
A DRIVER TO

INTERFACE THE DGDAC SUBSYSTEM

AND THE GOSEX SYSTEM

A SOFTWARE DRIVER TO

INTERFACE THE DGDAC SUBSYSTEM

AND THE GOSEX SYSTEM

By

DAVID ERNEST SIMMONS, B.A.Sc.

A Project

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

September 1977

MASTER OF SCIENCE (1977)
(Computation)

McMaster University
Hamilton, Ontario

TITLE: A Software Driver to Interface the DGDAC
Subsystem and the GOSEX System

AUTHOR: David Ernest Simmons, B.A.Sc. (Queen’s University)

SUPERVISOR: Dr. P.C. Chakravarti, Dr. J.D. Wright
(Chemical Engineering)

NUMBER OF PAGES: vi, 99

ABSTRACT:

A Software Driver has been written to interface the DG/DAC

(Data General’s Data Acquisition and Control) Subsystem and the

GOSEX (Generalized Operating System Executive) System. The

interface handles the input-output requirements of GOSEX and

was written to allow for dual processing on Data General Nova

Computers.

The code was written to appear transparent to the user

as well as to add additional features to the GOSEX system.

A discussion of current Industrial Data Acquisition and

Control systems is included with recommendations on time and

cost saving strategies.

iii

ACKNOWLEDGEMENT

The author wishes to express his gratitude to those who

have assisted him in the successful completion of this project.

In particular, he wishes to thank:

Dr. J.D. Wright for his helpful guidance throughout this

study.

Dr. P.C. Chakravarti for his advice and for the time spent

discussing problems associated with this project.

My wife Audrey, for her perseverance.

Mrs. Hilary Karik, for the speedy typing of this project.

McMaster University for assistanceships and scholarships.

iv

TABLE OF CONTENTS

Page

1- INTRODUCTION 1

2- CURRENT PROCESS CONTROL SOFTWARE SYSTEMS 4

2.1 Survey of Process Control Problems 5

2.2 Current Software Systems 7

3- DESCRIPTION OF THE SYSTEM 10

3.1 The Computer System 11

3.2 The GOSEX Executive System 18

3.3 The DGDAC subsystem 21

4- DESCRIPTION OF THE INTERFACE SOFTWARE 25

4.1 The DGDAC-GOSEX Interface 26

4.2 Description of the Code 30

5- CONCLUSIONS 33

6- BIBLIOGRAPHY 99

INDEX OF FIGURES

Page

1- Layout of the Hardware in the Chemical Engineering Control
Laboratory 35

2- DGDAC Configuration 36

3- Flow of GOSEX Pertaining to the Interface with the I/O
Subsystem 37

4- Changes and Additions to PREP 39

5- Changes and Additions to PTAPE 59

6- Flow of DCLAR 68

7- MTPLX - Output Handler 69

8- POLLR - Input Handler 71

9- Code of MTPLX Routine 73

10- Additions to OPCOM Messages 94

vi

1

1- INTRODUCTION

In the last five years a dramatic shift has occurred in the

cost factors of minicomputer systems. With the increased efficiency

of producing hardware and with greater competition among vendors

the cost of minicomputers has substantually decreased while the

cost of producing software has grown almost inversely proportionally

to the fall of hardware prices.

This development of inexpensive minicomputers has lead to the

widening interest in Digital Process Control Systems. Digital

Control Computers are being used to monitor the operation of plants,

log relevant process variable data, indicate alarm conditions,

control processes, and to generally optimize the operation of a

process.

The principal feature of a process control system, which

make it different from an interactive time-sharing system, is the

handling of the input and output signals and its process interrupt

system.

Within this project, it will be shown how a minicomputer

is used to handle the input-output (I/O) operation of a process

control system and how the interrupt structure is used in con

junction with the workings of the system. In particular the I/O

5*
and interrupt handling structure of the GOSEX system are examined

*
This number refers to references listed in the Bibliography.

2

with the necessary changes required for the addition of the

DG/DAC3 subsystem.

One of the key developments in Process Control Systems

recently has been the writing of executive packages. These packages

free the user from the great deal of programming which is necessary

before the operator-system communications, in an experiment using

digital process control, can be carried out. The user is merely

responsible for certain sections of the code to describe the unique

parameters of the experiment.

At McMaster University, the Chemical Engineering Department

has developed a generalized operating system executive (GOSEX)

which is used for on-line data acquisition and control of chemical

processes. The package contains a large number of utility

programs, executive functions and executive tasks. It allows the

user full interactive control over data logging, control software,

on-line parameter adjustments, and process variable alarming with

minimal programming additions from the user. The GOSEX system has

been in use in the Chemical Engineering Control Laboratory since

1974 and is also in industrial use for process research at the

Bruce Heavy Water Plant of Ontario Hydro at Tiverton, Ontario.

Recently additional I/O devices have been required and the

I/O hardware (which is six years old) has proven inadequate for

current modes of operation. The old hardware does not provide

enough I/O channels for future use and only allows porting to

one of the two computers in the system.

3

Consequently, the decision was made to order a completely

new analog subsystem. The DG/DAC subsystem allows for a dual

processing system and flexible I/O applications. It appears to

the process system as one interrupting device and has its own

programming requirements.

Because of this change to the I/O subsystem in the Chemical

Engineering Control Laboratory it was required to change that

part of the code in GOSEX which deals with the I/O devices. The

DG/DAC programming requirements, the addition of new I/O drivers,

and a new interrupt scheme was developed for the change. The

change appears transparent to the user except for the requirement

of an addition digital to the analog table of values. The system

operates in essentially the same way as the original version.

In addition, a discussion of the current status of process

control computers is included with some observations from the

author on time and cost saving strategies.

4

2- CURRENT PROCESS CONTROL SOFTWARE SYSTEMS

The large and increasing numbers of firms which are involved

in the design and implementation of the hardware and software of

Process Control Systems have lead to many distinct methods of

handling the problem. The following is a review of some of the

techniques which are used and a discussion of problems faced by

the users of these products.

5

2.1 Survey of Process Control Problems

Once a firm has shown justification of a process control

system the development of the system can take many paths. A firm

without the resources to handle software development or hardware

specifications may hire a consulting firm to provide a Turn-Key

system. This is usually the most expensive method and can result

in the firm being dependent on the consultant for any modifications

once the contract requirements are met. The firm must also check

the consultants work to see if the code and the resources were

used efficiently, if the optimization schemes were properly

utilized, if the program is easily expandable, and if all the

system specifications were met.

In the author’s own experience a Turn-Key system was

delivered which failed all of the above criteria. The system, to

monitor a gas transmission plant, was designed and written by

inexperienced personnel and many years of problems were faced by

the gas transmission company. Some other problems were not foreseen

which caused many delays and significant expenditures. The CPU

which was used was manufactured in Canada, but since the consultant

was located in the United States the gas company paid double

duty on the unit. Additional hardware ordered from the consultant

was charged at significantly higher prices and training for new

operating personnel was prohibitively expensive. A simple disc

cartridge was quoted at four hundred dollars ($400.00) by the

consultant while the same unit was purchased from the original

6

equipment manufacturer for eighty-five dollars ($85.00). The

system proved so inflexible that finally a programmer was hired

to completely redesign and rewrite the software.

Generally, the best method to develop a Process Control

System is to purchase a general package and develop the specific

requirements in-house. The firm should have a programmer who is

able to develop systems from such a base and be available to

maintain these systems. Process Control projects normally change

in scope between the design and end-product stages and the firm

needs the independence that is gained when having its own employees

complete the task.

In the past, when designing process control systems, the

system was usually designed from the bottom up. Often the design

was started by considering the control loops and the memory

cycle speed of the computer as the basic design criterion6. The

design would work up finally adding the operator interface at the

top level.

The principles of software engineering indicate that

computer systems should be designed from the top down by successive

refinements. We should start by considering what results we want

and then design from there. It is essential that the computer

be fast enough to do the job but this should not be a base for the

design but something checked on after the system’s completion.

The last decision to be made in the design should be which mini

computer should be included.

7

2.2 Current Software Systems

The varying applications of process control have led

to a wide variety of operating system executives. Some systems

maintain a large database and mostly involve I/O scheduling.

Others are compute bound and rely on the optimization routines

of the computer. Still others exercise little or no control over

the process and are merely report producing monitoring systems.

The following paragraphs summarize the packages currently

offered by some companies.

1) Fisher Controls, Marshalltown, Iowa.

Fisher has developed its own Process Control language

called PC which is very similar to BASIC with some added I/O

commands for real-time systems. The system is based on a 32K

word processor which is expandable to 64K. The system is good for

general use but interfacing to other hardware, except Fisher

2
equipment, is difficult. The PC compiler is hardwired which

requires an extra 4K words of memory. The user cannot link his

own assembler routines to the package which limits some applications.

2) Foxboro Company, Foxboro, Mass.

Foxboro has developed an integrated control system called

INTERSPEC, which allows each Foxboro unit in the system to interact

predictably well with every other Foxboro clement. Their software

incorporates a Fill—In—The—Forms7 method to allow the user to

perform all the functions by merely answering questions about his

application.

8

This approach results in considerable savings in software

development costs but the programs tend to be large, and very

general, and require substantial memory. It is also possible

to require new applications which the "Fill—In—The—Blanks” method

does not cover.

3) Taylor Instrument Company.

Taylor Instruments has developed an interactive Process

Control language called POL* 3 (Process Orientated Language-3).8 POL*3

allows the user to avoid the compiling stage and permits the user

to execute tasks while the computer is on-line. Thus the user

can work with the I/O and change the process requirements while on

line. POL*3 is an interpreter which causes the users programs

to access subroutines which handle the requests.

4) The Purdue Fortran

The Fortran Committee of the Purdue Workshop on Standard

ization of Industrial Programming Languages attempted, in 1972,

to unify the different process control extensions to Fortran by

developing Purdue Fortran10. This has since become an industrial

standard. The language takes ANSI Fortran as a base and adds a

set of standard procedures for process control. Purdue Fortran

has eighteen procedures for starting tasks, process I/O bit

string manipulations, and time and date information.

5) Digimatics Ltd.

Digimatics has developed a high level process control

language called ABACUS9 which allows the user to describe his

9

system by means of block schematic control diagrams similar to

conventional analogue control and logic signals. The information

about the block schematic is entered directly to the computer.

The required software, being closely related to block diagrams,

is one the user can easily picture and work with.

Other systems which may be of interest to the reader

include those supplied by Bailey Meter, Bristol, Honeywell, and

Metromation. Each of these has its own special features but all

of them are inefficient and inflexible for special purpose applications.

Most firms offer the ability to have a backup computer for

important processes. This requires a dual processing system with

both computers sharing the same disc. This ensures that when the

on-line computer fails no data is lost and that the control

process can immediately continue. The back-up computer can be

used for other purposes while it awaits for the main computer to

fail.

10

3- DESCRIPTION OF THE SYSTEM

The three basic components of the system which were changed

will be described on the following pages. They are the computer system,

the GOSEX software package, and the programming requirements of the

DG/DAC subsystem.

3.1 The Computer System

Figure 1 shows the layout of the hardware in the Chemical

Engineering Control Laboratory. The computers were manufactured

by Data General Corporation, have a 16 bit word length, and have a

memory size of 32,768 words.

The instruction set of the Nova computers contain instructions

that perform fixed point arithmetic and logical operations between

accumulators, transfer of operands between accumulators and main

memory, transfer of program control, and I/O operations. The

instruction set was designed to allow for many operations to be

performed by one instruction, allowing complex routines to be

written by a small number of instructions.

The computer operation is performed sequentially, executing

the instructions of a stored program one by one. In small systems

the computer proceeds without interruption, continuing until the

solution is complete. In general this mode of operation results

in inefficient use of computer resources and does not allow for

fast responses to process interrupts which are commonly required

in process applications. The following are examples illustrating

how interrupts can solve the above two problems.

Consider a case in which the control computer is monitoring

the pressure of a gas at the discharge of a compressor station. If

the pressure goes below a certain reading the compressor is to be

turned on increasing the pressure in the gas transmission line.

The compressor is to be turned on within five minutes after the

12

violation of limits occurs if sufficient pressure is to be main

tained in the pipeline.

Using Murphy's Law it is quite probable that the computer

would be initiating a lengthy optimization calculation, that

requires ten minutes of computing, at the instant the violation

occurs. Clearly, without the interrupt capability the computer

could not respond to the process event in the required time.

The efficient use of computer resources may be illustrated

by examining the operating speeds of the processor and the I/O

units. The processor can execute over one million instructions

per second compared with thirty characters per second for a typical

output terminal. Thus if sequential execution were followed the

processor would always be waiting for work while the terminal

slowly operated. The interrupt feature allows many thousands of

instructions to be executed while the I/O units are operating.

In the basic interrupt scheme there are six functions which

must be carried out:

1) Detection of an interrupt

2) Indication of the source of the interrupt

3) Saving of information so the execution of the interrupted

program can later be resumed

4) Transfer of control to the interrupt handling program

5) Execution of the interrupt handling program

If anything can go wrong it will.

13

6) Return of control to the interrupted program

These functions could all be performed by the program if

the programmer added sufficient code. This could be done by having

the program periodically compare all input values to pre-set limits

and have the program branch to code to service any limit violating

conditions. This would require the programmer to time the execution

of segments of code so that the program can transfer to the limit

checking code at periodic time intervals. The routine would

have to store the state of the program at every transfer thus

increasing the number of instructions executed, and increasing

execution time and storage requirements. Obviously, the hardware

interrupt process is preferable for the majority of process

control applications.

Advancing the concept of interrupts we find that it is

advantageous to assign each possible interrupting device a level

of priority. For example, an interrupt from an input device,

indicating that digital data is to be read, should be ignored if

the computer is presently handling an interrupt to an emergency

condition in the process.

Three types of interrupts exist on the system:

1) System Interrupts.

These are generated by the computer system itself and is

key to the functioning of the system. When the teletype has

finished outputting a character and is ready for another a system

interrupt is generated.

14

2) Timer Interrupts.

In our system the operator must initialize a user clock

which indicates what action is to be done periodically by the

program. An example is if an optimization calculation is to be done

every ten minutes the timer interrupt would be set to ten minutes.

The user clock is essentially a subroutine which contains

a counter. The system clock runs at 10 Hz and interrupts the

program every one-tenth of a second. The interrupt forces the

counter in the clock subroutine to increment and to be compared

with a set value which was initialized when the user clock was set

by the user. When the counter is equal to the set value a timer

interrupt occurs.

3) Process Interrupts.

These interrupts originate from the process and either

signal that some routine is to be executed by the computer or

signal that a message indicating an alarm condition is to be

generated. In the Chemical Engineering Control Laboratory system

the user can execute a GOSEX function by typing CTRL E on the

teletype, thus issuing a process intermpt.

In Data General systems11 two levels of priorities are

present. High priority interrupt devices are contained in the

HINT dispatch table. Examples of these are the real time clock and

the power fail/auto restart device. The lower priority devices

arc wired to a particular bit of the 16 bit priority mask and have

entrees in the device interrupt vector table (ITBL). More than one

15

device can be wired to a particular bit. By changing the mask

word upon interruptions the servicing program can inhibit specified

levels of interrupts and thus establish a priority scheme. By

use of the mask bits the user can guarantee that a servicing program

will not be interrupted. The masking function only delays the

recognition of an interrupt and thus the interrupt is not lost.

Figure 2 shows the system configuration in the Chemical

Engineering Control Laboratory, including the two minicomputers,

the DG/DAC unit, and the I/O devices. The dual processors share

control of the DG/DAC subsystem, each having its own crate controller.

Details of each I/O module is given below:

1) 4290 General Purpose Input Module (to be used as a Contact

Sense Device).

The Contact Sense device consists of a 16 bit data register

which stores the state of sixteen independent lines. When a

transition is detected in any of the lines the module initiates

a program interrupt request. The program must then analyze the

status of the data register to determine which of the lines

changed state and caused the interrupt. The module can also be

used to store the state of the sixteen independent lines only

upon user request and without causing an interrupt.

2) 4291 TTL Input Module (Two modules in system).

The TTL input modules each contain a 16-bit data register

which stores the state of sixteen independent TTL compatable

input lines. The data register receives the digital data from

16

the input lines on command from the program or can be programmed

to initiate an interrupt upon reception of data from one of the

input lines.

3) 4297 Form C Relay Output Module

The relay module controls 17 independent form C reed

relays. The module contains a 16-bit data register which controls

the value of sixteen of the relays with the seventeenth relay

(start pulse relay) being controlled by a module flag command

(the S-function).

Physically the Form C relay is a mercury-wetted relay

which is activated by a magnetic field. The mercury covers all

contact surfaces and thus eliminates bounce when the contacts

close.

4) 4299 TTL Output Module (Two modules in system)

The TTL output modules each control eighteen independent

TTL compatable output lines. Sixteen of these lines are controlled

by bits in a 16-bit data register while the other two are strobe

lines which are controlled by nodule flag commands (the S, C, and

IORST functions).

5) 4238 Series D/A Converters (Two converters in system)

The D/A converters provide analog voltage output on four

program selectable output lines. The output voltage range is

0-10 volts and the resolution of the digital value to be converted

is 12 bits. The digital to analog converter is used to control

analog devices such as valves or setpoints.

17

6) A/D Cluster

The A/D cluster consists of an analog to digital input

device plus two voltage multiplexors and one current multiplexor.

The cluster is used to provide a digital representation of an analog

signal. The three components of the cluster are:

a) 4280 A/D Converter.

The A/D converter operates under Data Channel Operation,

that is, the address in core, where the converted digital data is

to be stored, is given and all the converted data is stored there.

This is opposed to individual digital values being stored by the

program as in Programmed I/O Operation. The digital data has

12-bit resolution. The three multiplexors are differential multi

plexors which requires two channels per analog signal. The major

advantages of this are, first, the ability to handle low-level as

well as high level signals, and second, the additional performance

requirement of common mode rejection.

b) 4281 Voltage Multiplexors (two in cluster).

The input voltage range is 0 - 10 volts. The Voltage

Multiplexors have programmable select gains with values of 1,2,4

and 8.

c) 4281C Current Multiplexors.

The current multiplexor inputs a signal of 10 - 50 ma to

the A/D converter.

18

3.2 The GOSEX Executive System

The GOSEX package is a group of utilities and executive

functions used as the base for real time process control applications.

The user has to develon a minimal number of subroutines to make

use of the executive package. The package is flexible and can be

used for a variety of applications on any NOVA-line minicomputer

operating under Data General's real time disk operating system

(RDOS) . The GOSEX package occupies approximately 4K words of

central processor memory, leaving approximately 14K words for user

programming in a 32K word machine.

The package consists of three distinct types of routines:

1) Utilities.

The utilities are routines which support the package functions.

They are composed of twenty-eight core resident programs which

are re-entrant to allow for their use in different interrupt levels.

Under RDOS, the re-entrant subroutines are essentially read

only code and each reference to the routine creates a separate

area for the data and intermediate results. A description of

each utility is available.

2) Executive Tasks.

The executive tasks are routines which initialize the

system at run-time, check for alarm conditions, and control the

transfer of data between the system and the plant. The main program,

INTRP, allows initial operator-system communication, and handles

operator interrupts. The routine named MNITR allows the user to

19

output messages to the keyboard during alarm conditions. The

interface handler is called MTPLX. MTPLX was rewritten as part

of this project but its purpose remains unchanged. It initiates

the input devices, handles the outputs when requested by the users

clock, and handles the inputs when the input interrupts request service.

Routines are also available to generate logged output, plots,

profile output, and copy output.

3) Functions

The functions supply an individual task to the system and

are executed by user request, upon the operator interrupt, given

by CTRL E. The user can also supply special purpose functions which

can be linked to the system. Examples of functions are STATS,

which will print out the status of the run, and LOG, which will

initiate a display of data on any of the output devices.

The requirements of the user are to supply a number of

programs, tables, and constants which are used by the executive

programs to uniquely describe the system. The constants are to

be set in a routine called PTAPE which will supply GOSEX with the

limiting values and the number of devices in the system. The

user must supply routines to shut down the system, and to handle

the calculations necessary in his application. Message files

must be provided for the alarm conditions and tables must be set-up

to hold the data for the I/O devices.

The executive function PREP is called at run-time to

study the inputs given by the user and will generate diagnostics

20

upon the location of errors. The PREP routine was changed in

this project to reflect the changes to the tables necessary for

the enlarged I/O subsystem. A sample run of GOSEX is available.

21

3.3 The DG/DAC Subsystem

The following is a review of the programming requirements

of the DG/DAC subsystem. Each I/O device has its own programming

requirements and handles the data in a unique way.

1) 4290 General Purpose Input Device (Contact Sense Device).

The Contact sense device is programmed in two separate

steps, first, starting the device, and second, servicing it upon

the change of one of its bits. To start the device the module

first must be selected by indicating its slot address in the

Specify Address and Context (DOA) statement. Then a start flag

is given (S) which will start the device and enable the module

interrupts.

To service the device, upon an interrupt, the individual

bits of the data register must be compared with their previous

values to locate which bit changed status. Once the bit is located

a message is transmitted to the user disclosing the change and the

contact sense device is again started.

2) 4291 TTL Input Module.

The TTL input device has to be initialized, serviced when

ready, and started. The device is selected and started with a

Specify Address and Context (DOAS) statement with the slot address

in the appropriate bits. This enables the module interrupt and

allows the device to interrupt the system when the input is

present in the data register. When this occurs the data is read

and placed in the table TTLI1 or TTLI2 in memory, depending on

22

which TTL input device handled the data.

3) 4297 Form C Relay Output Module.

Part of the requirements of the user is that he must

set the frequency at which the system will output data, read the

analog to digital and TTL input data. This is given by the

constant SCAN in the users own program. From this sampling rate a

user clock11 is defined which will force an interrupt every

sampling unit of time. When this timer interrupt occurs a branch

to the output handler is made and the Form C relay is selected

by a Specify Address and Context (DOA) statement with the slot

address in the appropriate bits. The relay settings are then

loaded into the data register by a Write Data (DOB) statement.

The device is then started by a start flag (S) command which closes

the Start Pulse relay for 50 ms and the data is subsequently

output.

4) 4299 TTL Output Modules.

After the Form C relay data is output the TTL output

modules are selected sequentially. The TTL output is loaded into

the data register by a Write Data (DOB) statement and the device

is then started by a start flag (S) command. The flag asserts

the two external strobe lines and starts a 7 ms interval timer

at which time the data is output.

5) 4288 Series D/A Converter

After the TTL data is output the D/A converters are

selected sequentially. The eight D/A channels are selected in

23

sequence and the data and channel numbers are loaded into the data

register by the Specify Conversion (DOB) instruction. The data is

then converted to an analog signal and output. The procedure is

then carried out for the other channels.

6) 4280 A/D Converter.

The A/D converter, current multiplexor, and the two voltage

multiplexors are grouped together into a cluster. The gain values

of the voltage multiplexors must be set, the ADC must be started,

and the cluster serviced when ready. The gain values must be set

prior to selecting the A/D converter. They are set by first

selecting each voltage MPX by the Specify MUX Address (DOC) statement

and then using the Specify Gain (DOB) instruction to output the

gain value.

The cluster is then started by issuing the following

instructions:

a) Select the cluster with a Specify Address and Context

(DOB) statement with the slot address in the appropriate bits.

b) Indicate the number of conversions to be done by the

Specify Conversion (DOB) statement. The following bits are to be

set - initiate program interrupt on a data overrun error, command to

propagate to the specified multiplexor when appropriate, trigger

is set to DCHI (Data Channel Operation), automatic scanning of

multiplexors, data channel mode, and the number of conversions

is set to 3.

c) Indicate the first multiplexor to be selected by the Specify

24

MUX address (DOC) with the number of multiplexors set to 3, and the

first channel given in the Channel Select bits.

d) Indicate where in memory the converted data is to be stored

by a Load Memory Address (DOC) instruction.

e) A start flag (S) is then given which will start the conversion.

When the conversion is finished and the digital data is

stored in the table (DATUM) in memory, the program is interrupted

to indicate that the conversion is complete. The validity of the

data is then checked with a Read Module Status (DIA). Bit 3 will

be one if there was a data overrun error. The request is then

cleared with a clear flag (C) command.

25

4- DESCRIPTION OF THE INTERFACE SOFTWARE

The following is a description of the software changes

required for the new DG/DAC subsystem. A general discussion

of the Code changes is first given followed by details of each

required change. A written description, flow charts, and the

actual code is included.

26

4.1 The DG/DAC - GOSEX Interface

Below is a discussion of the problems, decisions, and

analysis which had to be done in implementing the new I/O sub

system within the existing operating system executive.

Initially it had to be determined which code of GOSEX was

to be affected by the change. The entire MTPLX routine required

change, PTAPE had to be expanded to allow for the additional I/O

units, and PREP had to be changed to allow for the expansion.

Problems were encountered in the following areas:

1) Lack of documentation on the flow of the GOSEX routines.

As is typical with assembler programs, individual sections of code

were well documented but a systems flowchart, showing how the

sections fit together, was lacking. This caused serious problems

when designing the interface.

2) Lack of proper documentation on the programming of the

DG/DAC subsystem. The programmer’s reference manual was poorly

written, lacked details, and had no examples. The programmers at

Data General (Toronto) were most helpful in solving the "Fill-in-

the Blanks" documentation.

3) The documentation on the Dual Processor arrangement for

the DG/DAC unit was poor and no one at Data General could explain

the extra requirements for this configuration. Therefore, no

attempt was made in the code to take advantage of the dual processing

set-up in the Chemical Engineering Control Laboratory.

4) Data General was not able to deliver the DG/DAC unit by

27

the promised deadline. Therefore, the code written in this project

was not able to be tested.

The following were decisions which had to be made on how

flexible the interface should be:

1) It was decided not to plan the code for the dual processing

case because of the lack of documentation dealing with this

arrangement.

2) It was decided to allow each device to be independent of

the slot number in the DG/DAC unit. The user has to specify

not only how many slots he is using for his application but which

particular slot he is using for each device. The multiplexor

still must follow the ADC device in the ADC cluster. The slot

selection is done in PTAPE.

3) Presently, for the digital to analog converter, the user

always starts with channel 0 and proceeds sequentially to channel

N for the (N + 1) channels in his application. To allow for greater

flexibility, and to prepare for the future dual-processing situation

it was decided to allow the user to start his application at any

channel and proceed sequentially from there. The two DAC devices

are treated separately and the user is required to indicate, in

PTAPE, the following for each DAC unit:

i) the slot number of each DAC unit

ii) the number of channels each DAC unit is to use

iii) the starting channel of each DAC unit

4) It was decided to allow each of the voltage multiplexors

28

to have separate gain values. The voltage multiplexors have

programmable gains which are set in the PTAPE routine. The user

must also set in PTAPE, the slots in which the ADC and each

multiplexor are located.

5) It was decided to treat the two TTL input and the two

TTL output devices separately to allow for greater flexibility in

their use.

6) It was decided to mask out the following devices when the

DG/DAC unit is being serviced:

- Teletype Output (TTO)

- Teletype Input (TTI)

- Real Time Clock (RTC)

- Paper Tape Punch (PTP)

- Line Printer (LPT)

This is a change from the previous design where the Line Printer

was not mask out during the servicing of the A/0 converter.

7) It was decided to design the code so that future expansion

could occur with minimal programming effort. The structured

programming technique used in GOSEX was again used in the new

code. The individual sections of code were written as conditional

assemblies to allow for greater efficiency in execution.

8) In the Analog-to-Digital converter cluster the ADC module

is in the first slot used by the cluster. It was decided to make

the two voltage multiplexors follow in the two slots after the ADC

and have the current multiplexor occupy the last slot in the cluster.

29

This convention was necessary for the coding of the programmable

gains.

30

4. 2 Description of the Code

The following is a discussion of the analysis done on

each section of the program which had to be added or changed.

Figure 3 shows the flow of GOSEX dealing with the interface to the

I/O subsystem.

The code changes are divided into five sections:

1) Changes and additions to PREP.

PREP is the routine which checks the inputs given by the

user. Since new tables have been added and others expanded, the

code relating to these tables has been changed. Tables for the

TTL input (TTLI1 and TTLI2) and TTL output (TTL01 and TTL02) have

been added. The table for the digital-to-analog converter (ANALG)

has been retained but the first four values of ANALG are now

reserved for the first DAC device, while positions 5 - 8 in the

ANALG table are for the second DAC device. The changed program PREP

is given in figure 4.

2) Changes and additions to PTAPE.

PTAPE contains the parameters which the user changes to

fit his application. The number of channels per device have been

changed and new devices have been added. The slot containing each

device is given to increase the flexibility of the system. For the

DAC devices the starting channel number for each device is given.

Also the gain values for the two voltage multiplexors is included.

The changed program PTAPE is given in figure 5.

3) Changes to DCLAR

The new code is indicated by a bar on the left side of the page

for PREP, PTAPE, and OPCOM. MTPLX contains entirely new code.

31

DCLAR is used to initialize and start the DG/DAC unit,

start the contact sense device, and set the gain values of the two

voltage multiplexors. DCLAR is called by PREP in the initialization

stage of GOSEX. A flowchart for DCLAR is given in figure 6 and the

code is given in figure 9.

4) Changes to MTPLX

MTPLX is called when the user clock expires and the ADC

device is to be started. The routine sets the relays, outputs

the data to the first and second DAC devices and the two TTL

output devices. The outputting of the DAC values has to be handled

in the following method. The resolution of the digital data is

12-bits which occupies the left most 12 bits of the data register.

The two right most bits are to contain the channel number of the

DAC device in question. The digital output values are loaded into

AC1, then shifted four bits left to place them in the correct bits.

The channel number is then added to AC1 to give the required

contents of the data register. The Specify Conversion (DOB)

statement is then issued to convert the digital value to an analog

signal.

After the output devices are handled the routine then

starts the two TTL devices and the ADC in Data Channel Operation

mode. A flowchart for MTPLX is given in figure 7 and the code is

given in figure 9.

5) POLLR-Polling routine and input handler.

POLLR is called upon an interrupt from the DG/DAC unit.

32

The DG/DAC unit is examined to see which input device caused the

interrupt and control is passed to the code which handles the

interrupting device. The device can be the contact sense, ADC, or

one of the two TTL input devices.

Since the interrupts are to be handled quickly all other

modules of the DG/DAC unit are masked out before the inputs are

handled. After the contact sense device inputs are handled the

device is again started. The flow of POLLR is given in figure 8

and the code is given in figure 9.

33

5- CONCLUSIONS

The prime objectives of the project have been achieved.

These were:

a) To examine GOSEX and determine how it handles the I/O.

b) To examine the DG/DAC unit and determine how to program

it.

c) To write code to interface the new DG/DAC subsystem with

the existing code of GOSEX.

d) To examine current Process Control Systems and comment on

how each system uniquely solves the Process Control

problem.

The code written is not completely transparent to the user

because the DAC output devices had to be treated as separate

devices compared to the previous single treatment. The DG/DAC

unit was not delivered in time for the code written in this project

to be tested. The documentation of the interface should allow

any errors, which may occur in the testing, to be easily corrected.

34

FIGURES

Figure 1

Layout of the Hardware in the Chemical
Engineering Control Laboratory.

36

Figure 2

DGDAC Configuration SLOT

Module
No. of
slots

No. of
Channels I/O

ADC plus
3 MPX’s 4 24 I

DAC 2 8 0

TTL input 2 32 I

TTL output 2 36 0

Form C
Relay 1 17 0

Contact
senses 1 16 I

TOTAL 12 137

37

Operator - machine
interface

Check the tables
set-up by the user

initialize the DG/DAC unit,
start the contact sense
device, and set the gain
values of the MPX's

set-up the user clock

output relays, DAC, and

TTL output values.

Start the ADC and TTL

input devices.

Figure 3

Flow of GOSEX pertaining to the
interface with the I/O subsystem

38

39

Figure 4

Changes to PREP

59

Figure 5

Changes to PTAPE

Figure 6 68

Flow of DCLAR

69
Figure 7 MTPLX - Output handler

70

71
Figure 8 POLLR - Input handler

72

73

Figure 9

New MTPLX Routine

- SAVE RETURN ADDRESS
- DEFINE THE DGDAC UNIT TO THE SYSTEM
- ACO CONTAINS THE DEVICE CODE
- AC1 CONTAINS THE ADDRESS TO BRANCH ON
- INTERRUPTS
- DEFINE THE DGAC UNIT TO THE SYSTEM

- MNEMONIC OF DGDAC DEVICE
- BRANCH TO POLLO UPON AN INTERRUPT FROM DGDA
- START THE DG/DAC DEVICE
- INITIALIZE THE CONTACT SENSE DEVICE
- READ THE SAVE THE STATUS OF THE DG/DADC
- CONTROLLER
- LOAD THE SLOT ADDRESS OF THE CONTACT
- SENSE DEVICE
- SF = 1, ID = 1, CM = 0, LOAD 1,000,000,010,000,000
- SETUP TO LOCATE THE CONTACT SENSE DEVICE
- SELECT AND START THE CONTACT SENSE DEVICE
- RESTORE THE STATE OF THE DGDAC CONTROLLER

- SET THE GAIN VALUE OF THE FIRST VOLTAGE MPX -

MUX NO = 1, MUX CHAN = 0
- SELECT THE FIRST MFX

- SPECIFY THE GAIN OF THE FIRST VOLTAGE MFX

- SET THE GAIN VALUE OF THE SECOND VOLTAGE MFS

- MUX NO = 2, MUX CHAN = 0
- SELECT THE SECOND MFX

- SPECIFY THE GAIN OF THE SECOND VOLTAGE MPX

- RETURN

- SAVE RETURN ADDRESS
- HANDLE THE RELAY OUTPUTS

- SETUP BIT COUNTER
- GET ADDA OF RELAY BIT STATUS TABLE
- GET IT RELAYS SYSTEM
- MAKE LOOP COUNTER
- GET A BIT FLAG, STARTING BIT O
- IS BIT TO BE SET

- YES-SET IT IN COMPOSITE
- NO-RESET IT IN COMPOSITE
- PUSH POINTER
- SCAN DONE?
- NO-CONTINUE
- GET # RELAY BITS SCANNED -
GET NEG OF # OF RELAY BITS IN SYSTEM
- ANY BITS NOT SCANNED

- MOV COMPOSITE ALONG

- SAVE THE STATUS OF THE DGDAC CONTROLLER
- LOAD THE SLOT ADDRESS OF THE RELAY DEVICE
- CP = 1, ID = 1, CM = 0 LOAD 1,000,000,010,000,000
- SETUP TO LOCATE THE RELAY DEVICE
- SELECT THE RELAY DEVICE
- SETS BIT PATTERN AND STARTS THE RELAY DEVIC
- RESTORE THE STATE OF THE DGDAC CONTROLLER

- HANDLE THE FIRST DAC DEVICE

- READ THE STATUS OF THE DGDAC CONTROLLER
- SAVE THE STATUS OF THE DGDAC CONTROLLER
- LOAD THE FIRST SLOT ADDRESS OF THE DAC DEVI
- CP = 1, ID = 1, CM = 0, LOAD 1,000,000,010,000,000
- SETUP TO LOCATE THE FIRST DAC DEVICE
- LOAD THE STARTING CHANNEL OF THE FIRST DAC
- STORE THE CHANNEL NUMBER OF THE DAD
- GET THE ADDRESS OF THE D/A OUTPUT TABLE
- GET THE NUMBER OF THE DAC CHANNELS FOR THE FIRST DE
- START LOOP COUNTER

- GET AN OUTPUT VALUE -
SELECT THE FIRST DAC DEVICE
- STORE LOOP COUNTER
- LOAD NEXT CHANNEL NUMBER
- SHIFT -
DIGITAL OUTPUT
- FOUR BITS
- LEFT
- MERGE VALUES FOR DATA TRANSFER
- SPECIFY CONVERSION
- INCREMENT CHANNEL NUMBER
- STORE CHANNEL NUMBER
- INCREMENT TABLE POSITION
- RESTORE LOOP VALUE
- DONE?
- NO
- LOAD THE STATE OF THE DGDAC CONTROLLER
- RESTORE THE STATE OF THE DGDAC CONTROLLER

- HANDLE THE SECOND DAC DEVICE

- READ THE STATUS OF THE DGDAC CONTROLLER
- SAVE THE STATUS OF THE DGDAC CONTROLLER
- LOAD THE FIRST SLOT ADDRESS OF THE DAC DEVIC

- CP = 1, ID = 1, CM = 0, LOAD 1,000,000,010,000,000
- SETUP TO LOCATE THE SECOND DAC DEVICE
- LOAD THE STARTING CHANNEL OF THE SECOND DAC
- STORE THE CHANNEL NUMBER OF THE DAC
- GET THE ADDRESS OF THE D/A OUTPUT TABLE
- ADD 4 TO ADDRESS OF THE D/A OUTPUT TABLE
- TO FIND STARTING LOCATION FOR SECOND DAC DEV
- GET THE NUMBER OF DAC CHANNELS FOR SECOND DEV
- START LOOP COUNTER
- GET AN OUTPUT VALUE
- SELECT THE SECOND DAC DEVICE
- STORE LOOP COUNTER
- LOAD NEXT CHANNEL NUMBER
- SHIFT
- DIGITAL OUTPUT
- FOUR BITS
- LEFT
- MERGE VALUES FOR DATA TRANSFER
- SPECIFY CONVERSION
- INCREMENT CHANNEL NUMBER
- STORE CHANNEL NUMBER
- INCREMENT TABLE POSITION
- RESTORE LOOP VALUE -
DONE?
- NO
- LOADD THE STATE OF THE DGDAC CONTROLLER
- RESTORE THE STATE OF THE DGDAC CONTROLLER

- HANDLE THE FIRST TTL OUTPUT DEVICE

- SETUP BIT COUNTER
- GET ADDR OF RELAY BIT STATUS TABLE
- GET I RELAYS IN SYSTEM
- MAKE LOOP COUNTER
- GET A BIT FLAG, STARTING AT BIT 0

94

Figure 10

Additions to OPCOM Messages

99

6- BIBLIOGRAPHY

1- Harrison, Thomas J. Handbook of Industrial Control Computers.
New York: John Wiley and Sons Inc., 1972.

2- Tremblay, Pierre. "Direct Digital Control of a Butane
Hydrogenolysis Chemical Reactor". M. ENG. Thesis,
McMaster University, 1973.

3- Data General Corporation. DGDAC and Process Controls
Programmer's Reference Manual, 1977

4- Smith, Cecil L. Digital Computer Process Control. Scranton,
Pennsylvania: Intext Educational Publishers, 1972.

5- Tremblay, Pierre. "Generalized Operating System Executive",
Internal Report, SOC Group, McMaster University,
(March 1975).

6- Carpenter, B.E. "A Computer Scientist's View of Process
Control", Massey University Computer Unit, Reoort No.
21 (June 1975).

7- Smith, C.L. "Fill-In-The-Forms Computer Languages For Process
Control", Chemical Engineering, (March 3, 1975).

8- Shave, John. "Process Control Software", Control and Instrument
ation, Vol. VII, No. 10 (November 1975), 30.

9- Smythe, Clare. "Integrated Control of Paper Machine", Control
and Instrumentation, Vol. VI, No. 1 (November 1975), 30.

10- Gertler, Janos and Sedlak, Jan. "Software For Process Control -
A Survey", Automatica, Vol. XI, Pergamon Press, 1975
(613-625).

11- Data General Corporation. User Device Driver Implementation
In The Real Time Operating System, Manual No. 017-
000006-00, March, 1974.

12- Data General Corporation. Extended Assembler, Manual No. 093-
000040-01, May 1974.

13- Data General Corporation. Hou To Use The Nova Computers,
1971.

