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Lay Abstract

Fairness and privacy are two key concepts in trustworthy machine learning. In high-

stakes scenarios, models must protect individual privacy while avoiding discrimination

against demographic subgroups. Differential privacy (DP), the standard notion of pri-

vacy in machine learning these days, is divided into two main categories: central DP

and local DP (LDP). The first part of this thesis examines the interplay between

central DP and fairness in binary classification, presenting an algorithm that guar-

antees both privacy and fairness while providing theoretical performance guarantees.

This algorithm is evaluated on real-world datasets, showing improved fairness with-

out compromising privacy or utility. The second part introduces an optimal data

pre-processing method using LDP to minimize unfairness, demonstrating an appli-

cation of LDP in reducing unfairness in model predictions. Experiments on various

datasets show that this optimal pre-processing outperforms existing LDP-based pre-

processing fairness intervention methods and state-of-the-art fairness post-processing,

achieving better fairness while maintaining comparable utility, even when compared

to non-private scenarios.
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Abstract

Machine learning algorithms are increasingly used in high-stakes decision-making

tasks, highlighting the need to evaluate their trustworthiness, especially regarding

privacy and fairness. Models must protect individual privacy and avoid discrimi-

nating against demographic subgroups. Differential Privacy (DP) has become the

standard for privacy-preserving machine learning. It is generally divided into central

DP, which relies on a trusted curator, and local DP (LDP), where no trusted entity

is assumed.

The first part of this thesis investigates binary classification under the constraints

of both central DP and fairness. We propose an algorithm based on the decoupling

technique to learn a classifier that guarantees fairness. This algorithm takes classifiers

trained on different demographic groups and produces a single classifier satisfying

statistical parity. We then refine this algorithm to incorporate DP. The performance

of the resulting algorithm is rigorously analyzed in terms of privacy, fairness, and

utility guarantees. Empirical evaluations on the Adult and Credit Card datasets show

that our algorithm outperforms state-of-the-art methods in fairness while maintaining

the same levels of privacy and utility.

The second part of this thesis addresses the design of an optimal pre-processing
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method based on LDP mechanisms to minimize data unfairness and reduce classifi-

cation unfairness. For binary sensitive attributes, we derive a closed-form expression

for the “optimal” mechanism. For non-binary sensitive attributes, we formulate an

optimization problem that, when solved algorithmically, yields the optimal mecha-

nism. We theoretically prove that applying these pre-processing mechanisms leads

to lower classification unfairness using the notion of discrimination-accuracy optimal

classifiers. Empirical evaluations on multiple datasets demonstrate the effectiveness

of these mechanisms in reducing classification unfairness, highlighting LDP’s poten-

tial as a tool for enhancing fairness. This contrasts with central DP, which has been

shown to adversely affect fairness.
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Chapter 1

Introduction

1.1 Motivation

Machine learning algorithms are increasingly deployed in high-stakes decision-making

processes, making it crucial to rigorously evaluate their trustworthiness. Two crit-

ical aspects of trustworthy machine learning are privacy and fairness. On the one

hand, machine learning models must protect the privacy of individuals within train-

ing datasets, while on the other hand, they should prevent discrimination against any

demographic subgroups.

Differential Privacy (DP) has emerged as the de-facto standard for ensuring pri-

vacy in machine learning applications. Informally speaking, a randomized algorithm

is considered differentially private if its output distribution does not change signifi-

cantly when an individual entry in the dataset is altered (i.e., when moving between

neighboring datasets) (Dwork et al., 2006; Dwork, 2006). This framework has been

widely adopted in practice (e.g., Erlingsson et al. (2014); Differential privacy team

Apple (2017); Kifer et al. (2020); Rogers et al. (2020)). DP is generally classified
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into two categories: central DP, which assumes the presence of a trusted curator, and

local DP (LDP), which operates without such a trusted entity.

The notion of privacy under DP is well-defined. However, unlike privacy, there is

no universal definition of fairness. Therefore, how fairness is defined or algorithmically

enforced depends on the particular context of the problem. Previous research has

shown that central DP can, in some cases, worsen fairness of predictions or even be

incompatible with fairness objectives (Bagdasaryan et al., 2019; Ganev et al., 2022;

Pujol et al., 2020; Farrand et al., 2020; Agarwal, 2020; Cummings et al., 2019). In

contrast, the relationship between LDP and fairness remains underexplored, with no

established evidence of incompatibility.

In this thesis, we explore the intersection of DP and fairness, focusing on both

central DP and LDP. In this section, we begin by providing precise definitions for

both central and local DP and reviewing various fairness metrics commonly used in

the literature. We then discuss existing research on fair classification under central

DP. Finally, we investigate how LDP can be utilized as a pre-processing mechanism to

ensure fairness in classification tasks. These will be the central themes of this thesis.

1.1.1 Differential Privacy

LDP and central DP differ fundamentally in their approaches to privacy preservation.

In central DP, the aggregation function, which combines data from the entire dataset

to compute a summary statistic (e.g., mean or sum), is executed by a trusted server.

The server then applies noise to the output to ensure privacy. This centralized ap-

proach assumes the existence of a trusted curator who has access to the unperturbed

data. Conversely, LDP does not assume a trusted entity; instead, each data point

2
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is perturbed locally before being sent to the server. This protects each individual’s

data, even if the server is compromised. LDP ensures privacy by adding noise at the

individual data entry level, decentralizing the privacy mechanism. We now formally

define these two concepts.

Definition 1. (Central differential privacy (Dwork et al., 2006; Dwork, 2006)). A

randomized mechanism M : D → R with domain D and range R is (ε, δ)-differentially

private ((ε, δ)-DP) if for any pair of neighboring datasets D and D′ that differ in

exactly one record, and for any subsets of outputs S ⊆ R, we have,

Pr(M(D) ∈ S) ≤ eε Pr(M(D′) ∈ S) + δ.

Definition 2 (Local differential privacy (Warner, 1965; Evfimievski et al., 2003)).

A randomized algorithm M : D → R with domain D and range R is said to satisfy

ε-local differential privacy (ε-LDP), where ε > 0, if for any pair of input values

x1, x2 ∈ D, and for any possible output y ∈ R, it holds that

Pr(M(x1) = y) ≤ eε Pr(M(x2) = y).

1.1.2 Fairness

Fairness in machine learning aims to prevent models from discriminating against

demographic subgroups, which are typically distinguished by sensitive attributes,

such as gender or race. However, the definition and enforcement of fairness depend

on the specific context of the problem, and no single universal definition exists. Below

are the formal definitions of some of the classification group fairness notions used in

3
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this work.

Definition 3 (Equalized opportunity (Hardt et al., 2016)). Let X ∈ X , A ∈ [k],

and Y ∈ {0, 1} be random variables representing non-sensitive features, sensitive

attributes, and labels, respectively, with a joint distribution PXAY . Let Ŷ = ĥ(X,A)

be a binary classifier, where ĥ : X × [k] → {0, 1}. The equalized opportunity gap

∆EO(ĥ) associated with the classifier ĥ and distribution PXAY is defined as:

∆EO(ĥ) = max
a,a′∈[k]

∣∣∣Pr(Ŷ = 1 | A = a, Y = 1)− Pr(Ŷ = 1 | A = a′, Y = 1)
∣∣∣ .

Definition 4 (Statistical parity (Feldman et al., 2015)). Let X ∈ X , A ∈ [k], and Y ∈

{0, 1} be random variables representing non-sensitive features, sensitive attributes,

and labels, respectively, with a joint distribution PXAY . Let Ŷ = ĥ(X,A) be a binary

classifier, where ĥ : X × [k] → {0, 1}. The statistical parity gap ∆SP(ĥ) associated

with the classifier ĥ and distribution PXAY is defined as:

∆SP(ĥ) = max
a,a′∈[k]

∣∣∣Pr(Ŷ = 1 | A = a)− Pr(Ŷ = 1 | A = a′)
∣∣∣ .

We say that Ŷ = ĥ(X,A) satisfies γ-statistical parity if

∆SP(ĥ) ≤ γ.

Definition 5 (Mean Equalized Odds (Hardt et al., 2016; Alghamdi et al., 2022)).

Let X ∈ X , A ∈ [k], and Y ∈ {0, 1} be random variables representing non-sensitive

features, sensitive attributes, and labels, respectively, with a joint distribution PXAY .

Let Ŷ = ĥ(X,A) be a binary classifier, where ĥ : X × [k] → {0, 1}. The mean

4
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equalized odds gap ∆MEO(ĥ) associated with the classifier ĥ and distribution PXAY is

defined as:

∆MEO(ĥ) = max
a,a′∈[k]

1

2

(∣∣TPRA=a − TPRA=a′
∣∣+ ∣∣FPRA=a − FPRA=a′

∣∣),
where TPRA=a = Pr(Ŷ = 1 | Y = 1, A = a) and FPRA=a = Pr(Ŷ = 1 | Y = 0, A =

a).

It is worth noting that definitions of classification unfairness extend beyond the

three mentioned here. Numerous definitions exist (Chouldechova, 2017; Dwork et al.,

2012; Berk et al., 2021; Corbett-Davies et al., 2017; Kilbertus et al., 2017; Kleinberg

et al., 2016; Kusner et al., 2017; Sabato et al., 2024) that may be useful to consider

depending on the specific context of the problem.

1.1.3 Central DP and Fairness in Classification

In the intersection of fairness and privacy in classification, one line of work explores

the relationship between DP and different notions of fairness, examining their com-

patibility and determining how fairness affects DP guarantees and vice versa (Bag-

dasaryan et al., 2019; Cummings et al., 2019; Mangold et al., 2023; Chang and Shokri,

2021a; Pujol et al., 2020; Farrand et al., 2020; Agarwal, 2020). Another research di-

rection focuses on developing classification algorithms that simultaneously guarantee

DP and a specific notion of fairness. Despite these significant advances, most of

these approaches have inherent limitations. For instance, some methods are designed

specifically for certain types of classification models, such as logistic regression, and

are not applicable to other models (Xu et al., 2019; Jagielski et al., 2019; Ding et al.,

5
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2020). Other studies focus solely on protecting the privacy of sensitive attributes,

neglecting the privacy of other features. Specifically, while some methods ensure that

sensitive attributes remain confidential, they do not provide the same privacy guaran-

tees for non-sensitive attributes, leaving them susceptible to leakage (Jagielski et al.,

2019; Mozannar et al., 2020; Tran et al., 2021a, 2022). Finally, although many of

these methods have demonstrated practical effectiveness, they often lack theoretical

guarantees regarding utility and the extent of fairness violations (Xu et al., 2019;

Ding et al., 2020; Xu et al., 2021; Tran et al., 2021b,a, 2022; Esipova et al., 2023;

Lowy et al., 2023; Yaghini et al., 2023). Our goal is to develop a binary classification

algorithm with provable DP and fairness guarantees that addresses these limitations

in DP-Fair classification algorithms.

1.1.4 LDP as a Pre-Processing Tool for Fairness

Although some progress has been made at the intersection of LDP and fairness, several

challenges persist. For instance, Mozannar et al. (2020) presents a learning scheme for

training non-discriminatory classifiers when only a privatized version of the sensitive

attribute is available. Specifically, the sensitive attribute is privatized using an ε-LDP

mechanism, generalized randomized response (GRR) (Kairouz et al., 2014), and the

approach provides theoretical performance guarantees. Similarly, Chen et al. (2022)

explores a ”semi-private” setting where a small subset of users share their sensitive

attributes without modification, while the remaining users employ an ε-LDP protocol.

While these frameworks provide approaches for fair prediction with LDP-privatized

data, they either focus exclusively on binary sensitive attributes or limit themselves

to using GRR as the LDP mechanism, highlighting the need for further exploration.
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Recently, some works have specifically addressed the impact of LDP on fairness in

classification (Arcolezi et al., 2023; Makhlouf et al., 2024b,a). For instance, Arcolezi

et al. (2023) empirically examined how applying different LDP mechanisms influences

fairness and utility in binary classification. Their results showed that applying LDP

to sensitive attributes improved classification fairness with minimal impact on utility

compared to training on non-private data. Building on this, Makhlouf et al. (2024a)

demonstrated that increasing privacy (i.e., lowering ε) further enhances fairness, and

applying LDP to multiple sensitive attributes more effectively reduces disparity than

focusing on a single attribute. Additionally, Makhlouf et al. (2024b) provided a theo-

retical analysis of how randomized response (RR) (Warner, 1965), a widely used LDP

mechanism, affects fairness by considering privacy levels and data distribution. This

work, based on assumptions about the unfairness metric and the learning algorithm

used, explored conditions under which privacy reduces or increases unfairness. These

findings challenge the common belief in the central DP context, where increased pri-

vacy is often thought to worsen fairness. The results for LDP, however, point toward

a promising direction: identifying optimal ways to perturb data using LDP mecha-

nisms for both binary and non-binary sensitive attributes. In this work, we explore

LDP as a pre-processing method aimed at enhancing fairness in classification tasks.

1.2 Summary of Contributions

The contributions of this thesis are twofold, focusing on the intersections of central

DP and fairness in the first part, and LDP and fairness in the second part. More

specifically, the contributions are as follows:

7
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1.2.1 Contributions: Central DP and Fairness

• We establish a lower bound for the sum of prediction changes across a pair of

subgroups under statistical parity (without privacy) and propose an algorithm

(based on (Zhao and Gordon, 2022, Algorithm 1)) that attains this bound (Algo-

rithm 1). The theoretical guarantee of this algorithm is provided in Theorem 7.

• We then propose a differentially private version (Algorithm 2) of Algorithm 1

and derive its theoretical guarantees for fairness and utility — both with high

probability and in expectation — in Theorem 8 and Proposition 9.

• Through several experiments on two well-known datasets (Adult and Credit

Card), we empirically demonstrate that Algorithm 2 achieves competitive ac-

curacy when compared to the state-of-the-art DP-Fair classification method,

DP-FERMI (Lowy et al., 2023). In particular, we show that for a given level

of accuracy and privacy, our algorithm provides a significantly better fairness

guarantee across both datasets.1

1.2.2 Contributions: Local DP and Fairness

• We introduce the problem of designing LDP mechanisms that minimize data

unfairness for both binary and non-binary sensitive attribute cases. For the

binary case, we provide a closed-form expression of the mechanism that mini-

mizes unfairness while maintaining non-trivial utility. For the non-binary case,

we reformulate the optimization problem as a min-max linear fractional pro-

gram, solvable numerically using the branch-and-bound technique (Jiao and Li,

1The experimental code for these experiments can be accessed at https://github.com/

hradghoukasian/dp_fair_binary.
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2022).

• After identifying the optimal LDP mechanism to reduce data unfairness, we

theoretically prove that if the classifier belongs to a certain set of discrimination-

accuracy optimal classifiers, training on less discriminatory data will lead to

reduced post-classification unfairness. This result justifies the objective function

we use to minimize data unfairness.

• Through experiments on various datasets and fairness metrics, we demonstrate

that our approach effectively reduces unfairness. We show that it achieves utility

metrics comparable to well-known LDP mechanisms while ensuring lower un-

fairness after classification. Moreover, we compare our optimal mechanism with

Fair Projection (Alghamdi et al., 2022), a state-of-the-art post-processing fair-

ness intervention framework (Wang et al., 2024; Denis et al., 2024). Our results

demonstrate that, while Fair Projection provides a wide range of accuracy-

fairness trade-offs, our optimal mechanism achieves a solution that, for fixed

fairness metrics, attains slightly better accuracy or, in the worst case, matches

a point on Fair Projection’s trade-off curve with significantly less runtime com-

pared to Fair Projection.

1.3 Thesis Organization

The first part of this thesis addresses the intersection of central DP and fairness in

classification. Chapter 2 provides background knowledge and a literature review on

the intersection of DP and fairness in classification. Section 2.1 discusses decoupled

classifiers and stratification, two key concepts in this work. Sections 2.2 and 2.3

9



M.Sc. Thesis – H. Ghoukasian McMaster University – Computing and Software

give an overview of related work on central DP and fairness in classification, high-

lighting gaps in the literature. Section 2.4 provides a brief overview of our approach

to developing a DP post-processing algorithm that ensures both fairness and utility

guarantees, which is thoroughly explored in Chapter 3.

Chapter 3 presents the main results of the first part of this thesis. After defining

the notation and the main objectives in Sections 3.1 and 3.2, the main theoretical

results are provided in Sections 3.3 and 3.4. Section 3.3 discusses the optimal post-

processing algorithm without considering privacy, including its theoretical guarantees.

Following this, Section 3.4 introduces the DP version of this algorithm (Algorithm

2), along with the theoretical guarantees for this classifier. Finally, Section 3.5 pro-

vides empirical results for Algorithm 2, comparing it with state-of-the-art DP-Fair

classifiers.

The second part of this thesis focuses on the intersection of LDP and fairness.

Chapter 4 provides a literature review on the intersection of LDP and fairness, fair-

ness intervention methods, and pre-processing techniques for reducing unfairness in

classification. These are detailed in Sections 4.1, 4.2, and 4.3. Section 4.4 offers a

brief overview of our approach, which leverages LDP as a pre-processing method for

achieving fairness in classification. The main results of the second part of the thesis

are presented in Chapter 5.

After defining the notation and the preliminary knowledge required for the main

results in Sections 5.1 and 5.2, we examine the impact of a specific LDP mechanism,

GRR, on data fairness in Section 5.3. Then, in Sections 5.4 and 5.5, we formulate

the problem of an optimal LDP-based pre-processing technique for data fairness,

considering both binary and non-binary sensitive attributes. For the binary case, the

10



M.Sc. Thesis – H. Ghoukasian McMaster University – Computing and Software

optimal closed-form mechanism is derived in Section 5.4, while for the non-binary

case, the optimization problem is reformulated for numerical solution, as explained

in Section 5.5. Finally, the theoretical results are concluded in Section 5.6, where

we demonstrate that data fairness leads to classification fairness when the classifier

belongs to a specific class. Section 5.7 provides experimental results for the optimal

mechanisms presented in Sections 5.4 and 5.5.

Lastly, Chapter 6 summarizes the work in this thesis, discussing limitations and

directions for future research. Proofs for the first part of the thesis, covering cen-

tral DP and fairness, are provided in Appendix A, while proofs for the second part,

addressing LDP and fairness, can be found in Appendix B.

11



Chapter 2

Central DP and Fairness in

Classification: Key Concepts and

Related Work

A widely recognized concept of fairness is statistical parity (Feldman et al., 2015),

also known as demographic parity. This definition implies that the predictions of a

classification model should be independent of the sensitive attributes, such as gender

or race. While privacy and fairness have been extensively studied separately in the

literature, their intersection has recently gained attention.

2.1 Decoupled Classifiers and Stratification

In the literature on fair classification algorithms, incorporating sensitive attributes

is known as ”fairness through awareness” (Dwork et al., 2012), while deliberately

omitting sensitive attributes is referred to as ”fairness through blindness” or ”fairness

12
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through unawareness.” It is well-known that simply excluding sensitive attributes does

not guarantee fairness, mainly because these attributes can be closely correlated with

other data features and provide important context for interpreting the rest of the

data (Dwork et al., 2018).

While the decision to use or omit sensitive attributes is problem-specific, Dwork

et al. (2018) demonstrated that in scenarios where it is legally and ethically permis-

sible to use these attributes, training separate classifiers (decoupled classifiers) for

each group can outperform a single optimal classifier in terms of both accuracy and

fairness (without privacy considerations). Furthermore, Wang et al. (2021) showed

that employing decoupled classifiers does not negatively impact any group in terms

of average performance metrics within the information-theoretic regime where the

underlying data distribution is known.

Building on the concept of decoupled classification combined with differential pri-

vacy, Rosenblatt et al. (2023) proposed a ”stratification” technique to reduce the

disparity in differentially private mechanisms. This technique involves applying a DP

mechanism separately to different subgroups and then recombining the respective

results to derive overall statistics for the entire dataset.

It was demonstrated that a naive stratification approach can produce highly accu-

rate estimates for population-level statistics without requiring an additional privacy

budget. Building on this foundation, our pipeline first applies DP and subsequently

addresses fairness through a post-processing step. This order of application is crucial

because DP methods introduce random noise, which can alter model predictions. If

the model met fairness standards before applying DP, the introduction of noise could

cause these standards to no longer be met.

13
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2.2 Central DP Negatively Impacts Fairness

A wide range of fairness intervention techniques exist for classification (see Section

4.2). However, a significant challenge arises when privacy and fairness are considered

together in classification settings. It has been empirically demonstrated that differen-

tially private mechanisms can exacerbate unfairness (Bagdasaryan et al., 2019; Pujol

et al., 2020). This necessitates the implementation of specific strategies to mitigate

the negative effects of DP on fairness guarantees.

Bagdasaryan et al. (2019) empirically shows that central DP, specifically differen-

tially private stochastic gradient descent (DP-SGD) (Abadi et al., 2016), has a dis-

parate impact on the accuracy of different subgroups. Similarly, Ganev et al. (2022)

demonstrates that applying DP to synthetic data generation disproportionately af-

fects minority sub-populations. Pujol et al. (2020) also finds that applying DP can

exacerbate unfairness in decision-making tasks. Farrand et al. (2020) further shows

that even with loose privacy guarantees and minimal data imbalance, DP-SGD can

lead to disparate impact. Agarwal (2020); Cummings et al. (2019) introduce an in-

compatibility result, highlighting that (ε, 0)-DP and fairness are at odds when aiming

for non-trivial accuracy in learning algorithms.

Additionally, some works explore the intersection of privacy and fairness beyond

the scope of central DP or group fairness. For instance, Chang and Shokri (2021b)

examines the privacy risks of achieving group fairness, showing that fairness may

compromise privacy, particularly through membership inference attacks, even when

DP is not explicitly applied. Dwork et al. (2012) provides a theoretical link between

individual fairness and DP, arguing that individual fairness can be seen as a gen-

eralization of DP and outlining conditions under which a DP mechanism ensures

14
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individual fairness. A recent study (Ko et al., 2024) examined the impact of DP on

fairness beyond classification tasks. They demonstrated that using DP to set sam-

pling rates for collecting socio-demographic data reduces unfairness across different

population segments in resource allocation.

2.3 DP-Fair Classification Algorithms

Another research direction at the intersection of privacy and fairness focuses on de-

veloping classification algorithms that simultaneously ensure DP and a specific notion

of fairness.

Some of these algorithms aim to make existing private algorithms fair. For exam-

ple, Esipova et al. (2023) investigates the causes of unfairness in DP-SGD, identifying

gradient misalignment as the primary source of disparate impact. They show that

the discrepancy between the direction of unclipped and clipped gradients can create

imbalances in gradient norms across groups. Their work proposes a modification to

DP-SGD that mitigates this gradient misalignment. Similarly, Yaghini et al. (2023)

present adjustments to DP-SGD and PATE (Papernot et al., 2018), two privacy-

preserving learning approaches, to enhance fairness. Tran et al. (2021b) addresses

disparate impact in DP-SGD by adding fairness constraints to its objective function.

Additionally, Xu et al. (2021) proposes a modified DP-SGD algorithm, DP-SGD-F,

which adaptively adjusts sample contributions based on group-specific clipping biases

to minimize disparate impact on group accuracy.

Other research focuses on making existing fair algorithms private. For instance,

Tran et al. (2021a) makes the Fair-Lagrangian Dual algorithm private by adding

noise to both primal and dual updates. Jagielski et al. (2019) introduces a private
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implementation of the equalized odds post-processing approach by Hardt et al. (2016)

and the in-processing reduction approach by Agarwal et al. (2018).

Some studies target DP-Fair classifiers for specific models, such as logistic regres-

sion. Xu et al. (2019) and Ding et al. (2020) use the functional mechanism (Zhang

et al., 2012), a DP-based method for optimization-based models that perturbs the

objective function to maintain privacy.

Lastly, Mozannar et al. (2020) introduces two differentially private fair classifica-

tion algorithms that provide privacy guarantees only for sensitive attributes, using

randomized response mechanism that implements the local version of DP. However,

their approach does not naturally extend to providing privacy guarantees for all fea-

tures, especially when dealing with continuous, high-dimensional non-sensitive at-

tributes.

As discussed in Section 1.1.3, despite the comprehensive range of existing methods

in DP-Fair classification, most of these approaches still face inherent limitations. They

are either restricted to specific classifier structures, fail to provide privacy guarantees

for all data features, or lack theoretical guarantees for both fairness constraints and

classifier utility. A summary of the characteristics of these methods can be found in

Table 2.1.1

2.4 Overview of Our Approach

Our objective is to develop a binary classification algorithm with provable DP and

fairness guarantees that addresses the limitations highlighted in Table 2.1. Inspired

1In this work, we allow access to the sensitive attributes at test time, similar to the approach in
Jagielski et al. (2019), Mozannar et al. (2020), and Esipova et al. (2023).
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Table 2.1: Benchmark methods in DP-Fair classification

Reference
Applicable to
any model

Theoretical
guarantee

Privacy w.r.t.
all features

Xu et al. (2019) ✗ ✗ ✓

Jagielski et al.
(2019) (post-proc.)

✓ ✓ ✗

Jagielski et al.
(2019) (in-proc.)

✗ ✓ ✓

Ding et al. (2020) ✗ ✗ ✓

Mozannar et al.
(2020)

✓ ✓ ✗

Xu et al. (2021) ✓ ✗ ✓

Tran et al. (2021a) ✓ ✗ ✗

Tran et al. (2021b) ✓ ✗ ✓

Tran et al. (2022) ✓ ✗ ✗

Esipova et al. (2023) ✓ ✗ ✓

Lowy et al. (2023) ✓ ✗ ✓

Yaghini et al. (2023)
(FairDPSGD)

✓ ✗ ✓

Yaghini et al. (2023)
(FairPATE)

✓ ✗ ✓

This Work ✓ ✓ ✓

by the success of decoupled classifiers and the effectiveness of stratification in reducing

disparate impact in differentially private mechanisms (as noted in Wang et al. (2021);

Dwork et al. (2018); Rosenblatt et al. (2023)), our approach begins with separate clas-

sifiers for each sub-population. These classifiers then go into a post-processing step to

generate a single classifier. Following the method used in Jiang et al. (2020), our goal

is to apply a post-processing technique that achieves statistical parity, ensuring that

only minimal changes are made to the predictions of the original classifiers. We begin

by slightly modifying the approach described in Zhao and Gordon (2022), initially
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developed for non-private settings (Algorithm 1). Then, we introduce Algorithm 2, a

new method for binary classification that is both differentially private and fair. This

new algorithm comes with theoretical guarantees for utility, fairness, and DP.

18



Chapter 3

Central DP and Fairness in

Classification: Main Results

3.1 Notation

In this section, we consider a binary classification setting where there is a joint dis-

tribution µ over the triplet T = (X,A, Y ), where X ∈ X ⊂ Rd is the feature vector

of non-sensitive attributes, A ∈ {0, 1} is the sensitive attribute, and Y ∈ {0, 1} is

the target output. We use µ(Y ) to denote the marginal distribution of Y from a

joint distribution µ over Y and some other random variables. Denote the marginal

distribution of input X by µX . For a ∈ {0, 1}, we use µa to denote the conditional

distribution of (X, Y ) conditioned on A = a, and µX
a to mean the marginal distribu-

tion of input X given A = a. For any group-aware classifier h : X × {0, 1} → {0, 1}

and a ∈ {0, 1}, we also use ha(·) to denote the restriction of h on A = a, respectively,

i.e., ha(·) := h(·, a). Finally, the probabilistic inequality X ≤η Y for a pair of random

variables (X, Y ) denotes the mathematical statement that P(X > Y ) ≤ η.
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3.2 Main Objectives

In this chapter, we develop a framework for designing a binary classification algorithm

with provable DP and fairness guarantees. Following Zhao and Gordon (2022); Xu

et al. (2019); Yaghini et al. (2023); Ding et al. (2020), we adopt statistical parity as

a metric for fairness. We begin in Section 3.3 by detailing our approach to achieve

fairness and the specified utility target in a non-private setting. Here, as outlined

in Section 2.4, our framework involves partitioning the dataset according to sensitive

attributes. We first develop a separate classifier for each subgroup. We then imple-

ment a post-processing technique that carefully combines those decoupled classifiers

in a way to achieve statistical parity, with the objective of minimally perturbing the

original classifiers’ predictions. Then in Section 3.4, we expand this framework to

include DP.

We consider two classifiers, h∗
0 : X → {0, 1} and h∗

1 : X → {0, 1}, each trained

on subgroups specified by the sensitive attribute A with values 0 and 1, respec-

tively. These classifiers are designed to maximize accuracy without initially consider-

ing fairness constraints. In a non-private setting, h∗
0 and h∗

1 are standard classifiers,

whereas in private settings, they are considered classifiers learned by DP guarantees.

Our post-processing method aims to derive a fair classifier ĥ : X × {0, 1} → {0, 1}

from h∗
0 and h∗

1. Following the methodology of Jiang et al. (2020), our objective is

to achieve this goal by minimally perturbing the predictions of the original classi-

fiers. We thus seek fair ĥ that optimizes the utility measured in terms of the sum

PµX
0
(ĥ0(X) ̸= h∗

0(X))+PµX
1
(ĥ1(X) ̸= h∗

1(X)). The reason for adopting the prediction

changes over µX
0 and µX

1 (as opposed to the combined distribution µX) is as follows:

when the demographic subgroups are imbalanced in the overall population, relying
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only on prediction changes across the combined distribution µX can be misleading.

This approach may hide significant prediction shifts of the less-represented group,

which would be more apparent if we examined the sum of the prediction changes

within each subgroup’s distribution (µX
0 and µX

1 ). In other words, it might be pos-

sible to have small overall prediction changes across the combined distribution µX

while minority groups are experiencing substantial changes in their predictions (Zhao

and Gordon, 2022).

In Section 3.3, we explore the non-private scenario, discussing Algorithm 1 that

ensures statistical parity and optimal utility. In Section 3.4, we extend the algorithm

to take privacy into consideration. In particular, we propose Algorithm 2, which out-

puts a classifier that guarantees DP and achieves statistical parity while maintaining

minimal changes in the predictions of the original classifiers, both in expectation and

with high probability. To discuss our utility metric under the constraint of statistical

parity, we rely on the following proposition.

Proposition 6. Let h∗
0 : X → {0, 1} and h∗

1 : X → {0, 1}, be arbitrary classifiers

trained on subgroups specified by the sensitive attribute A = 0 and A = 1, respectively.

If a predictor Ŷ = ĥ(X,A) satisfies γ-statistical parity, then

PµX
0
(ĥ0(X) ̸= h∗

0(X)) + PµX
1
(ĥ1(X) ̸= h∗

1(X))

≥
∣∣∣PµX

0
(h∗

0(X) = 1)− PµX
1
(h∗

1(X) = 1)
∣∣∣− γ.
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3.3 Fair Post-Processing without Privacy

Let h∗
0 : X → {0, 1} and h∗

1 : X → {0, 1} be decoupled classifiers, that is they

are trained on subgroups associated with the sensitive attribute A = 0 and A = 1,

respectively. h∗
0 and h∗

1 can be any arbitrary classifiers. In the context of our analysis,

they can be considered as the best available classifiers trained on µ0 and µ1. Our

goal is to develop an optimal fair classifier ĥ : X × {0, 1} → {0, 1} using h∗
0 and h∗

1.

More precisely, we seek ĥ that satisfies ∆SP (ĥ) = 0 while attaining the lower bound

in Proposition 6 for γ = 0:

PµX
0
(ĥ0(X) ̸= h∗

0(X)) + PµX
1
(ĥ1(X) ̸= h∗

1(X)) =
∣∣∣PµX

0
(h∗

0(X) = 1)− PµX
1
(h∗

1(X) = 1)
∣∣∣ .

We present Algorithm 1 to address this objective. This algorithm, which is a slightly

modified version of the algorithm in Zhao and Gordon (2022), constructs the fair

classifier h∗
Fair. The original algorithm in Zhao and Gordon (2022) builds a fair optimal

classifier assuming oracle access to the Bayes optimal classifiers h∗
0 and h∗

1. Our

ultimate goal, to be discussed in the next section with Algorithm 2, is to identify a

classifier that is both private and fair. However, the assumption of having access to

Bayes optimal classifiers is not practical in DP settings, primarily due to the necessity

of introducing noise. Consequently, in Algorithm 1, h∗
0 and h∗

1 are considered to be any

arbitrary classifiers trained on subgroups specified by the sensitive attribute A = 0

and A = 1 (not necessarily the Bayes optimal classifiers).

Theorem 7. The classifier h∗
Fair constructed by Algorithm 1 satisfies perfect statistical

parity (∆SP (h
∗
Fair) = 0) and is optimal in terms of the sum of prediction changes
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Algorithm 1 Optimal Fair Binary Classifier

Input: Classifiers h∗
0 and h∗

1

Output: A randomized classifier h∗
Fair : X × {0, 1} → {0, 1}

1: Compute α = PµX
0
(h∗

0(X) = 1) and β = PµX
1
(h∗

1(X) = 1). W.L.O.G. assume
α ≥ β

2: For (x, a), randomly sample s from the uniform distribution U(0, 1)
3: Construct h∗

Fair as follows:

h∗
Fair (x, a) :=


a = 0 :

{
0 if h∗

0(x) = 0 or h∗
0(x) = 1 and s > α+β

2α

1 if h∗
0(x) = 1 and s ≤ α+β

2α

a = 1 :

{
0 if h∗

1(x) = 0 and s > α−β
2(1−β)

1 if h∗
1(x) = 1 or h∗

1(x) = 0 and s ≤ α−β
2(1−β)

return h∗
Fair

compared to classifiers h∗
0 and h∗

1, that is

PµX
0
(h∗

Fair0(X) ̸= h∗
0(X)) + PµX

1
(h∗

Fair1(X) ̸= h∗
1(X))

=
∣∣∣PµX

0
(h∗

0(X) = 1)− PµX
1
(h∗

1(X) = 1)
∣∣∣ .

3.4 Fair Post-Processing with Privacy

Next, we delve into a private version of Algorithm 1. It is worth noting that achieving

(ε, 0)-DP is incompatible with non-trivial guarantees of fairness and utility (see, e.g.,

Cummings et al. (2019); Agarwal (2020) for more details). As a result, our objective

is to design an (ε, δ)-DP version of Algorithm 1 with comparable fairness and utility

guarantees, provided that δ > 0.

First, notice that this goal is not feasible just by replacing the input classifiers h∗
0

and h∗
1 with some differentially private decoupled classifiers that are learned by ap-

plying an existing differentially private learning method —most notably, DP-SGD—

to each demographic subgroup. This approach implicitly assumes privacy guarantees
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only for non-sensitive features, whereas we aim to guarantee privacy for both sensi-

tive and non-sensitive features. Additionally, note that Algorithm 1 involves some

computations over the dataset (e.g., in computing α and β in line 1). This therefore

necessitates some changes in Algorithm 1 for constructing its differentially private

version. Let h∗
ε,δ : X × {0, 1} → {0, 1} be a classifier guaranteeing (ε, δ)-DP with

respect to all features. Then, h∗
ε,δ,0 : X → {0, 1} and h∗

ε,δ,1 : X → {0, 1} represent

the restrictions of h∗
ε,δ to A = 0 and A = 1, respectively. Thus, our goal can be

formulated as follows: Given classifiers h∗
ε,δ,0 and h∗

ε,δ,1 that are (ε, δ)-DP, we wish to

generate a fair classifier h∗
ε′,δ′,Fair with the following properties:

1. h∗
ε′,δ′,Fair is (ε

′, δ′)-DP with some ε′ and δ′ (depending on ε and δ),

2. h∗
ε′,δ′,Fair satisfies γ-statistical parity with γ being a positive value close to zero

with high probability and in expectation,

3. Among all classifiers satisfying the same level of statistical parity gap as h∗
ε′,δ′,Fair,

the classifier h∗
ε′,δ′,Fair performs comparably with the optimal classifier in terms

of utility, both with high probability and in expectation. Optimality here is

defined based on minimizing the total number of prediction changes across the

distributions µX
0 and µX

1 , relative to the predictions made by h∗
ε,δ,0 and h∗

ε,δ,1.

To this goal, we present Algorithm 2 for learning such h∗
ε′,δ′,Fair, assuming that the

number of data points belonging to each subgroup in a dataset is publicly known. For

any dataset D, θ denotes the proportion of data points with A = 0, while θ̄ = 1− θ

represents the proportion of data points with A = 1. Recall that Algorithm 1 requires

estimates of the proportions of data points in each subgroup classified as label one

(denoted by α and β). Algorithm 2 is designed to privately estimate these quantities
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Algorithm 2 Private and Fair Binary Classifier with Utility Gap Guarantee

Input: Classifiers h∗
ε,δ,0 and h∗

ε,δ,1, dataset D = (Xi, Ai, Yi)
n
i=1 with θn individuals

where Ai = 0 and θ̄n individuals where Ai = 1, privacy parameters ε0 and ε1
Output: Classifier h∗

ε′,δ′,Fair : X ×{0, 1} → {0, 1} with ε′ = ε+ ε0+ ε1 and δ′ = δ

1: Find ᾱ = 1
nθ

n∑
i=1
Ai=0

h∗
ε,δ,0(Xi) and β̄ = 1

nθ̄

n∑
i=1
Ai=1

h∗
ε,δ,1(Xi)

2: Add noise to ᾱ and β̄:
Sample l0 from Lap

(
1

nθε0

)
and l1 from Lap

(
1

nθ̄ε1

)
. Define α̃ = [ᾱ + l0]

1
0 and β̃ =[

β̄ + l1
]1
0
, where [·]10 denotes the projection onto [0, 1].

3: For (x, a), randomly sample s from the uniform distribution U(0, 1)
4: Construct h∗

ε′,δ′,Fair as follows:

if α̃ ≥ β̃, then

h∗
ε′,δ′,Fair(x, a) :=

{
1[h∗

ε,δ,0(x) = 1]1[s ≤ α̃+β̃
2α̃

] if a = 0

1[h∗
ε,δ,1(x) = 0]1[s ≤ α̃−β̃

2(1−β̃)
] + 1[h∗

ε,δ,1(x) = 1] if a = 1

if α̃ < β̃, then

h∗
ε′,δ′,Fair(x, a) :=

{
1[h∗

ε,δ,1(x) = 1]1[s ≤ α̃+β̃

2β̃
] if a = 1

1[h∗
ε,δ,0(x) = 0]1[s ≤ β̃−α̃

2(1−α̃)
] + 1[h∗

ε,δ,0(x) = 1] if a = 0

return h∗
ε′,δ′,Fair

by employing the Laplace mechanism, whose privacy guarantee is well-understood.

The following theorem delineates the performance of Algorithm 2 in terms of its

achievable privacy and fairness guarantees as well as bounds on its utility.

Theorem 8. The classifier h∗
ε′,δ′,Fair : X × {0, 1} → {0, 1} constructed by Algorithm

2 satisfies the following three properties:

• (Privacy guarantee) h∗
ε′,δ′,Fair satisfies (ε

′, δ′)-DP with ε′ = ε+ε0+ε1 and δ′ = δ,
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• (Fairness guarantee) We have:

∆SP (h
∗
ε′,δ′,Fair) ≤η

log(4/η)

nθε0
+

log(4/η)

nθ̄ε1
+

√
log(

8

η
)

1

2nθ
+

√
log(

8

η
)

1

2nθ̄
,

• (Utility guarantee) Let err∗(h∗
ε,δ,0, h

∗
ε,δ,1) be defined as:

min
ĥ:X×{0,1}→{0,1}

∆SP (ĥ)≤∆SP (h∗
ε′,δ′,Fair)

[
PµX

0
(ĥ0(X) ̸= h∗

ε,δ,0(X)) + PµX
1
(ĥ1(X) ̸= h∗

ε,δ,1(X))

]
.

(3.4.1)

Then, we have:

PµX
0
(h∗

ε′,δ′,Fair0
(X) ̸= h∗

ε,δ,0(X)) + PµX
1
(h∗

ε′,δ′,Fair1
(X) ̸= h∗

ε,δ,1(X))

≤η err
∗(h∗

ε,δ,0, h
∗
ε,δ,1) +

5

2

( log(4/η)
nθε0

+
log(4/η)

nθ̄ε1
+

√
log(

8

η
)

1

2nθ
+

√
log(

8

η
)

1

2nθ̄

)
.

The privacy guarantee of h∗
ε′,δ′,Fair has two components: the privacy guarantees

of the input classifiers and the Laplace mechanism employed to privately estimate ᾱ

and β̄ (line 2 in Algorithm 2). Thus, the privacy guarantee in the above theorem fol-

lows directly from a composition result (e.g., basic composition Dwork et al. (2014)).

However, the analysis pertaining to fairness and utility guarantees is rather long and

thus deferred to the appendix. The fairness guarantee demonstrates, as expected,

that perfect statistical parity can no longer be achievable when requiring privacy as

well. Nevertheless, the theorem shows that h∗
ε′,δ′,Fair satisfies γ-statistical parity where

γ > 0 is a small constant provided that the dataset is not highly imbalanced (i.e., θ

close to 0 or 1) and n is sufficiently large (compared to 1/ε0 and 1/ε1). We remark

that these assumptions were implicitly made in Zhao and Gordon (2022), in which
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they ignored the error in estimating the proportion of label one in each subgroup.

Finally, the utility guarantee presented in the theorem indicates that the necessary

perturbations in the final prediction by h∗
ε′,δ′,Fair is almost identical to what is expected

by the optimal classifier having the same level of statistical parity.

Rather than aiming to achieve a small statistical parity gap and a small utility

gap with high probability, we could alternatively focus on the average guarantees for

fairness and utility, as expounded by the next result.

Proposition 9. The classifier h∗
ε′,δ′,Fair : X × {0, 1} → {0, 1} constructed by Algo-

rithm 2 satisfies the following two properties:

• We have: (Fairness guarantee)

E
[
∆SP (h

∗
ε′,δ′,Fair)

]
≤ 1

nθε0
+

1

nθ̄ε1
+

√
1

4nθ
+

√
1

4nθ̄
,

• (Utility guarantee) We have:

E
[
PµX

0
(h∗

ε′,δ′,Fair0
(X) ̸= h∗

ε,δ,0(X)) + PµX
1
(h∗

ε′,δ′,Fair1
(X) ̸= h∗

ε,δ,1(X))
]

≤ E
[
err∗(h∗

ε,δ,0, h
∗
ε,δ,1)

]
+

5

2

( 1

nθε0
+

1

nθ̄ε1
+

√
1

4nθ
+

√
1

4nθ̄

)
,

where err∗(·, ·) was defined in (3.4.1).

3.5 Experiments

In this section, we seek to empirically compare Algorithm 2 with the current state-of-

the-art differentially private fair classifier, namely, DP-FERMI (Lowy et al., 2023).
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To this goal, we focus on two benchmark datasets from the UCI machine learning

repository (Lichman, 2013): the Adult and Credit Card datasets, both with binary

sensitive attributes and target labels.

In our experiments, we assessed two privacy configurations: (ε′ = 3, δ′ = 10−5)

and (ε′ = 9, δ′ = 10−5). When applying Algorithm 2 to the Adult and Credit Card

datasets, we set ε0 = ε1 = 0.05 and ε0 = ε1 = 0.1, respectively. We then feed Algo-

rithm 2 with the decoupled classifiers, h∗
ε,δ,0 and h∗

ε,δ,1 with parameters (ε, δ) chosen

in a way as to satisfy ε′ = ε + ε0 + ε1 and δ′ = δ for each specified (ε′, δ′) pair.

We trained these classifiers via DP-SGD. The training was conducted using Opacus

(Yousefpour et al., 2021), an open-source PyTorch library designed for training deep

learning models with differential privacy. Accordingly, we chose the standard devia-

tions of Gaussian noise in DP-SGD to be 3.13 and 1.5 for the Adult dataset, and to

4.44 and 2.49 for the Credit Card dataset, in order to achieve their respective privacy

parameters (ε′ = 3, δ′ = 10−5) and (ε′ = 9, δ′ = 10−5). Across all experiments of

DP-SGD, we consistently applied a clipping constant of 1.5 and a learning rate of

0.01. To achieve the most precise computation of privacy parameters, we utilized

the PRV accountant (Gopi et al., 2021), the state-of-the-art accounting method, to

determine the values for (ε, δ) for the classifiers h∗
ε,δ,0 and h∗

ε,δ,1.

For comparability with DP-FERMI, we employed logistic regression models. DP-

FERMI utilizes a loss function with a regularization constant λ to limit statistical

parity violations. A higher λ imposes stricter penalties for fairness violations, often at

the cost of reduced accuracy. In this framework, the desired ε′ and δ′ are set and the

required noise levels to meet these privacy guarantees are computed. It is important

to remark that DP-FERMI implicitly assumes that both the fraction of data points
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in the minority subgroup and the size of the entire dataset are publicly available

—similar to the assumption made in our work. All models, including Algorithm 2

and DP-FERMI, were trained for 50 epochs, except the Credit Card models using

(ε′ = 9, δ′ = 10−5) parameters, which were trained for 100 epochs. Within DP-

FERMI, learning rates were set at ηθ = 0.005 and ηW = 0.01. We chose these

parameters mainly because they were empirically shown in Lowy et al. (2023) to

be optimal for the datasets under consideration. A uniform batch size of 1024 was

maintained for all experiments.

While our theoretical framework focuses on the sum of prediction changes across

subgroup distributions, for comparison purposes with DP-FERMI, we used overall

accuracy as a utility metric. The final results are presented in Tables 3.1, 3.2, 3.3,

and 3.4. All of the results are averages over 10 trials. We remark that DP-FERMI

offers two privacy options: one for sensitive attributes and another for all features.

We used noise parameters for all-feature privacy in DP-FERMI to compare fairly with

Algorithm 2.

Table 3.1: Adult dataset (ε′ = 3, δ′ = 10−5) - PRV accountant

Method Accuracy Statistical Parity Gap
Algorithm 2 0.7763 0.0074

DP-FERMI (λ = 0.5) 0.7998 0.1020
DP-FERMI (λ = 1) 0.7859 0.0462
DP-FERMI (λ = 1.5) 0.7822 0.0267
DP-FERMI (λ = 1.8) 0.7770 0.0182
DP-FERMI (λ = 2.5) 0.7673 0.0099

In the Adult dataset, as shown in Table 3.1, Algorithm 2 achieves accuracy 0.7763.

Setting λ at 1.8, DP-FERMI achieves a comparable accuracy (0.7770) but exhibits a

statistical parity gap more than twice as large as what is guaranteed by Algorithm 2.
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Table 3.2: Adult dataset (ε′ = 9, δ′ = 10−5) - PRV accountant

Method Accuracy Statistical Parity Gap
Algorithm 2 0.7790 0.0091

DP-FERMI (λ = 0.5) 0.8091 0.0944
DP-FERMI (λ = 1) 0.7923 0.0413
DP-FERMI (λ = 1.5) 0.7810 0.0152
DP-FERMI (λ = 1.7) 0.7782 0.0121
DP-FERMI (λ = 2.5) 0.7693 0.0030

Table 3.3: Credit Card dataset (ε′ = 3, δ′ = 10−5) - PRV accountant

Method Accuracy Statistical Parity Gap
Algorithm 2 0.7844 0.0086

DP-FERMI (λ = 0.1) 0.7899 0.0212
DP-FERMI (λ = 0.2) 0.7846 0.0193
DP-FERMI (λ = 0.5) 0.7777 0.0185
DP-FERMI (λ = 1) 0.7759 0.0105
DP-FERMI (λ = 2.5) 0.7669 0.0110

Table 3.4: Credit Card dataset (ε′ = 9, δ′ = 10−5) - PRV accountant

Method Accuracy Statistical Parity Gap
Algorithm 2 0.7900 0.0056

DP-FERMI (λ = 0.25) 0.7996 0.0188
DP-FERMI (λ = 0.3) 0.7971 0.0182
DP-FERMI (λ = 0.5) 0.7912 0.0172
DP-FERMI (λ = 1) 0.7895 0.0105
DP-FERMI (λ = 2.5) 0.7884 0.0066
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Table 3.2 illustrates that Algorithm 2 and DP-FERMI with λ = 1.7 achieve similar

accuracy, yet Algorithm 2 exhibits a smaller statistical parity gap (0.0091) compared

to DP-FERMI (0.0121). Altogether, these tables empirically underscore that apply-

ing Algorithm 2 to the Adult dataset results in a better fairness guarantee while

maintaining similar privacy and accuracy guarantees.

Similar trends are observed in the Credit Card dataset. Table 3.3 displays Al-

gorithm 2 achieving an accuracy of 0.7844, closely matched by DP-FERMI with an

accuracy of 0.7846 at λ = 0.2. However, the statistical parity gap of Algorithm 2 is

less than half that of DP-FERMI (0.0086 compared to 0.0193). As shown in Table

3.4, Algorithm 2 and DP-FERMI with λ = 1 attain similar accuracy, yet Algorithm 2

exhibits a statistical parity gap of 0.0056, nearly half of DP-FERMI’s 0.0105.

31



Chapter 4

Local DP and Pre-Processing

Techniques for Fairness: Related

Work

We categorize the related work into two main groups. The first group includes studies

exploring the intersection of LDP and fairness. The second group consists of papers

focused on fairness intervention methods for classification. Among these, studies on

pre-processing methods aimed at improving fairness are the most relevant to our

work.

4.1 Effect of LDP on Fairness

Several studies have examined the impact of LDP on fairness in classification. Ar-

colezi et al. (2023) empirically shows that applying LDP to sensitive attributes im-

proves fairness with minimal utility loss compared to non-private data, highlighting
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that GRR and subset selection (SS) (Wang et al., 2016) offer the best accuracy-

fairness-privacy trade-offs among state-of-the-art LDP mechanisms. Expanding on

this, Makhlouf et al. (2024a) experimentally demonstrates that stronger privacy (i.e.,

lower ε) further enhances fairness, with greater reductions in disparity when LDP

is applied to multiple sensitive attributes. They subsequently delineate this obser-

vation by characterizing conditions under which RR implies better unfairness for

binary sensitive attributes (Makhlouf et al., 2024b). The work most closely related

to ours is Makhlouf et al. (2024b), as they also theoretically analyze the impact of

LDP on fairness. However, their study is limited to binary sensitive attributes only.

Other works focus on learning frameworks with privatized sensitive attributes. For

instance, Mozannar et al. (2020) adapts non-discriminatory classifiers to work with

privatized attributes using GRR, offering theoretical performance guarantees on util-

ity and fairness. Similarly, Chen et al. (2022) considers the scenario of semi-private

sensitive attributes.

4.2 Fairness Intervention Methods

Fairness intervention methods are applied at different stages to mitigate bias: pre-

processing before training (Calders et al., 2009; Wang et al., 2019; Kamiran and

Calders, 2012; Celis et al., 2020; Calmon et al., 2017; Hajian and Domingo-Ferrer,

2012; Chakraborty et al., 2021; Peng et al., 2022; Gohar et al., 2023; Madras et al.,

2018; Zemel et al., 2013), in-processing during model training (Lowy et al., 2021; Cho

et al., 2020a,b; Jiang et al., 2020; Mary et al., 2019; Prost et al., 2019; Zhang et al.,

2018; Agarwal et al., 2018; Zafar et al., 2017), and post-processing after generating

predictions (Wei et al., 2020, 2021; Chzhen et al., 2019; Pleiss et al., 2017; Kim
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et al., 2020; Jiang and Nachum, 2020; Yang et al., 2020; Alghamdi et al., 2022).

Among these, pre-processing methods offer the most flexibility within the data science

pipeline, as they operate independently of the modeling algorithm (Calmon et al.,

2017).

4.3 Pre-Processing Techniques for Fairness

Pre-processing techniques for bias mitigation in fairness literature involve making

changes to training data. Some methods modify values within the training data, such

as altering ground truth labels (relabeling) (Calders et al., 2009; Hajian and Domingo-

Ferrer, 2012; Kamiran and Calders, 2012) or adjusting other features (perturbation)

(Wang et al., 2019). Kamiran and Calders (2012) reduces bias by re-weighting existing

data points, while Wang et al. (2019) perturbs the input distribution for disadvan-

taged groups to create a counterfactual distribution, particularly targeting binary

sensitive attributes.

Another category of work considers sampling methods. Sampling methods adjust

training data by changing sample distributions (e.g., adding or removing samples)

or adapting their influence on training (Chakraborty et al., 2021; Celis et al., 2020).

Celis et al. (2020) proposes an optimization-based framework to learn distributions

over the data domain that stay close to the empirical distribution. This technique

is applicable to datasets with discrete or categorical attributes, both sensitive and

non-sensitive. Other methods augment training data with additional, ideally unbi-

ased features (Madras et al., 2018). Finally, some techniques learn transformations

of the training data to reduce bias while retaining as much information as possible
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(Zemel et al., 2013; Calmon et al., 2017). Calmon et al. (2017) introduces an op-

timization algorithm that modifies non-sensitive features and labels while keeping

sensitive attributes unchanged, focusing on datasets with categorical or discrete at-

tributes. Our method aligns with perturbation-based approaches, as we perturb the

sensitive attribute using LDP.

4.4 Overview of Our Approach

Our approach aligns closely with pre-processing methods, employing LDP as a data

pre-processing technique aimed at enhancing fairness. Building on the recent find-

ings about the relationship between LDP and fairness (Arcolezi et al., 2023; Makhlouf

et al., 2024b,a), we investigate the use of LDP as a pre-processing technique to re-

duce unfairness. Our approach formulates the problem of identifying the optimal

LDP-based pre-processing mechanism to minimize data unfairness. We also offer a

theoretical analysis that explains how this mechanism influences classification fair-

ness. Finally, we validate the effectiveness of this pre-processing mechanism through

extensive experiments across various datasets and fairness metrics, demonstrating its

superior performance in reducing classification unfairness.
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Chapter 5

Local DP as a Pre-processing

Technique for Fairness in

Classification: Main Results

5.1 Notation

In this section, we consider a binary classification setting with a joint distribution

PXAY over the triplet T = (X,A, Y ), where X ∈ X ⊂ Rd represents the feature

vector of non-sensitive attributes. The sensitive attribute A may vary depending

on the scenario: in the non-binary case, A ∈ {1, 2, . . . , k} (with k ≥ 2), while in the

binary case, A ∈ {0, 1}. The target output Y ∈ {0, 1} is the label to be predicted. We

introduce Z, the perturbed version of the sensitive attribute A, which results from

applying an LDP mechanism. When such a mechanism is applied to the sensitive

attribute in a dataset, the triplet (X,A, Y ) becomes (X,Z, Y ), where Z is a random

variable derived from perturbing A. For the distribution PXAY , or a dataset D with
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data points independently sampled from PXAY , we define pi = Pr(A = i), representing

the probability that A = i for i ∈ {1, 2, . . . , k}, and p1|i = Pr(Y = 1 | A = i). While

in practice we typically work with datasets and the true data distribution is unknown,

we treat the dataset D and the distribution PXAY interchangeably in this work. All

metrics can be defined in a similar way for both the dataset and the distribution. The

set {1, 2, . . . , k} is denoted as [k], and the symbol ⌊·⌉ is used to indicate rounding to

the nearest positive integer.

5.2 Preliminaries

In this section, we present the key definitions used throughout the chapter and provide

an overview of commonly used LDP mechanisms.

5.2.1 Data Unfairness Metrics

Definition 10 (Data unfairness ∆ (Calmon et al., 2017)). Let X ∈ X , A ∈ [k],

and Y ∈ {0, 1} be random variables representing non-sensitive features, sensitive

attributes, and labels, with a joint distribution PXAY . Each data point in the dataset

D is a triplet (xi, ai, yi), where (xi, ai, yi) ∼ PXAY . The data unfairness metric ∆(D)

associated with D or PXAY is defined as:

∆(D) := max
a∈[k]

∣∣∣∣Pr(Y = 1 | A = a)

Pr(Y = 1)
− 1

∣∣∣∣ .
Definition 11 (Data unfairness ∆′ (Kamiran and Calders, 2012)). Let X ∈ X ,

A ∈ [k], and Y ∈ {0, 1} be random variables representing non-sensitive features,

sensitive attributes, and labels, with a joint distribution PXAY . Each data point in
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the dataset D is a triplet (xi, ai, yi), where (xi, ai, yi) ∼ PXAY . The data unfairness

metric ∆′(D) associated with D or PXAY is defined as:

∆′(D) := max
a,a′∈[k]

∣∣∣Pr(Y = 1 | A = a)− Pr(Y = 1 | A = a′)
∣∣∣.

Both data unfairness metrics, ∆ and ∆′, capture the dependence (or indepen-

dence) of the actual labels on the sensitive attribute. It can be shown that ∆(D) ≤

c1∆
′(D) and ∆′(D) ≤ c2∆(D) for some constants c1 and c2 that depend on the

marginal distribution PY of the joint distribution PXAY (see Lemma 16). Therefore,

the metrics ∆ and ∆′ are essentially the same. However, for technical reasons that

will become clear in the following sections, we use Definition 11 to formulate the

optimal LDP-based pre-processing problem for binary sensitive attributes in Section

5.4 and to establish the relationship between data unfairness and classification unfair-

ness in Section 5.6. In Section 5.5, we utilize Definition 10 to formulate the optimal

LDP-based pre-processing problem for non-binary sensitive attributes.

5.2.2 Discrimination-Accuracy Optimality

Definition 12 (Discrimination-accuracy optimal classifier (Kamiran and Calders,

2012)). Let h and h′ be two classifiers. We say that h dominates h′ if the accuracy of

h is greater than or equal to that of h′, and the discrimination of h (measured with

respect to an unfairness metric such as equalized opportunity or statistical parity) is

at most that of h′. Classifier h strictly dominates h′ if at least one of these inequalities

is strict. Given a set of classifiers H, we call a classifier h ∈ H optimal with respect

to discrimination and accuracy (DA-optimal) in H if no other classifier in H strictly

dominates h.
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5.2.3 Common LDP Mechanisms

Generalized randomized response (GRR)(Warner, 1965; Kairouz et al., 2014):

Given a sensitive attribute A taking values in [k], the generalized randomized response

(GRR) mechanism perturbs the true value a ∈ [k] to preserve privacy. GRR outputs

the true value a with probability π, and any other possible value a′ ∈ [k] \ {a} with

a different probability π̄. Specifically, for the perturbed output Z:

∀z ∈ [k] : Pr(Z = z | A = a) =


π = eε

eε+k−1
if z = a,

π̄ = 1
eε+k−1

if z ̸= a,

In binary A case, the mechanism is known as randomized response (RR).

Subset selection (SS) (Wang et al., 2016): Given a sensitive attribute A taking

values in [k], SS mechanism perturbs the true value a ∈ [k] by reporting a subset of

values Ω ⊆ [k]. The mechanism aims to include the true value a in the subset Ω with

a higher probability than any other value in [k] \ {a}. The optimal subset size that

minimizes variance is ω =
⌊

k
eε+1

⌉
. The SS mechanism proceeds as follows:

1. Initialize an empty subset Ω.

2. Add the true value a to Ω with probability

p =
ωeε

ωeε + k − ω
.

3. Fill Ω as follows:

• If a ∈ Ω, sample ω − 1 additional values uniformly at random (without

replacement) from [k] \ {a} and add them to Ω.
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• If a /∈ Ω, sample ω values uniformly at random (without replacement) from

[k] \ {a} and add them to Ω.

Finally, the user sends the subset Ω to the server as the perturbed value. As we can

see, when ω = 1, SS is equivalent to GRR.

5.3 GRR and Data Unfairness

Let X ∈ X , A ∈ [k], and Y ∈ {0, 1} be random variables representing non-sensitive

features, sensitive attributes, and labels, respectively, with a joint distribution PXAY .

Each data point in the dataset D is a triplet (xi, ai, yi), where (xi, ai, yi) ∼ PXAY .

Now, suppose we independently perturb the sensitive attribute ai of each data point

in D using GRR to generate a new dataset Dε
GRR, keeping the same xi and yi. The

resulting dataset isDε
GRR = {(xi, zi, yi)}ni=1, where zi is the noisy version of ai obtained

via GRR. We define the data unfairness ∆′(Dε
GRR) in a similar manner to Definition 11

as:

∆′(Dε
GRR) := max

z,z′∈[k]

∣∣∣Pr(Y = 1 | Z = z)− Pr(Y = 1 | Z = z′)
∣∣∣,

where Z is the random variable representing the perturbed sensitive attribute after

applying GRR to A. These probabilities depend on both the original joint distribution

PXAY and the randomness introduced by GRR.

In the following lemma, we analyze the impact of applying GRR to the sensitive

attributes of a dataset on data unfairness.

Lemma 13. For binary Y and non-binary A, applying GRR to the sensitive attributes

A of a dataset results in ∆′(Dε
GRR) ≤ ∆′(D).
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This implies that applying GRR to the sensitive attributes of a dataset can help

reduce data unfairness. A natural question that follows is: if GRR can reduce data

unfairness, can we identify the optimal ε-LDP mechanism for minimizing data un-

fairness? In Section 5.4, we address this by formulating the optimal LDP mechanism

for enhancing data fairness in the case of binary sensitive attributes.

5.4 Optimal LDP Mechanism with Binary Sensi-

tive Attribute

Observing that GRR, as one example of an LDP mechanism, can reduce data unfair-

ness, we now turn to the question of whether it is possible to design an optimal LDP

mechanism specifically aimed at minimizing data unfairness. To begin, we consider

the case of a binary sensitive attribute for simplicity.

Consider a dataset D = {(xi, ai, yi)}ni=1, where ai ∈ {0, 1} represents the sensitive

attribute for each data point, and yi is the corresponding label. We independently

perturb the sensitive attribute ai for each data point using an ε-LDP mechanism M ,

resulting in a new dataset Dε
M . This new dataset retains the original features xi and

labels yi, but with perturbed sensitive attributes zi. Thus, the transformed dataset is

Dε
M = {(xi, zi, yi)}ni=1, where zi is the noisy version of ai generated by the mechanism

M , which is a randomized mapping characterized as follows:

Pr(Z = z |A = 0) =


p if z = 0

1− p if z = 1
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Pr(Z = z |A = 1) =


q if z = 1

1− q if z = 0

, (5.4.1)

where Z is the random variable resulting from applying the mechanism M to A. In

this mechanism, p and q represent the probabilities of correctly reporting the sensitive

attribute when the original values are 0 and 1, respectively, and these probabilities

may differ. RR is a specific case of this mechanism where p = q = eε

eε+1
.

For a given ε, the goal is to find the optimal ε-LDP mechanism. Specifically, we

seek a mechanism, denoted by M , such that when applied to the original data, the

resulting unfairness metric ∆′(Dε
M) is minimized in comparison to ∆′(D). In essence,

the aim is to minimize the ratio
∆′(Dε

M )

∆′(D)
. Note that ∆′(D) is constant since it depends

only on the distribution of the original data (PXAY ) and not on the parameters of the

LDP mechanism.

If we consider the objective function min
ε−LDPM

∆′(Dε
M )

∆′(D)
, the optimal mechanism for

fairness would be a completely random mechanism, where the probability of misre-

porting sensitive attributes is 1 − p = 1 − q = 1
2
. A fully random mechanism, with

p = q = 1
2
, satisfies ε-LDP for any ε ≥ 0. However, to achieve a more meaning-

ful balance between privacy and fairness, we propose the following refined objective

function:

min
ε0−LDPM

ε0≥ε

∆′(Dε0
M)

∆′(D)
. (5.4.2)

This approach considers all ε0-LDP mechanisms where ε0 is not more private than ε

(i.e., ε0 ≥ ε). This ensures that for a given ε, the mechanism does not compromise

utility by using smaller privacy parameters, and only mechanisms with non-trivial
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utility are considered. For a given ε, the goal is to find the optimal ε-LDP mechanism,

specifically the optimal parameters p∗ and q∗, such that the objective function (5.4.2)

is minimized. The following theorem presents the optimal ε-LDP mechanism for the

case of a binary sensitive attribute.

Theorem 14. Consider the case of binary Y and binary A, where p1|0 ≤ p1|1. Let

(p∗, q∗) represent the optimal parameters that minimize the objective function defined

in (5.4.2). The optimal LDP mechanism is determined as follows:

If p0 < p1, (p∗, q∗) =

(
1− e−ε

2
,
1

2

)
,

If p1 < p0, (p∗, q∗) =

(
1

2
, 1− e−ε

2

)
,

where p and q are the parameters of the general LDP mechanism as defined in (5.4.1).

This theorem identifies the optimal mechanism for applying LDP as a pre-processing

strategy in the binary sensitive attribute case. Essentially, LDP is used as a tool to

pre-process data and minimize data unfairness. However, sensitive attributes are not

always binary, leading to the natural inquiry of how to determine the optimal pre-

processing mechanism under LDP constraints for non-binary sensitive attributes. In

the next section, we explore this issue.
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5.5 Optimal LDPMechanism with Non-Binary Sen-

sitive Attribute

As demonstrated in Theorem 14, the optimal pre-processing mechanism under LDP

for a binary sensitive attribute can be expressed in closed form, i.e., the optimal

solution (p∗, q∗) can be computed based on data distribution and the parameter ε. In

this section, we extend this result to the case of non-binary sensitive attributes. We

begin by defining the problem setting for non-binary sensitive attributes and then

discuss how the optimal mechanism can be derived under this new setting.

We want to find the optimal LDP mechanism for a binary Y and non-binary A

case. Let A ∈ [k], and let Q be a k × k matrix containing the parameters of the

LDP mechanism. The randomized mechanism changes the sensitive attribute of the

original data from A = a to Z = z using the parameters of Q, defined as:

Pr(Z = j | A = i) = qij ∀i, j ∈ [k],

where qij is the element in the i-th row and j-th column of Q. The matrix Q

should satisfy the following constraints:

1. LDP Constraint: The matrix Q should satisfy ε-LDP, i.e.,

qij − eεqi′j ≤ 0 ∀i, i′, j ∈ [k] with i ̸= i′. (5.5.1)

2. Row-Stochastic Constraint: The matrix Q should be row-stochastic, i.e.,

k∑
j=1

qij = 1 ∀i ∈ [k], (5.5.2)
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qij ≥ 0 ∀i, j ∈ [k]. (5.5.3)

3. Truthfulness Constraint: The probability of truly representing the sensitive

attribute should be larger than or equal to the probability of misrepresenting

it, i.e.,

qii ≥ qij ∀i, j ∈ [k], (5.5.4)

qjj ≥ qij ∀i, j ∈ [k]. (5.5.5)

4. Utility Constraint: The mechanism should satisfy a utility metric, where the

probability of error (i.e., total probability of Z ̸= A) should be smaller than

some predefined constant ζ. This constraint can be formulated as:

Pr(A = Z) ≥ 1− ζ.

We know:

Pr(A = Z) =
k∑

i=1

Pr(Z = i, A = i) =
k∑

i=1

Pr(Z = i | A = i) Pr(A = i) =
k∑

i=1

qiipi.

Therefore, the utility constraint becomes:

k∑
i=1

qiipi ≥ 1− ζ (5.5.6)

This utility constraint aims to regulate the trade-off between fairness and utility.

Without the utility constraint, if we only consider the data fairness objective function,
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we may converge to a scenario where perfect data fairness is achieved at the cost of

poor utility. This constraint prevents such a scenario. The parameter ζ allows us to

control the utility of the LDP mechanism.

Given (5.5.5), (5.5.1) can be reduced to:

qjj − eεqij ≤ 0 ∀i, j ∈ [k]. (5.5.7)

Altogether, the optimization problem is as follows:

min
Q

∆(Dε
M) (5.5.8)

s.t. qjj − eεqij ≤ 0 ∀i, j ∈ [k]

k∑
j=1

qij = 1 ∀i ∈ [k]

qij ≥ 0, qii ≥ qij qjj ≥ qij, ∀i, j ∈ [k]

k∑
i=1

qiipi ≥ 1− ζ

Now, we need to write ∆(Dε
M) in terms of the parameters of the optimization

problem, i.e., entries of matrix Q. It can be shown that:

∆(Dε
M) = max

a∈[k]

∣∣∣∣Pr(Y = 1 | Z = a)

Pr(Y = 1)
− 1

∣∣∣∣ = max
a∈[k]

∣∣∣∣∣
k∑

j=1

p1|jpjqja

k∑
j=1

Pr(Y = 1)pjqja

− 1

∣∣∣∣∣.

To transform the equality constraint into an inequality constraint, we assume that

qii = 1 −
k∑

j=1
j ̸=i

qij ∀i ∈ [k]. With this assumption, optimization problem (5.5.8) can
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be reformulated as:

min
Q

max
a∈[k]

∣∣∣∣∣
k∑

j=1
j ̸=a

p1|jpjqja + p1|apaqaa −
k∑

j=1
j ̸=a

Pr(Y = 1)pjqja − Pr(Y = 1)paqaa

k∑
j=1
j ̸=a

Pr(Y = 1)pjqja + Pr(Y = 1)paqaa

∣∣∣∣∣ (5.5.9)

s.t.
(
1−

k∑
a=1
a̸=j

qja

)
− eεqij ≤ 0 ∀i, j ∈ [k], i ̸= j

k∑
a=1
a̸=i

qia ≤ 1 ∀i ∈ [k]

qij ≥ 0, 1−
k∑

a=1
a̸=i

qia ≥ qij, 1−
k∑

a=1
a̸=j

qja ≥ qij ∀i, j ∈ [k], i ̸= j

k∑
i=1

(
1−

k∑
a=1
a̸=i

qia

)
pi ≥ 1− ζ

Note that the parameters of this optimization problem are the non-diagonal en-

tries of the matrix Q, rather than all of its entries. This is because we know that

qaa = 1 −
k∑

j=1
j ̸=a

qaj for all a ∈ [k]. The optimization problem (5.5.9) can be viewed

as a min-max linear fractional program, as described in Jiao and Li (2022). For fixed

values of ε and ζ, this problem can be solved numerically using the branch-and-bound

method, as outlined in Jiao and Li (2022). Thus, for any given data distribution, we

can numerically solve the problem to determine the optimal pre-processing mechanism

with the desired ε parameter for LDP and ζ error parameter. We choose Definition

10 over Definition 11 because the optimization problem (5.5.8) can be expressed as a

min-max linear fractional program when using the data unfairness metric ∆.
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5.6 Data Fairness Leads to Classification Fairness

In previous sections, we introduced an optimal LDP-based mechanism designed to

minimize data unfairness. However, the ultimate goal extends beyond minimizing

data unfairness itself. The focus is to ensure that, when a classifier is trained on such

data, the resulting classification unfairness is also minimized. Since classification

unfairness depends on the specific classifier being used, it is challenging to make a

universal statement in this regard. In this section, we will explore a condition that,

if satisfied by the classifier, allows us to claim that reducing data unfairness will lead

to a corresponding reduction in classification unfairness.

Utilizing the concept of DA-optimal classifiers, we can now establish a relationship

between data unfairness and classification unfairness, as outlined in the following

theorem.

Theorem 15. Let PXAY and QXAY be two joint data distributions over X ×{0, 1}×

{0, 1}, and let H∗ denote the class of all classifiers satisfying Pr(Ŷ = 1) = Pr(Y = 1).

Assume that for all a ∈ {0, 1}, the marginal distributions of the sensitive attribute

are equal, i.e., Pr(X,A,Y )∼PXAY
(A = a) = Pr(X,A,Y )∼QXAY

(A = a) for all a ∈ {0, 1},

and that the data unfairness under PXAY is no greater than that under QXAY , i.e.,

∆′(PXAY ) ≤ ∆′(QXAY ).

If the classifiers hP and hQ are DA-optimal within H∗, have equal accuracy, and

are learned on data drawn from PXAY and QXAY respectively, then the following

inequality holds:

∆SP(hP ) ≤ ∆SP(hQ).
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This theorem establishes a link between data unfairness and classification unfair-

ness using the DA-optimality condition (Kamiran and Calders, 2012). When clas-

sifiers satisfy this condition, it ensures a meaningful relationship between data and

classification unfairness, justifying why reducing data unfairness can lead to models

that make less discriminatory decisions. The statistical parity gap is used as a measure

of classification fairness in this context. We employ Definition 11 as a data unfairness

metric to establish this connection because it provides a clear relationship between

the statistical parity gap and the ∆′ unfairness metric under the DA-optimality condi-

tion. Both Definition 4 and Definition 11 capture the relationship between predicted

or actual labels and sensitive attributes in the same way.

Having theoretically examined the optimal LDP-based pre-processing mechanisms

for minimizing data unfairness, the next section will present experiments evaluating

the performance of these mechanisms in classification tasks. These experiments will

address both binary and non-binary sensitive attribute optimization problems.

5.7 Experiments

Optimal mechanisms discussed in Sections 5.4 and 5.5 are designed to minimize data

unfairness under utility and LDP constraints. In this section, we empirically demon-

strate the effectiveness of these mechanisms in classification settings. We compare

our optimal mechanism (OPT) with GRR and SS. As shown in Arcolezi et al. (2023),

GRR and SS generally provide the best privacy-utility-fairness trade-off across var-

ious datasets. We compare OPT with GRR and SS in both binary and non-binary

sensitive attribute cases, evaluating both utility and fairness metrics across different

datasets. In Section 5.7.1, we outline the experimental setup for this comparison,
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including the datasets used and the detailed procedures of our experiments. Section

5.7.2 presents the results for the binary sensitive attribute case, while Section 5.7.3

showcases the empirical results for the non-binary sensitive attribute case. Finally,

in Section 5.7.4, we compare OPT with Fair Projection (Alghamdi et al., 2022), the

state-of-the-art post-processing fairness intervention framework (Wang et al., 2024;

Denis et al., 2024).

5.7.1 Experimental Setup for Comparing LDP Mechanisms

Our experimental setup follows a similar approach to Arcolezi et al. (2023), using

the Adult (Lichman, 2013) and Law School Admissions Council (LSAC) (Wightman,

1998) datasets. In the Adult dataset, the classification label Y represents an individ-

ual’s income, which is binary based on a threshold of $26k. For the LSAC dataset, the

target label Y indicates whether a candidate has passed the bar exam, which is also a

binary outcome (Y ∈ {0, 1}). Depending on the specific experiment—whether binary

or non-binary sensitive attributes are used—the sensitive attribute varies between

race, gender, a combination of race and gender, or family income.

For each experimental case, we apply the LDP mechanisms GRR, SS, and OPT for

different values of ε (the LDP parameter) and compare the results with the non-DP

case, where no pre-processing is applied to the sensitive attributes and classification is

performed directly. The classifier ĥ is implemented using the state-of-the-art LGBM

(Ke et al., 2017), with an 80/20 training/testing split. All experiments are averaged

over 20 different random seeds to reduce the influence of randomness.

In our experiments, individual predictions for both the non-private and private

versions are obtained by applying the models to the original testing data without
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LDP mechanisms. As utility metrics, we report accuracy and F1-score, while fair-

ness metrics include the equalized opportunity gap ∆EO(ĥ) and statistical parity gap

∆SP(ĥ).

5.7.2 Comparison of LDP Mechanisms: Binary Sensitive At-

tribute

In this section, we apply three LDP mechanisms—OPT, GRR, and SS—to binary

sensitive attributes. We then train a classifier on the perturbed datasets and compare

the utility and fairness metrics of these mechanisms against a non-DP case, where

no LDP pre-processing is applied to the data. In the binary case, OPT refers to the

mechanism defined in Theorem 14. For both Adult and LSAC datasets, we considered

gender to be a sensitive attribute.

Figure 5.1: Utility metrics for Adult
dataset with binary sensitive

attribute ’gender’

Figure 5.2: Fairness metrics for Adult
dataset with binary sensitive

attribute ’gender’

As shown in Figures 5.1 and 5.3, applying OPT has little to no effect on utility

metrics such as F1-score and accuracy across different ε values, compared to the
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Figure 5.3: Utility metrics for LSAC
dataset with binary sensitive

attribute ’gender’

Figure 5.4: Fairness metrics for LSAC
dataset with binary sensitive

attribute ’gender’

other LDP mechanisms and even the non-DP case. However, Figures 5.2 and 5.4

demonstrate consistently smaller classification unfairness gaps for OPT compared to

GRR, SS, and the non-DP case.

For smaller ε values, OPT outperforms the other mechanisms in terms of classi-

fication fairness. As ε increases, the gap in unfairness between OPT and GRR/SS

widens. In particular, for larger ε values, both ∆SP(ĥ) and ∆EO(ĥ) for OPT are al-

most half of those observed for GRR, SS, and the non-DP case for the LSAC dataset.

For the Adult dataset, OPT shows at least a 2% reduction in both unfairness metrics

for larger ε values.

Note that, in the binary case, OPT does not converge to the non-private scenario

as ε increases. This is because, in the optimal mechanism, even for large ε values,

one of the sensitive attributes is always perturbed with probability 1
2
, representing

an optimal LDP-based pre-processing strategy. Also, we should note that in a binary

sensitive attribute case, SS and RR are essentially the same mechanisms.
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5.7.3 Comparison of LDP Mechanisms: Non-Binary Sensi-

tive Attribute

In this section, we use the same datasets but with different sensitive attribute features

to handle non-binary cases. For the Adult dataset, we consider two scenarios. In the

first scenario, the sensitive attribute is race, which has five distinct values (k = 5).

In the second scenario, we combine race and gender into a single attribute, resulting

in a combined sensitive attribute with ten distinct values (k = 10). For the LSAC

dataset, we consider family income as the non-binary sensitive attribute, also with

five distinct values (k = 5).

For the non-binary sensitive attribute case, we formulate the min-max linear frac-

tional program associated with finding the optimal LDP mechanism, as described in

(5.5.9). We then solve this problem numerically, following the approach in Jiao and

Li (2022). Given specific values of ε and ζ, we can obtain the optimal mechanism by

solving the program. For the error probability ζ, we use the smallest value for which

the problem (5.5.9) remains feasible.

After determining the optimal mechanism, we apply it to the sensitive attributes.

Similar to the binary case, we compare the performance of the optimal mechanism

with GRR, SS, and the non-DP case using both fairness and utility metrics after

classification.

As shown in Figures 5.5, 5.6, 5.7, 5.8, 5.9, and 5.10, the accuracy and F1-score

remain very similar across all LDP mechanisms, including OPT, GRR, and SS, consis-

tent with the results from the binary sensitive attribute experiments. OPT performs

similarly to GRR and SS for smaller values of ε in all three experiments. However,

beyond a certain threshold of ε, OPT begins to outperform GRR and SS in fairness
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Figure 5.5: Utility metrics for Adult
dataset with non-binary sensitive

attribute ’race’ with k = 5

Figure 5.6: Fairness metrics for Adult
dataset with non-binary sensitive

attribute ’race’ with k = 5

metrics, including the statistical parity gap and the equalized opportunity gap, un-

derscoring the effectiveness of OPT as an optimal LDP-based pre-processing method.

Although we do not have a closed-form solution for the OPT mechanism in a non-

binary A case, the mechanism obtained by solving the optimization problem (5.5.9)

proves to be an effective pre-processing method, reducing unfairness while having a

negligible impact on utility metrics. It is important to note that the values of the

unfairness metrics, ∆SP(ĥ) and ∆EO(ĥ), tend to increase as the support size of the

sensitive attribute increases. This is because these metrics are defined as worst-case

differences.

We combined the sensitive attributes race and gender to increase the support size

of the sensitive attribute, allowing us to evaluate how OPT performs with larger

support sizes (k). While increasing k does result in a longer computation time for

solving the min-max linear fractional optimization problem (5.5.9), the approach

remains effective in reducing classification unfairness.
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Figure 5.7: Utility metrics for LSAC
dataset with non-binary sensitive
attribute ’family income’ with

k = 5

Figure 5.8: Fairness metrics for LSAC
dataset with non-binary sensitive
attribute ’family income’ with

k = 5

5.7.4 Comparing Optimal LDP Mechanism with Fair Pro-

jection

In previous sections, experimental results demonstrated that the optimal LDP-based

mechanism outperforms standard LDP mechanisms in classification fairness while

having a minimal impact on utility. In this section, we compare OPT with Fair

Projection (Alghamdi et al., 2022), the state-of-the-art post-processing fairness inter-

vention framework.

For each dataset, we apply OPT to the sensitive attribute, using three different

values of ε. After this transformation, we proceed with the classification task on

the pre-processed dataset. We compare OPT with a Non-Fair classification baseline,

where no fairness intervention is applied, and classification is performed directly on

the original dataset without any pre-processing. Additionally, we compare OPT with

Fair Projection which performs classification on the original dataset, followed by
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Figure 5.9: Utility metrics for Adult
dataset with combined non-binary
sensitive attribute ’race-gender’

with k = 10

Figure 5.10: Fairness metrics for
Adult dataset with combined
non-binary sensitive attribute
’race-gender’ with k = 10

a post-processing step to obtain a final model that satisfies fairness criteria. The

experiments in this section are conducted on a binary sensitive attribute. The same

experimental approach can be applied to a non-binary sensitive attribute, with the

optimal mechanism obtained by algorithmically solving the optimization problem

(5.5.9).

Fair Projection introduces an accuracy-fairness tradeoff that allows adjustments

based on the desired level of fairness in the classifications. To ensure a fair comparison

with OPT, we select the point on this tradeoff curve where the unfairness metric of

Fair Projection matches that of the optimal mechanism. This alignment enables a

utility comparison under a fixed level of unfairness. We use cross-entropy and KL-

divergence as post-processing loss functions, following the approach in Alghamdi et al.

(2022). These represent different instantiations of Fair Projection (FairProjection-CE

and FairProjection-KL). We consider two fairness constraints: mean equalized odds

and statistical parity. Consistent with the experiments in Alghamdi et al. (2022), we
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employ a gradient boosting classifier for all experiments. All results in this section

are averaged over 10 trials.

Table 5.1: COMPAS dataset, statistical parity

Method Accuracy
Statistical
Parity Gap

OPT (ε = 0.2) 0.6798 0.2200
OPT (ε = 1) 0.6802 0.2346
OPT (ε = 4) 0.6804 0.2482
Non-Fair 0.6807 0.2553

Fair Projection - KL 0.6784 0.2201
Fair Projection - CE 0.6789 0.2197
Fair Projection - KL 0.6794 0.2345
Fair Projection - CE 0.6792 0.2348
Fair Projection - KL 0.6803 0.2486
Fair Projection - CE 0.6802 0.2480

Table 5.2: COMPAS dataset, mean equalized odds

Method Accuracy
Mean Equalized

Odds
OPT (ε = 0.2) 0.6798 0.1670
OPT (ε = 1) 0.6802 0.1780
OPT (ε = 4) 0.6804 0.1943
Non-Fair 0.6807 0.2106

Fair Projection - KL 0.6785 0.1675
Fair Projection - CE 0.6781 0.1664
Fair Projection - KL 0.6790 0.1785
Fair Projection - CE 0.6792 0.1776
Fair Projection - KL 0.6802 0.1941
Fair Projection - CE 0.6798 0.1938

For the COMPAS dataset, Tables 5.1 and 5.2 show that for a fixed level of sta-

tistical parity gap or mean equalized odds, OPT performs slightly better than Fair

Projection - KL and Fair Projection - CE in terms of accuracy. For instance, OPT
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Table 5.3: Adult dataset, statistical parity

Method Accuracy
Statistical
Parity Gap

OPT (ε = 0.2) 0.8609 0.1094
OPT (ε = 1) 0.8611 0.1099
OPT (ε = 4) 0.8611 0.1101
Non-Fair 0.8611 0.1151

Fair Projection - KL 0.8607 0.1090
Fair Projection - CE 0.8606 0.1092
Fair Projection - KL 0.8610 0.1101
Fair Projection - CE 0.8610 0.1101

Table 5.4: Adult dataset, mean equalized odds

Method Accuracy
Mean Equalized

Odds
OPT (ε = 0.2) 0.8609 0.0573
OPT (ε = 1) 0.8611 0.0580
OPT (ε = 4) 0.8611 0.0583
Non-Fair 0.8611 0.0668

Fair Projection - KL 0.8607 0.0573
Fair Projection - CE 0.8607 0.0573
Fair Projection - KL 0.8610 0.0584
Fair Projection - CE 0.8610 0.0582

with ε = 1 achieves an accuracy of 0.6802, while Fair Projection - KL and Fair Projec-

tion - CE attain accuracies of 0.6794 and 0.6792, respectively, with nearly the same

statistical parity gap (Table 5.1). Similarly, they achieve accuracies of 0.6790 and

0.6792 with almost equal mean equalized odds (Table 5.2). Compared to the non-fair

case, OPT improves fairness performance by more than 3% in statistical parity gap

and more than 4% in mean equalized odds, with only a slight drop in accuracy. Note

that Fair Projection applies specific post-processing for each fairness metric, which

is why we provide two tables for each dataset corresponding to the results for mean

equalized odds and statistical parity.
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Similar trends can be observed in the Adult dataset, with a smaller difference

between Fair Projection and OPT in terms of accuracy. Specifically, from Tables

5.3 and 5.4, we see that OPT can achieve a point on the trade-off curve of Fair

Projection - CE and Fair Projection - KL with nearly identical accuracy and fairness,

or with a slight accuracy gain at a fixed fairness level. Note that OPT requires

significantly less runtime compared to Fair Projection, as the pre-processing step

performed by the optimal LDP-based method is considerably faster than the post-

processing optimization carried out by Fair Projection.
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Chapter 6

Conclusion

6.1 Summary

In the first part of this thesis, we explored the intersection of central DP and fairness

in binary classification, contributing to the development of a privacy-preserving fair

classification algorithm. We first established a lower bound for the sum of prediction

changes across a pair of subgroups under statistical parity and proposed Algorithm 1,

which attains this bound without privacy constraints. Building on this foundation,

we introduced Algorithm 2, a differentially private version that ensures both fairness

and utility guarantees for the resulting classifier. Extensive experiments on the Adult

and Credit Card datasets showed that our algorithm performs competitively in terms

of accuracy compared to existing DP-Fair classification methods, particularly the

DP-FERMI approach. For a given accuracy and privacy level, our method provides

a stronger fairness guarantee, demonstrating the effectiveness of our approach in

practical applications.

In the second part, we focused on the intersection of LDP and fairness, addressing
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the challenge of minimizing data unfairness with LDP mechanisms. We formulated

the problem of finding optimal LDP-based mechanisms for both binary and non-

binary sensitive attributes, deriving a closed-form solution for the binary case and

reformulating the non-binary case as a min-max linear fractional program which can

be solved numerically. We demonstrated theoretically that reducing data unfairness

with our LDP mechanisms leads to lower classification unfairness for certain types

of classifiers, validating our objective to minimize data unfairness. Our empirical re-

sults across multiple datasets and fairness metrics further showed that our approach

achieves similar utility levels as well-known LDP mechanisms while ensuring reduced

unfairness post-classification. Additionally, our comparisons with the Fair Projection

framework demonstrated that our optimal mechanism either matches or slightly sur-

passes Fair Projection’s accuracy for fixed fairness levels, underscoring the potential

of LDP as a simple yet powerful tool for mitigating data unfairness and enhancing

classification fairness in machine learning.

6.2 Limitations and Future Directions

6.2.1 Central DP and Fairness

In Chapter 3, we introduced a post-processing algorithm for learning a binary classi-

fier, h∗
ε′,δ′,Fair, which guarantees (ε′, δ′)-DP while providing theoretical guarantees for

both its utility and statistical parity gap. For fairness, we derived the following upper

bound:

∆SP (h
∗
ε′,δ′,Fair) ≤η

log(4/η)

nθε0
+

log(4/η)

nθ̄ε1
+

√
log(

8

η
)

1

2nθ
+

√
log(

8

η
)

1

2nθ̄
,
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This upper bound on the unfairness of the learned classifier holds with high probabil-

ity, ensuring that the classifier produced by Algorithm 2 will have bounded unfairness

and thus meet a fairness criterion with high probability.

Empirical studies have shown that central DP can negatively impact the fairness

of a learned classifier (Bagdasaryan et al., 2019; Pujol et al., 2020; Farrand et al.,

2020) (see Section 2.2). This raises a fundamental question: given privacy parameters

(ε, δ), what is the minimum achievable unfairness for a classifier that satisfies (ε, δ)-

DP while maintaining non-trivial utility? In other words, is it possible to derive

a (probabilistic) lower bound on unfairness, expressed in terms of ε and δ, across

all classifiers that meet (ε, δ)-DP and provide a meaningful utility? Answering this

question would reveal the true accuracy-fairness-privacy trade-off and clarify how

close current approaches are to achieving this balance, representing a fundamental

step forward in understanding this critical relationship.

6.2.2 Local DP and Fairness

In Chapter 5, we formulated the problem of finding the optimal LDP-based pre-

processing mechanism to minimize data unfairness. For a binary sensitive attribute,

we derived the optimal mechanism as follows:

Given that p1|0 ≤ p1|1, the optimal LDP pre-processing mechanism (p∗, q∗) is:

If p0 < p1, (p∗, q∗) =

(
1− e−ε

2
,
1

2

)
,

If p1 < p0, (p∗, q∗) =

(
1

2
, 1− e−ε

2

)
,

where p and q are the parameters of the general LDP mechanism as defined in (5.4.1)
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(see Theorem 14). For the binary case, given the LDP parameter ε and the data

distribution (p1|0, p1|1, p0, p1), we can directly identify the optimal perturbation mech-

anism. However, for a non-binary sensitive attribute A, the problem of finding the

optimal pre-processing mechanism becomes:

min
Q

max
a∈[k]

∣∣∣∣∣
k∑

j=1
j ̸=a

p1|jpjqja + p1|apaqaa −
k∑

j=1
j ̸=a

Pr(Y = 1)pjqja − Pr(Y = 1)paqaa

k∑
j=1
j ̸=a

Pr(Y = 1)pjqja + Pr(Y = 1)paqaa

∣∣∣∣∣

s.t.
(
1−

k∑
a=1
a̸=j

qja

)
− eεqij ≤ 0 ∀i, j ∈ [k], i ̸= j

k∑
a=1
a̸=i

qia ≤ 1 ∀i ∈ [k]

qij ≥ 0, 1−
k∑

a=1
a̸=i

qia ≥ qij, 1−
k∑

a=1
a̸=j

qja ≥ qij ∀i, j ∈ [k], i ̸= j

k∑
i=1

(
1−

k∑
a=1
a̸=i

qia

)
pi ≥ 1− ζ

Here, the optimal mechanism can be obtained by solving a min-max linear fractional

program. Although this approach effectively reduces unfairness, it may require sub-

stantial computational time when the sensitive attribute has a large support size.

An interesting question for future research is whether, in the non-binary sensitive

attribute case, we can reformulate the problem to obtain a closed-form solution, sim-

ilar to the binary case, or reduce it to a convex optimization problem instead of a

non-convex min-max linear fractional program.
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Appendix A

Proofs of Chapter 3

Proof of Proposition 6. We have classifiers h∗
0 : X → {0, 1} and h∗

1 : X → {0, 1}

trained on subgroups specified by the sensitive attribute A with values 0 and 1,

respectively. We can combine classifiers h∗
0 and h∗

1 to have a group aware classifier h∗ :

X × {0, 1} → {0, 1}. Basically, h∗(x, 0) = h∗
0(x) ∀x ∈ X and h∗(x, 1) = h∗

1(x) ∀x ∈

X . Let Y ∗ = h∗(X,A) and Ŷ = ĥ(X,A). Then for a ∈ {0, 1}, we have:

dTV (µa(Y
∗), µa(Ŷ )) =

∣∣∣µa(Y
∗ = 1)− µa(Ŷ = 1)

∣∣∣
=
∣∣∣EµX

a
[h∗

a(X)]− EµX
a
[ĥa(X)]

∣∣∣
≤ EµX

a

[∣∣∣h∗
a(X)− ĥa(X)

∣∣∣]
= PµX

a

(
Y ∗ ̸= Ŷ

)
. (A.0.1)

Therefore, from (A.0.1) it follows:

dTV (µa(Y
∗), µa(Ŷ )) ≤ PµX

a

(
Y ∗ ̸= Ŷ

)
.
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We assumed Ŷ = ĥ(X,A) satisfies γ statistical parity (∆SP (ĥ) ≤ γ). Thus, we have:

dTV (µ0(Ŷ ), µ1(Ŷ )) =
∣∣∣µ0(Ŷ = 1)− µ1(Ŷ = 1)

∣∣∣ = ∆SP (ĥ) ≤ γ.

Since dTV (·, ·) is symmetric and satisfies the triangle inequality, we have:

dTV (µ0(Y
∗), µ1(Y

∗)) ≤ dTV (µ0(Y
∗), µ0(Ŷ )) + dTV (µ0(Ŷ ), µ1(Ŷ )) + dTV (µ1(Ŷ ), µ1(Y

∗))

≤ dTV (µ0(Y
∗), µ0(Ŷ )) + γ + dTV (µ1(Y

∗), µ1(Ŷ )). (A.0.2)

Combining (A.0.2) with (A.0.1), we have:

dTV (µ0(Y
∗), µ1(Y

∗)) ≤ PµX
0

(
Y ∗ ̸= Ŷ

)
+ PµX

1

(
Y ∗ ̸= Ŷ

)
+ γ

= PµX
0
(ĥ0(X) ̸= h∗

0(X)) + PµX
1
(ĥ1(X) ̸= h∗

1(X)) + γ.

Therefore, we can obtain:

∣∣∣PµX
0
(h∗

0(X) = 1)− PµX
1
(h∗

1(X) = 1)
∣∣∣

≤ PµX
0
(ĥ0(X) ̸= h∗

0(X)) + PµX
1
(ĥ1(X) ̸= h∗

1(X)) + γ.

Thus, we have:

PµX
0
(ĥ0(X) ̸= h∗

0(X)) + PµX
1
(ĥ1(X) ̸= h∗

1(X))

≥
∣∣∣PµX

0
(h∗

0(X) = 1)− PµX
1
(h∗

1(X) = 1)
∣∣∣− γ.

which concludes the proof of Proposition 6.
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Proof of Theorem 7. Let s in Algorithm 1 be the realization of the random variable S.

Pµ (h
∗
Fair(X,A) = 1|A = 0) = PµX

0
(h∗

0(X) = 1)P(S ≤ α + β

2α
) = α

(
α + β

2α

)
=

α + β

2
.

Pµ (h
∗
Fair(X,A) = 1|A = 1) = PµX

1
(h∗

1(X) = 1) + PµX
1
(h∗

1(X) = 0)P
(
S ≤ α− β

2(1− β)

)
= β + (1− β)

(
α− β

2(1− β)

)
=

α + β

2
.

We have:

∆SP (h
∗
Fair) =

∣∣∣∣α + β

2
− α + β

2

∣∣∣∣ = 0.

Therefore, perfect statistical parity is satisfied. Now we show that h∗
Fair is optimal.

PµX
0
(h∗

Fair0(X) ̸= h∗
0(X)) = PµX

0
(h∗

0(X) = 1)P
(
S >

α + β

2α

)
= α

(
α− β

2α

)
=

α− β

2
.

PµX
1
(h∗

Fair1(X) ̸= h∗
1(X)) = PµX

1
(h∗

1(X) = 0)P
(
S ≤ α− β

2(1− β)

)
= (1− β)

(
α− β

2(1− β)

)
=

α− β

2
.

Thus, we have:

PµX
0
(h∗

Fair0(X) ̸= h∗
0(X)) + PµX

1
(h∗

Fair1(X) ̸= h∗
1(X))

=
α− β

2
+

α− β

2
= α− β = |α− β|

=
∣∣∣PµX

0
(h∗

0(X) = 1)− PµX
1
(h∗

1(X) = 1)
∣∣∣ .
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Therefore, h∗
Fair satisfies perfect statistical parity and attains the utility lower bound

of Proposition 6.

Proof of Theorem 8.

• Every time we access the dataset to compute a query, it is essential to account for

the privacy budget being consumed. Algorithm 2 accesses the training dataset

to train the classifier h∗
ε,δ : X×{0, 1} → {0, 1}. Additionally, computing α̃ and β̃

involves using the post-processing dataset. Learning h∗
ε,δ : X × {0, 1} → {0, 1},

from which we derive two classifiers h∗
ε,δ,0 and h∗

ε,δ,1, was conducted with privacy

parameters (ε, δ). Computing α̃ and β̃ utilizes the Laplace mechanism followed

by post-processing (projection). Hence, these two mechanisms will satisfy ε0-

DP and ε1-DP Dwork et al. (2014). By basic composition, we can conclude

that h∗
ε′,δ′,Fair satisfies (ε

′, δ′)-DP with ε′ = ε+ ε0 + ε1 and δ′ = δ. Note that we

assume the number of data points belonging to each subgroup in a dataset is

public knowledge. Specifically, we assume that θn and θ̄n are publicly known,

and thus computing them does not consume any privacy budget.

• Let α = PµX
0
(h∗

ε,δ,0(X) = 1) and β = PµX
1
(h∗

ε,δ,1(X) = 1). Let ᾱ = α + e0

and β̄ = β + e1. To prove the claims in the theorem, we assume α̃ ≥ β̃. For

the case that α̃ < β̃, we will have the same results by symmetry. Also, let

L0 ∼ Lap
(

1
nθε0

)
and L1 ∼ Lap

(
1

nθ̄ε1

)
. In Algorithm 2, we sample l0 from L0

and l1 from L1. Similar to the proof of Theorem 7, let s in Algorithm 2 be the

realization of the random variable S. By definition, we have:

∆SP (h
∗
ε′,δ′,Fair) =

∣∣PµX
0

(
h∗
ε′,δ′,Fair(X, 0) = 1

)
− PµX

1

(
h∗
ε′,δ′,Fair(X, 1) = 1

)∣∣.
67



M.Sc. Thesis – H. Ghoukasian McMaster University – Computing and Software

We first compute PµX
0

(
h∗
ε′,δ′,Fair(X, 0) = 1

)
:

PµX
0

(
h∗
ε′,δ′,Fair(X, 0) = 1

)
= PµX

0
(h∗

ε,δ,0(X) = 1)P

(
S ≤ α̃ + β̃

2α̃

)

= α
α̃ + β̃

2α̃

=
α

α̃

(
α̃ + β̃

2

)
.

We then compute PµX
1

(
h∗
ε′,δ′,Fair(X, 1) = 1

)
:

PµX
1

(
h∗
ε′,δ′,Fair(X, 1) = 1

)
= PµX

1
(h∗

ε,δ,1(X) = 1) + PµX
1
(h∗

ε,δ,1(X) = 0)P

(
S ≤ α̃− β̃

2(1− β̃)

)

= β + (1− β)

(
α̃− β̃

2(1− β̃)

)
= β +

(1− β)

(1− β̃)

(
α̃− β̃

2

)
.

For each realization of α̃ and β̃, let ᾱ = α + e0 , α̃ = ᾱ + d0, β̄ = β + e1 ,

β̃ = β̄ + d1. Thus, we have:

∆SP (h
∗
ε′,δ′,Fair) =

∣∣∣∣∣αα̃
(
α̃ + β̃

2

)
−

[
β +

(1− β)

(1− β̃)

(
α̃− β̃

2

)]∣∣∣∣∣
=

∣∣∣∣∣ α̃− e0 − d0
α̃

(
α̃ + β̃

2

)
−

[
β̃ − e1 − d1 +

(1− β̃ + e1 + d1)

(1− β̃)

(
α̃− β̃

2

)]∣∣∣∣∣
=

∣∣∣∣∣
(
α̃ + β̃

2

)
− (e0 + d0)

(
α̃ + β̃

2α̃

)
− β̃ + e1 + d1

−

(
α̃− β̃

2

)
− (e1 + d1)

(
α̃− β̃

2(1− β̃)

)∣∣∣∣∣
=

∣∣∣∣∣(e1 + d1)

(
1− α̃− β̃

2(1− β̃)

)
− (e0 + d0)

(
α̃ + β̃

2α̃

)∣∣∣∣∣
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≤

∣∣∣∣∣(e1 + d1)

(
1− α̃− β̃

2(1− β̃)

)∣∣∣∣∣+
∣∣∣∣∣(e0 + d0)

(
α̃ + β̃

2α̃

)∣∣∣∣∣
≤ |(e1 + d1)|+ |(e0 + d0)|

≤ |e0|+ |e1|+ |d0|+ |d1|. (A.0.3)

The last line follows from the fact that 0 ≤ α̃ ≤ 1, 0 ≤ β̃ ≤ 1, and α̃ ≥ β̃.

We know that |e0| = |ᾱ − α| =

∣∣∣∣∣∣ 1
nθ

n∑
i=1
Ai=0

h∗
ε,δ,0(Xi)− PµX

0
(h∗

ε,δ,0(X) = 1)

∣∣∣∣∣∣. From

Hoeffding’s inequality, we know that if X1, X2, . . . , Xn are i.i.d. random vari-

ables in [0, 1], then:

P

[∣∣∣∣∣ 1n
n∑

i=1

Xi − E[X]

∣∣∣∣∣ ≥ t

]
≤ 2e−2nt2 .

Therefore, we can conclude that:

P


∣∣∣∣∣∣∣
1

nθ

n∑
i=1
Ai=0

h∗
ε,δ,0(Xi)− PµX

0
(h∗

ε,δ,0(X) = 1)

∣∣∣∣∣∣∣ ≥ t

 ≤ 2e−2nθt2 ,

Which means:

P


∣∣∣∣∣∣∣
1

nθ

n∑
i=1
Ai=0

h∗
ε,δ,0(Xi)− PµX

0
(h∗

ε,δ,0(X) = 1)

∣∣∣∣∣∣∣ ≥
√

1

2nθ
log(

2

η
)

 ≤ η.

Thus, we have:

|e0| ≤η

√
1

2nθ
log(

2

η
). (A.0.4)
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Similarly, it follows that:

|e1| ≤η

√
1

2nθ̄
log(

2

η
). (A.0.5)

Let l0 and l1 be the realization of the Laplace noises in Algorithm 2. We know

that |d0| ≤ |l0| and |d1| ≤ |l1| since d0 and d1 are computed after projection.

On the other hand, from Dwork et al. (2014), we know that if L ∼ Lap(
∆q

1

ε
),

then:

P
[
|L| ≥

(
log

1

η

)(
∆q

1

ε

)]
≤ η.

where ∆q
1 is the ℓ1-sensitivity of the query to which we add noise.

Given L0 ∼ Lap
(

1
nθε0

)
and L1 ∼ Lap

(
1

nθ̄ε1

)
, we have:

|L0| ≤η

(
log 1

η

)(
1

nθε0

)
and |L1| ≤η

(
log 1

η

)(
1

nθ̄ε1

)
. Comparing these two in-

equalities with (A.0.4) and (A.0.5), we can conclude that with probability at

least (1− η)4, we have:

|L0|+ |L1|+ |e0|+ |e1|

≤
[(

log
1

η

)(
1

nθε0

)
+

(
log

1

η

)(
1

nθ̄ε1

)
+

√
1

2nθ
log(

2

η
) +

√
1

2nθ̄
log(

2

η
)

]
.

Since (1− η)4 ≥ 1− 4η for 0 ≤ η ≤ 1, we have:

|L0|+ |L1|+ |e0|+ |e1|

≤4η

[(
log

1

η

)(
1

nθε0

)
+

(
log

1

η

)(
1

nθ̄ε1

)
+

√
1

2nθ
log(

2

η
) +

√
1

2nθ̄
log(

2

η
)

]
.
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Equivalently, we have:

|L0|+ |L1|+ |e0|+ |e1|

≤η

[(
log

4

η

)(
1

nθε0

)
+

(
log

4

η

)(
1

nθ̄ε1

)
+

√
1

2nθ
log(

8

η
) +

√
1

2nθ̄
log(

8

η
)

]
.

(A.0.6)

Combining (A.0.3) and (A.0.6), it can be shown:

∆SP (h
∗
ε′,δ′,Fair)

≤η

[(
log

4

η

)(
1

nθε0

)
+

(
log

4

η

)(
1

nθ̄ε1

)
+

√
1

2nθ
log(

8

η
) +

√
1

2nθ̄
log(

8

η
)

]
.

• We have:

PµX
0
(h∗

ε′,δ′,Fair0
(X) ̸= h∗

ε,δ,0(X)) + PµX
1
(h∗

ε′,δ′,Fair1
(X) ̸= h∗

ε,δ,1(X))

= PµX
0

(
(h∗

ε,δ,0(X) = 1) and (h∗
ε′,δ′,Fair0

(X) = 0)
)

+ PµX
1

(
(h∗

ε,δ,1(X) = 0) and (h∗
ε′,δ′,Fair1

(X) = 1)
)

= α

(
α̃− β̃

2α̃

)
+ (1− β)

(
α̃− β̃

2(1− β̃)

)
=

α

α̃

(
α̃− β̃

2

)
+

(1− β)

1− β̃

(
α̃− β̃

2

)

=
α̃− e0 − d0

α̃

(
α̃− β̃

2

)
+

(1− β̃ + e1 + d1)

1− β̃

(
α̃− β̃

2

)

= (α̃− β̃) + (e1 + d1)

(
α̃− β̃

2(1− β̃)

)
− (e0 + d0)

(
α̃− β̃

2α̃

)
.
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Therefore, we have:

PµX
0
(h∗

ε′,δ′,Fair0
(X) ̸= h∗

ε,δ,0(X)) + PµX
1
(h∗

ε′,δ′,Fair1
(X) ̸= h∗

ε,δ,1(X))− err∗(h∗
ε,δ,0, h

∗
ε,δ,1)

= (α̃− β̃) + (e1 + d1)

(
α̃− β̃

2(1− β̃)

)
− (e0 + d0)

(
α̃− β̃

2α̃

)
− err∗(h∗

ε,δ,0, h
∗
ε,δ,1).

From previous part, we know that:

∆SP (h
∗
ε′,δ′,Fair) ≤ |e0|+ |e1|+ |d0|+ |d1|.

From Proposition 6, we know that if ∆SP (ĥ) ≤ γ, then:

PµX
0
(ĥ0(X) ̸= h∗

ε,δ,0(X)) + PµX
1
(ĥ1(X) ̸= h∗

ε,δ,1(X))

≥
∣∣∣PµX

0
(h∗

ε,δ,0(X) = 1)− PµX
1
(h∗

ε,δ,1(X) = 1)
∣∣∣− γ.

For all classifiers ĥ : X × {0, 1} → {0, 1} that satisfy ∆SP (ĥ) ≤ ∆SP (h
∗
ε′,δ′,Fair),

we have ∆SP (ĥ) ≤ |e0|+ |e1|+ |d0|+ |d1|. Thus, for all those classifiers we have:

PµX
0
(ĥ0(X) ̸= h∗

ε,δ,0(X)) + PµX
1
(ĥ1(X) ̸= h∗

ε,δ,1)

≥
∣∣∣PµX

0
(h∗

ε,δ,0(X) = 1)− PµX
1
(h∗

ε,δ,1(X) = 1)
∣∣∣− (|e0|+ |e1|+ |d0|+ |d1|

)
= |α− β| −

(
|e0|+ |e1|+ |d0|+ |d1|

)
.

Therefore, by definition of err∗(h∗
ε,δ,0, h

∗
ε,δ,1), we have:

err∗(h∗
ε,δ,0, h

∗
ε,δ,1) ≥ |α− β| − (|e0|+ |e1|+ |d0|+ |d1|) .
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Therefore, it follows:

PµX
0
(h∗

ε′,δ′,Fair0
(X) ̸= h∗

ε,δ,0(X)) + PµX
1
(h∗

ε′,δ′,Fair1
(X) ̸= h∗

ε,δ,1(X))− err∗(h∗
ε,δ,0, h

∗
ε,δ,1)

≤ (α̃− β̃) + (e1 + d1)

(
α̃− β̃

2(1− β̃)

)
− (e0 + d0)

(
α̃− β̃

2α̃

)

− |α− β|+ (|e0|+ |e1|+ |d0|+ |d1|)

≤ 1

2
|e1 + d1|+

1

2
|e0 + d0|+ (α̃− β̃)− |α− β|+ (|e0|+ |e1|+ |d0|+ |d1|)

≤ (α̃− β̃)− |α− β|+ 3

2
(|e0|+ |e1|+ |d0|+ |d1|)

= (α̃− β̃)− |α̃− e0 − d0 − β̃ + e1 + d1|+
3

2
(|e0|+ |e1|+ |d0|+ |d1|)

≤ 5

2
(|e0|+ |e1|+ |d0|+ |d1|) .

By the same argument of the second part, we can conclude that:

PµX
0
(h∗

ε′,δ′,Fair0
(X) ̸= h∗

ε,δ,0(X)) + PµX
1
(h∗

ε′,δ′,Fair1
(X) ̸= h∗

ε,δ,1(X))

≤η err
∗(h∗

ε,δ,0, h
∗
ε,δ,1)

+
5

2

((
log

4

η

)(
1

nθε0

)
+

(
log

4

η

)(
1

nθ̄ε1

)
+

√
1

2nθ
log(

8

η
) +

√
1

2nθ̄
log(

8

η
)

)
.

Proof of Proposition 9. Let α = PµX
0
(h∗

ε,δ,0(X) = 1) and β = PµX
1
(h∗

ε,δ,1(X) = 1).

Also, let ᾱ = α + e0 and β̄ = β + e1. Let L0 ∼ Lap
(

1
nθε0

)
and L1 ∼ Lap

(
1

nθ̄ε1

)
. We

sample l0 from L0 and l1 from L1. In fact, l0 and l1 are realizations of the Laplace

noise. From proof of Theorem 8, we know that for each realization of the noise we
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have:

∆SP (h
∗
ε′,δ′,Fair) ≤ [|e0|+ |e1|+ |l0|+ |l1|] .

And

[
PµX

0
(h∗

ε′,δ′,Fair0
(X) ̸= h∗

ε,δ,0(X)) + PµX
1
(h∗

ε′,δ′,Fair1
(X) ̸= h∗

ε,δ,1(X))− err∗(h∗
ε,δ,0, h

∗
ε,δ,1)

]

≤ 5

2
[(|e0|+ |e1|+ |l0|+ |l1|)] .

We have:

E
[
∆SP (h

∗
ε′,δ′,Fair)

]
≤ E [|e0|+ |e1|+ |L0|+ |L1|] . (A.0.7)

And

E

[
PµX

0
(h∗

ε′,δ′,Fair0
(X) ̸=h∗

ε,δ,0(X)) + PµX
1
(h∗

ε′,δ′,Fair1
(X) ̸= h∗

ε,δ,1(X))− err∗(h∗
ε,δ,0, h

∗
ε,δ,1)

]

≤ 5

2
E [(|e0|+ |e1|+ |L0|+ |L1|)] .

(A.0.8)

Where the expectations are over the randomness of the Laplace noise and ran-

domness of the approximation of α and β with finite samples. For L ∼ Lap(
∆q

1

ε
), we

have E [|L|] = ∆q
1

ε
. Since L0 ∼ Lap

(
1

nθε0

)
and L1 ∼ Lap

(
1

nθ̄ε1

)
, we have:

E [|L0|+ |L1|] =
(

1

nθε0

)
+

(
1

nθ̄ε1

)
. (A.0.9)
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Now, we want to find an upper bound for E[|e0|] and E[|e1|]. We have:

E[|e0|]2 = E


∣∣∣∣∣∣∣
1

nθ

n∑
i=1
Ai=0

h∗
ε,δ,0(Xi)− PµX

0
(h∗

ε,δ,0(X) = 1)

∣∣∣∣∣∣∣


2

≤ E


∣∣∣∣∣∣∣
1

nθ

n∑
i=1
Ai=0

h∗
ε,δ,0(Xi)− PµX

0
(h∗

ε,δ,0(X) = 1)

∣∣∣∣∣∣∣
2

= E


 1

nθ

n∑
i=1
Ai=0

h∗
ε,δ,0(Xi)− E

 1

nθ

n∑
i=1
Ai=0

h∗
ε,δ,0(Xi)




2
= Var

 1

nθ

n∑
i=1
Ai=0

h∗
ε,δ,0(Xi)


=

1

θ2n2
Var

 n∑
i=1
Ai=0

h∗
ε,δ,0(Xi)


=

1

nθ
Var

(
h∗
ε,δ,0(Xi)

)
≤ 1

4nθ
.

The inequality in the second line is due to the property that for any random

variable Z, we have E[|Z|]2 ≤ E[Z2], and the inequality in the last line follows from

Var(Bernoulli(p)) = p(1− p) ≤ 1
4
for 0 ≤ p ≤ 1.

Similarly, it follows that:

E[|e1|]2 ≤
1

4nθ̄
.
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Therefore, it can be shown that:

E[|e0|] + E[|e1|] ≤
√

1

4nθ
+

√
1

4nθ̄
. (A.0.10)

Combining (A.0.7), (A.0.9), and (A.0.10), we have:

E
[
∆SP (h

∗
ε′,δ′,Fair)

]
≤ 1

nθε0
+

1

nθ̄ε1
+

√
1

4nθ
+

√
1

4nθ̄
.

With the same argument and Using (A.0.8), it can be shown that:

E

[
PµX

0
(h∗

ε′,δ′,Fair0
(X) ̸= h∗

ε,δ,0(X)) + PµX
1
(h∗

ε′,δ′,Fair1
(X) ̸= h∗

ε,δ,1(X))

]
≤

E
[
err∗(h∗

ε,δ,0, h
∗
ε,δ,1)

]
+

5

2

(
1

nθε0
+

1

nθ̄ε1
+

√
1

4nθ
+

√
1

4nθ̄

)
.
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Appendix B

Proofs of Chapter 4 and 5

Proof of Lemma 13. To simplify notation, we define the variables pj, p1|j for j ∈ [k]

as follows:

pj = Pr(A = j) ∀j ∈ [k], p1|j = Pr(Y = 1 |A = j) ∀j ∈ [k].

We know:

∆′(D) := max
a,a′∈[k]

∣∣∣Pr(Y = 1 | A = a)− Pr(Y = 1 | A = a′)
∣∣∣ = max

a∈[k]
p1|a −min

a∈[k]
p1|a.

Proof Sketch: W.L.O.G., we assume maxa∈[k] p1|a = p1|k and mina∈[k] p1|a = p1|1.

Therefore, we have ∆′(D) = p1|k − p1|1. Similarly, we can express ∆′(Dε
GRR) as:

∆′(Dε
GRR) = max

a∈[k]
Pr(Y = 1 |Z = a)−min

a∈[k]
Pr(Y = 1 |Z = a).

For each a ∈ [k], we prove p1|1 ≤ Pr(Y = 1 |Z = a) ≤ p1|k. This means that

maxa∈[k] Pr(Y = 1 |Z = a) ≤ p1|k and p1|1 ≤ mina∈[k] Pr(Y = 1 |Z = a), concluding
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∆′(Dε
GRR) ≤ ∆′(D).

∀a ∈ [k], We have:

Pr(Y = 1 |Z = a) =
Pr(Y = 1, Z = a)

Pr(Z = a)

=

k∑
j=1

Pr(Y = 1, Z = a,A = j)

k∑
j=1

Pr(Z = a,A = j)

=

k∑
j=1

Pr(Y = 1, A = j) Pr(Z = a |A = j, Y = 1)

k∑
j=1

Pr(Z = a |A = j) Pr(A = j)

=

k∑
j=1

Pr(Y = 1, A = j) Pr(Z = a |A = j)

k∑
j=1

Pr(Z = a |A = j) Pr(A = j)

=

k∑
j=1

Pr(Y = 1 |A = j) Pr(A = j) Pr(Z = a |A = j)

k∑
j=1

Pr(Z = a |A = j) Pr(A = j)

=

p1|apaπ +
∑
j∈[k]
j ̸=a

p1|jpjπ̄

paπ +
∑
j∈[k]
j ̸=a

pjπ̄
.

We know p1|1 ≤ p1|j ≤ p1|k for all values of j ∈ [k]. Therefore, it can be obtained

that:
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p1|1paπ +
∑
j∈[k]
j ̸=a

p1|1pjπ̄

paπ +
∑
j∈[k]
j ̸=a

pjπ̄
≤

p1|apaπ +
∑
j∈[k]
j ̸=a

p1|jpjπ̄

paπ +
∑
j∈[k]
j ̸=a

pjπ̄
≤

p1|kpaπ +
∑
j∈[k]
j ̸=a

p1|kpjπ̄

paπ +
∑
j∈[k]
j ̸=a

pjπ̄
.

Thus, we have:

p1|1 ≤

p1|apaπ +
∑
j∈[k]
j ̸=a

p1|jpjπ̄

paπ +
∑
j∈[k]
j ̸=a

pjπ̄
≤ p1|k −→ p1|1 ≤ Pr(Y = 1 |Z = a) ≤ p1|k ∀a ∈ [k].

It follows that:

∆′(Dε
GRR) = max

a∈[k]
Pr(Y = 1 |Z = a)−min

a∈[k]
Pr(Y = 1 |Z = a)

≤ p1|k − p1|1

= ∆′(D).

Now the proof is complete.

Proof of Theorem 14. To simplify notation, we define the variables pj, p1|j for j ∈

{0, 1} as follows:

pj = Pr(A = j) ∀j ∈ {0, 1}, p1|j = Pr(Y = 1 |A = j) ∀j ∈ {0, 1}.
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We know:

∆′(D) = max
a,a′∈{0,1}

∣∣∣Pr(Y = 1 | A = a)− Pr(Y = 1 | A = a′)
∣∣∣.

Similarly, we can express ∆′(Dε
M) as:

∆′(Dε
M) = max

a,a′∈{0,1}

∣∣∣Pr(Y = 1 | Z = a)− Pr(Y = 1 | Z = a′)
∣∣∣.

Proof Sketch: We assume that maxa∈{0,1} p1|a = p1|1 and mina∈{0,1} p1|a = p1|0.

Therefore, we have ∆′(D) = p1|1 − p1|0. Proof consists of three steps. In the first

step, we find the set of feasible values of p and q such that the mechanism M satisfies

ε-LDP. In the second step, we prove that Pr(Y = 1 |Z = 0) ≤ Pr(Y = 1 |Z = 1).

Finally, in the third step, we determine the values of p and q that minimize
∆′(Dε

M )

∆′(D)
.

Step 1: We start by assuming that 1
2
≤ p ≤ 1 and 1

2
≤ q ≤ 1. This is important

because simply replacing the sensitive attribute of each individual randomly with

0 or 1 (with a misreporting probability of 1
2
) would satisfy 0-LDP, but it would

severely compromise utility. Therefore, to ensure non-trivial utility, it is necessary

that 1
2
≤ p ≤ 1 and 1

2
≤ q ≤ 1. Also, by definition of an ε-LDP mechanism, we have:

(1− p)− eεq ≤ 0

p− eε(1− q) ≤ 0

q − eε(1− p) ≤ 0

(1− q)− eεp ≤ 0.

From 1
2

≤ p ≤ 1 and 1
2

≤ q ≤ 1 directly follows that (1 − p) − eεq ≤ 0 and
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(1 − q) − eεp ≤ 0. However, to satisfy p − eε(1 − q) ≤ 0 and q − eε(1 − p) ≤ 0 we

should have:

p− eε(1− q) ≤ 0 =⇒ p ≤ eε(1− q).

And

q − eε(1− p) ≤ 0 =⇒ q ≤ eε(1− p).

In conclusion, any mechanismM that guarantees ε-LDP and non-trivial utility should

satisfy the following inequalities:

1

2
≤ p ≤ 1,

1

2
≤ q ≤ 1, p ≤ eε(1− q), q ≤ eε(1− p).

Step 2: ∀a ∈ {0, 1}, We have:

Pr(Y = 1 |Z = a) =
Pr(Y = 1, Z = a)

Pr(Z = a)

=

1∑
j=0

Pr(Y = 1, Z = a,A = j)

1∑
j=0

Pr(Z = a,A = j)

=

1∑
j=0

Pr(Y = 1, A = j) Pr(Z = a |A = j, Y = 1)

1∑
j=0

Pr(Z = a |A = j) Pr(A = j)

=

1∑
j=0

Pr(Y = 1, A = j) Pr(Z = a |A = j)

1∑
j=0

Pr(Z = a |A = j) Pr(A = j)
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=

1∑
j=0

Pr(Y = 1 |A = j) Pr(A = j) Pr(Z = a |A = j)

1∑
j=0

Pr(Z = a |A = j) Pr(A = j)

.

Therefore, we have:

Pr(Y = 1 |Z = 0) =
p1|0p0p+ p1|1p1(1− q)

p0p+ p1(1− q)
,

And

Pr(Y = 1 |Z = 1) =
p1|0p0(1− p) + p1|1p1(q)

p0(1− p) + p1q
.

To demonstrate that Pr(Y = 1 |Z = 0) ≤ Pr(Y = 1 |Z = 1), we need to prove

the following inequality:

(
p0(1−p)+p1q

)(
p1|0p0p+p1|1p1(1−q)

)
≤
(
p0p+p1(1−q)

)(
p1|0p0(1−p)+p1|1p1(q)

)
.

Expanding both sides of the inequality, we have:

p1|0(p0)
2p(1− p) + p1|1p0p1(1− p)(1− q) + p1|0p0p1pq + p1|1(p1)

2q(1− q) ≤

p1|0(p0)
2p(1− p) + p1|1p0p1pq + p1|0p0p1(1− q)(1− p) + p1|1(p1)

2q(1− q).

Simplifying this, we get:

p1|1p0p1(1− p)(1− q) + p1|0p0p1pq ≤ p1|1p0p1pq + p1|0p0p1(1− p)(1− q).

This simplifies further to:
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p1|1(1− p)(1− q) + p1|0pq ≤ p1|1pq + p1|0(1− p)(1− q).

Rearranging, we obtain:

p1|0pq − p1|0(1− p)(1− q) ≤ p1|1pq − p1|1(1− p)(1− q)

⇐⇒ p1|0
(
pq − (1− p)(1− q)

)
≤ p1|1

(
pq − (1− p)(1− q)

)
.

This inequality holds true because p1|0 ≤ p1|1 and
(
pq − (1 − p)(1 − q)

)
≥ 0.

Therefore, we can conclude that Pr(Y = 1 |Z = 0) ≤ Pr(Y = 1 |Z = 1).

Step 3: From steps 1 and 2, we can conclude that the problem we are interested

in becomes the following optimization problem.

min
p,q

p1|0p0(1− p) + p1|1p1(q)

p0(1− p) + p1q
−

p1|0p0p+ p1|1p1(1− q)

p0p+ p1(1− q)

p1|1 − p1|0

s.t.
1

2
≤ p ≤ 1,

1

2
≤ q ≤ 1, (B.0.1)

p ≤ eε(1− q), q ≤ eε(1− p)

Now, we simplify the objective function of the optimization problem above.

p1|0p0(1− p) + p1|1p1(q)

p0(1− p) + p1q
−

p1|0p0p+ p1|1p1(1− q)

p0p+ p1(1− q)

p1|1 − p1|0

=
p1|0p0p1(1− p)(1− q) + p1|1p0p1pq − p1|0p0p1pq − p1|1p0p1(1− p)(1− q)(

p0(1− p) + p1q
)(
p0p+ p1(1− q)

)(
p1|1 − p1|0

)
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=

(
p0p1

)(
p1|0(1− p)(1− q) + p1|1pq − p1|0pq − p1|1(1− p)(1− q)

)(
p0(1− p) + p1q

)(
p0p+ p1(1− q)

)(
p1|1 − p1|0

)
=

(
p0p1

)(
p1|1 − p1|0

)(
pq − (1− p)(1− q)

)(
p0(1− p) + p1q

)(
p0p+ p1(1− q)

)(
p1|1 − p1|0

)
=

(
p0p1

)(
pq − (1− p)(1− q)

)(
p0(1− p) + p1q

)(
p0p+ p1(1− q)

) (B.0.2)

Since the optimization is over the parameters p and q, (B.0.1) is equivalent to the

following optimization problem:

min
p,q

pq − (1− p)(1− q)(
p0(1− p) + p1q

)(
p0p+ p1(1− q)

)
s.t.

1

2
≤ p ≤ 1,

1

2
≤ q ≤ 1, (B.0.3)

p ≤ eε(1− q), q ≤ eε(1− p)

Suppose ε is given and we want to design the optimal ε-LDP mechanism. p and

q are the probability of truly reporting the sensitive attribute of an individual if the

original sensitive attribute is 0 and 1 respectively. For a given ε, higher values of p

and q yield improved utility. Let p < eε(1 − q) and q < eε(1 − p). In this case, for

a given ε, we can increase both p and q such that one of the inequalities becomes

equality; i.e., we have either p = eε(1 − q) and q ≤ eε(1 − p) or p ≤ eε(1 − q) and

q = eε(1 − p). Therefore, we are only interested in those pairs of (p, q) that satisfy

one of the two constraints.

Note that these new constraints guarantee non-trivial utility. In other words, for a

given ε, we consider the best possible utility (the smallest possible lying probability).

This aligns with our initial goal of optimizing the objective function min
ε0−LDPM

ε0≥ε

∆′(D
ε0
M )

∆′(D)
.

We consider two cases. in case 1 we have:
(
p = eε(1− q) and q ≤ eε(1− p)

)
and
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in case 2 we have
(
q = eε(1− p) and p ≤ eε(1− q)

)
.

Case 1: Here we have p = eε(1− q). The objective function becomes:

min
q

eε(1− q)q − (1− eε(1− q))(1− q)(
p0(1− eε(1− q)) + p1q

)(
p0eε(1− q) + p1(1− q)

)
s.t.

1

2
≤ eε(1− q) ≤ 1,

1

2
≤ q ≤ 1,

q ≤ eε(1− eε(1− q))

Rearranging the constraints, we can rewrite the objective function of case 1 as:

min
q

eε(1− q)q − (1− eε(1− q))(1− q)(
p0(1− eε(1− q)) + p1q

)(
p0eε(1− q) + p1(1− q)

)
s.t. 1− e−ε ≤ q ≤ 1− e−ε

2
,

1

2
≤ q ≤ 1, (B.0.4)

q ≥ eε

eε + 1

Since 1− e−ε < eε

eε+1
, we can further simplify the objective function as:

min
q

eε(1− q)q − (1− eε(1− q))(1− q)(
p0(1− eε(1− q)) + p1q

)(
p0eε(1− q) + p1(1− q)

)
s.t.

eε

eε + 1
≤ q ≤ 1− e−ε

2
,

1

2
≤ q ≤ 1

Now, we focus on the objective function of the problem (B.0.4).

eε(1− q)q − (1− eε(1− q))(1− q)(
p0(1− eε(1− q)) + p1q

)(
p0eε(1− q) + p1(1− q)

)
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=

(
1− q

)(
eεq − (1− eε(1− q))

)(
p0(1− eε(1− q)) + p1q

)(
p0eε + p1

)(
1− q

)
=

(
eεq − (1− eε(1− q))

)(
p0(1− eε(1− q)) + p1q

)(
p0eε + p1

)
=

(
eε − 1

)(
p0(1− eε(1− q)) + p1q

)(
p0eε + p1

) .
Given the constraints that eε

eε+1
≤ q ≤ 1− e−ε

2
and 1

2
≤ q ≤ 1, since the optimiza-

tion is over the variable q, we have:

argmin
q

(
eε − 1

)(
p0(1− eε(1− q)) + p1q

)(
p0eε + p1

) = argmin
q

1(
p0(1− eε(1− q)) + p1q

)
= argmax

q

(
p0(1− eε(1− q)) + p1q

)
= argmax

q

(
p0 − p0e

ε + q(p0e
ε + p1)

)
= argmax

q
q

Given the constraints eε

eε+1
≤ q ≤ 1− e−ε

2
and 1

2
≤ q ≤ 1, the optimal value of q will

be q∗ = 1− e−ε

2
. Therefore, in Case 1, the optimal solution is at (p, q) =

(
1
2
, 1− e−ε

2

)
.

Similarly, in Case 2, the optimal value occurs at (p, q) =
(
1− e−ε

2
, 1
2

)
. Hence, the

minimum value arises from either of these cases. Now we want to see when each of

the cases is optimal. In order for Case 1 to be the optimal value we should have:

1
2
(1− e−ε

2
)− 1

2
( e

−ε

2
)(

p0(
1
2
) + p1(1− e−ε

2
)
)(
p0(

1
2
) + p1(

e−ε

2
)
) ≤

(1− e−ε

2
)(1

2
)− ( e

−ε

2
)(1

2
)(

p0(
e−ε

2
) + p1(

1
2
)
)(
p0(1− e−ε

2
) + p1(

1
2
)
)
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By rearranging, the inequality becomes:

(
p0(

e−ε

2
) + p1(

1

2
)
)(

p0(1−
e−ε

2
) + p1(

1

2
)
)
≤
(
p0(

1

2
) + p1(1−

e−ε

2
)
)(

p0(
1

2
) + p1(

e−ε

2
)
)

Therefore, we must have:

p20(
e−ε

2
)(1− e−ε

2
) + p21(

1

4
) ≤ p21(

e−ε

2
)(1− e−ε

2
) + p20(

1

4
)

Or, equivalently:

p21 ≤ p20 =⇒ p1 ≤ p0

Specifically, when p0 < p1, the optimal (p, q) is
(
1− e−ε

2
, 1
2

)
, and when p1 < p0,

it is (p, q) =
(

1
2
, 1− e−ε

2

)
. If p0 = p1, then both

(
1− e−ε

2
, 1
2

)
and

(
1− e−ε

2
, 1
2

)
will

be optimal solutions. We know that in randomized response p = q = eε

eε+1
which is

clearly not the optimal solution.

Proof of Theorem 15. Let us recall the definitions from the main text that are used

in this proof. The definition of ∆′(D) and ∆SP(ĥ) are as follows:

∆′(D) = max
a,a′∈[k]

|Pr(Y = 1 | A = a)− Pr(Y = 1 | A = a′)| .

∆SP(ĥ) = max
a,a′∈[k]

∣∣∣Pr(Ŷ = 1 | A = a)− Pr(Ŷ = 1 | A = a′)
∣∣∣ .

We know that ∆′(PXAY ) ≤ ∆′(QXAY ) and we want to prove that ∆SP(hP ) ≤

∆SP(hQ).
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In order to prove this theorem, we refer to Theorem 1 in Kamiran and Calders

(2012).

Theorem 1: A classifier h is DA-optimal in H∗ iff

acc
(
hPerf

)
− acc(h) =

2n0n1

(n0 + n1)2
(
∆SP

(
hPerf

)
−∆SP(h)

)
,

where H∗ denotes the class of all classifiers satisfying Pr(Ŷ = 1) = Pr(Y = 1). hPerf

refers to a perfect classifier, and n0 and n1 denote number of data points with A = 0

and A = 1 on a dataset used for training respectively.

Since Pr(X,A,Y )∼PXAY
(A = a) = Pr(X,A,Y )∼QXAY

(A = a) for a ∈ {0, 1}, it follows

that 2n0n1

(n0+n1)2
is a fixed value for two distributions PXAY and QXAY . We denote this

constant by c. In addition, since hP and hQ are DA-optimal classifiers in H∗, we have:

1− acc(hP ) = c (∆′ (PXAY )−∆SP(hP ))

1− acc(hQ) = c (∆′ (QXAY )−∆SP(hQ)) .

Note that we used ∆′ (PXAY ) and ∆′ (QXAY ) rather than ∆SP

(
hPerf

)
since the

perfect classifier identically represents the unfairness of the data distribution.

Since we have assumed that the accuracy of learned classifiers hP and hQ are

equal, we have:

(∆′ (PXAY )−∆SP(hP )) = (∆′ (QXAY )−∆SP(hQ)) .

From this equation, we can conclude that if ∆′ (PXAY ) ≤ ∆′ (QXAY ), then ∆SP(hP ) ≤

∆SP(hQ).
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Lemma 16. ∆(D) ≤ c1∆
′(D) and ∆′(D) ≤ c2∆(D) for constants c1 and c2 depen-

dent on the marginal distribution PY of the joint distribution PXAY .

For the first part, we have:

Proof.

∆(D) = max
a∈[k]

∣∣∣∣Pr(Y = 1 | A = a)

Pr(Y = 1)
− 1

∣∣∣∣
= max

a∈[k]

∣∣∣∣Pr(Y = 1 | A = a)− Pr(Y = 1)

Pr(Y = 1)

∣∣∣∣
≤ max

a,a′∈[k]

∣∣∣∣Pr(Y = 1 | A = a)− Pr(Y = 1 | A = a′)

Pr(Y = 1)

∣∣∣∣
=

1

Pr(Y = 1)
∆′(D),

where the third line follows from the fact that min
a′∈[k]

|Pr(Y = 1 | A = a′)| ≤ Pr(Y = 1).

Additionally, for the second part, it can be shown that:

∆′(D) = max
a,a′∈[k]

∣∣∣Pr(Y = 1 | A = a)− Pr(Y = 1 | A = a′)
∣∣∣

= max
a,a′∈[k]

∣∣∣Pr(Y = 1 | A = a)− Pr(Y = 1) + Pr(Y = 1)− Pr(Y = 1 | A = a′)
∣∣∣

≤ max
a,a′∈[k]

[∣∣∣Pr(Y = 1 | A = a)− Pr(Y = 1)
∣∣∣+ ∣∣∣Pr(Y = 1 | A = a′)− Pr(Y = 1)

∣∣∣]

≤ 2max
a∈[k]

∣∣∣Pr(Y = 1 | A = a)− Pr(Y = 1)
∣∣∣

= 2Pr(Y = 1)∆(D).

It follows that c1 = 1
Pr(Y=1)

and c2 = 2Pr(Y = 1), where c1 and c2 only depend on

the marginal distribution PY of the joint distribution PXAY .
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