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Abstract Potential impacts of global climate change

on the amount of low-marsh habitat in coastal

wetlands of the Great Lakes are unknown, which

may have important implications for the Great Lakes

fish community that use such habitat. We developed a

generalized linear model that uses only hydrogeomor-

phic (HGM) features and lake elevations to predict the

extent of low marsh in coastal wetlands of eastern and

northern Georgian Bay. The McMaster Coastal Wet-

land Inventory was used as a reference dataset to train

the model, while best available data were assembled to

create a digital elevation model that was used to derive

all HGM features at a lake elevation of 176.17 m

(International Great Lakes Datum 1985). The best

predictive model included depth, slope, and exposure

as HGM variables, yielding an area under the curve

(AUC) score of 0.83. We classified the model output

into low-marsh and open-water habitat using a

threshold value identified by maximizing the true skill

statistic. The classified model output had sensitivity

and specificity scores of 0.80 and 0.75, respectively,

and correctly identified 81% of the low-marsh units

present in the reference dataset with an average 60%

areal overlap between the model prediction and

reference dataset. We applied the model to two

external datasets to check model performance, and

found the lowest AUC to be 0.79, with associated

sensitivity and specificity scores of 0.65 and 0.77,

respectively. Applying this model with future water-

level scenarios should provide a cost-effective alter-

native for forecasting changes in the amount of low

marsh-habitat in Georgian Bay.

Keywords Coastal wetlands � Georgian Bay �Water

levels � Lowmarsh �Hydrogeomorphology �Modeling

Introduction

Coastal wetlands in the Laurentian Great Lakes are a

valuable habitat type that can support impressive

biodiversity and provide important ecosystem services

(Brazner et al. 2001; Costanza et al. 1997; Environ-

ment Canada 2002; Sierszen et al. 2012). These

habitats provide critical habitat for most Great Lakes

fish species (Jude and Pappas 1992; Randall et al.

1996; Wei et al. 2004). Low-marsh is the permanently

inundated component of coastal marsh that is domi-

nated by submersed aquatic vegetation (SAV) and

floating-leaf vegetation that provides habitat for fish

throughout the year (OMNR 2014). Despite their great

economic and ecological value, much of the coastal

wetlands in the Great Lakes basin has been degraded

or destroyed due to anthropogenic activities (Envi-

ronment Canada 2002; Jude and Pappas 1992; Mayer

et al. 2004). In Georgian Bay (Lake Huron), there are
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thousands of coastal marshes ([ 8500 ha; Midwood

et al. 2012), that have remained largely undisturbed by

anthropogenic influences (Cvetkovic and Chow-Fra-

ser 2011). Although incremental human development

pressure is an on-going concern, the more recent and

immediate concern is that of lake-level conditions,

such as the drastic drop in lake levels (Assel et al.

2004) and persistent below-average lake levels that

occurred between 1999 and 2014 (data from the Great

Lakes Water Level Dashboard; Gronewold et al.

2013), that have threatened the long-term health of the

region’s coastal wetlands (Fracz and Chow-Fraser

2013; Midwood and Chow-Fraser 2012). Water levels

in Georgian Bay can vary naturally by up to 2 m, and

are driven in part by quasi-periodic cycles occurring

on scales of years to decades (Baedke and Thompson

2000; Hanrahan et al. 2010; Quinn and Sellinger

2006). There remains much uncertainty about the

potential impacts of global climate change on these

fluctuations, such that there is a broad range of future

lake levels predictions (Angel and Kunkel 2010;

Lofgren et al. 2002; Mortsch and Quinn 1996).

Therefore, scientists must develop approaches to

assess how coastal wetlands may respond to changes

in lake elevations.

Past studies have favored use of a hydrogeomorphic

(HGM) scheme to classify Great Lakes coastal

wetlands (Albert et al. 2005; Ingram et al. 2004;

Keough et al. 1999; Minc 1997). Albert et al. (2005)

defined coastal wetlands as ‘‘lacustrine systems’’ that

are predominantly influenced by lake-level fluctua-

tions and the geomorphic characteristics of the shore-

line. Geomorphic characteristics of the shoreline

affect how protected or exposed a particular site is to

lake processes (e.g. wind waves, ice scour) and those

characteristics can themselves be affected by lake

level (e.g. exposure of shoals under low water

conditions). The HGM classification has been an

effective framework because it encompasses many of

the major processes that affect coastal wetland distri-

bution and composition. Lake-level fluctuation is a

well-documented driver of wetland vegetation diver-

sity (Keddy and Reznicek 1986; Leira and Cantonati

2008; Mortsch 1998; Wilcox and Meeker 1991) and

wetland extent (Fracz and Chow-Fraser 2013;Mortsch

1998; Wei and Chow-Fraser 2008). Geomorphic

characteristics such as substrate slope (Duarte and

Kalff 1986; Duarte et al. 1986) and exposure (Angradi

et al. 2013; Fonseca et al. 2002; Keddy 1982, 1984a, b)

are important drivers shaping community processes

within the wetland. Such wide-spread adoption of the

HGM framework for classifying wetlands provides a

strong rationale for using HGM variables to model

response of coastal wetlands to changing water-level

conditions.

The literature has identified several useful HGM

predictors, including fetch (Lemein et al. 2017) and

geomorphic type (Albert et al. 2005), which were

particularly useful for characterizing emergent and

meadow vegetation communities throughout the Great

Lakes. Water depth and exposure were found to be

significant predictors of the cover of SAV (Angradi

et al. 2013) in a Lake Superior estuary. Hebb et al.

(2013) incorporated water depth into their wetland

community modeling, as have Wilcox and Xie (2007).

In these cases, HGM features were always considered

amongst a suite of other environmental variables like

land cover, water quality, or previous vegetation

communities.

In this study, we propose to use only HGM features

to model the extent and distribution of low-marsh

habitat. We will develop this model for the eastern and

northern shores of Georgian Bay, Lake Huron, where

an existing inventory shows that there are thousands of

coastal marshes (Midwood et al. 2012), many of which

provide important spawning and nursery habitat for

fish (Cvetkovic and Chow-Fraser 2011; Leblanc et al.

2014; Midwood and Chow-Fraser 2012). Given their

ecological importance, our goal is to develop a model

that can be applied to different water-level scenarios to

assess the potential changes to the extent and distri-

bution of low-marsh habitat. While this model will be

developed specifically for eastern and northern Geor-

gian Bay, the approach presented herein can be used as

a framework for evaluating coastal marshes wherever

uncertainty over potential water-level conditions is a

management concern.

Methods

Study area

The geographic focus of our modeling efforts extends

along the eastern and northern shoreline from Severn

Sound in southeastern Georgian Bay toMcGregor Bay

in the northwest (Fig. 1). This region has remained

mostly undisturbed relative to the lower Great Lakes,
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where human impact has been limited to recreational

(e.g. cottages, boathouses, marinas) and residential

development. The bedrock is primarily granitic Cana-

dian Shield and the coastal zone is characterized by a

highly complex shoreline that consists of many small

islands and protected embayments that provide habitat

for fish, birds, and other wildlife.

Lake levels in Georgian Bay fluctuate regularly by

up to 2 m between extreme highs and lows, but

between 1999 and 2014 there was a prolonged period

of stable, low water levels that hovered near record

lows. Notable low-water periods also occurred in

Georgian Bay in the 1960s and 1930s; only the 1930s-

period was characterized by a lack of interannual

fluctuation similar to the recent low-water period, but

Fig. 1 Location of study area in Georgian Bay (relative to

Great Lakes; inset). Cross-hatched study area indicates simpli-

fied extent of study area for low-marsh modeling efforts. Areas

where insufficient elevation data were available for modeling

were removed from the indicated study area
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was several years shorter. Between 2015 and 2017,

lake levels rebounded to above-average levels, with

the result that many coniferous trees and perennial

shrubs that established in the wet meadow zone during

the prolonged drawdown period began to occupy low-

marsh habitat and slowly perished (Boyd 2017).

Hydrogeomorphic parameters

For our modeling, we chose three parameters based on

their well-established relationships with wetland veg-

etation: water depth, substrate slope, and wave expo-

sure. Since data for these parameters are not available

for the entire region of interest, we had to derive them

from a digital elevation model (DEM) that we assem-

bled for Georgian Bay, using the best available

elevation data in terms of both coverage and resolution.

The DEM was built by importing and manipulating

relevant spatial data in ArcMap 10.5 (ESRI, Redlands,

California). These data included navigation charts

produced by the Canadian Hydrographic Service

(CHS), which were used to derive elevation data below

the lowwater chart datumof 176.0 m (all elevations are

referenced to the International Great Lakes Datum

1985). The vertical and horizontal positional accuracy

(95% confidence interval) for the hydrographic survey

data within our study area was at least 0.5 m and 5 m,

respectively (CHS 2013). Although navigation charts

ranged in scale from 1:200,000 (i.e. full Georgian Bay

chart) to 1:1200 (e.g. narrow channels), the majority of

the study area was derived from 1:20,000 scale charts.

Depth soundings, depth contour lines, and the shoreline

elevation from each chart were converted to elevation

values in meters above sea level (International Great

Lakes Datum (IGLD) 1985). Elevation data derived

from the charts were sequentially stacked from the

coarsest to finest scale, with the finer-scale elevation

data replacing the coarser-scale elevation data where

the chart footprints overlapped. We used the Ontario

Provincial DEM v3.0 (OMNR 2013) as the source for

all elevation data above 176.0 m. The horizontal and

vertical accuracy of the input data for our study area

was at least 5 m and 2.5 m, respectively (OMNRF

2016).

We interpolated the Georgian Bay DEM using the

Topo to Raster function in ArcMap 10.5 (based on the

ANUDEM program; Hutchinson 1989) by pooling all

elevation data extracted from the CHS navigation

charts and the Provincial DEM. Input elevation data

were identified as spot (i.e. point elevations) or

contour where appropriate. The hydrology option

was set to ‘‘Enforced’’ and the number of iterations set

to 50. All other input parameters were left as defaults.

Due to the volume of elevation data and geographic

extent of the DEM product, we interpolated the final

DEM as a series of 10 km2 tiles with a 1 km overlap

with all neighboring tiles. All tiles were then

mosaicked together to form the completed Georgian

Bay DEM (GB-DEM) with a pixel size of 10 m. Any

areas with missing or insufficient elevation data were

identified and excluded from further analyses. Within

the context of our wetland habitat modeling, the scope

and accuracy of the GB-DEM was sufficient. A depth

of 2 m is typically accepted as a lakeward boundary

for coastal marshes (Albert et al. 2005; Keough et al.

1999; OMNR 2014) so we expected the majority of

low-marsh habitat to occur between the 0-m (i.e.

shore) and 2-m depth contours. The 0.5-m vertical

accuracy of the hydrographic survey permits sufficient

estimates of elevation below 176.0 m. The steep

nearshore morphology of the study area is such that

with a 10-m resolution DEM the differences in

elevation between adjacent cells often exceeds the

2.5-m vertical accuracy in the topographic survey

data. This still allows for sufficient capacity to

estimate elevation and delineate contours relative to

the working resolution of the GB-DEM.

We used the GB-DEM to derive all HGM feature

layers: depth, slope, and exposure. The depth layer

was calculated by subtracting the elevation value from

our target lake level. We derived the slope layer using

the average maximum technique (Burrough and

McDonell 1998) through the Slope tool in ArcMap

10.5. To develop the exposure layer, we used a

32-point direct fetch measurement as the basis for

wave exposure, similar to the 16-point direct fetch

measurement used by Keddy (1982). From a given

point on the water’s surface, 32 bearing lines were

drawn from the point until they intersected land,

starting at North (0�) with 11.25� spacing between

bearings. The sum of the lengths of all 32 bearing lines

was used as a wave exposure metric for that point; this

calculation was performed with a custom-built tool in

ArcGIS 10.5. The time-intensive computations could

not be performed for all points within the study area.

Instead, we selected a subset of representative sample

locations to capture the variation in wave exposure

values and interpolated between these points. Since
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Midwood (2012) found negligible amount of low

marsh vegetation (i.e. SAV) below 5-m, we first

bounded the study area to only water depths between

the shoreline and the 5-m contour and then placed a

sample point at the center of all spatially distinct 0 –

5 m depth zones within the study area. Sample points

were placed around the perimeter of all islands to

account for their ability to block incoming waves.

Four points were placed around islands with perime-

ters\ 500 m and eight around perimeters[ 500 m.

Finally, we iteratively filled the remaining study area

with sample points until we achieved a maximum

distance of 500 m between adjacent points. This

threshold was a suitable compromise that allowed us

to capture the regional variation in fetch without

spending excessive time on computations. We calcu-

lated the 32-point direct fetch value at each point and

then interpolated between them using a triangulated

irregular network, which was then converted to a raster

layer with the same resolution and cell alignment as

the GB-DEM. This was used as our wave exposure

layer for the study area.

Model development and evaluation

The McMaster Coastal Wetland Inventory (MCWI;

Midwood et al. 2012) is a geodatabase of coastal

wetland habitat in eastern and northern Georgian Bay,

digitized manually from IKONOS and Quickbird

satellite images acquired between 2002 and 2009,

during a period of sustained low water levels with a

calculated mean monthly water level of 176.17 m

(SE = 0.05) across the image acquisition dates. The

coastal marsh habitat was classified as lowmarsh, high

marsh and upstream wetlands. Low marsh consists of

the permanently inundated portion of the wetland and

is dominated by SAV, floating-leaf, and emergent

vegetation types. High marsh is the seasonally-inun-

dated part of the wetland and was bounded by the

shoreline and the forest edge (i.e. ‘‘wet meadow’’ or

‘‘meadow marsh’’). Upstream wetlands are those with

a direct hydrological connection to Georgian Bay that

occur with 2 km from the shoreline (e.g. beaver

impoundments). We used the low marsh layer as our

training dataset to develop the model, and converted

the inventory file to a 10-m raster, coincident with the

GB-DEM. We took the entire extent of low-marsh

habitat in the MCWI (Fig. 1; study area) and then

removed any areas where the bathymetric data were

insufficient or missing. Due to the typically dystrophic

nature of coastal areas in eastern and northern

Georgian Bay, the lakeward extent of the low marsh

zone in the MCWI could not be accurately determined

from the satellite imagery (Midwood et al. 2012),

instead using visible characteristics and shape of the

wetland to estimate the lakeward boundary of the low-

marsh zone. To address possible overestimates of the

areal extent of low marsh we restricted the remaining

study area to water depths between shore and 5 m

deep, since that is the maximum depth at which we

would expect to find SAV in Georgian Bay (Midwood

2012). Hereafter we will refer to the area entrained by

the shoreline to the 5 m depth contour as the ‘‘coarse

study area’’. We then determined the distribution of

slope and wave exposure values and the upper 95th

quantile for all remaining low-marsh areas. These

values were used as thresholds to remove any outlying

low-marsh areas. The depth, slope, and exposure

cutoffs were used to delineate areas that were deemed

to be suitable for development of lowmarsh; hereafter,

we will refer to this as the ‘‘effective study area’’,

which can be further divided into low marsh or open

water. Two-thirds of the classified lowmarsh and open

water served as the training dataset, while the

remaining third served as the test dataset.

We set our lake level to 176.17 m because that was

the calculated mean monthly lake level when the

imagery used to delineate the MCWI wetlands was

acquired. We calculated the HGM feature values for

every cell in the training dataset and used those as

predictors in a series of generalized linear models run

in JMP 13.0.0 (SAS Institute Inc., Cary, NC) to predict

the probability of a location supporting low marsh or

open water. The generalized linear model consists of a

random component, a systematic component, and a

link function (Quinn and Keough 2002). Since we had

classified the training dataset into two habitat types

(low marsh = 1, open water = 0), we used a logit link

function that is used for modeling binary data. We

used each HGM feature as a single predictor and each

possible combination of features for a total of seven

different model runs. The generalized linear models

calculated the probability that low-marsh habitat was

present at a particular location.

We used a receiver operating characteristics (ROC)

plot to rate each model’s performance since it

provided a threshold-independent evaluation (Fielding

and Bell 1997), that is, the discrimination between
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open-water and low-marsh habitat was not biased by

the threshold used to differentiate between these

classes (Deleo and Campbell 1990). The ROC plot

consists of the sensitivity (true-positive fraction)

plotted against 1 minus specificity (false-positive

fraction) for all possible threshold values (Fielding

and Bell 1997). The area under the curve (AUC) of the

ROC plot is used as an index of overall model

performance, regardless of threshold (Deleo 1993),

where 0.5 indicates that the model performance is

comparable to random (i.e. an event has a 50% chance

of being correctly classified) and an AUC of 1.0

indicates that the model performs perfectly (i.e. 100%

chance of an event being classified correctly).

We selected the best-fitting model based on the

AUC values from the ROC plots. For the best-fitting

model, we found the threshold value that maximized

the true skill statistic and used that threshold to classify

our model output into low-marsh or open-water

habitat categories. The true skill statistic is calculated

as the sensitivity plus specificity minus 1 for a given

classification threshold, where values can range from

- 1 to 1. We used this metric to select a classification

threshold because it maximizes both our true positive

and true negative classification rates and is indepen-

dent of prevalence (Allouche et al. 2006), which was

important since our low-marsh habitat category made

up only a small portion of our overall dataset. We used

a confusion matrix to evaluate the performance of the

classified model output. We validated the model using

the test dataset using the AUC score for the unclas-

sified model output and a confusion matrix for the

classified output. We then pooled the test and training

datasets and repeated the AUC and confusion matrix

evaluations on the full reference dataset (i.e. the

effective study that was classified as low marsh or

open water based off the MCWI).

Two large embayments in eastern Georgian Bay

were excluded from the study area because of gaps in

the bathymetric data available from the CHS naviga-

tion charts, Tadenac Bay and Sturgeon Bay (near

Pointe au Baril, ON). Both embayments were mapped

as part of the MCWI (Midwood et al. 2012) so

reference habitat information was available. We

constructed DEMs for each site using the same

methods as for the GB-DEM, but substituted the

bathymetric data from the CHS navigation charts with

bathymetric data collected from an off-the-shelf sonar

unit (e.g. Lowrance HDS7 or comparable; horizontal

accuracy approx. 3 m, vertical accuracy approx.

30 cm) for unrelated survey work. We continued to

use the Ontario Provincial DEM v3.0 (OMNR 2013)

as the source of our elevation data above 176.0 m. All

HGM feature layers were derived in the same manner

as for the GB-DEM, and the MCWI reference data

were limited to the same depth, slope, and exposure

thresholds as the effective study area. We ran the best-

fitting model with the HGM data from each embay-

ment and evaluated the model performance and

classified output using the same methods described

above.

For the full dataset (i.e. test and training) we used a

confusion matrix to evaluate the classified output from

the best-fitting model within the effective study area.

We included an additional category, ‘‘excluded’’, to

denote any areas that had slope or wave exposure

values above the 95th quantile and that had been

removed while creating the effective study area. We

made this evaluation relative to the coarse study area

to evaluate how the model performed in response to

the cutoffs in slope and wave exposure. We main-

tained the 0–5 m boundary of the coarse study area

because that threshold was based on empirical field

observations (Midwood 2012). We then overlaid

categories from the confusion matrix over the study

area to visually assess the accuracy of the classifica-

tion and to look for possible reasons to explain errors.

Since low-marsh habitat class had such low preva-

lence in the dataset, we were more concerned with

omission errors (i.e. false exclusion) than with com-

mission errors (i.e. false inclusion).

In addition to the pixel-based evaluation of the

classified model output, we also assessed the ability of

our model to identify units of low-marsh habitat (i.e.

spatially distinct patches of lowmarsh) in the effective

study area. We considered it a ‘‘match’’ when some

portion of a reference low-marsh unit was classified

correctly by the model. For each match, we calculated

the percentage reference unit that was correctly

classified. Using multiple cutoffs of minimum area,

we calculated the sensitivity (i.e. fraction of correctly

identified low-marsh units) and mean overlap (i.e.

percentage reference low-marsh unit that was cor-

rectly classified) to evaluate if there is a minimum

low-marsh unit that must be used to achieve accept-

able model performance.
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Results

Model development and evaluation

Once we removed areas with insufficient bathymetric

data and further excluding areas deeper than 5 m, we

obtained 3619 ha of low-marsh habitat and 37,092 ha

of open water. The effective study area, however,

which is restricted to the upper 95th quantile of slope

(7.096%) and wave exposure (71,464 m), contained

3259 ha of low-marsh habitat and 13,964 ha of open

water.

We used our training data subset to run seven

different generalized linear models, one for each

permutation of the depth, slope, and wave exposure

predictors (Table 1). For every model run, all predic-

tor variables were negatively correlated with the

probability of a location supporting low-marsh habitat.

The best-fitting model with respect to the AUC scores

was the full model that included depth, slope, and

wave exposure as predictor variables (AUC = 0.831).

This was followed closely by the depth-slope model

with an AUC score of 0.825. Of the models with only a

single predictor variable, the depth-only model per-

formed best, followed by slope-only, then wave-

exposure-only. The AUC score of 0.7627 for the

depth-only model indicates that there is a 76% chance

that the model will correctly classify a given point

within the effective study area as low-marsh habitat,

and is a good overall fit. Slope-only also performed

well at 0.7095. Exposure-only fared much poorer with

an AUC of 0.5697, indicating it was a weak predictor

of low-marsh presence within the effective study area

boundary. The performance of the single-predictor

models provides a sense of the relative importance of

each of the variables.

The equation for the full model is as follows:

where P(LM) is the probability of low-marsh habitat

occurring at a given location, D = depth, S = slope,

and E = exposure. For this model, the true skill

statistic was maximized at a P(LM) value of 0.203,

Table 1 Predictor coefficients (± SE) and performance metrics for the seven generalized linear model runs with the training dataset

Parameters Intercept Depth Slope Exposure AUC Rank

All 0.94271

(± 6.036 9 10-3)

- 0.97224

(± 3.151 9 10-3)

- 0.42400

(± 1.773 9 10-3)

- 1.50 9 10-5

(± 1.6547 9 10-7)

0.8306 1

Depth-slope 0.62952

(± 4.924 9 10-3)

- 1.00638

(± 3.162 9 10-3)

- 0.39424

(± 1.712 9 10-3)

NA 0.8250 2

Depth-exposure - 0.01752

(± 4.568 9 10-3)

- 1.03345

(± 3.138 9 10-3)

NA - 7.29 9 10-6

(± 1.55 9 10-7)

0.7673 3

Depth - 0.14162

(± 3.748 9 10-3)

- 1.04886

(± 3.134 9 10-3)

NA NA 0.7627 4

Slope-exposure - 0.04430

(± 5.103 9 10-3)

NA - 0.48001

(± 01.762 9 10-3)

- 2.19 9 10-5

(± 1.57 9 10-7)

0.724 5

Slope 0.55675

(± 3.721 9 10-3)

NA - 0.43794

(± 1.689 9 10-3)

NA 0.7095 6

Exposure - 1.17352

(± 3.603 9 10-3)

NA NA - 1.44 9 10-5

(± 1.48 9 10-7)

0.5697 7

Models were evaluated and ranked from the area under the curve (AUC) value derived from their respective ROC plots

PðLMÞ ¼ 1

1þ Expð�ð0:94271 � 0:97224ðDÞ � 0:42310ðSÞ � 1:5013� 10�5ðEÞÞ
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indicating that any cell with a value equal to or larger

than the threshold was classified as low marsh and any

smaller value was classified as open water. Based on

the classified output of the full model, there are 10,152

low-marsh units (i.e. spatially distinct patches of

wetland habitat), comprising a total area of 6166 ha

within the effective study area.

The model output for the test, training, and full

Georgian Bay dataset all had very similar sensitivity

and specificity values of approximately 0.80 and 0.75,

respectively (Table 2). Consistency in the perfor-

mances of the training and test datasets justified re-

combining them into the full Georgian Bay dataset for

subsequent evaluations of model performance. For

both of the external datasets (Sturgeon Bay and

Tadenac Bay), the model performed comparably to

the full Georgian Bay dataset. Model performance for

Tadenac Bay was marginally better than that for the

full Georgian Bay dataset, and even though the model

performed poorest in Sturgeon Bay, it still received an

AUC score of 0.785 (Table 2). Sensitivity of the

classified model output was lowest for Sturgeon Bay;

based on visual assessments, this can be attributed to

the consistent underestimation of the lakeward extent

of low marsh, and not to errors associated with

classifying low-marsh units.

The model faithfully reproduced the MCWI refer-

ence layer (Table 3), correctly classifying 80% of the

low-marsh habitat and 75% of the open-water area in

the effective study area. Applying the slope and wave

exposure thresholds excluded 23,128 ha of open water

from the effective study area, but also 360 ha of low-

marsh habitat. The model could not accurately

discriminate between open water and low marsh along

the lakeward boundary of correctly classified low-

marsh units, and this resulted in both omission and

commission errors (Fig. 2). Some low-marsh habitats

were also misclassified along deep channels (natural

or dredged) bordering wetlands and in nearshore areas

where true elevations were higher than indicated by

the GB-DEM. The latter resulted in some low-lying

areas being misclassified as low marsh that were in

reality high-marsh habitat, which should not have been

excluded from the effective study area. Approximately

Table 2 Performance of best-fitting model with different datasets

Dataset AUC Overall Sensitivity Specificity TSS

Training 0.831 0.755 0.799 0.745 0.544

Test 0.831 0.756 0.801 0.745 0.546

Full GB 0.831 0.755 0.800 0.745 0.545

Sturgeon Bay 0.785 0.739 0.654 0.765 0.419

Tadenac Bay 0.849 0.800 0.766 0.807 0.573

Training and test datasets were randomly selected subsets, 2/3 and 1/3 respectively, of each habitat type (low marsh and open water)

from the effective study area dataset. Area under the curve (AUC) of the ROC plot for respective model runs was used as threshold-

independent evaluation of the model performance. Model outputs were classified into open water and low marsh based on a threshold

value of 0.203. Overall performance (total correct classification), sensitivity (true positive fraction), specificity (true negative

fraction), and true skill statistic (TSS) were derived from confusion matrices

Table 3 Confusion matrix of the classified output of the best model (i.e. depth, slope, exposure) of the full Georgian Bay dataset

within the effective study area

Full model

LM (6165.87) WTR (11,057.28) EXCL (23,488.30)

Effective study area (17,223.15) LM (3259.11) 2605.89 [0.80] 653.22 [0.20] 360.14 [NA]

WTR (13,964.04) 3559.98 [0.25] 10,404.06 [0.75] 23,128.16 [NA]

Area of each class (LM low marsh, WTR open water, EXCL excluded) is reported in hectares (round brackets) and as a proportion of

the reference class (square brackets). The excluded class indicates the area of low marsh and open water in the reference dataset that

was in the 0–5 m depth zone but above the 95th quantile for slope and wave exposure. NA not applicable
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10% of the low-marsh area in the coarse reference

dataset had been incorrectly excluded from the

effective study area, which included very steep areas

along the shoreline. In these areas, nearshore slopes

had been overestimated in the GB-DEM due to

resolution limits, such that a tall cliff face adjacent

areas with a gradual nearshore slope appeared as a

very steep slope. This typically resulted in omission of

fringing wetland that is frequently found in such

geomorphic settings. Similarly, we found that exclu-

sion of low-marsh due to the wave exposure cutoff was

largely attributable to the resolution of the GB-DEM.

In southeastern Georgian Bay, there are areas with

relatively high wave exposure but the water is

Fig. 2 An area in southeastern Georgian Bay that is represen-

tative of the typical classification successes (true) and failures

(false) of the model in predicting the presence of low marsh

(LM) and open water (WTR) relative to the reference dataset.

Excluded (excl) categories indicate LM and WTR that were

present in the reference dataset but outside the effective study

area of the model
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relatively shallow in the nearshore (\ 2 m) and often

contain many shoals and rocks that can attenuate wave

exposure; however, since these features occur at a

spatial scale that is finer than our DEM can resolve, the

calculated exposure for these areas tended to be

overestimated and led to misclassification of low-

marsh habitat as open water.

The MCWI reference dataset contained 2840 low-

marsh units within the effective study area (mean ±

SE: 1.42 ha ± 0.23). The model correctly identified

81% of the reference low-marsh units with a mean

overlap of 60%, when no minimum low marsh size

threshold was applied. Themodel sensitivity andmean

overlap improved as the minimum area threshold for

low marsh units increased (Table 4). When only low-

marsh units larger than 1.0 ha were considered, the

model sensitivity was nearly 100% (only one fringing

wetland occurring along a steep channel had been

missed) with mean areal overlap of 74%.

Discussion

Overall, our full model performed remarkably well,

yielding AUC scores of 0.785–0.849 for model runs

with all datasets, including two independent datasets

(Table 2), and acceptable performance of the classi-

fied model output (Table 3). Further, its ability to

correctly identify low-marsh units from the reference

dataset was strong, correctly identifying over 99% of

low marsh units from the MCWI that were larger than

1.0 ha (Table 4; for reference, with the 10 m resolu-

tion of the GB-DEM a 0.1 ha low-marsh unit was the

equivalent of 10 pixels). The performance of the

model at that scale is relevant since Midwood et al.

(2012) found that the average low marsh unit in

eastern and northern Georgian Bay had an area of

1.4 ha, and the Ontario Wetland Evaluation System

indicates that provincially significant wetlands must

be[ 2 ha in size, either as a single wetland or a

complex consisting of functionally-grouped set of

smaller wetlands (OMNR 2014). Based on a simple

visual assessment of the predicted low marsh area (i.e.

Fig. 2), the model capably differentiated between low-

marsh and open-water habitat types. In cases where the

model overestimated the lakeward extent of the low

marsh area compared with the MCWI, we confirmed

that the predicted extent was generally consistent with

field observations (J.D. Weller, pers. obs).

Despite the promising model performance, there

were still notable classification errors: the exclusion of

360 ha of low-marsh habitat from the effective study

area, and the misclassification of 653 ha of low marsh

and 3560 ha of open water (Table 3). The most

commonly misclassified area was along the lakeward

edge of low marsh areas, but this is largely

attributable to the nature of the reference dataset.

The habitat types in the MCWI (Midwood et al. 2012)

were manually delineated from satellite imagery and

the lakeward extent of the low marsh zone was

delineated without the benefit of bathymetric data. As

pointed out byMidwood et al. (2012), a set of heuristic

rules had been used to estimate the lakeward boundary

of the low marsh zone based on the morphology of the

site and observable wetland characteristics. These

differences in ruleset is one of the main reasons for the

lower areal estimate of low marsh in the MCWI

relative to our model output.

Exclusion of 360 ha of low marsh corresponding to

the effective study area accounted for nearly 10% of

the total low-marsh area from the MCWI, which was

already a small component of the total dataset. These

Table 4 Ability of the model to identify low marsh units (‘‘Match’’ = correctly classify some portion of a low-marsh reference unit),

with the mean proportion of overlapping area for matched units and the fraction of correctly classified units from the reference dataset

LM unit size (ha) # of units in MCWI # of matches Mean proportion overlap (± SE) Sensitivity

All 2840 2294 0.60 ± 7.96 9 10-3 0.81

[ 0.1 1441 1374 0.67 ± 7.96 9 10-3 0.95

[ 0.2 1072 1035 0.68 ± 9.17 9 10-3 0.97

[ 0.5 622 615 0.71 ± 1.10 9 10-2 0.99

[ 1.0 389 388 0.74 ± 1.28 9 10-2 1.00

Multiple minimum area cutoffs were included to evaluate model performance at different spatial scales
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exclusions are the result of overestimated slopes

immediately along the shoreline in areas where the

resolution of the GB-DEM was not sufficient to

accurately capture the true landscape structure.

Although this was a pervasive issue throughout the

study area given the rocky nature of the landscape,

mostly narrow bands of shoreward low-marsh habitat

were excluded. Omission errors due to inflated expo-

sure as a result of the inability of the GB-DEM to

detect shoals in the shallow region of southeastern

Georgian Bay (see Fig. 2) will not be corrected until a

finer-scale elevation data set becomes available. We

acknowledge that the scale of evaluating these HGM

features is important (Duarte and Kalff 1990) but

incorporating different scales of HGM data into this

modeling effort was beyond the scope of this study.

Many management agencies operationally define

the lakeward extent of coastal wetlands to be the 2 m

depth contour (Albert et al. 2005; Keough et al. 1999;

OMNR 2014). In this study, we explicitly applied a

5-m depth limit because we wanted to ensure our

region of interest included all depths where aquatic

vegetation could potentially colonize. Even so, our

classified model output predicted a total 6166 ha of

low marsh, of which 6141 ha was in water\ 2 m

deep. In fact,\ 0.4% of our total predicted low-marsh

habitat occurred in depths outside the accepted

lakeward extent; therefore, the model predictions are

consistent with the generally accepted criteria for the

lakeward boundary of coastal wetlands. Even though

the total area of low-marsh habitat predicted by the

model is nearly double that of the MCWI, we believe

this to be an underestimate of its lakeward extent

because the model was trained with a conservative

dataset. Sonar logs collected from a set of coastal

wetlands that were surveyed in southeastern and

northern Georgian Bay (J.D. Weller unpublished; see

Fig. 3) support this observation, with SAV extending

further lakeward than the predicted low-marsh extent.

Our model does not take into account lake-level

fluctuation and assumes a static lake level. Water-level

fluctuations are a key feature of Great Lakes coastal

wetlands (Environment Canada 2002) and the role that

water-level fluctuation plays in coastal wetland pro-

cesses is well documented (Keddy and Reznicek 1986;

Leira and Cantonati 2008; Mortsch 1998; Wilcox and

Meeker 1991). Our model attempts to predict extent of

lowmarsh, as a general habitat category, and we do not

attempt to predict any level of community

composition or structure within that habitat area.

Further, our training dataset (MCWI; Midwood et al.

2012) was delineated from imagery captured at least

3 years into a period of sustained low water levels.

Assuming there is a 2 to 3 year lag time for wetland

communities to respond to a shift in water levels

(Gathman et al. 2005; Quinlan and Mulamoottil 1987;

Wilcox and Nichols 2008), the wetland community

should have responded to the new water level condi-

tions by the time the imagery had been acquired. We

assume that our training dataset is representative of a

low-marsh community that had adjusted to the

stable water-level regime and in which different

vegetation classes occupied their ‘‘optimal’’ depth

range. Although the scope of the present paper did not

permit it, inclusion of prior hydrographic conditions in

the model would be a worthwhile refinement for future

consideration.

We restricted our model evaluations to the best-

fitting model, which was the full HGM model. Our

depth-slope model performed nearly as well as the

full-model, with AUC scores of 0.825 and 0.8306,

respectively (Table 2). This is a computationally

simpler model without sacrificing much in terms of

performance. Deriving the wave exposure layer was

by far the most computationally demanding process.

An exposure threshold is still necessary to delineate

the effective study area, but a reduced exposure layer

could be derived that simply aimed to classify areas as

above or below the exposure threshold. The exposure-

only model had an AUC of 0.5697, indicating that it

was only marginally better than random as a predictor

of low-marsh habitat within the effective study area.

Nevertheless, the value of the exposure layer was in

delineating the region of interest that contained

potential low-marsh areas. The majority of

23,128 ha of open water that were excluded from the

effective study area (Table 3) can be attributed to

applying the wave exposure threshold.

Inventories of coastal wetland are required to

evaluate how these habitats may change over time

and this HGMmodeling approach is a practical way to

address current data gaps and limitations. Large-scale

efforts to inventory wetland habitat typically rely on

remotely-sensed imagery (i.e. aerial or satellite

imagery) to identify and delineate wetland areas

(Bourgeau-Chavez et al. 2015; Ingram et al. 2004;

Midwood and Chow-Fraser 2010; Midwood et al.

2012). While this is certainly an effective approach,
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the spatial and temporal extent of the inventory is

limited by available imagery. Given that it is not

always possible to access suitable images to reflect

past and future conditions outside the range of recently

observed conditions, our HGM modeling approach

only requires a suitable training dataset and an

appropriate DEM. This approach was particularly

well-suited to our Georgian Bay study area because of

limited anthropogenic impact and the fact it is

underlain by weather-resistant Canadian Shield. As

such, we are confident that our GB-DEM is an

acceptably accurate representation of the true eleva-

tion of the area for upwards of several decades into the

past or future. This approach may be less appropriate

Fig. 3 Comparison of modeled low marsh (hatched area) to

aquatic vegetation data collected using sonar at a lake level of

176.75 m. Sonar data is expressed as biovolume (percent of the

water column occupied by aquatic vegetation), where 0% is bare

substrate and 25–50% approximates moderate density aquatic

vegetation. Themodel underestimates the lakeward extent of the

low marsh vegetation and does not capture the patchiness of

aquatic vegetation within the wetland
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in areas where the landscape is subject to change on a

much smaller timescale (e.g. dredging, shifting sand

bars) or would require additional calibration of the

DEM.

Data availability was certainly the most significant

obstacle to overcome in this study, and we would

qualify our efforts as a ‘‘best-possible’’ effort for

Georgian Bay. The Ontario Provincial DEM v3.0

more than met our requirements for spatial scale, but

lacked desirable resolution. In contrast, the resolution

of the CHS data was an improvement over the

comparable open-source bathymetric data but the

coverage was not comprehensive. The Georgian Bay

archipelago contains thousands of islands and shoals

and in many areas, a comprehensive bathymetric

survey is not possible. The morphological complexity

of the landscape relative to the resolution of available

elevation data is certainly a challenge inherent with

this modeling approach, as highlighted by the abrupt

and irregular changes in elevation that occur in a

granitic landscape like Georgian Bay. This can be

addressed through the collection of improved eleva-

tion datasets, which is a long-standing need identified

by other researchers studying Great Lakes coastal

wetlands (Ciborowski et al. 2009; Hebb et al. 2013;

Ingram et al. 2004).

In this paper we detailed the development and

validation of our low-marsh model, but a comprehen-

sive application of the model to eastern and northern

Georgian Bay across a range of lake levels is found in

Weller and Chow-Fraser (2018). The authors mapped

the extent and distribution of low-marsh habitat at five

lake levels (175.5–177.5 m, 0.5 m intervals) spanning

the range of historically observed conditions. They

found that low-marsh area was largest under low lake

levels (176.0 m), but tradeoffs between area and

volume of low-marsh habitat may have important

implications for fish habitats. Weller and Chow-Fraser

(2018) did not consider any novel lake level conditions

(i.e. extreme highs or lows) since projections over the

next century are generally within the historically

observed range (Angel and Kunkel 2010; Lofgren

et al. 2002), but there is no operational limitation in

applying the model to novel lake levels. In the case of

our Georgian Bay study area, the different vertical

accuracies of the elevation data used to develop the

GB-DEM (i.e. above or below 176.0 m) had implica-

tions for interpreting the model outputs. The coarser

elevation data above 176.0 m resulted in larger

commission errors under high lake levels (i.e.

177.0–177.5 m) which were addressed by applying

several mask layers to improve the low-marsh habitat

maps.

Lake levels play a key role in shaping coastal

wetlands habitats. The uncertainty about future lake

levels necessitates a means to predict and evaluate

how coastal wetlands may respond to these novel

conditions. The HGM modeling approach that we

have demonstrated in this paper should satisfy that

need and serve as a jumping-off point for more refined

analyses.
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