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Abstract Phragmites australis (Cav.) Trin. ex

Steudel subspecies australis is one of the worst plant

invaders in wetlands of North America. Remote

sensing is the most cost-effective method to track its

spread given its widespread distribution and rapid

colonization rate. We hypothesize that the morpho-

logical and/or physiological features associated with

different phenological states of Phragmites can influ-

ence their reflectance signal and thus affect mapping

accuracies. We tested this hypothesis by comparing

classification accuracies of cloud-free images

acquired by Landsat 7, Landsat 8, and Sentinel 2 at

roughly monthly intervals over a calendar year for two

wetlands in southern Ontario. We used the Support

Vector Machines classification and employed field

observations and image acquired from unmanned

aerial vehicle (8 cm) to perform accuracy assess-

ments. The highest Phragmites producer’s, user’s, and

overall accuracy (96.00, 91.11, and 88.56% respec-

tively) were provided by images acquired in late

summer and fall period. During this period, green,

Near Infrared, and Short-Wave Infrared bands gener-

ated more unique reflectance signals for Phragmites.

Both Normalized Difference Vegetation Index and

Normalized Difference Water Index showed signifi-

cant difference between Phragmites and the most
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Introduction

Phragmites australis subsp. Australis (Cav.) Trin. ex

Steudel (the common reed) is a perennial grass that

grows in aquatic, semi-aquatic, and terrestrial habitats

throughout the world. Saltonstall (2002) identified 27

genetically distinct groups (haplotypes) worldwide, of

which 11 have been found in North America. Over the

past two decades, the European haplotype M began to

make rapid incursions into Canada and the U.S.,

especially into coastal wetlands of the Laurentian

Great Lakes (Wilcox et al. 2003; Tulbure et al. 2007;

Wilcox 2012; Bourgeau-Chavez et al. 2015), and
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confused classes (cattail; Typha latifolia L., and 
meadow marsh) during the late summer and fall 
period. Since meadow marsh separated out best from 
Phragmites and cattail in the February image, we used 
it to mask the meadow marsh in the July image to 
reduce confusion. The unique reflectance signal of 
Phragmites in late summer and fall is likely due to 
prolonged greenness of Phragmites when compared to 
other wetland vegetation, large, distinct inflorescence, 
and the water content of Phragmites during this 
period.
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along highway corridors (Saltonstall 2002; Lelong

et al. 2007). This haplotype exhibits invasive charac-

teristics, including its ability to aggressively colonize

exposed mud flats sexually (through seeds), and then

expand asexually (through rhizomes) to form dense

monocultures that inhibit biodiversity of other plants

and wildlife (Meyerson et al. 2000; Markle and Chow-

Fraser 2018). Its rapid spread has been attributed to it

being a superior competitor against other emergent

vegetation (Rickey and Anderson 2004; Uddin et al.

2014) and to being more tolerant of disturbances (e.g.

road maintenance and changes in hydrologic regimes)

and stress (e.g. increased salinity due to road de-icing

salts) (McNabb and Batterson 1991; Marks et al. 1994;

Chambers et al. 1999; Saltonstall 2002).

Due to its competitive traits against native wetland

vegetation, the invasive haplotype (henceforth

referred to as invasive Phragmites) has successfully

invaded many wetlands in south western Ontario and

have become the dominant species since the late

1990s. Despite the destructive nature of this invader,

very little control of invasive Phragmites occurred in

the province of Ontario until a pilot project in 2007

involving Roundup Ultrá (Gilbert 2015). Glyphosate,

the active compound in Roundup Ultra2 had already

been found to be effective in controlling the growth of

invasive Phragmites in several jurisdictions within the

USA (Gilbert 2015). Other than chemical control,

mechanical control and prescribed burning is also

being used currently for Phragmites management. To

track the rapid rate of colonization and to assess the

effectiveness of control strategies implemented, fre-

quent monitoring and mapping of wetland vegetation

has become an essential aspect of sustainable marsh

management (Adam et al. 2010).

Traditional floristic mapping requires extensive

field work, collection of taxonomic information,

ancillary data analysis, and visual estimation of

percentage cover of each species, which are costly

and labor intensive (Lyon andMcCarthy 1995). Due to

these limitations, traditional mapping programs have

been limited to studies at the site level. For mapping

wetland at the regional level, more cost-effective

remote sensing techniques can be used because they

require comparatively less but more strategic field

surveys, and less time required for mapping protocols.

An additional benefit is that remotely sensed imagery

is acquired repeatedly and provide archived data,

which can be easily incorporated into a Geographic

Information System (GIS) for further analyses and to

study the spatial dynamics of plant assemblages

(Ozesmi and Bauer 2002). Such approaches have

been used successfully to map invasive plant species

in marshes, where the absence of tree cover gives the

sensor an unblocked view of the target species (Laba

et al. 2008; Hestir et al. 2008; Bourgeau-Chavez et al.

2015).

Mapping individual species in marshes have sev-

eral challenges. First, meteorological conditions can

lead to lower accuracy because the specular reflec-

tance of sunlight by the water surface often mixes with

the signature of other land-cover classes (Bostater

et al. 2004; Morel and Bélanger 2006). Water depth,

presence of suspended and dissolved materials in the

water column, and flow conditions can also affect

reflectance by water, which would eventually affect

land-cover classification (Hestir et al. 2008). Previous

researchers have dealt with these water-related chal-

lenges by using different empirical criteria, image

correction with field spectrometer measurements, and

adjusting image acquisition time in case of air borne

data (Bostater et al. 2004; Morel and Bélanger 2006).

Other than the physical conditions, biological hetero-

geneity may also affect mapping accuracy of wetland

vegetation.

Differences in phenological stage (i.e. timing of

flowering, senescence, and changes in leaf and canopy

structure) can also influence the reflectance signatures

of co-occurring species (Hestir et al. 2008). Since most

of the wetland species share similar habitats and are

adapted to the same environmental conditions, they

share similar morphological features such as leaf

arrangement and canopy architecture that are difficult

to distinguish visually. By identifying the phenolog-

ical stages of the target species that help them stand

out from co-occurring species, however, it should be

possible to improve mapping accuracy. According to

Zhang et al. (2003), four transition dates define the key

phenological phases of a species: (1) green-up (date of

onset of photosynthetic activity), (2) maturity (date

when green leaf area is maximum), (3) senescence

(rate at which greenness decreases), and (4) dormancy

(date at which photosynthetic rate approaches zero).

At regional and larger scales, variations in the

composition of the community, micro- and regional

climate regimes, soils, land management and plant-

related features can lead to multiple modes of growth

and senescence within a single annual cycle (Zhang
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et al. 2003). Therefore, use of appropriate type of

remotely sensed imagery collected in the most spec-

trally distinguishable phenological state, data pre- and

post-processing techniques, and the classification

algorithms may all affect the outcome.

Successful mapping of wetlands at the species level

has typically required data with high spatial and

spectral resolution (Everitt et al. 1995, 1996, 2001;

Fuller 2005). Some sensors that have been used

previously used include airborne hyperspectral sen-

sors such as AVIRIS (Airborne Visible InfraRed

Imaging Spectrometer; 224 bands) (Williams and

Hunt Jr 2002), CASI (Compact Airborne Spectro-

graphic Imager; 288 bands) (Schmidt and Skidmore

2001), HyMap (Hydrological Modeling and Analysis

Platform; 126 bands) (Zhang and Xie 2013), and

PROBE-1 (128 bands) (Lopez et al. 2004) and high

resolution multispectral satellite imagery such as

IKONOS (Fuller 2005; Sanchez-Flores et al. 2008)

and QuickBird (Laba et al. 2008). Their relatively high

cost and limited spatial cover (in the case of airborne

data), however, make them unsuitable for frequent

large-scale mapping that is required to track invasive

Phragmites with high growth rates. By comparison,

imagery with moderate spatial and spectral resolution

(10 to 100 m spatial resolution and\ 100 bands) have

been commonly used for community-level mapping

and have not been used for species-level mapping

except when they occur as monocultures (Dewey et al.

1991; Sohn and McCoy 1997; Zhang et al. 2003).

Some of the moderate-resolution data used for species

identification include Landsat TM (Thematic Mapper;

7 bands) and ETM? (Enhanced Thematic Mapper

Plus; 8 bands) (Peterson 2005; Resasco et al. 2007;

Huang and Asner 2009), SPOT (Satellite Pour l’Ob-

servation de la Terre; 4 bands) (Rasolofoharinoro et al.

1998), and ASTER (Advances in Spaceborne Thermal

Emission and Reflection Radiometer; 14 bands) (Gao

and Liu 2008) and MODIS (Moderate-resolution

Imaging Spectroradiometer; 36 bands) (Zhang et al.

2003).

Despite its moderate spatial resolution (i.e. 30 m),

Landsat data had been used by many researchers

around the globe for species-level mapping. These

images are particularly useful because the imagery are

free, available every 16 days, provide extensive

coverage, and date back to 1984 (Peterson 2005;

Resasco et al. 2007). Moreover, Sentinel 2, a relatively

new sensor (with 10, 20, and 60 m spatial resolution)

launched in 2015, has been used for the classification

of crop and tree species, development of vegetation

indices, Leaf Areas Index (LAI), and biophysical

variables analysis etc. To date, however, it has not yet

been used extensively in phenological studies (Dele-

gido et al. 2011; Frampton et al. 2013; Hill 2013;

Immitzer et al. 2016).

Besides selection of data, classification accuracy

will depend on proper selection of the classification

algorithm. Support Vector Machines (SVM) classifi-

cation is a supervised, non-parametric, statistical

learning technique developed by Vapnic in 1979

(Vapnik and Kotz 1982). As this method does not

assume data normality distribution, it usually performs

better than many popular classifiers such as the

maximum likelihood classification (Dalponte et al.

2008; Rupasinghe et al. 2018). The SVM performs

better in terms of classification accuracy, computa-

tional time, and stability to parameter setting when

compared with radial basis function neural networks

and K-nearest neighbor classification methods (Mel-

gani and Bruzzone 2004; Pal and Mather 2005).

Moreover, this method can produce high classification

accuracy using a relatively small training data set

(Dalponte et al. 2008; Zheng et al. 2015). Conse-

quently, over the past decade, SVM classification has

gained popularity in the remote sensing community

(Mountrakis et al. 2011). Many past investigators have

successfully used the SVM classification in forest and

crop classification, species-level mapping in wetlands,

and in developing vegetation indices for different data

sources such as hyperspectral (Gualtieri and Cromp

1999), LiDAR (Dalponte et al. 2008), and multispec-

tral data including Landsat TM (Huang et al. 2008;

Zheng et al. 2015) and Sentinel 2 (Stratoulias et al.

2015).

Previous studies have demonstrated that the mod-

erate resolution multispectral images could be used to

map invasive species that form large monocultures

however, the reflectance signal of these invasive

species are often very similar to the native species that

share the same ecosystem. This may lead to low

classification accuracy for both invasive and native

species. Therefore, it is important to identify the

vegetation categories that have similar reflectance

signatures as the invasive species to develop more

accurate classification protocols. Moreover, the effect

of biological heterogeneity highly varies depending on

the site conditions and the species composition of the
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study area. In this study, we address these issues and

focus mainly on the effect of different phenological

states on mapping accuracy of selected Lake Erie

wetlands, with special emphasis on invasive Phrag-

mites. We evaluated the use of SVM classification to

map large monocultures of Phragmites in two Lake

Erie wetlands using Landsat 7, 8, and Sentinel 2

imagery. To minimize omission errors associated with

classification of mixed pixels (Phragmites and similar

land cover classes) when moderate resolution imagery

are used for species level classification, and as limited

spectral bands are available in multispectral imagery,

we have analyzed the time series images collected

over different months of the calendar year to deter-

mine the best time in the Phragmites growth cycle or

the best phenological state when the plant will produce

a reflectance signature that will be most unique when

compared with co-occurring vegetation. For future

applications with other image sources, we have also

identified the bands that contributed most to distin-

guishing among Phragmites and other similar vege-

tation classes. In summary, this novel Phragmites

mapping approach; 1. Will provide cost-effective

method to identify Phragmites invaded wetlands using

freely available, moderate-resolution satellite images

for large-scale monitoring and treatment effectiveness

monitoring programs, 2. Will provide the wetland

management community with an accurate, cost-effec-

tive method to track changes in the distribution of

invasive Phragmites at a regional scale, and 3. Support

future research to accurately map Phragmites with

other sensors which provide important spectral infor-

mation and to collect images during the best period of

the year and plan field work accordingly.

Methods

Study sites

We conducted the study in two Lake Erie wetlands,

Big Creek National Wild Life Area (BCNWA)

(49�590N 80�460W) and Rondeau Bay Marsh (RBM)

(42�170N 81�520W) (Fig. 1). BCNWA is located on

the North shore of Lake Erie, 3 km from the southwest

Port Rowan and at the head of the Long Point Bay on

Lake Erie, in the Regional Municipality of Haldi-

mand-Norfolk county (Ashley and Robinson 1996;

Environment and Climate Change Canada 2011). It is

a 771-ha complex consisting of two sub-units, Big

Creek unit (615 ha) and the HahnMarsh Unit (156 ha).

Our study focused on the Big Creek unit, which is

managed by the Environment and Climate Change

Canada. Wetlands at this site is dominated by Blue-

joint Grass (Calamagrostis canadensis (Michx.) P.

Beauv.), cattails (Typha latifolia L.), and sedges

(Ashley and Robinson 1996). The invasive species in

this site includes Phragmites, European frog-bit

(Hydrocharis morsus-ranae L.) and European Black

Alder (Alnus glutinosa (L.) Gaertn.) (Environment and

Climate Change Canada 2011).

RBM is a shallow coastal wetland, also on the

northern shore of the central basin of the Lake Erie,

approximately 100 km southeast of Windsor ON,

Canada and Detroit, MI, USA (Meloche and Murphy

2006; Glass et al. 2012). It was established in 1894 and

was Ontario’s second protected provincial park. It

covers an area of 3257 ha and mainly consists of

forests, sandy peninsula, and marsh. Forested land in

RBM is characterized by rare Carolinian tree species,

where it is the largest remaining representation of

Carolinian forests in Canada and is a primeval or

wilderness remnant of the vegetation of early Ontario

(Mann and Nelson 1980; McLaughlin 1993). Approx-

imately 40% of the rare, threatened or endangered

species in Canada are Carolinian and are present in

RBM.

We used the BCNWA site for development of our

classification protocols as this site had not been treated

during the study period and there were no significant

changes in Phragmites cover over the period studied.

We used the RBM site for comparison of results

obtained from the BCNWA site to evaluate the

validity of our methods. We did not use this site for

initial methods evaluation because the site had been

treated for invasive Phragmites during the study

period, and this limited the amount of time when our

ground reference data were valid.

Ground reference data

As the ground reference for BCNWA, we used

manually digitized land-cover maps that were created

with field data collected from two previous studies

(Marcaccio et al. 2016; Markle and Chow-Fraser

2018). One study was focused on habitat use by

Blanding’s turtles (Emys blandingii (Holbrook, 1838))

and included vegetation surveys conducted between
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14 July and 14 August 2014. In this study, 176

quadrats (2 m 9 2 m) were used to identify the

vegetation data (Markle and Chow-Fraser 2018),

which included aquatic marsh, cattail marsh, meadow

marsh, mixed organic marsh, open water, invasive

Phragmites, treated invasive Phragmites, upland, and

Fig. 1 Location of study sites and test and training locations used for classification
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other land-cover types (e.g.: swamp, thicket). Mar-

caccio et al. (2016) have created vegetation maps

using imagery collected with a fixed-wing unmanned

aerial vehicle (UAV; Sensefly eBee Canon ELPH 110

HS, 4 cm spatial resolution for red, green and blue

bands) on 4 September 2015 during clear-sky condi-

tions based on the field surveys conducted by Markle

and Chow-Fraser 2018).

As ground reference for the RBM site, we used

manually digitized orthophotos (South Western

Ontario Orthophotography Project; SWOOP; 20 cm

spatial resolution for red, green and blue bands)

collected in 2010 and 2015 that has been used in same

study by Markle and Chow-Fraser (2018). Field data

from a vegetation survey conducted in summer 2011

and 2013 were used to create manually digitized maps

for 20 land cover classes, including bulrush organic

shallow marsh, campground, cattail organic shallow

marsh, fen, floating leaved shallow marsh, meadow

marsh, mixed forest, mixed shallow aquatic marsh,

mixed woodlands, open beach, open field, open water,

organic thicket swamp, invasive Phragmites, residen-

tial, road, rolled invasive Phragmites, shrub beach,

shrubs, and trail. (Markle and Chow-Fraser 2018).

Other than the field data, we also used locations of

where invasive Phragmites had been treated between

2009 and 2014 (Gibert 2015) as ground reference.

For the current study, we used eleven land cover

classes for the BCNWA (Agriculture, beach, cattail

organic shallow marsh, constructed, floating vegeta-

tion, meadow marsh, open water, Phragmites, shallow

marsh, and trees/shrubs) and eight classes for RBM

(cattail organic shallow marsh, mixed forest, open

beach, open water, organic thicket swamp, Phrag-

mites, residential, and shrub beach).

Image data

Multispectral satellite data from Landsat 7, Landsat 8

and Sentinel 2 were used in this study (Table 1).

Landsat is the longest continuous record of satellite

observations owned by United States Geological

Survey (USGS) and National Aeronautics and Space

Administration (NASA). The Landsat mission con-

sists of eight satellites, and currently both Landsat 7

and 8 are active. Landsat 7 was launched in 1999 and

Landsat 8 was launched in 2013. Sentinel 2 is a

satellite owned by the European Space Agency (ESA),

designed for studies based on terrestrial observations.

It consists of two satellites, Sentinel-2A (launched in

2015) and Sentinel-2B (launched in 2017).

We downloaded all cloud-free images correspond-

ing to the year when respective vegetation surveys had

been conducted; when no cloud-free images for

particular months were available that year, we sought

image data acquired immediately prior to or following

the survey year. We assumed that the changes in cover

of Phragmites between two consecutive years are

relatively small. For the both BCNWA and RBM sites,

we used a total of fourteen Landsat 7, fourteen Landsat

8, and twelve Sentinel 2 images. We used ENVI 5.5

(Harris Geospatial 2018) to radiometrically and

atmospherically (ENVI FLAASH atmospheric cor-

rection) correct images to obtain the surface reflec-

tance from the digital numbers. For the Sentinel 2

images, six bands which had 20-m spatial resolution

(Table 1) were resampled to 10 m and pre-processed

separately. We then stacked the resampled bands with

10 m bands for the post-processing. We used reflec-

tance images for all image classifications.

Image classification and phenological analysis

We used SVM classification to classify the time-series

reflectance images of Landsat 7 and 8 and Sentinel 2

for BCWNA site for selected bands (Table 1). Using

ArcGIS 10.5, we first generated random points within

the manually digitized land cover maps fromUAV and

orthophotos using the vegetation survey data for both

study sites separately (ten points per land cover class,

located at the center of the polygons to avoid mixed

pixels at the edges; Fig. 1). We then used the random

points to manually create Regions Of Interest (ROI) in

ENVI 5.5, capturing 5 or more pixels per location

(depending on the area occupied by the land-cover

type under consideration) and used these as ground

reference for image classification. We added more

points for some classes during the classification

process after evaluating the Jefferies-Matusita sepa-

rability to increase the separability of classes with poor

separability prior to the image classification. We

conducted the image classification for both sites using

the classes mentioned under the ‘‘Ground reference

data’’. For accuracy assessment, we used a separate set

of non-overlapping random points to create a mini-

mum of 10 ROI’s (Fig. 1), consisting of one to ten

image pixels each, per vegetation class and informa-

tion about the vegetation types collected in the field.
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We identified the months with highest classification

accuracy in terms of overall accuracy and Phragmites

user’s and producer’s accuracy.

We used the same set of ROIs used for the

classification to analyze the Jefferies-Matusita sepa-

rability of Phragmites with the other land-cover

classes for the time series images. Jefferies–Matusita

separability is a quantitative evaluation of spectral

separability and it indicates how well the selected ROI

pairs are statistically separate for images collected in

different phenological stages. Separability values

were plotted with Microsoft Excel 2016. Based on

the separability values, we identified classes that were

most confused with Phragmites.

Furthermore, we stacked the Landsat 8 images

collected in each season (March to June: spring, June

to September: summer, September to December: Fall,

and December to March: winter) and repeated the

SVM classification using the bands from all the

images per season combined as input. Here, we expect

to combine fine spectral changes of species throughout

the season to improve the classification and to

minimize the effect from the changing water levels

through each season. We also performed a Principal

Component Analysis (PCA) on the stacked images and

repeated the classification on all PCA bands. We used

Minitab 18 to perform a two-way ANOVA followed

by Tukey’s test to determine significant differences

across seasons and across satellites after pooling the

results from single months, seasons combined, and a

PCA of the pooled data as there were no significant

difference across the groupings.

To identify what plant feature, greenness or the

plant water status (i.e. Plant function) is responsible

for Phragmites mapping accuracy we calculated the

Normalized Difference Vegetation index (NDVI) and

Normalized Difference Water Index (NDWI) for

monthly Landsat 8 images in the time series. More-

over, to identify which spectral bands contributed

most to Phragmites separability, we evaluated the

Table 1 Comparison of spectral bands of Landsat7, Landsat 8 and Sentinel 2

Spectral Band Landsat 7 Landsat 8 Sentinel 2

Wavelength

(lm)

Spatial resolution

(m)

Wavelength

(lm)

Spatial resolution

(m)

Wavelength

(lm)

Spatial resolution

(m)

Coastal aerosols – – 0.433–0.453 30 0.443 60

Blue 0.45–0.52 30 0.450–0.515 30 0.490 10

Green 0.52–0.60 30 0.525–0.600 30 0.560 10

Red 0.63–0.69 30 0.630-0.680 30 0.665 10

Vegetation Red Edge – – – – 0.705 20

Vegetation Red Edge – – – – 0.740 20

Vegetation Red Edge – – – – 0.783 20

NIR 0.77–0.90 30 0.845–0.885 30 0.842 10

Narrow NIR – – – – 0.865 20

Water vapor – – – – 0.945 60

Cirrus – – 1.360–1.390 30 – –

SWIR-Cirrus – – – – 1.375 60

SWIR1 1.55–1.75 30 1.560–1.660 30 1.610 20

SWIR2 2.90–2.35 30 2.100–2.300 30 2.190 20

Long Wavelength

Infrared

– – 10.30–11.30 100 – –

Thermal 10.40–12.50 60*(30) – – – –

Long Wavelength

Infrared

– – 11.50–12.50 100 – –

Panchromatic 0.52–0.90 15 0.500–0.680 15 – –

NIR near infrared; SWIR short wave infrared (bands used in the study are in bold
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reflectance changes of each band for Landsat 8 for the

time series images. We generated 30 random points

per vegetation class in ArcGIS (10.5), extracted the

reflectance values for all the bands (Table 1), and

calculated NDVI and NDWI per point. We calculated

the mean values for reflectance, NDVI, and NDWI per

vegetation class throughout the year, plotted the

changes, and determined the time at which NDVI

and NDWI were most different between Phragmites

and the confused vegetation classes. We used One-

way ANOVA and Tukey’s test in Minitab 18 to

identify significantly contributing bands and indices

for Phragmites mapping accuracy. We also excluded

one band at a time for Landsat 8 image that provided

the highest classification accuracy and repeated the

SVM classification to identify the bands that con-

tributed most to the Phragmites spectral signature.

To compare the results from BCNWA site, we

repeated the image classification, the separability

analysis, and conducted the analysis to determine the

bands that contributed most to the indices in the RBM

site. We did not perform the multi-temporal image

classification for this site as RBM had been treated for

invasive Phragmites during the study period. A

summary of the methods used in this study is

documented in Fig. 2.

Reduction of mapping confusion

between Phragmites and meadow marsh mapping

Based on results from the ‘‘Image classification and

phenological analysis’’, we identified that the meadow

marsh was the most confused class with Phragmites

and that the highest separability between classes

occurred in February. We also found the highest

accuracy for Phragmites and other land-cover classes

to be in July. Therefore, we created a mask for

meadow marsh based on the Landsat 8 images

acquired in February, applied the mask to the July

images and repeated the SVM classification without

the meadowmarsh ROIs. For this image classification,

we used the bands listed in Table 1. We used the same

ground reference information, and protocols for image

classification and accuracy assessment as described

under ‘‘Image classification and phenological analy-

sis’’.We have also calculated the overlap area between

Phrgmites and meadow marsh with comparison to

manually digitized vegetation maps for February,

July, and February-July combined maps using

ArcGIS.

Results

Image classification and phenological analysis

The overall accuracy was highest in late summer and

early fall (July to October), tapering at both ends of the

calendar year. We observed similar trends for all three

sensors examined (Tables 2, 3, 4 and Fig. 3). Both the

user’s and producer’s accuracies of Phragmites

followed the same trend, peaking in late summer and

early fall. When the three sensors were compared,

Sentinel 2 provided the highest Phragmites user’s and

producer’s accuracy, while Landsat 8 provided the

highest overall accuracy and Landsat 7 provided the

lowest accuracy in all cases. The classification for

BCNWA resulted in higher accuracy for both Landsat

8 and Sentinel 2. When these results were compared

with those for the RBM site, we observed a similar

trend in classification accuracy with respect to the

three sensors but a higher accuracy for Landsat 7.

The most confused classes with invasive Phrag-

mites were meadow marsh and the cattail organic

shallow marsh. Separability of Phragmites with all

other landcover classes were greatest in July, except

when it was compared with meadow marsh; for the

meadow marsh, the highest separability with the two

other classes was observed in February (Fig. 4). As

demonstrated in the error matrices, most of the

commission error for Phragmites was attributed to

confusion with cattail and meadow marsh (Tables 5,

6, 7). Other than for Phragmites, we also observed

some confusion between agricultural lands and trees/

shrubs, cattail and meadow marsh, and open water and

shallow marsh (Tables 5, 6, 7). When compared with

the RBM site, cattail organic shallow marsh was the

most confused class with Phragmites. We excluded

meadow marsh from the RBM site because meadow

marsh occupied very little area and Landsat and

Sentinel 2 spatial resolution did not capture this class

accurately.

Classification of single images (single month) did

not produce accuracies that differed significantly from

classification of multiple images from different

months that were combined into a single image

(combined seasonal) or classification of pooled images
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after a PCA was run (PCA seasonal; Fig. 5). We did

not observe a significant difference with respect to

overall or Phagmites user’s and producer’s accuracies

among the single month, combined seasonal or PCA

seasonal treatments. Therefore, we pooled the data for

three groupings and conducted statistical analysis to

identify the seasons with highest classification accu-

racies. Our results indicated that summer and fall had

homogeneous means when compared to the spring and

winter. When considering the sensors, Sentinel 2 had

the highest accuracy while Landsat 7 had lowest for

overall and Phragmites user’s accuracy. There were,

Fig. 2 Flow chart of the

methods used in the study

Table 2 Monthly changes in mapping accuracy (%) for the two study sites using Landsat 7

Big Creek Average Rondeau Bay Average

Date Producer’s User’s Overall Date Producer’s User’s Overall

2014 Feb 15 58.00 63.04 62.93 61.32 2009 Mar 13 60.00 79.00 80.21 73.07

2015 Mar 23 88.00 42.31 62.59 64.30 2010 May 03 70.00 80.00 83.03 77.687

2014 Apr 24 84.00 37.50 64.99 62.16 2011 Jun 07 53.33 72.73 80.26 68.77

2015 Jul 13 66.00 44.00 73.86 61.29 2010 Jul 06 90.00 81.82 85.96 85.93

2015 Jul 29 82.00 52.56 76.43 70.33 2009 Aug 04 76.67 79.31 81.14 79.04

2014 Aug 21 84.00 53.41 74.82 70.74 2010 Nov 11 53.33 76.19 79.83 69.78

2015 Sep 15 78.00 62.03 72.69 70.90

2015 Nov 02 74.33 66.67 62.49 67.83

Producer’s and User’s accuracy pertain to invasive Phragmites. Overall accuracy pertains to all classified classes

The months with highest overall accuracies are bolded
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however, no significant differences in the Phragmites

producer’s accuracy between sensors (Fig. 6).

Since cattail and meadow marsh were most con-

fused with Phragmites,we examined how respectively

reflectance, NDVI and NDWI values changed over the

time series for these three classes. Visually, coastal

aerosols, blue, green, red, and SWIR2 (ShortWave

InfraRed) bands associated with the three classes

showed no difference in reflectance. The NIR (Near

InfraRed) reflectance was higher for Phragmites than

for cattail in July and August while reflectance for

meadow marsh in February was greater than those for

Phragmites and cattails. The SWIR1 reflectance for

meadow marsh was slightly higher than that for

Phragmites in August (Fig. 7). One-way ANOVA

followed by Tukey’s test shows that the greatest

number of significant p-values were recorded for

green, NIR, and both SWIR bands when compared to

the other bands. These results were consistent with the

highest mapping accuracy of invasive Phragmites (i.e.

the month associated with the greatest number of

significant p-values) being recorded in July, August,

and September in terms of separability between

invasive Phragmites and cattail, whereas the highest

mapping accuracy in regard to separability between

invasive Phragmites and meadow marsh was recorded

in February (Table 8).

Except for one band on a single occasion, accura-

cies associated with the image classification with

excluding one band at a time provided a similar trend.

Exclusion of green, NIR, and SWIR1 bands resulted in

greater than 2% reduction in overall and Phragmites

user’s accuracies; however, Phragmites producer’s

accuracy remained constant through all bands and

Table 3 Monthly changes in mapping accuracy (%) for the two study sites using Landsat 8

Big Creek Average Rondeau Bay Average

Date Producer’s User’s Overall Date Producer’s User’s Overall

2015 Feb 27 76.00 90.48 66.13 77.54 2014 Jan 14 81.25 70.27 65.78 72.43

2014 May 31 84.00 52.81 74.60 70.47 2014 Feb 15 84.38 58.70 63.12 68.73

2014 Jun 03 86.00 51.19 74.83 70.67 2014 Mar 03 68.75 59.46 65.40 64.54

2015 Jul 21 96.00 88.89 88.56 91.15 2014 Jun 04 53.13 54.84 71.48 59.82

2014 Aug 19 92.00 79.31 79.63 83.65 2014 Aug 10 79.59 73.58 75.00 76.06

2014 Sep 04 93.55 72.73 78.94 81.74 2014 Sep 27 81.25 48.15 67.68 65.69

2014 Nov 20 94.00 54.65 76.43 75.03 2014 Oct 10 71.00 61.54 71.62 68.05

Producer’s and User’s accuracy pertain to invasive Phragmites. Overall accuracy pertains to all classified classes

The months with highest overall accuracies are bolded

Table 4 Monthly changes in mapping accuracy (%) for the two study sites using Sentinel 2

Big Creek Average Rondeau Bay Average

Date Producer’s User’s Overall Date Producer’s User’s Overall

2016 Apr 27 87.69 63.10 81.71 77.50 2016 Apr 27 77.10 62.43 69.89 69.81

2016 May 28 62.56 40.53 73.23 58.77 2016 May 28 84.55 55.03 72.89 70.82

2016 Jul 06 93.85 84.33 82.82 87.00 2016 Jun 29 80.56 56.68 74.61 70.62

2016 Jul 27 95.35 91.11 84.00 90.15 2016 Jul 06 82.66 77.61 79.65 79.97

2016 Sep 26 92.82 87.44 86.11 88.79 2016 Dec 10 72.98 60.74 72.83 68.85

2016 Oct 15 87.18 72.34 82.88 80.80

2016 Dec 10 89.23 79.82 85.94 85.00

Producer’s and User’s accuracy pertain to invasive Phragmites. Overall accuracy pertains to all classified classes

The months with highest overall accuracies are bolded
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single-band exclusions (Table 9). Overall, these

results suggest that the green, NIR, and SWIR

reflectance of Phragmites contributed most to the

unique reflectance signature that resulted in higher

classification accuracy, especially with respect to

cattail when compared to the other spectral bands.

The results also confirmed that the highest Phragmites

mapping accuracy could be obtained in the late

summer and early fall period. When these results

were compared with the RBM site, the green, NIR, and

SWIR2 bands provided the greatest number of signif-

icant p-values. Images acquired in August also

provided the most significant p-values. Results of

image classification with band exclusions for the RBM

site did not show the same trend noted for the BCNWA

site. There was more than 2% accuracy reduction for

overall, Phragmites user’s and producer’s accuracy

when the green band was excluded. Exclusion of NIR

band only reduced Phragmites producer’s accuracy

while exclusion of SWIR2 band reduced both pro-

ducer’s and user’s accuracy.

Next, we compared the NDVI and NDWI values of

Phragmites, cattail and meadow marsh for the time

series images (Fig. 8 and Table 10). The NDVI scores

associated with August and September were signifi-

cantly different from those of other months while

NDWI scores associated with July, August and

September were significantly different. The meadow

Fig. 3 Classified maps with

SVM classification for Big

Creek and Roundeau Bay,

Lake Erie
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marsh class was significantly different from Phrag-

mites with respect to NDVI and NDWI scores in the

February image. These results suggested that both

greenness and plant water use efficiency may affect

the spectral signature of invasive Phragmites. There

were no clear patterns associated with RBM for NDVI

and NDWI scores, but we observed the most signif-

icant p-values in June, August, September, and

October.

Reduction of mapping confusion

between Phragmites and meadow marsh mapping

When classified images of February and July were

compared visually, we observed a higher Phragmites

commission error in July (11.11%), compared with

that in February (9.52%; Fig. 9 and Table 3). There

was also a 35 ha overlap between the mapped and

actual meadowmarsh in February compared with only

a 30 ha overlap in July. Furthermore, only 13 ha of

meadow marsh was mapped as false Phragmites in

February while 26 ha was mapped in July. When we

combined the meadow marsh mapped in February

with the July image, we found that the overall

accuracy was reduced to 85.4% (kappa coeffi-

cient = 0.83) in the combined image; however, both

Phragmites user’s and producer’s accuracies were

increased to 92.3% and 96.0%, respectively. By

combining images collected in these 2 months, the

overlap between the mapped and actual meadow

marsh was increased to 39 ha, while the commission

error for meadow marsh was reduced to 15 ha.

Discussion

In this paper, we developed a novel approach to map

Phragmites using freely available multispectral

Fig. 4 Monthly changes in

Jeffries-Matusita

Separability of Phragmites

in Big Creek wetland for

a Landsat 7, c Landsat 8 and
e Sentinel 2 data; For RBM

b Landsat 7, d Landsat 8 and
f Sentinel 2 data
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imagery by identifying the best phenological period

during which the plants produced their most distin-

guishable signature compared to background land-

cover classes (especially cattails and meadow marsh).

Variation in surface reflectance of marsh vegetation

associated with phenological changes over the year

were captured in remotely sensed imagery (Zhang

et al. 2003; Tuanmu et al. 2010). We were able to

monitor these phenological changes in our wetlands

using satellite data with moderate spatial resolution

that included Landsat 7, 8 and Sentinel 2. Classified

images of all three satellite platforms resulted in maps

of Phragmites of acceptable accuracy ([ 80% average

accuracy of overall and Phragmites user’s and

producer’s accuracy) when classifications were per-

formed on images acquired in late summer or fall. Of

all three satellites, the accuracy of classified Landsat 7

images was lowest, in part because of data gaps;

Landsat 8 provided the highest overall accuracy while

Sentinel 2 provided highest Phragmites user’s and

producer’s accuracy.

The data source, classification algorithm, and use of

timely ground reference data can all affect the

accuracy of image classification, especially for fine-

scale species mapping. Ensuring that ground reference

collection and image acquisition are completed in the

same year is probably most important, especially when

complex vegetation features such as wetlands are

considered. We obtained lower classification accuracy

overall for RBM than for BCNWA using either

Landsat 8 or Sentinel 2, partly because of mismatched

timing between field surveys (all collected in 2011)

and image acquisition (2014 for Landsat 8 and 2016

for Sentinel 2 images, respectively). Landsat 7 images,

on the other hand, provided higher classification

accuracy because the satellite images had been

acquired in 2009, 2010 and 2011, closer to the time

of field surveys. Another reason for the poorer

Fig. 5 Comparison of

Overall, Producer’s and

User’s accuracies for

automated classifications of

three different satellite

images of Big Creek

Wetland. Accuracies are

sorted by three different

methods. Month refers to a

single month for a season.

Solid line indicates 85%

accuracy whereas the dotted

line refers to 90% accuracy
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accuracies for Landsat 8 and Sentinel 2 was because a

control program had been implemented in the fall of

2011, and many of the Phragmites stands that were

present in the 2011 field surveys had been eradicated

and were no longer present in the 2014 and 2016

images. We tried to improve accuracy in two ways,

first by manually delineating Phragmites stands in a

2015 SWOOP image to provide more appropriate

ground reference data for the 2014 and 2016 satellite

images and secondly, by accounting for treatment

locations. Due to the inconsistency of image and field

reference data collection time, however, we can only

use the RBM site to apply methodology developed for

the BCNWA site, and we believe that the mismatch of

field reference and image dates for RBM did not

materially affect conclusions drawn from the BCNWA

data.

Marcaccio and Chow-Fraser (2016) found various

degrees of accuracies when they compared four

mapping options and data sources for mapping

BCNWA. In the first option, Ontario Ministry of

Natural Resources and Forestry (OMNRF) classified

Landsat data using an NDVI-based hierarchical image

object-based decision tree (Young et al. 2011). The

data sources were Landsat 5 and 7 images acquired in

summer 1993, 1999, and 2010; Marcaccio and Chow-

Fraser obtained an overall accuracy of 57%, with

associated Phragmites producer’s and user’s accuracy

of 56% and 77% respectively for this option. This is

lower than our results where the overall accuracy was

75 and 86% for Landsat 7, 71% and 88% for Landsat 8,

and[ 80% Phragmites accuracy for most of the cases

with the SVM classification. This is likely because the

OMNRF study did not include any ground reference in

their classification whereas here we used a number of

ground reference points for both classification and

accuracy assessment.

The second option inMarcaccio and Chow-Fraser’s

study involved use of PALSAR (Phased Array type

L-band Synthetic Aperture Radar; Bourgeau-Chavez

et al. 2015). In this approach, all landcover within a

10 km buffer of the Great Lakes shoreline was

mapped, including several classes of emergent vege-

tation, particularly Phragmites. Landsat 7 data

Fig. 6 Results of ANOVA comparing Phragmites user’s, producer’s and overall accuracies across a four seasons and b satellite

sensors. Similar letters join statistically homogeneous means in each panel as indicated by a Tukey’s comparison of multiple means
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collected in spring, summer and fall from 2008 to 2011

had been used to delineate landscape features; the

authors used random forests isodata and the maximum

likelihood classification methods, as well as field

reference data for both classification and accuracy

assessment. When this approach was applied to

BCNWA, Marcaccio and Chow-Fraser (2016)

obtained 77% overall accuracy, and Phragmites

producer’s and user’s accuracies of 86% and 77%,

respectively. This compares favorably with the 77%

that we obtained for producer’s and user’s accuracy in

this study. Although radar data appear to be advanta-

geous for mapping Phragmites and the PALSAR data

are now freely available, we will not be able to use

these image data for mapping updates because the

mission ended in 2011.

Marcaccio and Chow-Fraser (2018) have used the

image object-oriented classification method for

SWOOP images collected in spring 2006, 2010, and

2015 to map Phragmites along major highways of

Fig. 7 Monthly changes in reflectance of a Phragmites, cattail organic shallow marsh and meadow marsh for BCNWA site and

b Phragmites and cattail for RBM site for the 7 bands of Landsat 8
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southern and central Ontario. When this approach was

applied to mapping BCNWA, the overall classification

accuracy was 62%, while the producer’s accuracy was

90% and the user’s accuracy was 58%. Although the

20 cm spatial resolution has obvious advantages, the

SWOOP images are only available every 5 years.

Marcaccio et al. (2016) also used UAV data (spatial

resolution of 8 cm) to manually delineate land cover

types based on extensive field surveys of the BCNWA.

This method provided the highest user’s and pro-

ducer’s accuracy of 100% while the overall accuracy

was 87%. The method was highly accurate but also the

most labor intensive.

Stratoulias et al. (2015) developed a simulation of

the bands of Sentinel 2 based on the satellite’s

response function and airborne hyperspectral data

collected from the sensor AISA for lakeshore mapping

at Lake Balaton, Hungary. They also used the SVM

classification and have reported that Sentinel 2 can

perform satisfactorily in classifying wetland ecosys-

tems, including Phragmites. They suggested, how-

ever, that the Phragmites mapping accuracy could be

reduced if higher inter-class spectral variability were

Table 8 P-Values for selection of most contributing bands for the Phragmites signature using one-way ANOVA and Tukey’s test

BCNWA Number of significant p-values

Band Classes Feb May Jun Jul Aug Sep Nov

Coastal aerosols P–C 0.076 0.021 0.579 0.100 0.060 0.051 0.189 1

P-M 0.000 0.821 0.200 0.120 0.240 0.089 0.010 2

Blue P–C 0.067 0.240 0.984 0.200 0.074 0.001 0.052 1

P-M 0.000 0.996 0.882 1.000 0.989 0.004 0.056 2

Green P–C 0.073 0.040 0.631 0.002 0.041 0.000 0.082 4

P-M 0.000 0.634 0.114 0.102 0.142 0.377 0.003 2

Red P–C 0.053 0.127 0.815 0.004 0.009 0.098 0.074 2

P-M 0.000 0.445 0.044 0.994 0.113 0.012 0.057 2

NIR P–C 0.006 0.963 0.621 0.000 0.000 0.000 0.500 4

P-M 0.000 0.239 0.191 0.022 0.022 0.248 0.138 3

SWIR 1 P–C 0.081 0.378 0.97 0.000 0.000 0.003 0.47 3

P-M 0.048 0.831 0.915 0.788 0.994 0.134 0.398 1

SWIR 2 P–C 0.000 0.214 0.638 0.000 0.000 0.003 0.219 4

P-M 0.000 0.985 0.998 0.000 0.239 0.134 0.166 2

Number of significant p-values P–C 2 2 0 5 5 5 0

P-M 7 0 1 2 1 1 2

RBM

Classes Jan Feb Mar Jun Aug Sep Oct

Coastal aerosols P–C 0.124 0.172 0.398 0.331 0.109 0.435 0.655 0

Blue P–C 0.384 0.154 0.383 0.377 0.377 0.748 0.225 0

Green P–C 0.325 0.174 0.406 0.850 0.007 0.137 0.582 1

Red P–C 0.290 0.173 0.413 0.653 0.687 0.236 0.013 1

NIR P–C 0.159 0.167 0.462 0.447 0.021 0.003 0.045 3

SWIR 1 P–C 0.058 0.077 0.056 0.630 0.001 0.128 0.476 1

SWIR 2 P–C 0.061 0.120 0.100 0.560 0.103 0.698 0.287 0

Number of significant p-values P–C 0 0 0 0 3 1 2

Statistically significant values are given in bold text

P–C Phragmites and Cattail organic shallow marsh comparison and P–M Phragmites and meadow marsh comparison
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Table 9 Accuracy (%) values for Landsat 8 July images when one band is excluded at a time

Image BCNWA Average RBM Average

Overall Producer’s User’s Overall Producer’s User’s

With 7 bands 88.56 96.00 92.31 92.29 75.00 79.59 73.58 76.06

Without band 1 87.64 96.00 90.56 91.40 74.58 79.51 72.55 75.55

Without band 2 88.10 96.00 90.57 91.56 75.00 77.55 72.70 75.08

Without band 3 86.27 96.00 88.71 90.33 72.46 73.47 71.26 72.40

Without band 4 88.10 96.00 90.57 91.56 74.15 79.59 73.58 75.78

Without band 5 85.58 96.00 85.71 89.10 74.15 77.55 71.70 74.47

Without band 6 86.19 96.00 85.12 89.10 73.30 71.43 70.00 71.58

Without band 7 88.10 96.00 90.57 91.56 75.00 79.51 72.41 75.85

Difference of accuracy from classification accuracy of all seven bands

Without band 1 0.92 0.00 1.75 0.89 0.42 0.08 1.03 0.51

Without band 2 0.46 0.00 1.74 0.73 0.00 2.04 0.88 0.98

Without band 3 2.29 0.00 3.60 1.96 2.54 6.12 2.32 3.66

Without band 4 0.46 0.00 1.74 0.73 0.85 0.00 0.00 0.28

Without band 5 2.98 0.00 6.6 3.19 0.85 2.04 1.88 1.59

Without band 6 2.37 0.00 7.19 3.19 1.70 8.16 3.58 4.48

Without band 7 0.46 0.00 1.74 0.73 0.00 0.08 1.17 0.21

Producer’s and User’s accuracy pertain to invasive Phragmites. Overall accuracy pertains to all classified classes

Bands that reduce the accuracy more than 2% when excluded is bolded

Fig. 8 Monthly changes in

a NDVI and b NDWI for

BCNWA and c NDVI and
d NDWI for RBM for

Phragmites, cattail organic

shallow marsh and meadow

marsh
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present. They first predicted the strong capability of

Sentinel 2 imagery for fine-habitat monitoring for

species such as Phragmites. Our study has confirmed

this prediction and showed that Sentinel 2 imagery can

be used to map wetlands with relatively high accura-

cies for both Phragmites and other land classes.

All previous Phragmites mapping techniques have

demonstrated various pros and cons in terms of data

sources and availability, mapping technique, and

accuracy. Our method is advantageous over these

published mapping options because we use freely

available data within relatively short time intervals,

with sensors that are still available (and will be for the

foreseeable future). Moreover, mapping accuracy has

been high, both with respect to overall accuracy as

well as for Phragmites alone. The one limitation of

this approach is the low spatial resolution, which

limits the accuracy of mapping small stands of

Phragmites or mixed assemblages of Phragmites with

other emergent or meadow taxa. Our method also

requires a large number of ground reference locations,

collected in the same year when the image is acquired.

This approach relies on availability of cloud-free

images and can be an insurmountable problem as we

discovered for RBM, when we could not find any

cloud-free images in 2011. Nevertheless, the relatively

high accuracy, zero cost of data acquisition and

continuous availability of images, we believe our

novel approach is best suited to tracking changes in

distribution of Phragmites when monitoring for

effectiveness of treatment programs.

The reflectance signature of a plant depends on

many factors (Knipling 1970.) Reflectance in the

visible region is mainly affected by the types of plant

pigments (primarily chlorophyll) and their concentra-

tion, and some effect by carotenoids, xanthophylls,

and anthocyanin. Leaf internal structure, specifically

the cellular arrangement and layers, cell wall cellulose

structures, and air cavities can affect the reflectance in

the NIR region (Wilstxtter and Stoll 1918; Mestre

1935; Sinclair et al. 1968). Reflectance in the SWIR

region is strongly influenced by the water content in

plant tissues, especially in wavelengths 1.45 lm and

1.94 lm (Fabre et al. 2011). Besides properties of a

single leaf, other factors that can affect the plant’s

reflectance signature includes features such as leaf

orientation, shadows, illumination angle, leaf density,

and the size of leaves and the non-foliage background

features such as soil (for the terrestrial species) or

water (for the wetland species) (Knipling 1970).

Hence, species with similar morphology and anatomy

may share various degrees of similarity in reflectance

signatures.

Table 10 P-Values for monthly changes of NDVI and NDWI of Phragmites, cattail organic shallow marsh, and meadow marsh

using one-way ANOVA and Tukey’s test

Band BCNWA Number of significant p-values

Classes Feb May Jun Jul Aug Sep Nov

NDVI P–C 0.060 0.550 0.304 0.140 0.003 0.002 0.003 3

P–M 0.000 0.000 0.000 0.992 0.079 0.048 0.306 4

NDWI P–C 0.078 0.254 0.010 0.000 0.017 0.000 0.181 4

P–M 0.000 0.087 0.422 0.000 0.000 0.000 0.730 4

Number of significant p-values P–C 0 0 1 1 2 2 1

P–M 2 1 1 1 1 2 0

RBM Number of significant p-values

Classes Jan Feb Mar Jun Aug Sep Oct

NDVI P–C 0.914 0.706 0.727 0.045 0.720 0.029 0.030 3

NDWI P–C 0.169 0.862 0.959 0.136 0.000 0.058 0.053 1

Number of significant p-values P–C 0 0 0 1 1 1 1

statistically significant values are given in bold text

P–C Phragmites and Cattail organic shallow marsh comparison and P–M Phragmites and meadow marsh comparison
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Both cattail and meadowmarsh are highly confused

with Phragmites in our classification approach. All

three classes occupy similar habitats where the plants

are partially submerged. Hence the background

reflectance has the same effect on them and result in

somewhat similar signals. For example, cattail and

Phragmites both share similar morphological traits,

being tall, unbranched shoots that form dense

monospecific stands and have approximately similar

leaf arrangement (Bellavance and Brisson 2010).

Hence both species produced very similar reflectance

signatures that caused confusion in image classifica-

tion. There were differences, however, in how the two

species senesced; cattail started yellowing by the end

of July while Phragmites remained green until early

September. Moreover, Phragmites produced its

unique, and large inflorescence by the end of summer

and throughout the fall. Hence Phragmites and cattail

exhibited highest separability during late summer to

fall, and this led to increased mapping accuracy. The

NDVI time-series analysis mirrored this since both

classes had a similar pattern throughout the year

except in July to September, when they had highest

divergence. We obtained significant separation

between cattail and Phramites in June to September

using NDWI values and this indicates that plant-water

features may also play a role in discriminating

between these two classes.

The meadow marsh produced a relatively compli-

cated signature, that reflected the assemblage of

different plant species, including various grasses,

sedges, emergent shrubs, and upland plant species

(Wilcox n.d.). Furthermore, the meadow marsh com-

munity undergoes occasional flooding, and this leads

to even more variability in their reflectance signals

throughout the year. Therefore, the meadow marsh

Fig. 9 Landsat 8 images for mapping meadow marsh a using only July image and b using July image after masking meadow marsh

with February image
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signal is confused not only with Phragmites, but also

with other wetland landcover classes such as cattail

and shallowmarsh. In February, however, the meadow

marsh tends to be completely covered by snow while

the taller Phragmites and cattail stalks are only

partially covered in snow. This difference in February

can be used to increase the separability among these

three classes. Although separability between Phrag-

mites and meadow marsh was higher during the

winter, the reflectance signal of meadow marsh still

overlapped with that of other snow-cover features such

as shallow marsh, beach, and frozen shallow water.

Hence the overall accuracy was low. Additionally, the

degree of separability between Phragmites and

meadow marsh during the winter may depend on the

amount of snow accumulation. There was a significant

difference in NDVI between Phragmites and meadow

marsh from February to July and significant NDWI

difference from July to September. With respect to

invasive Phragmites and meadow marsh, however,

there was no clear pattern in NDVI and NDWI, and

hence these may not help to separate these classes to

improve mapping accuracy.

Many studies have explored the use of combined

images collected in different seasons and have

reported improved classification accuracy (Oetter

et al. 2001; Guerschman et al. 2003; Tottrup 2004;

Lu and Weng 2007). Use of multi-temporal images in

classification not only incorporates fine phenological

changes in the spectral data, but also helps to exclude

the effect of the sun’s angle and to provide a unique

spectral response pattern (Tottrup 2004). We expected

that use of multitemporal images for wetland classi-

fication may be useful in overcoming the effect of

varying water levels within each season; however, we

did not observe any evidence that overall classification

accuracy would increase significantly by combining

multiple images. According to Tottrup (2004) the

acquisitions should not be too close in time as there are

no clear changes in phenology and the sun’s angle

within a single season. Our results may have been

different if we had combined multiple images for the

same seasons; however, we did not explore this as our

main objective was to determine the phenological

states of Phragmites that produced the most unique

reflectance signature for mapping. Finally, we should

point out that use of a PCA to reduce the effect of

redundant data did not yield a significant increase in

accuracy as expected.

Conclusions

We accurately mapped large Phragmites patches in

wetlands using Landsat and Sentinel 2 images

acquired in late summer through fall, in combination

with the SVM classification method. To achieve high

classification accuracy, our protocol requires a large

number of ground reference locations to be estab-

lished. Our results indicate that the green, NIR, and

SWIR bands are most useful in development of the

unique Phragmites reflectance signal during this

period. We believe that the prolonged greenness of

Phragmites when compared to other wetland vegeta-

tion, large, distinct inflorescence, and the water

content of Phragmites during this period helps to

produce the unique reflectance signature. Also, the

prolonged greenness of Phragmiteswhen compared to

other classes help in the mapping process. Cattail and

meadow marsh were the most confused classes with

Phragmites, likely because all three landcover classes

occupy similar habitats and have similar morpholog-

ical features.

Although Phragmites best separated out from

cattails and other classes in July to September,

meadow marsh separated out best in February.

Therefore, we recommend the use of February (snow

covered) images in combination with summer time

images to reduce the confusion among these three

classes. This may be more useful when maps are

produced for management purposes when the primary

goal is to accurately map invaded areas. Use of

multitemporal images for each season did not increase

classification accuracy.

Overall, our study explored the use of freely

available satellite data for mapping invasive Phrag-

mites, which has become a serious management issue.

Despite the moderate spatial resolution, images

acquired in the correct phenological state can increase

classification accuracy. Our novel approach provides a

cost-effective and accurate Phragmites mapping

method for different types of wetland ecosystems,

when Phragmites needs to be frequently monitored

and managed across large spatial extents.
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