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Abstract Long-term monitoring programs can identify
environmental trends or reveal limitations to protocols,
as long as their results are analysed appropriately. While
monitoring programs are not necessarily hypothesis-
driven, their data are important for conservation and
can guide improvements to monitoring programs.
Here, we present a case study using dynamic occupancy
models to guide the optimization of time and effort in a
long-term terrestrial salamander monitoring program.
To ensure a detailed analysis, we analysed the avail-
able long-term data to first identify estimates of
occupancy and detection parameters for the sala-
manders. Using these estimates, we created simula-
tions to identify the optimal number of years for
monitoring and the optimal allocation of spatial
and temporal survey replicates. Our data support
previous claims that monitoring programs should
be allowed to run for at least a decade. We also
found that in order to obtain accurate estimates of
species occupancy, programs should consider appro-
priate partitioning of monitoring effort across spatial
and temporal scales. We show how analyses of long-
term monitoring datasets are valuable not only for
trend detection but also for the development of
templates to guide the design and optimization of
similar programs.
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Introduction

The growing threats to biodiversity from human activ-
ities, including habitat alterations and climate change,
have been accompanied by an increased demand for
long-term environmental monitoring (Urban et al.
2016; McMahon et al. 2011). Long-term monitoring is
needed to understand complex population dynamics, so
that conclusions can be made about the state of a partic-
ular system. Monitoring is often used for two reasons: to
determine the effectiveness of conservation manage-
ment and to inform future management through identi-
fying and understanding the reasons for ecosystem deg-
radation. Some monitoring programs have acquired de-
cades worth of data (Lindenmayer et al. 2012), and these
data not only provide information about the system in
question but are also as a valuable resource to guide
future monitoring. While large studies looking at multi-
ple programs have been imperative to understanding
reoccurring patterns in monitoring programs (White
2019; Rhodes and Jonzén 2011; MacKenzie and Royle
2005), case-specific analyses of monitoring data can
provide a more detailed understanding of how best to
monitor similar systems in the future.

Researchers have argued for more rigorous decision-
making processes during the design of monitoring pro-
grams (Lindenmayer and Likens 2009; Caughlan and
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Oakley 2001). In many cases, monitoring design has
focussed on data collection, giving less consideration to
the analysis and presentation of the data (Field et al.
2007; Lindenmayer and Likens 2009). Proper statistical
consideration can ensure time and money are spent on
data that can be interpreted in the context of the goals of
the monitoring program. While the choice of statistical
analysis is intrinsically related to the type of data col-
lected, program-specific considerations of statistical
power and survey optimization are also important to
the success and cost effectiveness of the program. In
particular, White (2019) found that the number of years
required for sufficient statistical power varies greatly
between monitoring systems, reasoning against the use
of conventional rules-of-thumb. Similarly, with regard
to the precision of trend estimates, the optimal allocation
of sampling effort over time and space has been shown
to depend on the dynamics of the chosen system
(Rhodes and Jonzén 2011).

Even with careful consideration of all aspects of the
chosen monitoring system, program designs often need
to be updated once the data reveal more about the
specific nature of the system. Adaptive monitoring sees
aspects of monitoring as an iterative process, where
information gained through monitoring guides the evo-
lution of new questions, designs, and analyses
(Lindenmayer and Likens 2009). These principles are
particularly relevant to long-term monitoring programs,
where information on indicator species have been col-
lected for many years in exactly the same fashion, and
which can provide a more complete picture of species
dynamics and factors that may influence population
fluctuations (Kéry et al. 2009; Magurran et al. 2010).

In this paper, we present a case study using data from
a terrestrial salamander monitoring program (1999—
2016) to show how detailed, program-specific analyses
can improve how we approach the design and manage-
ment of monitoring programs. Our main objective was
to identify ways to optimize the time and effort required
to accomplish monitoring goals. We identified long-
term trends and predictors of short-term change in the
salamander populations in order to construct realistic
models for optimization. We investigated (i) the effect
of the number of monitoring years on the reliability of
trend detection and (ii) the effect of the number and
allocation of survey replicates on the accuracy and pre-
cision of model estimates. The terrestrial salamander
monitoring program used in this study uses a replicate
survey design to account for imperfect detection.
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Surveys with imperfect detection are likely to be biased
over time in their estimates of population parameters. As
such, our approach to optimization expands upon pre-
vious studies by using estimates of detection probability
to adjust final optimizations. We show how analyses of
valuable long-term monitoring datasets, spanning al-
most two decades of continuous monitoring, can be
used to improve the efficiency of the monitoring pro-
gram and to develop a template for other monitoring
programs using similar replicate survey designs.

Methods
Monitoring program design

The terrestrial salamander monitoring dataset used in
this study was collected by the Long Point World
Biosphere Reserve (LPBR) as part of the
Environmental Monitoring and Assessment Network
(EMAN). The aim of EMAN is to improve understand-
ing of changes in various Canadian ecosystems through
long-term monitoring. The red-backed salamander
(Plethodon cinereus) was the species of interest for this
monitoring program. Plethodontid salamanders have
been identified as important indicator species for long-
term monitoring due to their high abundance in forests,
high detectability, large geographic range, sensitivity to
environmental disturbances, and importance in the for-
est food web (Welsh and Hodgson 2013).

Two forest tracts within LPBR, Backus Woods and
Wilson Forest Tract, were surveyed as part of the pro-
gram. Backus is an old-growth forest while Wilson has
been subject to periodic timber extraction. Both tracts
are Maple-dominant Mixed Wood Carolinian Forests
and have remained relatively unimpacted over the
course of the monitoring program. Single square plots
(10 km?) within the interior of each forest were used for
the coverboard monitoring project (Fig. 1). Along the
perimeter of each square plot, 160 artificial coverboards
were placed in two parallel rows of 80 boards each. The
square plots were originally set up to act as reference
plots for a tree health monitoring program. Unlike the
tree health monitoring program, we did not assume that
salamander abundances in the square plots were repre-
sentative of the entire forest tract. Coverboards were
surveyed for the presence of salamanders no more than
once weekly (to minimize biases due to repeated distur-
bance (Marsh and Goicochea 2003)) in the spring
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(March to June) and fall (August to October) from 1999
to 2016 inclusive. Corresponding daily and annual pre-
cipitation and temperature data were obtained from a
weather station located approximately 25 km northeast
of the forest plots and gap-filled using an approach
similar to Wei and McGuinness (1973).

Trend analysis

To analyse trends in the monitoring data, we used dy-
namic occupancy models developed by Mackenzie et al.
(2003). False negatives are common in coverboard sur-
veys because salamanders may not be found under the
coverboard at the time of the survey (temporarily buried
underground or away from the coverboard foraging)
even though they normally reside there. Dynamic occu-
pancy models estimate annual occupancy using repeat-
ed measures to account for biases from imperfect detec-
tion. They allow for estimates of A; (probability of
salamander occupancy at board 7 in year j), p;u (proba-
bility of detection at board 7, in survey k of year j, given
salamanders are present), 7;; (probability that unoccu-
pied board i in year j is colonized in year j+ 1), and ¢
(probability that occupied board i in year ; becomes
unoccupied in year j + 1). It is important to note that
multiple salamanders are often found under individual
boards. For models where multiple individuals inhabit a
single board, occupancy refers to the probability that at
least one salamander is present during a sampling period
while detection refers to the probability that at least one
of the salamanders occupying the board is present at the
time of the survey.

Dynamic occupancy models assume closure for
board occupancy within survey periods. Since
plethodontids have small home ranges and do not move
more than a few meters throughout the active season
(Petranka 1998), it is unlikely that the assumption of
closure would be violated during the survey period. In
exceptionally wet springs, some coverboards were
flooded during the start of the survey period. Flooded
boards are unable to be occupied by the terrestrial sala-
manders, but observations of instances of flooding were
originally unforeseen and not fully recorded in the
dataset. Consequently, we needed to account for artifi-
cial decreases in occupancy estimates from spring
flooding and developed separate models for spring and
fall monitoring periods.

We used covariates in our models to reduce the
number of required parameter estimates and to

determine if there were any relationships between me-
teorological conditions and plethodontid occupancy dy-
namics. In dynamic occupancy models, parameter esti-
mates of detection, initial occupancy, colonization, and
local extinction are functions of covariates on the logit
scale. Dynamic occupancy models allow for the inclu-
sion of three types of covariates: site-specific covariates,
survey-specific covariates, and year-specific covariates.
For all parameters, we included the site-specific covar-
iate of forest plot. For detection probability (p;), we
also included the year-specific covariate of monitoring
year, the survey-specific covariates of the presence of
rain 24 h prior to the survey, and the linear and quadratic
terms for average daily temperature. For the occupancy
dynamics of colonization (vy;;) and local extinction (g;),
we included the year-specific covariates of annual rain-
fall (April-October), spring rainfall (March—June), av-
erage summer temperature (June—September), average
winter temperature (December—March), and the year
that monitoring was conducted (monitoring year). The
spring rainfall covariate was used exclusively in the
spring model as an index of flood intensity during the
survey period. We ran all models using the program
PRESENCE V12.10 (Hines 2006).

For each season, the top three models based on Quasi-
Akaike’s Information Criterion (QAIC) values were used
to create weighted averages of the parameter estimates.
Since board occupancy cannot be directly estimated from
the model, we used the smoothing method described by
Weir et al. (2009) to derive occupancy estimates for each
year. The delta method was used to derive standard errors
for all parameter estimates. To analyse trends in board
occupancy across years, we fitted linear models for the
plot-averaged occupancy estimates for each season. For
each model, we included covariates for year and plot. To
account for temporal autocorrelation in the occupancy
estimates, we fitted our models using generalized least
squares and specified a first-order correlation structure
with year as the grouping variable. We used a similar
strategy to analyse trends in detection probability, this
time combining estimates from spring and fall into a
single linear model and using year and season as covar-
iates. For all analyses, we used a 95% level of signifi-
cance to test for the importance of covariates.

Effect of monitoring length on trend detection

We simulated detection/non-detection data based on
model averages to investigate the ability to detect declines
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Fig. 1 Location of the EMAN plots. White squares represent the
locations of EMAN plots used for the salamander monitoring
program within Backus Woods and Wilson Forest Tract. Satellite

in occupancy for different lengths of monitoring pro-
grams. For all simulation analyses, we used model aver-
ages from the fall data in order to mitigate any biases
related to undocumented coverboard flooding in the
spring. We ran simulations for declines ranging from 5
to 25% every 5 years and for monitoring periods ranging
from 5 to 25 years. After the percent decline in occupancy
was applied to each year, we allowed for additional
fluctuations across years based on average year-to-year
fluctuations observed in the monitoring results. We as-
sumed that probability of colonization (7;) and persis-
tence (1 —¢;) was equal, to minimize the number of
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imagery source: Ontario Ministry of Natural Resources and For-
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parameter estimates and to simplify calculations. Using
the occupancy estimates from the simulated data, we
fitted linear models with a year as the covariate and
recorded whether the trend estimate was significantly less
than zero. We plotted the number of simulations with
significant decreasing trend estimates.

Effect of survey replicate allocation on occupancy
estimates

To investigate the accuracy and precision of single-
season occupancy estimates, we completed additional
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Fig.2 Smoothed model estimates of the probability of occupancy
for each season. Seasonal occupancy estimates for modelled
(closed circles) and raw (open circles) estimates of both sites
combined. Naive estimates are based on the raw data and do not

simulations using average detection and occupancy es-
timates from our models. For these simulations, we
investigated the effect of the number of surveys, boards,
and survey plots on the accuracy and precision of occu-
pancy estimates. We ran simulations for a moderate
degree of within-forest variability in board occupancy
(similar to the variability observed in this study) and for
a high degree of variability. We used 1000 simulations
for each combination and plotted the average occupancy
estimate and confidence bars that contained 95% of the
occupancy estimates. We qualitatively compared the
average estimates with the occupancy value used to
create the simulated data. In all cases, we ran simula-
tions in R (R Core Team 2017) using the unmarked
package (Fiske and Chandler 2009).

Results
Trend analysis

During the 18 years of monitoring used for this analysis,
a total of 369 surveys were completed: 212 (mean of
11.8) in the spring and 157 (mean of 9.2) in the fall.
There were 4066 salamanders identified under
coverboards during this period. On average, 117 (rang-
ing from 45 to 213) salamanders were identified under
coverboards in spring each year and 115 (ranging from
56 to 197) during the fall. Daily temperatures for the
long point area averaged 12 °C during the survey

2015

2000 2005 2010 2015

Year

account for detection probabilities. Linear trendlines for modelled
(solid lines) and raw (dashed lines) estimates are included for to
highlight the absence of a long-term trend in occupancy

periods (spring and fall), 19 °C during the summer,
and — 3 °C during the winter.

Detection probabilities associated with the best
models (i.e. with lowest AIC scores) covaried with
sampling year, forest plot, occurrence of rain in the
previous day, and the linear and quadratic terms for
average daily temperature. Estimates of the dispersion
parameter (c-hat) for the full models were 3.5 for spring
and 1.7 for fall, indicating the presence of
overdispersion. Using the c-hat estimates for model
selections, initial occupancy for the best spring model
(i.e. with the lowest QAIC score) covaried with site. The
probability of colonization covaried with the amount of
annual precipitation in the previous year, estimated oc-
cupancy in the previous year, and amount of spring
precipitation during the survey period; the probability
of extinction covaried with amount of annual precipita-
tion in the previous year and average temperature during
the previous summer (Table 1). By comparison, proba-
bility of colonization for the best fall model covaried
with the amount of annual precipitation corresponding
to the current year as well as estimated occupancy in the
previous year, while the probability of extinction covar-
ied with the amount of annual precipitation in the cur-
rent year and the average temperature during the previ-
ous winter (Table 1).

Averages for the smoothed occupancy estimates
across years were .55 +0.02 (= SE) for the spring and
0.66 £0.01 (+ SE) for the fall. There was large variation
in occupancy estimates for individual boards. For spring
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Table 1 Quasi-Akaike’s Information Criterion values (QAIC) for
the top three ranked models, the full model, and the null model for
each season. QAIC values are calculated using the dispersion
parameter (c-hat) from the full model. The top three models are

used to calculate weighted averages of the model parameters. The
covariates for initial occupancy (1)), colonization (), extinction
(), and detection probability (p) are listed in brackets

Spring

Model

1) (site), v (annual precip., previous occ., spring precip.), € (annual precip., summer temp.),

p (year, site, rain, temp., temp.z)

1) (site), v (annual precip., winter temp., previous occ.), € (annual precip., summer temp.),

p (year, site, rain, temp., temp.z)

1) (site), v (annual precip., previous occ.), € (annual precip., summer temp.), p (year, site, rain, temp., temp.z)

1) (site), 7y (year), € (year), p (model)
¥(), Y0, €(), p (year, site, rain, temp., temp.z)

Model

(), ~ (annual precip., previous occ.), & (annual precip., winter temp.), p (vear, site, rain, temp., temp.>)
(), 7 (annual precip., previous occ.), € (annual precip.), p (year, site, rain, temp., temp.?)
1 (site), y (previous occ.), € (annual precip., winter temp.), p (year, site, rain, temp., temp.?)

1) (site), 7y (year), € (year), p (year, site, rain, temp., temp.z)
0, 70, €0, p (year, site, rain, temp., temp.”)

QAIC w K
3386.97 045 31

3387.66 031 31

3388.19 024 32
3431.19 0 58
3389.60 0 25

QAIC w K
6319.17 042 28
6319.87 038 27
632120 020 27
6358.22 0 55
6335.99 0 24

w, model weights; K, number of parameters

data, 10% of the coverboards were estimated to be
occupied <32% of the time while another 10% were
estimated to be occupied > 80% of the time. Similarly,
for the fall, 10% of the coverboards were estimated to be
occupied <43% of the time, while another 10% was
estimated to be occupied > 90% of the time. Interannual
variations in occupancy estimates were greater for
spring than for fall (Fig. 2), with average annual changes
of 16% for spring versus only 6% for the fall. There
were no significant trends for occupancy estimates dur-
ing the spring (slope =—0.002, p = 0.88) or fall (slope =
0.011, p=0.15).

Estimates of detection probability averaged 0.15 =+
0.01 (= SE) across years for the spring and 0.76 +0.01
(= SE) for the fall. Despite large fluctuations, mean
annual estimates generally increased across years (slope =
0.046, p <0.001; Fig. 3). Mean estimates (By) and slopes
(B;) for detection probability did not significantly differ
between fall and spring (ABy=—0.10, p=0.41; AB, =
0.013, p =0.58). Both models appeared to show an initial
increase in detection probability, followed by a decrease,
and ending with another increase (Fig. 3).

Effect of monitoring length on trend detection

Results of our analysis for trend detection indicated that
a survey conducted at 5-year intervals over a period of
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10 years would have sufficient power (> 0.9) to detect a
decline in occupancy of 20%; a survey conducted at 5-
year intervals over a 15-year period would have suffi-
cient power to determine a 10% decline, whereas a
survey conducted at 5-year intervals over a 25-year
period would be required to detect a 5% decline in
occupancy (Fig. 4). These correspond to declines in
occupancy of 36% over 10 years, 27% over 15 years,
and 23% over 25 years. A decline approaching 60%
would have been required to permit detection over a
short survey period of only 5 years.

© o o
- (V) w

Probability of Detection

o
o

2000 2005 2010 2015
Year

Fig. 3 Estimated probability of detection for spring (closed cir-
cles) and fall (open circles) of each year of the monitoring program
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Fig. 4 Estimated power to detect declines in coverboard occu-
pancy. Simulations for declines of 0.05 (closed circles), 0.10 (open
circles), 0.15 (closed triangles), 0.20 (open triangles), and 0.25
(squares) every 5 years. Significance of the estimated slopes was
assessed using an alpha of 0.05. The dotted horizontal line repre-
sents the chosen threshold for sufficient power (>0.9). 1000
simulations were run for each unique combination

Effect of survey replicate allocation on occupancy
estimates

Accuracy assessments indicated that accurate estimates
of occupancy occur when survey designs include at least
10 survey sites and a combination of either 80 boards
and 12 surveys or 160 boards and 8§ surveys (Fig. 5).
Increasing the number of boards or surveys past those
values tends to have small effects on the precision of
occupancy estimates. On the other hand, increases in the
number of survey sites tended to have a more pro-
nounced effect on the precision of occupancy estimates.
Low numbers of boards, surveys, or sites, regardless of
the magnitude of the other two parameters, tended to
result in occupancy estimates with low accuracy and
precision. Changes in the variability of occupancy esti-
mates within the forest had little impact on the precision
of occupancy estimates, and while accuracy was slightly
different between treatments, this difference may be
more related to the difficulty in estimating the central
tendency of occupancy data.

Discussion

While occupancy fluctuated across years, our results did
not show any significant decrease or increase in

abundance through time, suggesting that populations
in both plots have been stable over the monitoring
period. Short-term fluctuations in occupancy appeared
to be influenced by changes in annual meteorological
conditions, supporting the role of moisture in
plethodontid abundance (Warren II and Bradford 2010;
Grover 1998). The original EMAN protocol for using
salamander abundance as an index of environmental
change recommended that “relative changes in abun-
dance ....be determined after a few years of sampling”
(Zom et al. 2004; Environment Canada 2003). Given
the observed large annual fluctuations in occupancy in a
relatively undisturbed population, it would be unrealis-
tic to expect abundances monitored over a few years to
yield meaningful trends. For example, in our simula-
tions, a program with fewer than 5 years of monitoring
data would not be able to reliably detect the presence of
a declining trend unless the population had been reduced
by an unrealistically high rate of 60%. More realistic
loss rates of 5 to 10% would require 15 to 25 years of
monitoring. For this program and similar programs, we
advise against conducting trend analysis with datasets <
10 years, since results may lead to incorrect conclusions
on the status of the population.

Such a lack of statistical power in short-term trend
analysis has been identified for other types of monitor-
ing programs and indicator species (Erb et al. 2015;
Nielsen et al. 2009; Helander et al. 2008; Meyer et al.
2010). At short timescales, the natural variation in the
population parameters of interest tends to mask other,
long-term changes that the system is experiencing. This
has been shown more generally by White (2019) in their
analysis of vertebrate data from 822 different popula-
tions. They found that roughly three-quarters of the
populations they studied required 10 years of con-
tinuous monitoring data for trends to be reliably
detected. Our results provide further justification
for the need for > 10 years of monitoring and dem-
onstrate the ability to determine program-specific
thresholds for trend detection. Despite the pattern
of unreliability for trend detection in short-term
monitoring programs, there is considerable variation
in the minimum time required for trend detection
across monitoring programs (White 2019). As such,
being able to conduct power analyses based on the
specific characteristics of the monitoring system and
chosen statistical analyses can provide more accu-
rate estimates of the minimum number of years, thus
saving time and resources.
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Fig. 5 Mean and 95% CI of single-year occupancy estimates
based on simulated coverboard occupancy data. Simulations for
a range of boards, surveys, and survey sites. The closed squares
represent averages for simulations run with a moderate degree of
within-forest variability in occupancy, whereas the open squares
represent averages for simulations run with a high degree of

The quality of occupancy estimates needs to be con-
sidered alongside the number of monitoring years in
order to conduct reliable trend analyses. In this study,
large fluctuations in detection probability across years
and surveys highlight the importance of a replicate
survey design for adjusting occupancy estimates. We
show that moderate numbers of spatial replicates
(coverboards and survey sites) and temporal replicates
(surveys) are required to accurately and precisely esti-
mate occupancy. For example, a minimum of 160
boards split among 10 survey sites with 8 surveys per
season is recommended for the monitoring program
used in this case study. Low numbers of boards, surveys,
or sites tend to result in estimates with low accuracy and
precision regardless of the magnitude of the other two
replicates. Our results suggest that effort should be
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variability. The maximum number of survey sites condition refers
to simulations run with a survey site for every board. We omitted
simulations with 20 boards and 20 survey sites to avoid repetition.
1000 simulations were run for each unique board-survey-site
combination. The dotted line represents the true average occupan-
cy value (0.7) for the forest

partitioned across the monitoring parameters of surveys,
boards, and sites to avoid the disproportionate effects
associated with having a small number of any of these
replicates.

Consideration must also be given to the limitations of
the monitoring program when optimizing for design.
For example, the number of surveys in any given year
for the salamander monitoring program is limited by the
number of weeks when salamanders are active. Since
the number of appropriate weeks can change from year
to year, a conservative approach should be taken when
planning how many surveys will be conducted.
Similarly, though distributing boards across a greater
number of survey sites can improve the precision of
occupancy estimates, it comes at a cost of increased
sampling time.
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How one partitions survey effort across temporal and
spatial replicates is dependent on the dynamics of the
populations used in the monitoring system, the environ-
mental variation, and the magnitude of observation error
(Rhodes and Jonzén 2011). Estimates of population
parameters for populations with proportionally high
spatial correlation will benefit from program designs
with a larger emphasis on temporal replicates, and vice
versa for populations with proportionally higher tempo-
ral correlation (Rhodes and Jonzén 2011). Due to the
dependency of plethodontid salamanders on specific
microhabitats (Petranka 1998), the monitoring program
in this case study benefits more from high spatial repli-
cation of surveys. However, sufficient temporal repli-
cates are necessary to offset low detection probabilities
and minimize the errors associated with uncorrected
occupancy estimates (Field et al. 2005).

Short-term data, in particular, is important for deter-
mining the dynamics of monitoring systems. As more
information is gained on the monitoring system, pro-
gram designs can be adjusted for high or low spatial and
temporal correlation in populations. Even if the species
of interest is well known, populations in different geo-
graphic regions can have different dynamics leading to
different optimal survey designs (Petranka 1998). These
adjustments are a key aspect of adaptive monitoring
(Lindenmayer and Likens 2009) and, together with the
refinement of program goals and questions, will be a
necessary part of monitoring program development go-
ing forward.

Our research continues to address important ques-
tions related to how monitoring effort should be allocat-
ed to optimize the accuracy of parameter estimates and
reliability of trend analyses. Researchers have pointed to
the importance of considering monitoring program cost
and effort in the context of program goals (McDonald-
Madden et al. 2010; Reynolds et al. 2011; Caughlan and
Oakley 2001). Given the small amount of resources
allocated to conservation programs, optimizations for
program design are increasingly being recognized as
integral to the development and continued improvement
of monitoring programs (McDonald-Madden et al.
2010). In particular, we have highlighted optimizations
in the context of dynamic occupancy models, which
represent a relatively recent development for long-term
monitoring programs. We have shown that using dy-
namic occupancy models to account for detection prob-
abilities in replicate survey designs can be important not
only for trend analysis but also for the improvement of

monitoring program design. We believe that a similar
framework to the one used in this study can be applied to
other monitoring programs that use replicate survey
designs. There is considerable potential for future mon-
itoring based on the infrastructure that has been created
through long-term monitoring programs. Using these
suggestions, monitoring programs can continue to pro-
vide the scientific community with extensive datasets
that would otherwise be difficult to collect for re-
searchers limited by short-term funding.
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