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Abstract

Stein’s method provides a powerful tool for quantifying the distance between a ran-

dom variable and a normal distribution without relying on the characteristic function

as in the traditional method. The traditional characteristic function method is often

challenging when dealing with complicated random variables. Stein’s method was

first proposed to solve the problem of normal approximation that the characteristic

function cannot solve. This method provides a powerful tool to give an upper bound

between any random variable and the normal distribution, which can been seen as

a speed of convergence to the normal distribution. The core idea of Stein’s method

is to construct a differential equation for the target random variable and analyze

its solution. In this thesis, I use Stein’s method to quantify the error bound of the

standardized random sum of independent random variables with respect to the ap-

proximation of the normal distribution to establish the conditions that need to be

met for the Central Limit Theorem to hold. Additionally, the error term is bounded

using the Wasserstein distance, which demonstrates Stein’s method’s effectiveness in

controlling approximation errors by bounding the expectation of the Stein’s Identity.

In addition, the results of Charles Stein’s first paper, published in 1972, which de-

scribes the Stein method in detail, are also given in the paper. Stein’s paper gives

error bound for the sum of dependent variable sequences and the standard normal

iii



under certain conditions.
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Notation, Definitions, and

Abbreviations

Notation

• Ω: The sample space in a probability space.

• F : The sigma-algebra in a probability space.

• P: The probability measure in the given probability space.

• P(A): The probability of event A occurring.

• E[X]: The expected value (mean) of a random variable X.

• Var(X): The variance of a random variable X.

• dW (X, Y ): The Wasserstein distance between two probability distributions X

and Y .

• dK(X, Y ): The Kolmogorov distance between two probability distributions X

and Y .

• Lip: Lipschitz functions.

ix



• Φ(x): The cumulative distribution function (CDF) of the standard normal dis-

tribution.

• N (0, 1): The standard normal distribution.

• Xn
d−→ X: Convergence in distribution.

• RV: Random Variable

• LD1: Local Dependence conditions 1

Definitions

Classical Central Limit Theorem (CLT): It states that the standardized sum

of independent and identically distributed random variables with finite variance con-

verges in distribution to a standard normal distribution as the number of variables

approaches infinity.

Wasserstein Distance: A probability metric of the difference between two probabil-

ity distributions, often used to compare the distribution of sums of random variables

to a normal distribution in Stein’s method.

Kolmogorov Distance: A probability metric used to quantify the maximal differ-

ence between the cumulative distribution functions of two probability distributions.

Total Variance Distance: A probability metric defined as the maximum difference

in probabilities they assign to the same event. We use the total variation metric for

approximation by discrete distributions.

Weakly Dependent Random Variables: A sequence of random variables where

x



the dependence between two variables weakens when the difference between their in-

dices is greater.

Convergence in distribution: a sequence of random variables Xn is said to con-

verge in distribution to a random variable X, if limn→∞ FXn(x) = FX(x) for every

continuity point x of the cumulative distribution function FX of X.

Absolutely continuous functions: A function f : [a, b] → R is absolutely con-

tinuous if, for any ϵ > 0, there exists a δ > 0 such that, for any collection of non-

overlapping subintervals [a1, b1], [a2, b2], . . . , [ai, bi] ⊂ [a, b], if

i∑
j=1

(bj − aj) < δ,

then we have
i∑

j=1

|f(bj)− f(aj)| < ϵ.

xi



Chapter 1

Introduction

Statistical analysis becomes easier if, given a collection of samples, we can tell approx-

imately what distribution these samples follow. The Central Limit Theorem plays an

important role in probability by giving an approximate distribution. This fundamen-

tal probability theory describes the asymptotic behavior of the sum of properly scaled

random variables. It states that under the conditions that every random variable has

the same finite expectation and variance, then as the number of random variables

grows, their standardized sum converges in distribution to a normal distribution, re-

gardless of the original distribution of random variables. Specifically, for a sequence

of i.i.d random variable Xi with finite mean µ and variance σ2, the standardized sum

Zn =
1√
n

n∑
i=1

(
Xi − µ

σ

)

converges in distribution to the standard normal distribution N(0, 1) as n → ∞.

One of the classical methods of proving the central limit theorem is utilizing the

characteristic function. Given a random variable X, its characteristic function is

1
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defined as:

φX(t) = E[eitX ],

where t ∈ R, i is an imaginary unit, and E denotes the expectation. It is known that

the distribution of a random variable is uniquely determined by its characteristic func-

tion. Namely, different distributions correspond to different characteristic functions.

The idea of using characteristic functions to prove the central limit theorem is first

to compute the characteristic functions of the sum of independently and identically

distributed random variables and then use the convergence theorem in complex anal-

ysis to prove that this characteristic function converges to the characteristic function

of the normal distribution.

The Stein method introduced by Charles Stein in 1972 is another idea for proving

the central limit theorem, which provides a more general framework for proving the

central limit theorem. In other words, the core idea of Stein’s method is to transform

the problem of approximating the limit between different distributions into a problem

of solving differential equations by constructing Stein’s differential equation. Consid-

ering the construction is different, the Stein Method can handle more complicated

variables, such as non-independent and non-identical random variables. In addition,

the Stein Method allows us to find a convergence rate when dealing with normal dis-

tribution approximation problems, i.e., how fast the target distribution will converge

to the normal distribution. In addition to its powerful application in approximating

normal distributions, the Stein method has been successfully extended to other essen-

tial probability distributions. These extensions include the approximation of Poisson

and exponential and geometric distributions. In the Poisson approximation, using

2
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size-bias coupling, Stein’s method provides an efficient error bound for Poisson ap-

proximations, which is widely used in situations with dependence structures or local

dependence. Stein’s method uses equilibrium coupling to approximate exponential

distributions. The approximation of geometric distributions mainly involves discrete

equilibrium coupling, which is suitable for handling the approximation requirements

of discrete random variables. These applications demonstrate Stein’s method’s ver-

satility and flexibility, making it a powerful tool in many statistics and probability

theory scenarios. One can find how Stein’s method uses these different coupling tech-

niques to control distributional approximations in the paper [10].

In this thesis, I will use the Stein Method to show that a random sum of indepen-

dent random variables will converge to a normal distribution under some conditions.

A random sum [6] is a sum of random variables such that the number of terms is

itself a random variable. It is typically referred to as:

Sξ = X1 +X2 + · · ·+Xξ,

where ξ is a non-negative random variable representing the number of terms in the

sum, and X1, X2, . . . is a sequence of independent random variables representing each

term in the sum. If the random sum ξ is deterministic, then the problem degener-

ates into the original problem of summing random variables. In particular, Xi can

be independent of ξ, or there can be some dependency. In our case, we set Xi and

ξ as independent. In the study of the Central Limit Theorem (CLT) for random

sums, many key results have extended the applicability of the classical CLT. One

fundamental theorem proves a standardized random sum still converges to the stan-

dard normal distribution N(0, 1). Specifically, let X1, X2, . . . be an independent and

3
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identically distributed(i.i.d.) sequence of random variables with mean zero and finite

variance σ2, and let the random index τ(t) satisfy τ(t)
t

p−→ θ (where 0 < θ < ∞). Then,

the theorem states that the standardized random sums

Sτ(t)

σ
√

τ(t)
and

Sτ(t)

σ
√
θt

both converge in distribution to the standard normal distribution N(0, 1) as t → ∞.

This result generalizes the classical CLT to cases with random indices. One can find

a more detailed proof and related theorems in [7]. Random sums have many practical

applications, particularly in finance, insurance, queueing theory, and bio-statistics.

[6] In insurance actuarial science, total claim models are often modelled as random

sums. Suppose ξ represents the number of claims occurring in a given period, and

Xi represents the amount of each claim. Then, the total claim amount Sξ can be

expressed as a random sum. In queueing theory, random sums can describe waiting

times or service times. Considering a service system, ξ represents the number of

customers arriving during a service period, and Xi represents the service time for

each customer. The total service time Sξ can be expressed as a random sum. In bio-

statistics, especially in gene mutation and DNA sequence analysis, random sums are

used to model the total number of mutation events. Suppose ξ denotes the number of

mutations occurring in a gene sequence and Xi denotes the length of each mutation.

The total length affected Sξ is a random sum. The model can be used to assess the

effect of mutations on functional regions of the genome.

4
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Chapter 2

Normal Approximation

2.1 Classical Central Limit Theorem

The history of the CLT goes back to Laplace in the late 18th century, who used it as

a tool to solve other mathematical problems [8]. He dealt with a sequence of games,

each with two possible outcomes, “win” and “lose”. Laplace first studied the limit

problem for sums of binomial distributions, and a generalization of this problem gave

birth to the earliest CLT, the study of sums of a set of independent and identically

distributed Bernoulli variables. After this, Laplace generalized the CLT. He found

that the standardized sum of any independent identically distributed random vari-

ables converges to the standard normal distribution. Lyapunov [11] generalized the

CLT in 1901, relaxing the assumption of identical distributions by allowing random

variables to be distributed differently but requiring that the third-order moments of

each random variable must not be too large to affect the convergence. This work set

the stage for later developments by Lindeberg in 1922 and Feller, who formulated

the Lindeberg–Feller CLT [4]. The Lindeberg–Feller CLT expands the applicability

5
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of the theorem by removing the identically distributed assumption and introducing

the Lindeberg condition. This condition ensures that the influence of any individual

term in the sum does not dominate as the number of terms grows. As long as these

extreme-valued increments do not have a dominant effect when normalized by the

cumulative variance, the central limit theorem still holds. In this chapter, we first

discuss the classical CLT, which concerns a set of i.i.d. random variables.

Given a standard normally distributed random variable X, recall that the probability

density function(PDF) of X is

f(x) =
1√
2π

e−
x2

2 , x ∈ R,

and its cumulative distribution function(CDF) is

Φ(x) =

∫ x

−∞

1√
2π

e−
t2

2 dt.

Let Yi be another sequence of i.i.d. random variables. To demonstrate that Yi con-

verges in distribution to X, one of the approaches is to directly compute the charac-

teristic function of Yi and observe whether it has the form of φZ(t) = e−
t2

2 as n → ∞,

the characteristic function of an N(0, 1) variable. This approach also proves the clas-

sical CLT.

Theorem 2.1.1 [2] Let X1, X2, . . . be a sequence of i.i.d. random variables with finite

mean µ and variance σ2. Then

Sn − nµ√
nσ2

d−→ N(0, 1),

6
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where N(0, 1) denotes a standard normal variable.

Proof: The characteristic function of Xi is given by φX(t) = E[eitXi ]. Since the

random variables X1, X2, . . . , Xn are independent, the characteristic function of the

sum of these random variables is

φZn(t) =

(
φX

(
t

σ
√
n

))n

.

Using the Taylor expansion of φX(t) around t = 0 and Substituting this expansion

into the expression for φZn(t), we must get

φZn(t) =

(
1 + i

tµ

σ
√
n
− t2

2n
+ o

(
1

n

))n

.

As n → ∞, the term i tµ
σ
√
n
tends to 0, and the expression simplifies to

φZn(t) → e−t2/2,

which is the characteristic function of the standard normal distribution N(0, 1). Re-

call that the characteristic function is precisely the Fourier transform of the PDF.

From it, one can derive the CDF or the PDF. The invertibility of the Fourier trans-

form also guarantees the uniqueness of the characteristic functions.

2.2 Probability Metrics

We often need to measure the difference between two probability distributions in

probability theory. We will focus on the following three metrics: Total Variation

7
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Distance, Kolmogorov Distance, and Wasserstein Distance. The biggest difference

between these three probability metrics can be derived from the definition of ’dis-

tance’, specifically in choosing the set of test functions. For any two probability

measures µ and ν, We define the probability metric in the following form:

dH(µ, ν) = sup
g∈H

∣∣∣∣∫ g(x)dµ(x)−
∫

g(x)dν(x)

∣∣∣∣ ,
where H is some family of test functions. The Kolmogorov Distance measures how

large the difference between two different distributions is, so the test functions are

exactly the indicator functions H = {1[· ≤ x] : x ∈ R}, which tells us how large the

difference between two different distributions is within a range of differences between

the two distributions. The total variance distance measures the maximum probability

difference between the two distributions over the set of all possible events, so its set of

test functions is defined as H = {1[· ∈ A] : A ∈ Borel(R)}. Instead, we will focus on

the Wasserstein distance in this paper, specifically the Wasserstein distance, which

maximizes the difference in the expectation of the two distributions for any Lipschitz

functions. So its test function set is defined as H = {h : R → R : |h(x) − h(y)| ≤

|x − y|}. Then for two random variables X and Y , the probability metric will be in

the form of:

dH (X, Y ) = sup
g∈H

∣∣∣∣∫ g(x)dFX −
∫

g(y)dFY

∣∣∣∣ = sup
g∈H

|E [g(X)]− E [g(Y )]| .

8
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Definition 2.2.1 [13] A function f : R → R is called a Lipschitz function if there

exists a constant C ≥ 0 such that, for all x, y ∈ R, the following condition is satisfied:

|f(x)− f(y)| ≤ C|x− y|.

For simplicity, we choose C = 1.

Given the test functions to be a set of Lipschitz functions, the Wasserstein distance

is given by:

dW (X, Y ) = sup
g∈Lip

|E [g(X)]− E [g(Y )]| .

We also have theorems about probability metrics to expand the relationship between

those metrics.

Theorem 2.2.2 [1] Suppose X,Z are two random variables, and If Z is a standard

normal random variable then,

dK (X,Z) ≤ 2

√
1√
2π

dW (X,Z).

Proof: The core idea is to construct a Lipschitz function gϵ(x) which satisfies the

assumption. Set

gϵ(x) =


1 if x ≤ z,

0 if z + ϵ ≤ x,

linear if z ≤ x ≤ z + ϵ.

Then |gϵ(x)′| = 1
ϵ
for some constants ϵ.

First, recall that dK(X,Z) = supz |P(X ≤ z)− P(Z ≤ z)|. By direct calculation, we

9
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have,

P(X ≤ z)− P(Z ≤ z) ≤ P(X ≤ z) + P(z ≤ X ≤ z + ϵ)− P(z ≤ Z ≤ z + ϵ)

+ P(z ≤ Z ≤ z + ϵ)− P(Z ≤ z) + P(Z ≤ z)− P(Z ≤ z)

= [P(X ≤ z) + P(z ≤ X ≤ z + ϵ)]− [P(z ≤ Z ≤ z + ϵ) + P(Z ≤ z)]

+ P(z ≤ Z ≤ z + ϵ)− P(Z ≤ z) + P(Z ≤ z)

≤ E[gϵ(X)]− E[gϵ(Z)] + P(z ≤ Z ≤ z + ϵ)

≤ dW (X,Z)

ϵ
+ P(z ≤ Z ≤ z + ϵ)

≤ dW (X,Z)

ϵ
+

∫ z+ϵ

z

1√
2π

e−x2/2 dx

≤ dW (X,Z)

ϵ
+

1√
2π

∫ z+ϵ

z

dx

≤ dW (X,Z)

ϵ
+

ϵ√
2π

,

and we set f(ϵ) = dW (X,Z)
ϵ

+ ϵ√
2π
. Then,

f ′(ϵ) = −dW (X,Z)

ϵ2
+

1√
2π

.

We need to find the least ϵ that makes f ′(ϵ) = 0. Thus, we have

ϵ =

√
dW (X,Z)

1√
2π

.

Combining all results, we have

P(X ≤ z)− P(Z ≤ z) ≤ 2

√
dW (X,Z)√

2π
= 2

√
1√
2π

dW (X,Z).

10
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For any two random variables X and Y, we expect them to have approximately the

same distribution if dW (X, Y ) = 0.

2.3 Stein’s Equation

The characteristic function and Stein’s method greatly differ in comparing the dis-

tributions between two random variables. Specifically, the main idea of the Stein

method is to convert the traditional problem of comparing the difference between the

distributions of two random variables into a problem of analyzing the solution of a

differential equation by constructing a differential equation, which is a Stein equation.

This chapter will discuss how to construct a Stein equation for normal approximation.

We begin with Stein’s characterizing operator first.

Stein’s Lemma: [10] Define the operator A acting on a function f as follows:

Af(x) = f ′(x)− xf(x).

This operator A has the following properties: If Z is a standard normally distributed

random variable, then for any absolutely continuous function f with E|f ′(Z)| < ∞,

we have

E[Af(Z)] = 0. (2.3.10)

Conversely, if for some random variable W , the condition

E[Af(W )] = 0. (2.3.11)

11
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holds for all absolutely continuous functions f with ∥f ′∥ < ∞, then W follows the

standard normal distribution. Stein’s Lemma indicates that a random variable X is

a standard normal variable if and only if E[Af(X)] = 0. We will first prove (2.3.10).

Theorem 2.3.1 [3] Let Z ∼ N(0, 1). Then for any bounded function f with contin-

uous first-order derivatives f ′, we have

E [f ′(Z)− Zf(Z)] = 0. (2.3.12)

The proof requires a direct calculation of E[f ′(Z)] and E[Zf(Z)] using the definition

of expectation. Applying the integral by part would give a straightforward result.

Let

g(z) =
1√
2π

e−
z2

2 .

It is clear that g′(z) = −zg(z). By direct calculation, we have:

E[f ′(Z)− Zf(Z)] =

∫ ∞

−∞
(f ′(z)− zf(z)) g(z)dz

=

∫ ∞

−∞
f ′(z)g(z)dz −

∫ ∞

−∞
zf(z)g(z)dz

= 0.

Theorem 2.3.1 proves that if a random variable is a standard normal random variable,

then it satisfies E[f ′(Z)−Zf(Z)] = 0. The interesting fact is that Stein first observed

the identity(2.3.12) and then found the solution of f(x) to the differential equation

in the form of f ′(x)− xf(x) = h(x). By direct calculation, giving,

f(x) = e
x2

2

∫ x

−∞
e−

x2

2 h(x) dx.

12
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Then for any bounded function g(x), we can verify that the function f(x) defined in

the form of

f(x) := ex
2/2

∫ x

−∞
(g(t)− E[g(Z)]) e−t2/2 dt (2.3.13)

satisfies the differential equation f ′(x)− xf(x) = g(x)−E[g(Z)]. If we take expecta-

tions on both sides, then yields:

E[f ′(x)− xf(x)] = Eg(x)− E[g(Z)]. (2.3.14)

We call the equation f ′(x) − xf(x) = g(x) − E[g(Z)] the Stein equation. One point

is that if we take the upper bound of the right-hand side of equation 2.3.14, it is

equivalent to the Wasserstein distance mentioned in section 2.2. Thus, the Stein

equation also provides an upper bound for the normal approximation of the Wasser-

stein distance mentioned above. Considering a random variable Y, we must have the

following,

sup
f∈F

|E[f ′(Y )− Y f(Y )]| = sup
g∈H

|Eg(Y )− Eg(Z)| . (2.3.15)

where H is a set of any Lipschitz functions.

Equation 2.3.15 tells us that the Wasserstein distance between two random variables

can be bounded by calculating the expectation on the left side of the equation. Note

that the expectation on the left side of the equation depends only on variable Y , so

it is generally easier to find an upper bound for the expectation on the left side than

on the right.

Theorem 2.3.2 [3] Let Y be a random variable, F be a large class of real-valued

13
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functions. If for all f ∈ F ,

E[f ′(Y )− Y f(Y )] = 0,

then Y ∼ N(0, 1). Where f is a function in a function set

F =

{
f : ∥f∥∞ ≤ 1, ∥f ′∥∞ ≤

√
2

π
, ∥f ′′∥∞ ≤ 2

}
. (2.3.21)

Proof: We first notice that if P (Y ≤ z) − Φ(z) = 0, then Y is a standard normal

random variable. We have

P (Y ≤ z)− Φ(z) = E
[
1(−∞,z](Y )− Φ(z)

]
.

Now we set the Stein equation as:

f ′(Y )− Y f(Y ) = 1(−∞,z](Y )− Φ(z).

Recall that (2.3.12) gives us a solution for any bounded function g(x), which is,

f(y) = ey
2/2

∫ y

−∞

[
1(−∞,z](t)− Φ(z)

]
e−t2/2 dt

= −ey
2/2

∫ ∞

y

[
1(−∞,z](t)− Φ(z)

]
e−t2/2 dt.

14
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Now, evaluating the integral, we get,

f(y) =


√
2πey

2/2Φ(y) [1− Φ(z)] , y ≤ z.

√
2πey

2/2Φ(z) [1− Φ(y)] , y > z.

The function f(y) can be verified that it is a bounded continuous differentiable func-

tion in the function set F . Suppose (2.3.12) holds for any f ∈ F , thus it holds for

f(y). Therefore, we must have:

E[f ′(Y )− Y f(Y )] = E[1(−∞,z](Y )− Φ(z)] = 0.

Thus, we conclude that Y is a standard normal random variable.

Our framework so far consists of the probability metric, focusing on the Wasserstein

distance, Stein’s Lemma, Stein identity and Stein equation. The Stein identity leads

to the most central part of the Stein method, the Stein equation. We focus on

the Wasserstein distance because the Stein equation gives an upper bound on the

Wasserstein distance under the Lipschitz condition, and the Wasserstein distance can

bound the Kolmogorov distance. In the context of Normal Approximation, we also

give a general solution to the Stein equation and prove that any random variable is

standard normal distributed if and only if the Stein identity holds. The remaining

key element we didn’t deal with is the property of the solution to Stein equation.

Specifically, Theorem 2.3.2 states that the solution f should satisfy (2.3.21), and the

following few theorems explain where (2.3.21) comes from.
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2.4 Property of the Solution to the Stein Equation

Theorem 2.4.1 [14] For any bounded function g(x), if g is Lipschitz, the another

form of solution f satisfies the Stein equation is

f(x) = −
∫ 1

0

1

2
√

t(1− t)
E
[
Zg(

√
tx+

√
1− tZ)

]
dt, Z ∼ N(0, 1).

The proof requires the use of Stein’s Identity where f(Z) = g(
√
tx+

√
1− tZ). Then

substitute it into f ′(x) and xf(x).

First note that

f ′(x) = −
∫ 1

0

√
t

2
√

t(1− t)
E
[
Zg′(

√
tx+

√
1− tZ)

]
dt.

Then set g(Z) = g(
√
tx+

√
1− tZ), and by Stein’s identity we must have

E [Zg(Z)] = E [g′(Z)] .

This implies

E
[
Zg(

√
tx+

√
1− tZ)

]
= E

[√
1− tg′(

√
tx+

√
1− tZ)

]
.

16
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By direct calculation, we have,

f ′(x)− xf(x) = −
∫ 1

0

√
t

2
√

t(1− t)
E[Zg′(

√
tx+

√
1− tZ)]dt

+

∫ 1

0

x

2
√
t(1− t)

E[Zg(
√
tx+

√
1− tZ)]dt

= −
∫ 1

0

E
[

1√
1− t

Zg′(
√
tx+

√
1− tZ)

]
dt

+

∫ 1

0

E

[
x√

2t(1− t)
g′(

√
tx+

√
1− tZ)

]
dt

=

∫ 1

0

E
[(

x

2
√
t
− Z

2
√
1− t

)
g′(

√
tx+

√
1− tZ)

]
dt.

Since Z ∼ N(0, 1) has finite expectation and
(

x
2
√
t
− Z

2
√
1−t

)
is a linear combination

of Z, also we notice that g is a Lipschitz function with |g′(x)| ≤ C for some constant

C, by Fubini’s Theorem we have,

= E
[∫ 1

0

dg(
√
tx+

√
1− tZ)

]
= E

[
g(
√
tx+

√
1− tZ)

] ∣∣∣∣∣
1

0

= g(x)− E[g(Z)].

Theorem 2.4.2 [14] If g is a Lipschitz function, then the following inequalities hold:

|f |∞ ≤ |g′|∞, (2.4.2)

|f ′|∞ ≤
√

π

2
|g′|∞, (2.4.3)

|f ′′|∞ ≤ 2|g′|∞. (2.4.4)

Equations (2.4.2) and (2.4.3) are simple to check by directly calculating using another

solution form f . Equation (2.4.4) is tricky to prove. We need to take the second

17
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derivative of the Stein equation with respect to x and then rewrite the second deriva-

tive as f ′′(x) = g′(x) + f(x) + x [xf(x) + g(x)− Eg(Z)] = g′(x) + x [g(x)− Eg(Z)] +

(1+x2)f(x). Write g(x)−Eg(Z) and f(x) as the form of integrals, then we can bound

them respectively. The theorem assumes that g(x) is a Lipschitz function, which is

also consistent with the definition of the Wasserstein distance. Specifically, if g(x) is

1-Lipschitz, then|g′|∞ = 1. Also, one can find a f(x) to solve the Stein equation for

any 1-Lipschitz g(x). based on this relationship, giving,

dW (W,Z) = sup
g∈H

|E [g(W )]− E [g(Z)]| ≤ sup
f∈F

|E [f ′(W )−Wf(W )]| .

All these theorems complete the whole framework of our general setup. That is, we

found and verified the conditions of the solution f(x), which is in the F set.

2.5 Classical Central Limit Theorem with Stein’s

Method

As mentioned, if the Wasserstein distance is approximately equal to 0, the two ran-

dom variables have approximately the same distribution. However, it is difficult to

calculate precisely how much the two distributions differ directly. Hence, the Stein

method gives us a new way to estimate the distance between two distributions. This

section will discuss a specific case where the Stein method provides an upper bound

on the Wasserstein distance for a set of independently and identically distributed

random variables to analyze the difference between the two distributions. In addi-

tion, the Stein method will also give a rate of convergence for the approximation.

18

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.Sc. Thesis – YC. Huang; McMaster University – Mathematics and Statistics

Theorem 2.5.1

Let (Ω,F ,P) be a complete probability space, and let X1, X2, . . . be a sequence of

i.i.d. random variables defined on a common probability space such that:

• E[Xi] = 0, i.e., the expectation of Xi is 0.

• Var(Xi) = 1, i.e., the variance of Xi is 1.

• A sequence {Xi}ni=1 such that for any n, the third-moment condition holds:

lim
n→∞

1

n3/2

n∑
k=1

E[|Xk|3] = 0.

Define the partial sum and normalized random variables as follows:

Sn = X1 +X2 + · · ·+Xn, Wn =
Sn√
n
.

Then, as n → ∞, the distribution of Wn converges to the standard normal distribu-

tion, i.e.,

Wn
d−→ Z ∼ N(0, 1), n → ∞.

Here,
d−→ denotes convergence in distribution.

Proof: The main idea is to control the upper bound of Wasserstein distance dW (W,Z).

Recall that dW (W,Z) ≤ supf∈F |E [f ′(W )−Wf(W )]|. We begin by calculating the

expectation of the left-hand side of the Stein equation. For any i = 1, . . . , n, set

W i
n = Wn −

Xi√
n
.
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We first notice that,

E [f ′(Wn)−Wnf(Wn)] = E

[
f ′(Wn)−

1

n

n∑
i=1

f ′(W i
n) +

1

n

n∑
i=1

f ′(W i
n)−Wnf(Wn)

]
,

where we set

I = E [Wnf
′(Wn)]−

1

n

n∑
i=1

E
[
X2

i f
′(W i

n)
]
,

and

II = E [f ′(Wn)]−
1

n

n∑
i=1

E
[
f ′(W i

n)
]
.

For any f ∈ H, it follows from direct calculation that

E[Wnf(Wn)] =
1√
n

n∑
i=1

E [Xif(Wn)]

=
1√
n

n∑
i=1

E
[
Xi

(
f(Wn)− f(W i

n)
)
+Xif(W

i
n)
]

=
1√
n

n∑
i=1

E
[
Xi

(
f(Wn)− f(W i

n)
)]

,

using the independence of Xi and f(W i
n) in the last line.

Noting that

f(Wn)− f(W i
n) = f(Wn)− f(W i

n)− f ′(W i
n)(Wn −W i

n) + f ′(W i
n)(Wn −W i

n)

= f(Wn)− f(W i
n)− f ′(W i

n)(Wn −W i
n) +

Xi√
n
f ′(W i

n).

Thus

I = E [Wnf(Wn)]−
1

n

n∑
i=1

E
[
X2

i f
′(W i

n)
]
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= E [Wnf(Wn)]−
1

n

n∑
i=1

E
[
f ′(W i

n)
]

=
1√
n

n∑
i=1

E
[
Xi(f(Wn)− f(W i

n)− f ′(W i
n)(Wn −W i

n))
]
.

By Taylor’s expansion, we obtain

|I| =

∣∣∣∣∣E [Wnf(Wn)]−
1

n

n∑
i=1

E
[
f ′(W i

n)
]∣∣∣∣∣

≤ 1√
n

n∑
i=1

E
∣∣Xi

(
f(Wn)− f(W i

n)− f ′(W i
n)(Wn −W i

n)
)∣∣

≤ |f ′′|∞
2

· 1√
n

n∑
i=1

E
[
|Xi|(Wn −W i

n)
2
]

≤ |f ′′|∞
2

· 1

n3/2

n∑
i=1

E
[
|Xi|3

]
.

Thus, we have:

|I| ≤ 1

n3/2

n∑
i=1

E
[
|Xi|3

]
.

On the other hand, set

|II| =

∣∣∣∣∣E [f ′(Wn)]−
1

n

n∑
i=1

E
[
f ′(W i

n)
]∣∣∣∣∣ = 1

n

n∑
i=1

E
∣∣f ′(Wn)− f ′(W i

n)
∣∣ .
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Applying Taylor’s expansion, we obtain

|II| ≤ 1

n

n∑
i=1

E
[
|f ′′|∞|Wn −W i

n|
]

≤ |f ′′|∞
n

n∑
i=1

E
[
|Wn −W i

n|
]

≤ 2

n3/2

n∑
i=1

E
[
|Xi|3

]
.

By Hölder’s inequality, it follows that

E
[
X2

i

]
= 1 ≤

(
E
[
|Xi|3

])2/3
,

E [|Xi|] ≤
(
E
[
|Xi|3

])1/3 ≤ (E [|Xi|3
])

.

Thus, we have:

|II| ≤ 2

n3/2

n∑
i=1

E
[
|Xi|3

]
.

Finally, we have

|E [f ′(Wn)−Wnf(Wn)]| =

∣∣∣∣∣E [f ′(Wn)]−
1

n

n∑
i=1

f ′(W i
n) +

1

n

n∑
i=1

f ′(W i
n)−Wnf(Wn)

∣∣∣∣∣
≤ |I|+ |II|

≤ 3

n3/2

n∑
k=1

E
[
|Xk|3

]
→ 0,

which also indicates

dK(Wn, Z) ≤ dW (Wn, Z) ≤
3

n3/2

n∑
k=1

E
[
|Xk|3

]
→ 0.
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Therefore, we conclude that Wn is a standard normal random variable. Set C =

max{E [|Xk|3]} for any k from 1 to n. Using this, we have,

dK(Wn, Z) ≤ dW (Wn, Z) ≤
3

n3/2

n∑
k=1

E
[
|Xk|3

]

≤ 3

n3/2
· nC =

3C

n1/2
≈ O

(
1√
n

)
.

Thus, we observe that the variable Wn converges to the standard normal at the speed

of approximately O
(

1√
n

)
.

2.6 A Bound for the Error in Normal Approxima-

tion of Dependent Random Variables

In this section, we will present key results from Stein’s original work [12] on the

normal approximation for sums of dependent random variables. The classical CLT

only applies to i.i.d. random variables. The Berry-Esseen theorem provides an upper

bound on the error in the independent and identically-distributed case as O
(
n−1/2

)
.

However, this result no longer holds in the dependent case, so Stein wanted to find a

new tool to deal with these complex dependence structures.

In the dependent random variable case, Phillip [9] proved that when the random

variables Xi are bounded and exhibit exponentially decaying dependence, the error

is of the order n−1/4. Stein’s work further derives an error bound under more general

conditions. His paper proves that the error can reach O
(
n−1/2 (log n)2

)
in the case of

weakly dependent random variables and, under certain assumptions, even O
(
n−1/2

)
.
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Stein’s reasoning goes like this: to transform the problem of normal approxima-

tion into one of analyzing the difference in expectations by constructing a differ-

ential equation associated with a normal distribution. The Stein method also pro-

vides a quantitative analysis of the upper bound on the error. For a stationary and

m-dependence sequence of random variables X1, X2, . . . , Xn, the Stein method can

show that the upper bound on the error of the distribution of its standardized sum

Sn = 1√
Var

∑n
i=1 Xi

∑n
i=1 Xi approximating the normal distribution is An−1/2, where

A is a constant depending on the distribution of the sequence X1, X2, X3, ....

We first recall the definition of a stationary sequence and a m-dependence sequence.

Definition 2.6.1 [12] A sequence X1, X2, . . . of random variables is said to be sta-

tionary if, for every pair t, j of natural numbers, the sequence Xt+1, . . . , Xt+j has the

same distribution as X1, . . . , Xj.

Definition 2.6.2 [12] A sequence X1, X2, . . . of random variables is said to be m-

dependent, where m is a nonnegative integer, if for any two subsets A,B ⊂ {1, 2, . . . }

for which

inf
i∈A,j∈B

|i− j| ≥ m+ 1,

the sets of random variables {Xi}i∈A and {Xj}j∈B are independent. The intuition

of this definition is if two sets of random variables are separated by more than m

positions in the sequence, then these sets of variables are independent of each other.

We consider a stationary m-dependent sequence of random variables X1, X2, . . . also
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satisfying the following conditions:

E[Xi] = 0, for all i, (2.6.1)

E[X2
i ] = 1, for all i, (2.6.2)

β = E[X8
i ] < ∞, (2.6.3)

0 < C = lim
n→∞

1

n
Var

(
n∑

i=1

Xi

)
< ∞. (2.6.4)

Then we must have the following corollary.

Corollary 2.6.3 [12] If X1, X2, . . . is a stationary m-dependent sequence of random

variables satisfying (2.6.1), (2.6.2),(2.6.3) and (2.6.4), then there exists a constant A,

where A is a constant depending on the distribution of the sequence X1, X2, X3, ...,∣∣∣∣∣P
(

1√
nC

n∑
i=1

Xi ≤ a

)
− Φ(a)

∣∣∣∣∣ ≤ An−1/2,

where Φ(a) is the cumulative distribution function of the standard normal distribu-

tion.

In the original Stein paper, the dependent sequence was treated relatively strictly,

requiring that the sequence not only satisfy stationarity but also be m-dependent.

This setting requires each variable depends only on a fixed number of neighbors and

statistical properties such as expectation and variance remain consistent across the

sequence. Next the following theorems generalize Stein’s method to a wider range of

dependence structures.

Theorem 2.6.4 [1] Let {ξ1, ξ2, . . .} be a sequence of random variables ξi, i ∈ Z. Let J

be a finite index set with cardinality n, and let {ξi, i ∈ J} be a random field with zero
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means and finite variances, such that Var(W ) = 1 for W =
∑

i∈J ξi. For each A ⊂ J ,

define ξA = {ξi, i ∈ A} and Ac = {j ∈ J : j /∈ A}. The following one assumption,

defining two different conditions of local dependence:

• LD1: for any i ∈ J , one can find subsets Ai ⊂ Bi ⊂ J ξi is independent of ξAc
i
,

and ξAi
is independent of ξBc

i
.

We set

ηi =
∑
j∈Ai

ξj and τi =
∑
j∈Bi

ξj.

It is clear, for independent random variables ξi, we can take Ai = Bi = {i}. Then

the difference δ is given by:

δ = 2
∑
i∈J

(E[ξiηiτi] + E[ξiηi]E[τi]) +
∑
i∈J

E[ξ2i ηi],

where δ is defined as:

dW (L(W ),N (0, 1)) := sup
h∈Lip(1)

|Eh(W )− Eh(Z)| ≤ δ.

Next we introduce a new dependence structure called Dependency Neighborhoods.

Definition 2.6.5 [10] A set of random variables (X1, . . . , Xn) has dependency neigh-

borhoods Ni ⊂ {1, . . . , n}, i = 1, . . . , n, if i ∈ Ni and Xi is independent of {Xj}j /∈Ni
.

We first note that dependency neighborhoods is a more flexible condition. The intu-

ition behind neighborhoods dependency is to limit the dependencies of each variable

to a manageable subset. This setting is useful since each random variable Xi can

define a unique subset that every other random variable in this subset is dependent

to Xi.
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Theorem 2.6.6 [10] Let X1, . . . , Xn be random variables such that E[X4
i ] < ∞,

E[Xi] = 0, σ2 = Var (
∑

i Xi), and defineW =
∑

i Xi/σ. Let the collection (X1, . . . , Xn)

have dependency neighborhoods Ni, i = 1, . . . , n, and also define D := max1≤i≤n |Ni|.

Then for Z a standard normal random variable,

dW (W,Z) ≤ D2

σ3

n∑
i=1

E |Xi|3 +
√
28D3/2

√
πσ2

√√√√ n∑
i=1

E [X4
i ].

These theorems give an error bound of wasserstein distance under the different struc-

tures of dependent sequence. The restrictions on the dependency structure have been

relaxed from the stationary m-dependent sequence to the LD2 condition and then to

the neighborhood dependence, enabling the Stein method to be applied to a wider

range of scenarios and complex dependencies. A detailed discussion of these struc-

tures and proofs under these conditions can be found in further paper [12] [1] [10].
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Chapter 3

Stein’s Method For Random Index

CLT

In the previous chapter, we discussed the classical CLT for i.i.d. random variables.

We study the difference between proving the central limit theorem using characteris-

tic functions and Stein’s method, and also discuss the work of Charles Stein in 1972,

which provides an error bound for weakly dependent random variables. However, in

many practical applications, random variables are not identically distributed, which

brings a challenge for the application of classical CLT.

In this chapter, we discuss the case of independent but not necessarily identical ran-

dom variables. Specifically, we’ll focus on randdom sums of independent random

variables. This is common in a variety of fields, such as insurance and finance, where

the number of sums is often determined by a random mechanism. The aim of this

chapter is to analyze conditions under which the distribution of a normalized random

sum, WZn , converges to a standard normal distribution using the Stein’s method. We

28
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derive two key conditions that must be met for this convergence to occur. This chap-

ter will deduce these conditions in detail and explore their implications. Compared to

the classical CLT discussed in the previous chapter, the conditions proposed in this

chapter are broader and can accommodate more cases.

Theorem 3.1

Let (Ω,F ,P) be a probability space, and let {Xi : Ω → R}∞i=1 be a sequence of in-

dependent random variables defined on a common space such that E[Xi] = 0 and

σ2
i = Var(Xi) < ∞ for each i. Let Zn : Ω → Z+ be a positive integer-valued random

variable, independent of {Xi}, defined on the same probability space. Define the

partial sum SZn :

SZn =
Zn∑
i=1

Xi.

Let

σ2
SZn

= Var(SZn).

Let

WZn =
SZn

σSZn

be the standardized sum. If the following conditions hold:

lim
n→∞

3
∑∞

k=1 P (Zn = k) ·
∑k

i=1E [|Xi|3](∑∞
k=1 P (Zn = k) ·

∑k
i=1 E [X2

i ]
)3/2 = 0, (3.0.1)

then WZn ⇒ Z ∼ N (0, 1) as n → ∞ and the wasserstein distance is given by:

dW (WZn ,N (0, 1)) ≤ 3

σ3
SZn

[
∞∑
k=1

P (Zn = k) ·
k∑

i=1

E
[
|Xi|3

]]
.
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Proof: Before the proof we first recall that the wasserstein distance is bounded

by E [f ′(WZn)−WZnf(WZn)] and
3
∑Zn

i=1 E[|Xi|3]

(
∑Zn

i=1 E[X
2
i ])

3/2 is the upper bound of E[f ′(WZn) −

WZnf(WZn)]. We need to make its limit (3.0.1) equal to 0 to satisfy the Stein’s

Lemma.

By direct calculation, we have,

E[SZn ] = E (E[SZn | Zn = n])

= E

(
n∑

i=1

E[Xi | Zn = n]

)

= E [0]

= 0.

σ2
SZn

= E
[
S2
Zn

]
− (E[SZn ])

2

= E
[
S2
Zn

]
= E

( Zn∑
i=1

Xi

)2


=
∞∑
k=1

P (Zn = k) · E

( k∑
i=1

Xi

)2


=
∞∑
k=1

P (Zn = k) · E

[
k∑

j=1

k∑
i=1

XjXi

]

=
∞∑
k=1

P (Zn = k) ·
k∑

j=1

k∑
i=1

E[XjXi]

=


0, if j ̸= i,∑∞

k=1 P (Zn = k) ·
∑k

i=1 σ
2
i , if j = i.
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For any i = 1, . . . , Zn, set

W i
Zn

= WZn − Xi√
σSZn

, which means W i
Zn

is independent of Xi.

Recall that WZn is standard normal if and only if E[f ′(WZn) − WZnf(WZn)] → 0.

Rewrite it, giving,

E [f ′(WZn)−WZnf(WZn)]

= E [f ′(WZn)]−
1

(σSZn
)2

∞∑
k=1

P (Zn = k)
k∑

i=1

E
[
X2

i · f ′(W i
k)
]

−

(
E [WZn · f(WZn)]−

1

(σSZn
)2

∞∑
k=1

P (Zn = k)
k∑

i=1

E
[
X2

i · f ′(W i
k)
])

.

Then set

I = E [WZn · f(WZn)]−
1

(σSZn
)2

∞∑
k=1

P (Zn = k)
k∑

i=1

E
[
X2

i · f ′(W i
k)
]
.

II = E [f ′(WZn)]−
1

(σSZn
)2

∞∑
k=1

P (Zn = k)
k∑

i=1

E
[
X2

i · f ′(W i
k)
]
.

Notice that

|E [f ′(WZn)−WZnf(WZn)]| = |I − II| ≤ |I|+ |II| .
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Also note that,

E [WZnf(WZn)] = E
[
SZn

σSZn

· f(WZn)

]
=

1

σSZn

· E [SZn · f(WZn)]

=
1

σSZn

∞∑
k=1

P (Zn = k) ·
k∑

i=1

E [Xif(Wk)]

=
1

σSZn

∞∑
k=1

P (Zn = k) ·
k∑

i=1

E
[
Xi(f(Wk)− f(W i

k))
]
.

Since we have,

f(Wk)− f(W i
k) = f(Wk)− f(W i

k)− f ′(W i
k)(Wk −W i

k) + f ′(W i
k)(Wk −W i

k)

= f(Wk)− f(W i
k)− f ′(W i

k)(Wk −W i
k) +

Xi

σSZn

f ′(W i
k).

Thus we can conclude that,

I = E [WZn · f(WZn)]−
1

(σSZn
)2

∞∑
k=1

P (Zn = k)
k∑

i=1

E
[
X2

i · f ′(W i
k)
]

= E [WZn · f(WZn)]−
1

(σSZn
)2

∞∑
k=1

P (Zn = k)
k∑

i=1

E
[
X2

i

]
· E
[
f ′(W i

k)
]

=
1

σSZn

∞∑
k=1

P (Zn = k) ·
k∑

i=1

E

[
Xi(f(Wk)− f(W i

k)− f ′(W i
k)(Wk −W i

k)

+
Xi

σSZn

f ′(W i
k))−

X2
i

(σSZn
)
f ′(W i

k)

]
=

1

(σSZn
)

∞∑
k=1

P (Zn = k) ·
k∑

i=1

E

[
Xi

(
f(Wk)− f(W i

k)− f ′(W i
k)(Wk −W i

k)
) ]

.
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Then expand I at W i
k using Taylor expansion we get:

f(Wk) = f(W i
k) + f ′(W i

k)(Wk −W i
k) +

f ′′(W i
k)

2
(Wk −W i

k)
2 +O

(
(Wk −W i

k)
3
)
.

So,

|I| = 1

σSZn

∞∑
k=1

P (Zn = k) ·
k∑

i=1

E
[
Xi

(
f(Wk)− f(W i

k)− f ′(W i
k)(Wk −W i

k)
)]

≤ |f ′′|∞
2

· 1

σSZn

∞∑
k=1

P (Zn = k) ·
k∑

i=1

E
[∣∣Xi(Wk −W i

k)
2
∣∣]

≤ |f ′′|∞
2

· 1

σSZn

∞∑
k=1

P (Zn = k) · 1

(σSk
)2

·
k∑

i=1

E
[
|Xi|3

]
≤ |f ′′|∞

2
· 1

(σSZn
)3

·
∞∑
k=1

P (Zn = k) ·
k∑

i=1

E
[
|Xi|3

]
.

Similarly, we have,

II = E [f ′(WZn)]−
1

(σSZn
)2

∞∑
k=1

P (Zn = k)
k∑

i=1

E
[
X2

i · f ′(W i
k)
]

= E [f ′(WZn)]−
1

(σSZn
)2

∞∑
k=1

P (Zn = k)
k∑

i=1

E
[
X2

i

]
· E
[
f ′(W i

k)
]

=
1

(σSZn
)2

∞∑
k=1

P (Zn = k)
k∑

i=1

σ2
i · E [f ′(WZn)]−

1

(σSZn
)2

∞∑
k=1

P (Zn = k)
k∑

i=1

σ2
i · E

[
f ′(W i

k)
]

=
1

(σSZn
)2

∞∑
k=1

P (Zn = k)
k∑

i=1

σ2
i · E

[
f ′(Wk)− f ′(W i

k)
]
.

Then expand Π at W i
k using Taylor expansion we get:

f ′(Wk) = f ′(W i
k) + f ′′(W i

k)(Wk −W i
k) +O

(
(Wk −W i

k)
n
)
.
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So we conclude that,

|II| = 1

σ2
SZn

∞∑
k=1

P (Zn = k) ·
k∑

i=1

σ2
i

∣∣E [f ′(Wk)− f ′(W i
k)
]∣∣

≤ 1

σ2
SZn

∞∑
k=1

P (Zn = k) ·
k∑

i=1

σ2
iE
[∣∣f ′(Wk)− f ′(W i

k)
∣∣]

≤ |f ′′|∞
σ2
SZn

·
∞∑
k=1

P (Zn = k) ·
k∑

i=1

σ2
i · E

[∣∣Wk −W i
k

∣∣]
≤ 2

σ3
SZn

·
∞∑
k=1

P (Zn = k) ·
k∑

i=1

E
[
X2

i

]
· E [|Xi|] ,

where we use the Theorem 2.4.4 in last inequality.

By Holder’s inequality, it follows that:

E
[
X2

i

]
≤
(
E
[
|Xi|3

]) 2
3 and E [|Xi|] ≤

(
E
[
|Xi|3

]) 1
3 .

It implies that:

|II| ≤ 2

σ3
SZn

·
∞∑
k=1

P (Zn = k) ·
k∑

i=1

E
[
|Xi|3

]
.

Finally, we put all together and obtain that,

|E [f ′(WZn)−WZnf(WZn)]|

≤ |I|+ |II|

=
3
∑∞

k=1 P (Zn = k) ·
∑k

i=1E
[
|Xi|3

](∑∞
k=1 P (Zn = k) ·

∑k
i=1 E [X2

i ]
)3/2 . (3.0.3)
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If equation 3.0.3 goes to 0 as n goes to infinity, then by Theorem 2.3.2 we must have

WZn approaches to standard normal.

Also, by the constraints of central limit theorem we obtain that:

Var(SZn) =
∞∑
k=1

P (Zn = k) ·
k∑

i=1

σ2
i

≤
∞∑
k=1

P (Zn = k) · k · σ2
maxi

= σ2
maxi

· E [Zn] ⇒ E [Zn] < ∞.

This completes the proof of Theorem 3.1. Notice that if we are given the distribution

of Zn then we are able to find the convergence speed of WZn to Standard normal.

3.1 Concrete Example

Let (Ω,F ,P) be a probability space. Consider two sequences of independent Bernoulli

random variables {Xi}ni=1 and {Yk}nk=1 defined on (Ω,F ,P). The sequences Xi and

Yk follow these distributions:

P(Xi = 1) =
1

i
, P(Xi = 0) = 1− 1

i
.

For the Xi’s, and similarly for Yk:

P(Yk = 1) =
1

k
, P(Yk = 0) = 1− 1

k
.
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The random variable Zn is defined as the sum of the Yi’s, that is,

Zn = Y1 + Y2 + · · ·+ Yn.

Now, define a new sum SZn as:

SZn = X2 +X3 + · · ·+XZn ,

where each Xi follows the Bernoulli distribution as stated above. Our task is to

verify the standardized sum converges to standard normal, specifically we haveWZn =

SZn−E[SZn ]√
Var(SZn )

d→ N(0, 1).

By direct calculation we have,

E[Xi] = 1 · P(Xi = 1) + 0 · P(Xi = 0) =
1

i
.

Var(Xi) = E[X2
i ]− (E [Xi])

2 =
1

i
.

Thus, the variance is:

Var(Xi) =
1

i
− 1

i2
.

k∑
i=1

Var(Xi) =
k∑

i=1

(
1

i
− 1

i2

)
=

k∑
i=1

1

i
−

k∑
i=1

1

i2
.

For large k, the harmonic series
∑k

i=1
1
i
grows asymptotically as log k, while the sum∑k

i=1
1
i2

converges to a constant ζ(2) = π2

6
. Thus, for large k:

k∑
i=1

Var(Xi) ≈ log k − π2

6
.
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By direct calculation we have,

E
[
(Xi − E[Xi])

3] = E[X3
i ]− 3E[X2

i ]E[Xi] + 2(E[Xi])
3.

Using the fact that

E[X3
i ] = E[X2

i ] = E[Xi] =
1

i
.

Thus, the third moment is:

E
[
(Xi − E[Xi])

3] = 1

i
− 3

i2
+

2

i3
.

and we have,
k∑

i=1

E
[
(Xi − E[Xi])

3] = k∑
i=1

(
1

i
− 3

i2
+

2

i3

)
.

For large k:

- The first sum
∑k

i=1
1
i
≈ log k.

- The terms
∑k

i=1
3
i2

and
∑k

i=1
2
i3

converge to constants.

Therefore, for large k:
k∑

i=1

E
[
(Xi − E[Xi])

3] ≈ log k.

Now we substitute the asymptotic approximations of the second and third moments

into the limit expression, for the numerator,

∞∑
k=1

P(Zn = k)
k∑

i=1

E
[
(Xi − E[Xi])

3] ≈ ∞∑
k=1

P(Zn = k) log k = E[logZn].
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For the denominator:

(
∞∑
k=1

P(Zn = k)
k∑

i=1

E
[
(Xi − E[Xi])

2])3/2

≈

(
∞∑
k=1

P(Zn = k) log k

)3/2

=

(
E [logZn]

)3/2

.

Thus, the limit of equation (3.0.1) becomes:

lim
n→∞

3 · E[logZn]

(E[logZn])
3/2

= lim
n→∞

3

(E[logZn])
1/2

. (3.1.1)

By large deviation principles [5] we have that,

E [logZn] has the same scale as log log n.

Thus equation 3.1.1 becomes

lim
n→∞

3

(E[logZn])1/2
= lim

n→∞

3

(log log n)1/2
= 0.

Also, we notice that for any fixed n,

E[Zn] = E

[
n∑

k=1

Yk

]
≈ log n is finite.

Thus, we conclude that condition 3.0.1 and 3.0.2 are both satisfied. Therefore, we

must have the CLT hold in this case, which is WZn =
SZn−E[SZn ]√

Var(SZn )

d→ N(0, 1).
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3.2 Future Work

My future work aims to extend the application of Stein’s method to prove the conver-

gence of random sums of weakly dependent random variables to a normal distribution

after standardization. This may involve identifying some appropriate conditions under

which the sum of sequence of weakly dependent random variables still approximates

the standard normal. One specific case is to investigate random variables that ex-

hibit m−dependence, as introduced in locally dependent sequences by Stein’s paper.

Furthermore, another goal is to give an exact error bound for the difference between

the sum of dependent sequences and the standard normal distribution. I plan to

investigate it within the framework of both stationary and non-stationary sequences.

This future work has the potential to solve more complicated questions.
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