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Abstract

Digital Twins (DTs) have emerged as significant tools for real-time monitoring and

control across various industries, offering dynamic digital replicas of physical systems

(PSs). However, maintaining the freshness of information in DTs is challenged by

communication delays, uncertain network conditions, and limited computational re-

sources. These challenges can lead to increased Age of Information (AoI), reducing

the effectiveness of DTs in time-sensitive applications where timely and accurate data

is critical. This thesis addresses the optimization of PS-DT synchronization and DT

response time to applications, aiming to minimize AoI while efficiently allocating

communication and computational resources.

Firstly, we investigate the optimal DT response time when applications request

real-time information. Considering uncertainties in wireless communication channels

and the unpredictability of future AoI, we formulate the problem as a Markov Decision

Process (MDP) with delayed rewards. To solve this, we employ reinforcement learning

techniques, specifically combining Long Short-Term Memory (LSTM) networks with

Dueling Double Deep Q-Networks (DDDQN). This approach enables the DT to decide

whether to respond immediately to application requests or wait for fresher data from

the PS, effectively balancing response timeliness and information freshness.

Secondly, we extend the optimization to multiple PS-DT pairs operating under
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shared and constrained communication and computational resources. We model the

system as a multi-agent environment where each PS-DT pair aims to keep the AoI at

DT below a predefined threshold while minimizing power consumption during data

transmission. The problem is formulated as a stochastic optimization task and ad-

dressed using a two-stage MDP framework. In the first stage, agents optimize trans-

mission power considering channel interference in an orthogonal frequency-division

multiple access (OFDMA) scheme. In the second stage, they request computational

resources from the edge server (ES) with limited processing capacity. We utilize the

Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm within a cen-

tralized training and decentralized execution (CTDE) framework to solve the MDP

efficiently.

Simulation results demonstrate that the proposed methods reduce the AoI at both

DTs and applications, enhance resource utilization, and outperform existing algo-

rithms in managing the trade-off between AoI and power consumption. The findings

contribute to the efficient design and operation of DT systems in time-sensitive appli-

cations, ensuring timely updates and responses while optimizing resource allocation

in constrained environments.
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Chapter 1

Introduction

1.1 Digital Twins and Definitions

A digital twin (DT) is a virtual representation of a physical system (PS) that mirrors

the system’s state, behavior, and performance in real-time. The “state” of a PS

encompasses all relevant data about its current and historical conditions. To derive

actionable insights, this state data must be processed to extract the system’s status

or feature information.

For instance, state data from a plant might include temperature, humidity, and

noise levels from various locations. When analyzed together, this data could indicate

whether the plant’s current status is “normal” or “abnormal.” When this status

information is transmitted from the PS to its DT for processing and analysis, the

timeliness and accuracy of representing the PS’s current status become critical quality

metrics for the DT.

To maintain the timeliness and accuracy, continuous “synchronization” between

the PS and its DT is needed. The upper part of figure 1.1 shows an example of
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periodic PS-DT synchronization. In each period of W , the state data is transmitted

from the PS to the server where the DT is hosted and then processed at the DT. In

the same figure, t1, t4 and t7 are the start time of the three updates, the intervals

(t1, t2), (t4, t5), and (t7, t8) represent the data transmission time, and (t2, t3), (t5, t6),

and (t8, t9) correspond to the execution times for each of the three updates.

Figure 1.1: PS-DT update

The lower part of figure 1.1 shows the Age of Information (AoI) at the DT. The AoI

is the time that has elapsed since the latest data that is used to produce the current

information at the DT was generated at the PS. As illustrated in the figure, the AoI at

the DT keeps increasing with a slope of 1 until the completion time of the next PS-DT

synchronization update. Maintaining a low AoI at the DT requires minimizing both

the data transmission delay from the PS to the DT and the processing time at the

2
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DT. Furthermore, for applications that rely on the DT to retrieve feature information

of a PS, additional delay occurs while fetching this information, during which the AoI

of the feature data continues to increase.

1.2 Digital Twin Applications

DT technology has advanced significantly and is now utilized across various industries

and applications. This section provides a brief overview of the initial purposes of DTs,

their current implementations, and potential future applications.

DT technology initially emerged in manufacturing, where it was used to create

virtual replicas of physical assets for monitoring and optimization purposes. Early

applications focused on improving operational efficiency through simulations of equip-

ment performance and predictive maintenance [14]. In these initial stages, the amount

of data transferred from the physical part to its virtual replica was relatively limited,

restricting the extent to which these virtual models could mirror real-world conditions.

Modern DTs have evolved into essential tools across various sectors, driving con-

tinuous and extensive data transfer to transform operations and outcomes. In health-

care, for instance, DTs combined with artificial intelligence enable personalized pa-

tient care by simulating treatment scenarios and predicting patient responses in real-

time. This technology also extends to surgical simulations, where highly detailed

virtual models of patients allow surgeons to practice and refine procedures before

performing them on actual patients, leading to improved precision and outcomes

[15], [4]. In the realm of smart cities, DTs are employed in traffic management and

forecasting, where they integrate real-time sensor data with advanced simulations to

optimize traffic flow, reduce congestion, and enhance accident response capabilities

3
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[16], [45]. Additionally, in wireless networks, DTs are utilized to enhance network

management and optimization. A critical aspect in this context is the AoI, which

ensures that the data driving network decisions remain current and relevant. This

real-time data integration is particularly vital for optimizing 5G networks and sup-

porting connected infrastructure. For instance, DTs facilitate the visualization and

prediction of 5G signal propagation within urban environments, contributing to more

reliable and efficient network performance [40], [33], [29].

As DT use cases continue to evolve, future DTs are anticipated to achieve near-

instantaneous synchronization with their physical systems (PS) through continuous

real-time data streams. However, current challenges, such as delays in PS-DT syn-

chronization and the sheer volume of data being transferred, hinder the full potential

of DT applications. Advances in computing power will support the transfer of expo-

nentially larger datasets between PS and DTs, enabling a more seamless interaction.

Furthermore, the integration of artificial intelligence as a foundational component

will empower DTs to autonomously analyze complex data, make informed decisions

without human intervention, and continuously optimize their performance. These

advancements are expected to drive the broader adoption of DTs across industries,

unlocking new levels of efficiency and innovation.

These advancements will extend beyond traditional applications in manufacturing

and smart healthcare to include the emerging concept of the Human Digital Twin

(HDT). Building on insights from existing DT applications and incorporating tech-

nologies like Data Mining, Artificial Intelligence (particularly Deep Learning), and

Human-Computer Interaction, HDTs will aim to manage the full lifecycle of human

beings [32].

4
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1.3 Age of Information at DTs

When a digital twin (DT) is used to monitor, control, or optimize its physical system

(PS), maintaining a low Age of Information (AoI) at the DT ensures that it operates

with the most up-to-date data, critical for accurate simulations and reliable decision-

making. Conversely, a high AoI increases the risk of errors and undermines the

reliability of real-time operations. The effectiveness of DT implementations depends

heavily on the synchronization process between the PS and the DT, as highlighted in

studies like [1] and [35]. This synchronization involves the continuous transmission of

real-time data from the PS to the DT and subsequent processing at the DT to derive

actionable insights. Consequently, robust networking support is vital to ensure timely

data updates and maintain high-quality DT operations.

DTs can serve as intermediaries, interacting with third-party applications on be-

half of their PSs. The integration of such applications introduces additional complex-

ity and raises further considerations related to the AoI.

Time-sensitive applications utilizing DTs span diverse domains, including health-

care, manufacturing, and transportation. For example, in healthcare, real-time pa-

tient monitoring through DTs enables immediate responses to anomalies, potentially

saving lives [17]. Similarly, in transportation, accident prevention in smart vehi-

cles—highly reliant on data from PSs such as cameras—can be significantly enhanced

through real-time synchronization between the vehicle and its DT. These use cases

underscore the importance of maintaining low AoI to ensure timely and reliable data

flow for critical decision-making across various industries.

To support time-sensitive applications, maintaining low AoI at both the DT and

application levels is crucial to ensure that the feature information at the DT remains

5
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current and aligned with application demands. Achieving this requires frequent,

efficient updates between the PS and its DT, coupled with optimized server response

times to applications. These measures ensure that the information provided by the

DT remains relevant, up-to-date, and capable of meeting the stringent requirements

of real-time decision-making.

1.4 Markov Decision Processes (MDPs) in Digital

Twin Systems

In recent years, the integration of Markov Decision Processes (MDPs) into wireless

networks and DT applications has gained considerable attention for addressing com-

plex decision-making problems. MDPs are a mathematical framework from stochastic

control processes, effective for modeling and solving sequential decision-making prob-

lems under uncertainty. Fundamentally, an MDP models a system that transitions

through a sequence of states, with a decision-maker selecting actions at each state to

guide the system’s evolution. The defining feature of MDPs is the Markov property,

which asserts that the future state depends solely on the current state and chosen

action, independent of the system’s history.

In the context of DTs, MDPs provide a structured approach to managing deci-

sions in dynamic environments. The assumption of the Markov property simplifies

modeling by positing that the DT’s future state depends only on the current state

of the PS and the server’s action, eliminating dependence on prior states. This

memoryless characteristic enables the modeling of dynamic changes in the PS and

6
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wireless transmission environment as state transitions, facilitating adaptive and ef-

ficient decision-making. However, this also introduces significant complexity due to

the need to address uncertainty and the vast state and action spaces that arise in

practical applications.

An MDP includes four fundamental components: the state space, action space,

transition probabilities, and reward function. The state space refers to the complete

set of all possible states in which the system can exist. In the context of DTs, each

state might represent a specific configuration of the physical system and its digital

counterpart. The action space encompasses all possible actions or decisions that the

decision-maker can take while in a particular state. These actions drive the system’s

transitions from one state to another. The transition probabilities define the likeli-

hood of moving from one state to another given a specific action, encapsulating the

inherent uncertainty and dynamics of the environment. Finally, the reward func-

tion assigns a numerical value to each state-action pair, representing the immediate

benefit or cost of taking a particular action in a given state. This reward guides

the decision-maker towards strategies that maximize cumulative rewards over time.

By meticulously defining these components, MDPs provide a robust framework for

modeling and optimizing decision-making processes in the inherently uncertain and

dynamic environments typical of DT systems.

7
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1.5 Challenges in Integrating MDPs for Digital

Twin Systems

Integrating MDPs for resource allocation in PS-DT synchronization requires account-

ing for delayed feedback due to transmission and processing delays. Early decisions

do not immediately reflect their impact on metrics such as the AoI or the accuracy of

feature information at the DT, making delayed reward handling critical for effective

decision-making. This delay can disrupt the learning process of the MDPs, which typ-

ically relies on immediate feedback to update its policy and improve decision-making

over time. The temporal misalignment between actions and their consequences can

lead to sub-optimal and erroneous decisions, as the MDP might update its policy

based on outdated or irrelevant information. Furthermore, data transmissions for

the PS-DT updates often require wireless transmissions. The uncertainty inherent in

wireless communication can exacerbate these delays, making it difficult to accurately

model the environment and predict outcomes. Addressing these challenges requires

developing strategies that can tolerate or compensate for the feedback delay, such

as by incorporating predictive models, adjusting the MDP’s temporal resolution, or

employing techniques that can mitigate the impact of outdated feedback on policy

updates.

To address the challenge of delayed feedback in MDPs, in [18] novel algorithms

have been developed that directly mitigate the impact of feedback delays on pol-

icy updates. These algorithms focus on minimizing regret, ensuring that decision-

making remains effective even when feedback is received with significant delays. An-

other approach that addresses the challenge of delayed rewards in MDPs works by

8
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redistributing rewards and transforming the learning task into a regression prob-

lem. This method simplifies Q-value estimation by focusing on immediate rewards

and significantly improves learning efficiency, especially in environments with delayed

feedback[2].

A significant challenge lies in the vast state and action spaces, which can grow ex-

ponentially with the number of PSs and other parameters. When employing machine

learning algorithms to address this problem, the expansive state and action spaces

necessitate extensive exploration and evaluation of possible scenarios. This increases

computational complexity and significantly prolongs the convergence time needed to

identify an optimal solution.

1.6 Contribution of Thesis

This thesis studies two important topics related to AoI at DTs, optimum DT response

time in Chapter 3 and power efficient PS-DT update in Chapter 4.

In Chapter 3, we investigate the optimal response time for a DT when it receives

a request from an application server to retrieve feature information about its PS.

The DT faces a choice: respond immediately or wait until its information is next

refreshed. This decision is complicated by the uncertainty in network conditions,

which makes it challenging to predict the AoI at the DT in the future. This chapter

examines the trade-off between the cost of delaying the response and the benefit of

providing more accurate information, all while accounting for the stochastic nature

of the communication channel between the PS and the DT. The problem is formu-

lated as a MDP with delayed feedback. To address the delayed feedback, the reward

structure is adjusted using a Long Short-Term Memory (LSTM) network to better

9
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capture temporal dependencies. The optimal policies are then derived using Dueling

Double Deep Q-learning (DDDQN). Numerical results demonstrate that the proposed

solutions achieve near-optimal performance, effectively balancing response timeliness

and data accuracy. This approach highlights the potential of advanced reinforcement

learning methods to address challenges in DT systems operating under uncertain and

dynamic network conditions.

In Chapter 4, we address network resource allocation for supporting the PS-DT

update process. We consider a system where multiple PSs maintain their respective

DTs at a shared edge server (ES) via a set of communication channels. The objective

is to minimize the transmission power of the PSs while ensuring that the AoI at

the DTs remains below a predefined target threshold. The problem is formulated as

a MDP and decomposed into two stages: communication resource allocation (stage

one) and computation resource allocation (stage two). Stage one leverages multi-

agent reinforcement learning (TD3) for distributed decision-making, while stage two

employs deterministic algorithms for computation resource assignments. This two-

tiered approach enhances both scalability and decision-making efficiency.

S

10
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Chapter 2

Literature Review

2.1 DTs and Network Management

DTs have been used to enhance network performance in wireless systems by cre-

ating virtual replicas of physical network components for real-time monitoring and

optimization. For instance, DTs are developed in [29] to model 5G network signal

propagation in three-dimensional urban environments, where the physical systems

include the 5G infrastructure and urban terrain features affecting signal propaga-

tion. The DTs facilitate real-time signal optimization, improving network coverage

and capacity. Similarly, DTs are used in [7] to emulate network components in real

5G networks for continuous prototyping, testing, and self-optimization. The physical

systems in this case encompass automotive drive testing setups, smart factory con-

figurations, and network planning for communications service providers. The use of

DTs enhances network reliability, reduces network downtime, and improves resource

allocation efficiency.

11
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In the context of IoT networks, DTs are leveraged for dynamic resource manage-

ment in edge networks supporting IoT applications in [44]. By modelling both the

edge computing nodes and IoT devices, the DTs enable dynamic allocation of net-

work resources that optimize resource utilization and improve service quality. DTs

are utilized in [38] to create a virtual representation of the propagation environment in

disadvantaged networks. Integrating the DTs with software-defined networking and

machine learning techniques helps improve network topology management, leading to

reduced path lengths and enhanced performance for IoT devices. DTs are created in

[26] for wireless sensor networks equipped with distributed antenna arrays to optimize

energy efficiency in large-scale MIMO systems.

2.2 AoI at DTs

For DTs to effectively support various applications, one of their essential performance

metric is the AoI, which quantifies the information freshness at the DTs and is directly

affected by network resource availability during the PS-DT synchronization. Support-

ing DTs consumes a considerable amount of network resources. Strategically placing

DTs [40] [21] at network servers and allocating network resources [33] and [46] helps

maintain low AoI at the DTs and improve the performance of the applications that

need to fetch the PS information from their DTs. The work in [33] focuses on efficient

network resource allocation to minimize AoI in the state representations of electric

devices within DTs, while [46] introduced a distributed fault-tolerant communication

algorithm that minimizes the expected peak AoI, ensuring up-to-date information

is maintained even in resource-constrained and fault-prone environments. Further

emphasizing the significance of AoI, Tang et al. [36] introduced an improved AoI

12
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metric for DT synchronization in the Internet of Vehicles (IoV), which dynamically

adjusts upload intervals and optimizes deployment strategies to enhance the freshness

of vehicle state information while minimizing system costs and latency.

The importance of real-time synchronization between the PS and its DT has been

emphasized in the literature, such as [37, 3, 27], while little work has been done toward

maintaining tight synchronization between the two. From the networking perspective,

such synchronization requires both short PS-DT communication delay and short data

processing time, which translates to high bandwidth and computing power. The

minimum AoI at the DT is bounded by the sum of minimum communication delay

and data processing delay. Most existing work on DTs assumes that a DT for a

given PS, such as individual devices in an IoT network [25], mobile device and edge

servers of a mobile edge computing system [9], and vehicles and road side units of

vehicular networks [49, 8], is already available to provide the information of the PS

to an application. It should be noted that the AoI at the DT is an important factor

that affects both the the application quality and the network resource management.

In [39], DT placement was studied by optimizing the host server of the DTs of the

PSs based on required AoI at the application and the network delay.

Research on joint communication and computation resource management in re-

lation to AoI targets for DTs remains limited. Considering the dynamic nature of

network conditions, the substantial resource demands of practical DTs, and the im-

portance of maintaining information freshness, this area of study holds considerable

significance. This work addresses this research gap by exploring the interplay between

joint communication and computation resource allocation and the AoI performance

of DTs.
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2.3 DTs and ML

Digital Twins (DTs) are closely related to machine learning (ML), which has been

used to build and maintain up-to-date DT models, and predict future states of the

PSs. and optimize the performance of DT-based systems and applications. Advanced

ML techniques within DT frameworks are used to optimize operations in dynamic

environments. For example, Markov Decision Processes (MDPs) is used together

with DTs of manufacturing machines and human operators for optimizing device

assignment in manufacturing tasks in [12], and DRL is applied with DTs of dynamic

and stochastic robotic construction environments in [20] for task prioritization in

robotic construction.” In the Industrial Internet of Things (IIoT), DRL within DT

frameworks is used to optimize resource allocation and improve system performance.

Reference [10] develops a DRL-based stochastic computation offloading scheme in

DT networks using an asynchronous actor-critic algorithm. Similarly, [47] proposes

a DRL-assisted federated learning framework in DT-empowered IIoT environments,

enhancing model training efficiency and accuracy by selecting high-efficiency devices

and addressing device heterogeneity. Reference [13] integrates expert knowledge,

reinforcement learning, and DT technology for the self-optimization of 5G networks.

By constructing a DT of the current network, optimization decisions can be simulated

and evaluated, leading to enhanced performance without risking disruptions to the

real network during training.
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Chapter 3

Optimum DT Response Time for

Time-Sensitive Applications

Real-time synchronization between a PS and its DT is crucial for ensuring that accu-

rate status information is relayed from the DT to any application relying on the PS’s

state. However, delays in data communication and processing inherently introduce

latency between the PS and its DT. Furthermore, unpredictable network conditions

exacerbate these delays, making it challenging to forecast the AoI at the DT over

time.

When an application sends a request to the DT, the DT faces a decision: respond

immediately or wait until its information is refreshed during the next synchroniza-

tion cycle. This chapter explores the optimal response time for the DT by weighing

the costs of delaying responses against the benefits of providing more accurate and

updated information. Additionally, the study incorporates the impact of variable

and random communication channel conditions between the PS and DT. The analy-

sis balances these factors to identify the most efficient response strategy, improving

15
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decision-making under uncertain and dynamic network environments.

3.1 Introduction

As a digital replica of a physical system, a DT plays a vital role by interacting with

third-party applications on behalf of its physical counterpart. For instance, if multiple

applications need status information about a farm field (the physical system, or PS),

sensed data such as temperature and humidity can be sent from the PS to these

applications. With a DT of the farm field maintained at a server, the sensed data is

first transmitted to the DT server, which processes the information to determine the

field’s status as either “normal” or “abnormal.” Applications can then contact the

DT directly to retrieve this status information.

This approach offers several advantages. First, the sensed data is sent only from

the PS to the DT, regardless of how many applications require access to that infor-

mation. Second, servers hosting DTs typically possess superior computing power and

storage capabilities compared to the physical system itself. This allows the DT to

process raw data into application-friendly insights, such as stating, “the plants are in

normal condition.”

To ensure that a DT reflects the real-time status of its physical counterpart, data

sensed at the PS should be transmitted periodically to the DT and processed there.

However, delays inherent in data communication and processing introduce latency

between the PS and its DT. Additionally, unpredictable wireless channel conditions

contribute to uncertainty, making it difficult to forecast the AoI at the DT over time.

Consequently, when an application sends a request to the DT, it becomes challenging

to determine whether the DT should respond immediately or wait until its next
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scheduled information refresh.

This chapter focuses on addressing the uncertainty introduced by wireless com-

munication channels, as sensed data are typically transmitted through these wireless

pathways. The problem is formulated as a Markov Decision Process (MDP), with

the objective of maximizing a reward that balances the DT response delay and the

AoI experienced by the application upon receiving the response from the DT. The

remainder of this chapter is organized as follows. The remainder of this chapter is

structured as follows: Section 3.2 describes the system model and formulates the

problem, which is subsequently expanded into a Markov Decision Process (MDP) in

Section 3.3. Section 3.4 presents the proposed solution algorithms, including the re-

ward redistribution mechanism and the Dueling Double Deep Q-learning (DDDQN)

approach for policy optimization. In Section 3.5, we provide simulation results and

analysis to demonstrate the effectiveness of the proposed methods. Finally, Section

3.6 concludes the chapter with a summary of the key findings and insights gained

from the study.

3.2 System Model and Problem Formulation

We consider a PS-DT-application system, where the applications fetch information

of the PSs through their respective DTs and each DT is synchronized with its own

PS periodically. We focus on one PS and its DT. The PS updates the DT by sending

its current status data to the DT every W seconds through a wireless channel.

We consider the periodic synchronization updates as shown in figure 1.1. Appli-

cations requiring state information of the PS send their requests to the DT. Upon the

arrival of an application request, the DT may respond it immediately or delay the
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response until the next data processing completion time. Either way, the DT always

sends the most recent PS status information to the application. In figure 1.1, if an

application request arrives at the DT at time ta with ta slightly less than t6, then

the optimum response time is to wait and send the response back to the application

after t6. On the other hand, if ta is slightly larger than t6, then the optimum response

time is to send the response immediately. Both decisions are based on the amount

of waiting time for the application to receive the PS state information and the AoI

of the received information. In order to focus the research on the effect of uncer-

tainty caused by wireless channels, we consider that the amount of time for sending

the information from the DT to the application is a constant and small. When the

application server is connected to the DT server through a wired network, in which

case the DT-application communication delay is normally much less than the PS-DT

communication delay. In addition, the amount of data delivered from the DT to the

application is much less than that from the PS to the DT. The optimum response

time, however, is not obvious for an arbitrary application request arrival time, due

to the unknown next data processing finish time, which affects both the delay of DT

response time and the updated AoI at the time.

We consider a finite-state Markov chain channel. Let τ be the duration of the

time slot and N be the total number of channel states. Define PCH
nm as the transition

probability of the channel from state n in one slot to state m in the next slot. At

state n, the data transmission rate is Rn in bits per second.

Let bt be the number of remaining data bits to be transmitted from the PS to the
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DT at the beginning of time slot t for the current PS-DT update period. We have

bt+1 = (bt −R(t)τ)+, (3.2.1)

where (x)+ = x if x ≥ 0 and (x)+ = 0 if x < 0, and R(t) ∈ {Rn|Nn=1} is the data

transmission rate at time slot t.

Define ct as the number of remaining CPU cycles to be processed at the beginning

of time slot t. We have

ct+1 = (ct − fcτ)+. (3.2.2)

At the beginning of any time slot t, bt and ct satisfy the following relationship

phase 0: t = kW, bt = Bmax, ct = Cmax,

phase 1: t 6= kW, 0 ≤ bt < Bmax, ct = Cmax,

phase 2: t 6= kW, bt = 0, 0 < ct < Cmax,

phase 3: t 6= kW, bt = 0, ct = 0,

(3.2.3)

where k is any non-negative integer. Phase 0 (p0) is the start of an update period.

In phase 2 (p2), state data of the PS is being transmitted to the DT server through

the wireless channel. In phase 2 (p2), the DT is processing the data. In phase 3 (p3),

the PS-DT update is completed for the current period.
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At the beginning of time slot t, the AoI at the DT is given as

ADT
t =


(t mod W ) +W, if DT in p0, p1 or p2

(t mod W ), if DT in p3

(3.2.4)

where (t mod W ) finds the remainder of t/W .

Let AApp
t be the AoI of the application at the beginning of time slot t. The mean

AoI at the application is given as

AoI = 1
Dmax

∫ ta+Dmax

t=ta
AApp
t dt. (3.2.5)

Note that if the DT responds at time t, then AApp
t = ADT

t ; otherwise, AApp
t = AApp

t−1 +1.

3.3 MDP Formulation

The above problem can be formulated as a Markov decision process.

3.3.1 State space

Define st as the system state at the beginning of time slot t. We have st = [gt, bt, ct, ot, dt],

where ot is the AoI at the application server at time t, bt ∈ [0, Bmax] is the remain-

ing number of bits to be transmitted, ct ∈ [0, Cmax] is the remaining number of

CPU cycles to be executed, gt ∈ {1, 2, . . . , N} is the channel state at time t, and

dt ∈ {0, 1, . . . , Dmax} is the amount of delay since the request arrival.

Note from (3.2.3) that bt and ct are closely related. Instead of having bt and ct as

two different elements in st, we define a new element ut with ut = bt + ct ∈ [0, Umax]
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with Umax = Bmax + Cmax. In this way, we have

p0, bt = Bmax, ct = Cmax, ut = Umax,

p1, 0 ≤ bt < Bmax, ct = Cmax, Cmax ≤ ut < Umax,

p2, bt = 0, 0 < ct < Cmax, 0 < ut < Cmax,

p3, bt = ct = 0, ut = 0.

With this, the state is redefined as st = [gt, ut, ot, dt].

3.3.2 Action space

Let at be the action at time t, then at = {0, 1} with at = 1 if the DT sends the

response at time t and at = 0 otherwise.

Define tw as the amount of time from the application request arrival to the next

PS-DT update completion, then ta + tw is the PS-DT update completion time. The

optimum DT response time is either at ta or ta + tw. Therefore, our goal is to decide

whether ata = 1. If ata = 1, at = 0 for all t ∈ [ta+1, ta+Dmax]; otherwise, ata+tw = 1,

and at = 0 for all t ∈ [ta, ta +Dmax] and t 6= ta + tw.
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3.3.3 State transition probabilities

In this subsection, we find the transition probability Pr(st+1|st, at). We drop the

subscript t from all variables for concise expressions.

Pr(s′|s, a) = Pr(g′, u′, o′, d′|g, u, o, d, a) (3.3.1)

= Pr(g′|g)Pr(u′, o′, d′|g, u, o, d, a) (3.3.2)

= Pr(g′|g)Pr(u′|g, u, o)Pr(o′|u, o, a)Pr(d′|d, a) (3.3.3)

where (3.3.2) is due to the fact that the channel state changes are independent of

all other elements in the state, and (3.3.3) is owing to unrelated amount of DT

response delay to the data transmitting and processing at each time slot. Each of the

probabilities in (3.3.3), will be derived in the remaining of this subsection.

For the channel state changes,

Pr(g′|g) = PCH
gg′ , ∀g, g′ ∈ {1, 2, . . . , N}. (3.3.4)

For the DT response delay, if the DT responds at a given time, the delay in the

next time slot is reset to 0; otherwise, it is increased by 1. Therefore, we have

Pr(d′|d, a) =


1, if d′ = d+ 1, a = 0

1, if d′ = 0, a = 1

0, otherwise

(3.3.5)

The state transition probability during data transmission and processing can be
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found according to (3.2.1)- (3.2.3) as follows:

Pr(u′|g, u, o) =



1, if u = 0, u′ = 0, (o mod W ) < W − 1

1, if Cmax < u ≤ Umax, u
′ = (u−Rgτ)+

1, if 0 < u ≤ Cmax, u
′ = (u− fcτ)+

0, otherwise

(3.3.6)

For AoI at the application,

• when a = 0 and 0 < u ≤ fcτ ,

Pr(o′|u, o, a) = 1, if o′ = (o mod W ) + 1. (3.3.7)

• when a = 0, u = 0 or u > fcτ ,

Pr(o′|u, o, a) = 1, if o′ = o+ 1 (3.3.8)

• when a = 1 and u = 0,

Pr(o′|u, o, a) = 1, if o′ = (o mod W ) + 1. (3.3.9)

• when a = 1 and u 6= 0,

Pr(o′|u, o, a) = 1, if o′ = (o mod W ) +W + 1. (3.3.10)

• for all other cases, Pr(o′|u, o, a) = 0.
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3.3.4 Reward function

The reward function is defined as

rata =
∫ ta+Dmax

t=ta
otdt. (3.3.11)

If ata = 1, ota = oDT
ta , and ot = ota + (t − ta) for all t ∈ [ta, ta + Dmax]. There-

fore, (3.3.11) becomes

r1 =
1

2
(2oDT

ta +Dmax)Dmax. (3.3.12)

Similarly, if ata+tw = 1 (i.e., ata = 0), (3.3.11) becomes

r0 =
1

2
[(2oAPP

ta + tw)tw + (2oDT
ta+tw +Dmax − tw)(Dmax − tw)]. (3.3.13)

With this, a revised reward can be defined as r = r1 − r0. By substituting (3.3.12)

and (3.3.13) into r and simplifying, we have

r = (oDT
ta −o

DT
ta+tw +tw)Dmax− (oAPP

ta −oDT
ta+tw +tw)tw (3.3.14)

Upon the application request arrives at the DT, if r ≥ 0, ata = 1 is the optimal

action; otherwise, ata = 0. This is an MDP with delayed reward, since tw is unknown

at ta.

24

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – A. Aghaei; McMaster University – Electrical and Computer Engineering

3.4 Solutions

The MDP problem addressed in this work is characterized by delayed rewards. Specif-

ically, the reward for a particular action taken upon request arrival is not disclosed

until a new update is completed at DT. Addressing delayed reward MDPs introduces

several significant challenges. Firstly, unlike immediate reward scenarios where a sin-

gle state-action pair determines the reward, delayed rewards depend on a sequence

of state-action pairs. The system’s dynamics can lead to diverse future state-action

sequences before the delayed reward is received, resulting in sparse rewards. This

sparsity complicates the agent’s ability to accurately predict the expected reward for

its current actions. Secondly, determining the optimal policy becomes time-consuming

as agents must comprehend the long-term consequences of their actions, which may

not be immediately evident. This necessity for understanding extended temporal

dependencies can hinder the efficiency and effectiveness of policy learning.

Given these challenges, traditional Dynamic Programming (DP) approaches be-

come impractical for several reasons. DP requires exhaustive computation over the

entire state-action space, which is computationally infeasible for large or continuous

state spaces typical in real-world applications. Additionally, DP necessitates precise

knowledge of transition probabilities and reward functions. In environments with de-

layed and sparse rewards, accurately modeling these elements can be overly complex

or even unattainable, limiting the applicability of DP. Furthermore, the iterative na-

ture of DP makes it slow to adapt to changes in the environment or to incorporate

new experiences. In dynamic or stochastic settings where timely policy updates are

crucial, DP’s rigidity hampers its effectiveness. Given these limitations, alternative
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approaches that can efficiently handle large state spaces, operate with partial knowl-

edge of the environment, and address the complexities introduced by delayed rewards

are essential. Reinforcement Learning (RL) techniques, particularly those designed

to manage temporal credit assignment and sparse reward structures, offer promising

solutions to these challenges.

Several approaches have been developed to address the challenges posed by delayed

reward MDP problems. One such approach is a sequence modeling technique pre-

sented in [23], which focuses on temporal credit assignment in episodic reinforcement

learning. This approach employs deep neural networks to decompose the episodic re-

turn back to each time-step in the trajectory, allowing the agent to learn the optimal

policy more effectively and reducing the overall learning time. In [31], the temporal

credit assignment problem in reinforcement learning is solved by utilizing InferNet,

which is a Neural Network-based algorithm that is designed to learn how to infer im-

mediate rewards from delayed and noisy feedback to the earlier states. This approach

is also able to achieve faster and higher-scoring solutions to MDP problems.

Authors in [2] introduce RUDDER (Reward Redistribution for Delayed Rewards),

a sophisticated reinforcement learning (RL) solution designed to address the inher-

ent challenges of delayed rewards in Markov Decision Processes (MDPs). RUDDER

constructs return-equivalent Sequence-Markov Decision Processes (SDPs) through a

mechanism called reward redistribution. The primary objective is to transform the

original MDP into an SDP where the expected future rewards are zero, thereby sim-

plifying the estimation of Q-values to merely computing the mean of immediate re-

wards. This transformation is particularly advantageous in scenarios requiring swift
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decision-making, such as responding promptly to application requests. Unlike tra-

ditional methods that merely decompose delayed rewards across time steps without

ensuring zero expected future rewards, RUDDER redistributes rewards from the end

of a sequence back through the entire state-action sequence. This approach not only

aims to nullify future rewards but also significantly accelerates the learning of optimal

policies, even if the reward redistribution is not perfectly optimal.

Central to the RUDDER’s methodology is the use of a Long Short-Term Memory

(LSTM) network as the return decomposition function. The LSTM predicts the en-

tire sequence return based on the state-action sequence, enabling the redistribution

of rewards in a manner that maintains return equivalence between the original SDP

(ρ′) and the transformed SDP (ρ). This process involves generating LSTM training

samples, securing episodes with previously unseen delayed rewards, and training the

LSTM to accurately predict the sequence-wide return at each time step. The reward

redistribution is achieved by calculating the differences between consecutive return

predictions, effectively spreading the final reward across all relevant state-action pairs

in the sequence. Additionally, RUDDER employs a second-order Markov reward dis-

tribution, where the redistributed reward at each time step depends not only on

the current state-action pair but also on the preceding pair. This second-order de-

pendency ensures a more accurate attribution of rewards, mitigating the “explaining

away” problem where early actions might otherwise have their contributions overshad-

owed by later ones. By defining a difference function ∆(st−1, at−1, st, at), RUDDER

ensures that each state-action pair’s contribution is precisely captured, maintaining

the return equivalence and preserving the optimal policies of the original MDP.
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RUDDER operates through a structured three-phase approach to efficiently im-

plement reward redistribution and return decomposition. The first phase, Safe Ex-

ploration, generates high-quality training samples by avoiding episodes that result in

low Q-values, which could indicate the agent is trapped in suboptimal states. The

second phase involves populating a Lessons Replay Buffer with episodes that ex-

hibit unexpected delayed rewards, identified by significant prediction errors from the

LSTM. These episodes are prioritized during training to enhance the LSTM’s pre-

dictive capabilities. In the final phase, LSTM Training and Return Decomposition,

the LSTM is trained to predict the expected return for entire sequences at each time

step. The differences between consecutive return predictions are then used to as-

sign redistributed rewards to each state-action pair, ensuring accurate attribution of

rewards and addressing potential biases. By incorporating a second-order Markov re-

ward distribution into the reward redistribution process, RUDDER not only preserves

the optimal policies of the original MDP but also enhances the robustness and effi-

ciency of the learning process. Empirical studies have demonstrated that RUDDER

significantly accelerates the learning of optimal policies, particularly in environments

with sparse and delayed rewards, making it a powerful tool for complex, long-horizon

decision-making tasks.

In our study, we have implemented a variation to the approach described in [2].

The algorithm proposed in [2] simultaneously updates the Q-values of (state,action)

pairs while learning an LSTM network, and at the start of each episode, it selects the

optimal policy based on the updated Q-values. In our research, we have redistributed

the reward for episodes with the same action upon request arrival separately by

training distinct LSTM networks. We have outlined the process of redistributing the
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reward for episodes involving a wait action upon request arrival in Algorithm 1. This

algorithm involves iterating through episodes where a wait decision was made upon

request arrival and storing the transitions for each episode in the replay buffer. We

then train the LSTM network for reward redistribution at a certain frequency using

the stored transitions from the replay buffer.

Algorithm 1 Reward redistribution for waiting at request arrival

1: for Episode = 1 to Number of episodes do
2: s0 ← getting the system state with request arrival
3: state-list ← [s0], action-list ← [], reward-list ← []
4: episodeIter = 0
5: Response-Flag = False
6: DT-Update = False
7: for episodeIter = 1 to Dmax do
8: if episodeIter = 1 then
9: a = wait

10: else if DT-Update = True and Response-Flag = False then
11: a = send

12: Response-Flag = True
13: else
14: a = wait

15: end if
16: snext, rnext ← Observe next state and reward
17: if u in snext = 0 and DT-Update = False then
18: DT-Update = True
19: end if
20: Add snext to state-list
21: Add a to action-list
22: Add rnext to reward-list
23: end for
24: Add [state-list, action-list, reward-list] to the Reply Buffer
25: if Episode % TrainingFrequency = 0 then
26: Train the LSTM network
27: end if
28: end for

The aforementioned procedure is replicated for episodes with respond immediately

action upon a request arrival. As a result, there are two distinct LSTM networks that
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can redistribute rewards for episodes with waiting and sending back upon request

arrival.

Now for finding optimal policies with redistributed rewards, a viable option is Q-

learning which uses iterative updates to estimate the action value function and build

policies based on a Q-table as follows [34].

Q(s, a)← Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a)) (3.4.1)

However, Q-learning is not suitable for problems with large state and action spaces

due to the requirement of generating a Q-value table for every feasible state-action

combination. Deep Q-learning [28] is presented as a potential solution to this problem,

as it uses a neural network to approximate the Q-function, allowing for generalization

across similar states and actions. However, overestimation can still be a problem in

Deep Q-learning. Double Deep Q-learning [42] by utilizing two separate networks

to select the best action and estimating its value is an approach for solving overes-

timation problem of Deep Q-learning. Dueling Double Deep Q-learning (DDDQN)

introduced in [43] is more effective than Double DQN. DDDQN uses two estima-

tors, one for calculating the state value function, and the other for calculating the

state-dependent action advantage function. The outputs of these estimators are then

combined to determine the Q-values. We adopt DDDQN in this work.

Now after constructing LSTM networks according to algorithm 1 and redistribut-

ing rewards for different episodes, we train the DDDQN agent using Algorithm 2.

Once the DDDQN agent is fully trained, we can determine the optimal policy for

each state by iterating through all possible states that may have request arrivals and

providing them as input to the DDDQN agent. This results in an response scheduler
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that can make decisions based on the optimal policies.

3.5 Simulation Result and Analysis

In this section, we demonstrate performance of algorithms 1 and 2. Default parameter

values are listed in Table 3.1. Every episode length in algorithms 1 and 2 is Dmax,

which starts from request arrival and lasts for Dmax seconds. That is, each episode

is for a single request arrival. We assume that application requests arrive at the

beginning of each update interval, a scenario representing the highest uncertainty

regarding the update completion time and thus requiring non-trivial decisions for

determining the DT’s response time.

We conduct 100 episodes using the proposed DT response scheduler, calculating

the mean AoI at the application for each episode. We also perform this analysis

assuming that the decision is always to respond immediately upon the request arrival

(“Respond immediately”), and compare the results.

Figures. 3.1-3.3 show the results with the channel-related parameters on the top of

each figure. In each of the figures, the top sub-figure shows the average AoI of using

the proposed response scheduler and the “Respond immediately” for each episode

(i.e., for each application request), and the bottom sub-figure shows the difference

of the average AoI using the two response decision methods. When the difference is

positive, the proposed response scheduler achieves better (i.e., lower) average AoI at

the application than the “Respond immediately” method.

All the figures show that the “Respond immediately” solution results in much

higher average AoI at the application. In each of the three figures, there are some

episodes (i.e., application requests) that have zero difference in Average AoI, in which
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case responding immediately is the optimal policy; in each of figures. 3.1 and 3.3,

there are 2 out of 100 episodes that have negative difference in Average AoI, in which

case the proposed response scheduler did not reach the optimum decision; and for all

other episodes, the proposed response scheduler results in lower average AoI than the

“Respond immediately” method.

Furthermore, in figure 3.1, the scheduler tends to make more “send” decisions

(i.e., responding immediately upon a request arrival) than “wait” decisions, since the

poor transmission channel condition results in a higher probability of long waiting

time until the next PS-DT update completion. In contrast, in figure 3.3, the scheduler

tends to make more “wait” decisions (i.e., responding until the next PS-DT update

completion) than “send” decisions because of the better channel conditions. As a

result, there are more “zero”s in figure 3.1(b) than in figure 3.3(b).

In addition, when “Respond immediately” is not the optimum decision, the pro-

posed response decision method helps improve the average AoI at the application by

at most 60 milliseconds (or W ), and this maximum improvement (or average AoI

reduction) is independent of the channel condition. The exact average AoI reduction

varies among the episodes, depending on the system state at the request arrival time.

3.6 Summary

In this chapter, we studied the optimal response time for a DT to provide real-time

information from a PS to applications, considering the uncertainties in network con-

ditions and the cost associated with delaying the response. The problem was modeled

as a Markov Decision Process (MDP) with delayed feedback and solved through a
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Table 3.1: Simulation Parameters

Parameter Value

Bmax 100 K bits

Cmax 10 M CPU cycles

Dmax 50 ms

fc 1G cycles/s

W 60 ms

N 2

R2 10 M bits/s

R1 2 M bits/s

τ 1 ms

γ 0.99

α 3× 10−4

combination of LSTM networks and Dueling Double Deep Q-Network (D3QN). Sim-

ulation results highlighted the differences in average AoI between our proposed AoI

scheduler algorithm and the strategy of sending DT data immediately upon request,

varying under different transmission channel conditions. Our findings show that our

proposed approach achieves near-optimal DT response time, which leads to improved

information accuracy at the applications under dynamic and uncertain communica-

tion scenarios.
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Figure 3.1: AoI performance: poor channel condition
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Algorithm 2 Finding optimal policies with DDDQN

1: for Episode = 1 to Number of episodes do
2: s0 ← getting the state with request arrival
3: LSTM1← Load LSTM network for wait decision
4: LSTM2← Load LSTM network for send decision
5: state-list ← [s0], action-list ← [], reward-list ← []
6: episodeIter = 0
7: Response-Flag = False
8: DT-Update = False
9: for episodeIter = 1 to Dmax do

10: if episodeIter = 1 then
11: a← Choose action with DDDQN agent
12: else if DT-Update = True, action-list[0] = wait and Response-Flag = False then
13: a = send

14: Response-Flag = True
15: else
16: a = wait

17: end if
18: snext, rnext ← Observe next state and reward
19: if u in snext = 0 and DT-Update = False then
20: DT-Update = True
21: end if
22: Add snext to state-list
23: Add a to action-list
24: Add rnext to reward-list
25: end for
26: if action-list[0] = wait then
27: reward-list ← Redistribute reward with LSTM1
28: else
29: reward-list ← Redistribute reward with LSTM2
30: end if
31: for iter = 1 to Dmax do
32: Store iter-th transition of Episode in the DDDQN Buffer
33: Train the DDDQN agent
34: end for
35: end for
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Chapter 4

Power Efficient Networking

Support for Digital Twins with

Age of Information Targets

This chapter investigates the joint allocation of communication and computation

resources in scenarios where multiple PSs maintain their DTs at a shared edge server

(ES) connected through a set of communication channels. The primary objective

is to minimize the transmission power of the PSs while ensuring that the AoI at

their corresponding DTs remains below a predefined target. This chapter integrates

optimization strategies that balance efficient resource use with timely and reliable

data delivery to maintain system performance.
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4.1 Introduction

The rapid growth of Digital Twin (DT) technology is transforming various industries

such as manufacturing, healthcare, transportation, and smart cities, where real-time

monitoring and control of physical systems (PSs) are critical to ensuring efficiency,

reliability, and safety. A DT is a digital replica of a physical asset, process, or system

and is continuously updated to reflect the current status of its PS. By creating a

virtual mirror of the physical entity, DTs enable organizations to simulate scenarios,

predict system behavior, and make informed decisions. These capabilities are partic-

ularly useful for tasks such as predictive maintenance [41], operational optimization,

and disaster recovery [48], as DTs provide insights that go far beyond traditional

methods of monitoring and control.

A major advantage of DT technology is the ability to offer actionable insights

through continuous synchronization between a DT and its PS [1], [35]. This real-

time connection is needed to ensure that a DT is always an accurate reflection of

its physical counterpart, thereby improving decision-making and allowing operators

to address potential issues before they become critical. However, synchronization

between a PS and its DT requires networking support. The PS-DT synchronization

requires state-related data at the PS to be periodically delivered to the server that

hosts the DT and then processed at the server to extract the status features of the

PS. Given the limited amount of network resources, information reflected at the DT

is always delayed. This delay includes both data transmission delay over the network

and data processing delay at the server. The age of information (AoI) at the DT is

the time that has elapsed since the latest data used to produce the current status

information at the DT was originally generated at the PS. Maintaining low AoI at
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DTs is important for applications that rely on the DTs for time-critical tasks, such

as automation control and traffic navigation.

DTs are more suitable to be hosted at the network edge in order to reduce the

communication delay in the PS-DT synchronization. However, the limited amount

of computational resources at the network edge makes it challenging to meet the

growing demands for digital twins. In addition, hosting more DTs at the network edge

increases the communication load at the edge, requiring more efficient communication

resource allocations and joint communication and computation resource allocations

among the PS-DT pairs.

This chapter studies a scenario where multiple PSs maintain their DTs at a shared

edge server (ES) through a set of radio communication channels. The channels expe-

rience random fading, which causes uncertainty in data transmission time in PS-DT

synchronization. The work studies how to optimize the transmission power of the

PSs in order to maintain the AoI at the DTs to be below a certain limit while min-

imizing the average power consumption of the PSs. The joint communication and

computation management problem is formulated as a constrained Markov decision

process. It is then decomposed into a two-stage decision-making problem, stage one

for communication resource allocations and stage two for computation resource alloca-

tions. While the stage-two decisions are solved by using deterministic algorithms, the

stage-one decisions are reformulated as a multi-agent reinforcement learning problem

and solved using Twin Delayed Deep Deterministic Policy Gradient (TD3). Using

a deterministic algorithm to make the stage-two decisions not only helps reduce the

complexity in making the stage-one decisions, but also improves the efficiency for the

RL algorithms designed for stage-one resource allocations to learn the delayed reward
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and minimize the AoI violation later on. The multi-agent RL framework for making

the transmission power decisions of individual PSs in stage one enhances the solution

scalability. The integration of the TD3 algorithm within a centralized training with

decentralized execution (CTDE) framework enables each physical system (PS) to effi-

ciently learn optimal power allocation strategies, enhances coordination and learning

efficiency by leveraging global information during training, and supports independent

and scalable decision-making during execution. Simulation results show that the pro-

posed solution outperforms existing solutions in terms of both AoI at the DT and

average power consumption of the PSs.

The remainder of this chapter is structured as follows: Section 4.2 describes the

system model and formulates the resource allocation problem, which is reformulated

into an MDP in Section 4.3. Section 4.4 proposes the algorithms for making stage-

two decisions and Section 4.5 presents the algorithms for making stage-one decisions.

In Section 4.6, we present simulation results to demonstrate the effectiveness of the

proposed solution.

4.2 System Description

We consider a system comprising multiple PSs and an edge server co-located with

a cellular base station (BS). Denote N = {1, 2, . . . , N} as the set of the PSs with

N the total number of PSs. Each PS maintains a DT at the ES. We use n ∈ N to

index the nth PS, the nth DT, or the n-th PS-DT pair, when there is no ambiguity.

In order to keep the information at the DTs up-to-date, each PS-DT pair should

perform periodic synchronization. Let Wn be the synchronization period of the nth

PS-DT pair. During each update, the PS sends its current state data through the
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cellular network to the ES. We assume that the transmission delay between the BS

and the ES can be neglected. Let j denote the jth update period of a given PS-DT

pair, where j = 1, 2, . . . . The start time of the jth update for the nth PS-DT pair

is given as (j − 1)Wn + ts,n, where ts,n is a time offset that allows us to take into

consideration the fact that different PSs may start transmitting their synchronization

data at a different time. The state data of the PS is processed at the ES so that the

updated feature information of the PS can be extracted. For each synchronization

update of the nth PS-DT pair, let Bmax,n and Cmax,n, respectively, be the amount

of data to be transmitted from the PS to the DT and amount of computation load

required to process the data at the ES.

4.2.1 Communication model

The orthogonal frequency-division multiple access (OFDMA) is adopted for the PSs

to communicate with the BS for their data transmissions. Denote K = {1, 2, · · · , K}

the set of the channels with K the total number of channels, each of which has

a bandwidth of B Hz. The system time is divided into equal size time slots of

length τ so that the channel condition can be assumed to be constant within each

time slot. We consider finite state Markov channels [30] with H states and use

hn,k,t to represent the link gain of PS n at frequency channel k at time t. That is,

hh,k,t ∈ H = {g1, g2, · · · , gH}. That is, at any time slot t, if the channel gain hn,k,t = g,

then the probability that hn,k,t+1 = g
′

is Pg,g′ with
∑

g′∈H Pg,g′ = 1, ∀g ∈ H.

Let pn,k,t be the transmission power of PS n in channel k at time t. The total
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amount of data that can be transmitted by PS n at time slot t is given by:

rn,t = τB
∑
k

log

(
1 +

pn,k,thn,k,t∑
m 6=n pm,k,thm,k,t +N0B

)
, (4.2.1)

where N0 is the power spectrum density of additive white Gaussian noise. The total

transmission power of PS n at time t is

pn,t =
∑K

k=1 pn,k,t. (4.2.2)

4.2.2 Computation model

Let fC denote the computation capacity of the ES, measured as the total number of

available CPU cycles per time slot. If fn,t is the number of CPU cycles allocated to

the nth PS-DT update at time slot t. The following condition should hold

∑N
n=1 fn,t ≤ fC . (4.2.3)

4.2.3 Problem formulation

Our objective is to minimize the long-term average power of the PSs, subject to the

total amount of computation resource at the ES and that the AoI at DT n does not
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exceed a maximum value Dmax,n. The optimization problem is given as

P0: min
p,f

lim
T→∞

1

T

T∑
t=1

1

N

N∑
n=1

∑
k

pn,k,t (4.2.4)

s.t.
∑

n∈N fn,t ≤ fC , t = 1, 2, . . . (4.2.5)

on,t ≤ Dmax,n, ∀n ∈ N and t = 1, 2, . . . . (4.2.6)

where p = [pn,k,t,∀n, k, t] and f = [fn,t,∀n, t]. The problem cannot be solved directly

since it requires future channel condition information, which is unknown when the

channels experience random fading. In the next section, we reformulate the problem

into a Markov decision process so that sequential decisions on transmission power and

computation resource allocations can be made based on the current system state.

4.3 MDP Formulation

In this section, we first define the state space, action space, and state transitions.

We then analyze the complexity of the MDP and reformulate it to achieve reduced

complexity.

4.3.1 State space

Define St as the system state at the beginning of time slot t. We have:

St = [sn,t,∀n ∈ N ] (4.3.1)
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where sn,t is the state of PS-DT n at time slot t given as

sn,t = [hn,t, on,t, bn,t, cn,t] (4.3.2)

and hn,t = [hn,k,t,∀k ∈ K] represents the link gains of n-th PS, on,t is the AoI at

the n-th DT, bn,t is the remaining number of bits to be transmitted from the PS to

the DT in the current update, and cn,t is the remaining number of CPU cycles to be

processed for the current update.

4.3.2 Action space

At each time slot t, the action at consists of actions for transmission power of individ-

ual PSs at different channels and computation resource allocations among the DTs.

That is,

at = [apt , a
f
t ] = [apn,t, a

f
n,t,∀n ∈ N ] (4.3.3)

where apt = [pn,k,t, n ∈ N , k ∈ K] and aft = [fn,t, n ∈ N ], respectively, are the

actions of transmission power and computation resource at time slot t, and apn,t =

[pn,k,t, k ∈ K] and afn,t = [fn,t], respectively, are the actions of transmission power and

computation resource for PS-DT pair n at time slot t.

4.3.3 State transitions

To find the state transitions from time slot t to time slot t+ 1, we find the transitions

of each element in the state.

For the channel gains, the transition probabilities between different states follow
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the FSMC model and are independent of the other elements in the state space.

The transitions of the remaining number of bits to be transmitted from PS n to

DT n are given as

bn,t+1 =


Bmax,n, if t = jWn + ts,n − 1,

(bn,t − rn,t(apt ))+, otherwise

(4.3.4)

where j is any positive integer and rn,t(a
p
t ) is the total amount of data that PS n

can transmit when the transmission power of all the PSs is given by apt and can be

calculated using (4.2.1).

The transitions of the remaining number of bits to be transmitted from PS n to

DT n are given as

cn,t+1 =


Cmax,n, if bn,t > 0,

(cn,t − fn,t)+, otherwise

(4.3.5)

The AoI at the DT keeps increasing with a slope of 1, i.e., increasing by one time

slot in each time slot, except upon the completion of a new update when it drops to

the amount of elapsed time since the start transmission time of the current update.

on,t+1 =


(t+ 1− ts,n) mod Wn, if bn,t = 0, 0 < cn,t ≤ fn,t

on,t + 1, otherwise.

(4.3.6)

The complexity for solving the MDP problem increases exponentially as the number of

PS-DT pairs, the number of channels and channel states, and other system parameters

increase due to the exponential increase of the state and action spaces. Next, we seek
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solution methods with lower complexity.

4.3.4 Reformulation for reduced complexity

Based on (4.3.1) and (4.3.2), the total number of states in the state space is [HKOmax(Bmax+

1)(Cmax + 1)]N , where we assume on,t ≤ Omax, bn,t ≤ Bmax, and cn,t ≤ Cmax for all

n ∈ N and t > 0. The size of the state space can be prohibitively large for solving

the MDP using most practical algorithms.

However, we notice that the changes to bn,t and cn,t represent the two stages of

the synchronization update for the n-th PS-DT pair. In stage one, bn,t decreases

from Bmax,n to 0 while cn,t keeps constant at Cmax,n; and in stage two, cn,t decreases

from Cmax,n to 0 while bn,t is fixed at 0. Therefore, we define a new state element,

remaining update load, to combine the two values as

un,t = bn,t + cn,t (4.3.7)

with un,t ∈ [0, Umax] and Umax = Bmax,n + Cmax,n. When Cmax,n ≤ un,t < Umax,n, the

update for the n-th PS-DT is in stage one; and when 0 < un,t < Cmax,n the update

is in stage two. The state in (4.3.2) is redefined as

sn,t = [hn,t, on,t, un,t] (4.3.8)

Combining the state elements bn,t and cn,t into un,t helps reduce the state space

of the MDP. The size of the state space becomes [HKOmax(Bmax + Cmax + 1)]N .
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Accordingly, the transitions of the remaining update load are given as

un,t+1 =



Umax,n, if t = jWn + ts,n − 1,

(un,t − rn,t(apt ))+, if Cmax,n < un,t ≤ Umax,n,

and t 6= jWn + ts,n − 1,

(un,t − fn,t)+, if 0 < un,t ≤ Cmax,n,

and t 6= jWn + ts,n − 1,

0, otherwise

(4.3.9)

The four different cases in (4.3.9) represent the remaining update load at the

initial time, time in stage one, time in stage 2, and time when the current update is

completed.

From (4.3.3) it is seen that for each PS-DT pair, the action at time t includes two

components, the transmission power of the PS at all channels and the computation

resource at the ES. When we consider the power and computation allocations as two

consecutive stages, we only need to make the decisions for either transmission power

or computation, but not both. The two-stage decision making for the nth PS-DT

pair is shown in Algorithm 3. In stage one, i.e., Cmax,n < un,t ≤ Umax,n, the PS is

transmitting state data to the ES, the decisions should be made for the transmission

power only, and the computation resource required in this stage is zero. In stage

two, i.e., 0 < un,t ≤ Cmax,n, the required transmission power for the PS is zero since

the data transmission is complete, and the amount of computation resource is to be

determined. When the ES has finished processing the data for the PS-DT update, i.e.,

un,t = 0, both the PS transmission power and the amount of allocated computation

resource are zero.
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Algorithm 3 Two-Stage decisions for nth PS-DT pair at time t

1: if Cmax,n < un,t ≤ Umax,n then
2: Determine pn,k,t,∀k ∈ K
3: fn,t = 0
4: else if 0 < un,t ≤ Cmax,n then
5: pn,k,t = 0, ∀k ∈ K
6: Determine fn,t
7: else
8: pn,k,t = 0, ∀k ∈ K
9: fn,t = 0

10: end if
11: apn,t ← [pn,k,t,∀k ∈ K] and afn,t = [fn,t]

Next, we design the two-stage resource allocation decisions based on the different

natures of the communication and computation resource. For making the transmis-

sion power decisions in stage one, the achievable data transmission rates for individual

PSs are not only determined by the transmission power of all the PSs, but also the

time-varying channel gains and the mutual interference conditions. On the other

hand, for stage two, the total amount of computation resource is fixed and the com-

putation of all the DTs is performed at the ES. Therefore, stage-two decisions are

well-suited for implementation through a centralized algorithm at the ES, whereas

stage-one decisions are better aligned with a distributed or hybrid algorithm involving

both the PSs and the ES.

Based on this, we first design deterministic algorithms to make centralized deci-

sions at the ES for allocating computation resources in stage two. Subsequently, we

develop a reinforcement learning (RL) method to make power allocation decisions for

stage one. The centralized decisions for stage two ensure that the hard constraint

in (4.2.5) is always satisfied, whereas the RL-based solution for stage one does not

consistently guarantee that the AoI remains below the maximum threshold.
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4.4 Stage-Two Decisions

We propose three algorithms, Algorithms 4, 5, and 6, to determine the computation

resource allocation. In each algorithm, the ES iteratively selects the next PS-DT pair

based on a specific criterion and allocates computation resources to it. The allocation

is determined as either the amount required to complete the computation in the

current time slot or the total remaining available computation resources, whichever

is smaller. This process is repeated until either all remaining computation loads are

processed within the current time slot or the available computation resources are fully

allocated. In all three algorithms, E = {n ∈ N , 0 < un,t < Cmax,n}.

In Algorithm 4, the criterion for selecting the next DT is based on the AoI devia-

tion, which is the difference between the maximum AoI (Dmax,m) and the current AoI

(om,t). The DT with the minimum AoI deviation is selected to have a high priority

to use the remaining amount of CPU resources.

In Algorithm 5, in addition to considering the AoI deviation, um,t/∆f , which is the

amount of time to finish the remaining computation based on the currently available

ES computation resource for the mth PS-DT update, is also considered. Define

Dmax,m − om,t − um,t

∆f
as the residual margin of the AoI for DT m, which reflects the

remaining “buffer” before the AoI exceeds the allowable maximum when considering

in the remaining processing delay.

In Algorithm 6, a higher priority is given to the DT that is more urgent to finish

the current update. An urgency factor is defined as um,t

Dmax,m−om,t
, if Dmax,m 6= om,t.

The urgency factor reflects the relationship between the remaining processing load

and the time margin available before the AoI exceeds the limit. The urgency factor is

defined as um,t if Dmax,m = om,t. Computation resources are first allocated to the DTs
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whose AoI already exceeds their maximum tolerable values, i.e., DTs in set D1. After

all these DTs have received the computation resources to complete their computation

within the current time slot, if there is still remaining computation resource, the DTs

with the current AoI equal to their Dmax,m are considered, i.e., DTs in set D2, followed

by the the DTs with the current AoI small than their Dmax,m, i.e., DTs in set D3.

Within each set, a higher priority is given to the DTs with a larger urgency factor.

Algorithm 4 Stage-two decisions based on AoI deviation

1: Input: Execution buffer E , total CPU capacity fC
2: Output: Allocated CPU resources [fn,t,∀n ∈ N ]
3: Initialize fn,t = 0 ∀n ∈ N , ∆f = fC
4: while ∆f > 0 and E 6= ∅ do
5: n = arg minm∈E(Dmax,m − om,t)
6: fn,t = min (un,t,∆f)
7: ∆f ← ∆f − fn,t
8: E ← E \ {n}
9: end while

10: Return [fn,t, ∀n ∈ N ]

Algorithm 5 Stage-two decisions based on AoI residual margin

1: Input: Execution buffer E , total CPU capacity fC
2: Output: Allocated CPU resources [fn,t,∀n ∈ N ]
3: Initialize fn,t = 0 ∀n ∈ N , ∆f = fC
4: while ∆f > 0 and E 6= ∅ do

5: n = arg minm∈E

(
Dmax,m − om,t − um,t

∆f

)
6: fn,t = min (un,t,∆f)
7: ∆f ← ∆f − fn,t
8: E ← E \ {n}
9: end while

10: Return [fn,t, ∀n ∈ N ]
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Algorithm 6 Stage-two decisions based on urgency factor

1: Input: Execution buffer E , total CPU capacity fC
2: Output: Allocated CPU resources [fn,t,∀n ∈ N ]
3: Initialize fn,t = 0 ∀n ∈ N
4: while ∆f > 0 and E 6= ∅ do
5: D1 = {m ∈ E | om,t > Dmax,m}
6: D2 = {m ∈ E | om,t = Dmax,m}
7: D3 = {m ∈ E | om,t < Dmax,m}
8: if D1 6= ∅ then

9: n = arg maxm∈S1

(
um,t

Dmax,m − om,t

)
10: else if D2 6= ∅ then
11: n = arg maxm∈S2 (um,t)
12: else if D3 6= ∅ then

13: n = arg maxm∈S3

(
um,t

Dmax,m − om,t

)
14: end if
15: fn,t = min (un,t,∆f)
16: ∆f ← ∆f − fn,t
17: E ← E \ {n}
18: end while
19: Return [fn,t,∀n ∈ N ]

4.5 Stage-One Decisions

At any given time, joint power allocation decisions should be made for all PSs in stage

one, and the sequential decisions along the time should also take into consideration the

AoI targets and the average power consumption of the PSs. Therefore, the solution

should be scalable as the number of PS-DT pairs, the number of channels and channel

states increase, and the algorithms should be of low complexity. For this reason, we

adopt a multi-agent reinforcement learning approach. There is one local agent at

each PS and one central agent at the ES. The local agents at individual PSs make

decisions on the their own transmission power, and the central agent interacts with

the local agents to collect the interference and competition conditions for the shared
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resources.

4.5.1 Choices of RL algorithms

Selecting RL algorithms for the stage-one decisions involves several key considerations.

First, since the PS transmission power is a continuous variable, the chosen algorithms

must be capable of handling continuous action spaces. Second, the sequential deci-

sions over time, including power allocation in stage one and computation resource

allocation in stage two, jointly influence the PS-DT update completion time and the

resulting AoI dynamics. Consequently, the agent cannot foresee early on whether

the AoI at the DT will eventually exceed Dmax,n in later time slots. Therefore, the

algorithms must effectively manage the challenge of delayed rewards to ensure reliable

performance.

We employed the Twin Delayed Deep Deterministic Policy Gradient (TD3) algo-

rithm [11], which is well-suited for handling continuous action spaces and addresses

the limitations of the traditional Deep Deterministic Policy Gradient (DDPG) algo-

rithm [22]. DDPG is prone to overestimation bias and unstable training dynamics

when dealing with continuous action spaces. Unlike DDPG, which utilizes a single

critic network to estimate the action-value function, TD3 employs twin critic net-

works. By taking the minimum of the two Q-value estimates, TD3 effectively reduces

overestimation bias, leading to more accurate value function approximations and im-

proved training stability.

Additionally, TD3 incorporates delayed policy updates and target policy smooth-

ing regularization, both of which enhance training stability and reduce the exploita-

tion of noisy value estimates. Delayed policy updates allow the algorithm to update

53

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – A. Aghaei; McMaster University – Electrical and Computer Engineering

the policy network less frequently, giving the critic networks adequate time to con-

verge. This ensures more accurate evaluations of long-term expected returns, even

in the absence of immediate feedback. By leveraging past experiences—where the

outcomes of actions are realized after a delay—TD3 enhances the agent’s decision-

making ability, enabling it to optimize performance over time more effectively. These

features make TD3 particularly well-suited for environments with complex, delayed

reward structures.

4.5.2 CTDE framework

To implement the TD3 algorithm in our multi-agent setting, we adopt a Centralized

Training with Decentralized Execution (CTDE) framework [24], which allows agents

located at individual PSs to leverage global information during training while main-

taining independence during execution. This approach enhances coordination and

learning efficiency among the local agents. The training procedure for our proposed

method is given in Algorithms 7 and 8.

As illustrated in Figure 4.1, there is a local agent at each PS that includes one

actor network, denoted as µθn, and one target actor network, µθ
′

n , where n represents

the nth PS and θ and θ
′
are the parameters of the corresponding networks. There are

two critic networks at the ES, Qφ1
1 and Qφ2

2 and two target critic networks Q
φ
′
1

1 and

Q
φ
′
2

2 , where φ1, φ2, φ
′
1 and φ

′
2 represent the parameters of the corresponding networks.

These networks work together to refine decision-making. The actor networks at each

PS map observations into action decisions, while the critic networks at the ES evaluate

these actions by producing value estimates. To enhance training stability, each actor

and critic network is paired with its corresponding target network. These target
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networks are delayed copies that offer more consistent reference values, which ensures

smoother and more reliable updates to the parameters. For updating the policy of

the local agents, the parameters of the actor and target actor networks at all local

agents are sent to the central agent for updates. Leveraging the CTDE framework,

the centralized critics maintained at the ES are shared across all the local agents,

allowing for the incorporation of global information during training.

As outlined in Algorithm 7, each PS ps initializes its state sps,1 and the actor

network parameter θps. At each time slot, the action is determined based on the

current stage of the PS-DT update. If the update is in the transmission stage (i.e.,

stage one), the PS determines its transmission power based on its current state and

learned policy plus exploration noise ξ (line 5). If the update is in the computation

stage (i.e., stage two), the computation resource is allocated by using the algorithms

designed in Section 4.4 (line 7). These actions are executed in the environment, and

the transitions are stored in the replay buffer B (lines 11-13). After each episode of

length Lmax, the states of all PSs are reinitialized (lines 14-17), where Lmax is chosen

to be longer than the PS-DT update period to ensure sufficient data accumulation

during policy training, enabling agents to learn from a diverse range of observations.

Each PS’s policy is trained periodically with a training period Itrain. At the end

of each training period, the actor networks for each PS and the centralized critic

networks are updated using mini-batches sampled from the replay buffer (lines 18-20)

and the details of these updates are given in Algorithm 8 and explained below.

In Algorithm 8, states and actions from all the local agents are sampled (line 3) for

Q-value calculations, enabling the centralized critics to have a comprehensive view

of the system. Then, for each PS i in the set of all PSs N , the algorithm checks
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Table 4.1: Notation for TD3

Variable Definition

Tmax Maximum simulation steps

Lmax Episode length

Itrain Training frequency

ξ Exploration noise distribution

Cep Episode iteration

µθn Actor network for nth PS-DT

µ
θ′n
n Target Actor Network for nth PS-DT

B Replay buffer

Qφ11 , Qφ22 Central critic networks

Qφ
′

1 , Qφ
′

2 Target central critic networks

ω Actor Update frequency

γ Discount factor

β Batch size

δ Target network update rate

whether the remaining computation load ui,tj+1 is within the maximum computa-

tion capacity Cmax,i (lines 5). If it is, the algorithm allocates computation resources

using one of the deterministic algorithms (Algorithms 4, 5, or 6) to ensure efficient

processing. If the remaining computation load exceeds Cmax,i, the algorithm deter-

mines the transmission power pi,k,tj+1 for each channel k by querying the target actor

network µ
θ′i
i (si,tj+1) and adding exploration noise ξ to encourage exploration of new

power allocations (line 8). These target actions for transmission power and computa-

tion resources are then aggregated into comprehensive action vectors aptj+1 and aftj+1,

respectively, forming the complete action vector atj+1 (line 13). When calculating

Q-values for updating the actor and critic networks (lines 14 and 18), only the first

component of the action space, which is the transmission power allocation, is utilized.

The second component, representing the allocated computation resource fn,t from the

ES, is assigned deterministically by the ES and is not learned by the policy (line 6).

This deterministic allocation influences the environment by determining the next
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Algorithm 7 Training Procedure of Problem with TD3-CTDE

Require: Tmax, Lmax, Itrain, Emax, ξ
Ensure: Trained policies for all PSs
1: Initialize sps,1 and θps ∀ps ∈ N , Cep, B, φ1, φ2,
2: for t = 1 to Tmax do
3: for ps ∈ N do
4: if Cmax,ps < ups,t ≤ Umax,ps then

5: [pps,k,t, ∀k ∈ K]← µ
θps
ps (sps,t) + ξ

6: else
7: fps,t ← return of Algorithms 4, 5, or 6
8: end if
9: end for

10: apt = [pps,k,t,∀k ∈ K, ps ∈ N ], aft = [fps,t, ps ∈ N ],

11: Execute actions at = [apt ,a
f
t ]

12: Observe next state st+1 and reward rt
13: Store transition (sps,t,aps,t, sps,t+1, rps,t) in B, ∀ps ∈ N
14: if Cep = Lmax then
15: Reinitialize sps,t for all ps ∈ N
16: Cep ← 0
17: end if
18: if t mod Itrain = 0 then
19: Update θps, ∀ps ∈ N , and φ1, φ2 using algorithm 8
20: end if
21: Cep ← Cep + 1
22: end for

state but does not factor into the policy optimization. Consequently, the training

process focuses solely on optimizing transmission power allocations within an envi-

ronment where computation resources are predefined by the ES. To simplify the policy

and reduce decision complexity, actions related to computation states are set to zero

during Q-value calculations. This allows the agent to concentrate on scenarios that

require transmission power allocation. The algorithm employs two critic networks to

estimate Q-values, mitigating overestimation bias by considering the minimum of the

two critics (line 14). This dual-critic approach enhances the stability and reliability
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Figure 4.1: Structure of TD3-CTDE algorithm

of policy updates by reducing the likelihood of overly optimistic value estimates. Ad-

ditionally, the actor network is updated less frequently than the critic networks, as

specified by the actor update frequency parameter (ω) (line 19). At the end of each

training iteration, the trained actor networks are sent back to PSn for decentralized

execution. This iterative process continues until the maximum number of simula-

tion steps (Tmax) is reached. Through this process, each PS learns an optimal power

scheduling policy in a dynamic, multi-agent environment.
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4.5.3 Reward function

For the agent located at PS n, referred to as the nth agent, its reward function at

time slot t is defined as

rn,t = −
∑
k

pn,k,t − η
∑
∀i∈N

λi,t(oi,t −Dmax,i), (4.5.1)

where η is a coefficient that balances the weights between the transmission power and

the AoI violation, and λi,t is given as

λi,t =


1, if i = n

1− 0.9 · I{oi,t<Dmax,i}, otherwise

(4.5.2)

with I{x} as the indicator function which is 1 when the relationship x is true and 0

otherwise.

The reward function takes the following factors into consideration. First, the agent

tries to reduce its own total transmission power at all the channels. This is consistent

with the objective of minimizing the average transmission power of the PSs. Second,

when i = n, λi,t = 1, a smaller on,t helps the agent achieve a higher reward. In

addition, the agent also coordinates with the agents located at other PSs due to the

shared channel and computation resources. The level of coordination depends on the

AoI conditions of the other DTs. More specifically, for i 6= n, if oi,t < Dmax,i, then

λi,t = 0.1, in which case agent n can take more selfish actions; and when oi,t ≥ Dmax,i,

λi,t = 1, and agent n’s action is more influenced by the AoI at other DTs.
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Table 4.2: Default simulation Parameters

Parameter Value

N 6

B 5 MHz

K 1

Cmax,n 100 M cycles

Bmax,n 15 M bits

Dmax,n 120 ms

Pmax,n 1 W

fC 50

Tmax 106

Lmax 200

Itrain 5

β 256

δ 0.005

γ 0.99

η 0.1

ω 5

ξ 0.2

4.6 Simulation Results

In this section, we present computer simulation results to demonstrate the perfor-

mance of the proposed algorithms. For the FSMC channels, each channel has two

states, G and B. The link gains of the G and B states are −74 dB and −94 dB,

respectively, the transition probability from the G state to the B state is 0.25 and

that from the B state to the G state is 0.75. Default simulation parameters are listed

in Table ??, where the values for channel bandwidth, maximum transmission power,

and total amounts of transmitted data computation load for each PS-DT update were

based on the settings in [6], [5], [10].

We first compare the three algorithms proposed in Section 4.4 for making stage-

two decisions, when each works together with the TD3-CTDE algorithms proposed

in Section 4.5 for stage-one decisions. Figures 4.2 and 4.3 show that in general, both
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Figure 4.2: Comparison of stage-two algorithms: average AoI violation rate versus
ES computation capacity, Cmax = 100 M cycles

the AoI violation rate and the average PS power consumption decrease with the ES

computation capacity. The figures show that among the three computation resource

allocation algorithms, the one based on the residual margins achieves both the lowest

AoI violation rate and the lowest average PS power consumption. This is due to the

fact that the residual margins take into consideration both the current AoI deviation

and possible AoI increase, while each of the other algorithms considers only one of

these two aspects. Therefore, for generating the remaining results, we will adopt the

AoI Residual Margin algorithm to make the stage-two decisions.

It is also interesting to see from figure 4.3 that for all the three algorithms, the

average PS transmission power keeps almost constant for a wide range of fC values.
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Figure 4.3: Comparison of stage-two algorithms: average power consumption versus
ES computation capacity, Cmax = 100 M cycles

Since the power allocation is primarily determined in the first stage to ensure timely

data delivery, faster processing at the second stage does not necessarily translate

into lower transmission power. In other words, the two-stage decision-making ap-

proach inherently separates the communication and computation decisions, allowing

the system to maintain stable power usage even as fC varies. However, when the

computation resource is insufficient and will likely cause longer delay in stage two,

the stage-one decisions do allow higher transmission power in order to speed up the

data transmission and reduce the overall synchronization update time. Furthermore,

when the ES capacity is very high, the algorithm in stage-one effectively learns the

short computation delay, which helps the PS reduce their transmission power while
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still maintaining low AoI violation rate.

We further compare the three computation resource allocation algorithms chang-

ing the number of PSs and the results are shown in figures 4.4 and 4.5. The figures

show that the AoI residual margin algorithm clearly stands out as it keeps both the

average power usage and the AoI violation rate lower than the other two approaches.

In comparison, the algorithms based on the urgency factor and the AoI deviation

not only result in higher AoI violation rate but also much higher average power con-

sumption. This indicates that by considering both the current AoI conditions and

the potential future AoI changes, the AoI Residual Margin algorithm is the best in

terms of both power efficiency of the PSs and the AoI at the DT.

Figure 4.4: Comparison of stage-two algorithms: average AoI violation rate versus
number of PSs, Cmax = 100 M cycles
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Figure 4.5: Comparison of stage-two algorithms: average power consumption versus
number of PSs, Cmax = 100 M cycles

Next, we compare the proposed stage-one solution with three other power alloca-

tion solutions in the literature. The AoI Residual Margin algorithm is adopted for the

stage-two resource allocations. The first one is the Multi-Agent Dueling Double Deep

Q-Learning (MADDDQN) approach [42], [43], which is a fully decentralized multi-

agent algorithm. In MADDDQN, each PS operates independently, making decisions

without relying on a centralized critic network to evaluate the agents’ actions. The

action space is binary: for each channel, each PS either transmits at maximum power

or refrains from transmitting entirely. The next solution is Time Division Channel

Access (TDCA), where PSs in stage one take turns transmitting on a time-slot basis

until all transmissions are completed. During its assigned time slot, each PS transmits
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simultaneously on all channels using maximum transmission power. The last solution

is based on a cooperative game designed in [19], and the objective is to encourage

more PSs to transmit simultaneously and improve the total data transmission rate of

all the PSs.

Figures 4.6 and 4.7, respectively, show the AoI violation rate and the average

transmission power of the PSs. The figures show that comparing with the above

three solution, the proposed TD3-CTDE solution leads to much lower average power

consumption of the PSs while maintaining much lower AoI violation rate. The only

exception is that when N = 8, the TDCA solution achieves a lower AoI violation rate

than the proposed one, but the former requires much higher average transmission

power.

The MADDDQN solution performs worse than our method in AoI violation rate

and PS power consumption due to its lack of coordination mechanisms in a shared

environment. In addition, its binary action space is neither effective in keeping the

AoI below the limit nor efficient in power resource utilization. The Cooperative

Game Theory approach considers only the immediate data transmission rates at the

current time slot and overlooks the temporal dynamics of AoI and the future impact

of the current actions. The TDCA solution achieves the lowest AoI violation rate

due to interference-free transmissions, resulting in higher data rates. However, it

inefficiently consumes power by requiring PSs to always transmit at maximum power.

In contrast, our proposed solution dynamically allocates power to each PS in each

time slot, optimizing power usage while accounting for AoI evolution over time. This

approach achieves comparable performance in reducing AoI violations to TDCA while

significantly lowering average power consumption.
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Figure 4.6: Comparison of stage-one algorithms: average AoI violation rate versus
number of PSs

Figures 4.8 and 4.9 further compare the above solutions by varying the ES com-

putation capacity. The figures show that the proposed solution achieves a slightly

higher AoI violation rate than TDCA but significantly outperforms the other two

solutions in this metric. Additionally, it demonstrates substantially lower average

power consumption compared to the other solutions. This highlights the proposed

method as the best tradeoff, effectively balancing low average PS power consump-

tion with maintaining a low AoI violation rate. The results also reveal that while

the AoI violation rate decreases markedly with increased ES computation capacity,

the average PS power consumption is slightly decreased. This demonstrates that the

joint effect of communication and computation resource on the DT quality. However,
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Figure 4.7: Comparison of stage-one algorithms: average power consumption versus
number of PSs

the fact that the average PS power consumption is only slightly affected by the ES

capacity further demonstrates the good performance of the proposed AoI Residual

Margin algorithm for the stage-two decisions.

Next, we increase the total number of wireless transmission channels to K = 3.

Figures 4.10 and 4.11, respectively, show the average AoI violation rate and power

consumption of different solutions. Overall, the proposed TD3-CTDE solution and

TDCA achieve much lower AoI violation rate than the other two solutions. When the

number of PSs is large, TD3-CTDE results in slightly higher AoI violation rate than

TDCA. However, TDCA consumes much higher PS power than TD3-CTDE. The

Cooperative Game solution achieves apporoximately the same AoI violation rate as
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Figure 4.8: Comparison of stage-one algorithms: average AoI violation rate versus
ES computation capacity

TD3-CTDE and DDDQN when the number of PSs is small, but the AoI violation rate

increases significantly when the number of PSs is larger than 6. In addition, both the

Cooperative Game and DDDQN solutions result in much higher power consumption

of the PSs. Overall, the observations are consistent with that from figures 4.6 and 4.7.

4.7 Summary

We have studied the problem of network resource allocation for multiple physical

systems updating their DTs via shared communication channels and a shared ES.

Our proposed solution involves a two-stage process to optimize both the transmission
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Figure 4.9: Comparison of stage-one algorithms: average power consumption versus
ES computation capacity

power of individual physical systems and the computation resources at the ES. In

stage one, a TD3-based multi-agent reinforcement learning algorithm is employed to

allocate transmission power. This approach makes sequential decisions by considering

the evolution of the AoI and ensuring compliance with AoI limits. In stage two, a set

of centralized and deterministic algorithms is used to allocate computation resources

among DTs efficiently. Compared to existing methods, our proposed solution strikes

the optimal balance between minimizing the average transmission power of physi-

cal systems and maintaining the AoI at the DTs within acceptable limits, thereby

enhancing overall system performance.
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Figure 4.10: Comparison of stage-one algorithms: average AoI Violation Rate versus
total number of PSs: K = 3, Bmax,n = 60 M bits
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Algorithm 8 TD3-CTDE Algorithm for PS n

Require: θn, θ′n for n ∈ N , φ1, φ2, φ
′
1, φ

′
2, B, ω, γ, β, δ, ξ

Ensure: θn, θ
′
n, φ1, φ2

1: for iter = 1 to Training Iterations do
2: for j = 1 to β do
3: Randomly sample a transition from the replay buffer:

(stj ,atj , rtj , stj+1)

4: for i ∈ N do . Compute target actions
5: if ui,tj+1 ≤ Cmax,i then
6: fi,tj+1 ← output of Algorithms 4, 5, or 6
7: else
8: [pi,k,tj+1, ∀k ∈ K]← µ

θ′i
i (si,tj+1) + ξ

9: end if
10: end for
11: aptj+1 = [pi,k,tj+1, ∀k ∈ K, ∀i ∈ N ],

12: aftj+1 = [fi,tj+1,∀i ∈ N ]

13: atj+1 = [aptj+1,a
f
tj+1]

14: Compute minimum Q-value from target critic networks

Qmin = min
{
Q
φ′1
1

(
stj+1,a

p
tj+1

)
, Q

φ′2
2

(
stj+1,a

p
tj+1

)}
15: Compute the target value

yn,tj =

{
rn,tj , if un,tj > 0, un,tj+1 = 0

rn,tj + γ(1− dn,tj )Qmin, otherwise

16: end for
17: Replace apn,tj with apn,tj = µθnn (sn,tj )
18: Update φ1 and φ2 using gradient descent to minimize L

L =
1

β

β∑
j=1

[(
yn,tj−Q

φ1
1 (stj ,a

p
tj

)
)2

+
(
yn,tj−Q

φ2
2 (stj ,atj )

)2
]

19: if iter mod ω = 0 then
20: Update θn using the sampled policy gradient.
21: Update target networks using soft updates:

φ′1 ← δφ1 + (1− δ)φ′1

φ′2 ← δφ2 + (1− δ)φ′2
θ′n ← δθn + (1− δ)θ′n

22: end if
23: end for
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Figure 4.11: Comparison of stage-one algorithms: average Power Usage versus total
number of PSs: K = 3, Bmax,n = 60 M bits
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Chapter 5

Conclusion And Future Works

In conclusion, this thesis has advanced the understanding and practical handling of

age of information (AoI) in digital twin systems by jointly considering communica-

tion and computation aspects under uncertain and dynamically changing conditions.

We began by examining the problem of determining the optimal response time to

application requests, taking into account the uncertainty in network performance

and employing an integrated LSTM and Dueling Double Deep Q-learning approach.

This method successfully reduced AoI compared to immediate response strategies,

highlighting the value of intelligent, delay-aware decision making. Building on these

insights, we then addressed more complex scenarios involving multiple physical sys-

tems, shared communication channels, and an edge server with limited computa-

tion resources. By proposing a two-stage solution—where a multi-agent, TD3-based

reinforcement learning algorithm optimally allocates transmission power, and deter-

ministic, centralized algorithms efficiently distribute computing capacity—we demon-

strated the ability to achieve a desirable balance between minimal power consumption

and maintaining AoI within specified limits. Together, these contributions illustrate
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the importance of leveraging advanced RL techniques, predictive modeling, and inte-

grated resource management strategies to ensure timely and energy-efficient updates

from physical systems to their digital twins. Looking forward, this research can be

extended by exploring multiple edge servers, jointly optimizing digital twin place-

ment, and incorporating more complex constraints and uncertainty models to further

enhance system responsiveness, scalability, and resilience.
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