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Lay Abstract

Reinforcement Learning (RL) enables agents to acquire knowledge and make decisions

by interacting with their environment, similar to human experiential learning. RL has

been widely used in various industrial domains such as health care and finance. How-

ever, the implementation of sophisticated RL algorithms on small, resource-limited

devices such as embedded systems or edge devices is often difficult due to the fact that

they require a significant amount of computational power and memory. This thesis

presents HEPPO, a novel framework facilitating the efficient execution of the widely-

used reinforcement learning algorithm, Proximal Policy Optimization (PPO), across

several hardware platforms. By optimizing critical bottlenecks of the algorithm and

developing a customized hardware architecture, HEPPO markedly decreases compu-

tational requirements and memory consumption without compromising performance.

The proposed framework enables the real-time deployment of intelligent learning al-

gorithms on devices such as drones, robots, and other smart systems, thereby aug-

menting their capabilities and facilitating new avenues for innovation across diverse

industries.
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Abstract

This thesis presents HEPPO: Hardware-Efficient Proximal Policy Optimization, a

framework designed to address the computational and memory challenges associ-

ated with implementing advanced reinforcement learning algorithms on resource-

constrained hardware platforms. By introducing dynamic standardization for rewards

and an 8-bit quantization strategy, HEPPO reduces memory requirements by up to

75% while improving training stability and performance, achieving up to a 67% in-

crease in cumulative rewards. A novel, highly parallelized architecture for Generalized

Advantage Estimation (GAE) computation accelerates this critical phase, processing

19.2 billion elements per second using 64 processing elements, contributing to a 22%

to 37% reduction in PPO training time in different environments. Adapting the pro-

posed on-chip memory layout reduces the GAE data transfer latency and increases

the reduction percentage up to 48% in certain environments in PPO training time.

The integration of the entire PPO pipeline on a single System-on-Chip (SoC) further

enhances system performance by reducing communication overhead and leveraging

custom hardware acceleration. Experimental evaluations demonstrate that HEPPO

effectively bridges the gap between sophisticated reinforcement learning algorithms

and practical hardware implementations, enabling efficient deployment in embedded

systems and real-time applications.
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Chapter 1

Introduction

This chapter provides a comprehensive overview of Reinforcement Learning (RL),

highlighting its significance and diverse applications across multiple domains. It

identifies the primary challenges faced by RL algorithms, particularly in resource-

constrained environments, and outlines the objectives and structure of this thesis

aimed at addressing these challenges.

1.1 Overview of Reinforcement Learning

RL is a subset of machine learning in which an agent develops decision-making ca-

pabilities by engaging with an environment to achieve a certain goal. The agent

systematically gathers observations and rewards from the environment and employs

them to enhance its policy for the purpose of maximizing cumulative rewards over

time [8]. The interaction loop is illustrated in Figure 1.1.

1
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Computer Engineering

Agent

Environment

State

Reward

Action

Figure 1.1: The Reinforcement Learning Framework. Original illustration based on
Bhatt at al. [1].

The reinforcement learning paradigm has become a critical component of mod-

ern artificial intelligence applications, demonstrating substantial success in a variety

of fields, such as robotics, autonomous driving, healthcare, finance, and gaming. In

robotics, RL enables robots to learn and adapt to dynamic environments, executing

complex tasks such as object manipulation and navigation [3, 18, 24]. Autonomous

driving gains from RL by enhancing decision-making abilities, enabling cars to oper-

ate safely and efficiently in varied and complex environments [43]. In the healthcare

sector, RL enhances patient outcomes by personalizing medicine and optimizing treat-

ment plans to fit the unique requirements of each patient [3]. Furthermore, RL has

transformed gaming by allowing artificial intelligence to excel at superhuman profi-

ciency in games like chess and Go [40, 41].

In addition, RL has substantial applications in finance, industrial control, energy

management, and telecommunication. In finance, RL-based trading bots learn and

2
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adapt to market conditions, optimizing trading tactics in real-time [2, 50]. In indus-

trial control, RL enhances operational efficiency in resource allocation and predic-

tive maintenance by dynamically modifying control parameters to maximize system

performance and minimize operating costs [7, 25]. In energy management, RL is

employed to optimize energy usage and improve the efficiency of smart grids by fore-

casting and addressing energy demands [26]. In telecommunications, RL optimizes

network traffic, improves service quality, and minimizes latency through dynamic

bandwidth allocation and resource management [29].

Nevertheless, RL faces extreme obstacles, including the necessity for extensive

data, substantial memory requirements, and high computational demands. These

obstacles can restrict its practicality and scalability in real-world applications. Con-

fronting these problems is crucial for progressing the field and facilitating wider ac-

ceptance of RL technologies.

1.2 Problem Definition and Motivation

Although RL algorithms exhibit considerable potential, their adoption in real-world,

resource-limited settings presents a difficulty. Complex RL algorithms face significant

challenges in being used on hardware platforms with limited resources, like embedded

systems and edge devices, because they need a lot of memory and computing resources

which causes a significant drop in their response time and performance [17, 44].

Proximal Policy Optimization (PPO) is a widely adopted RL algorithm for its

robustness and effectiveness in handling complex tasks, demonstrating notable success

in multi-agent applications such as logistics and supply chain management [49], as

well as in industrial scenarios like job shop scheduling within manufacturing [4], due

3

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – H. Taha; McMaster University – Department of Electrical and

Computer Engineering

to its adaptability and sample efficiency [39]. Nonetheless, PPO’s computational

limitations along with its considerable memory requirements, leave it a poor choice

for hardware-constrained applications [44].

To bridge the gap between advanced RL algorithms such as PPO and practical

hardware implementations, this thesis addresses the following challenges and sets

corresponding objectives:

• Computational Bottlenecks: Identify and optimize the computationally in-

tensive components of the PPO algorithm.

• Memory Constraints: Investigate PPO’s memory requirements and imple-

ment efficient data representation and storage techniques.

• Hardware-Efficient Algorithm Modifications: Modify the PPO algorithm

to ensure compatibility with hardware accelerators and generalizability without

compromising learning efficacy.

• Integration into System-on-Chip (SoC) Architectures: Explore and de-

sign the seamless integration of the entire PPO pipeline onto a single SoC to

enhance data throughput and reduce communication overhead.

Overall Goal: Enable the deployment of the PPO algorithm in resource-constrained

environments by addressing computational and memory challenges, optimizing algo-

rithmic efficiency, and ensuring seamless integration with hardware architectures, all

without sacrificing performance.

4
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1.3 Thesis Structure

This thesis is organized as follows:

• Chapter 2: Background — Background Offers an extensive summary of the

essential concepts and techniques pertinent to this thesis, encompassing the

principles of reinforcement learning, Generalized Advantage Estimation, and

Proximal Policy Optimization.

• Chapter 3: Literature Review — Investigates the necessity for accelerating

deep reinforcement algorithms such as PPO, analyzes previous studies about

the optimization of PPO for hardware applications, and highlights deficiencies

and gaps in present research which this study intends to rectify.

• Chapter 4: Methodology — Outlines the algorithmic modifications and the

architecture of the accelerator accelerator. This chapter encompasses the sug-

gested data standardization, quantization methodologies, and the architecture

of the HEPPO system.

• Chapter 5: Results and Discussion — Displays the experimental findings

assessing the efficacy of the proposed hardware and software methodologies.

This chapter examines the efficacy of HEPPO in alleviating computational con-

straints and improving training efficiency.

• Chapter 6: Conclusion and Future Work — Summarizes the principal

contributions of the thesis, examines the consequences of the findings, and de-

lineates prospective avenues for future study to enhance hardware-accelerated

reinforcement learning algorithms.

5
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Chapter 2

Background

Building upon the introduction, this chapter provides a comprehensive overview of

the fundamental concepts and algorithms in reinforcement learning essential for un-

derstanding the challenges addressed in this thesis. By delving into the core principles

like value functions, policy optimization methods, specifically Proximal Policy Op-

timization (PPO), as well as advantage functions, we lay the groundwork for the

subsequent exploration of hardware-efficient implementations.

2.1 Fundamentals of Reinforcement Learning

An RL problem is often formalized as a Markov Decision Process (MDP), character-

ized by the Markov property, which posits that the future state depends solely on the

current state and action, not on the sequence of preceding events:

P(St+1 = s′|St = s, At = a, history) = P(St+1 = s′|St = s, At = a) (2.1.1)

6
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An MDP is defined by the tuple (S,A,P, R, γ), as described in the Notation

section. Where:

• S is the set of states representing possible configurations of the environment.

• A is the set of actions available to the agent at each state.

• P(s′ | s, a) is the Transition probability defining the likelihood of moving

from state s to s′ after action a.

• R(s, a) is the Reward function assigning a real-valued reward for each state-

action pair.

• γ is the Discount factor (0 ≤ γ < 1) determining the importance of future

rewards.

2.1.1 Finite Markov Decision Processes (FMDPs)

If the state and action spaces are finite, then the process is called a Finite Markov

Decision Process (FMDP). FMDPs are particularly important to the theory of rein-

forcement learning as they constitute the majority of modern RL problems [42]. They

are mathematically tractable and allow for the application of dynamic programming

methods.

Figure 2.1 shows a useful way to summarize the dynamics of a finite MDP through

a transition graph, illustrated using a simple recycling robot example.

7
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LOWHIGH

A

A

A

A

A

recharge

search
wait

search

wait

1, 0

Figure 2.1: Finite MDP Transition Graph Example. The robot can be in one of two
states: ”Searching” or ”Recharging”. The actions available and the probabilities of
transitioning between states are indicated. Original illustration based on Sutton at

al. [42].

In this example, the robot operates in two states: Searching and Recharging. The

robot can choose to search for recyclable cans or go back to recharge its battery. Each

action has associated probabilities of transitioning to the next state and receiving

certain rewards. This finite MDP allows us to model the decision-making process

and optimize the robot’s policy to maximize its expected cumulative reward.

2.1.2 Goal of Reinforcement Learning

The goal of reinforcement learning is to find a policy π that maximizes the expected

cumulative reward, also known as the expected return. A policy π(a|s) defines the

probability of taking action a when in state s.

8
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The return Gt is defined as:

Gt =
∞∑
k=0

γkRt+k+1 (2.1.2)

where γ ∈ [0, 1) is the discount factor that determines the present value of future

rewards, and Rt+k+1 is the reward received at time t+ k + 1.

2.1.3 Value Functions

To evaluate the quality of states and actions, RL utilizes value functions, which esti-

mate the expected return starting from a state or state-action pair under a particular

policy.

State-Value Function V π(s) The state-value function V π(s) is defined as the

expected return when starting from state s and following policy π:

V π(s) = Eπ[Gt|St = s] = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣St = s

]
(2.1.3)

Action-Value Function Qπ(s, a) The action-value function Qπ(s, a) is defined

as the expected return when starting from state s, taking action a, and thereafter

following policy π:

Qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣St = s, At = a

]
(2.1.4)

The optimal policy π∗ maximizes the expected return for all states. The optimal

9
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state-value function V ∗(s) and optimal action-value function Q∗(s, a) are defined as:

V ∗(s) = max
π

V π(s) (2.1.5)

Q∗(s, a) = max
π

Qπ(s, a) (2.1.6)

If the optimal action-value function Q∗(s, a) is known, the optimal policy π∗ can

be obtained by selecting actions that maximize Q∗(s, a):

π∗(s) = arg max
a
Q∗(s, a) (2.1.7)

2.2 Estimating the Action-Value Function

An essential aspect of RL algorithms is estimating the action-value function Qπ(s, a)

for the current policy π. Estimating Qπ(s, a) is crucial for policy evaluation and

improvement.

There are two primary methods for estimating Qπ(s, a):

2.2.1 Monte Carlo Methods

Monte Carlo methods estimate Qπ(s, a) by averaging the returns observed after vis-

iting state s and taking action a over multiple episodes. The procedure is as follows:

• Data Collection: Run multiple episodes following policy π. For each occur-

rence of state s and action a, record the total discounted return Gt from that

time step until the end of the episode.

10
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• Estimation: Estimate Qπ(s, a) as the average of these returns:

Qπ(s, a) ≈ 1

N(s, a)

N(s,a)∑
i=1

G
(i)
t (2.2.1)

where N(s, a) is the number of times action a was taken in state s, and G
(i)
t is

the return observed in the i-th occurrence.

Monte Carlo methods have the following characteristics:

• Advantages:

– Simple to implement.

– Unbiased estimates in the limit of infinite samples.

• Disadvantages:

– High variance due to the stochastic nature of returns.

– Requires episodes to terminate (not suitable for continuous tasks without

modifications).

– Slow convergence in some cases.

2.2.2 Temporal-Difference Methods

Temporal-Difference (TD) methods estimate Qπ(s, a) by bootstrapping from the cur-

rent estimate of Qπ(s′, a′). One common TD method is the n-step bootstrapping

approach.
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One-Step TD Learning

At each time step t:

• Observe: Immediate reward Rt+1 and next state St+1.

• Update Rule:

Qπ(St, At)← Qπ(St, At) + α [Rt+1 + γQπ(St+1, At+1)−Qπ(St, At)] (2.2.2)

where:

– α: Learning rate (0 < α ≤ 1).

– At+1: Action taken in state St+1 according to policy π.

n-Step TD Methods

TD methods can be extended to use rewards from the next n steps:

Qπ(St, At)← Qπ(St, At) + α

[
n∑
k=1

γk−1Rt+k + γnQπ(St+n, At+n)−Qπ(St, At)

]
(2.2.3)

Characteristics of TD Methods

• Advantages:

– Can learn from incomplete episodes (suitable for continuing tasks).
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– Typically lower variance than Monte Carlo methods.

– Update estimates after every time step (online learning).

• Disadvantages:

– Introduce bias due to bootstrapping.

– Choice of n affects bias-variance trade-off.

2.2.3 Comparison Between Monte Carlo and TD Methods

The key differences between Monte Carlo and TD methods are:

• Monte Carlo Methods:

– Use actual returns from complete episodes.

– Unbiased but can have high variance.

– Not suitable for non-terminating tasks without adjustments.

• TD Methods:

– Use estimates of future returns (bootstrapping).

– Introduce bias but typically have lower variance.

– Suitable for online learning and continuing tasks.
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2.3 Taxonomy of Reinforcement Learning Algo-

rithms

Reinforcement Learning algorithms are broadly classified into Model-Based and

Model-Free approaches [52]. Model-Free methods are further divided into Value-

Based, Policy-Based, and Actor-Critic methods. This taxonomy aids in under-

standing the underlying mechanisms of different algorithms and their applicability to

various problems.

2.3.1 Model-Based vs. Model-Free RL

Table 2.1: Comparison between Model-Based and Model-Free RL

Aspect Model-Based RL Model-Free RL

Environment

Model

Utilizes a model of the environ-

ment to predict future states and

rewards

Does not require a model;

learns directly from interac-

tions

Planning Capable of planning by simulat-

ing future trajectories

Relies on trial-and-error

learning

Sample Effi-

ciency

Generally more sample-efficient

due to planning

Often requires more sam-

ples to learn optimal poli-

cies

Complexity Computationally intensive due to

model learning and planning

Simpler to implement; lower

computational overhead

Examples Dyna-Q, Model Predictive Con-

trol

Q-Learning, SARSA, RE-

INFORCE, PPO
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2.3.2 Model-Free RL Algorithms

Model-Free algorithms learn directly from interactions with the environment without

building an explicit model. They are categorized into Value-Based, Policy-Based, and

Actor-Critic methods.

Table 2.2: Summary of Model-Free RL Algorithms

Category Algorithms Key Characteristics

Value-Based Q-Learning, SARSA,

DQN

Learn value functions V (s) or

Q(s, a) to derive policies; suitable

for discrete action spaces; may

struggle with high-dimensional

state spaces

Policy-Based REINFORCE, Policy

Gradient Methods,

TRPO

Directly learn policy πθ(a|s);

effective in continuous action

spaces; can handle stochastic

policies

Actor-Critic A3C, DDPG, PPO Combine actor (policy) and critic

(value function); leverage advan-

tages of both value-based and

policy-based methods; suitable

for complex environments

The key characteristics of these methods are:

• Value-Based Methods: Focus on estimating value functions to indirectly

derive optimal policies. They are suitable for problems with discrete action
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spaces but may face challenges in high-dimensional state spaces.

• Policy-Based Methods: Optimize the policy directly by adjusting parameters

to maximize expected rewards. They are effective in environments with large

or continuous action spaces and can handle stochastic policies.

• Actor-Critic Methods: Incorporate both policy and value function estima-

tion, combining the strengths of both approaches for stability and applicability

to complex tasks.

2.3.3 Actor-Critic Methods

Actor-Critic methods combine policy-based and value-based approaches to leverage

the advantages of both [16, 21]. They consist of two main components:

• Actor: Learns the policy πθ(a|s) responsible for selecting actions. The actor

updates the policy parameters θ to improve the policy.

• Critic: Estimates the value function V π(s) or the action-value functionQπ(s, a),

using parameters φ. The critic evaluates the actions taken by the actor and pro-

vides feedback in the form of an advantage estimate, which guides the actor’s

updates.

The interaction between the actor and critic is depicted in Figure 2.2. The actor

selects actions based on the current policy, and the critic evaluates these actions to

update the value function. This collaboration helps in reducing variance in policy

gradient updates and accelerates learning [20].
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Environment

Policy

Value
Function

TD 
Error

State

Reward

Action

Actor

Critic

Figure 2.2: Actor-Critic Architecture. The actor selects actions based on the policy,
while the critic evaluates these actions to update the value function. Original

illustration based on Sutton at al [42].

Policy and Value Function Updates

In Actor-Critic Methods, the actor and the critic are typically modeled using deep

neural networks as function approximators [20, 38, 39]. This allows the frame-

work to handle complex, high-dimensional state and action spaces effectively. Con-

sequently, the updates to the parameters θ and φ correspond to neural network pa-

rameter adjustments performed through gradient-based optimization techniques.

Actor Update. The actor network parameterized by θ represents the policy

πθ(a|s). To improve the policy, the actor performs gradient ascent on the expected

return. This process iteratively adjusts θ to increase the probability of actions that
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yield higher advantages and vice versa.

θ ← θ + α · Ât(st, at) · ∇θ log πθ(at|st) (2.3.1)

Where:

• α is the learning rate for the actor network.

• Ât(st, at) is the estimated advantage at time step t, indicating the relative value

of action at in state st.

• ∇θ log πθ(at|st) is the gradient of the log-probability of the taken action with

respect to the actor’s parameters.

This update rule is applied iteratively during training, allowing the actor to progres-

sively refine the policy towards optimality by favoring actions that lead to higher

expected returns.

Critic Update. The critic network parameterized by φ estimates the value func-

tion V π(s;φ). The critic updates its parameters by minimizing the mean squared

error between the predicted value and a target value, utilizing gradient descent.

φ← φ− β · ∇φ (V π(st;φ)− target)2 (2.3.2)

Where:

• β is the learning rate for the critic network.
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• The target is defined as:

target =


rt+1 + γV π(st+1;φ) (Temporal-Difference)

Gt (Monte Carlo)

(2.3.3)

where rt+1 is the reward received after taking action at in state st, γ is the

discount factor, and Gt is the cumulative return from time step t.

The critic’s update is also applied iteratively during training to reduce the prediction

error, thereby providing more accurate value estimates that the actor relies on to

improve the policy.

Over time, this collaborative optimization leads to the convergence of the actor

towards an optimal policy π∗ and the critic towards an accurate value function V π∗
(s),

ultimately enhancing the agent’s decision-making capabilities.

Advantage Function

The advantage function Ât(st, at) quantifies how much better or worse an action at

is compared to the expected value for state st under policy π. It is defined as:

Ât(st, at) = Qπ(st, at)− V π(st) (2.3.4)

Depending on how Qπ(st, at) is estimated, the advantage can be computed in

different ways:

Temporal-Difference (TD) Approach. In the TD approach (one-step boot-

strapped), the advantage is estimated using the temporal-difference residual δVt , which
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measures the discrepancy between the predicted value and the actual reward received

plus the estimated value of the next state:

δVt = rt+1 + γV π(st+1)− V π(st) (2.3.5)

Thus, the advantage estimate becomes:

Ât(st, at) = δVt (2.3.6)

Monte Carlo Approach. In the Monte Carlo approach, the advantage is estimated

using the rewards-to-go, which sums all future discounted rewards starting from time

t:

Gt =
∞∑
k=0

γkrt+k+1 (2.3.7)

The advantage estimate is then:

Ât(st, at) = Gt − V π(st) (2.3.8)

2.3.4 Generalized Advantage Estimation (GAE)

Generalized Advantage Estimation (GAE) extends the advantage function by pro-

viding a flexible mechanism to balance the trade-off between bias and variance in

advantage estimation [37]. GAE achieves this by aggregating multi-step temporal-

difference residuals, resulting in more stable and efficient learning.
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Temporal-Difference Residual

As previously defined, the temporal-difference residual δVt is:

δVt = rt+1 + γV π(st+1)− V π(st) (2.3.9)

k-Step Advantage Estimate

Building upon the TD residual, the k-step advantage estimate Â
(k)
t aggregates k

consecutive TD residuals, each discounted by γ:

Â
(k)
t :=

k−1∑
l=0

γlδVt+l = rt + γrt+1 + · · ·+ γk−1rt+k−1 + γkV (st+k)− V (st) (2.3.10)

This formulation incorporates rewards over k steps and a bootstrapped estimate

of the value function at step t + k, effectively blending multi-step returns with a

baseline to estimate the advantage.

Generalized Advantage Estimation

GAE extends the k-step advantage estimates by introducing a weighting parameter

λ ∈ [0, 1], which controls the trade-off between bias and variance. The GAE ÂGAE
t is

defined as an exponentially weighted sum of the k-step advantage estimates:

21

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – H. Taha; McMaster University – Department of Electrical and

Computer Engineering

ÂGAE
t = (1− λ)

∞∑
k=1

λk−1Â
(k)
t (2.3.11)

=
∞∑
l=0

(γλ)lδVt+l (2.3.12)

This can be efficiently computed using the recursive formulation:

Ât = δVt + γλÂt+1 (2.3.13)

with the recursion starting from ÂT = δVT at the terminal time step T .

Bias-Variance Trade-Off

The parameter λ controls the balance between bias and variance in the advantage

estimates:

• λ = 1: GAE reduces to the Monte Carlo estimation, which has low bias but

high variance.

• λ = 0: GAE reduces to the one-step TD error, which has high bias but low

variance.

• Intermediate values of λ blend multi-step returns, providing a balance between

bias and variance.
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2.4 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is a policy-gradient method that improves train-

ing stability through a clipped surrogate objective function, preventing large policy

updates [39]. PPO addresses issues of high variance and instability in policy updates

by limiting the change in the policy at each update [39, 53].

Both the policy (actor) and the value function (critic) in PPO are typically mod-

eled using deep neural networks as was explained in subsection 2.3.3. The parameters

of these networks are updated using gradient-based optimization methods, facilitating

the learning of optimal policies and accurate value estimates.

The PPO algorithm as presented in algorithm 1 comprises three main components:

trajectory collection, advantage and rewards-to-go calculation, and loss calculation

with backpropagation.

Trajectory Collection

In this phase, the agent interacts with the environment using the current policy πθk

to collect a set of trajectories Dk = {τi} by inferencing using the actor and critic

neural networks. Each trajectory consists of states, actions (from the actor), value

estimates (from the critic), and rewards observed during an episode.

Advantage and Rewards-to-Go Calculation

After collecting trajectories, the rewards-to-go R̂t are computed for each time step

t. Subsequently, the advantage estimates Ât are calculated using Generalized Advan-

tage Estimation (GAE), which leverages the current value function Vφk as defined in
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Section 2.3.4. These estimates provide a measure of how much better an action is

compared to the expected value, guiding the policy updates.

Loss Calculation and Backpropagation

The core of PPO involves updating both the policy and value networks using loss

functions that incorporate gradient-based optimization. Specifically:

• Policy Update: The policy network (actor) with parameters θ is updated

by maximizing the PPO-Clip objective function. This objective ensures that

the new policy does not deviate excessively from the old policy πθk , thereby

maintaining training stability.

• Value Function Update: The value network (critic) with parameters φ is

updated by minimizing the mean squared error between the predicted values

Vφ(st) and the computed rewards-to-go R̂t.

Both updates utilize backpropagation and stochastic gradient descent (or its vari-

ants) to adjust the neural network parameters based on the gradients of the respective

loss functions. Although not explicitly shown in algorithm 1, it is common in PPO to

perform multiple network updates within the same training epoch to enhance learning

efficiency.
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Input: Initial policy parameters θ0, initial value function parameters φ0

for k = 0, 1, 2, . . . do

Collect a set of trajectories Dk = {τi} by running policy πk = π(θk) in

the environment;

Compute rewards-to-go R̂t;

Compute advantage estimates Ât using GAE;

Update the policy by maximizing the PPO-Clip objective:

θk+1 = arg max
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min

(
πθ(at|st)
πθk(at|st)

Aπθk (st, at), g(ε, Aπθk (st, at))

)

Update the value function by minimizing the squared error:

φk+1 = arg min
φ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vφ(st)− R̂t

)2

end

Algorithm 1: PPO-Clip Variant by OpenAI [33]

2.4.1 Advantages of PPO

PPO offers several benefits:

• Stability: The clipping mechanism prevents destructive policy updates.

• Sample Efficiency: By reusing collected data for multiple epochs of optimiza-

tion.

• Simplicity: PPO is relatively easy to implement and tune compared to other

advanced policy optimization methods.
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2.5 Summary

This chapter laid out the foundational concepts of reinforcement learning, covering

MDPs, value functions, and key algorithms like PPO. Understanding these principles

is crucial for appreciating the challenges in hardware-efficient implementations of RL

algorithms. In the next chapter, the existing literature on hardware acceleration tech-

niques for reinforcement learning will be explored, identifying gaps that our research

aims to fill.
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Chapter 3

Literature Review

This chapter provides a comprehensive literature review of the computational de-

mands of deep reinforcement learning and the need for custom hardware accelera-

tion. The objective is to systematically narrow down the search scope in order to

identify the gaps and challenges that drive the development of hardware-efficient so-

lutions for deep RL algorithms like Proximal Policy Optimization (PPO) through the

examination of existing research.

3.1 Computational Demands and Hardware Limi-

tations in Reinforcement Learning

3.1.1 Escalating Computational Requirements

Modern reinforcement learning (RL) algorithms rely mainly on deep neural networks

as the primary function approximators for agent policies [20, 38, 39]. This section ex-

amines the escalating computational demands associated with these core deep neural

27
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networks.

The growth of data and model sizes in deep learning has resulted in a huge in-

crease in computational demands, with resource requirements scaling quadratically

or more in relation to model complexity [45]. The computational power needed by

deep learning models has markedly increased, substantially exceeding the growth of

general-purpose hardware performance, as depicted in Figure 3.1.

Commodity computing like CPUs is becoming ever less capable of satisfying these

growing demands. This deficiency is worsened by the slowdown of Moore’s Law,

which has traditionally forecasted the doubling of transistors on integrated circuits

roughly every two years. The deceleration of Moore’s Law has markedly limited the

ability of CPUs to meet the increasing requirements of deep learning tasks [45].

The increasing processing demands present considerable difficulties in effectively

facilitating large-scale deep learning applications with general-purpose hardware. As

a result, a major percentage of the enhancement in performance has been achieved by

executing models for extended durations on a greater number of machines, a strategy

that is both economically unappealing and less energy-efficient [45].
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Figure 3.1: Computing power used in deep learning models compared with hardware
performance growth. Adapted from Thompson et al. (2022) with permission [45].

3.1.2 Necessity for Specialized Hardware

Specialized hardware solutions like graphics processing units (GPUs) and tensor pro-

cessing units (TPUs) are key to overcoming the limits of general-purpose CPUs and

fulfilling the increasing computing requirements of deep learning. They are engineered

to accommodate the parallel processing demands intrinsic to deep learning tasks and

provide a substantial performance enhancement compared to conventional CPUs.

Compared to their initial implementations, GPUs have exhibited substantial per-

formance advances, with a 35× increase in speed by 2012 [45]. Their architecture,

which enables massive parallelism, is the primary reason for this remarkable acceler-

ation. This architecture is well-suited for tasks such as matrix multiplications and

other operations that are prevalent in deep learning algorithms.

Additionally, TPUs have made substantial strides in computational efficiency,

achieving a 4.9× increase in compute per watt between 2017 and 2020 [45]. They are
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specifically engineered to increase the efficiency and performance of tensor operations,

the core of deep learning models.

With these developments have been made, GPUs and TPUs are still not univer-

sally applicable, particularly in situations where there are strict real-time, area, power,

and resource constraints. In applications that require minimal latency, constrained

physical space, or reduced power consumption, the size and power requirements of

GPUs and TPUs make them less feasible. Alternate solutions or additional specialized

hardware may be required in these situations to satisfy the distinctive requirements

without sacrificing performance [45].

Therefore, while the utilization of GPUs and TPUs is useful in optimizing the com-

putational requirements of modern deep learning models, their constraints in limited

situations underscore the need for better-customized hardware design to accommo-

date a wider array of applications.

3.2 Impact of Computational Constraints on Re-

inforcement Learning Performance

3.2.1 Inference Time and Real-Time Performance

Timely decision-making is important in real-world applications, and computational

delays can have a substantial impact on performance. Deep reinforcement learning

models frequently exhibit inference durations of several hundred milliseconds, which

can be deleterious in real-time contexts when the environment keeps in changing

while the agent determines the subsequent action [44]. In time-critical tasks such

as autonomous driving or robotic control, delays in action selection may result in
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suboptimal or perhaps disastrous consequences.

Linear models such as Augmented Random Search (ARS) [30] demonstrate sig-

nificantly faster inference times compared to more computationally intensive deep

learning models. ARS can perform inference in the order of milliseconds which makes

it a better fit for real-time applications [44]. In contrast, algorithms like Probabilistic

Ensembles with Trajectory Sampling (PETS), which rely on simulation-based plan-

ning [4], have substantially longer inference times, rendering them impractical for

time-critical tasks.

Delays as small as 0.005 seconds can reduce performance by up to 40% in envi-

ronments like Hopper-v2 and Humanoid-v2 [44]. This shows the importance of ac-

counting for computational costs and inference times when deploying reinforcement

learning algorithms in real-world scenarios, as illustrated in Figure 3.2.

Figure 3.2: Effect of inference delay on reinforcement learning performance.
Adapted from Thodoroff et al. (2022) with permission [44]. Degradation of

performance on continuous control environments with varying amounts of inference
delay. The vertical blue bar represents one timestep during training.
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3.2.2 Performance Under Limited Compute Resources

Resource constraints further worsen the impact of computational delays on reinforce-

ment learning performance. In scenarios where computational resources are limited,

such as embedded systems or edge devices, the choice of algorithm becomes critical.

Thodoroff et al. [44] demonstrated that with less than 20% of available compute

power, simple linear models like ARS outperform more complex deep reinforcement

learning algorithms like Proximal Policy Optimization (PPO) [39], Soft Actor-Critic

(SAC) [20], and Model-Based Policy Optimization (MBPO) [22]. This is primarily

due to the lower inference times of linear models under constrained computational

budgets. As computational resources increase, deep reinforcement learning algorithms

begin to leverage the additional compute power to improve decision-making and per-

formance. However, this comes at the cost of higher inference times, which may not

be acceptable in real-time applications with strict latency requirements. Figure 3.3

illustrates the performance degradation of various algorithms under limited compu-

tational resources.
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Figure 3.3: Performance adjusted by the inference delay on varying amounts of
CPU. Adapted from Thodoroff et al. (2022) with permission [44]. The top row

shows the performance degradation when varying the amount of CPU. The bottom
rows display the reward obtained by each algorithm.

3.2.3 Robustness of Reinforcement Learning Algorithms to

Inference Delays

The robustness of reinforcement learning algorithms to inference delays varies sig-

nificantly among different methods. Thodoroff et al. evaluated several algorithms

under varying amounts of computational delay and found notable differences [44].

Specifically, Real-Time Reinforcement Learning (RTRL) exhibits greater resilience to

inference delays due to its design, which accounts for action delays during training

by incorporating the previous action as part of the input state. This approach allows

RTRL to anticipate and compensate for delays, maintaining performance in real-time

settings.

Model-based algorithms, such as Model-Based Policy Optimization (MBPO), show

improved robustness to delays compared to model-free methods. By utilizing a model
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of the environment to predict future states, these algorithms can produce more in-

formed actions even when actions are delayed, thereby mitigating the negative impact

of inference latency.

In contrast, simulation-based algorithms like PETS suffer significantly from infer-

ence delays due to their substantial computational overhead. The intensive compu-

tations required for simulation-based planning result in longer inference times mak-

ing these algorithms impractical for time-critical applications where rapid decision-

making is needed.

These findings shows that accounting for computational delays during the training

phase can enhance the robustness of reinforcement learning algorithms in real-time

settings.

3.3 Necessity of Specialized Hardware for Efficient

Reinforcement Learning Training

3.3.1 Intensive Compute Resources and Training Time

Modern reinforcement learning applications like AlphaGo Zero highlight the immense

computational efforts needed. AlphaGo Zero required approximately 40 days of train-

ing, during which it played 29 million self-play games [41]. This immense computa-

tional effort underscores the intensive resource demands of reinforcement learning

algorithms, especially when training models to surpass human-level performance.

The use of Tensor Processing Units (TPUs) contributed heavily to the overall suc-

cess of AlphaGo Zero, significantly reducing computation time. AlphaGo Zero used

34

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – H. Taha; McMaster University – Department of Electrical and

Computer Engineering

four TPUs on a single machine and achieved faster and more efficient training com-

pared to AlphaGo Lee, which required 48 TPUs distributed across multiple machines

[41]. This demonstrates the critical need for hardware acceleration in reinforcement

learning to handle intensive training workloads and reduce time-to-convergence.

3.3.2 Computational Load Despite Algorithmic Advances

Even with newer, more efficient algorithms, the computational demands remain sub-

stantial. In the Procgen benchmark, training deep reinforcement learning agents

required up to 200 million steps across 500 levels [17]. The experiments conducted by

Govindarajan et al. consumed more than 10,000 GPU hours on 32 GPUs. Each train-

ing run for a single game took approximately 24 hours, illustrating the intensive need

for high-performance hardware. Despite algorithmic advances like the Phasic Policy

Gradient (PPG) method [5], the computational demands remain similar to those of

previous algorithms like PPO. This indicates that improving algorithms alone does

not drastically reduce the need for large computational resources.

3.4 Computational Challenges of Proximal Policy

Optimization

3.4.1 Significance and Widespread Adoption of PPO

Proximal Policy Optimization (PPO) has established itself as a cornerstone algorithm

in deep reinforcement learning due to its robustness, sample efficiency, and ease of

implementation [39]. Balancing performance with computational tractability, PPO
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has been widely adopted in both academic research and practical applications across

various domains.

In multi-agent environments, PPO has demonstrated remarkable capabilities. Yu

et al. [49] found that PPO-based methods achieve surprisingly strong performance

in cooperative multi-agent games, often matching or surpassing state-of-the-art off-

policy algorithms in terms of final returns and sample efficiency. This highlights

PPO’s adaptability and effectiveness in complex settings where multiple agents inter-

act and learn concurrently.

In industrial applications, PPO has been employed to tackle complex optimiza-

tion problems. Chen et al. [4] utilized an LSTM-PPO-based reinforcement learn-

ing algorithm to address the dynamic job shop scheduling problem (JSP). Tradi-

tional scheduling methods, such as heuristic rules and mathematical programming,

often struggle with the complexity and dynamic nature of modern manufacturing

systems. The LSTM-PPO algorithm dynamically adjusts scheduling strategies in

response to changes in the production environment, leading to optimal scheduling

decisions. Their experimental results showed that the LSTM-PPO algorithm outper-

formed other methods, including DQN-based RL algorithms and traditional heuristic

rules, in terms of convergence speed and scheduling efficiency.

These successes underscore PPO’s versatility and effectiveness, reinforcing its sig-

nificance in the field of reinforcement learning.
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3.4.2 Computational Demands of PPO

Despite its advantages, applying PPO in complex environments and with limited

computational resources introduces significant challenges, some of which were intro-

duced in Section 3.2. PPO involves iterative optimization of policy and value net-

works, requiring extensive interaction with the environment to collect data, followed

by computationally intensive gradient updates. The need to balance exploration and

exploitation, along with the stability constraints imposed by the proximal policy up-

dates, results in high computational overhead.

In multi-agent settings, the computational load is amplified as PPO must process

observations and actions of multiple agents simultaneously [49]. This increases the

dimensionality of the input and output spaces, leading to larger neural networks and

longer training times. The simultaneous learning and coordination among agents add

layers of complexity, demanding more from computational resources.

In the dynamic job shop scheduling problem, the LSTM-PPO algorithm must

handle various combinations of job instructions, machine states, and operation se-

quences [4]. This results in a complex and high-dimensional state space that poses

challenges for RL training and exploration. Training recurrent neural networks like

LSTM adds further computational complexity, requiring substantial resources and

time, especially when high-quality data is necessary for effective learning.

Moreover, the need for timely decision-making in real-world applications imposes

strict requirements on inference time. Delays in action selection can negatively impact

performance, particularly in time-critical tasks. As discussed earlier, even small delays

can lead to significant performance degradation [44].
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3.5 Accelerating PPO and Environment Simula-

tions

Efficient training of reinforcement learning algorithms like PPO necessitates address-

ing computational bottlenecks in both algorithmic computations and environment

simulations. Despite advancements in algorithmic efficiency, the computational de-

mands remain substantial, requiring specialized hardware and optimization tech-

niques to accelerate training and inference.

3.5.1 Hardware Acceleration of PPO

Meng et al. [32] proposed a high-throughput accelerator for PPO on CPU-FPGA

platforms to tackle the computational challenges inherent in PPO’s neural network

operations. PPO relies on neural network computations during both the inference

and training phases, which can be computationally intensive and present considerable

bottlenecks, especially in resource-constrained environments.

To address these challenges, the authors developed an accelerator that leverages a

systolic-array-based architecture to enable parallel processing of neural network op-

erations. This architecture enables efficient matrix multiplications—fundamental to

neural network computations—by systematically organizing data flow and computa-

tion units to maximize data reuse and throughput. The systolic array facilitates the

pipelined execution of operations, significantly reducing computation time.

An overview of the FPGA accelerator is shown in Figure 3.4. The accelerator

deploys two Compute Units (CUs), one for the value network and one for the policy
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network. Each CU is composed of a 2D systolic array to perform forward propaga-

tion (FW), backward propagation (BW), gradient computation, and weight updates

(WU). The detailed architecture of a single CU is depicted in Figure 3.5. It includes

an activation module, an activation derivative module, and buffers to store network

weights and intermediate results, such as the weights buffer for network weights, the

zl buffer for immediate matrix products, and the al and δl buffers for FW activation

results and BW errors, respectively.

CU: Value Network
 FW, BW, WU

CU: Policy Network
 FW, BW, WU

States st

   Values Policies

gradientsgradients

States st

Inter-Load
Balancing
Module

Environment Host CPU Environment Host CPU

Host CPU
Store on-chip Store on-chip

Environment,
Host CPU

On-chip
Weights
Updates

On-chip
Weights
Updates

Figure 3.4: High-level overview of the FPGA accelerator. Original illustration based
on Meng et al. (2020) [32].
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Figure 3.5: Detailed architecture of a single Compute Unit (CU). Original
illustration based on Meng et al. (2020) [32].

Furthermore, Meng et al. optimized data access patterns by implementing a

memory-blocked data layout. This approach organizes data in memory to minimize

access conflicts and improve cache utilization, improving overall computational effi-

ciency. By partitioning data into blocks that align with the architecture of the systolic

array, they reduced the overhead associated with memory access, which is critical for

high-performance computing.

To address the imbalance in computational loads between the value network

and the policy network—two critical components of PPO—the authors introduced

a compute sharing technique. This technique dynamically allocates computational
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resources between the two networks based on demand, ensuring balanced utilization

and preventing resource underutilization. By sharing computation units, the acceler-

ator efficiently handles varying workloads, maximizing hardware utilization.

The accelerator was rigorously evaluated using the Hopper and Humanoid envi-

ronments from OpenAI Gym, making substantial throughput improvements—up to a

30.5-fold increase over CPU-only implementations and up to a 27.5-fold increase over

CPU-GPU implementations. These gains underscore the effectiveness of specialized

hardware acceleration in improving the performance of PPO.

While these results are impressive, several limitations remain. The accelerator

primarily focuses on accelerating neural network computations and does not address

the computational overhead associated with other phases of the algorithm like The

Generalized Advantage Estimation (GAE) and the environment simulations. In rein-

forcement learning training, each of the mentioned phases can consume a substantial

portion of the processing time, up to nearly half of the total time in some environ-

ments, as shown in Table 4.2. Therefore, the overall training speedup is constrained

by the unaddressed bottleneck in environment simulation.

Additionally, the accelerator’s reliance on storing neural network parameters and

intermediate results entirely on-chip imposes scalability constraints. FPGAs have

limited on-chip memory, which restricts the size of neural networks that can be ac-

commodated. This limitation raises difficulties when scaling to larger networks re-

quired for more complex tasks or environments with higher-dimensional state and

action spaces.

Moreover, the design is tailored specifically for PPO implementations that use

41

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – H. Taha; McMaster University – Department of Electrical and

Computer Engineering

Multilayer Perceptron (MLP) architectures. This specialization limits the general-

izability of the accelerator to other reinforcement learning algorithms or network

architectures, such as Convolutional Neural Networks (CNNs) or Recurrent Neural

Networks (RNNs), commonly used in various applications.

Lastly, the development and deployment of FPGA-based accelerators require spe-

cialized hardware design expertise. Implementing such accelerators involves hardware

description languages and tools that may not be familiar to all practitioners in the

reinforcement learning community, potentially limiting the widespread adoption of

this approach.

3.5.2 Environment Acceleration Techniques

Efficiently simulating environments is a key element in successful training complex

reinforcement learning algorithms like the PPO. This is because interactions with

these environments usually constitute a major part of the computational burden,

as shown in Table 4.2. A variety of methods have been developed to improve the

performance of reinforcement learning environments by leveraging both CPU and

GPU architectures.

For CPU-based acceleration, Weng et al. [47] introduced EnvPool: a high-

performance engine for environment execution designed to tackle the inefficiencies

linked to slow environment simulations. EnvPool make use of a C++ thread pool-

based executor engine along with Python wrappers which allow it to support both

synchronous and asynchronous execution styles. This structural design enables En-

vPool to efficiently handle a large number of environment instances in parallel and

hence maximizes the potential of multi-core CPU architectures.
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On a NVIDIA DGX-A100 system equipped with 256 CPU cores, EnvPool achieved

remarkable performance reaching up to 1 million frames per second (FPS) for Atari

environments and 3 million FPS for MuJoCo environments. Moreover, EnvPool ex-

hibited great improvements even on regular laptops where it achieved a 14.9-fold

increase for Atari and a 19.2-fold increase for MuJoCo compared to standard Python

implementations. These findings shows the efficacy of optimizing environment exe-

cution on CPU architectures, particularly when specialized hardware such as GPUs

is not available.

Advances in GPU-based acceleration techniques have also greatly improved the

performance of environment simulations. One significant contribution is CuLE (CUDA

Learning Environment) by Dalton et al. [6]. CuLE is a framework for reinforcement

learning that utilizes GPU parallelism to speed up the simulation of Atari games.

Running thousands of environment instances simultaneously on a single GPU, CuLE

effectively exploits the substantial parallel processing capabilities found in modern

GPUs.

A major innovation of CuLE is its capability to render frames directly on the GPU,

thereby avoiding the CPU-GPU communication bottleneck that is often seen in GPU-

accelerated applications. This strategic design choice not only minimizes latency but

also enhances simulation throughput. CuLE has achieved great performance, hitting

rates of up to 155 million frames per hour on a single GPU—performance levels that

were previously only attainable through extensive CPU clusters.

From a practical standpoint, the implementation of CuLE significantly reduced

the training time for the Atari Pong game, decreasing it from 21.2 minutes with the

traditional OpenAI Gym environment to just 5.9 minutes through a more efficient
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batching strategy. In addition, CuLE attained training frame rates ranging from

26,000 to 68,000 frames per second (FPS) on a single GPU, with rates increasing

to 187,000 FPS when distributed across four GPUs. These results underscore the

potential of GPU-based acceleration to dramatically improve the efficiency of rein-

forcement learning training, especially in environments that can take full advantage

of the data parallelism provided by GPU architectures.

Nonetheless, GPU-based acceleration techniques, including CuLE, face several

challenges. The Single Instruction, Multiple Data (SIMD) architecture of GPUs may

induce thread divergence, which occurs when threads within a warp follow different ex-

ecution paths due to conditional branching. This divergence can lead to performance

issues, as threads that deviate cannot execute in parallel. CuLE seeks to mitigate

this challenge through careful kernel design and structured environmental simulations

aimed at reducing divergence; however, this remains an inherent limitation of GPU

architectures.

Moreover, there is a significant demand for ample GPU memory to concurrently

emulate thousands of environment instances. In contrast to CPUs, GPUs have limited

memory capacities, which can be quickly depleted during large-scale environment

simulations. This limitation can constrain the scalability of GPU-based methods,

particularly in environments that are memory-intensive or when trying to increase

the number of simultaneous instances.

Furthermore, CuLE has been specifically designed for Atari games, which are

characterized by simpler dynamics and graphical needs. Adapting this approach

for more intricate environments—especially those involving complex simulations or

graphics—might require substantial alterations or may be impractical due to hardware
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limitations.

In the field of robotics, Liang et al. [27] created a reinforcement learning simulator

that is GPU-accelerated, utilizing NVIDIA Flex, a physics engine designed for GPUs.

Their research is concentrated on sophisticated locomotion challenges in robotics,

which require heavy computational physics simulations. By harnessing the power

of GPUs to parallelize simulations involving hundreds to thousands of robots, the

authors significantly enhanced training efficiency.

They successfully trained a humanoid running task in under 20 minutes using

a single GPU and CPU core, processed 60,000 simulation frames per second with

750 humanoid simulations, and showed considerable scaling advantages in experi-

ments involving multiple GPUs. Although these GPU-accelerated simulators provide

remarkable performance improvements, they also present certain drawbacks. The

necessity for advanced GPU hardware may not be feasible for every user, especially

those in environments with limited resources. Furthermore, these simulators are typ-

ically tailored for particular types of tasks or environments, which constrains their

use in other areas.

3.6 Research Gaps in Custom Hardware for Rein-

forcement Learning

Despite significant advancements in accelerating neural network computations and

environment simulations, there remains a notable gap in the development of custom

hardware solutions tailored specifically for complex deep reinforcement learning algo-

rithms like Proximal Policy Optimization (PPO). While hardware accelerators have
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been designed for various deep RL algorithms—predominantly value-based methods

such as Deep Q-Networks (DQNs)—the focus on policy optimization algorithms like

PPO has been limited.

PPO is widely recognized for its robustness, sample efficiency, and effectiveness

across a range of reinforcement learning applications [39, 49]. However, the com-

putational demands of PPO, especially when deployed in real-world or resource-

constrained environments, present significant challenges that have not been ade-

quately addressed by existing hardware accelerators. Current research efforts have

primarily concentrated on accelerating neural network computations within the PPO

[32], often neglecting other computationally intensive components of the algorithm,

such as the generalized advantage estimation and the environment interactions.

This gap becomes clearer the more the specific application is constrained. This

includes applications with low power consumption, real-time performance require-

ments, and limited computing and memory resources. These factors, which are es-

sential for the deployment of RL algorithms in embedded systems and edge devices,

are frequently disregarded by current hardware accelerators. Closing this gap re-

quires comprehensive understanding of PPO’s computational characteristics, identi-

fying bottlenecks such as memory access patterns and opportunities for parallelization

and optimization.

Recognizing these research gaps is essential for advancing the field of RL. Devel-

oping specialized hardware for PPO can enhance its efficiency and extend its applica-

bility to a broader range of real-world applications where computational constraints

are a significant concern. This thesis aims to address these challenges by exploring

custom hardware architectures for PPO and investigating algorithmic modifications
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to improve performance in resource-constrained settings. By targeting the unad-

dressed bottlenecks in the PPO pipeline, it aims to contribute to the development

of more efficient and scalable reinforcement learning systems suitable for real-world,

resource-limited environments.

3.7 Summary

This chapter examined the increasing computational requirements of reinforcement

learning and the constraints of existing hardware solutions. It emphasized the im-

portance of specialized hardware in order to satisfy the performance requirements of

modern RL algorithms and identified the deficiencies in current research, particularly

in the context of PPO. The findings highlight the need of creating hardware-efficient

methods to facilitate the actual implementation of reinforcement learning in resource-

limited settings. Chapter 4 will detail the proposed algorithmic adjustments and

hardware solutions aimed at mitigating these problems and improving the efficiency

of PPO implementations.
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Chapter 4

Methodology

This chapter details the methodology used to address the computational constraints

of hardware-limited applications for optimizing the Proximal Policy Optimization

(PPO) algorithm. The study begins with a thorough time profiling analysis to iden-

tify key bottlenecks within PPO’s execution that can benefit from hardware accelera-

tion. Profiling PPO’s core phases across diverse OpenAI Gym environments on both

CPU-GPU and CPU-only systems, insights into the computationally intensive com-

ponents were gathered to help target optimization efforts effectively. Following this

analysis, the design of a custom hardware accelerator—HEPPO (Hardware-Efficient

Proximal Policy Optimization)—is introduced to address the demands of Generalized

Advantage Estimation (GAE) computation. It leverages parallel processing and mas-

sive pipelining to enhance data throughput and minimize latency. PPO algorithmic

modifications were further implemented to ensure compatibility with the hardware

architecture and improve PPO’s efficiency and stability in resource-constrained set-

tings. This includes data standardization, quantization, and optimized memory man-

agement techniques. Finally, the chapter explores the integration of the entire PPO
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pipeline onto a System-on-Chip (SoC) platform to consolidate all different phases

onto a single chip, greatly reducing latency, enhancing real-time performance, and

lowering power consumption.

4.1 Time Profiling and Bottleneck Identification

Optimizing the efficiency of the PPO algorithm for constrained applications requires

a thorough understanding of its computational bottlenecks. A detailed time profiling

analysis was conducted to identify the most time-consuming components that could

benefit from optimization or hardware acceleration.

4.1.1 Profiling Methodology

To identify computational bottlenecks within the Proximal Policy Optimization (PPO)

algorithm, time profiling was conducted across four diverse OpenAI Gym environ-

ments: BipedalWalker-v3 [10], CartPole-v1 [11], HalfCheetah-v5 [12] and Humanoid-

v5 [13]. These environments were chosen to represent a wide range of complexities

and dynamics, ensuring that the identified bottlenecks are reflective of PPO’s perfor-

mance across various domains and minimizing potential biases in the results.

Descriptions of the Environments

• HalfCheetah-v5: A two-dimensional simulation of a bipedal robot resembling

a cheetah. The agent controls six joints to make the robot run as fast as possible

in the forward direction. The action space is continuous with six dimensions,

each bounded between −1 and 1, representing torques applied at the hinge
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joints [12]. The observation space consists of 17 continuous variables, includ-

ing positions and velocities of the robot’s body parts, excluding the robot’s

x-coordinate by default.

• Humanoid-v5: A high-dimensional control task involving a three-dimensional

humanoid robot with 17 hinge joints. The agent must learn to walk forward

without falling. The action space is 17-dimensional, continuous, and bounded

between −0.4 and 0.4, representing torques applied at the joints. The observa-

tion space includes 376 variables capturing detailed state information such as

joint positions and velocities [13]. The complexity arises from the high dimen-

sionality and the need for balance and coordination.

• CartPole-v1: A classic control problem where a pole is attached by an unac-

tuated joint to a cart that moves along a frictionless track. The agent applies a

force to the cart by choosing one of two discrete actions: push the cart to the

left (action 0) or push the cart to the right (action 1), aiming to prevent the

pole from falling over. The action space is discrete with two possible actions.

The observation space is four-dimensional, consisting of the cart position, cart

velocity, pole angle, and pole angular velocity [11].

• BipedalWalker-v3: A challenging task where the agent controls a two-legged

robot to walk across rough terrain. The action space is continuous with four

dimensions, corresponding to motor speed values applied at the hip and knee

joints of each leg, ranging from −1 to 1. The observation space comprises 24

continuous variables, including hull angle, angular velocities, horizontal and

vertical speeds, joint angles, joint angular speeds, contact sensors, and 10 lidar
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rangefinder measurements [10]. The environment tests the agent’s ability to

balance and adapt to uneven surfaces.

• LunarLander-v3: A classic rocket trajectory optimization problem where the

agent controls a lunar lander to safely descend and land on the moon’s sur-

face. The action space is discrete with four possible actions: do nothing, fire

left orientation engine, fire main engine, or fire right orientation engine. The

observation space is eight-dimensional, consisting of the lander’s position, ve-

locity, angle, angular velocity, and Boolean flags indicating whether each leg is

in contact with the ground [14]. The environment challenges the agent’s ability

to control the lander’s descent and landing.

PPO Configuration

Neural Network: A standardized neural network architecture was used for both

the actor and critic in time profiling and subsequent experiments on quantization

and standardization, serving as a static benchmark to isolate the effects of these opti-

mizations. The architecture consisted of a feedforward neural network with three fully

connected layers, each containing 64 neurons and utilizing ReLU activation functions.

This design strikes a balance between computational efficiency and sufficient capacity

to approximate the necessary value functions and policies [39].

Hyperparameters: Key hyperparameters used during training are summarized

in Table 4.1. These hyperparameters were selected based on standard practices and

adjusted through preliminary experimentation to ensure stable learning across all

environments.
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Table 4.1: Hyperparameters used for PPO Training

Hyperparameter Value Description

Number of updates per iteration 5 Number of gradient updates to the actor and

critic networks per training iteration.

Learning rate (α) 3× 10−4 Learning rate for the optimizer.

Learning rate decay 1× 10−5 Exponential decay rate for the learning rate

schedule.

Discount factor (γ) 0.95 Discount factor for future rewards in the re-

turn calculation.

Clipping parameter (ε) 0.2 Clipping parameter for the probability ratio

to prevent large policy updates.

GAE parameter (λ) 0.98 Smoothing parameter for Generalized Ad-

vantage Estimation (GAE).

System Description

Profiling was conducted on two systems to observe the impact of hardware configu-

rations:

• CPU-GPU System: A 32-core Intel Xeon Silver 4216 CPU @ 2.10 GHz with

an NVIDIA Tesla V100-SXM2-32GB GPU.

• CPU-Only System: The same CPU without GPU acceleration.

Key Measurements

For each environment and system, the execution time of key phases within the PPO

algorithm was measured across hundreds of iterations to ensure statistical significance.
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The profiled phases included:

1. DNN Inference: The forward pass of the neural network to predict actions

given states.

2. Environment Run: Execution of the environment’s dynamics to generate

trajectories based on the agent’s actions.

3. GAE Computation: Calculation of the Generalized Advantage Estimation

using the collected trajectories.

4. Network Updates: Computation of loss and backpropagation to update the

neural network parameters.

The percentage of total execution time spent in each phase was calculated to

identify the primary computational bottlenecks.

4.1.2 Profiling Results

The profiling results are summarized in Table 4.2 and Table 4.3 and visualized in

Figure 4.1 and Figure 4.2. These results illustrate the distribution of execution time

across different phases of the PPO algorithm for each environment on both systems.
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Table 4.2: Time Profiling of PPO Iteration (CPU-GPU System) across Four
Environments

Component HalfCheetah (%) Humanoid (%) CartPole (%) BipedalWalker (%)

DNN Inference 8.0 9.9 7.0 6.4

Environment Simulation 36.8 46.6 23.7 47.3

CPU-GPU Communication 0.7 0.8 0.9 0.5

Storing Trajectories 10.2 5.7 12.8 8.6

GAE Memory Fetch 7.5 5.0 10.1 6.0

GAE Computation 26.8 24.8 37.6 22.2

GAE Memory Write 0.6 0.2 0.9 0.5

Loss Calculation 6.8 5.2 2.8 6.2

Backpropagation 2.6 1.8 4.3 2.3

Table 4.3: Time Profiling of PPO Iteration (CPU-Only System) across Four
Environments

Component HalfCheetah (%) Humanoid (%) CartPole (%) BipedalWalker (%)

DNN Inference 8.0 10.5 8.4 7.4

Environment Simulation 25.9 60.7 37.3 32.6

Storing Trajectories 7.4 4.7 8.0 6.8

GAE Memory Fetch 6.2 3.5 7.0 5.4

GAE Computation 21.7 11.2 25.5 19.4

GAE Memory Write 0.5 0.3 0.7 0.4

Loss Calculation 25.3 6.1 4.8 23.4

Backpropagation 5.0 2.9 8.4 4.6

54

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – H. Taha; McMaster University – Department of Electrical and

Computer Engineering

Figure 4.1: Time Profiling of PPO Iteration on CPU-GPU System across Four
Environments

Figure 4.2: Time Profiling of PPO Iteration on CPU-Only System across Four
Environments

4.1.3 Analysis of Bottlenecks

The profiling results reveal that Environment Simulation and Generalized Ad-

vantage Estimation (GAE) computation are the primary bottlenecks in the PPO
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algorithm across all tested environments and system configurations.

In the Environment Simulation phase, execution time varies depending on the

complexity of the environment. As on the CPU-only system, it consumes a minimum

of 25.9% (HalfCheetah-v5) and a maximum of 60.7% (Humanoid-v5) of the total

execution time. On the CPU-GPU system, it ranges from 23.7% (CartPole-v1) to

47.3% (BipedalWalker-v3). This substantial time consumption is attributed to the

computational demands of simulating environment dynamics, especially in tasks with

high-dimensional state spaces and complex physics like Humanoid-v5.

Despite its large time consumption, accelerating environment simulation was not

the focus of this research. This is because environment simulations vary from one

application to another, not a characteristic of the PPO, making it an impractical tar-

get to develop a generalized accelerator. These simulations are often implemented in

high-level languages and accelerated through CPU-based and GPU-based techniques

discussed in the literature, making implementing a custom hardware accelerator less

feasible within the scope of this work.

The GAE computation phase was found as well to exhibit a significant computa-

tional overhead. On the CPU-GPU system, it ranges from 22.2% (BipedalWalker-

v3) to 37.6% (CartPole-v1). Notably, in simpler environments like CartPole-v1,

GAE computation constitutes a higher percentage of the total execution time due

to shorter environment simulation times, making the relative overhead of GAE more

pronounced. Moreover, accounting for the GAE data transfers from and to the main

memory, this renders the overall GAE phase on the CPU-GPU system to range from

28.7% (BipedalWalker-v3) to 48.6% (CartPole-v1). This is quite similar to the

range consumed by the Environment Simulation phase.
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The persistent challenge of the entire GAE phase as a bottleneck irrespective of

environmental complexity or system configuration emphasizes its significant impact

on the efficiency of PPO training. Unlike environment simulation, GAE is an intrinsic

component of the PPO algorithm, making it a universal target for optimization.

Other phases, such as backpropagation and deep neural network (DNN) infer-

ence for trajectory collection, were found to consume a smaller fraction of the to-

tal execution time. On the CPU-only system, DNN Inference ranges from 7.4%

(BipedalWalker-v3) to 10.5% (Humanoid-v5), while on the CPU-GPU system, it

ranges from 6.4% (BipedalWalker-v3) to 9.9% (Humanoid-v5). Similarly, loss cal-

culation has a minimal impact on overall execution time on the CPU-GPU system.

Notably, loss calculation steps inherently involve using the critic network to compute

new value estimates, highlighting the effectiveness of GPU acceleration in reducing

the time consumed during this step.

While GPU acceleration effectively reduces the time for DNN inference and loss

calculation, it does not significantly alleviate the computational burden of GAE com-

putation. In some cases, offloading GAE computations to the GPU may introduce

overheads that negate the benefits, particularly in simpler environments where data

transfer and kernel launch times become relatively significant.

CPU-GPU communication accounts for less than 1% of the total execution time

across all environments on the CPU-GPU system, indicating that data transfer over-

head is minimal and not a primary bottleneck.

Therefore, focusing on accelerating the GAE phase, including GAE computation

and data transfer, presents a universally applicable opportunity to enhance PPO
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training efficiency across a wide range of tasks and hardware configurations. By opti-

mizing this critical phase—which accounts for up to 48.6% of execution time—the re-

search aims to improve the scalability and applicability of PPO in resource-constrained

and real-time applications.

4.2 Proposed Solution and Hardware Architecture

A specialized hardware accelerator named HEPPO (Hardware-Efficient Proximal

Policy Optimization) is proposed to address the identified bottleneck in GAE compu-

tation. HEPPO aims to optimize both computational and memory efficiency, enabling

concurrent processing of multiple trajectories and fully utilizing parallel processing

units.

4.2.1 Overview of the Hardware Accelerator

The primary objective of HEPPO is to parallelize the GAE computation by pro-

cessing multiple trajectories simultaneously, thereby minimizing delays caused by

serial computation and reverse iteration inherent in traditional implementations. By

integrating specialized hardware components and optimizing memory management,

HEPPO enhances data throughput and reduces communication overhead, achieving

a worst-case time complexity of O(T ) instead of O(T × N), where T is the number

of timesteps and N is the number of agents. Each timestep is processed significantly

faster in HEPPO than in traditional methods due to this parallelism.
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4.2.2 HEPPO Micro-Architecture Components

HEPPO’s micro-architecture comprises several specialized components designed for

efficient data handling and computation, as illustrated in Figure 4.3. The main

components are the Rewards Loaders (ReLs), responsible for loading elements

from the rewards vector for each timestep; the Values Loaders (VaLs), which

fetch corresponding value estimates for each reward element; and the Processing

Elements (PEs), organized in a one-dimensional systolic array where each row

processes distinct vectors from different agents or trajectories.

Memory System

ReLN PEN

.

.

VaLN

.

.
.
.

(Done, i)

(Advi, RTGi)(Ri, Vi, i Done)

(Ri, Done, i)
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PE1

(Ri, Vi, i Done)

(Ri, Vi, i Done)

ReL2

ReL1

VaL2

VaL1

(Done, i)

(Done, i)

(Ri, Done, i)

Figure 4.3: HEPPO Micro-Architecture Overview

The architecture leverages parallelism by assigning different trajectories to sepa-

rate rows in the systolic array. The number of rows corresponds to the number of

agents or parallel environments. Each row operates concurrently and independently,

allowing for simultaneous processing of multiple trajectories. Vectors are assigned to

rows in a round-robin manner, optimizing resource utilization and throughput.
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4.2.3 Processing Element (PE) Architecture

Each Processing Element (PE) is designed to perform the computations required for

GAE efficiently. The initial PE architecture, depicted in Figure 4.4, breaks down the

computation into several stages that can be heavily pipelined to achieve the desired

operating frequency.

Figure 4.4: Initial PE Architecture with Potential Pipelining Stages

A critical challenge in pipelining the PE arises from the feedback loop inherent in

the recursive nature of GAE computation. This feedback loop introduces data depen-

dencies between consecutive timesteps, creating a bottleneck that limits the achievable

frequency to approximately 275 MHz, far below the capabilities of advanced FPGAs,

which can achieve frequencies exceeding 500 MHz in optimized designs. Attempting

to pipeline the loop results in stalls, as later stages must wait for earlier computations

to complete. To overcome this bottleneck, the computation is restructured to allow

for effective pipelining while preserving the correctness of the GAE calculation.
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4.2.4 k-Step Lookahead Solution

To address the feedback loop bottleneck in the GAE computation, a k-step looka-

head approach is adopted, inspired by techniques used in pipelining recursive filters,

particularly in IIR (Infinite Impulse Response) filter designs. These techniques are

well-documented in Parhi’s book on VLSI digital signal processing systems [34] and

in various works on pipelined recursive filter implementations [28, 35, 36]. By refor-

mulating the GAE computation, natural delays are introduced to align with pipeline

stages, enabling efficient pipelining of the Processing Elements (PEs).

Mathematical Reformulation

The original GAE computation is defined as:

Â
GAE(γ,λ)
t =

T−t−1∑
l=0

(γλ)lδt+l (4.2.1)

where δt = rt + γVt+1 − Vt and C = γλ.

By decomposing the advantage estimates at different timesteps, Ât can be ex-

pressed using future advantage estimates and δ terms. Table 4.4 illustrates this

decomposition.
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Table 4.4: Decomposition of Advantage Estimates for Different t Values

t Ât

T ÂT = δT

T − 1 ÂT−1 = CδT + δT−1

= CÂT + δT−1

T − 2 ÂT−2 = C2δT + CδT−1 + δT−2

= C2ÂT + CδT−1 + δT−2

= CÂT−1 + δT−2

T − 3 ÂT−3 = C3δT + C2δT−1 + CδT−2 + δT−3

= C3ÂT + C2δT−1 + CδT−2 + δT−3

= C2ÂT−1 + CδT−2 + δT−3

= CÂT−2 + δT−3

From the table, it is evident that ÂT−3 can be expressed in terms of ÂT , ÂT−1, or

ÂT−2, depending on the chosen formulation.

ÂT−3 = f1(δT , δT−1, δT−2, δT−3)

= f2(ÂT , δT−1, δT−2, δT−3)

= f3(ÂT−1, δT−2, δT−3)

= f4(ÂT−2, δT−3) (4.2.2)
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In general, for calculating Ât with a generic k-step lookahead:

Â
GAE(γ,λ,k)
t = CkÂt+k +

k−1∑
l=0

C lδt+l (4.2.3)

This reformulation allows the computation of Ât based on Ât+k, introducing a

natural delay of k timesteps. By computing k−1 additional δ terms and delaying the

necessary values, the computation can be redesigned to fit a pipelined architecture

without stalls.

Pipeline Integration

By adopting the k-step lookahead, the PE can be redesigned to include pipeline stages

that align with the computation of Ât using delayed advantage estimates. Figure 4.5

illustrates the architecture of a PE utilizing a 3-step lookahead.

Figure 4.5: PE Architecture with 3-Step Lookahead Pipelining

In this architecture, the computation is broken down into stages that can be

executed concurrently. The feedback loop is effectively unrolled over k steps, allowing

the pipeline to operate without stalls. The necessary delays are incorporated naturally
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into the pipeline stages, enabling the PE to achieve the maximum operating frequency

and improve overall throughput.

4.2.5 Memory Bandwidth Bottleneck and On-Chip Stack BRAM

Solution

Processing multiple trajectories in parallel introduces a significant demand on memory

bandwidth. For a large-scale reinforcement learning setup with 64 agents and 1024

timesteps, the bandwidth required to keep all PEs fully utilized is substantial.

Memory Bandwidth Calculations

Assuming a single-precision floating-point format (32 bits) for rewards and value

estimates, the required memory bandwidth can be calculated as follows. Each PE

needs to read the reward and value for each timestep. For 64 agents:

Read Bandwidth = 64 agents× 2× 32 bits = 512 bytes per clock cycle (4.2.4)

Similarly, each PE writes back the computed advantage and reward-to-go:

Write Bandwidth = 64 agents× 2× 32 bits = 512 bytes per clock cycle (4.2.5)

The total bandwidth per clock cycle is:
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Total Bandwidth = 1, 024 bytes per clock cycle (4.2.6)

At an operating frequency of 300 MHz:

Bandwidth per Second = 1, 024 bytes× 300× 106 = 307.2 GB/s (4.2.7)

This required bandwidth of approximately 307.2 GB/s far exceeds the capabilities

of standard off-chip memory solutions like DDR4 3200 DRAM, which typically offer

around 25 GB/s. This significant shortfall leads to underutilization of the PEs due

to memory bandwidth limitations.

On-Chip Stack BRAM Solution

To address the memory bandwidth bottleneck and the data transfer latency associated

with GAE Memory Fetch and GAE Memory Write that can reach up to 11% of the

total training time in an environment like CartPole, an on-chip dual-port Block RAM

(BRAM) solution is proposed. Utilizing BRAM leverages its high bandwidth and low

latency, essential for sustaining the data flow required by the PEs and minimizing

data transfer delays.

As shown in Figure 4.6, data is stored in a First-In Last-Out (FILO) structure,

aligning with the reverse iterative access pattern of GAE computation. Rewards R(i,t)

and value estimates V(i,t) of the same timestep (t) and across all agent trajectories

(i) are stored together, enabling efficient simultaneous access. Here, T represents the
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maximum number of timesteps, and N is the total number of agents. The use of dual-

port BRAM allows concurrent read and write operations: while rewards and value

estimates are read for the current timestep, computed advantages and rewards-to-go

from a previous timestep are written back.

...

R(0,T-1), R(1,T-1), .., R(N-2,T-1), R(N-1,T-1)

R(0,T-2), R(1,T-2), .., R(N-2,T-2), R(N-1,T-2)

R(0,T-3), R(1,T-3), .., R(N-2,T-3), R(N-1,T-3)

R(0,2), R(1,2), .., R(N-2,2), R(N-1,2)

R(0,1), R(1,1), .., R(N-2,1), R(N-1,1)

R(0,0), R(1,0), .., R(N-2,0), R(N-1,0)

...

V(0,T-1), V(1,T-1), .., V(N-2,T-1), V(N-1,T-1)

V(0,T-2), V(1,T-2), .., V(N-2,T-2), V(N-1,T-2)

V(0,T-3), V(1,T-3), .., V(N-2,T-3), V(N-1,T-3)

V(0,2), V(1,2), .., V(N-2,2), V(N-1,2)

V(0,1), V(1,1), .., V(N-2,1), V(N-1,1)

V(0,0), V(1,0), .., V(N-2,0), V(N-1,0)0x000

0x001

0x002
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Figure 4.6: Dual-Port BRAM Stack Memory System

By moving data storage and processing on-chip, the stack BRAM memory system

significantly reduces data transfer latency, achieving a single-clock latency for data

movements. This effectively eliminates the overhead associated with GAE Memory

Fetch and GAE Memory Write. Since data movements occur within the chip, the

high-speed internal connections ensure minimal latency compared to off-chip memory

accesses.

This memory architecture ensures that both the high bandwidth demands and
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the low-latency requirements are met, allowing the PEs to operate at maximum ef-

ficiency. The ability to overwrite the same memory locations reduces memory usage

and simplifies data management.

Although modern FPGAs provide sufficient BRAM capacity to accommodate the

required memory, the bandwidth limitations of the on-chip memory still present a

bottleneck. For instance, the total memory required is calculated as follows: for 64

agents and 1024 timesteps, storing rewards and value estimates requires 64×1024×2 =

131, 072 words. Assuming each word is 32 bits, the total memory requirement is

131, 072 × 32 = 4, 194, 304 bits, or 4 Mb. While FPGAs like Xilinx UltraScale+

offer sufficient BRAM capacity, the bandwidth to read and write 32-bit data at the

required rates is still constrained by the number of available BRAM ports and their

operating frequency.

To further alleviate the bandwidth bottleneck and fully exploit the parallelism

of the architecture, data rescaling is proposed in Section 4.4. This reduces the data

width multiple folds, effectively decreasing the required memory bandwidth allowing

for more efficient data transfer within the system and making the implementation

more feasible on available hardware.

4.2.6 Data Layout and Memory Management

Efficient data layout is crucial for maximizing memory bandwidth and ensuring seam-

less data flow between memory and computation units. Algorithm 2 is implemented

to manage the FILO stack structure in BRAM, ensuring efficient data access patterns

compatible with the hardware architecture.
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GAE Stack Memory Algorithm

The following algorithm outlines the memory layout and processing steps. Differ-

ent memory blocks are utilized, such as the Rewards Memory Block (RMB), Value

Estimates Memory Block (VEMB), Advantage Memory Block (AMB), and Rewards-

to-Go Memory Block (RTGMB).

Input: Rewards r[i][t], Values V [i][t] for agents i = 1 to N , timesteps t = 1

to T

Output: Advantages Â[i][t], Rewards-to-Go R̂[i][t]

Initialize memory blocks RMB, VEMB, AMB, RTGMB;

// Data Loading Phase

for t = 1 to T do

for i = 1 to N do

Store r[i][t] into RMB[t][i];

Store V [i][t] into VEMB[t][i];

end

end

// GAE Computation Phase

// Base Case: Compute ÂT and R̂T for all agents

for i = 1 to N do in parallel

Retrieve rT ← RMB[T ][i];

Retrieve VT ← VEMB[T ][i];

Compute ÂT , R̂T ;

end

Algorithm 2: GAE Memory Layout and Processing
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// Iteratively Compute Ât and R̂t while storing Ât+1 and R̂t+1

for t = T − 1 to 1 do

for i = 1 to N do in parallel

Store Ât+1 into AMB[t+ 1][i];

Store R̂t+1 into RTGMB[t+ 1][i];

Retrieve rt ← RMB[t][i];

Retrieve Vt ← VEMB[t][i];

Compute Ât, R̂t;

end

end

Algorithm 2: GAE Memory Layout and Processing (Continued)

In the data loading phase, rewards and value estimates for all agents and timesteps

are loaded into the BRAM memory blocks RMB and VEMB. The GAE computation

phase proceeds backward in time, from timestep T − 1 down to 1 with T being

the base case. At each timestep iteration, previously calculated advantage estimates

and rewards-to-go are being stored while current rewards and value estimates are

being fetched from the BRAM and processed using the PEs. The inner loop over

agents is executed in parallel, leveraging the parallel PEs in the hardware architecture.

Computed advantages and rewards-to-go are stored back into the BRAM memory

blocks AMB and RTGMB.
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4.2.7 Integration with the PPO Algorithm

To fully exploit the benefits of HEPPO, the PPO algorithm is adjusted to align with

the hardware architecture’s data flow and computation patterns as will be detailed

in Section 4.4. The algorithm processes data in batches corresponding to the number

of agents and timesteps compatible with the hardware design. Data is quantized

before being loaded into the BRAM, reducing the memory footprint and alleviating

bandwidth constraints. The data flow is structured to match the FILO access pattern

and the pipelined computation stages, ensuring efficient data movement and minimal

latency.

4.3 Design Space Exploration of Full PPO Inte-

gration on SoC

Building upon the HEPPO microarchitecture designed to accelerate the Generalized

Advantage Estimation (GAE) computation phase, this section explores the potential

of integrating the entire Proximal Policy Optimization (PPO) pipeline into a sin-

gle System-on-Chip (SoC). By consolidating all components of the PPO algorithm

onto a single chip, latency and communication overhead can be minimized, thereby

enhancing performance and enabling real-time reinforcement learning applications.

4.3.1 SoC Architecture Overview

The proposed architecture leverages the AMD-Xilinx Zynq UltraScale+ MPSoC ZCU106

Evaluation Kit, which integrates a quad-core Arm Cortex-A53 processing system (PS)
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and a dual-core Arm Cortex-R5 real-time processor. This platform provides the neces-

sary computational resources for running environment simulations and managing the

high-level control flow of the PPO algorithm. The programmable logic (PL) section

of the device offers extensive resources for custom logic implementation, including

neural network inference and GAE computation.

Figure 4.7 illustrates the integration of the entire PPO pipeline within the SoC.

The PS executes the environment simulations locally on the ARM Cortex-A53 cores,

while the PL contains custom hardware accelerators, including the HEPPO acceler-

ator for GAE computation and a neural network accelerator adapted from existing

high-performance designs.

Process

AXI Interconnect

PS

PL (FPGA) 

AXI BRAM 
Controller

BRAM 
(FILO)

Custom 
Logic   
(DNN / 
GAE)

ARM Cores   
(Environment / Loss 
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Figure 4.7: Integrated SoC Architecture for Full PPO Pipeline
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4.3.2 Data Flow and Processing

The integration enables an efficient data flow that keeps critical data on-chip, reduc-

ing reliance on external DRAM and minimizing communication overhead. The PS

runs the environment simulations locally, allowing the agent to interact with the en-

vironment using the current policy without incurring delays associated with external

communication. States, actions, rewards, and value estimates are collected during

simulation and stored in the on-chip Block RAMs (BRAMs).

The collected data is processed, standardized, and quantized according to the

methods described in Section 4.4. This processed data is stored in the BRAMs,

ready for further computation. The PL, containing the HEPPO accelerator, fetches

the data from the BRAMs, performs de-quantization, and computes the advantages

and rewards-to-go using the pipelined architecture and k-step lookahead approach.

The computed advantages and rewards-to-go are written back to the BRAMs. Upon

completion, the PL signals the PS.

For neural network inference and training, the systolic array implementation in-

troduced by Meng et al. [32] or similar architectures can be adapted to leverage

the FPGA’s capabilities for high-throughput neural network computations. Their

design achieves substantial performance improvements, ranging from 2.1× to 30.5×

compared to state-of-the-art CPU implementations and 2× to 27.5× compared to

CPU-GPU implementations. By integrating such a design, the PL handles both for-

ward and backward passes required for policy and value function updates, reducing

the computational burden on the PS and accelerating the training process.
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This tightly integrated data flow confines data movements within the chip, lever-

aging the high-speed internal connections of the SoC. By minimizing off-chip com-

munication, the architecture significantly reduces latency and enhances throughput,

which is critical for real-time reinforcement learning applications.

4.3.3 Benefits and Potential Extensions

Integrating the full PPO pipeline on the SoC offers several significant benefits. On-

chip communication reduces latency associated with data transfer between separate

devices in traditional systems. By consolidating all components onto a single chip,

the overhead of data transfer between CPU, GPU, and DRAM is eliminated, en-

hancing overall system performance. High-speed on-chip interconnects and memory

architectures enable faster data access and processing, supporting the high through-

put required for real-time applications. Additionally, SoC integration can lead to

lower power consumption compared to systems relying on discrete CPUs and GPUs,

making it suitable for embedded and portable applications.

The proposed solution opens the door for a fully hardware-accelerated PPO imple-

mentation, where the entire PPO pipeline, including environment simulation, GAE

computation, and neural network training, is performed efficiently on-chip. The ar-

chitecture is designed to be extensible, allowing for the incorporation of additional

hardware accelerators and methodologies from related work. By incorporating ad-

vanced neural network accelerators, such as a systolic array design, the system’s

performance and adaptability to diverse reinforcement learning tasks can be further

enhanced.
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4.3.4 Challenges and Design Considerations

While integrating the full PPO pipeline on an SoC presents numerous advantages, it

introduces challenges and design considerations. Resource constraints of FPGAs and

SoCs, such as limited logic cells, DSP units, and BRAMs, require careful planning to

balance resource allocation among environment simulation, HEPPO, neural network

accelerators, and other components. Implementing complex environment simulations

on hardware can be challenging, especially for environments with intricate physics or

high-dimensional state spaces. Utilizing High-Level Synthesis (HLS) tools can facili-

tate the hardware implementation of environments by allowing designers to describe

functionalities using high-level programming languages.

Designing custom hardware accelerators for neural network training adds com-

plexity to the system. Ensuring correct and efficient operation of all components

together requires meticulous hardware-software co-design and verification. Efficient

memory management is critical, necessitating memory hierarchies and data compres-

sion techniques to optimize resource utilization. Coordinating timing between various

hardware components and ensuring correct data synchronization is essential for sys-

tem stability and performance. Implementing proper synchronization mechanisms

between the PS and PL is crucial.

Moreover, the architecture must be adaptable to various reinforcement learning

environments, which may have different computational requirements. Generalizing

the solution to support a wide range of tasks involves careful abstraction and param-

eterization of hardware components.
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4.4 Algorithm Modifications

To enable full integration of the PPO algorithm with HEPPO, several algorithmic

modifications were necessary. These modifications aim to maintain the original train-

ing performance while adapting data storage and transfer methods to fit the hardware

constraints and capabilities. This is primarily achieved by rescaling input data for

HEPPO. Rescaling is crucial for two main reasons:

1. Reducing Bandwidth Requirements. A predictable and consistent data

distribution facilitates effective quantization of rewards and value estimates.

As illustrated experimentally in Figure 4.8, the value distributions vary over

training iterations. Efficient quantization is necessary to optimize the use of

on-chip memory resources (BRAMs) by reducing the data width multiple folds.

This alleviates bandwidth constraints inherent in the hardware design and al-

lows for more efficient data transfer.

2. Generalizing the Solution. Ensuring that the scale and distribution of re-

wards and value estimates are independent of specific environments and hyper-

parameters allows HEPPO to be a universal GAE solution. This uniformity

is vital because reward distributions can vary by orders of magnitude across

different environments, affecting the associated value estimates.
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Figure 4.8: Distribution of value estimates across collected trajectories during
training.

4.4.1 Data Standardization

Standardization techniques are employed to rescale the rewards and value estimates,

making their distributions more uniform and bounded. Several methods were investi-

gated to determine the most suitable approach for both rewards and value estimates.

Important Notation: In the context of standardization throughout the end of

the thesis, the phrase “One-way standardization” refers to standardizing the data and

later using it in the standardized form in computations, while the phrase “Two-way

standardization” refers to standardizing the data and later de-standerdizing it back

before using it in computations.

Normalization of Data

Normalization scales data to a specific range, typically between 0 and 1. In the context

of PPO, each trajectory’s rewards or value estimates can be normalized independently:
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1. Trajectory Collection: Collect rewards or value estimates for a single trajec-

tory.

2. Compute Minimum and Maximum: Determine the minimum (min) and

maximum (max) values within the trajectory.

3. Normalization: Apply the normalization formula to each data point x:

xnorm =
x−min

max−min
. (4.4.1)

This method ensures that the data within each trajectory falls within the range

[0, 1], facilitating uniform quantization and efficient storage. This method can be

done as both One-way or Two-way.

Standardization of Data

Standardization involves scaling data to have a mean of zero and a standard deviation

of one. For each trajectory, the following steps are performed:

1. Trajectory Collection: Collect rewards or value estimates for a single trajec-

tory.

2. Compute Mean and Standard Deviation: Calculate the mean (µ) and

standard deviation (σ) of the data within the trajectory.

3. Standardization: Apply the standardization formula to each data point x:

xstd =
x− µ
σ

. (4.4.2)
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4. Clipping: To handle outliers and ensure data falls within a manageable range,

apply clipping (e.g., to the range [-3, 3]) after standardization.

Standardization centers the data and scales it based on its variance, which can

improve the efficiency of quantization and maintain the relative differences between

data points. This method can be done in both one-way and two-way standardization.

Batch Standardization

Extending the concept of standardization of a trajectory vector, batch standard-

ization was proposed for batches of vectors. Instead of processing each trajectory

independently, a batch of consecutive trajectories is standardized together:

1. Batch Collection: Collect rewards or value estimates from multiple trajecto-

ries forming a batch.

2. Compute Batch Mean and Standard Deviation: Calculate the mean

(µbatch) and standard deviation (σbatch) over the entire batch.

3. Standardization: Apply the standardization formula to each data point x in

the batch:

xstd =
x− µbatch

σbatch
. (4.4.3)

4. Clipping: Apply clipping to ensure standardized data remains within a speci-

fied range.

Batch standardization leverages the statistical similarities across trajectories col-

lected during the same training period, promoting consistency in data scaling and

facilitating efficient quantization.
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Block Standardization

Block Standardization (BS) extends the concept of batch standardization by aggre-

gating data across multiple batches of trajectories from different agents into blocks.

This concept is illustrated in Figure 4.9 where Jnm is trajectory m collected by agent n.

This approach leverages the collective information from all agents using the same pol-

icy, ensuring that the standardized data captures local statistical properties relevant

to the current training context.
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2         J1
M-1         J1

M         J1
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4         J1
5         J1 

6         
.....

J2
1         J2

2         J2
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Figure 4.9: Batch and Block Standardization.

1. Block Collection: Aggregate rewards or value estimates from multiple batches

of trajectories across all agents to form a block. This involves collecting data

from a defined set of consecutive training iterations or time frames.

2. Compute Block Mean and Standard Deviation: Calculate the mean

(µblock) and standard deviation (σblock) over the entire block. These statistics
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are computed by considering all data points within the block, ensuring that the

normalization reflects the local distribution of the data.

3. Standardization: Apply the standardization formula to each data point x in

the block:

xstd =
x− µblock

σblock
. (4.4.4)

This step transforms the data to have a zero mean and unit variance within the

block, facilitating consistent scaling across different contexts.

4. Clipping: Apply clipping to the standardized data to ensure that it remains

within a specified range. Clipping helps in mitigating the impact of outliers

and maintaining numerical stability during subsequent processing steps such as

quantization.

BS effectively captures the local statistical properties of the data by grouping

trajectories from similar contexts. This localized approach enhances the robustness

of the standardization process, especially in environments where data distributions

may vary over time or across different training phases. By preserving important data

characteristics within each block, BS aids in efficient quantization and overall model

performance.

Careful consideration is required to ensure that one-way standardization does not

adversely affect the learning process, particularly when standardizing value estimates

used as baselines in advantage calculations. Although one might propose always

using two-way standardization—reverting data back to its original distribution after

retrieval from memory—to avoid disrupting training, this approach would undermine

a key objective: ensuring that the data’s scale and distribution remain independent of
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specific environments and hyperparameters to facilitate compatibility with the custom

developed hardware. Therefore, one-way standardization is essential.

Dynamic Standardization

Dynamic Standardization (DS) is a novel One-way standardization technique that

has been developed as part of the investigation of different standardization methods.

The idea is that at each training epoch, reward standardization shall be conducted

while accounting for all previously attained rewards. As it will be computationally

and memory intensive to store and reprocess all the rewards across training, a more

efficient way is to store a running mean and running standard deviation that gets

updated every epoch with the new reward. To update the running mean with every

new reward, the following equation is used:

RunningMeann = RunningMeann−1 +
rn − RunningMeann−1

n
, (4.4.5)

Where:

• n is the total number of rewards processed so far.

• rn is the n-th reward.

• RunningMeann is the running mean calculated up to the n-th reward.

As for the running standard deviation, inspired by Welford’s algorithm [23, 46]

for dynamically calculating variance over multiple iterations, the running variance for

each new data point has been computed as follows.

1. Initialize M0 and S0 to 0.
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2. For each new reward rn

Mn = Mn−1 +
(rn −Mn−1)

n
, and (4.4.6)

Sn = Sn−1 + (rn −Mn−1)× (rn −Mn). (4.4.7)

3. The running standard deviation after n rewards is then

RunningSTDn =

√
Sn
n
, (4.4.8)

where Mn is the running mean after n rewards and Sn is the cumulative value

used for calculating variance.

4.4.2 Data Quantization

Following standardization, data quantization is applied to reduce the precision of

continuous rewards and value estimates by mapping them to a finite set of discrete

values, referred to as quantization levels. Each quantization level represents a specific

discrete value that corresponds to a range of input values, known as a quantization in-

terval. This process simplifies the numerical representation of data, reducing memory

usage and accelerating computation.

The effectiveness of quantization is typically evaluated by quantization loss, which

measures the discrepancy between the original continuous values and their quantized

representations.
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Uniform Quantization

Uniform quantization divides the data range into equal intervals and maps each data

point to the nearest quantization level. This method is straightforward to implement

in hardware and works well in minimizing quantization error for uniformly distributed

data, as the equal intervals provide even representation across the range.

1. Define Quantization Range: Determine the minimum (min) and maximum

(max) values of the standardized data, which should be [-3, 3] after applying

clipping to the standardized data.

2. Select Bit Width: Choose the number of bits b for quantization, determining

the number of quantization levels L = 2b.

3. Compute Quantization Step Size: Calculate the step size ∆:

∆ =
max−min

L− 1
. (4.4.9)

4. Quantization: Map each data point x to a quantized value q:

q = round

(
x−min

∆

)
. (4.4.10)

Here, q is an integer within the range [0, L − 1], representing one of the L

quantization levels.

5. Dequantization: Reconstruct the approximate original value:

x̂ = q ×∆ + min . (4.4.11)
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Dequantization provides an approximation x̂ of the original data point x, ac-

knowledging that some information loss occurs during quantization.

Uniform quantization is effective when the data is uniformly distributed within

the quantization range. However, its performance may degrade for non-uniform data

distributions, where certain regions of the data range are more densely populated

than others. In such cases, non-uniform quantization techniques can offer improved

precision by allocating more quantization levels to regions with higher data density.

Non-Uniform Quantization

Non-uniform quantization enhances precision in regions where data points are densely

populated by allocating more quantization levels near the mean of the data distribu-

tion and fewer levels towards the extremes. This method is particularly beneficial for

data following a non-uniform distribution, such as the standard normal distribution.

One way to achieve this is by applying the Gaussian Cumulative Distribution Func-

tion (CDF) to transform the data into a uniform distribution, performing uniform

quantization on the transformed data, and then applying the inverse transformation

to reconstruct the original values. Figure 4.10 illustrates how the CDF and its inverse

(PPF) facilitate this transformation and reconstruction.
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quantization the same way we did before after our data become more uniformly 

distributed. Of course, we will do the opposite process when decoding. 

Notice that even though our dynamic standardization produces distributions that are 

nearly similar as a standard normal distribution that gets skewed to the right over 

training, we can’t know in advance how precisely the distributions will be over time and 

as it’s totally dependent on the training dynamics, hyperparameters, and probabilities. 

The training might even move in the negative direction if the agent is not learning and 

hence the distributions will not be as expected. Therefore, trying to apply the idea of a 

moving node of overtime and apply non-uniform quantization on it might not be 

feasible. It’s better to fix an average assumption for the distribution of rewards and try 

to apply non-uniform quantization on. The best fixed assumption is of course a standard 

normal distribution with a mean of 0 and standard deviation of 1. 

Having this assumption in mind, I searched for the optimal non-linear transformation 

that compress the standard normal distribution to a uniform as possible and found that 

a good candidate for this is the Gaussian Cumulative Distribution Function (CDF) and its 

inverse, the Quantile function (also known as the Percent-Point Function or PPF). 

The plot below shows how the CDF can convert the blue normal distribution to the 

yellow uniform distribution and then applying the PPF can retrieve back to the green 

normal distribution. 

 

 

 

Now, I edited my codes to apply the CDF on the standardized rewards before applying uniform 
quantization for encoding our data. At the decoding stage, I do unform de-quantization and then 
apply the PPF to inverse the effect of the CDF and get back the actual distribution.  

I have sent the scripts to compute candida’s servers and am waiting to get the results. Will keep you 
updated inshallah.  

Figure 4.10: Empirical analysis on using CDF and PPF as Nonlinear
Transformation in Non-Uniform Quantization.

1. Standardize Data: Ensure that the data follows a standard normal distribu-

tion (µ = 0, σ = 1). Standardization is a crucial prerequisite for the effectiveness

of the Gaussian CDF transformation.

2. Apply Gaussian CDF Transformation: Transform the standardized data

using the Gaussian Cumulative Distribution Function (CDF) to map it to a

uniform distribution over the interval [0, 1]:

r′ = Φ(r) =
1

2

[
1 + erf

(
r√
2

)]
,

where Φ(r) is the standard normal CDF and erf is the error function. This trans-

formation ensures that the data is uniformly distributed, facilitating effective

uniform quantization in the transformed space.

3. Uniform Quantization in the Transformed Space: Apply uniform quan-

tization to the transformed values r′ using an n-bit codeword.

(a) Select Bit Width: Choose the number of bits b for quantization, deter-

mining the number of quantization levels L = 2b.
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(b) Compute Quantization Step Size: Calculate the step size ∆:

∆ =
1

L− 1
. (4.4.12)

(c) Quantization: Map each transformed data point r′ to a quantized value

q:

q = round (r′ × (L− 1)) . (4.4.13)

Here, q is an integer within the range [0, L− 1], representing one of the L

quantization levels.

4. Store Quantized Values: The quantized values q are stored efficiently using b-

bit codewords, significantly reducing memory usage while maintaining essential

data characteristics.

5. Decoding via Inverse Transformation: To reconstruct the original data,

apply the inverse transformation using the Quantile Function (PPF), which is

the inverse of the Gaussian CDF:

Φ−1(p) =
√

2 erf−1 (2p− 1) ,

where p = q
L−1 is the normalized quantized value. The dequantized value r̂ is

then obtained as:

r̂ = Φ−1
(

q

L− 1

)
. (4.4.14)

This step accurately reconstructs the original standardized data r from the
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quantized values q, leveraging the properties of the Gaussian CDF and its in-

verse.

Non-uniform quantization offers enhanced precision by allocating more quantiza-

tion levels near the mean of the data distribution, thereby achieving higher accuracy

in densely populated regions while maintaining efficient storage through reduced bit

usage. This method is particularly effective for data that deviates from a uniform

distribution, as it better preserves important data characteristics. However, it relies

on the assumption that the data follows a standard normal distribution and intro-

duces additional computational steps due to the application of the Gaussian CDF

and its inverse. Despite these considerations, non-uniform quantization provides a

balanced approach to minimizing quantization error in regions of higher data density

while conserving memory resources.

Block-Based Quantization Methods

Block-based quantization is a technique that compresses a block of values by sharing

common quantization parameters among the elements within the block. This method

significantly reduces memory usage while maintaining minimal round-off errors. There

are two primary types of block-based quantization:

1. Shared Scaling Factor: All values in a block are scaled using a common

mean and standard deviation. This approach aligns with block standardization,

enabling uniform quantization within the block.

2. Shared Exponent Bias: Values within a block share a common exponent

or exponent bias, allowing for efficient integer representations and simplifying

arithmetic operations.
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Several block-based quantization methods were explored:

• Block Floating-Point (BFP):

– Shares a common exponent across all values in a block.

– Suitable for blocks with low variance, effectively bounding the representa-

tional range [9].

• Block MiniFloat (BM):

– Utilizes a shared exponent bias within a block.

– Balances high precision and range, though it may introduce larger quanti-

zation errors for medium values [15, 19].

– Efficient for representing values concentrated near peaks in multimodal

distributions.

• Block Logarithm (BL):

– Represents values as powers of two by sharing a common exponent bias

and setting the mantissa to a fixed value.

– Ideal for data with large dynamic ranges, simplifying multiplication and

division to bitwise shifts and additions.

– Provides a non-linear quantization scale, effectively handling large values

and dynamic ranges.

• MiniFloat and Denormalized MiniFloat (DMF):

– MiniFloat offers a compact floating-point representation with fewer bits

for the exponent and mantissa.
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– DMF enhances MiniFloat by using zero as the implicit leading bit in the

mantissa, improving precision near zero.

– Both methods sacrifice some precision and range for reduced memory us-

age, making them suitable for memory-constrained applications.

Figure 4.11 provides an illustration of the various block-based quantization meth-

ods discussed.

IEEE Float32 (FP32)

1-bit sign, 8-bit exponent, 23-bit mantissa

IEEE Float16 (FP16)

1-bit sign, 5-bit exponent, 10-bit mantissa

Block Floating Point (BFP)

1-bit sign, M-bit mantissa

E-bit shared exponent 

Block Minifloat (BM)

1-bit sign, E-bit exponent, M-bit mantissa

B-bit shared exponent bias

Block logorithm (BL)

1-bit sign, E-bit exponent

B-bit shared exponent bias

Shared exp. bias Shared exp. Shared exp. bias

Minifloat / Denormed Minifloat (DMF)

1-bit sign, 4-bit exponent, 3-bit mantissa

Sign

Exponent

Mantissa

Exp. bias

Figure 4.11: Illustration of Block-Based Quantization Methods. Original illustration
based on Zhang at al [51].

Advantages and Considerations Block-based quantization methods offer signif-

icant memory and computational savings by sharing quantization parameters across

data blocks, thereby reducing the number of bits required per value and simplify-

ing arithmetic operations. Additionally, techniques like Block Floating-Point (BFP)

adapt to local data characteristics, maintaining precision where it is most needed.
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However, these methods introduce challenges such as increased complexity in man-

aging shared parameters, the potential for larger quantization errors in high-variance

blocks, and the necessity for more sophisticated hardware implementations.

4.4.3 Summary

This chapter provides a structured approach to enhancing PPO’s performance for

constrained hardware environments. Beginning with a detailed time profiling anal-

ysis, the study identifies GAE computation and environment simulation as primary

bottlenecks. With this insight, the HEPPO accelerator is designed to optimize GAE

computation through a pipelined architecture and k-step lookahead techniques, en-

abling concurrent trajectory processing. Additional adjustments, including data stan-

dardization, quantization, and organizing data flow to match the hardware’s FILO

memory access pattern, make the PPO algorithm more compatible with the pro-

posed hardware accelerator. These combined optimizations aim to improve PPO’s

scalability and real-time performance, facilitating deployment in hardware-limited

applications.
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Chapter 5

Results and Discussion

This section presents the results of the algorithmic modifications and hardware imple-

mentation strategies aimed at optimizing the Proximal Policy Optimization (PPO)

algorithm. The analysis focuses on two primary dimensions: the impact of algorithmic

modifications on training performance and the benefits achieved through hardware im-

plementation using the Hardware-Efficient Proximal Policy Optimization (HEPPO)

accelerator.

5.1 Algorithmic Modifications

The algorithmic modifications centered on data standardization and quantization

techniques designed to stabilize training and facilitate efficient hardware implementa-

tion. Specifically, different standardization methods for rewards and value estimates,

as well as various quantization methods, were investigated to assess their effects on

PPO’s performance.
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5.1.1 Impact of Reward Standardization Techniques

Experiments were conducted to evaluate the effectiveness of different reward stan-

dardization methods, comparing five PPO setups in the Humanoid environment [13]:

1. Base PPO: The standard PPO algorithm without reward standardization.

2. One-way Block Standardization (BS): Rewards are standardized using BS

and used in their standardized form in computations.

3. Two-way Block Standardization (BS): Rewards are standardized using BS

and de-standardized back before computations.

4. One-way Dynamic Standardization (DS): Rewards are standardized using

DS and used in their standardized form.

5. One-way Dynamic Standardization (DS) with Advantage Standard-

ization: Rewards are standardized using DS, and the computed advantages are

also standardized.

Details of the neural network architectures and hyperparameters used can be found

in Section 4.1.1.

Figure 5.1 illustrates the average rewards over training epochs for these setups,

using a rolling average of 800 readings to smooth the data.
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Figure 5.1: Comparison of average rewards for different reward standardization
techniques in the Humanoid environment.

In the Base PPO setup (blue line), the algorithm demonstrates rapid initial

improvement, with the average cumulative reward stabilizing around 1,400 after ap-

proximately 6,000 epochs. This plateau indicates that the agent has reached its

learning capacity under the given conditions.

The One-way BS setup (red line) shows a slow initial performance increase,

reaching a low plateau at around 3,000 epochs. Subsequently, the average reward

gradually declines, with significant decreases observed after 13,000 epochs. This de-

cline suggests that One-way BS leads to training divergence. By altering the reward

distribution within each trajectory independently, block by block, One-way standard-

ization disrupts the relative differences in rewards across epochs. This disruption

equalizes rewards from good and bad policies, misleading the training process and

preventing the agent from accurately discerning effective actions. Consequently, the
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learning algorithm struggles to make meaningful updates, leading to instability and

performance degradation over time.

Conversely, the Two-way BS setup (not shown in the figure for simplicity) mir-

rors the behavior of the Base PPO. In Two-way standardization, rewards are de-

standardized back to their original distribution before use in computations, preserving

the inherent reward structure. While this method facilitates quantization and mini-

mizes memory usage, it fails to achieve one of the primary objectives: ensuring that

the scale and distribution of rewards are independent of specific environments and

hyperparameters. In certain environments or with particular hyperparameter config-

urations, the reward scale could be excessively large, potentially causing hardware

overflow issues. Additionally, the effectiveness of different quantization techniques,

discussed later, may not be consistent if reward distributions vary significantly.

These challenges motivated the development of the DS technique, as detailed in

section 4.4.1. The One-way DS setups (green and orange lines in Figure 5.1) exhibit

a strong improvement in average rewards, surpassing the Base PPO around 6,000

and 11,000 epochs, respectively. The average rewards continue to increase steadily,

reaching approximately 2,500 before plateauing—about 50% higher than the Base

PPO plateau. This significant enhancement is achieved with minimal computational

overhead, involving only the maintenance of running statistics for the rewards. The

results indicate that DS effectively stabilizes training and enhances learning, enabling

the agent to achieve substantially higher performance levels compared to both the

Base PPO and the BS approach.

The orange line represents the One-way DS with Advantage Standardiza-

tion setup. Standardizing the computed advantage vectors is a common practice to
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stabilize gradient updates and ensure smoother training, as highlighted in various

implementations [31, 48]. However, while this addition resulted in smoother training,

it also led to a slower increase in cumulative rewards.

Based on these findings, DS (with no Advantage Standardization) emerges as the

preferred method for standardizing rewards in PPO. It effectively stabilizes training,

enhances learning efficiency, and leads to significantly higher cumulative rewards with

minimal additional overhead. To validate the generality of this conclusion, additional

experiments were conducted in different environments.

5.1.2 Evaluation in the Lunar Lander Environment

Figure 5.2 presents the results of applying DS in the Lunar Lander environment

from Gymnasium [14], which is described in Section 4.1.1. In this environment, the

DS-enhanced approach demonstrates faster initial learning, with the average reward

surpassing zero nearly 50 epochs earlier than the Base PPO. The performance consis-

tently exceeds that of the Base PPO algorithm. While the Base PPO plateaus at an

average reward of around 6,000, the DS approach reaches a stable average reward of

approximately 10,000, representing a significant 67% increase in cumulative rewards.

This improvement is achieved with minimal computational overhead, reinforcing the

effectiveness of DS across different environments.
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Figure 5.2: Effect of DS on average rewards in the Lunar Lander environment.

5.1.3 Standardization of Value Estimates

The investigation into standardization techniques also considered their application to

value estimates generated by the critic network. It was observed that all forms of

standardization applied to value estimates led to training divergence. value estimates

serve as baselines in advantage calculations and are sensitive to shifts in distribution.

Interestingly, analysis and experimental results indicate that explicit standardization

of value estimates is unnecessary because they are implicitly standardized through

the DS of rewards.

The value estimates produced by the critic neural network are predictions of the

expected return at a given state, trained on dynamically standardized rewards. As

shown in Figure 5.3, collected data reveals that the distribution of value estimates

across different trajectories in various environments using dynamic standardization
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of rewards consistently centers around zero over time. This behavior suggests that

the network indirectly learns to standardize the value estimates, achieving similar

outcomes without explicit intervention.

Figure 5.3: Distribution of value estimates for selected trajectories across training in
(a) Humanoid environment and (b) Lunar Lander environment with rewards x100.

In both environments, the value distributions consistently center around zero,

with varying levels of spread depending on the environment and trajectory. In the

Humanoid environment, the distributions exhibit broader peaks and greater variabil-

ity, while in the Lunar Lander environment, the distributions are more symmetrical
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and concentrated. This pattern supports the conclusion that DS effectively stabilizes

value estimates without causing significant shifts over time.

5.1.4 Impact of Quantization Techniques

To optimize the PPO algorithm for hardware efficiency, several quantization methods

for rewards and value estimates were explored:

1. Uniform Quantization

2. Non-Uniform Quantization (CDF-based)

3. Block Floating-Point Quantization

4. Block Logarithmic Quantization

5. Base PPO with DS (No Quantization)

The chosen bit-width for quantization in the presented experiments was 8 bits,

allowing for a fair comparison of the different quantization methods in terms of their

impact on training performance and computational efficiency. Figure 5.4 compares

the average rewards over training epochs for these methods.

Details of the neural network architectures and hyperparameters used can be found

in Section 4.1.1.
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Figure 5.4: Comparison of average rewards for different quantization techniques.

In the Base PPO with Dynamic Standardization (DS) setup (blue line),

serving as the control, DS is applied without quantization. The average reward im-

proves gradually throughout training, achieving approximately 2,300 in later epochs,

indicating superior long-term performance.

The Uniform Quantization method (purple line) employs equal-sized inter-

vals to quantize standardized rewards and value estimates. It provides steady per-

formance, reaching an average reward of approximately 2,000 towards the end of

training, with a positive slope suggesting potential for further improvement. While

slightly trailing the performance of Base PPO with DS, this method stands out for

its simplicity and ease of implementation.

The Non-Uniform Quantization method (red line) utilizes a Gaussian CDF

to allocate more quantization levels near the data mean. While it initially achieves
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a faster increase in average rewards compared to uniform quantization, it quickly

reaches a plateau at an average reward below 2,000 mid-training. Its performance

further deteriorates in later epochs. Despite its theoretical advantages, the added

computational complexity and observed performance collapse over extended training

make it an unsuitable choice.

The Block Logarithmic Quantization method (green line) uses a logarithmic

scale for quantization, effectively handling large dynamic ranges. It quickly reaches

high rewards, peaking around 2,200, and outperforms other quantization methods

early in training. However, its performance nearly converges with uniform quantiza-

tion in later stages, reducing its long-term advantage.

The Block Floating-Point Quantization method (orange line) applies a shared

exponent across blocks, reducing memory usage. It underperforms, plateauing slowly

around 1,500 average rewards, indicating significant precision loss and suboptimal

learning.

An additional observation from the experiments in Figure 5.4 is the smoother

learning curves exhibited by the quantized methods compared to the baseline PPO

with Dynamic Standardization (DS). This suggests that quantization reduces noise

in the value estimates and rewards, thereby stabilizing the training process. Such

stability is particularly advantageous in hardware implementations and underscores

the broader benefits of quantization beyond mere computational efficiency.

5.1.5 Discussion of Quantization Results

The experimental results highlight several key observations:

• Uniform Quantization Balances Performance and Efficiency: Achieving
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average rewards similar to more complex methods, uniform quantization offers

simplicity, computational efficiency, and ease of hardware implementation. It

involves simple operations with constant time complexity per element, resulting

in low computational overhead. Basic arithmetic operations are straightforward

to implement using standard hardware components.

• Limited Benefits from Non-Uniform Quantization: Although non-uniform

quantization theoretically offers advantages by allocating more quantization lev-

els to densely populated regions, it fails to provide significant performance gains

over uniform quantization. Its added computational complexity, combined with

performance deterioration over extended training, makes the increased imple-

mentation challenges unjustifiable.

• Diminishing Returns of Block Logarithmic Quantization: While it ex-

cels early in training, block logarithmic quantization’s performance converges

with uniform quantization over time. This reduces its long-term advantage,

and the increased complexity may not be warranted for the initial performance

boost.

• Precision Loss in Block Floating-Point Quantization: The significant

precision loss leads to poor performance, making block floating-point quantiza-

tion unsuitable for tasks requiring high numerical accuracy.

• Trade-Off with No Quantization: The Base PPO with DS achieves the

highest rewards but demands greater memory capacity and bandwidth to keep

the hardware unit fully utilized, highlighting a trade-off between resource effi-

ciency and performance. However, the performance gains are minimal compared
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to the significant resource savings achieved with quantization.

Based on the findings, uniform quantization is preferred due to its computational

efficiency, robustness, memory efficiency, and comparable performance. It employs

simple arithmetic operations, resulting in low computational overhead and ease of

hardware implementation. Additionally, uniform quantization is less sensitive to data

variations, ensuring robustness across different environments and training scenarios.

5.1.6 Optimal Bit Width for Uniform Quantization

Selecting the optimal bit width for uniform quantization is critical to balance memory

efficiency and training performance in the PPO algorithm. Extensive experiments

were conducted with bit widths ranging from 3 to 10 bits to assess their impact.

Figures 5.5 and 5.6 illustrate the average rewards over training epochs for different

bit widths.

Figure 5.5: Uniform quantization of rewards using 3 to 6 bits.
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Quantization with lower bit widths, specifically 3 to 7 bits, exhibited significant

instability and inconsistent performance. Approximately 10 to 15 trials were con-

ducted for each bit width to account for the stochastic nature of reinforcement learn-

ing. Agents quantized with 3 or 4 bits demonstrated erratic behavior—sometimes

matching the baseline performance but often failing to learn effectively. Bit widths of

5 and 7 bits did not consistently outperform the lower bit widths, with performance

fluctuating widely across trials. This instability stems from the coarse discretization

at low bit widths, which introduces substantial quantization noise, distorts reward

signals, and disrupts the learning process inherent in policy gradient methods.

Figure 5.6: Uniform quantization of rewards using 7 to 10 bits.

In contrast, quantizing with 8 bits or more consistently achieved stable learning

and high performance, closely matching the Base PPO with DS. Agents with 8 to 10

bits demonstrated reliable convergence and maintained high average rewards across

all trials. The 8-bit precision effectively preserves essential information in the rewards
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and value estimates, enabling the agent to learn efficiently while significantly reducing

memory usage.

These findings indicate that 8 bits is a threshold for stable uniform quantization

that ensures both training stability and hardware efficiency. The increased precision

at 8 bits mitigates the quantization errors that adversely affect learning at lower bit

widths. Therefore, selecting a bit width of 8 bits or higher is recommended to avoid

the instability observed with 3 to 7 bits and to maintain high performance in PPO

training.

5.2 Hardware Implementation Results

To evaluate the practical benefits of the proposed algorithmic modifications and

demonstrate the feasibility of deploying the PPO algorithm on specialized hardware,

the HEPPO accelerator was implemented on the AMD-Xilinx Zynq UltraScale+ MP-

SoC ZCU106 Evaluation Kit. This section presents the hardware implementation de-

tails, resource utilization, memory requirements, and performance evaluation of the

HEPPO accelerator.

5.2.1 Implementation Details

A parameterized Verilog model of the HEPPO pipelined architecture, as described

in subsection 4.2.1, was developed with a data width of 32 bits after de-quantization

and implemented on the ZCU106 Evaluation Kit.

The microarchitecture consists of multiple Processing Elements (PEs) configured

in a pipelined fashion to process data in parallel. Each PE implements the k-step
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lookahead approach for efficient computation of advantages and rewards-to-go. The

design emphasizes continuous data flow and efficient memory usage to achieve high

throughput and low latency.

5.2.2 Memory Utilization and Bandwidth Requirements

Efficient memory utilization and bandwidth management are critical for high-performance

hardware accelerators. In the HEPPO accelerator, on-chip BRAMs are used to store

rewards, value estimates, advantages, and rewards-to-go. To support a typical large-

scale reinforcement learning setup with 64 agents (trajectories), each consisting of

1,024 timesteps, and using pairs of 8-bit quantized rewards and value estimates, the

following calculations were performed:

Memory Capacity The total memory required to store the full vectors of rewards

and value estimates for all agents is calculated as:

Memory Size = 64 agents× 1, 024 timesteps× 8 bits× 2 = 128 KB (5.2.1)

This calculation accounts for both rewards and value estimates, and since advan-

tages and rewards-to-go overwrite the same memory locations during processing, no

additional memory is needed for them. Each BRAM block on the ZCU106 provides

36 Kb (4.5 KB) of storage. Therefore, the number of BRAM blocks required is:

Number of BRAMs =
128 KB

4.5 KB
≈ 29 BRAMs (5.2.2)
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This constitutes approximately 9% of the available 312 BRAM blocks on the

ZCU106, ensuring that the memory capacity requirements are well within the device’s

capabilities.

Bandwidth Requirements To keep all the parallel Processing Elements (PEs)

fully utilized and ensure continuous data flow, the bandwidth requirements must be

met. The bandwidth required per clock cycle for reading rewards and value estimates

is:

Read Bandwidth = 64 agents× 8 bits× 2 = 128 bytes per cycle (5.2.3)

An additional 128 bytes per cycle are required for writing back the computed

advantages and rewards-to-go:

Write Bandwidth = 128 bytes per cycle (5.2.4)

Therefore, the total bandwidth requirement is:

Total Bandwidth = Read Bandwidth + Write Bandwidth = 256 bytes per cycle

(5.2.5)

Each dual-port BRAM on the ZCU106 can handle 4 bytes per port per cycle. To
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meet the total bandwidth requirement, the number of BRAM ports needed is:

Number of BRAM Ports =
256 bytes per cycle

4 bytes per port per cycle
= 64 ports (5.2.6)

Since each dual-port BRAM provides two ports, the number of BRAM blocks

required is:

Number of BRAM Blocks =
64 ports

2 ports per BRAM
= 32 BRAMs (5.2.7)

This constitutes approximately 10% of the available BRAM resources. The calcu-

lations confirm that the ZCU106 Evaluation Kit has sufficient BRAM blocks to meet

both the memory storage and bandwidth needs, allowing efficient parallel processing

and avoiding memory bottlenecks.

5.2.3 Area Utilization

The resource utilization of the HEPPO accelerator was analyzed for different config-

urations of the lookahead steps (n) in the PEs. Figure 5.7 illustrates the resource

utilization percentages for implementations with 1-step, 2-step, and 3-step lookahead

per PE.

As shown in the figure, there is a quadratic increase in resource usage with each

increment in n. The increase in lookahead steps impacts the utilization of various

resources, including Look-Up Tables (LUTs), Flip-Flops (FFs), and Digital Signal

Processing (DSP) units.
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Figure 5.7: Resource utilization percentages for different lookahead steps (n) per
Processing Element (PE).

Based on implementations, it was demonstrated that configuring n > 1 enabled

the system to achieve its maximum operating frequency of 300 MHz, which repre-

sents the peak frequency attainable on the current device. This marks a significant

improvement over the baseline Processing Element (PE), which operated at approxi-

mately 275 MHz, achieved through intensive pipelining and the elimination of pipeline

stalls. Notably, the k-step lookahead methodology is designed to scale effectively, and

on more advanced FPGA platforms with higher frequency capabilities, it has the

potential to unlock even greater performance. A 2-step lookahead configuration was

ultimately selected, providing an optimal balance between enhanced performance and

resource utilization.

Table 5.1 presents the resource utilization for a system with 64 PEs configured

with a 2-step lookahead. The utilization percentages indicate that the ZCU106 Eval-

uation Kit can comfortably accommodate the HEPPO accelerator without exceeding

resource limitations.
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Table 5.1: Resource utilization for a 2-step lookahead system with 64 Processing
Elements (PEs).

Resource Total Usage Available Utilization (%)

LUTs 12,864 274,080 4.69

FFs 54,336 548,160 9.91

DSPs 768 2,520 30.48

The most significant utilization is in the DSP units at approximately 30.48%. The

efficient resource usage ensures that the system can run at the desired frequency and

handle the required throughput without encountering resource constraints.

5.2.4 Performance Evaluation

The HEPPO accelerator’s performance was evaluated in terms of processing speed and

its impact on overall training time. The accelerator operates at a clock frequency of

300 MHz. With the 2-step lookahead configuration and due to the intensive pipelining

and absence of pipeline stalls, a single PE can process one element per clock cycle.

Therefore, the processing capability per PE is:

Processing Rate per PE = 300 MHz× 1 element per cycle

= 300 million elements per second

(5.2.8)
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For a system with 64 PEs, the total processing capability is:

Total Processing Rate = 300 million elements per second per PE× 64 PEs

= 19.2 billion elements per second

(5.2.9)

To compare this performance with traditional CPU-GPU systems, tests were con-

ducted using a standard GAE implementation [48] on a system comprising 32 Intel

Xeon Silver 4216 CPU cores at 2.10 GHz and a Tesla V100-SXM2-32GB GPU. This

setup achieved a processing rate of approximately 9,000 elements per second for the

GAE computation phase. The substantial difference in processing rates indicates that

the HEPPO accelerator can process elements over two million times faster than the

traditional implementation.

This significant speedup is attributed to the custom hardware design optimized

for the GAE computation, the elimination of memory access latency due to on-chip

BRAM usage, and the ability to process multiple trajectories in parallel. Additionally,

the HEPPO accelerator reduces communication overhead between the CPU and GPU,

which is a common bottleneck in traditional systems.

By integrating the HEPPO accelerator into the PPO training pipeline, the time

taken for the GAE computation phase, which traditionally accounts for up to 37% of

the total training time, becomes a fraction of 1%. This results in an overall training

time reduction and enhances the practicality of using PPO in real-time and resource-

constrained applications.
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5.3 Summary

The hardware implementation of the HEPPO accelerator demonstrates the feasibility

and advantages of deploying the modified PPO algorithm on specialized hardware.

The efficient resource utilization, substantial speedup in processing, and effective

memory management highlight the potential for significant performance gains. The

accelerator’s design allows for scalability and adaptability, making it suitable for a

wide range of reinforcement learning tasks and environments. By reducing the GAE

computation time up to approximately 37% of the total training time to a negligible

fraction, the overall training process becomes significantly more efficient. These re-

sults validate the proposed algorithmic modifications and support the integration of

reinforcement learning algorithms into embedded systems and real-time applications.
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Chapter 6

Conclusion and Future Work

6.1 Summary of Contributions

This thesis presents a comprehensive approach to optimizing the Proximal Policy

Optimization (PPO) algorithm for hardware efficiency, addressing both algorithmic

enhancements and hardware implementation strategies. The key contributions of this

work are summarized below:

Algorithmic Enhancements

• Introduction of Dynamic Standardization for Rewards: Developed a

novel dynamic standardization technique that stabilizes learning and enhances

training performance across various environments. Dynamic standardization

resulted in up to a 67% increase in cumulative rewards in some environ-

ments compared to standard methods, demonstrating a significant impact on

overall learning efficiency.
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• Extensive Analysis and Implementation of Standardization and Quan-

tization Techniques: Performed an in-depth evaluation of various standard-

ization methods (e.g., batch standardization, block standardization, and dy-

namic standardization) and quantization strategies (uniform, non-uniform, and

block quantization). The analysis culminated in the implementation of 8-bit

uniform quantization for rewards and value estimates, reducing memory re-

quirements by 75% without compromising training performance. These tech-

niques are essential for hardware-efficient implementations, enabling the storage

and transfer of a large number of trajectories within constrained on-chip mem-

ory resources.

Hardware Implementation Strategies

• Design of HEPPO: A Highly Parallelized Architecture for GAE Com-

putation: Developed the HEPPO microarchitecture, which processes collected

trajectories concurrently, enabling parallel computation of advantages and rewards-

to-go. By employing 64 Processing Elements (PEs), HEPPO achieves a process-

ing capability of 19.2 billion elements per second, significantly accelerating

the Generalized Advantage Estimation (GAE) computation phase.

• Implementation of a k-Step Lookahead Approach for Intensive Pipelin-

ing: Introduced a k-step lookahead methodology within each PE, allowing for

intensive pipelining and eliminating data dependencies that hinder pipeline per-

formance. This approach enables each PE to operate at maximum frequency,

contributing to an overall reduction of up to 37% in PPO training time after

eliminating the delay associated with GAE computation phase.
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• Design of an Efficient Memory Layout System: Created a system that

organizes rewards, values, advantages, and rewards-to-go on-chip using dual-

ported Block RAM (BRAM) with a First-In Last-Out (FILO) storage mecha-

nism. This design provides the required throughput each cycle, reduces memory

access latency, and allows overwriting of the same memory locations for efficient

data handling. This was found to be taking alone up to 11% of the training

time in CPU-GPU systems according to the profiling in Table 4.2.

• Integration of the PPO Pipeline on a Single System-on-Chip (SoC):

Enabled the integration of multiple custom hardware components, memory, and

CPU cores on a single SoC architecture, accommodating all phases of PPO from

environment simulation to GAE computation. This integration reduces com-

munication overhead, enhances data throughput, and improves overall system

performance.

Algorithm Analysis

• In-Depth Time Profiling Analysis: Conducted a detailed analysis to iden-

tify computational bottlenecks within the PPO algorithm. The findings revealed

that the whole GAE phase accounts for up to 48.6% of processing time in CPU-

GPU systems, underscoring the necessity of optimizing this phase to improve

overall performance.
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6.2 Conclusion

This thesis addresses critical challenges in the efficient implementation of deep re-

inforcement learning algorithms for real-time applications on resource-constrained

hardware platforms, with a particular focus on the Proximal Policy Optimization

(PPO) algorithm. Key innovations include the introduction of dynamic reward stan-

dardization, which enhanced training stability and performance across environments,

yielding up to a 67% increase in cumulative rewards. By implementing carefully

selected standardization and quantization techniques—most notably an 8-bit uniform

quantization strategy—this work achieved a 75% reduction in memory require-

ments without compromising model performance, ensuring efficient usage of on-chip

memory resources.

The development of the HEPPO microarchitecture, with its highly parallelized de-

sign and the implementation of a k-step lookahead approach, significantly accelerates

the GAE computation phase. HEPPO’s ability to process 19.2 billion elements

per second using 64 PEs, with each PE handling 300 million elements per sec-

ond, contributes to an overall reduction in PPO training time that goes up to 37%

in some environments.

The efficient memory layout system further enhances the performance of the hard-

ware implementation by optimizing data access patterns and reducing memory la-

tency, pushing the overall reduction to 48%. The in-depth time profiling analysis

provided valuable insights into the computational bottlenecks of the PPO algorithm,

guiding the optimization efforts focused on the GAE computation phase.

By integrating the entire PPO pipeline on a single SoC, we have demonstrated a

viable path toward deploying reinforcement learning algorithms in embedded systems

115

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – H. Taha; McMaster University – Department of Electrical and

Computer Engineering

and real-time applications. This integration reduces communication overhead and

leverages the advantages of custom hardware acceleration to enhance data throughput

and overall system performance.

Collectively, these contributions bridge the gap between advanced reinforcement

learning algorithms and practical hardware implementations, paving the way for fu-

ture developments in high-performance, efficient reinforcement learning systems.

6.3 Future Work

Building on the foundations established in this thesis, several avenues for future re-

search are identified.

6.3.1 High-Level Synthesis for Environment Acceleration

One significant bottleneck in reinforcement learning applications is environment simu-

lation, especially in tasks involving complex physics or high-dimensional state spaces.

High-Level Synthesis (HLS) offers a promising approach to accelerating environment

simulations by translating high-level code into hardware descriptions. Future work

could explore the implementation of environment simulations on hardware using HLS

tools. By accelerating the environment alongside the PPO algorithm, the entire

reinforcement learning loop can be optimized, further reducing training times and

enabling more complex or real-time applications.
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6.3.2 Complete SoC Implementation and Experimental Eval-

uation

While the design space exploration of integrating the full PPO pipeline on an SoC

has been initiated, a complete implementation and experimental evaluation remain

as future work. This involves:

• Hardware Implementation: Developing and synthesizing the complete hard-

ware design, including the HEPPO accelerator, neural network accelerators, and

environment simulation components.

• Hardware-Software Co-Design: Creating a cohesive framework that inte-

grates software components with the hardware accelerators, ensuring efficient

communication and synchronization.

• Experimental Evaluation: Benchmarking the full system on various rein-

forcement learning tasks to assess performance gains, resource utilization, and

energy efficiency.

• Scalability Analysis: Investigating how the architecture scales with more

complex environments or larger neural network models, identifying potential

bottlenecks and optimization opportunities.

6.3.3 Adaptive Precision and Approximate Computing

Further optimization of hardware efficiency can be achieved by exploring adaptive

precision techniques and approximate computing. By adjusting the precision of com-

putations based on the sensitivity of different parts of the algorithm, it is possible
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to reduce resource usage without significantly impacting performance. Research can

focus on:

• Dynamic Precision Scaling: Implementing mechanisms that adjust the bit-

width of computations in real-time, depending on the requirements of different

algorithm phases.

• Error Tolerance Analysis: Studying the impact of approximation on learning

outcomes to determine acceptable trade-offs between accuracy and efficiency.

• Energy Efficiency Improvements: Evaluating how adaptive precision con-

tributes to lower power consumption, which is critical for embedded and portable

applications.

6.3.4 Extending Algorithmic Modifications to Other Algo-

rithms

The algorithmic modifications proposed, such as dynamic standardization and quan-

tization techniques, could be extended to other reinforcement learning algorithms.

Investigating their applicability and effectiveness in algorithms like Deep Q-Networks

(DQN) or Soft Actor-Critic (SAC) can broaden the impact of this research and con-

tribute to the development of hardware-efficient solutions for a wider range of rein-

forcement learning algorithms.
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6.3.5 Tool Development and Framework Integration

Developing tools and frameworks to facilitate the design and deployment of hardware-

accelerated reinforcement learning systems can lower the barrier to entry for prac-

titioners. Integrating the proposed solutions into widely used platforms, such as

TensorFlow or PyTorch, with hardware acceleration support, can promote adoption

and further innovation.

6.4 Closing Remarks

The advancements presented in this thesis contribute significantly to bridging the gap

between sophisticated reinforcement learning algorithms and efficient hardware im-

plementations. By addressing key computational bottlenecks and proposing scalable,

hardware-friendly solutions, this work lays the groundwork for deploying advanced

reinforcement learning systems in practical, real-world applications. The combination

of algorithmic innovations and hardware acceleration techniques holds the promise of

unlocking new capabilities in autonomous systems, robotics, and embedded intelli-

gence. Continued research and development in this area are essential for realizing the

full potential of reinforcement learning in diverse and impactful domains.
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