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SUMMARY BOX 31 

What is already known? 32 

• Exercise-based rehabilitation is fundamental to stroke recovery, and has been shown to 33 

improve cardiovascular health, mobility, and health-related quality of life. 34 

• Although strength training (ST) is recommended in clinical practice guidelines, there is 35 

limited available guidance on how to prescribe ST in people with stroke. 36 

• ST has previously been shown to improve muscle strength, but it is less clear whether ST 37 

can improve other aspects of stroke recovery. 38 

What are the new findings?  39 

• This systematic review found that ST improves lower-body strength, walking capacity, 40 

balance, ADL/IADL disability, functional ability and mobility, habitual and fast-paced 41 

walking speeds in people with stroke.  42 

• ST interventions that were more frequent (greater days per week), used high movement 43 

speeds (power-focused training), included more total ST sessions, and trained single 44 

muscle groups were superior to high intensity and functional ST for impacting stroke 45 

recovery outcomes.  46 



 4 

ABSTRACT 47 

Objective: To examine the effects of strength training on patient-important outcomes of stroke 48 
recovery and to quantify the influence of the exercise prescription on treatment effects. 49 

Design: Systematic review and meta-analysis 50 

Data Sources: Eight electronic databases (MEDLINE, EMBASE, EMCARE, AMED, 51 
PsychINFO, CINAHL, SPORTDiscus, and Web of Science) and 2 clinical trial registries 52 
(ClinicalTrials.gov, WHO International Clinical Trials Registry Platform) were searched from 53 
inception to 19 June 2024. 54 

Eligibility criteria: Randomized controlled trials were eligible if they examined the effects of 55 
strength training compared to no exercise or usual care and reported at least one exercise 56 
prescription parameter. An advisory group of community members with lived experience of 57 
stroke helped inform outcomes most relevant to stroke recovery. 58 

Results: Forty-two randomized trials (N=2,204) were included. Overall risk of bias was high 59 
across most outcomes. Strength training improved outcomes rated as ‘critical for decision-60 
making’ by the advisory group, including: walking capacity (standardized mean difference 61 
[SMD]=1.07, [95% confidence interval: 0.47-1.66]), balance (SMD=1.32 [0.67-1.97]), 62 
functional ability and mobility (SMD=0.72 [0.15-1.29]), and habitual (mean difference 63 
[MD]=0.05 m/s [0.02-0.09]) and fast-paced walking speed (MD=0.09 m/s [0.01-0.17]), with 64 
very low to moderate certainty of evidence, mainly due to risk of bias and inconsistency. More 65 
frequent strength training, traditional strength training programs, and power-focused intensities 66 
(i.e., emphasis on movement velocity) were positively associated with walking capacity, health-67 
related quality of life, and fast-paced walking speed.  68 

Conclusion: Strength training alone or combined with usual care, improves stroke recovery 69 
outcomes that are important for decision making. More frequent strength training, power-focused 70 
intensities, and traditional program designs may best support stroke recovery. 71 

PROSPERO Registration:  CRD42023414077 72 

Funding: This systematic review was, in part, supported by a McMaster Collaborative for 73 
Health and Aging Trainee Engagement Fund, awarded to KSN. 74 
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INTRODUCTION 75 

 Stroke is the third leading cause of death and disability in the world and occurs in over 12 76 

million people each year.1 The effects of stroke can be broad, but reductions in physical function 77 

such as weakness, motor coordination, and balance are common.2-4 These effects can contribute 78 

to lower activity participation and subsequently an increased risk of stroke, termed the ‘cycle of 79 

detraining post-stroke’.5 Nearly a quarter of survivors will experience a recurrent stroke within 5 80 

years of their index event,6 making tertiary prevention strategies of utmost importance.  81 

Exercise can improve physical function,7 which may reduce the risk of recurrent stroke5 82 

and all-cause mortality,8 and clinical practice guidelines have been developed to help clinicians 83 

prescribe exercise for their patients.9 10 Studies focusing on aerobic exercise, such as cycling or 84 

walking, currently dominates the evidence on physical fitness training interventions for stroke 85 

recovery,11 outnumbering the number of strength training (ST) trials twofold.12 This has led to 86 

highly specific recommendations for aerobic exercise training in stroke,9 10 while guidelines for 87 

ST are based on evidence extrapolated from other conditions, such as myocardial infarction.9 88 

The lack of stroke-specific guidance is likely in part due to the ongoing uncertainty about 89 

the evidence on ST. Earlier reviews suggest that ST can improve strength but not necessarily 90 

other aspects of stroke recovery that may be clinically important from the perspectives of stroke 91 

survivors.13-15 This is surprising, considering the known benefits of ST on mobility and 92 

neuroplasticity in older adults16 and other neurological populations,17 as well as the established 93 

associations between muscle strength and physical function after stroke.18 19 However, it has 94 

been suggested that impairments such as motor coordination may confound the potential 95 

effectiveness of ST programs for stroke recovery.13 Previous reviews also used strict eligibility 96 

restrictions based on the type,14 20 intensity, and progression of the exercise programs.13 Some 97 
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reviews had analytical challenges for certain of the measured outcomes7 or restricted analyses to 98 

select outcome measures.13 20 Moreover, none considered the potential impact of population 99 

characteristics (e.g., time post-stroke) or program parameters (e.g., frequency, duration, 100 

intensity) on treatment effects to inform ST prescription for clinicians.  101 

There is a critical gap in the evidence on ST after stroke needed to inform the next set of 102 

guidelines on exercise prescription parameters for this population. The objectives of this 103 

systematic review were to examine: (1) the effects of ST on patient-important stroke recovery 104 

outcomes informed by an advisory group of community members with lived experience; and (2) 105 

the association between ST prescription parameters (frequency, intensity, type, and duration) and 106 

stroke recovery.  107 

 108 

METHODS 109 

 This systematic review was registered (PROSPERO CRD42023414077), and the protocol 110 

has been published.21 There were no major deviations from the trial protocol, other than to the 111 

data extraction sheet and methods for handling multiple effects for a single outcome. These 112 

modifications are reported in the following sections. Reporting of the results and community 113 

partner involvement followed the Preferred Reporting Items for Systematic Reviews and Meta-114 

Analyses Guidelines.22 Patient and public involvement was incorporated using the Authors and 115 

Consumers Together Impacting on eVidencE (ACTIVE) Framework.23 We engaged a 116 

community advisory group of members with lived experience who were involved in planning the 117 

review methods (e.g., defining stroke recovery), selecting evidence (e.g., selecting clinically 118 

important outcomes), analysis (e.g., selecting data extraction items), interpretation of results, 119 

reviewing the manuscript, and knowledge translation activities. 120 
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Eligibility criteria 121 

 The full eligibility criteria are detailed elsewhere.21 Briefly, eligible studies were 122 

randomized controlled trials examining ST compared to no exercise or usual care in people with 123 

stroke. We used the American College of Sports Medicine (ACSM) definition of ST to guide our 124 

eligibility criteria: “a form of exercise designed to improve muscular fitness by exercising a 125 

muscle or muscle group against external resistance.” Studies were excluded if they applied ST 126 

and a co-intervention, did not report ≥1 exercise prescription parameter (frequency, intensity, 127 

type, duration of intervention and/or sessions), were not in English, or if they compared ST to 128 

“conventional therapy” or “usual care” when participants were in the chronic phase of recovery 129 

(i.e., >6 months post-stroke) to account for contextually varying definitions of conventional or 130 

usual care.24 131 

Information sources and search strategy 132 

 Eight electronic databases (MEDLINE, EMBASE, EMCARE, AMED, PsychINFO, 133 

CINAHL, SPORTDiscus, and Web of Science) and 2 clinical trial registries (ClinicalTrials.gov, 134 

and WHO International Clinical Trials Registry Platform) were searched from inception to June 135 

19, 2024. Additional hand-searches were performed using included study reference lists and the 136 

Google Scholar ‘cited by’ function. An example of the search strategy is included in the review 137 

protocol,21 as well as in the Appendix (Supplemental Appendix 1). 138 

Study selection 139 

 Authors screened titles, abstracts, and full-text articles in duplicate (KSN and one of KM, 140 

EW, AM, or EH). Each screener pilot tested the selection process against the eligibility criteria 141 

with 100 titles and abstracts (25 per pair) and 20 full-text articles (5 per pair) using online 142 

systematic review management software (Covidence, Veritas Health Innovation Ltd, Melbourne, 143 
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Victoria, Australia). Disagreements were resolved by consensus discussion. 144 

Data items and extraction 145 

 Data from the included studies were extracted using a piloted template created on the 146 

online systematic review management software (Covidence, Veritas Health Innovation Ltd, 147 

Melbourne, Victoria, Australia). Two independent pairs of authors (KSN and one of: KM, EH, or 148 

EW) extracted the study information after piloting the extraction process with 10 articles (5 per 149 

pair). The extracted items are reported in the study protocol.21 In brief, the items included 150 

publication information (e.g., trial registration, location, funding), participant demographic 151 

characteristics (e.g., sample size, age, time post-stroke), ST program details (e.g., frequency, type 152 

of exercise), and outcome measure data (e.g., type of outcome, means and standard deviations). 153 

The community advisory group provided feedback on the extracted study items. If data were 154 

only shown in figures, WebPlotDigitizer (Ankit Rohatgi, Version 4.6, Pacifica, USA) was used 155 

to capture the data. Interventions were also described as low, moderate, high, or power-focused 156 

intensities, and either functional or traditional ST, using contemporary definitions (Supplemental 157 

Appendix 2, and published elsewhere21). Briefly, power-focused intensities had no restrictions on 158 

external load, but movements were performed at high velocities. Traditional ST involved 159 

exercises with a goal to increase muscle strength, designed in blocks of sets and repetitions for a 160 

single muscle group per exercise. Functional ST were movements that simulate everyday 161 

activities over multiple planes of movement to develop multiple muscle groups.  162 

The lead author, corresponding author, and community advisory group consulted to 163 

create a unified definition of stroke recovery: “Regaining function and adapting to one’s current 164 

capabilities, with a goal to participate in activities that are personally meaningful.” Then, the 165 

review team (n=6 people with stroke, n=2 researchers, n=3 clinician-researchers) evaluated the 166 
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list of outcome measures extracted from each study that represented the new definition of stroke 167 

recovery and rated them using the Grading of Recommendations, Assessment, Development and 168 

Evaluation (GRADE) importance scale. This scale ranges from 1 (of least importance) to 9 (of 169 

most importance), and the scores were interpreted as: of limited importance (median score: 1 to 170 

3), important but not critical (median score: 4 to 6), or critical (median score: 7 to 9).25 171 

Outcomes with a median score ≥4 were included in the review. Once the outcomes were 172 

approved, the results from individual studies were extracted by the same authors in duplicate. 173 

Risk of bias and certainty assessment 174 

 Risk of bias assessments were performed for each study outcome using the Cochrane 175 

Collaboration risk of bias (RoB-2) tool by 2 independent authors (KSN, EW); disagreement was 176 

resolved by consensus discussion. The RoB-2 tool assesses trial biases in the randomization 177 

process, deviations from intended intervention, missing outcome data, measurement of the 178 

outcome, selection of the reported result. The GRADE approach was used to evaluate the 179 

certainty of evidence for all main and significant subgroup effects. The lead author, 180 

corresponding author, two clinician-researchers (KM, AM), a stroke researcher (EW), and the 181 

community advisory group provided their importance ranking again on the GRADE scale.25 The 182 

results are also summarized using the GRADE summary of findings (SoF) tables.26 183 

Statistical analysis 184 

 To examine the effectiveness of ST interventions on stroke recovery, we conducted 185 

random-effects meta-analyses comparing ST to no exercise or usual care. Pooled effect estimates 186 

were constructed with standardized mean differences (SMD) using Glass’s delta (Δ), and mean 187 

differences (MD) were used for walking speed outcomes (meters per second, m/s). Missing data 188 

was handled according to our published protocol.21 SMDs were considered small, moderate, or 189 
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large if they were 0.00 to 0.49, 0.50 to 0.79, and ≥0.80, respectively.27  190 

Multiple measures of the same outcome were observed within the same study (e.g., knee 191 

flexion and extension for lower-body strength), for which correlated-effects robust variance 192 

estimation (RVE) meta-analyses were applied to use all possible effect sizes and account for the 193 

dependence between effect estimates within a study.28 29 The specified RVE models followed a 194 

correlated effects model, where a common within-study correlation was set to 0.8 by default.28-30 195 

Details about the model are shown in Equation 3 in Pustejovsky & Tipton (2022).30 For all main 196 

effects, heterogeneity was explored across 3 covariates using univariable meta-regression 197 

analyses: time post-stroke (2 levels: sub-acute and chronic stroke), age (continuous variable), and 198 

sex/gender identity (3 levels, tertiles of low, moderate, and high proportion of women). The 199 

results were reported in-text, disaggregated into outcomes rated as “important, but not critical” 200 

and “critical for decision-making” based on the GRADE importance scale. 201 

 To determine the influence of ST parameters (frequency, intensity, type, and duration) on 202 

stroke recovery, univariable meta-regression analyses were used across 5 main variables: 203 

frequency, intensity, type, duration (length of sessions [minutes] and program [weeks]), and total 204 

number of sessions in the ST program. The response variables were the effect sizes (i.e., SMD or 205 

MD) and the explanatory variables were the prescription variables (e.g., frequency). Details 206 

regarding covariate selection (e.g., number of levels) were defined a priori.21 Where studies had 207 

overlapping intensities, they were classified in the highest category (e.g., 60-90% 1-RM is high 208 

intensity). Where the explanatory variable was continuous (e.g., age, frequency, total number of 209 

sessions), we examined the linearity of the relationships by visual inspection of the bubble plots 210 

and including polynomial terms in the meta-regression models when the number of studies ≥10.  211 

Visual examination of funnel plots and regression-based Eggar tests were used to 212 
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examine the risk of publication biases for each outcome. Sensitivity analyses were conducted, 213 

removing studies with high risk of bias or small-study effects with high influence on funnel 214 

plots. Analyses were conducted using Stata SE (Version 17.0, StataCorp LLC, College Station, 215 

TX, USA), Microsoft Excel (Microsoft Corporation, Albuquerque, NM, USA), and R (The R 216 

Foundation for Statistical Computing, Vienna, Austria) using the robumeta and clubSandwich 217 

packages. 218 

Equity, diversity, and inclusion 219 

 The review team consisted of fifteen people with diverse backgrounds in research and 220 

lived experience. The team included clinicians, people with lived experience, researchers, and 221 

trainees, as well as people who share multiple identities (e.g., clinician and researcher, person 222 

with lived experience and researcher). Seven women and eight men with varying ethnicities 223 

contributed to this work. In our review eligibility criteria, there was no restriction on sex, gender 224 

identity, race, ethnicity, or socioeconomic factors. 225 

Patient and public involvement 226 

 We recruited a community advisory group to inform on several aspects related to this 227 

review. They have been detailed in the methods section, as well as in the published protocol.21 228 

 229 

RESULTS 230 

Study selection 231 

 The study flow diagram is in Figure 1. Forty-nine records met the eligibility criteria, of 232 

which 42 unique randomized controlled trials (Nrandomized=2,204) examined the effects of ST 233 

compared to no exercise or usual care on stroke recovery. 234 

Study characteristics 235 
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Trial characteristics and outcomes are presented in Table 1. The number of randomized 236 

participants ranged from 1231 to 156.32 Seventeen trials (40%, n=982) were in early subacute 237 

stroke (1 week to 3 months), 6 trials (14%, n=386) in late subacute stroke (3-6 months) and 19 238 

(45%, n=836) in chronic stroke (>6 months). Mean age ranged from 49 to 78 years, and the 239 

median proportion of women was 39%. The tertiles for sex/gender identity were low (0-35% 240 

women), moderate (36-42% women), and high proportion of women (43-61% women). The 241 

severity of stroke or functional status was reported or could be inferred in 31 trials. Twenty-one 242 

trials (50%) compared ST to no exercise, while the remaining 21 trials compared ST to usual 243 

care physiotherapy (15 trials, 36%), education (2 trials, 5%), or a benign attention-control (3 244 

trials, 7%), all of which limited the amount of ST exercises. Additional information is provided 245 

in Supplemental Appendix 3.246 
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Table 1. Trial characteristics. 
Variables  
Number of participants, n (min-max) 

Strength training group(s) 
Control or usual care group 

 
1,132 (6-76) 
1,072 (6-85) 

Age, median (min-max) 60.9 (49.5-78.4) 
Geographical region, n (%) 

Africa 
Australia and New Zealand 
East/South/Southeast/West Asia 
Europe 
North America 
South America 

 
1 (2.4%) 
6 (14.3%) 
15 (35.7%) 
11 (26.2%) 
8 (19.0%) 
1 (2.4%) 

Sex/gender identity, median (min-max) 39% (0-61%) 
Phase of stroke recovery, trials (%) 

Early subacute (1 wk – 3 mo) 
Late subacute (3 – 6 mo) 
Chronic (≥ 6 mo) 

 
17 (40.4%) 
6 (14.3%) 
19 (45.2%) 

Outcomes measured, trials (%) 
Lower-body strength 
Habitual walking speed 
Functional ability and mobility 
Balance 
Walking capacity 
Functional strength and power 
ADL/IADL disability 
Fast walking speed 
Health-related quality of life 
Upper-body strength 
Spasticity 
Quality of gait 
Falls efficacy 
Psychological wellbeing 
Physical activity 
Upper-extremity function 
Muscle power 
Aerobic fitness 
Muscle endurance 
Cardiometabolic health indicators 
Muscle mass/volume 

 
22 (52.3%) 
21 (50.0%) 
20 (47.6%) 
19 (45.2%) 
16 (38.1%) 
13 (31.0%) 
10 (23.8%) 
10 (23.8%) 
10 (23.8%) 
7 (16.7%) 
6 (14.3%) 
5 (11.9%) 
4 (9.5%) 
4 (9.5%) 
4 (9.5%) 
4 (9.5%) 
3 (7.1%) 
3 (7.1%) 
2 (4.8%) 
2 (4.8%) 
1 (2.4%) 

ADL = Activities of daily living, IADL=Instrumental 
activities of daily living, n=Number of participants, 
wk=Week, mo=Months 

  247 
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Intervention characteristics 248 

The median frequency, duration and length of interventions were: 3 times per week (min-249 

max: once every other week to 5 days/week), 50 minutes (min-max: 30-90 minutes), and 6 250 

weeks (min-max: 1-52 weeks), respectively. A summary of the exercise prescriptions is in 251 

Supplemental Appendix 4. Intensity of ST was most often prescribed using percent repetition 252 

maximum or repetition ranges (e.g., 5 repetition maximum) (20 trials, 56%).33-57 Other trials used 253 

self-report (e.g., rating of perceived exertion) (4 trials, 10%),33-35 58-61 described as ‘maximal 254 

effort’ (3 trials, 9%),62-64 maximal heart rate (1 trial, 2%),65 or did not specify a method (2 trials, 255 

6%).32 64 Thirteen trials (31%)31 50 66-76 did not report intensity. Of those that reported any 256 

intensities, most (19 trials, 70%)37-40 42 43 45-53 56 59 60 62-64 77 used high intensities, while others used 257 

low to moderate (3 trials, 7%),41 54 55 61 moderate (5 trials, 12%),32-36 58 65 moderate to high (1 258 

trial, 2%),57 or power-focused intensities (2 trials, 5%).78 79 Twenty-three trials (55%) used 259 

traditional ST, while 19 trials (45%) used functional ST. Most trials (32 trials, 76%) focused on 260 

lower-limb ST, while the remaining focused on upper-limb (4 trials, 10%) or full-body exercises 261 

(6 trials, 14%). 262 

Risk of bias and publication bias 263 

 The risk of bias summary diagram is displayed in Figure 2, showing the risk of bias 264 

distribution for each outcome. The overall risk of bias was high across all outcomes, mainly from 265 

deviations from the intervention. Many studies used a per-protocol analysis that excluded trial 266 

participants with missing data and/or did not publish a trial protocol. Most outcomes had a low 267 

risk of bias for the randomization process, missing data, and the outcome measure. Traffic light 268 

plots displaying risk of bias for each individual study, by outcome, is shown in the Supplemental 269 

Appendix 5. Among outcomes with more than 10 studies meta-analyzed, publication bias was 270 
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suspected due to either funnel plot asymmetry and/or regression-based Egger test for: lower-271 

body strength, functional ability and mobility, balance, walking capacity, functional strength, and 272 

ADL/IADL disability (Supplemental Appendix 6). 273 

Synthesis of results 274 

 The effects of the ST interventions on stroke recovery are summarized in Figure 3, in the 275 

summary of evidence table (Table 2), and are organized in order of importance from the GRADE 276 

importance scale. There was very low to moderate certainty of evidence across the outcomes. 277 
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Table 2. GRADE Certainty of Evidence Table. 
Effect size 
(95% CI) 

N  
(N studies) Risk of bias Inconsistency Indirectness Imprecision Other Certainty 

of evidence Importance 

Walking capacity (median [IQR] follow-up duration: 6.0 [6.0] weeks) 
SMD=0.95 

(0.34 to 1.56) 
N=1,086 

(16 studies) Seriousb Seriousc Not serious Not serious None ⊕⊕◯◯ 
Low 

Critical (9) 
[IQR=3, Q1-Q3: 6-9] 

Habitual walking speed (median [IQR] follow-up duration: 6.0 [4.5] weeks) 
MD=0.05 m/s 

(0.02 to 0.09 m/s) 
N=1,109 

(21 studies) Seriousb Not serious Seriouse Not serious None ⊕⊕◯◯ 
Low 

Critical (8) 
[IQR=1, Q1-Q3: 7-8] 

Subacute phase 
MD=0.09 m/s 

(0.04 to 0.15 m/s) 

N=532 
(9 studies) Seriousb Not serious Not serious Not serious None ⊕⊕⊕◯ 

Moderate 
Critical (8) 

[IQR=1, Q1-Q3: 7-8] 

Chronic phase 
MD=0.02 m/s 

(-0.02 to 0.07 m/s) 

N=577 
(12 studies) Seriousb Seriousc Not serious Not serious None ⊕◯◯◯ 

Very low 
Critical (8) 

[IQR=1, Q1-Q3: 7-8] 

Balance (median [IQR] follow-up duration: 6.0 [4.5] weeks) 
SMD=1.13 

(0.51 to 1.75) 
N=1,162 

(19 studies) Seriousb Seriousc Not serious Not serious None ⊕⊕◯◯ 
Low 

Critical (8) 
[IQR=1.5, Q1-Q3: 7.5-9] 

Functional ability and mobility (median [IQR] follow-up duration: 6.0 [4.0] weeks) 
SMD=0.61 

(0.09 to 1.14) 
N=1,246 

(20 studies) Seriousb Not serious Seriousf Not serious Publication 
biasj 

⊕◯◯◯ 
Very low 

Critical (8) 
[IQR=2, Q1-Q3: 7-9] 

Health-related quality of life (median [IQR] follow-up duration: 6.0 [6.0] weeks) 
SMD=0.11 

(-0.22 to 0.44) 
N=572 

(10 studies) Seriousb Not serious Not serious Serioush None ⊕◯◯◯ 
Very low 

Critical (8) 
[IQR=2.5, Q1-Q3: 6-8.5] 

Functional strength and power (median [IQR] follow-up duration: 6.0 [6.0] weeks) 
SMD=0.48 

(-0.20 to 1.16) 
N=775 

(13 studies) Seriousb Very seriousd Not serious Serioush None ⊕◯◯◯ 
Very low 

Critical (7) 
[IQR=1.5, Q1-Q3: 6-7.5] 

Fast walking speed (median [IQR] follow-up duration: 6.0 [4.5] weeks) 
MD=0.09 m/s 

(0.01 to 0.17 m/s) 
N=476 

(10 studies) Very seriousa Very seriousd Not serious Seriousi None ⊕◯◯◯ 
Very low 

Critical (7) 
[IQR=4.5, Q1-Q3: 4.5-9] 

Falls efficacy (median [IQR] follow-up duration: 6.0 [4.0] weeks) 
SMD=4.55 

(-14.2 to 23.3) 
N=315 

(4 studies) Seriousb Very seriousd Not serious Very seriousg None ⊕◯◯◯ 
Very low 

Critical (7) 
[IQR=3, Q1-Q3: 4-7] 

Physical activity (median [IQR] follow-up duration: 6.0 [6.0] weeks) 
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SMD=0.43 
(-0.17 to 1.02) 

N=432 
(4 studies) Seriousb Seriousc Seriousf Serioush None ⊕◯◯◯ 

Very low 
Critical (7) 

[IQR=1.5, Q1-Q3: 5.5-7] 

Psychological wellbeing (median [IQR] follow-up duration: 6.0 [6.0] weeks) 
SMD=0.21 

(-0.47 to 0.89) 
N=175 

(4 studies) Seriousb Not serious Not serious Serioush None ⊕⊕◯◯ 
Low 

Critical (7) 
[IQR=2, Q1-Q3: 5.5-7.5] 

Lower-body strength (median [IQR] follow-up duration: 6.0 [5.5] weeks) 
SMD=1.25 

(0.64 to 1.85) 
N=1,170 

(22 studies) Seriousb Seriousc Seriouse Not serious None ⊕◯◯◯ 
Very low 

Important (6) 
[IQR=2, Q1-Q3: 6.5-8.5] 

Upper-body strength (median [IQR] follow-up duration: 6.0 [5.5] weeks) 
SMD=3.17 

(-0.48 to 6.81) 
N=297 

(7 studies) Seriousb Very seriousd Not serious Serioush None ⊕◯◯◯ 
Very low 

Important (6) 
[IQR=2, Q1-Q3: 4.5-6.5] 

ADL/IADL disability (median [IQR] follow-up duration: 6.0 [6.0] weeks) 
SMD=0.50 

(0.05 to 0.94) 
N=722 

(10 studies) Seriousb Not serious Not serious Serioush None ⊕⊕◯◯ 
Low 

Important (6) 
[IQR=2, Q1-Q3: 6-8] 

Upper-extremity function (median [IQR] follow-up duration: 6.0 [4.0] weeks) 
SMD=0.26 

(-0.07 to 0.58) 
N=130 

(4 studies) Very seriousa Not serious Seriousf Very seriousg None ⊕◯◯◯ 
Very low 

Important (6) 
[IQR=1.5, Q1-Q3: 5-6.5] 

Muscle power (median [IQR] follow-up duration: 6.0 [3.8] weeks) 
SMD=2.52 

(-3.81 to 8.84) 
N=87 

(3 studies) Very seriousa Very seriousd Not serious Very seriousg None ⊕◯◯◯ 
Very low 

Important (6) 
[IQR=1.5, Q1-Q3: 4.5-6] 

Spasticity (median [IQR] follow-up duration: 6.0 [3.8] weeks) 
SMD=0.11 

(-0.34 to 0.55) 
N=183 

(6 studies) Seriousb Not serious Not serious Serioush None ⊕◯◯◯ 
Very low 

Important (5) 
[IQR=3, Q1-Q3: 4-7] 

Risk of bias: aDowngraded 2 levels where most evidence is from studies with a high risk of bias in more than 1 domain; bDowngraded 1 level where 
most evidence is from studies with high risk of bias in 1 domain or some concerns in more than 1 domain. 
Inconsistency: cDowngraded 1 level for considerable statistical heterogeneity (I2=75-100%), but some overlap in 95% CIs; dDowngraded 2 levels for 
considerable statistical heterogeneity (I2=75-100%) and no/very minimal overlap in 95% CIs. 
Indirectness: eSubgroup differences present based on time post-stroke; fTypes of outcomes included in meta-analysis varied substantially (e.g., 
subjective and objective measures) 
Imprecision: gDowngraded 2 levels for small sample size (n<400) and 95% CI includes large positive and negative effect; hDowngraded 1 level for 
small sample size (n<400) and very wide 95% CI which includes no effect; iDowngraded 1 level for very wide 95% CI that does not include no effect, 
but large sample size (n>400). 
Other: jDowngraded 1 level for evidence of publication bias from Egger test/visual inspection of funnel plot and result was significantly different in 
sensitivity analyses. 
N=number of participants, SMD=standardized mean difference, IQR=interquartile range, RoB-2=Revised Cochrane Risk of Bias Assessment Tool. 

278 
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Critical for decision-making (GRADE scale: 7-9) 279 

There was a large effect of ST on walking capacity (16 trials; n=1,086; SMD=0.95; 95% 280 

CI: 0.34, 1.56, p=0.002, I2=94.3%) and balance (19 trials; n=1,162; SMD=1.13; 95% CI: 0.51, 281 

1.75, p=0.001, I2=75.8%). There was an increase in habitual (21 trials; n=1,109; MD=0.05 m/s, 282 

95% CI: 0.02, 0.09 m/s, p=0.002, I2=88.4%) and fast walking speed (10 trials; n=476; MD=0.09 283 

m/s, 95% CI: 0.03, 0.14 m/s, p=0.002, I2=77.4%) following ST compared to usual care or no 284 

exercise. There was a moderate effect of ST on functional ability and mobility (20 trials; 285 

n=1,246; SMD=0.61; 95% CI: 0.09, 1.14, p=0.02, I2=75.6%). There were small to very large, 286 

albeit not statistically significant point estimates favouring ST on functional strength and power 287 

(13 trials; n=775; SMD=0.48, 95% CI: -0.20, 1.16, p=0.15, I2=70.7%), health-related quality of 288 

life (10 trials; n=572; SMD=0.11; 95% CI: -0.22, 0.44, p=0.46, I2=39.9%), falls efficacy (4 trials; 289 

n=315; SMD=4.55, 95% CI: -14.2, 23.3, p=0.50, I2=98.4%), psychological wellbeing (4 trials; 290 

n=175; SMD=0.21; 95% CI: -0.47, 0.89, p=0.39, I2=0.0%), or physical activity levels (4 trials; 291 

n=432; SMD=0.43, 95% CI: -0.17, 1.02, p=0.10, I2=1.5%).  292 

Aerobic fitness, muscle endurance, and cognition were not pooled for meta-analysis. 293 

Three trials (n=63) measured aerobic fitness;41 45 46 65 only 1 study (33%) found an 294 

improvement.41 Two trials (n=63) measured muscle endurance of the knee extensors and 295 

flexors,45 46 plantarflexors,45 46 and on a leg press machine.41 45 46 Both (100%) found 296 

improvements in muscular endurance. One trial (n=32) found mixed results on cognitive 297 

function.78 298 

Important, but not critical (GRADE scale: 4-6) 299 

There was a large effect of ST on lower-body strength (22 trials; n=1,170; SMD=1.25, 300 

95% CI: 0.64, 1.85, p<0.001, I2=78.1%) and a moderate effect on ADL/IADL disability (10 301 
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trials; n=722; SMD=0.50, 95% CI: 0.05, 0.94, p=0.03, I2=48.7%). There were small to very 302 

large, but not statistically significant point estimates favouring ST on upper-body strength (7 303 

trials; n=297; SMD=3.17; 95% CI: -0.48, 6.82, p=0.08, I2=93.6%), upper-extremity function (4 304 

trials; n=130; SMD=0.26; 95% CI: -0.06, 0.58, p=0.08, I2=0.0%), muscle power (3 trials; n=87; 305 

SMD=2.52; 95% CI: -3.81, 8.84, p=0.23, I2=90.1%) or spasticity (6 trials; n=183; SMD=0.11, 306 

95% CI: -0.34, 0.55, p=0.56, I2=0.0%).  307 

Quality of gait, cardiometabolic health markers, and muscle size were not pooled in 308 

meta-analyses. Five trials (n=237)37 48 49 69 77 measured the quality of gait using outcomes such as 309 

step length and stride length. Four trials (80%) found improvements in at least 1 quality of gait 310 

outcome. Two trials (n=123) measured cardiometabolic health markers and found between-group 311 

differences in body fat percentage,54 55 fasting insulin,56 2-hour glucose levels,56 insulin 312 

resistance,56 and serum insulin-like growth factor-1; mixed results for total cholesterol, high- and 313 

low-density lipoprotein cholesterol favouring ST;54-56 and no differences in albumin,54 55 c-314 

reactive protein,54 55 fat-free mass,54 55 fasting glucose,56 glycated hemoglobin concentrations,56 315 

and body mass index.54-56 One trial (n=32) found between-group differences for quadriceps 316 

muscle volume and cross-sectional area favouring ST.78 317 

Effect modification of covariates 318 

 There was a subgroup effect of time post-stroke for habitual walking speed (p=0.03). The 319 

subgroup effect estimates are presented in Table 3. Older age was negatively associated with 320 

improvements in quality of life (𝛽=-0.04, 95% CI: -0.08, -0.01, p=0.03). There was no influence 321 

of biological sex/gender identity in any of the meta-analyses.  322 

Influence of ST prescription parameters 323 

 The association between prescription parameters and stroke recovery outcomes are 324 
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displayed in Figure 4. The frequency of ST was positively associated with improvements in 325 

walking capacity (𝛽=0.48, 95% CI: 0.03, 0.92, p=0.04). Power-focused ST intensities showed 326 

the largest improvements in fast walking speed (MD=0.29 m/s, 95% CI: 0.16, 0.42 m/s), 327 

compared to moderate (MD=0.09 m/s, 95% CI: 0.07, 0.12 m/s) and high-intensity programs 328 

(MD =-0.01 m/s, 95% CI: -0.08, 0.06 m/s) (p<0.001). Traditional ST showed larger effects 329 

compared to functional ST for health-related quality of life (estimated 𝛽=0.66, 95% CI: 0.17, 330 

1.14, p=0.02). There was a small positive association between the total number of sessions and 331 

changes in lower-body strength (estimated 𝛽=0.05, 95% CI: 0.005, 0.10, p=0.03). There was no 332 

association between ST duration (minutes per session), length (weeks) on any outcome measure. 333 

Sensitivity analyses 334 

 In sensitivity analyses for publication bias, there was no change in the interpretation of 335 

any of the results except for functional ability and mobility, where the effects were no longer 336 

significant. After removing studies with a high overall risk of bias, results for lower-body 337 

strength, functional ability and mobility, fast walking speed, and ADL/IADL disability were not 338 

statistically significant, but the remaining results were unchanged. 339 

 340 

DISCUSSION 341 

 This systematic review and meta-analysis of 42 randomized trials (49 records) found that 342 

ST may improve stroke recovery, demonstrated by changes in outcomes rated as important by 343 

people with stroke, clinicians, and stroke rehabilitation researchers. These outcomes included: 344 

lower-body strength, habitual and fast walking speed, functional ability and mobility, balance, 345 

walking capacity, and ADL/IADL disability.  346 

Improving strength is fundamental to completing functional tasks in everyday life.80-82 347 
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This synthesis demonstrates that ST after stroke can elicit the necessary adaptations to muscle 348 

strength, but in contrast to the findings of previous reviews,13 15 also demonstrates the benefits of 349 

ST for other aspects of stroke recovery identified as important to people with stroke. To 350 

demonstrate the clinical significance of these results, the standardized mean differences may be 351 

re-expressed to reflect core outcome measures in neurological rehabilitation. For instance, the 352 

observed changes in walking capacity and balance approximates a 118-metre difference in the 6-353 

minute walk test and a 5.6-point difference in the Berg Balance Scale, both of which are 354 

clinically meaningful.83 84 The disparities between the present and previous systematic reviews 355 

are likely due to differences in definitions of ST.13 14 We defined ST as per the ACSM85 as “a 356 

form of exercise designed to improve muscular fitness by exercising a muscle or muscle group 357 

against external resistance”. In contrast, previous reviews either defined ST as “pure resistance 358 

training”,14 or as “exercising against an external load that corresponds to 8 to 12 RM, at least 359 

twice per week, with resistance increased as strength increases”.13 Thus, earlier reviews may 360 

have excluded ST programs that were beyond the scope of those definitions, but met the scope of 361 

our review.  362 

By using the ACSM definition of ST, we were able to include a broad range of exercise 363 

prescriptions, enabling analyses of different program variables on recovery outcomes that are 364 

important to the stroke community. Namely, we found that more frequent ST was beneficial for 365 

walking capacity – similar to previous work reporting associations between higher frequency of 366 

stroke rehabilitation and lower risk of recurrent stroke and mortality,86 reduced length of stay and 367 

more favourable motor function gains.87 We also found that power-focused intensities (exercises 368 

performed at high speeds) were superior to moderate and high intensities for fast walking speed 369 

– differences that may also be clinically meaningful.88 Power-focused ST may elicit increased 370 
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neural output to high-threshold motor units,89 creating adaptations to type 2 muscle fibers that 371 

are often affected post-stroke.90 We posit that the stimulus provided through power-focused ST 372 

improved the rate of force development needed for fast walking. Interestingly, there was no 373 

difference between traditional and functional ST for improving outcomes of physical function 374 

(e.g., balance, functional ability and mobility). It may be that functional ST (i.e., ST involving 375 

everyday tasks) may have provided greater training specificity for functional movements. 376 

Conversely, functional ST often used lower or unspecified training intensities whereas traditional 377 

ST (i.e., using free-weights or machines) may have offered a more intense stimulus to enhance 378 

skeletal muscle adaptations. It is therefore possible that traditional and functional ST provide 379 

unique mechanisms to elicit changes in outcomes related to stroke recovery. 380 

Based on the available evidence, any ST is likely effective for promoting stroke recovery 381 

versus none, but to maximize recovery, more frequent and traditional ST programs, as well as 382 

programs that emphasize the development of muscle power may have the most beneficial effects, 383 

particularly for physical function and health-related quality of life. Future research should 384 

explicitly test these types of prescriptions to confirm our hypotheses and associations. 385 

 Our review also reveals gaps in the existing evidence for ST after stroke. There were few 386 

trials examining some outcomes such as falls efficacy, psychological well-being, and upper-387 

extremity function, all areas rated as important by our advisory group of people with lived 388 

experience, researchers, and clinicians. This may, in part, be explained by limited interventions 389 

focusing on upper-extremity strength and function, but mainly highlights the importance of 390 

partnership, particularly involving people with lived experience, in the research process to ensure 391 

that research is relevant and addresses the needs of those affected. Additionally, we note that 392 

nearly 70% of studies excluded participants with cognitive impairment or aphasia, known to 393 
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impact 22-44% of people living with stroke.91 92 Most studies included middle-aged to older 394 

participants with mild to moderate stroke severity and functional status, also limiting the 395 

generalizability of our findings for younger or more severely impacted groups. We urge trialists 396 

to remain inclusive of measured outcomes and population groups to enhance the strength of the 397 

evidence. 398 

 We acknowledge the limitations of this review. Most studies had a high risk of bias in 399 

several domains or showed evidence of publication bias, resulting in very low to moderate 400 

certainty of evidence for our outcome measures. Most of the risk of bias was due to deviations 401 

from the intended intervention and/or selection of the reported result, since many studies did not 402 

follow an intention to treat analysis or did not publish trial protocols and statistical analysis 403 

plans. Although it is difficult to blind participants or those delivering interventions to the 404 

allocation in exercise-based rehabilitation trials, we recommend that investigators publish their 405 

trial protocols when reporting the results of their studies to limit these biases.  406 

There was also a relatively small number of studies for certain outcomes (e.g., falls 407 

efficacy, N=4), which resulted in large confidence intervals that included no effect of ST. This 408 

small number of studies also prevented us from exploring interactions between program 409 

variables (e.g., intensity and frequency together) on stroke recovery. As the evidence continues 410 

to grow for ST after stroke, it will be possible to conduct multi-arm trials and network meta-411 

analyses to explore these interactions. We also acknowledge that the language restriction of our 412 

articles to only English may have introduced selection bias in our screening. Relevant articles in 413 

other languages may have been missed. Moreover, some studies included in the meta-analyses 414 

had small sample sizes, which may lead to small sample biases.93 Finally, we acknowledge the 415 

large number of meta-regression analyses, however this was a necessary approach to address the 416 
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research question.  417 

 418 

CONCLUSIONS 419 

The results of this review demonstrate that ST, compared to no exercise or in addition to 420 

usual care, may support outcomes of stroke recovery that were deemed important by an advisory 421 

group of people with lived experience of stroke, clinicians, and stroke rehabilitation researchers. 422 

ST may not only improve lower-body strength, but also physical function and health-related 423 

quality of life. Moreover, different ST prescription parameters may result in an improved 424 

recovery for some outcomes: more frequent ST may be optimal for improving walking capacity; 425 

power-focused ST may be optimal for improving fast walking speed; and traditional ST may be 426 

optimal for health-related quality of life. On the basis of this systematic review of the evidence, 427 

clinicians should encourage regular ST participation to promote stroke recovery. 428 

 429 
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