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Abstract Phragmites australis (Cav.) Trin. ex

Steudel subspecies australis is an aggressive plant

invader in North American wetlands. Remote sensing

provides cost-effective methods to track its spread

given its widespread distribution. We classified

Phragmites in three Lake Erie wetlands (two in Long

Point Wetland Complex (LP) and one in Rondeau Bay

Marsh (RBM)), using commercial, high-resolution

(WorldView2/3: WV2 for RBM, WV3 for LP) and

free, moderate-resolution (Sentinel 2; S2) satellite

images. For image classification, we used mixture-

tuned match filtering (MTMF) and then either max-

imum likelihood (ML) or support vector machines

(SVM) classification methods. Using WV2/3 images

with ML classification, we obtained higher overall

accuracy for both LP sites (93.1%) compared with the

RBM site (86.4%); both Phragmites users’ and

producers’ accuracies were also higher for LP

(89.3% and 92.7%, respectively) compared with

RBM (84.3% and 88.4%, respectively). S2 images

with SVM classification provided similar overall

accuracies for LP (74.7%) and for the RBM

(74.3%); Phragmites users’ and producers’ accuracies

for LP were 85.3% and 76.3%, and for the RBM,

69.1% and 79.2%, respectively. Using WV2/3, we

could quantify small patches (percentage cover

C 20%; shoots C 1 m tall; stem counts[ 25) with

accuracy[ 80%, whereas parallel effort with S2

images only accurately quantified high density

([ 60% cover), mature shoots ([ 1 m tall; Stem

counts[ 100). By simultaneously mapping young or

sparsely distributed Phragmites shoots and dense

mature stands accurately, we show our approach can

be used for routine mapping and regular updating

purposes, especially for post-treatment effectiveness

monitoring.

Keywords MTMF � Phragmites �WorldView 2 and

WorldView 3 � Sentinel 2 �Wetlands � Invasive species

Introduction

Phragmites australis (the common reed; hereafter

Phragmites) is a taxonomically diverse perennial

grass, with 27 genetically distinct groups throughout

the world, 11 of which are found in North America.

One of the European haplotypes, M, is an aggressive

invader in coastal wetlands and roadway corridors and

have been growing at the expense of native vegetation

in many coastal marshes of the lower Great Lakes

(Saltonstall 2002). This haplotype exhibits invasive

characteristics, including its ability to aggressively

colonize exposed mud flats sexually (through seeds),

and then expand asexually (through rhizomes) to form
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dense monocultures that inhibit biodiversity of other

plants and wildlife (Meyerson et al. 2000; Markle and

Chow-Fraser 2018). Its rapid spread has been

attributed to it being a superior competitor against

other emergent vegetation (Meyerson et al. 2000;

Uddin et al. 2014) and to being more tolerant of

disturbances (e.g. road maintenance and changes in

hydrologic regimes) and environmental stressors (e.g.

increased salinity due to road de-icing salts) (McNabb

and Batterson 1991; Marks et al. 1994; Chambers et al.

1999; Brisson et al. 2010; Taddeo and Blois 2012;

Rodrı́guez and Brisson 2015). Once established, this

aggressive invader has been known to reduce wetland

plant diversity and alter vegetation structure (Ailstock

et al. 2001; Mal and Narine 2004; Lambert et al. 2010;

Gilbert et al. 2014), habitat for wetland fauna (Wein-

stein and Balletto 1999; Bolton and Brooks 2010;

Gilbert et al. 2014; Cook et al. 2018; Markle and

Chow-Fraser 2018), and modify hydrology and soil

properties (Chambers et al. 1999; Bolton and Brooks

2010), thus having an overall negative impact on

ecosystem functions.

Optimal conditions for the growth of Phragmites

are provided by water bodies with seasonal fluctua-

tions of 30 cm (Deegan et al. 2007). New shoots of

Phragmites arise in the spring and may grow up to

3–4 m tall during the summer, producing large

inflorescences giving rise to thousands of seeds

towards the late summer and early fall (Burgess and

Evans 1989; Gilbert et al. 2014; Gagnon Lupien et al.

2015). According to Albert et al. (2015), both seeds

and vegetative propagation contribute to the new

Phragmites establishment; however, 84% of the newly

established Phragmites stands are formed through

seed germination. Lathrop et al. (2003) have reported

three patterns of Phragmites growth in brackish tidal

marshes at eastern USA: (a) colonization or new

growth, (b) linear clonal growth along an axis, and

(c) circular clonal patches (non-directional) with

random spread. New Phragmites stands are charac-

terized by low-density short shoots with a few small

leaves. Phragmites grown in deep water also produce

lower number of shoots and shorter rhizomes, thus

limiting its vegetative expansion (Weisner and Strand

1996; Vretare et al. 2001). Linear Phragmites stands

are mostly observed along the roadside in linear

wetland corridors and along shores of water ways,

while circular growths are mostly observed in wet-

lands with ideal growth conditions.

The distinctive growth patterns of Phragmites

make them well suited to remote sensing approaches.

A number of methods have been developed to map

dense Phragmites with higher accuracy (i.e.[ 80%),

involving satellite images of moderate 30-m Landsat

and 10-m and 20-m Sentinel 2 (Rupasinghe and

Chow-Fraser 2019), and emergent vegetation with

10-m and 20-m SPOT; 4-m IKONOS (Rutchey and

Vilchek 1999; Sawaya et al. 2003; Phillips et al. 2005).

Other methods are available that employ more

expensive high resolution hyperspectral images

acquired by commercial sensors such as AVIRIS,

CASI, HyMap, and PROBE-1 (Schmidt and Skidmore

2001; Bachmann et al. 2002; Williams and Hunt 2002;

Lopez et al. 2004), that could be used for mapping

low-density stands. For mapping invasive species,

multispectral images have advantages over hyper-

spectral images because of their overall lower cost

(some available at no cost or reduced cost), higher

spatial coverage, and shorter durations between

acquisitions that facilitate repeated mapping of the

entire wetland for assessing treatment efficacy at the

ecosystem scale. The main disadvantage, however, is

that multispectral images produce lower accuracy

compared with hyperspectral images, especially at

early stages of invasion when plant densities are low

(Adam et al. 2010).

Selection of hyperspectral or multispectral images

and choosing the best classification algorithm is

essential for accurate species-level mapping. Camp-

bell (2002) described two categories of classification

algorithms that can be used in supervised classification

methods: (a) distance based or hard classifiers and

(b) unmixing based or soft classifiers. In hard classi-

fiers, the distance from a known reflectance value is

used to determine the match between an unknown

pixel. Maximum likelihood classification (ML), spec-

tral angle mapper (SAM), and minimum distance

classification are some of the examples for hard

classifiers and they act as ‘first look’ tools to identify

the presence of target species in the study area

(Campbell 2002). The soft classifiers such as linear

spectral unmixing (LSU), mixture tuned match filter-

ing (MTMF), and Bayesian probability use relative

abundance of land cover classes within a pixel. In

these techniques, mixed pixels that contain several

landcover classes are decomposed into its original

constituents, to develop a set of output images rather

123

1232 P. A. Rupasinghe, P. Chow-Fraser



than a single classified image as in hard classifiers

(Lass et al. 2005; Williams and Hunt 2004, 2002).

Despite the expansion of Phragmites in many Lake

Ontario and Erie coastal marshes in the late 1990s

(Wilcox et al. 2003), control programs were not

implemented in Ontario until 2007 (Bourgeau-Chavez

et al. 2015; Gilbert 2015). Non-chemical control

methods such as cutting, drowning, smothering,

covering, excavating, plowing, grazing, and burning

have been tested in Ontario with varying success

(Gilbert et al. 2014). In some instances, mechanical

control cannot be implemented in natural ecosystems

when the invaded area is large and inaccessible by

either boat or road. In these instances, aerial applica-

tion of either glyphosate or imazapyr has been used

(Avers et al. 2007; Derr 2008; Gilbert et al. 2014;

Gilbert 2015). Although glyphosate had been used

widely within the United States to control the growth

of invasive Phragmites (Gilbert 2015), its use in

Ontario has been prohibited except by Emergency Use

Registration, which requires first, an accurate map of

Phragmites in the wetland to spray only the target area

during aerial herbicide application and to avoid

spraying on native vegetation and secondly, an

accurate monitoring program to quantify the efficacy

of the treatment program since complete removal of

Phragmites in an area requires repeated applications

over several years (Gilbert et al. 2014; Rupasinghe

et al. 2017).

To meet treatment protocols such as Ontario’s

Emergency Use Registration requirements, managers

must obtain high mapping accuracies for both the

expansive mature stands of Phragmites (i.e. untreated)

as well as the small, young, sparsely distributed shoots

(i.e. when they regenerate following treatment). Such

mapping would require a remote-sensing approach

that is cost-effective, repeatable, and produce results

that maximize both producers’ (mapping accuracy on

the map makers’ or the producers’ perspective,

complements the level of omission error or the false

negatives) and users’ (mapping accuracy on the map

users’ perspective, complements the level of commis-

sion error or the false positives) accuracies, since both

false negatives and false positives are unacceptable at

high levels. In this study, we compare classification

accuracies associated with two multispectral products

(commercially available, high resolution WorldView

2/WorldView3 (WV 2/3) and the freely available,

moderate resolution Sentinel 2 (S2) images) using sub-

pixel image classification methods to determine the

relative usefulness of these image products for map-

ping the distribution of Phragmites in three Lake Erie

marshes that had been colonized since the late 1990s

(Wilcox et al. 2003). At the time of image acquisition,

the patterns of Phragmites distribution varied across

the three sites. One wetland had low-density stands of

young shoots a year following herbicide treatment,

whereas another had large, dense mature Phragmites

stands that had not yet been chemically treated, and a

third had a mixture of both chemically treated and

untreated areas. Our goal is to experiment with sub-

pixel techniques used previously, mostly with hyper-

spectral images, and apply them to multispectral

images to obtain accuracies[ 80% for all Phragmites

density classes across the three Lake Erie wetlands.

Methods

Study sites

Two of the three Lake Erie wetlands, Big Creek

National Wildlife Area (BCNWA; 42� 350 N 80� 270
W) and Crown Marsh (CM; 42� 350 N 80� 240 W)

occur in Long Point (LP) Wetland Complex, which is

internationally recognized as an UNESCO World

Biosphere Reserve and under the Ramsar Convention

as an internationally important wetland (Ministry of

Natural Resources and Forestry 2019) (Fig. 1).

BCNWA covers an area of 771 ha and consist of the

Big Creek unit (615 ha) and the Hahn Marsh Unit

(156 ha). It is federally owned and managed by the

Environment and Climate Change Canada. CM is

about 2 km East to the BCNWA and covers approx-

imately 708.2 ha. It is owned by the Province of

Ontario and is normally accessible to the public

throughout the year. These wetlands are characterised

by emergent aquatic vegetation, mainly Cattail (Typha

sp.), Phragmites, and Bulrushes (Juncus sp.) (Long

Point Crown Marsh Rehabilitation Steering Commit-

tee 2007) and meadow marsh dominated by Calam-

agrostis canadensis (Yuckin and Rooney 2019). The

third wetland, Rondeau Bay Marsh (RBM; 42� 170 N
81� 520 W), is managed by the province of Ontario,

and is located further west on the north shore of Lake

Erie, covering an area of 1800 ha (Fig. 1). RBM is

characterized by Carolinian forests, sandy peninsula,

and marsh (Mann and Nelson 1980). The drier parts of
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the marsh are dominated by Cephalanthus occiden-

talis, Salix, and Cornus spp. Other than Phragmites,

the emergent plants included monocultures of Typha

latifolia, T. angustifolia, T. x glauca and Zizania

aquatica and the marshes with deeper standing water

was dominated by aquatic species of Cyperaceae,

Nuphar advena, and Nymphaea odorata (Finkelstein

and Davis 2006).

Remote sensing data

WV, which is operated by DigitalGlobe, is a fourth-

generation, optical and commercial earth-observation

satellite series, with the highest spatial resolution

(30 cm for WV3 and 40 cm for WV2) of all existing

optical satellites available for research (Kurihara et al.

2018). WV3 has revisit frequency less than 1 day at

40�N latitude and 4.5 days at 20� off-nadir or less

while for WV2, revisit frequency is 1.1 days and

3.7 days at 20� off-nadir (Satellite Image Corporation

2017). A cloud-free WV3 image was acquired on 4th

July 2018 for BCNWA and CM sites and WV2 image

was acquired on 5th September 2018 for RBM site.

WV3 images consist of one panchromatic band

(445–808 nm spectral resolution and 30 cm spatial

resolution) and eight multispectral bands (1.2 m

spatial resolution), including the coastal blue

(397–454 m), blue (445–517 nm), green

(507–586 nm), yellow (580–629 nm), red

(626–696 nm), red edge (698–749 nm), Near Infra-

Red 1 (NIR 1; 765–899 nm) and NIR 2

(857–1039 nm) bands. For the WV2 images, the

panchromatic band is 40 cm spatial resolution

(464–801 nm) with 8 multispectral bands (1.8 m

spatial resolution); coastal blue (401–453 m), blue

(447–508 nm), green (511–581 nm), yellow

(588–629 nm), red (629–689 nm), red edge

(704–744 nm), NIR 1 (772–890 nm) and NIR 2

(862–954 nm) (Nikolakopoulos and Oikonomidis

2015).

S2 is a satellite owned by the European Space

Agency (ESA), designed for studies based on terres-

trial observations. It consists of two satellites, Sen-

tinel-2A (launched in 2015) and Sentinel-2B

(launched in 2017). S2 provide revisit time of 5 days

at the equator (European Space Agency 2020). The

images for BCNWA and CM sites were acquired on

6th July 2018 and for RBM site on 28th August 2018.

S2 images consist of four 10-m resolution bands

(Blue; 490 nm, Green; 560 nm, Red; 665 nm, and

Fig. 1 Map of the study sites located in the north shore of Lake Erie
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NIR; 842 nm), six 20-m resolution bands (Vegetation

red edge; 705 nm, 74 nm, 783 nm, Narrow NIR;

865 nm, Short Wave InfraRed 1 (SWIR 1); 1610 nm,

SWIR 2; 2190 nm), and three 60-m resolution bands

(Coastal aerosols; 443 nm, Water vapor; 945 nm, and

SWIR Cirrus; 1375 nm).

Ground truth data

We conducted field sampling in the summers of 2018

and 2019 at the BCNWA and CM to record locations

of Phragmites as ground truth data. In the field, we

established 1.5 9 1.5 m quadrats in the Phragmites

patches and visually recorded percentage cover of

Phragmites. Then we cut all the standing Phragmites

stems within the quadrat and weighed them using a

Xcalibur Spring Scale. Stand height of Phragmites

was estimated by cutting down the tallest shoot at its

base, laying it on the ground, and measuring themwith

a tape measure (to the nearest cm). We recorded the

coordinates of the quadrats using Garmin eTrex

handheld GPS (Garmin and subsidiaries). In total for

both years, we collected Phragmites information from

58 quadrats in BCNWA and 89 quadrats in CM. In

addition to field sampling, we used high-resolution

image interpretation to identify land-cover classes on

inaccessible areas. We used the sensefly eBee (Parrot,

Cheseaux-Lausanne, Switzerland (SenseFly 2020a),

equipped with the Parrot Sequoia ? camera (Sense-

Fly 2020b) to acquire Unmanned Aerial Vehicle

(UAV; 13 cm resolution) images in July 2019. We

used this high-resolution UAV image and the pan-

sharpened WV3 image (30 cm spatial resolution;

same image used in image classification) to collect

ground reference for land-cover classes for both

classification and accuracy assessment for areas with

limited access. We identified these classes through

both knowledge in the field and visual comparison of

manually digitized UAV image acquired in late

summer 2015 (Marcaccio et al. 2016). In addition,

we also used 15 Phragmites treatment locations

corresponding to a spraying program conducted

between September and October in 2018 by Nature

Conservancy Canada (NCC) to validate the image

classification.

Field data used as ground reference for RBM were

collected by Angoh et al., (841 quadrats; unpublished

data) as part of their study to examine the effect of

Phragmites on turtle habitats. They used 2 9 2 m

quadrats and counted the number of dead and live

Phragmites stems and Cattail stems within the quadrat

and recorded the dominant species and landcover

types within the quadrat. Of these 841 quadrats, 313

contained Phragmites. In addition to the field data, we

used locations from manual interpretation of pan-

sharpened WV2 image (40 cm spatial resolution,

same image used for the image classification) and

obtained 10 locations where Phragmites had been

treated in 2018 (data provided by Ontario Parks).

Remote sensing data processing

We conducted all image pre-processing and process-

ing with the software ENVI 5.5 (L3Harris Geospatial

2020). We performed radiometric correction and

atmospheric correction (ENVI FLAASH correction)

to obtain surface reflectance values for both WV2/3

and S2 images. Reflectance values were rescaled from

0 to 1 after FLAASH correction. For S2 images, we

separately preprocessed the 20-m resolution bands,

resampled them to 10-m resolution and stacked them

with the preprocessed 10-m bands prior to image

analysis.

We performed sub-pixel image classification using

spectral mixture analysis to detect Phragmites. In the

spectral mixture analysis, it is assumed that the mixed

pixel spectrum is a linear combination of the spectral

signatures of the component classes of the pixel

(Adams et al. 1985). Mixture tuned match filtering

(MTMF) is a method used in spectral mixture analysis

which performs partial spectral unmixing (Boardman

et al. 1995). In this technique, only the pure spectral

signature (endmember) of the target landcover class

needs to be defined. The image is then filtered for the

defined endmember spectrum and the unknown back-

ground spectra are supressed (Boardman 1998; Board-

man and Kruse 2011; Brelsford and Shepherd 2013).

The three steps in MTMF includes: (a) minimum noise

fraction (MNF) transformation to minimize and

decorrelate noise, (b) match filtering (MF) to estimate

the abundance of the target class, and (c) mixture

tuning (MT) to separate false positives from the MF

step (Boardman 1998; Boardman and Kruse 2011).

The MTMF produces two outputs at the end of the

analysis, the MF score image, and the infeasibility

image. The MF score represents the relative abun-

dance of the target class within a pixel. It ranges from 0

to 1 where a score of 1 represents a perfect match
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between the end member and the sub-pixel abundance

or 100% of the target class within the pixel. The

infeasibility scores are in noise sigma units and

provide the feasibility of the MF results (Harris

Geospatial Solutions, Inc 2020).

First, we performed minimum noise fraction

(MNF) transformation for both pre-processed WV2/

3 and S2 images to reduce image dimensionality. After

the MNF transformation, we performed the MTMF

followed by image classification. We evaluated the

eigen value plots and the classification results with

various combinations of MNF bands and based on

these results, chose the first four or five bands for

further analysis (additional MNF bands added

unwanted noise to the classification). For the MTMF,

we extracted spectral endmembers using the field

observations. Again, we repeated the classification

with Phragmites endmember alone and with different

combinations of endmembers of the other classes and

checked for accuracy. Then we selected the endmem-

ber combination that provided the highest classifica-

tion accuracy.

After the MTMF transformation, we classified the

images using both maximum likelihood (ML) and

support vector machines (SVM) classification meth-

ods. We applied 5 9 5 majority filter for all classes

except for Phragmites and then compared the results.

For image classification and endmember extraction,

we used Phragmites locations collected in the field in

addition to locations obtained from the image inter-

pretation (73 locations for the LP and 38 locations for

the RBM); we used all Phragmites quadrat data

collected in the field and the Phragmites treatment

locations for accuracy assessment (162 locations for

the LP and 323 locations for the RBM). Therefore,

there was no overlap between classification and

accuracy assessment locations.

After image classification, we imported landcover

maps that provided the highest mapping accuracy into

ArcMap 10.4.1 and evaluated the mapping accuracy of

Phragmites cover, stem count, height, and weight

using the quadrat data collected during field work. To

enable analyses, we divided percentage cover data into

five equal intervals (i.e. 20% increments). Height

information were sorted into four categories (\ 1 m,

1–2 m, 2–3 m, and[ 3 m) as were weight data

(0–2 kg, 2–4 kg, 4–6 kg, and[ 6 kg). Although we

performed image classification of BCNWA and CM

together (i.e. a single image was acquired for both

sites), we calculated percent cover and analyzed the

height and weight data separately for the two sites. For

the RBM site, we sorted the live stem counts per

quadrat into six categories (0, 1–25, 25–50, 50–75,

75–100, and[ 100), before calculating mapping

accuracies.

We used Fragstats 4.2 to extract patch area, largest

patch index (LPI), and radius of gyration of each patch

for the three sites separately using the maps with

highest classification accuracy. We analysed the data

using the JMP 15 software and created plots in MS

Excel and in JMP.

Results

Phragmites and wetland land cover mapping

After analyzing different endmember combinations,

we obtained the highest classification accuracy with

the combination that included Phragmites, trees/

shrubs (mixed forest for RBM site), and open land.

Accuracy obtained for this combination was higher

than that for the Phragmites endmember alone.

Therefore, we used this combination of classes for

the rest of the study (i.e. all combinations of sites and

sensors).

For the BCNWA and CM sites, we classified the

image into eight land cover classes; Phragmites,

Cattail organic shallow marsh, mixed organic shallow

marsh, trees/shrubs, open land, open water, submerged

shallow aquatic shallow marsh, and floating vegeta-

tion (Fig. 2). We classified the RBM site also into

eight classes: Phragmites, Cattail organic shallow

marsh, floating vegetation, meadow marsh, mixed

forest, open land, open water, and organic thicket

swamp (Fig. 3). The overall, user’s and producer’s

accuracies were higher for WV2/3 than for S2,

regardless of classification method (Table 1). For

WV2/3 images only, ML classification produced

higher classification accuracy than did SVM. The

SVM classification resulted in high commission error

of Phragmites for both LP and RBM sites (Table 1;

Figs. 2, 3). By comparison, SVM produced higher

accuracy than did ML classification for S2 images.

Based on these results, we used the ML classification

for the WV2/3 images and SVM classification for the

S2 images in Phragmites cover, stem count, height,

and weight analysis.
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Phragmites percentage cover and stem count

analysis

The MF score of Phragmites increased with percent-

age cover and stem count (Figs. 4, 5); however,

whereas significant positive regressions between MF

score and percentage cover were found for all WV2/3

images, only the S2 image for BC was associated with

a significant regression. Classification of S2 images

were generally associated with comparatively low

accuracies (Table 1), with no significant positive

correlation between MF scores and percentage cover

or stem counts (Figs. 4, 5). Despite the statistical

significance, the regression coefficient between the

MF score and percentage cover of Phragmites was

relatively low (Fig. 4). This is due to the spectral

similarities between Phragmites and other vegetation

classes. We observed lower MF scores for some

Fig. 2 Classified images of BCNWA and CM sites with a WV3 images-ML classification, b WV3 images-SVM classification, c S2
images-ML classification and d S2 images-SVM classification
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locations with 100% Phragmites cover (as reported in

the field) because the actual image pixels could be

mixed with different reflectance signals such as

shadows cast by Phragmites itself or by adjacent

taller vegetation, non-leaf reflectance from large

inflorescences, dried leaves and stalks, glare from

open water etc. We observed a similar trend with the

stem count data for the RBM site, in which the

regression coefficient between MF score and the live

stem count of Phragmites was very low (Fig. 5). The

dead stems in majority of the quadrats at the RBM site

and other reflectance signals associated with non-

Phragmites vegetation may explain the low range of

MF scores.

Although accuracies for the five density categories

varied for the two LP sites, some generalizations can

be made. First, regardless of the site, we obtained

higher accuracies with the WV3 image (Fig. 6a, b)

than with the S2 image (Fig. 6c, d). Secondly, in all

cases, the lowest density category (\ 20% cover)

Fig. 3 Classified images of RBM site with a WV2 images-ML classification, b S2 images-ML classification, c WV2 images-SVM

classification and d S2 images-SVM classification
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failed to meet the threshold accuracy of 80% (Fig. 6).

For BCNWA, four of the remaining density categories

achieved acceptable accuracies with the WV3 image

compared with three with the S2 image (Fig. 6a vs. c).

Inaccurate classifications for the highest density

(80–100% cover) were caused by confusion between

Phragmites and Cattail and in a few cases, between a

patch of high-density Phragmites and trees/shrubs. For

CM, acceptable accuracies were only achieved with

the WV3 image in the two highest density categories,

whereas all accuracies were\ 80% with the S2 image

(Fig. 6b vs. d).

Table 1 Overall,

Phragmites users’ and
producers’ accuracy for

different combinations of

WV2/3 and S2 images and

SVM and ML classification

methods

Site Classification accuracy WV3 S2

SVM ML SVM ML

BCNWA and CM Overall accuracy % 69.75 93.08 74.68 72.15

Kappa 0.6162 0.9062 0.6832 0.6467

Phragmites Producers’ accuracy % 95.07 92.72 76.32 79.82

Phragmites Users’ accuracy % 41.77 89.29 85.29 79.13

Site Classification accuracy WV2 S2

SVM ML SVM ML

RBM Overall accuracy % 75.77 86.37 74.25 70.86

Kappa 0.6869 0.8220 0.6927 0.6503

Phragmites Producers’ accuracy % 95.14 88.43 79.17 48.57

Phragmites Users’ accuracy % 61.94 84.29 69.09 70.15

Fig. 4 Linear regression

plots of MF scores versus

Phragmites percent cover
associated with WV3

images for a BCNWA and

b CM sites; corresponding

regression plots associated

with S2 images for

c BCNWA and d CM sites
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For the RBM site, we had stem counts instead of

percentage cover data. The WV2 image yielded[
80% accuracies for quadrats with greater than 25

Phragmites stems (Fig. 7). An accuracy of 93.3% was

obtained for quadrats with over 100 live Phragmites

stems, and 53.4% for the lowest category with fewer

than 25 live stems. For quadrats containing non-living

Phragmites stems, we obtained an accuracy of 50.0%.

For S2 images, accuracy for the highest count category

([ 100 live stem) was only 73.3% (4 of 15 quadrats

had been misclassified), and accuracies for all other

categories were lower than 65%.

We observed a significant positive correlation

between percentage cover of Phragmites and live

stem weight and height for both BCNWA (r = 0.58

and r = 0.71 respectively) and CM (r = 0.84 and

r = 0.79 respectively) sites. Therefore, we analysed

the classification accuracy of Phragmites sorted by

weight and height. With the WV3 images, we

found[ 80% accuracy for all height categories over

1 m.We obtained accuracy of 75.0% for plants\ 1 m

tall at the BCNWA site (Fig. 8a). By contrast, the

highest accuracy (86.7%) for the S2 image was

obtained for the 1–2 m category, while plants shorter

than 1 m, taller than 3 m, and between 2–3 m were

associated with much lower accuracies of 62.5%,

71.4% and 82.1%, respectively (Fig. 8b). We did not

have any quadrat data over 3 m height category for the

CM site. We obtained 100% accuracy for the height

category of 2–3 m and very low accuracy for 0–1 m

height category (7.7%; Fig. 8e). We obtained a similar

trend with the S2 images, where highest accuracy was

obtained for the intermediate category (2–3 m;

85.7%), and lowest accuracy was obtained for

quadrats with plant heights\ 1 m (7.7%; Fig. 8f).

Based on the results, accuracy for both WV3 and S2

images generally improved with increasing plant

height.

We also compared accuracies betweenWV3 and S2

for classifying Phragmitesweights in the two LP sites.

For BCNWA, accuracies for all four weight categories

met the target of 80% when WV3 image was used

(Fig. 8c), whereas only two categories met this target

when the S2 image was used (Fig. 8d). For CM,

accuracies for only three of the weight categories

were[ 80% when WV3 image was used (Fig. 8g),

whereas none of the categories had acceptable accura-

cies when the S2 image was used (Fig. 8h). Therefore,

in general, accuracies were much better for the WV3

than the S2 image.

Phragmites patch characteristics

We studied the patch characteristics using the maps

produced using the WV2/3 images as it provided the

highest mapping accuracy. The patch sizes of Phrag-

mites in this study ranged from very small (2 m2) to

extremely large (40 ha) patches. The two largest

patches were found in RBM (40.33 ha) and in

BCNWA (26.89 ha). By far, however, the majority

([ 80% of the 58,081 patches) of these Phragmites

patches were\ 100 m2 at the BCNWA site. In

comparison, 70% of 17,889 Phragmites stands in

CM and 50% of the 50,191 stands in RBM had an

area\ 100 m2. The radius of gyration, which is a

measure of the spatial extent of a habitat patch

(defined as a mean distance between each cell in the

patch and the patch’s centroid) differed significantly

among the three sites. RBM, with the greatest total

area occupied by Phragmites, also had the highest

Fig. 5 Linear regression plots of MF scores versus Phragmites
stem counts obtained with aWV2 and b S2 images for the RBM

site

123

1240 P. A. Rupasinghe, P. Chow-Fraser



radius of gyration (Fig. 9a, b). The calculated geo-

metric mean patch size of Phragmites in both LP

wetlands was\ 5 m2 while that in RBM was more

than double ([ 10 m2; Fig. 9c). When we compared

the LPI for the three sites, CM, BCNWA, and RBM

sites have 0.8%, 2.2%, and 2.5% respectively. Overall,

these results indicate that the RBM site had compar-

atively larger Phragmites patches, and fewer small-

sized stands compared with the LP sites.

Discussion

Our study is the first to use subpixel image classifi-

cation using MTMF with multispectral satellite

images to map Phragmites, and we have been able

to achieve up to 90% accuracy across landscapes

containing patches that range from very large size of

40 ha to very small sparse stands of 2 m2. We

achieved higher classification accuracy by using

spectral endmembers that were defined for trees/

shrubs and open land in addition to Phragmites instead

of Phragmites endmember alone. We focused on

developing simple, cost-effective methods that could

be used in sites with a range of patch sizes and

distributions so that the protocol can be repeated

across many different wetlands by environmental

agencies. Our goal was to obtain accurate maps of both

low density or young Phragmites stands as well as

expansive, large stands so that the same protocol can

be used for initial assessment as well as effectiveness

monitoring. We found that the best combination at no-

cost involves the use of S2 images and SVM

classification while the best combination with highest

mapping accuracy involves the commercially avail-

able WV2/3 images and use of ML classification.

In all respects, classification of WV2/3 images

produced higher overall and Phragmites accuracies

than did classification of S2 images. This difference in

performance is directly related to the higher spatial

resolution of WV2/3 (1.8 m and 1.2 m) compared

with S2 (10 m and 20 m) which results in higher

spectral mixing in the latter. When we compared the

two sites, RBM had slightly lower accuracy than did

LP sites, and this difference also may have been due to

slightly lower spatial resolution of WV2 compared

with WV3. Spectral resolution may also have affected

the results since we used 8 bands of WV2/3 (from 400

to 1040 nm wavelength) compared with 10 bands of

Fig. 6 Comparison of mapping accuracies for Phragmites in five density categories for BCNWA (solid bars) and CM (stippled bars)

using ML classification with WV3 (top panels) and SVM classification with S2 images (bottom panels)
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S2 (from 490 to 2190 nm wavelength). Although S2

images have a greater number of bands covering a

larger wavelength region, the spatial resolution

appeared to have considerably reduced the accuracy

of image classification.

We observed some classification confusion of

Phragmites with Cattail, open water, and trees/shrubs.

In our study sites, Cattail is most similar to Phragmites

in terms of being tall, unbranched, and forming dense

monospecific stands, with somewhat similar leaf

arrangement when compared to other vegetation

classes. Given that they have similar habitat require-

ments, they are often found in mixed stands, and these

morphological similarities may have resulted in sim-

ilar reflectance signals that resulted in classification

confusions between Phragmites and Cattail (Rupas-

inghe and Chow-Fraser 2019). Initially, we included

meadow marsh in our classification for the LP sites as

this is an important wetland category, but this

increased Phragmites omission error. Meadow marsh

at LP sites consisted of mixed plant species such as

grasses, sedges, emergent shrubs, and upland plant

species and can be highly confused with Phragmites

when mapped with satellite images (Rupasinghe and

Chow-Fraser 2019). The meadow marsh class was

mostly confused with young and lower density

Phragmites patches due to spectral similarities. There-

fore, we excluded meadow marsh from the final

classification of the LP sites because our main target

was to improve Phragmites producers’ and users’

accuracies. Due to this modification, vegetation in the

meadow marsh habitat was incorrectly classified as

Cattail or mixed organic shallow marsh, but only

infrequently as young, low density Phragmites. As our

intention was to map low density Phragmites as

accurately as possible for management purposes,

missing meadow marsh was not considered a signif-

icant problem. This confusion, however, was not

observed at the RBM site mainly because the Phrag-

mites stands at RBM are large and dense and therefore

not easily confused with spectral characteristics of

meadow marsh.

We also observed misclassifications between

Phragmites and trees/shrubs in some locations. This

occurred in some extremely dense Phragmites

patches. Confusion of Phragmites with open water

occurred in areas where Phragmites was beginning to

colonize in shallow water and had low plant density.

Spectral reflectance of sunlight by water can also

interfere with the signal produced by Phragmites and

lead to misclassifications. Finally, we were able to

improve the accuracy of the classification by removing

or masking out ecologically irrelevant classes such as

built-up areas, roads, and agricultural fields. This is

because the bright signals of these classes often

interfered with vegetation classes, especially when the

glare from water caused misclassifications and

reduced the overall accuracy.

We were relatively successful in classifying Phrag-

mites stands according to height and weight. When

Phragmites stands are dense, they produced purer

reflectance signals that were not mixed with those of

other classes. Mature Phragmites can grow up to

3–4 m high and reach densities of 200 live and 300 dry

stands per square meter under optimal conditions

(Hara et al. 1993; Poulin et al. 2010). Optimal

conditions for Phragmites are freshwater bodies with

seasonal fluctuations of 30 cm (Deegan et al. 2007)

and all our study sites provide these ideal conditions

Fig. 7 Mapping accuracies of live Phragmites in six stem count

categories for the RBM site using a WV2 image-ML

classification and b S2 image-SVM classification

123

1242 P. A. Rupasinghe, P. Chow-Fraser



for Phragmites colonization. According to Hara et al.

(1993), Phragmites does not increase shoot diameter,

and increase in shoot weight is parallel to increase in

shoot height. At younger stages, Phragmites shoots

use carbohydrates from the rhizomes, accumulated

during the previous growing season. Therefore,

younger shoots are smaller and have fewer number

of small leaves (Hara et al. 1993). Furthermore,

density and height of Phragmites stands could also be

affected by environmental conditions such as water

level fluctuations. We obtained acceptable accuracy

for even the lowest height and weight category with

the WV3 images. Our study confirms that WV2/3

could be effectively used for mapping even young or

smaller Phragmites stands; however, S2 could only be

used to map older, denser, or larger Phragmites stands

with less spectral mixing.

Timing of image acquisition and plant phenology

are important considerations in Phragmites mapping

(Rupasinghe and Chow-Fraser 2019). Phragmites

Fig. 8 Mapping accuracies of height and weight of Phragmites for BCNWA (solid bars) and CM (stippled bars) using WV3 (all left

panels) and S2 (all right panels). (Note: no data for[ 3 m height category in CM site)
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produce the most unique, detectable signal that can be

separated from other vegetation classes (especially

Cattail and meadow marsh) during the peak summer

period. The distinct inflorescence, the unique green

color due to the high chlorophyll concentration, the

leaf arrangement, and the high water-use efficiency of

Phragmites during this period all could be combined

to produce this unique spectral signature. Use of

images collected in late summer is also beneficial as

the Phragmites treatment is usually conducted in

September to October and this provides most up-to-

date map. Use of Short-Wave IR bands may also

improve the classification accuracy (Rupasinghe and

Chow-Fraser 2019). One obvious limitation of WV2/3

is the potentially high cost of acquiring images to map

large invasion areas.

We have shown that besides differences in resolu-

tion of satellite images, we can attribute some of the

variation in mapping accuracies among the three sites

to differences in treatment history along with amount

of field data, and the timing of image acquisition.

Since the entire CM had been treated in the fall of 2017

and the image was acquired in July the following year,

there were nomature stands but many small stands that

had either escaped treatment or had recently regener-

ated. Therefore, there was interference from water

reflectance in many inundated areas that were absent

in the other two sites. By comparison, mature stands in

the diked area of BCNWA could be mapped accu-

rately because they were large and dense and had not

yet been treated at the time of image acquisition. We

had relatively few RBM data to train and validate the

classification of small sparse stands of common reed,

whereas such data had been specifically collected in

CM and BCWNA, and this may also explain differ-

ences in mapping accuracies. According to Rupas-

inghe and Chow-Fraser (2019), images acquired in

July and early August was best for minimizing

confusion between Phragmites and Typha and were

associated with highest accuracies for Phragmites.

Therefore, all else being equal, the July image for LP

could explain the better performance than the Septem-

ber image for RBM.

Conclusion

Tracking Phragmites distribution, determining the

borders of the patches, and estimating the extent of

invaded area are common objectives of invasive plant

management programs. The conventional approach is

to map the distribution using field surveys, which are

extremely labour intensive, and which may produce

results that are biased against smaller and mixed

Phragmites stands depending on the thoroughness of

the observer. Mapping approaches with remote sens-

ing technology can overcome these challenges by

providing comprehensive coverage of both small and

large study areas, even if they are difficult to access by

boat or by road. Accurate distribution of relatively

small Phragmites stands are difficult to obtain, but

they are very valuable to managers because both

mechanical and chemical treatment are most effective

when populations are small and sparsely distributed.

Using commercially purchased high-resolution satel-

lite images, we were able to map younger, less dense,

or smaller Phragmites stands as well as the mature,

Fig. 9 Comparison of amean Radius of Gyration, bmean total

area occupied by Phragmites and c geometric mean size of

Phragmites stands in the three wetlands in this study. Data were
calculated from classification of WV2/3 images with the ML

classification
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dense, and larger Phragmites stands with overall

accuracy greater than 80%. By comparison, satellite

images from S2 that are available at no cost could be

used to accurately map large, high density Phragmites

stands, but this approach is only useful when general

estimation of Phragmites cover is required over large

spatial extents. The mapping accuracy is dependent on

the Phragmites patch characteristics, other wetland

plant species, and the site conditions. We recommend

masking out ecologically irrelevant or adjacent land-

cover classes (e.g. agricultural lands, roads, and

buildings) to reduce classification errors and compu-

tational time. Use of spectral unmixing of WV2/3 is a

promising method for detection of Phragmites in

wetlands, especially for detecting new Phragmites

growth in treated areas and for routine mapping and

regular updating purposes.
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