false positives
were found within that sample. We found that the similarity scores
reflected the similarity of the projects well. Projects that trended
toward our threshold (0.75) had more differences, and those that
trended toward 1.0 were nearly identical. However, files that were
only present in one project were too heavily weighted in the result
using our equation. This could be improved by weighing every
similarity score by the number of lines of the file before calculating
the average.

5.3.3 External Validity. The external validity of our findings may
be limited by the specific focus on the P4 programming language
ecosystem. The high duplication rate observed in this context may
not generalize to other domains or programming languages. Fu-
ture studies involving a broader set of programming languages are
necessary to evaluate the generalizability of our approach.

5.3.4 Conclusion Validity. Although our qualitative assessment
found no false positives, the potential for undetected false negatives
and the bias introduced by unverified project pairs could influence
the overall reliability of our findings. Future work should explore
more robust sampling methods and develop automated tools to
improve the efficiency and accuracy of duplicate detection across
larger datasets.

5.4 Evolution assessment scenario: P4LSP
Despite being an industrial standard for software-defined networks,
surprisingly few tools support the editing of P4 source code. As part
of an industrial project involving Telus (the second-largest telecom-
munications operator in Canada), McSCert worked on defining a
language server to make the development of P4 applications more
accessible by providing an IDE plugin3 supporting code completion,
syntax highlighting, and classical refactoring operations.

As the legacy compiler (P4C) is written in C++, it is not compati-
ble with mainstream language engineering tooling such as Xtext [6]
or Langium [1]. Consequently, we had to port the implemented
grammar into a new technology. More specifically, we ported the
grammar initially defined using Flex/Bison4 into Treesitter5.

Porting grammar is a tricky task and is a prototypical example
of our second motivating scenario: tooling evolution. In P4, the
frontend part of the compiler represents 21, 000 lines of code, almost
10% of the entire source. When porting the grammar, we had to
empirically validate that the new tool was retrocompatible with
the existing P4 sources. Typically, one would reject an IDE plugin
that does not identify errors that the compiler will identify, ending
up with code that is valid in the IDE but rejected by the compiler.
To validate our IDE plugin, we collected a dataset of P4 code and
measured the ratio between the code successfully compiled by P4C

3https://marketplace.visualstudio.com/items?itemName=mcscert.p4lsp
4https://github.com/p4lang/p4c/tree/main/frontends
5https://github.com/ace-design/tree-sitter-p4

https://marketplace.visualstudio.com/items?itemName=mcscert.p4lsp
https://github.com/p4lang/p4c/tree/main/frontends
https://github.com/ace-design/tree-sitter-p4
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and the one the new frontend was accepting. We also determined
that the new tool considered the invalid code for P4C invalid.

Like Docker, P4 followed the same trend of intensively relying on
tutorials6 to support developers’ learning curve. As an immediate
consequence, simply mining all P4 sources without deduplicating
them resulted in a non-representative ratio. If a file were predomi-
nant in the dataset, failing at parsing, it would trigger a catastrophic
coverage ratio (e.g., “65% of legacy code cannot be compiled by the
new tool!”), while it was, in the end, one syntactic construction used
in a file duplicated a thousand times. For example, the core.p4 file
defines basic features (such as reading a packet from the network).
Even if the compiler provides it as a standard include, we observed
a practice of copy-pasting the file to the local repository, suppos-
edly to ensure the build’s portability for beginners. This results in
this file being largely duplicated when mining the P4 source code
without taking care of deduplication.

To assess the development of P4LSP, our IDE plugin to support
P4 development, the team created a visualization benchmark as part
of the project, represented in Figure 7. The benchmark identified
the number of files compatible with P4C and the new tool (here
named Treesitter). For each file part of the dataset, the benchmark
indicated how many instances of this file was found in the original
dataset, indicating its prevalence.

6 PERSPECTIVES
State-of-the-art Project Similarity Metrics. The solution proposed

in this paper uses a very bare-bones technique to calculate the
similarity of different projects as its last step. This is different from
the state-of-the-art on the subject, asmentioned in the relatedworks
section. In future work and experiments, it would be interesting
to attempt to deduplicate a dataset of Java repositories instead
of a P4 one. It would allow us to look at the approach’s functions
when better language tooling is available. Because of the framework
approach and the fact that the rest of the deduplication pipeline is
language-agnostic, it should be painless to swap out the current
final similarity calculation for CrossSim [14] for example.

Repository Embeddings. There is interesting new research being
done on the subject of vectorizing repositories [17]. These recent
advancements could be very helpful in developing a new language-
agnostic method for evaluating the similarity between repositories.
This approach takes the full semantics of a repository and represents
it using a vector; it considers the associated metadata, the reposi-
tory’s structure, and the entire source code [17]. Vector distance
calculations are faster than the distance between raw file structures
and file contents. It would, however, introduce more complexity to
the solution since these embeddings need to be trained. Depending
on the computational overhead of vectorizing different reposito-
ries, significantly reducing the search space, as presented in this
paper, could still be relevant. Our approach allows us to reduce the
number of projects that need to be compared; therefore, we would
only need to vectorize these projects.

Broader Evaluation of the Amount of Duplicates. Previous re-
search only found less than 2% of duplicates (30 thousand out of
1.8 million projects) [19]. At the same time, our approach allowed

6https://github.com/p4lang/tutorials

us to discover that 58.51% of our initial dataset was composed of
duplicates (1527 out of 2610 projects). This leads to questions about
whether P4 programming projects (our chosen dataset) were in-
herently more prone to duplicates or if previous research had an
overwhelmingly high amount of false negatives. Logically, it should
be a mix of both since our approach, while being orders of mag-
nitudes more computationally intensive, was significantly more
thorough. A more representative sampling of different Git forges
should allow a better evaluation and quantification of the breadth
of the problem.

Impact of Repository Duplicates on Machine Learning Models.
Lastly, another important research avenue that should be explored
is the impact of repository duplicates on ML models. This is be-
cause there is an apparent lack of available studies on the subject.
It is crucial to understand how the presence of duplicates could
influence the performance, generalization, and overall accuracy of
ML models applied to repositories. A better understanding of this
would allow more focused research to negate the adverse effects of
duplicates.

7 CONCLUSION
In this paper, we presented a multi-forge git repository dataset
deduplication framework designed to support the assessment of
MDE artifacts as they evolve. Our key finding is that by leveraging
different types of relationships between projects, such as forks,
cloned and pushed projects, and downloaded and pushed projects,
we can significantly reduce the computational requirements for
identifying duplicates. Specifically, our approach decreased the
number of required full project comparisons from over 6 million to
just 256, ultimately identifying 1527 duplicates, which represents
58.51% of the original dataset.

This finding underscores the prevalence of duplicate projects in
software repositories and highlights the importance of addressing
this issue to ensure the accuracy of empirical research. Moreover,
our approach demonstrates that it is possible to create a scalable
and efficient deduplication process that can be adapted to various
programming languages and contexts.

For future work, researchers could explore applying this frame-
work to other domains and programming languages, as well as
investigate the impact of repository duplicates on ML models. Addi-
tionally, further refinement of similarity metrics could enhance the
precision and applicability of the deduplication process, paving the
way for more robust and reliable datasets in the field of software
engineering.
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Figure 7: Benchmarking the P4C legacy compiler versus the new TreeSitter implementation
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