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Detection of Potential Vernal Pools on the Canadian Shield (Ontario) Using
Object-Based Image Analysis in Combination with Machine Learning

D�etection des �etangs vernaux potentiels sur le Bouclier canadien (Ontario) �a
l’aide d’une analyse orient�eeobjet en combinaison avec l’apprentissage
automatique

Nick Luymes and Patricia Chow-Fraser

Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada

ABSTRACT

RÉSUMÉ

Les �etangs vernaux sont de petites zones humides foresti�eres temporaires d’importance
�ecologique tr�es sensibles aux changements climatiques et aux modes d’utilisation des terres.
Ces �ecosyst�emes sont soumis �a une pression de d�eveloppement consid�erable dans le sud-
est de la Baie Georgienne, o�u des techniques de cartographie sont n�ecessaires pour �eclairer
les d�ecisions en mati�ere d’utilisation des terres. Notre approche de cartographie combine
des techniques d’apprentissage automatique courantes (forêt al�eatoire, machines �a vecteurs
de support) avec une m�ethode orient�ee-objet. En utilisant la segmentation multispectrale
d’une image haute r�esolution ortho-rectifi�ee, nous avons cr�e�e des objets et attribu�e des
classes en fonction des donn�ees collect�ees sur le terrain. Ensuite, nous avons fourni aux
algorithmes d’apprentissage automatique des images disponibles gratuitement (Ontario
orthoimagerie et Sentinel 2) et test�e la pr�ecision sur un ensemble de donn�ees r�eserv�e. Nous
avons obtenu des pr�ecisions de producteur de 85% et 79% et des pr�ecisions d’utilisateur de
78% et 84% pour les mod�eles de forêt al�eatoire et machines �a vecteurs de support, respec-
tivement. La difficult�e de distinguer les petites zones d’ombre des petits �etangs obscurs est
�a l’origine de plusieurs des erreurs d’omission et de commission. Notre approche automa-
tis�ee de classification des �etangs vernaux fournit une strat�egie de cartographie relativement
pr�ecise, coh�erente et rapide par rapport �a la photo-interpr�etation manuelle. Nos mod�eles
peuvent être appliqu�es sur une base r�egionale pour aider �a v�erifier l’emplacement des
�etangs dans une r�egion de l’Ontario qui a un besoin critique d’informations
�ecologiques d�etaill�ees.
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Vernal pools are small, temporary, forested wetlands of ecological importance with a high 
sensitivity to changing climate and land-use patterns. These ecosystems are under consider- 
able development pressure in southeastern Georgian Bay, where mapping techniques are 
required to inform wise land-use decisions. Our mapping approach combines common 
machine learning techniques [random forest, support vector machines (SVMs)] with object- 
based image analysis. Using multispectral image segmentation on high-resolution orthoima- 
gery, we first created objects and assigned classes based on field collected data. We then 
supplied machine learning algorithms with data from freely available sources (Ontario 
orthoimagery and Sentinel 2) and tested accuracy on a reserved dataset. We achieved pro- 
ducer’s accuracies of 85 and 79% and user’s accuracies of 78 and 84% for random forest 
and SVMs models, respectively. Difficulty differentiating between small, dark shadows and 
small, obscured pools accounted for many of the omission and commission errors. Our auto- 
mated approach of vernal pool classification provides a relatively accurate, consistent, and 
fast mapping strategy compared to manual photointerpretation. Our models can be applied 
on a regional basis to help verify the locations of pools in an area of Ontario that is in crit- 
ical need of more detailed ecological information.
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Introduction

Temporary wetlands act as critical breeding habitats
for amphibians across the globe and are increasingly
being recognized for their disproportionate benefits to
local biodiversity (Calhoun et al. 2017). In the
Pleistocene glaciated part of northeastern North
America, temporary wetlands commonly occur as
small seasonally available, forested wetlands known as
vernal pools. Vernal pools fill with water during the
spring or fall and dry in the summer or in drought
years. Their ephemeral nature precludes the establish-
ment of permanent fish populations, allowing amphib-
ian larvae and other aquatic species to avoid intense
predation. Obligate vernal pool species, including
Ambystomatid salamanders (Ambystoma sp.) and
wood frogs (Lithobates sylvaticus), have optimal
breeding success and recruitment in these fish-free
habitats (Cormier et al. 2003; Semlitsch et al. 2015).
These obligate amphibians, and the many facultatively
breeding amphibians that frequent vernal pools, are of
conservation interest due to their sensitivity to envir-
onmental stressors (Semlitsch and Brodie 1998),
importance in forest energy and nutrient cycling
(Leibowitz 2003), and the fact that some are consid-
ered species at risk.

Vernal pools are necessary for the maintenance of
local amphibian populations (Leibowitz 2003), but
their small size and ephemeral nature often means
they are overlooked in wetland legislation (Evans et al.
2017). In Ontario, most vernal pools are ineligible for
protection under the Ontario Wetland Evaluation
System’s current guidelines for provincially significant
wetlands (Ontario Ministry of Natural Resources and
Forestry 2014). Consequently, they are unlikely to fac-
tor into land-use decisions and can face habitat deg-
radation and loss of landscape connectivity as a result
(Calhoun et al. 2017). The anticipated effects of cli-
mate change, including shorter and less frequent
hydroperiods (Brooks 2009), further highlight the
need for improved management of vernal pools in
the province.

Knowledge of the location and distribution of ver-
nal pools is essential to their protection; however, the
canopy-obstructed nature of these wetlands compli-
cates mapping efforts. Techniques for large-scale wet-
land mapping, including the National Wetland
Inventory (NWI), are often unfeasible for vernal pools
because the pools are either too small to be reasonably
detected or are obscured by overhead forest canopy
cover (Baldwin and deMaynadier 2009). Several geo-
political entities within the northeastern United States
have developed regulatory protections for vernal

pools, which has led to state-wide efforts to map and
document vernal pools (e.g. Brooks et al. 1998; Faccio
et al. 2013; Jansujwicz et al. 2013; Lathrop et al. 2005).
The most common technique used to map vernal
pools has been photointerpretation of high-resolution
aerial imagery. While easy to implement, photointer-
pretation often results in highly variable accuracy and
can be hindered by interpreter bias and skill
(Carpenter et al. 2011).

Recent advances in remote-sensing technology and
classification techniques have led to novel strategies
for wetland mapping. Object-based image analysis
(OBIA), in particular, has emerged in response to the
increasing availability of high-resolution remote sens-
ing data. OBIA involves grouping pixels together
based on spectral similarities to form image objects,
which can then be analyzed using spatial statistical
models. While traditional pixel-based image analysis
methods focus solely on the spectral characteristics of
individual pixels, OBIA allows for the integration of
object shape, texture, and neighborhood characteristics
in addition to a greater range of spectral properties.
OBIA has proven to be especially useful for the classi-
fication of high-resolution imagery, where features on
the ground (e.g. wetlands, buildings, trees) tend to be
represented better by image objects rather than indi-
vidual pixels (Blaschke 2010). Wetland classification
studies using OBIA have had success both with
medium-resolution and high-resolution data (Amani
et al. 2017; Dronova 2015; Grenier et al. 2008; Rampi
et al. 2014; Tian et al. 2016), and comparisons with
pixel-based approaches have shown that OBIA con-
sistently produces more accurate results (Amani et al.
2017; Dronovo 2015; Fu et al. 2017; Harken and
Sugumaran 2005). Since the detection of small wet-
lands like vernal pools necessitates the use of high-
resolution imagery, we consider OBIA a promising
approach to vernal pool mapping.

For the information extracted from OBIA to be
used for image classification, the data are often sub-
jected to different machine learning classifiers, includ-
ing k-nearest neighbor (KNN), classification and
regression trees (CART), random forests (RF), support
vector machines (SVM), and neural networks (NNs).
These classifiers are able to handle many types of
input data types without making assumptions on the
data distributions, making them well suited for the
diverse arrays of features extracted in OBIA. Machine
learning classifiers have also been shown to consist-
ently outperform conventional classifiers, such as
maximum likelihood, and are becoming easier to
implement as more image-processing programs
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integrate machine learning algorithms into their soft-
ware (Maxwell et al. 2018). Two of the most common
machine learning algorithms used in remote sensing
applications are RF and SVM. RF is an ensemble
learning technique that uses a large number of deci-
sion trees to “vote” on class predictions. Each decision
tree is constructed using a random subset of the data
and predictor variables, resulting in a low correlation
between the individual trees and reducing the chance
of overfitting the data. SVM is a supervised machine
learning classifier that uses multidimensional hyper-
planes to maximize the width of decision margins
between classes. It uses kernels to map features to
higher dimensional space where linear separation is
more effective. RF and SVM classifiers do not make
formal distributional assumptions but require that the
sampled data be representative. Since both classifiers
are unable to extrapolate, they are limited in their pre-
dictive capabilities and have difficulty classifying data
that are not averages of data encountered in model
training. Machine learning classifiers can also be com-
putationally intensive but advances in computing
capabilities have made this less of an issue, resulting
in more widespread use. Studies involving the classifi-
cation of wetland landcover have had success with RF
(Fu et al. 2017; Millard and Richardson 2013; Tian
et al. 2016) and SVM classifiers (Amani et al. 2017;
Chatziantoniou et al. 2017), and a study involving
synthetic aperture radar data was able to map vernal
pool locations using RF classifiers (Bourgeau-Chavez
et al. 2016).

Many of the previously developed approaches to
vernal pool mapping have involved the use of light
detection and ranging data (LiDAR; Julian et al. 2009;
Leonard et al. 2012; Riley et al. 2017; Wu et al. 2014).
LiDAR systems allow the penetration of forest cano-
pies and can be used to identify landscape depressions
and the presence of water (Lang and McCarty 2009),
both of which are crucial for vernal pool detection.
Despite the clear benefits of LiDAR data to vernal
pool mapping, many remote areas do not have access
to the technology because of its high cost.

In this study, we are interested in mapping vernal-
pool habitat in a remote area of south-central
Ontario, where LiDAR data are not available, and
where no large-scale vernal-pool mapping efforts have
been attempted. Due to its pristine nature and prox-
imity to Georgian Bay, this region is highly coveted
by cottagers and, despite its mostly undisturbed state,
is experiencing high development pressure. Therefore,
there is an urgency in mapping critical habitat for
amphibians and turtles, such as vernal pools, and

incorporating such information into official plans of
the affected municipalities. Given these constraints,
our goal was to develop an automated classification
approach using freely available image products, and
recent advances in image analysis technology. This is
the first regional mapping effort of vernal-pool habitat
in a mostly forested portion of Ontario, which is rap-
idly becoming altered by cottage and urban develop-
ment. These maps will identify areas that should be
targeted for intensive field surveys and ground truth-
ing. Since similar remote sensing datasets are available
for other unmapped regions of Ontario, we recom-
mend using this approach to create a provincial data-
base of potential vernal pools (PVPs) to guide
effective land-use planning and wildlife conservation.

Methods

Field methods

Our region of interest for this study was the forested
southeastern shore of Georgian Bay, Lake Huron,
Ontario. This region is part of the Canadian Shield
ecozone of Ontario and consists of a mixed conifer-
ous-deciduous forest interwoven by numerous out-
crops of exposed igneous bedrock (Crins et al. 2009).
The climate is temperate and humid with an average
annual precipitation of 950mm and an average sum-
mer rainfall of 250mm. The mosaic of exposed bed-
rock creates numerous depressions in the landscape
for waterbodies to form, including lakes, thicket
swamps, fens, ponds, and vernal pools. This region
includes three vernal pool obligate amphibians
(Ambystoma laterale, A. maculatum, Lithobates
sylvaticus), as well as several species at risk that derive
food, water, and shelter from vernal pools (e.g.
Clemmys guttata, Emydoidea blandingii).

To collect our reference dataset of vernal pools, we
selected six study sites (ranging in size from 25 to
175 ha; GB1, GB2, GB3, GB4, GB5, and GB6;
Figure 1) located within 20 km of the shoreline of
eastern Georgian Bay. These sites were selected based
on three main criteria: (1) proximity to all-season
roads for safe access by the survey team, (2) location
on publicly accessible Crown Land, and (3) inclusion
in the region of interest. Each study site was divided
into one to seven 25-ha plots, depending on the over-
all site size. Based on available time and resources, we
were able to conduct intensive field surveys in a total
of 23 plots within the 6 study sites. All plots were sur-
veyed during spring in 2016, 2018, or 2019.

In advance of the field sampling, we imported
shapefiles of water bodies and wetlands prepared by
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the Ontario Ministry of Natural Resources and
Forestry (OMNRF) into ESRI Arc Collector applica-
tion on an AppleTM iPad. We also imported the loca-
tion of the 23 plots and created transects spaced at
100-m intervals in each plot (Figure 2). Transects in
each plot were oriented to minimize encounters with
barriers (e.g. large lakes, roads, ledges) and inter-
transect spacing was determined based on estimated
field of view during leaf-off conditions. We uploaded
all transects to handheld GPS devices and walked at
a moderate pace along the transects as shown in
Figure 2. This allowed us to see all water bodies that
were located on both sides of the transects. If the field
of view was obstructed by hilly terrain, we walked up
these inclines to ensure no wetlands were obscured.
Whenever we encountered an undocumented wetland,
we traced the outline of the wetland by foot and used
Arc Collector application to record the information.
Large wetlands and water bodies that had been docu-
mented by the Ontario Ministry of Natural Resources
and Forestry (OMNRF) were not traced, but we noted
any major areas that had been omitted. We continued
in this way until the boundaries of all wetlands and

Figure 2. Example of a plot with transects (dashed lines) and
the route taken by surveyors (solid line) to follow the transects
while avoiding major barriers, such as roads and lakes.
Basemap source: Ontario Ministry of Natural Resources
and Forestry.

Figure 1. Location of the 23 sampling plots in the six sites (GB1, GB2, GB3, GB4, GB5, and GB6) in the Canadian Shield ecozone
of Ontario, Canada. Plots used for model training are depicted as white squares, while plots used for validation are depicted as
gray squares. The extent of the orthoimagery used in the study is shown with hatched markings. SCOOP: South Central
Orthophotography Project.
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water bodies in the forested regions of each plot
were mapped.

Datasets

Reference PVPs
To be consistent with the literature (e.g. Brooks et al.
1998; Calhoun et al. 2003; Lathrop et al. 2005), we
define vernal pools as temporary to semi-permanent
bodies of water that serve as primary breeding habitat
for obligate amphibians. Functionally, these can be
defined as confined surface depressions with no per-
manent inflow or outflow. Based on the results of a
concurrent study, we knew that at least some of the
undocumented wetlands encountered during the sur-
veys supported vernal-pool obligates; however, given
the limited time we had to conduct larval surveys dur-
ing the breeding season, we could not confirm the
presence of obligate amphibian breeders in every wet-
land we encountered. Therefore, in this study, we
have designated all undocumented wetlands as PVPs.

We imported the locations and rough boundaries
of PVPs identified during the field surveys into
ArcGIS Pro 2.5.0 and created a reference dataset by
refining the boundaries of each PVP using 20-cm
resolution leaf-off color-infrared (CIR) orthoimagery
from the South Central Ontario Orthophotography
Project (SCOOP; see Table 1). Based on visual inter-
pretation of the SCOOP imagery at each PVP loca-
tion, we also split each PVP into classes of open water
and covered water (water covered by trees or other
vegetation). Lastly, we digitized the remaining land
cover in the SCOOP imagery into classes of impervi-
ous surfaces (e.g. bedrock, roads), shadows, or forest.

Image data sources
The primary sources of data used as input for our
machine learning classifiers were the SCOOP products
and European Space Agency’s (ESA) Sentinel 2
imagery (Table 1). We also used two layers of wet-
lands and other water bodies created by the Ontario
Ministry of Natural Resources and Forestry (OMNRF)
to screen out water bodies that had had been previ-
ously classified.

SCOOP. SCOOP has been funded through multiple
government agencies (federal, provincial, municipal)
to provide seamless aerial imagery of south-central
Ontario at 5-year intervals (2013, 2018, etc.) and is
freely available to all stakeholders and applicable
research institutions. The 2013 and 2018 SCOOP
products included 20-cm resolution leaf-off CIR
orthoimagery and a 2-m resolution, stereoscopically
derived Digital Terrain Model (DTM). While we were
unable to correct for true reflectance using the avail-
able orthoimagery metadata, each dataset was derived
from overlapping stereo images to be consistent in
tone and appearance. Close inspection of each dataset
revealed no discernible differences in the spectral sig-
natures of major land classes within the study region.
In addition, the imagery was acquired within a 4-day
rainless period for the study region, meaning changes
in vegetation and surface wetness within datasets were
likely minimal. Using tools in ArcGIS, we derived a
Normalized Difference Water Index (NDWI) and
slope data from the SCOOP products. We also derived
a depression likelihood map using the Stochastic
Depression Analysis tool in Whitebox Geospatial
Analytical Tools version 3.3 (Lindsay 2016). Stochastic
depression analysis accounts for uncertainties in

Table 1. Description of datasets and how they were used in this study.
Data set Coverage Resolution Acquisition dates Used to

Sentinel 2 Worldwide 10 m April 27, 2016
May 7, 2018
May 5, 2019

Screen areas of interest for
classification; derive features
for model development

Ontario Ministry of Natural
Resources and Forestry
(OMNRF) Wetlands/
Waterbodies

Ontario-wide NA NA Refine areas of interest for
classification

South Central Ontario
Orthophotography
Project (SCOOP) true
color/near-
infrared imagery

�36,000 km2 north of
Toronto and east of
Georgian Bay

20 cm May 5–7, 2013
May 14–17, 2018

Derive image objects in areas
of interest for classification;
derive features for model
development

SCOOP stereo-derived DEM Same as SCOOP imagery 1 m May 5–7, 2013 Derive depression and slope
data to be used as features
for model development

Reference Vernal Pool
Dataset (23 sites)

575 ha (25 ha per plot)
See Figure 1

NA April/May, 2016/2017/2019 Train and validate models
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DTMs when evaluating the likelihood that a particular
geographic area exists as a depression in the landscape
(Lindsay 2005). In their approach to map vernal pools
in Massachusetts, Wu et al. (2014) found success
using stochastic depression analysis to account for
uncertainty in LiDAR derived digital elevation models.
The SCOOP imagery bands and the SCOOP-derived
products were used as inputs for the machine learning
classifiers. The SCOOP imagery bands were also used
during the segmentation procedure to create
image objects.

Sentinel. We downloaded Sentinel 2 Level 1 C prod-
ucts from the U.S. Geological Survey’s (USGS)
EarthExplorer portal in mid-spring for dates with low
cloud cover that coincided with the field surveys

(April 27, 2016; May 7, 2018; May 5, 2019; see
Table 1). Since most of the snow had melted by late
April, we have assumed that vernal pools in these sat-
ellite images were maximally inundated. We prepro-
cessed the image in ESA’s Sentinel Application
Platform version 7.0 (SNAP) using the Sen2Cor pro-
cessor version 280 to create Level 2 A terrain-
corrected, bottom-of-atmosphere reflectance products.
The Scene Classification map created as part of
Sen2Cor processing was used to mask out clouds and
cloud shadows from the corrected images. While
Sentinel 2 has bands with resolutions of 10, 20, and
60m, we were interested in the 10m bands (Blue,
Green, Red, and NIR) for the purposes of detecting
small forested vernal pools. The corrected bands were
averaged across years to create a single multiband

Figure 3. A flowchart depicting the two stages of our model development: stage 1 (top panel) image segmentation of high-reso-
lution leaf-off CIR imagery and stage 2 (bottom panel) model building through training and validation of RF and SVM classifiers
using reference data from field surveys. CIR: Color-Infrared; DEM: Digital Elevation Model; RF: Random Forest; SVM: Support Vector
Machines; SCOOP: South Central Ontario Orthophotography Project.
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image and the NIR band was used to screen for pixels
likely to be inundated based on a threshold of <0.195
reflectance units. We determined this threshold by
averaging reflectance units of pixels along the edges of
known wet forest locations. The averaged Sentinel 2
bands were also used as inputs for the machine learn-
ing classifiers.

Model development for classification of PVPs

Image segmentation
Our object-based machine learning approach to clas-
sify vernal pools was broken down into two stages
(Figure 3). The first stage involved segmenting our
high-resolution SCOOP imagery using Trimble
Geospatial’s object-based image analysis platform,
eCognition version 9.2. Areas of interest were first
extracted for each plot with Sentinel 2 thresholding
and by masking previously classified water bodies.
Then we performed multiresolution segmentation on
these areas of interest using the two sets of imagery
bands to create image objects. We assigned a weight
of 1 to each of the RGB bands and 2 to the NIR
bands because the NIR band exhibits high contrast
between water and non-water features. The multi-
resolution segmentation algorithm has three parame-
ters that control the shape and position of image
objects: scale, shape, and compactness. The scale par-
ameter controls the amount of spectral variation
within image objects, which relates to object size. The
shape parameter controls the degree to which object
shape and color factor into segmentation. The com-
pactness parameter controls the weighting between
the compactness and smoothness of an object’s shape.
We selected a range of realistic values for each param-
eter (Scale: 10–1000; Shape and Compactness: 0.1–0.9)
and tested each combination on three test study plots
by visually inspecting how well the resultant objects
overlapped with the class boundaries on the reference

dataset. Using this process, we determined an optimal
parameter combination of 100, 0.25, and 0.25 for
scale, shape, and compactness, respectively.

To reduce the number of image objects represent-
ing non-water bodies, we applied a spectral difference
algorithm on the objects created through segmenta-
tion. The spectral difference algorithm merges neigh-
boring objects that have a difference in spectral means
below a given threshold. We weighted the NIR bands
three times higher than the other bands to make it
difficult for water bodies to be merged with nonwater
bodies. We used a qualitative approach to assign a
threshold for the spectral difference algorithm. We
started with a threshold of 2 and raised it until the
algorithm started to merge water bodies with non-
water bodies. Using this approach, we selected a
threshold of 8 digital number units.

Image objects were exported in shapefile format
(.shp) with feature attributes derived from the SCOOP
products, the Sentinel 2 bands, the OMNRF waterbod-
ies, and the shapes of the objects (Table 2). In add-
ition to deriving means and standard deviations of
our datasets, we derived Haralick texture features
from the Gray Level Cooccurrence Matrix (GLCM)
and the Gray Level Difference Vector (GLDV) of the
mean NIR bands using omnidirectional pixel-pair
sampling. These metrics describe the texture of each
image object based on the NIR bands and are useful
in other wetland-based classification studies
(Chatziantoniou et al. 2017; Ma et al. 2015).

Model building
The second stage of our classification approach
involved the evaluation of machine learning classifiers,
Random Forest (RF) and SVM, for mapping PVPs
using the object features extracted from image seg-
mentation (Table 2). Our modeling framework was
broken down into five steps: (1) assigning class labels
to image objects, (2) creating training and validation

Table 2. Features extracted for each object following image segmentation.
Data Object features

SCOOP imagery RGB/NIR band means and standard deviations for 2013 and 2018 imagery
Mean Brightness (mean of all bands) for 2013 and 2018
Means of averaged 2013 and 2018 RGB/NIR bands
NDWI mean and standard deviation
GLCM and GLDV statistics for NIR bands: angular second moment, contrast, correlation, dissimilarity, entropy,

homogeneity, mean, standard deviation
SCOOP DTM DTM standard deviation

Mean and standard deviation of slope and depression likelihood
Sentinel 2 imagery RGB/NIR band means
OMNRF Wetlands/Waterbodies Existence of neighboring waterbodies (binary)
Object Shape Area, asymmetry, border index, border length, compactness, density, elliptic fit, length, length/thickness, length/

width, roundness, shape index

DTM: Digital Terrain Model; GLCM: Gray Level Cooccurrence Matrix; GLDV: Gray Level Difference Vector; NIR: Near Infrared; NDWI: Normalized Difference
Water Index; OMNRF: Ontario Ministry of Natural Resources and Forestry; RGB: Red Green Blue.
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datasets, (3) selecting features, (4) training models,
and (5) post-classification adjustments. Class labels
assignment and post-classification adjustments were
completed in ArcGIS Pro, while the rest of the model-
ing framework was performed in R, version 3.6.2.

For the first step, we started by overlaying the clas-
sified reference dataset shapefile on the image object
shapefile to calculate class percentages for each object.
We then labeled each object with their majority class.
In order to ensure strong class representation in our
training data, we subset the image objects using a
threshold of >60% overlap with the majority class.

To separate our image objects into training and
validation datasets, we iterated through random
assignments of study plots to either the training or
validation datasets (60% to training and 40% to valid-
ation) until the class distributions for the training and
validation datasets did not differ by more than 10%
from the class distributions in the complete dataset.
We also made sure that the plots used to refine the
segmentation parameters were part of the training
dataset. While this approach may lead to autocorrel-
ation between the training and validation datasets, we
decided it was necessary to ensure sufficient represen-
tation of the PVP objects for each dataset.

The feature selection step of our model framework
was used to select a subset of relevant features for
model training because some features can be either
redundant or irrelevant to classification and can lead
to poor accuracy. Feature selection techniques help
mitigate these problems in addition to problems asso-
ciated with overfitting and unacceptably long compu-
tation time. This is especially important for OBIA
where segmentation procedures lead to significantly
more features than pixel-based methods. To select the
feature subset for model training, we applied
Recursive Feature Elimination (RFE) to the training
dataset using the caret package in R (Kuhn 2019).
RFE is a backward feature elimination technique and
works by fitting successive models and removing the
weakest features until a specified number of features
are left. We used random forest models to run RFE
and the mean decrease in accuracy to determine fea-
ture importance. This measure determines feature
importance by finding the difference in prediction
error between models with and without each feature.
To select an optimal subset size, we used K-fold
cross-validation (CV) for a range of subset sizes (8,
16, 24, 32, 40, and 57 features). CV reduces problems
associated with overfitting by splitting the training
data into K groups and running K RFE models, such
that for each model, one of the K groups is reserved

as a test set and the remaining K-1 groups are used to
train the model. We chose 10 folds for our study, as
this value has been recommended in the literature
(Kuhn and Johnson 2013). Average model perform-
ance across the 10 repeated models can then be com-
pared for the different subset sizes to determine the
optimal subset of features.

Once we decided on a subset of features, we used
the train function in the caret package to optimize the
machine learning classifiers for our training dataset.
Each machine learning classifier has one or more
parameters that can be optimized for model perform-
ance. For RF, the optimization parameters the number
of features that are randomly selected for splitting at
each node in the classification tree (mtry), and the
number of individual classification trees to run for the
model (ntree). For SVM, the optimization parameters
depend on the type of kernel used. We used the radial
basis function as the kernel for our classifier as it has
yielded strong results in other remote sensing applica-
tions (Kavzoglu and Colkesen 2009). SVM with a
radial basis function has two optimization parameters:
sigma, which describes the influence of individual
support vectors; and cost, which controls the penalty
for misclassified points. Both parameters impact the
tradeoff between model simplicity and misclassifica-
tion. For each classifier, we selected a range of pos-
sible values for each parameter and used repeated CV
to estimate performance metrics for each unique par-
ameterization. Repeated CV accounts for potential
variability in model performance metrics across differ-
ent splits of the data by averaging over multiple CV
procedures. We used 10 folds for each CV and took
an average after the CV procedure was repeated 10
times. Because our classes were highly imbalanced
(there were 10–100 times more objects in the forest
class than in other classes), we also incorporated
down-sampling into the model training procedure.
The main problem with class imbalances is that the
majority class is the main driver of model fit, meaning
infrequent classes can be underrepresented in the final
model. Down-sampling mitigates this by randomly
selecting a subset of each class such that every class
has the same number of observations. Down-sampling
was applied after each of the N�K sub-sam-
pling procedures.

Since our goal was to inventory all PVP locations,
we focused on the open-water class rather than all
classes to assess the performance of each model par-
ameterization. We used an F-Score as our perform-
ance metric, which is a weighted average of precision
and recall, and is calculated according to the following
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equations:

precision ¼ # true positives
# true positivesþ # false positives

recall ¼ # true positives
# true positivesþ # false negatives

Fb ¼ 1þ b2
� � precision� recall

b2 � precision
� �

þ recall

Where b is the weight of the F-Score. When b> 1,
recall is weighted higher than precision, and when
b< 1, precision is weighted higher than recall. For
this study, we were more interested in minimizing
false negatives over false positives because false posi-
tives are easier to rectify in the field. As such, we
chose b¼ 2 to favor false negatives. The model par-
ameterization with the highest F-Score was used as
the final model for each classifier.

Once each machine learning model was trained, we
exported the objects with their predicted classes to
ArcGIS Pro and performed a final set of post-classifi-
cation adjustments based on spatial relationships.
First, we merged neighboring objects with the same
class together to create seamless objects. To account
for boundary inaccuracies of previously classified large
waterbodies, we applied a 10-m buffer around these
and labeled all open-water or covered-water objects
overlapping this buffer as “OMNRFwater”. We
assigned any impervious surface objects that over-
lapped with an OMNRF road shapefile to a “road”
class. To minimize commission errors resulting from
shadows on road being misclassified as open water
due to similar spectral properties, we assigned any
open-water objects sharing a border with a road to
the “shadow” class. We considered all open-water
objects and any covered-water objects that bordered
open-water objects as part of the “PVP” class. Given
that all the PVPs we surveyed in the field were sepa-
rated by greater than 20m distance from each other,
we merged PVPs occurring within 20m into a single
PVP object. All other covered-water objects that did
not share a border with open-water objects were
assigned to the “forest” class.

Accuracy analysis

We applied the modeling framework to the validation
dataset and completed the same post-classification
adjustments used on the training dataset to produce a
classified dataset for unbiased accuracy analysis. Since
our primary interest was the location of vernal pools,
we used an object-based metric of success defined by
if the location of PVPs in our classified dataset

overlapped those in our reference dataset. As such,
true positives were classified as PVPs that overlapped
with reference PVPs, false positives were classified
PVPs that did not exist as PVPs in the reference data-
set, and false negatives were reference PVPs that were
not mapped in the classified dataset. While we consid-
ered any overlap between classified and reference
objects to represent true positives, we recognize that a
more conservative overlap criterion would reduce the
estimated accuracy of the models. We were less con-
cerned with PVP shape and size compared to PVP
location, so this criterion was acceptable for our pur-
poses. To compare the RF and SVM classifiers, we
used another F-Score with a b¼ 2 to put more
emphasis on false negatives.

To maximize the accuracy of our reference dataset,
we included all water bodies encountered through
field sampling, and this included extremely small
pools (<50m2) that tended to dry out before obligate
amphibian larvae could develop. Since these pools
were less frequently associated with obligate amphib-
ians and were considerably more difficult to identify,
we decided to only include PVPs >50m2 to calculate
producer’s accuracy. We also investigated possible
effect of pool size and distance from roads on true
positives, false positives, and false negatives in our
classified results. Due to differences in the average
size of PVP objects between the reference and classi-
fied datasets, we separately compared the median
areas of true positives to false positives and of true
positives to false negatives using the reference and
classified datasets, respectively. We used a similar
approach when comparing the percentage of PVP
objects within 100m of a road.

Results

Within the 23 forested plots (each 500� 500m) in
southeastern Georgian Bay, we encountered 133 PVPs
(>50m2) that had not been mapped by the OMNRF
as either water body or wetland. These hitherto
undocumented wetlands ranged from small pools with
open water and sparse vegetation (typically <500m2)
to large wetlands dominated by emergent vegetation
(typically >500m2), although the median size was
relatively small (222m2). The large vegetated wetlands
(>500m2) we encountered would not be typically des-
ignated as vernal pools in the literature, but we found
that the edges of these wetlands often contained tem-
porary pools of water that provided similar habitat as
traditional vernal pools. In fact, many of these edge
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pools were opportunistically observed to contain eggs
of vernal pool obligate amphibians.

Although our use of the Sentinel band 8 threshold
and the OMNRF wetlands/waterbodies resulted in
omission of two reference PVPs, this procedure
reduced the area for analysis by 75%, and saved a lot
of time and processing power. In trials without the
use of Sentinel imagery to screen for potentially inun-
dated areas, we found unacceptably high errors of
commission that would have falsely indicated an
abundance of vernal pool habitat.

The segmentation procedure created 13,106 objects
with a mean size of 178m2. Of these objects, 95%
overlapped a reference layer class by more than 60%
and were labeled with this class. We used 7518 objects
in 14 training plots to train the machine learning clas-
sifiers. Most of these objects were labeled as forest
(84%), while a smaller portion were labeled as covered
water (7%), impervious surfaces (5%), open water
(2.5%), and shadows (1.5%).

The RFE procedure selected a subset of 32 unique
object features that were deemed important for model
training (Table 3). Roughly 60% of the selected fea-
tures were derived from means and standard devia-
tions of SCOOP imagery bands or band derivatives.
Of the remaining features, four were derived from
Sentinel imagery bands, four from the SCOOP DTM
derivatives, two from the GLCM and GLDV, two
from the object shape, and one from the existence of
neighboring OMNRF waterbodies.

We used cross-validation to select for the optimal
model parameterization for the RF and SVM machine
learning classifiers. The optimal parameterization for
the RF model used an mtry of 2, an ntree of 200, and
achieved cross-validated F-Score of 0.65 (precision ¼
0.44, recall ¼ 0.75). The optimal parameterization for
the SVM model used sigma of 0.05 and a cost of 1.
This parameterization yielded an F-Score of 0.58 (preci-
sion ¼ 0.39, recall ¼ 0.68). It is worth noting that using

a custom F-Score that puts more weight on the class of
interest resulted in different parameterizations for each
model when compared to using the default accuracy
metrics. When we used more common accuracy metrics
of Overall Accuracy and Kappa Score, we ended up
with lower final accuracies for our vernal pool classifica-
tion. Overall Accuracy and Kappa Score weigh classes
evenly, so, while the classifier may perform better over-
all, most of the resultant classes are not relevant for the
accuracy of vernal pool delineation.

The trained RF and SVM models were applied to
the objects within the validation plots to produce
5129 classified objects for each classifier. Both classi-
fiers produced similar proportions of classes: 5–6%
open water, 5–9% shadows, 7–9% impervious surfaces,
22% covered water, and 57–58% forest. The increased
proportion of open-water and covered-water classes
compared to the reference dataset was mainly a result
of extensions of the OMNRF waterbodies that were
missed during the digitization of the reference dataset.
Similarly, the increased proportion of shadows in the
training dataset compared to the reference dataset was
because the lighter-colored shadows in the SCOOP
imagery had not been identified as such in the refer-
ence dataset. The majority of the objects classified as
open water were adjacent to other water objects: open
water, covered water, or OMNRF waterbodies (90 and
77% for RF and SVM, respectively). When using the
post-classification procedure to group these spatially
associated objects, we obtained 59 objects classified as
PVPs for the RF classifier and 44 for the SVM classi-
fier (Figure 4). The median size of the PVP objects
classified by RF was only slightly larger than that in
the reference dataset (285 vs. 222m2, respectively),
whereas those classified by SVM were twice as large
(442 vs. 222m2, respectively).

We assessed the accuracy of the PVP objects from
the post-classification procedure using the F-Score, a
weighted average of precision (user’s accuracy) and

Table 3. Features selected for model training in order of estimated importance (Imp).
Object features Imp Object features Imp Object features Imp

Mean NDWI (2013) 10.4 SD Green (2013) 6.5 Mean Red (2018) 4.7
Mean Green (Sentinel) 9.9 Mean Blue (average of 2013 and 2018) 6.4 Mean Slope 4.1
Mean Red (Sentinel) 9.3 Mean NIR (2018) 6.3 SD Depression 3.3
Mean NIR (Sentinel) 9.2 Mean Blue (2013) 6.3 SD Blue (2013) 3.2
Mean NIR (average of 2013 and 2018) 8.9 Mean Red (2013) 5.6 SD NIR (2018) 3.2
Mean Blue (Sentinel) 8.5 Mean Green (2013) 5.4 GLCM Angular Second Moment 3.1
Brightness 7.2 SD Slope 5.2 Border Index 3.0
Mean NIR (2013) 7.1 Mean Green (2018) 5.0 SD NDWI (2013) 3.0
Mean Depression Likelihood 7.1 Mean Blue (2018) 4.9 Shape Index 2.9
Mean Green (average of 2013 and 2018) 6.7 Existence of OMNRF waterbodies as neighbor 4.8 GLCM Entropy 2.9
Mean Red (average of 2013 and 2018) 6.5 SD NIR (2013) 2.9

The years in brackets (2013 or 2018) correspond to the imagery dataset year for the South Central Orthophotography Project. GLCM: Gray Level
Cooccurrence Matrix; NDWI: Normalized Difference Water Index; NIR: Near Infrared; SD: standard deviation; OMNRF: Ontario Ministry of Natural
Resources and Forestry.
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recall (producer’s accuracy). The F-Score we used in
this study placed a higher weight on false positives,
meaning that producer’s accuracy had a stronger
influence than user’s accuracy. There appeared to be a
direct tradeoff between producer’s and user’s accura-
cies between the two classifiers. Whereas the RF clas-
sifier had higher producer’s accuracies, the SVM
classifier had comparatively higher user’s accuracies
(Table 4). Since producer’s accuracy was weighted
higher, the RF classifier produced higher F-Scores
when compared to the SVM classifier (Table 4).

Figure 4. Comparison of classification results from each model (RF: random forest; SVM: support vector machines) with the refer-
ence dataset for three sites: GB2 plot 2 (top), GB3 plot 1 (middle), and GB6 plot 4 (bottom). The light blue polygons represent
land previously identified as waterbodies by the Ontario Ministry of Natural Resources and Forestry (OMNRF). The black polygons
represent areas classified as roads. The dark blue polygons represent areas classified as being “OMNRFwater” (i.e. missed portions
of the OMNRF identified waterbodies). The yellow polygons represent areas classified as “PVP” (potential vernal pools). Basemap
source: Ontario Ministry of Natural Resources and Forestry.

Table 4. Comparison of accuracy metrics for each model.
Model Random forest Support vector machines

User’s accuracy 78.0% 84.1%
Producer’s Accuracy 85.4% 79.1%
F-Score (b¼ 2) 0.83 0.81

Accuracy was assessed based on the proportion of overlapping potential
vernal pool polygons between the reference and classified datasets.
User’s accuracy was calculated based on 59 classified potential vernal
pool objects (PVP) objects for the Random Forest model and 44 classi-
fied PVP objects for the Support Vector Machine model. Producer’s
accuracy was calculated based on 48 reference PVP objects for both
models. F-score was calculated using a b value of 2 to place a higher
emphasis on minimizing errors of omission.
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Consequently, our optimal model using the RF classi-
fier had an omission rate of 15% and a commission
rate of 23% for reference PVPs.

Approximately 85% of the correctly classified PVP
objects overlapped PVP objects from the reference
dataset by more than 50%. The remaining 15% of cor-
rectly classified PVP objects overlapped the reference
dataset by more than 20% but less than 50%. These
PVPs tended to be highly vegetated with few areas of
open water. The median size of PVPs that were cor-
rectly mapped in both the reference and classified
datasets were larger than those that had been missed
or were the result of commission error (Table 5).
Another factor that may have affected mapping accur-
acy was difficulty in distinguishing between PVPs and
the shadow class due to spectral confusion. This was
supported by the fact that only 24% of the PVPs in
the reference dataset occurred within 100m of roads,
while 38% of false positives occurred within this buf-
fer (Table 5). Closer inspection of SCOOP imagery
confirmed that false positives were always associated
with dark shadows, which were especially common
near roadways and on exposed bedrock. False-negative
PVPs included small PVPs (<100m2), those with high
canopy cover, and those on slopes or exposed bedrock
with small drainage basins. These PVPs were difficult
to distinguish from the shadow class.

Discussion

Remote sensing approaches for mapping small ephem-
eral wetlands have been prevalent during the last dec-
ade (Bourgeau-Chavez et al. 2016; Carpenter et al.
2011; Cormier et al. 2013; DiBello et al. 2016; Julian
et al. 2009; Leonard et al. 2012; Riley et al. 2017; Wu
et al. 2014). This study contributes to this growing
knowledge base by combining documented wetland
mapping techniques to develop an efficient classifier
for vernal pools in a remote area of Ontario. We con-
firmed that groups of pixels representing vernal pools
in high-resolution leaf-off CIR imagery can be sepa-
rated from surrounding land-use with OBIA. Further,
we found that machine learning was able to classify
objects from OBIA based on the spectral, texture,

shape, and neighborhood characteristics of each
object. Our object-based machine learning approach
was able to accurately predict the locations of PVPs
with a minimum size threshold of 50m2, with a corre-
sponding producer’s accuracy of 85% and user’s
accuracy of 77%. It is noteworthy that past studies
that have achieved similar or better results for forested
wetlands of comparable size required the use of
LiDAR -derived data products, which are expensive
and not yet available for remote regions in Ontario
(Leonard et al. 2012; Riley et al. 2017; Wu et al. 2014;
but see Bourgeau-Chavez et al. 2016).

This study also highlights the shortcomings of pre-
vious wetland mapping projects in the province. The
wetland and waterbody datasets from the OMNRF
accounted for 116 individual wetlands that intersected
the 23 study plots. Our field surveys uncovered an
additional 133 undocumented wetlands, more than
doubling the estimate of wetland density for the
region. While the provincial wetland and waterbody
datasets remain very important for planning and
watershed management, our study can supplement
these data to provide an even stronger understanding
of the water resources in this region of Ontario.

The RF and SVM classifiers performed similarly
well in our study, though RF had a higher user’s
accuracy and tended to produce PVPs of more com-
parable size to the reference data. Neither classifier
assumes any particular distribution of data and both
are robust to noise and errors (Ma et al. 2017a).
Studies that have reported RF outperforming SVM
argue that SVM is more prone to overfitting the data
because it is trained on the entire dataset whereas RF
is trained on random subsets for each decision tree
(Amani et al. 2017; Tian et al. 2016). Our use of
repeated CV to subset the data during model training
likely reduced the discrepancies between the RF and
SVM classifiers with respect to overfitting the data.
Though we did not compare computation time in our
study, RF has generally been found to be faster when
compared to SVM, thus making RF the better option
when the two methods produce similar accuracies.

While our classification produced acceptable results
for our purposes, we recognize that there are other

Table 5. Comparison of potential vernal pool (PVP) polygon size and percentage found within 100m of roads for reference and
classified datasets using the random forest model.

Reference PVPs Classified PVPs

Mapped (N¼ 41) Omitted (N¼ 7) True positives (N¼ 46) False positives (N¼ 13)

Median size (m2) 217 93 369 82
Within 100m of road (%) 24 14 28 38

Mapped reference PVPs were those correctly classified by the model, while omitted reference PVPs were those missed by the model.
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options for model optimization that we did not
explore. For example, we used a single feature selec-
tion algorithm and measure of importance to decide
on an optimum feature subset. Given the diversity of
feature selection methods available for remote sensing
applications (e.g. Ma et al. 2017a), it is possible that
different feature selection algorithms and importance
measures could provide a more accurate prediction of
the optimal feature set (Jovi�c et al. 2015; Ma et al.
2017b). We also relied on a down-sampling approach
to account for the issue of class imbalances. Though
down-sampling is simple to implement, it can miss
important discriminatory characteristics of the major-
ity class and reduce the likelihood of capturing class
variance, leading to potentially large inaccuracies in
the model (He and Garcia 2009). Other resampling
methods, such as up-sampling and the synthetic
minority over-sampling technique, manipulate the
data in different ways and may allow for a more
accurate representation of the PVP classes in the
model (Chawla et al. 2002; Douzas et al. 2019;
Maxwell et al. 2018). Cost-sensitive measures, which
assign higher costs to misclassifications of the minor-
ity classes compared to those of the majority classes,
are also common approaches for dealing with class
imbalances and avoid resampling the data (He and
Garcia 2009). While these alternative approaches also
come with their own drawbacks, it is certainly pos-
sible that a comparison of approaches could yield a
more accurate classification of vernal pools.

Our classifier had trouble differentiating between
small pools and shadows on impervious surfaces.
Conifer shadows on bedrock or roadsides shared simi-
lar spectral properties with areas of inundation and
accounted for all errors of commission in our models.
Similarly, small pools or pools with high canopy cover
were often misclassified as shadows. Past vernal pool
detection studies have had similar trouble differentiat-
ing small pools from shadows (Cormier et al. 2013;
Faccio et al. 2013), though the inclusion of LiDAR-
derived products has been found to reduce these
errors (Leonard et al. 2012; Reutebuch et al. 2003). A
smaller proportion of reference pools were missed
because of the Sentinel 2 screening process. These
pools were typically perched on exposed bedrock and
had small drainage basins that accounted for only a
fraction of the Sentinel 2 pixel size. We found these
pools to be less prevalent across our study region and
they only accounted for a small fraction of the false
negatives in our accuracy analysis.

We focused our mapping efforts on the coast of
southeastern Georgian Bay because it is a highly

coveted area for current and future development. Our
approach should be informative for our region of
interest as the topography and land cover are rela-
tively homogenous (Crins et al. 2009). If this approach
were to be applied over the larger SCOOP extent,
which stretches 150 km to the south and east of our
study region (Figure 1), additional samples would be
required. Our study sites are clustered and localized
for our specific region, so it is unlikely that we have
accounted for the full variation in topography and
land cover encompassed by the SCOOP products.
Similarly, it may be possible to obtain comparable
mapping accuracies for regions covered by different
Ontario Orthoimagery Projects (OOP), but models
would need to be retrained with new field data. The
suite of OOPs have differences in spectral characteris-
tics stemming from the time of year when images
were acquired, weather conditions before and during
image capture, and the camera system used to take
the images (Ontario Ministry of Natural Resources
and Forestry (OMNRF) 2020). The accuracy of these
new classifiers may be improved or reduced due to
differences in landscape characteristics, such as topog-
raphy and forest composition (Lathrop et al. 2005), or
differences in the characteristics of the OOP, such as
image quality and number of years of imagery.

Though the orthoimagery projects of Ontario were
not intended to be used for supervised image classifi-
cation, we believe they are a useful tool for small-scale
mapping projects especially when combined with
OBIA. Vernal pools are small, obscure, and critically
understudied in Ontario. They provide essential habi-
tat for amphibian species, such as mole salamanders
(Ambystoma jeffersonianum, A. laterale, A. macula-
tum) and wood frogs (Lithobates sylvaticus), and act
as important secondary habitat and stopover sites for
species at risk, including Blanding’s turtles
(Emydoidea blandingii; Markle and Chow-Fraser
2014). Vernal pools also provide many ecosystem
services including water retention, energy transfer,
and nutrient cycling (Hunter 2007; Leibowitz 2003).
The conservation of these ecosystems will be import-
ant for Ontario, especially in regions that are under
high development pressure, such as southeastern
Georgian Bay. The classification models from this
study should be used to identify vernal pool hotspots
and narrow down locations to conduct ground sur-
veys for verification of vernal pools. To verify the
locations of vernal pools based on the classified maps,
we suggest that surveyors confirm not only the pres-
ence of water, but also the presence of obligate
amphibian breeders. This would involve either egg or
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larvae surveys, depending on the time of year. Though
Ontario does not have a strict definition of vernal
pools, these constraints are consistent with other N.
American jurisdictions that have existing vernal pool
mapping programs (Brooks et al. 1998; DiBello et al.
2016; Faccio et al. 2013). While field verification is
certainly feasible for projects focused on small areas
of interest, the detailed and time-consuming nature of
the field work may make this methodology infeasible
for large areas of interest.

To date, there are no comprehensive databases of
vernal pools for forests of southeastern Georgian Bay
or any forested region in Ontario. Knowledge of ver-
nal pool distributions would fill a notable gap in
understanding the importance of habitat connectivity
for wildlife that are associated with wetland networks.
This knowledge will also be important for deciphering
the potential impacts of climate change and land-use
changes on water resources, including earlier drying
and loss of landscape connectivity (Brooks 2009).
Although inclusion of high-resolution LiDAR and
RADAR data would no doubt improve our mapping,
this technology is too expensive to be widely available,
and the need for information on vernal pool distribu-
tion is too great to hold out for these data.

Conclusion

The study presented here showed that an OBIA
approach using high-resolution multispectral imagery
and machine learning classification is a promising
approach for the detection of PVPs in heavily forested
regions of central Ontario. Vernal pools are often
overlooked in regional wetland mapping projects due
to their small size and the obstruction from the forest
canopy. The use of image segmentation to identify
homogenous regions of sub-meter-resolution aerial
imagery allowed for the detection of forested vernal
pools down to a visible surface area of 50m2. Our
study found that the RF classifier marginally outper-
formed the SVM classifier, providing final producer’s
and user’s accuracies of 85 and 79%, respectively.

Errors encountered in this study were the result of
misclassifications between small pools and shadows
from coniferous trees. It is unlikely that an approach
relying exclusively on multispectral imagery can elim-
inate these types of errors. Once high-resolution
LiDAR and/or RADAR become available for these
remote regions, the accuracy and precision of this
approach will likely improve. In the meantime, this
approach provides an efficient method to identify
PVPs, thus greatly reducing the time, financial

commitment and human resources needed to improve
upon local-scale databases of wetland resources.
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