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1. Introduction

Identifying potential or suitable habitat for species at risk can provide useful information when developing conservation
strategies. Habitat suitability models based on environmental variables and habitat classes can be created to predict
distribution of important habitats or species occurrence (Ottaviani et al., 2004). Resulting models can guide management
plans, identify gaps in distribution, reveal areas with previously undetected populations, and predict distribution changes in
response to climate change or land-use alterations (Manel et al., 2001). Development of effective habitat suitability models
relies on availability of accurate and up-to-date information on the target species but such information is often limited. In
the case of the Blanding’s turtle (Emydoidea blandingii), conservations plans are empirically derived (The Blanding’s Turtle
Recovery Team, 2002) and, in Canada, are available for areas where extensive research has previously been conducted
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Mapping suitable habitat for a species at risk is one of the first steps in a conservation 
plan. Creating habitat suitability maps can be very challenging when the area of interest 
is large and located in remote areas where field excursions can be difficult to implement. 
Such is the case for the Blanding’s turtle, a threatened species in Ontario, that live on 
the Georgian Bay archipelago. With increasing anthropogenic pressures, maps indicating 
suitable habitat can aid management decisions and prioritize areas for protection. We apply 
an interdisciplinary approach using traditional field data and generalized linear models 
to produce high resolution, regional maps which identify suitable habitat for Blanding’s 
turtles throughout the archipelago. We assessed the accuracy of our models using an 
independent survey dataset of 16 island sites distributed throughout the archipelago, and 
evaluated models using a reference island as a threshold for determining suitability of 
survey sites. Islands with higher proportions of wetlands and vernal pools were generally 
considered to be suitable for Blanding’s turtles compared to those with lower proportions. 
Our findings highlight the importance of both permanent and temporary wet habitats 
for Blanding’s turtles. Based on our final model, approximately 64% of evaluated islands 
support habitat for Blanding’s turtles. Our study is the first to produce detailed habitat 
suitability maps for Blanding’s turtles on the Georgian Bay archipelago. We recommend 
an integrative approach be applied to create habitat suitability maps for other species at 
risk in Georgian Bay.
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(e.g. Nova Scotia and Quebec). For Ontario, development of a recovery strategy has been identified as a priority but
knowledge gaps exist and additional research is required (Government of Canada, 2015).

Across the species’ range, the Blanding’s turtle is known to use aquatic habitats such as vernal pools, bogs, marshes,
and fens (Rowe and Moll, 1991; Hartwig and Kiviat, 2007; Edge et al., 2010; Markle and Chow-Fraser, 2014), and terrestrial
habitats throughout the active season (Ernst and Lovich, 2009). During spring, Blanding’s turtles emerge from overwintering
habitats such as permanent pools (Ross and Anderson, 1990; Graham and Butler, 1993; Joyal et al., 2001), streams (Ross and
Anderson, 1990; Newton and Herman, 2009), marshes (Kofron and Schreiber, 1985; Rowe andMoll, 1991; Edge et al., 2009;
Seburn, 2010), and a variety of upland wetlands (Joyal et al., 2001; Edge et al., 2009; Newton and Herman, 2009; Seburn,
2010). During the reminder of the active season, Blanding’s turtles have been found to display site fidelity to residence
wetlands (Congdon et al., 2011) but utilize a mosaic of aquatic and terrestrial habitats to move among wetlands and access
nesting sites (e.g. Standing et al., 1999; Hartwig and Kiviat, 2007; Beaudry et al., 2009 andMarkle and Chow-Fraser, 2014). In
addition to diverse habitat use, male and female Blanding’s turtles maymake long distance terrestrial movements (Ross and
Anderson, 1990; Rowe and Moll, 1991), suggested to be an important vector for increased gene flow (McGuire et al., 2013);
studies have reported males travelling 900 m in early summer (Markle and Chow-Fraser, 2014) and females migrating over
6 km to nest (Edge et al., 2010). Extensive upland movements in combination with varied habitat use requires conservation
plans which understand Blanding’s turtle response to landscape composition. With the development of habitat suitability
models, we can provide a landscape-level perspective on habitat requirements.

In Canada, the Great Lakes/St. Lawrence population of Blanding’s turtles is listed as both federally and provincially
threatened (COSEWIC, 2005; Government of Canada, 2009). Within the Great Lakes, a population of Blanding’s turtles
exists on the Georgian Bay archipelago, located in the eastern arm of Lake Huron and designated a world biosphere reserve
(UNESCO, 2014). Because Georgian Bay is only 2 h north of Toronto, it is easily accessible to many weekend users and
contains the busiest recreational waterway in Canada (Walton and Villeneuve, 1999). Although the archipelago consists
of mostly pristine habitat (Cvetkovic and Chow-Fraser, 2011), increasing development pressures threaten species and
habitats (Walton and Villeneuve, 1999). Limited data exist because the remote location and large number of islands make it
difficult to conduct intensive field studies in the archipelago. Comparison of two Blanding’s turtle populations on Canadian
Shield, one on an island (protected island, Markle and Chow-Fraser, 2014) and the other on mainland (Algonquin Park,
Edge et al., 2010), revealed differences in habitat use and home range size. Selection of ephemeral wetlands was more
pronounced in the island population, and average home range sizes were smaller compared to the mainland population
(female: 20.5 ha vs. 61 ha; male: 15 vs. 57 ha, respectively; Edge et al., 2010 and Christensen and Chow-Fraser, 2012).
Such a comparison of populations living in different parts of Ontario highlights difficulties that may arise when managers
develop conservation strategies with data derived elsewhere when no relevant information exists for the system of interest
(Hubert and Rahel, 1989). In addition to differences in turtle home range size and habitat use, Georgian Bay is also
recognized as the northern range limit for Blanding’s turtles (Ontario Government, 2014), and this may have implications
for ectotherms that must adapt to cooler temperatures. Therefore, it is important that we develop a habitat suitability
model using parameters appropriate to the Georgian Bay landscape, based on data collected only from the Georgian Bay
archipelago.

To date, three models have been published for the Blanding’s turtle, those of Poynter (2011), Barker and King (2012) and
Millar and Blouin-Demers (2012). Millar and Blouin-Demers (2012) used two modelling approaches (boosted regression
trees and maximum entropy modelling) to predict habitat suitability for southern Ontario. In their resulting models, Millar
and Blouin-Demers (2012) determined that habitat suitability increased with increasing air temperature and wetland area,
and decreasedwith increasing cropland area. Given that cropland is limited only to the southern portion of Georgian Bay, the
southern Ontario model may be unable to discriminate between suitable and unsuitable habitat in most of eastern Georgian
Bay. Results obtained at a broad provincial scale are particularly useful for evaluating species distribution patterns, but are
usually difficult to incorporate into specific conservation or recovery strategies that agencies aim to develop for specific
parcels of land Barker and King (2012) developed a parcel-specific model for the Gatineau Park, Quebec. They identified the
suitability of individual wetlands for Blanding’s turtles; however, transferability of their model to Georgian Bay is limited
by inclusion of habitat features that they identified as being important to Gatineau Park, but which do not correspond with
features in the Shield landscape of Georgian Bay (Edge et al., 2010; Markle and Chow-Fraser, 2014). A similar approach was
used to identify potential Blanding’s turtle habitat in Ohio (Poynter, 2011), although vegetation categories used were too
coarse to be applied to the Georgian Bay context. Overall, it appears that the published models of habitat suitability are not
directly applicable or transferable to the Georgian Bay archipelago.

The primary objective of our study is to develop a habitat suitability model for the Blanding’s turtle specifically for the
Georgian Bay archipelago, so that suitable habitat can be identified and marked for protection in conservation plans before
habitat is degraded or developed. We assume that radio tracking data for a population of Blanding’s turtles on a protected
island can be used to indicate suitable habitat. Therefore, we use landscape composition of the reference island to map
habitat suitability of other islands within the archipelago. Secondly, we investigate changes inmodel accuracy when habitat
data are extracted with different buffers (i.e. circular or grid). Specifically, we hypothesize that the approach which more
specifically quantifies habitat used by radio-tracked turtles (circular buffer centred on locational point)will bemore accurate
in determining important landscape components compared to a more general approach (grid overlaid on the study area).
The resulting model can produce maps at the regional scale for use in conservation and management strategies. We use an
interdisciplinary approach that combines field data, remote sensing, and statistical modelling to produce spatially explicit
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Fig. 1. Mapping area for determining suitable Blanding’s turtle habitat along the eastern shoreline of Georgian Bay. Distribution and number of external
survey zones are labelled A–F.

statistical models to identify and map key habitats for the Blanding’s turtle over a large region, and should advance efforts
to develop effective management plans for Blanding’s turtles throughout the biosphere reserve.

2. Methods

2.1. Study area

Our area of interest includes all islands spanning the eastern shoreline of Georgian Bay from the French River to Severn
Sound (Fig. 1). Specifically, the study area encompasses island habitat in the Parry Sound Ecodistrict, which is found in the
Georgian Bay Ecoregion in the southern portion of the Ontario Shield Ecozone (Crins et al., 2009). Restricting themodel to an
ecodistrict eliminatesmajor landscape, habitat and geological differences which influence vegetation (Ontario Government,
2007) and may result in differences in habitat use by turtles. The Parry Sound Ecodistrict currently supports relatively
high biodiversity, including 11 reptile species at risk; due to increased cottage development and recreational boating,
some habitats are being threatened (Bywater, 2013), although not to the same extent as are wetlands and natural habitats
south of the Canadian Shield, that receive much greater negative impact from urbanization and agricultural development
(Environment Canada, 2013).

2.2. Habitat classification

To map suitable habitat, we require both input data (spatial layers of different habitat types) and a suite of spatial and
statistical tools (see Fig. 2). We created habitat layers prior to model development and included all available habitat types
in Georgian Bay as predictors in our models: forest, wetland, vernal pool, rock, and open water (Table 1; Markle and Chow-
Fraser, 2014).We decided to keepwetland as a broad category rather than sub-dividing since Blanding’s turtles use a variety
of wetlands at the home range scale (Markle and Chow-Fraser, 2014) and use of a particular wetland type may depend on
its availability within an island. Other than vernal pools, all habitat types could be classified from satellite image data;
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Fig. 2. Flow chart outlining methodology applied to create habitat suitability maps.

Table 1
Definitions of habitat types following the Canadian National Wetlands Classification System (Warner and Rubec, 1997; Markle and Chow-Fraser, 2014).

Habitat type Brief description

Wetland Contains water long enough to promote aquatic processes. We classified fens, bogs, swamps, marshes as wetlands in our study area.
Open water Large body of open water where the maximum depth is > 5 m.
Forest Coniferous forest with needleleaf species such as white pine (Pinus strobus) and hemlock (Tsuga spp.). Hardwood forest with

species such as sugar maple (Acer saccharum) and beech (Fagus spp.).
Rock Rocky outcrops characteristic of the Canadian Shield.
Vernal pool Temporary pools that are only seasonally flooded. Also called ephemeral pools.

the vernal pools, however, could not be classified from satellite image data and required manual delineation in ArcGIS
10.1 (ESRI, California, USA). We used a combination of 2008 spring orthophotos (30 cm resolution), Google Earth (Digital
Globe) and ground truthing to map all vernal pools on the islands. We digitized a feature as a vernal pool if we identified a
small temporary pool (usually isolated within a forest matrix) typically visible only in images acquired during springtime.
Temporary pools were often located around permanent upland wetlands or in forested areas.

To create the layer of forest, wetland, rock and open water, we used IKONOS imagery (Geoeye, Dulles, VA, USA), acquired
during 2002 (22 scenes), July 2003 (19 scenes), July and August 2005 (3 scenes) and July 2008 (1 scene). All images were
cloud-free,multispectral (red, green, blue and near infrared), pan-sharpened and radiometrically correctedwith a resolution
of 1 m. We classified IKONOS images in eCognition Developer 8.9.1 (Trimble, Munich, Germany) using a nearest neighbour
(NN) approach at the image object level. Object-based image classification provides benefits over pixel-based classification
such as including object shape and size (Blaschke, 2010) and has been used to classify habitat for Blanding’s turtles inQuebec,
Ontario (Barker and King, 2012). The NN approach combines multiresolution segmentation and supervised classification to
identify object class based on selected training objects (Wang et al., 2004; Grenier et al., 2007). This approach requires a set
of defined features to create a group of training and testing objects. Before training and testing objects were selected, we
developed an initial rule set to classify major bodies of water and to separate upland areas for further segmentation. Once
upland areas were segmented, we selected the training group to be representative of the range of objects present in the
scene which allows for a more accurate classification. Since rule set transferability has been found to vary in its accuracy
(Rokitnicki-Wojcik et al., 2011), each scene was individually classified with the NN approach. We randomly selected 10 of
the 45 classified scenes to determine habitat classification accuracy. For each scene a stratified random sampling method
was implemented similar to that of Grenier et al. (2007). A 1 km × 1 km grid was placed over the scene and points were
randomly generated in each grid. A total of 50 objects per class were verified, excluding objects used for training. Verified
objects (testing group) were then used to compute error matrices and kappa index of agreement (KIA). The kappa index
measures the difference between agreement and agreement by chance (Viera and Garrett, 2005). It is measured on a scale
from 0 to 1, where 1 is perfect agreement and 0 is the outcome expected by chance.

All habitat classes were exported from eCognition 8.9.1 into ArcGIS 10.1 and individual islands in the archipelago were
manually checked for boundary accuracy. All habitat classes were then converted to a 5 m cell size raster.

2.3. Statistical analyses

We used locations of Blanding’s turtle collected in 2011 and 2012 (obtained by radio-tracking and GPS devices; see
details in Markle and Chow-Fraser, 2014) on a protected island (considered our reference site) in southeastern Georgian
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Fig. 3. The circular buffer approach extracts habitat variables centred on the location of interest (Left panel). The grid approach extracts habitat variables
from cells containing locations (Right panel). Notice how the locations in both panels are the same, yet habitat variables extracted differ based on the
approach used.

Bay to quantify suitable island habitat. In total, location data from 15 adult Blanding’s turtles (8 males, 7 females, 509
locations) were used to quantify used or suitable habitat. Turtles were radio tracked at least once per week during the active
season (April–September) and hibernation locationswere collected inNovember 2011, February 2012 and February 2013. To
quantify unused or unsuitable island habitat, we randomly generated 1018 background locations in ArcGIS 10.1 that did not
overlap with turtle locations. We included both suitable and unsuitable locations because modelling techniques that used
both data sources have been shown to outperform those using presence-only data (Elith et al., 2006; Elith andGraham, 2009).
To extract habitat variables, we used the circular buffer approach and the grid approach (Fig. 3). For bothmethods, datawere
extracted as cover percentage in Geospatial Modelling Environment 0.7.2.1 (Beyer, 2014). For the circular buffermethod, we
extracted habitat variableswithin two circular buffers (24 and 58m) surrounding turtle and background locations; distances
were chosen to represent the minimum and maximum distances travelled by turtles on a daily basis in our reference site
(Markle and Chow-Fraser, unpublished).

For the grid method, we overlaid a grid with cell size equivalent to circular buffer area. We extracted habitat variables
from cells containing turtle or background locations.

We used habitat variables (forest, wetland, vernal pool, rock, and openwater) as predictors in 8 generalized linearmodels
run in R 3.2.1 (R Core Team, 2015) to determine the suitability of other islands in Georgian Bay. In a generalized linearmodel,
the expected value of Y (muy) is linearly related to the response variables (Xi) through a link function (f (x)); so that:

f (muy) = b0 + b1X1 + b2X2 + · · · + bkXk.

We chose generalized linear models because they are easily applied to new data to make predictions (Guisan and
Zimmermann, 2000; Early et al., 2008), are better for datasets including both detections and non-detections (Guisan et al.,
1999; Elith and Graham, 2009), and are frequently used in species distribution modelling (Guisan and Theurillat, 2000;
Randin et al., 2006). Since data for the buffer method were expressed in binary format (0 or 1), we ran generalized linear
models (logit link function: f (x) = log(x/1 − x)). We ran negative binomial generalized linear models (log link function:
f (x) = log(x)) for the grid method since data were expressed as counts (many zeros, various integers). In models using the
buffer method, background data were weighted to have equal prevalence to turtle locations.

Of the 8 models, models (a), (c), (e), and (g) include all predictors for each approach (full model with all predictors),
while models (b), (d), (f) and (h) are the models with the lowest corrected Akaike Information Criterion (AICc) for each
approach (reduced model; Fig. 2). We selected an information-theoretic tool as they tend to be preferred to methods such
as stepwise regression (Guisan et al., 2002; Bolker et al., 2009) and the corrected AIC since it is advantageous in small-sample
applications (Burnham and Anderson, 2002).

2.4. Spatial analyses

Our study area contained 16,586 islands, many of which are small and have mostly rocky habitat. Since the smallest
Blanding’s turtle home range in our reference population was 6.5 ha (Christensen and Chow-Fraser, 2012), we eliminated
all rocky islands < 6.5 ha from further analyses since this is likely smaller than the minimal area required by the Blanding’s
turtle on an island in the archipelago. Although Blanding’s turtles home ranges have been estimated for other populations
(e.g. Hamernick, 2000; Piepgras and Lang, 2000; Innes et al., 2008; Schuler and Thiel, 2008; Edge et al., 2010 and Millar
and Blouin-Demers, 2011), estimates can vary among studies due to sample size, duration of study and most importantly
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differences in habitat (Cagle, 1944; Bury, 1979). Therefore, setting the constraint using home range estimates from a
population within our study area provides the most comparable estimate. Of the 16,199 excluded islands, majority were
below 0.25 ha (µ = 0.3 ha ± 0.006) and unlikely to support Blanding’s turtles. The remaining 387 islands in the dataset
had the best chance of containing potential Blanding’s turtle habitat, and we applied a zonal statistics approach to obtain
an overall suitability score for each of the islands. The 8 models run in R 3.2.1 (Fig. 2) yielded statistical outputs that were
applied in ArcGIS 10.1 to produce spatial representations of those equations. Since our reference island is known to support
Blanding’s turtles, the degree of similarity of other islands to our reference site was used to indicate their suitability as
Blanding’s turtle habitat.

2.5. Model evaluation

Testing data were required to determine the relative accuracy of each model’s ability to determine potential or suitable
habitat. Although it is more common to use data partitioning or resampling techniques to derive the testing dataset rather
than using an independent dataset, the latter will yield more robust measures (Verbyla and Litvaitis, 1989; Fielding and
Bell, 1997). We therefore conducted field surveys at 10 additional sites and obtained sighting data for 12 sites from local
citizens (Fig. 1). Citizen sighting data were only used if we could confirm species identification with photographs. We are
withholding the exact location of specific sightings to protect Blanding’s turtles and instead use general survey zones. Sites
were chosen in similar fashion to an equal-stratified design (Hirzel and Guisan, 2002) where shoreline was divided into
regions and we attempted to randomly select sites based on our ability to access selected islands. Surveys were conducted
in 2013 and 2014 during the summer months on sunny, calm days when possible. Each site was surveyed either by foot or
canoe with the aid of binoculars and was searched for 12 person hours. All species of turtles encountered were recorded as
either detected or undetected.

We used a threshold-based evaluation method to assess the appropriateness of using landscape composition of a
reference island to map habitat suitability of other islands in the archipelago. For each model, the score assigned to the
reference island is used as the threshold value. The threshold value is then used to evaluate whether or not external survey
sites should be able to support Blanding’s turtle and accuracy of each evaluation is assessed with field information. For
example, for each model, we calculated the suitability scores for all external survey sites and our reference island. We
then used the score for the reference island as a threshold value. When validating the model with external data, sites with
scores that were greater than the threshold value were considered to be suitable and conversely, sites with scores less than
threshold value were considered to be unsuitable. Models which correctly classified external survey sites in comparison to
the reference island score were retained. Models that failed to correctly classify external survey sites were subsequently
eliminated. Although threshold-based model evaluation is often used to classify areas into categories of either suitable or
unsuitable habitat (Bean et al., 2012), we show final maps using continuous suitability predictions (from 0 to 1) and use
thresholds only for evaluation.

3. Results

3.1. Habitat classification

Our habitat classification of the land cover layer had amean overall accuracy of 92.3%± 1.68with an average kappa index
of agreement of 0.88 ± 0.0198. Therefore, we were confident in using the resulting classification to conduct the habitat
suitability mapping.

3.2. Statistical analyses

We ran 8 differentmodels using a generalized linearmodel in R 3.2.1. In the fullmodels, rock, forest, and openwaterwere
negative predictors of habitat suitability whereas wetland and vernal pools were positive predictors (Table 2). In reduced
buffer approach models (b and d), forest was dropped at both scales. In reduced grid approach models (f and h), vernal pool
was dropped at both scales. At the smaller spatial scale, reduced models that were created with either approach did not
include rock as a predictor (d and h). For models using the buffer approach, wetland was the largest positive predictor of
habitat suitability, followed by vernal pools. On the other hand, for models using the grid approach, vernal pool was the
largest positive predictor of habitat suitability in model (e), and wetland was the primary predictor in models (g) and (h).

For each predictor, we individually plotted estimated marginal means which indicated mean response while holding
other variables in the model at a constant value (Fox, 2003; Table 2). Although we created one set of plots for each dataset,
we only show plots using the 58 m buffer, full model dataset (model (a)) because all results were similar (Fig. 4). Suitability
of an island tended to decrease with proportionate increase in forest, open water and rock; on the contrary, suitability
increased for islands that had a percentage increase in amount of wetland and vernal pools.

When selecting our reduced models (models b, d, f, h), there were instances where the top models had comparable AICc
values. We chose to use AICc to select the reduced model; however, uncertainty exists in any selection process. Although
still debated (Burnham et al., 2011; Richards et al., 2011), models with an AICc difference of less than 2 are considered as
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Fig. 4. We plotted estimated marginal means for each predictor individually using the binomial dataset with a 58 m circular buffer (Dataset 2; see Fig. 2).
Plots were created for each predictor while holding other predictor variables at a constant mean value. Response is shown with 95% confidence intervals.
The x-axis is the value of the predictor and the y-axis is on the probability scale. The points distributed along 0 and 1 of the y-axis are the distribution of
the raw data used to produce plots.

good as the ‘best’ model (Symonds and Moussalli, 2011). In situations where 1AICc is less than 2, models are sometimes
averaged together to create a new ‘best’ model (e.g. Rice et al., 2013), but due to our compositional dataset, averaging was
not a feasible option (see Cade, 2015). Instead, we determined our reducedmodels (models b, d, f, h) as thosewith the lowest
AICc and relied on our external dataset to test the spatial accuracy of all 8 models to determine the final (‘best’) model for
our intended mapping application. Since we do not use our final model to make statistical predictions, but rather a spatial
mapping of suitable habitat, our approach should be valid.

3.3. Spatial analyses and model evaluation

We confirmed presence of Blanding’s turtles at 7 of our 22 external sites (Table 3). During field surveys, we also
encountered additional turtle species such as spotted turtles (Clemmys guttata), midland painted turtles (Chrysemys
picta marginata), snapping turtles (Chelydra serpentina), Northern map turtles (Graptemys geographica) and musk turtles
(Sternotherus odoratus; Table 3). Since all surveyed islands were located on the Canadian Shield, have minimal human
disturbance, and were distributed throughout the eastern shoreline of Georgian Bay, we are confident in extrapolating our
model results to the entire archipelago (Fig. 1; Hirzel and Guisan, 2002 and Vaughan and Ormerod, 2005).

We applied all models in ArcGIS 10.1 to obtain predicted suitability scores for each island in our study site. Of our
22 external validation sites, 7 were eliminated based on the minimum size constraint (<6.5 ha) or because they were
deemed to be located too close to the mainland to function as an ‘‘island’’. After exclusions, we had 15 sites remaining to
assess model accuracy. While the use of field data for model evaluation is considered rigorous (Verbyla and Litvaitis, 1989),
logistics surrounding island sampling limited our ability to survey each island multiple times, even though that is often
desirable. Despite this drawback, our sampling protocol allowed us to detect Blanding’s turtles and therefore we deem this
to be sufficient for purposes of model evaluation. We used the calculated score for our reference island as the threshold for
determining the ability of each model to classify external validation sites. Models (c), (d) and (g) were eliminated because
external siteswere incorrectly classified based on the corresponding threshold value.Model (e) and (f) successfully classified
suitable sites, but incorrectly classified unsuitable sites and were therefore eliminated. Models (a), (b) and (h) (Fig. 5) all
correctly classified suitable sites and the highest number of unsuitable sites, but also classified 4 sites as suitable even
thoughwe did not detect Blanding’s turtles there during our surveys. Of themodels with the highest classification accuracy,
model (a) and (b) estimated that 64% of evaluated islands provided suitable habitat for Blanding’s turtles, whereas model
(h) only estimated 60% of islands to be suitable. Although only 60%–64% of evaluated islands were considered suitable, this
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Table 3
Survey results from each island are reported by corresponding survey zone (see Fig. 1). If a turtle species was
detected, it is indicated with an ‘×’.

Site number Zone ID Turtle species
Blanding’s
turtle

Spotted
turtle

Northern
map turtle

Musk
turtle

Snapping
turtle

Midland
painted turtle

1 A ×

2 A
3 A ×

4 A
5 A ×

6 B ×

7 C × ×

8 C
9 D × ×

10 D
11 E × ×

12 E ×

13 E ×

14 E ×

15 E ×

16 E
17 E ×

18 F
19 F ×

20 F × ×

21 F × ×

22 F × × ×

Fig. 5. Comparison of 3 final models (see Table 2 for corresponding predictor coefficients).

comprised 85%–90% of the total area in this study.Model (a) and (b) identified 90% and 89% of total area evaluated as suitable
habitat for the Blanding’s turtles, respectively; whereas, model (h) identified 85% as suitable.

4. Discussion

When we visually compared the 3 habitat maps (a, b and h) that correctly classified external survey sites, we observed
differences among them (Fig. 5).We ranmodels (a) and (b) using data extractedwith a 58mbuffer.Whilemodel (a) included
all predictors,model (b) included only significant predictors (i.e. forestwas dropped). Bothmodels (a) and (b) yielded similar
scores for islands; however, model (b) discriminated between islands with a smaller percentage of wetlands from those that
had a high percentage of wetlands by giving them lower and higher scores, respectively. Therefore, we rank model (b) more
highly than we do model (a). By comparison, model (h) included only forest, wetland and open water, but the data were
extracted from a grid with size equivalent to the area of a 24-m buffer. Overall, model (h) was very conservative and more
likely tomake errors of omissionwhere an island is given a low suitability score even though the target species is found there.
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A conservative model, like model (h), is more likely to omit important islands that support suitable habitat for Blanding’s
turtles, and lack of sensitivity (with most scores approaching zero) compared to other models make it less desirable for
conservation purposes (Fig. 5). Therefore, we ranked model (h) which only uses percent forest, wetland and open water to
assess island suitability lower thanmodel (b) which uses percentwetland, openwater, vernal pool, and rock because itmore
accurately classified island suitability.

Our final habitat suitabilitymodel (b) indicates that approximately 64%of the evaluated islands or 89%of the totalmapped
area in the archipelago is suitable for Blanding’s turtles. Our final model is consistent with large-scale modelling efforts of
Ontario (Millar and Blouin-Demers, 2012), where Georgian Bay was consistently associated with higher habitat suitability
scores than were sites in southern Ontario. Since our model is intended for use in conservation, false absences (errors of
omission) are more problematic than false presences (errors of commission) especially for the Blanding’s turtle, a species
at risk. We therefore recommend using a model that is prone to errors of commission (model b) where the model predicts
suitable habitat even though the species cannot be detected.While the extent of suitable habitat will always be larger than a
species’ realized distribution and its overestimationmay be preferred, themodel should have reasonably good performance
so that money and resources are not wasted (Fielding, 1999; Zaniewski et al., 2002).

Ourmodels scored the suitability of an island for Blanding’s turtles from 0 to 1, based on the similarity of habitat features
on the island relative to a reference island (Fig. 5). We interpret an island with a score of zero to indicate that the island has
low probability of having any suitable habitat for Blanding’s turtles; conversely, an island with a score of one indicates that
the island has very high probability of containing suitable habitat for the Blanding’s turtle. We cannot, however, assume
habitat suitability scores are proportional to prevalence, which would require model calibration. Our intention is to provide
managers a means to identify locations of suitable habitat so they can conduct proper field studies to survey for Blanding’s
turtles on islands that have high scores.

All models were based on radio tracking data that were pooled from both male and female Blanding’s turtles. While
our overall goal was to determine suitability of islands based on habitat requirements of both sexes, we also ran models
separately for males and females to investigate differences between them. Parameter estimates differed by more than 10%,
indicating that males and females do utilize different habitats in their home ranges; however, wetland habitat remained a
strong positive predictor of suitability for both sexes. For males, vernal pools were also a positive predictor, highlighting the
importance of this habitat feature in the Georgian Bay landscape. We therefore emphasize the need to capture variability in
habitat use by males and females when creating overall models of habitat suitability for the Blanding’s turtle.

Our models revealed the relative importance of wetlands and vernal pools on islands that are deemed suitable for
Blanding’s turtles; the higher the amount of wetland and vernal pools, the more suitable the site. Given that the Blanding’s
turtle is a semi-aquatic species, frequent use of wetlands and vernal pools is expected and confirmed in previous studies
(e.g. Joyal et al., 2001; Congdon et al., 2011; Millar and Blouin-Demers, 2011 and Markle and Chow-Fraser, 2014). Both
Fortin et al. (2012) and Joyal et al. (2001) found that increase in wetland area increased the probability of Blanding’s turtle
occupancy. Simulations run by Gibbs (1993) found that when small ephemeral wetlands were lost from the landscape,
extinction risk for turtles increased, supporting our finding that vernal pools are relatively important. Our models also
suggested that amount of forest had a negative impact on overall island suitability score, or was not significant (Table 2).We
do not interpret this as evidence that turtles do not require forest habitat, because other studies have found that probability
of turtle presence increased with proportion of forest (Fortin et al., 2012; Quesnelle et al., 2013). Instead, Blanding’s turtles
have been found to use forest as upland travel corridors (Joyal et al., 2001) and for aestivation (Ross and Anderson, 1990;
Joyal et al., 2001) in some populations. We do not know the reason for reported differences, but we know that overall,
landscapes with wetlands that are further from roads with more natural habitat composition (i.e. unmodified landscape)
are important for sustaining species at risk (Litvaitis and Tash, 2008; Millar and Blouin-Demers, 2012). We propose that it is
the matrix of natural landscape with wetlands that contribute to the importance of the Georgian Bay archipelago as being
primary habitats for Blanding’s turtles.

Since our model scores the suitability of an island based on the proportion of habitat types present on the landscape,
naturally, some habitats contribute a higher relative proportion in comparison to the other remaining habitats. These type
of data are known as compositional data (Aitchison, 1982) and can lead to collinearity among predictor variables when used
in model development. The nature of compositional data can be seen in modelling applications when signs of predictor
coefficients differ amongmodels with differing variables (Cade, 2015). For example, in amodel without forest as a predictor,
rock becomes a positive predictor (Table 2, model b). In a similar fashion, in a model without vernal pools, wetland becomes
a negative predictor; however, when this happened in model (f), performance was poor (Table 2). Although some degree of
collinearity exists in all field datasets, we aimed to limit impacts of collinearity on our model by restricting our predictions
to the Parry Sound Ecodistrict which features similar landscape composition (Dormann et al., 2013). Moreover, in model
(b) (i.e. our final model), not all predictor variables were retained in the model and, as a result, data were no longer
compositional, which reduces collinearity among predictor variables.

Creating habitat suitabilitymodels for species at risk can be challenging as data on the target species are often limited. Not
only are species-specific data difficult to acquire, but non-contiguous distribution of species-at-risk can affect the accuracy
of habitat suitabilitymodels and lead to inflated errors of commission. For instance, even though the target species cannot be
detected, suitable habitatmaynevertheless exist on islands, as is seen in our finalmodel (model b). In the case of theGeorgian
Bay archipelago, some of the islands with suitable habitat may be located too far to be colonized by the Blanding’s turtle.
Moreover, different water level regimes could lead to the formation of land bridges that allow dispersal to new islands or
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create isolated populations. Since our habitat use models were developed during the summers of 2011 and 2012 (Canadian
Hydrographic Service, 2012), all of our habitats have beenmapped and suitability predicted based a relatively long period of
low water levels. Given that the structure of vegetation communities in coastal wetlands are significantly affected by inter-
annual variation of water-levels (Midwood and Chow-Fraser, 2012), our model may be used in a comparison to investigate
how changes in wetland habitats affect habitat use by Blanding’s turtles under different water-level regimes. Additionally,
although an island may be determined to have suitable habitat, other variables may preclude Blanding’s turtle’s presence
such as predator abundance and quality of nesting, feeding and hibernation sites.

It is common to delineate boundaries around habitat features before assigning habitat suitability scores to them (Store
and Kangas, 2001), even though these delineated boundaries are artificial andmay not necessarily be recognized bywildlife.
For instance, Blanding’s turtlesmaybe able tomakeuse of several islandswithin a certain distance of each other on a seasonal
basis. Thus, an island without any vernal pools, but that has suitable permanent wetlands, may still be used by Blanding’s
turtles if it is locatedwithin swimming distance of an islandwith vernal pools. To our knowledge, use of multiple islands has
not been reported in Georgian Bay, although there is no reason to believe that multiple island use may not occur. Without
data to determine the extent at which Blanding’s turtles can swim to access habitats across multiple islands, we choose to
evaluate each island separately.

We used high-resolution (5 m per pixel) satellite imagery to classify all habitat types within our study area. Acquisition
of satellite imagery occurred during mid-summer (July and August) meaning that we were not able to use these images to
map vernal pools. Instead, we used orthophotos acquired during spring, when pools are usually fully inundated and canopy
cover is minimal. But, even with the combination of spring imagery and some ground truthing, it is likely that presence of
vernal pools had been underestimated. We had neither time nor resources to conduct all the ground surveys to map the full
extent of all vernal pools present on the landscape throughout the year, and this should be acknowledged as a limitation.
Although undermapping of vernal pools may have reduced the overall suitability score of some islands, we surmise that
the error would have been small given the small proportion of vernal pools compared to wetlands, forests and rocks. Since
the magnitude of change for a suitability score is dependent on the proportion of all habitat types on the island, addition or
subtraction of a few vernal pools would not have changed the overall suitability of the island. Wewould needmore detailed
data on movement patterns before we can tease out how Blanding’s turtles respond to variation in size, orientation and
distribution of vernal pools throughout the landscape.

In Georgian Bay, the only way to protect wetlands and vernal pools is to get them designated as provincially significant
under theOntarioWetland Evaluation System (OWES; OntarioMinistry of Natural Resources and Forestry, 2013b). Typically,
wetlands must be larger than 2 ha in order to be eligible for evaluation, but wetlands < 2 ha or those within 750 m
of each other may be evaluated if their ecological importance is determined (e.g. presence of species at risk). Midwood
et al. (2012) found that 89% of the 3771 coastal wetlands inventoried in Georgian Bay are < 2 ha in size, with an average
wetland size of 1.4 ha, but despite their small size supportedmany important fish species (Midwood andChow-Fraser, 2014).
This inventory suggests that many of the relatively pristine wetlands of Georgian Bay are receiving no formal protection.
To receive protection, these wetlands must first be evaluated, and an evaluation is unlikely to be triggered unless nearby
development is pending. Given that both wetlands and vernal pools are significant predictors of site suitability in our model
results, loss or degradation of either land-cover types could have negative impacts on Blanding’s turtles. The importance of
vernal pools for Blanding’s turtles (Joyal et al., 2001; Markle and Chow-Fraser, 2014) and other species (e.g. amphibians) has
been recognized in the literature, but these ephemeral wetlands have yet to receive any formal protection as an independent
category. Currently, the onlyway to protect vernal pools is to have each classified, on a case-by-case basis, as part of awetland
complex through OWES or the Blanding’s turtle habitat regulation (Ontario Ministry of Natural Resources and Forestry,
2013a,b).

Ensuring valuable habitats are protected is essential for long-term conservation efforts, especially because human
development has increased throughout the archipelago in recent years (Bywater, 2013). For areas experiencing higher levels
of development, such as in Severn Sound andHoneyHarbour, availability of habitat suitabilitymaps at the scale of each island
can help managers design more detailed and effective management plans.

5. Conclusion

Wemapped suitable Blanding’s turtle habitat on islands in the Georgian Bay archipelago based on landscape composition
of wetlands, vernal pools, rock, and open water. The most accurate model used data derived from a circular buffer centred
on turtles’ locations at the larger of the two scales (58 m vs. 24 m). Habitat models that used data derived from the grid
approach or using a 24-m scale resulted in high errors of omission, and predicted that between 18% and 55% of evaluated
islands provided suitable habitat. By comparison, our most accurate model indicated that 64% of evaluated islands (89%
total area) have suitable habitats for Blanding’s turtles. The importance of wetlands and vernal pools in determining habitat
suitability for Blanding’s turtles is reflected in the literature, highlighting their high ecological valuewithin the Georgian Bay
archipelago. We produced maps using an interdisciplinary approach combining field data, external validation sites, and a
spatial representation of statisticalmodels to identify suitable habitats for Blanding’s turtles in theGeorgian Bay archipelago.
Due to the sensitive nature of data regarding species at risk, our maps do not include names of specific island sites but we
intend to freely provide our maps to management agencies, municipalities and interested conservation groups.
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