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Abstract

The field of deep learning has seen increasing breakthroughs and commercial adoption in

recent years for enabling a wide range of applications including image and speech recog-

nition, multimedia generation, information summarization, and human-like chatbots. This

has led to a growing need for hardware that can quickly and efficiently perform deep learn-

ing inference, which increasingly requires massive amounts of computational power.

To address this need, recent years have seen many works for optimizing deep learning

inference in hardware. Systolic arrays are an efficient class of hardware designs to use as

a starting point for this application. However, after hardware-oriented deep learning model

optimizations reach their limits, after the known parallelism for executing their compute

patterns in hardware is exhausted, and after technology scaling slows to a halt, there is an

accelerator wall that limits further improvement on the implementation side.

In this thesis, we contribute to this field through an under-explored direction by pre-

senting new efficient matrix multiplication algorithms and/or their systolic-array hardware

architectures that increase performance-per-area by reducing the workload at the algebraic

level, and thus by computing the same result from a re-arranged compute pattern requir-

ing fewer or cheaper operations to be performed in hardware. We evaluate our architec-

tures in an end-to-end deep learning accelerator, demonstrating their ability to increase the

performance-per-area of hardware accelerators beyond their normal theoretical limits.
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Chapter 1

Introduction

Recent years have seen increasing breakthroughs and commercial adoption of deep learn-

ing, which has enabled ground-breaking applications ranging from human-like chatbots

like ChatGPT, to generating realistic image and video content from prompts, self-driving

cars [1], detecting cancer [2], and beating human champions at the complex game of Go [3].

However, deep learning inference increasingly requires massive amounts of computational

power to perform, making it ever-more difficult to execute quickly and efficiently. This

can be mitigated by building special-purpose computer hardware that can perform deep

learning inference more efficiently than general-purpose hardware like conventional cen-

tral processing units (CPU)s. In this thesis, we join this effort by identifying and advancing

an under-explored area in the field of deep learning hardware design.

The rest of this chapter provides more background on deep learning in Section 1.1,

and Section 1.2 goes over a high-level description of hardware acceleration and why it is

necessary to meet the computational demands of deep learning. Section 1.3 then identifies

under-explored areas in prior work on deep learning acceleration that form the basis for our

contributions. Finally, our contributions and thesis organization are outlined in Section 1.4.
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Artificial Intelligence

Machine Learning

Neural Networks

Deep Learning

Figure 1.1: Categorization of the subfield of deep learning within the broader field of arti-
ficial intelligence.

1.1 Deep Learning

Increases in computational power and available training data in recent decades have helped

initiate an awakening for the field of deep learning, allowing models and theories to be

proven and leveraged in real-world applications that previously were infeasible to test.

This has led to a positive feedback loop between increasing adoption of deep learning

into commercial applications and further funding and research interest leading to scientific

advancements.

Deep learning (DL) is a category of machine learning (ML), which is subset of the

broad field of artificial intelligence (AI). AI was founded as an academic discipline in the

1950s and, at a high level, is a field of research with the goal of creating artificial systems

that exhibit intelligent human-like behaviour. Machine learning is a strategy to achieve

AI through systems that train and learn to achieve tasks on their own or without explicit

instructions. This saves humans much of the laborious efforts of working out all of the

problem details and doing all the manual programming of the system, passing some of that

effort onto the system itself.
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Artificial Neural networks (ANN)s, also referred to as just neural networks (NN)s were

first proposed in the 1940s and are a method within the field of ML inspired by the human

brain, which is currently and originally the best known general intelligence system for

learning and solving problems. NNs are built around the concept of a neuron, which is

the primitive computational element in the human brain, and there are approximately 86

billion neurons in the average human brain [4]. Deep learning, first proposed in the 1960s,

is the study of large neural networks, also called deep neural networks, and is the primary

technology behind the applications currently labelled as using ML or AI today. In Section

2.1, we provide more details on DNNs and the computational patterns they map to.

1.2 Hardware Acceleration

Due to the increasing adoption of deep learning, there is high demand for ways to efficiently

perform deep learning inference on a range of computational platforms ranging from smart

phones to warehouse-scale distributed computing data centers alike; all of which aim to

maximize execution speed and minimize power usage. However, the number of operations

required to perform deep learning inference is commonly in the billions and is only increas-

ing in newer deep learning models, making these performance goals ever-more difficult to

reach. Fortunately, the deep learning inference commonly decomposes down to performing

the same subclass of compute patterns which mainly consist of performing a large number

of multiplications and additions that can be performed in parallel with one another. This

makes it a great fit for hardware acceleration, in which custom hardware is designed to

execute a specialized subset of compute patterns in parallel more efficiently than what is

possible to be performed in general-purpose hardware like CPUs that can perform a wider

range of operations but operate more sequentially and slowly.
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Conventional CPUs are fit for any general or unknown computational patterns, making

them the central part of a general-purpose computer. The intention of more specialized

hardware, however, is to be more efficient at executing a smaller range of computational

patterns. Specialized hardware typically achieves this by containing only the logic neces-

sary for its specific subset of tasks, and by performing many subtasks in parallel.

GPUs are specialized at performing simple arithmetic operations such as multiplica-

tions and additions in parallel, making GPUs an initially natural fit for deep learning accel-

eration. However, one limiting factor of GPUs is that it can be difficult to load all of the

inputs to the multiplications and additions and return their outputs quickly enough, causing

this data movement to become the performance bottleneck. Specialized hardware such as

the Google Tensor Processing Unit (TPU) [3], [5], [6] allows for many multiplications and

additions to be performed in parallel while also requiring less intermediate data movement,

leading to faster and more efficient deep learning acceleration compared to a GPU.

Specialized hardware can be implemented using two main types of technologies, ap-

plication specific integrated circuits (ASIC) or field-programmable gate-arrays (FPGA).

ASICs are specialized hardware designed strictly for a specific purpose where the func-

tionality is permanent after the hardware is shipped. In contrast, an FPGA is a device that

contains programmable circuitry that can be updated to implement a specified logic circuit

at any time which makes design errors more forgivable, provides future-proofing by allow-

ing hardware designs to be updated, and it is much cheaper to purchase a small number of

FPGAs than manufacturing an ASIC for mass production. On the other hand, while the

functionality of ASICs is permanent, they are more optimized and efficient at performing

that specific functionality than an FPGA programmed for that same functionality. In Sec-

tion 2.2, we discuss more background and prior works on custom deep learning hardware.
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1.3 Efficient Algebraic Algorithms

To address the increasing need for efficiently performing deep learning inference, a variety

of methods for hardware designs and optimizing the deep learning inference in hardware

have been explored in recent years. However, as all deep learning model and hardware

implementation optimizations are becoming explored to their limits, optimizations for re-

ducing deep learning workloads at the algebraic level remain a less travelled route for

continuing progress. This involves rearranging the computation for carrying out a deep

learning model’s algebra such that it produces the same output but from fewer or cheaper

operations performed in hardware.

For example, multiplications can require more circuitry to execute in hardware than ad-

ditions. So if a deep neural network’s algebra can be rearranged to produce the same output

while trading half of the multiplications for additions, then the same result could be com-

puted from a smaller and less power-consuming hardware circuit. Or the circuitry could

be scaled up to execute the deep neural network faster while consuming the same amount

hardware area and power as a circuit using conventional algebra. Additionally, there are

under-explored efficient algebraic algorithms that can produce the same result from both

fewer additions and multiplications being performed which have not been sufficiently stud-

ied for exploitation in custom hardware circuits.

This leaves opportunities to derive new contributions showing how to translate new or

prior works on efficient algebraic algorithms into improvements in hardware accelerator

architectures for deep learning, which is the focus of this thesis. In Section 2.3 we provide

more background on relevant efficient algebraic algorithms and their hardware architec-

tures.
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1.4 Contributions and Thesis Organization

In this thesis, we study the identified under-explored area of algebraic enhancements for

matrix multiplication algorithms and hardware architectures with application to deep learn-

ing acceleration. We propose several advancements to efficient algebraic algorithms and/or

their systolic-array hardware architectures in Chapters 4 - 6.

Chapter 2 provides more detailed background on deep learning and the computational

patterns it maps to, prior approaches for deep learning acceleration, and prior work on effi-

cient algebraic algorithms and their implementation in hardware, which builds the founda-

tion for presenting our contributions.

Chapter 3 outlines the deep learning accelerator system used for evaluating the architec-

tures proposed in Chapters 4 - 6. To evaluate each of our contributions, different proposed

matrix multiplication architectures are swapped for the baseline matrix multiplication unit

(MXU) in the system design, while the remaining components in the accelerator system

remain largely unchanged for each method.

Chapter 4 presents an algorithm called the free-pipeline inner product (FFIP) and gen-

eral hardware architecture that improve Winograd’s under-explored inner-product algo-

rithm called the fast inner product (FIP) [7] that can be seamlessly incorporated into deep

learning accelerators to significantly increase the accelerator’s performance-per-area. We

implement and evaluate FIP for the first time in a deep learning accelerator system de-

scribed in Chapter 3. We then identify a weakness of FIP and propose the new FFIP al-

gorithm and generalized hardware architecture that inherently address that weakness. We

provide deep learning-specific optimizations for the FIP and FFIP algorithms and hardware

architectures. We derive how the (F)FIP architectures increase the theoretical compute ef-

ficiency and performance limits in the general case. The contributions from this chapter
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have been published in [8].

Chapter 5 proposes an algorithm and its hardware architectures that extend the Karat-

suba algorithm [9] to matrix multiplication. While the Karatsuba algorithm reduces the

complexity of large integer multiplication, the extra additions required minimize its bene-

fits for smaller integers of more commonly-used bitwidths. In this chapter, we propose the

extension of the scalar Karatsuba multiplication algorithm to matrix multiplication, show-

ing how this maintains the reduction in multiplication complexity of the original Karatsuba

algorithm while reducing the complexity of the extra additions. Furthermore, we propose

new matrix multiplication hardware architectures for efficiently exploiting this extension

of the Karatsuba algorithm in custom hardware. We show that the proposed algorithm and

hardware architectures can provide real area or execution time improvements for integer

matrix multiplication compared to scalar Karatsuba or conventional matrix multiplication

algorithms, while also supporting implementation through proven systolic array and con-

ventional multiplier architectures at the core. We provide a complexity analysis of the

algorithm and architectures and evaluate the proposed designs both in isolation and in an

end-to-end deep learning accelerator system described in Chapter 3 compared to baseline

designs and prior state-of-the-art works implemented on the same type of compute plat-

form, demonstrating their ability to increase the performance-per-area of matrix multipli-

cation hardware.

Chapter 6 explores hardware architectures for exploiting Strassen’s fast matrix multipli-

cation algorithm. While Strassen’s matrix multiplication algorithm reduces the complexity

of naive matrix multiplication, general-purpose hardware is not suitable for achieving the

algorithm’s promised theoretical speedups, leaving the question of if it could be better ex-

ploited in custom hardware architectures designed specifically for executing the algorithm.
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However, there is limited prior work on this and it is not immediately clear how to de-

rive such architectures or if they can ultimately lead to real improvements. We bridge this

gap, presenting and evaluating new systolic-array architectures that efficiently translate the

theoretical complexity reductions of Strassen’s algorithm directly into hardware resource

savings. Furthermore, the architectures are multi-systolic-array designs that can multiply

smaller matrices with higher utilization than single-systolic-array designs. The proposed

design implemented on FPGA for multiplying matrix sizes down to 24×24 at 2 levels of

Strassen recursion uses approximately 10% fewer soft logic resources and 1.3× fewer DSP

units than a conventional multi-systolic-array design. We evaluate the proposed Strassen

systolic arrays in isolation as well as in an end-to-end deep learning accelerator system

described in Chapter 3 compared to baseline designs and prior works implemented on the

same type of compute platform, demonstrating their ability to increase compute efficiency

and achieve state-of-the-art performance. Finally, Chapter 7 provides a summary of the

contributions and results, possible directions for future work, and concluding remarks.
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Chapter 2

Background and Prior Work

In this chapter, we provide more background on deep learning and how it maps to matrix

multiplication in Section 2.1, followed by a literature review of prior work and approaches

for deep learning hardware acceleration in Section 2.2. Section 2.3 then provides back-

ground on an under-explored avenue for continuing progress in the field of deep learning

hardware acceleration, which is advancement and application of efficient matrix multipli-

cation algorithms to deep learning hardware architectures.

2.1 Deep Learning and Matrix Multiplication

Neural networks are built around the concept of a neuron, which is the primitive com-

putational element in the human brain. Neural networks contain interconnected layers of

neurons, where each neuron outputs some function of its inputs like shown in Fig. 2.1,

and passes its result called an activation as input to neurons in other layers. The functions

that the neurons perform on their inputs contain constants or parameters called weights that

determine properties such as the scaling factor to scale each of its input values by.
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Figure 2.1: A neural network neuron in a fully-connected layer.
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Figure 2.2: A deep neural network with an input layer, two hidden layers, and output layer.
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A deep neural network (DNN) is a neural network consisting of four or more layers

such that it contains two or more middle layers (called hidden layers) between the input

and output layers such as the example shown in Fig. 2.2. While there are many variations of

deep neural network model architectures, the computationally dominant portion of many

common DNN models used today are based on several types of neural network layers

discussed next that can all be mainly decomposed to matrix multiplication.

2.1.1 Fully-Connected Layers

Fully-connected layers are a common building block included in many types of DNN mod-

els including convolutional neural networks (CNN)s and Transformer models that are dis-

cussed next. The hidden layers in Fig. 2.2 are an example of a fully-connected layer. Each

output activation in a fully-connected layer is a weighted sum of all output activations from

the previous layer, followed by the addition of a bias value, and finally the application of a

non-linear activation function such as a sigmoid, hyperbolic tangent, or rectified linear unit

(ReLU) function [10].

This computation translates to a matrix-vector multiplication-based computation be-

tween the weights and the previous layer’s activations. For illustration, the leftmost hidden

layer in Fig. 2.2 is a fully-connected layer that performs the following operation:
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 =


f(y

(1)
1 )

f(y
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2 )

f(y
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 . (2.1)

Multiple inferences can also be performed consecutively in batches when passing through

neural network layers. Performing inference on a batch of inputs like this then translates

11



Ph.D. Thesis - Trevor E. Pogue McMaster University - Electrical & Computer Engineering

to a matrix-matrix multiplication-based computation. For example, this would translate to

the following operation in the fully-connected layer contained in the leftmost hidden layer

in Fig. 2.2:
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This can then be written as:

X(1) = f(W(1)X(0) + b(1)) . (2.4)

Letting K and M respectively represent the number of layer inputs and outputs and N be

the number of inferences being performed in a batch (the batch size), W(1) is then a matrix

of size M×K and X is a matrix of size K×N . The majority of operations in a fully-

connected layer performing inference in batches is then contained in the matrix-matrix

multiplication W(1)X above, as it requires O(MNK) operations, which dominates the

complexity of the bias addition and activation function which require O(MN) operations.

In this thesis, we instead refer to the matrix multiplications W(d)X(d−1) in these layers

in the following format:

C = AB , (2.5)
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where C = (W(d)X(d−1))T , A = X(d−1)T , and B = W(d)T .

2.1.2 Convolutional Layers

Convolutional neural networks (CNN)s are a common type of DNN that played a major

role in the re-awakening of the field of deep learning in the early 2010’s when AlexNet [11]

enabled a sudden boost in the best achievable error rates for image classification tasks. They

contain convolutional layers that typically perform 2-D convolutions between activations

and weights.

The computationally dominant portion of CNNs are the convolutional layers. The input

and output activations of a convolutional layer are 2-D and are referred to as feature maps

or channels. For example, the input image to a CNN will contain 3 channels/feature maps

to represent the red, green, and blue values of each pixel, and each feature map will have

a height/width corresponding to the pixel height/width of the image. Each layer’s set of

input/output feature maps can be thought of as a single 3-D input/output.

Each 2-D input feature map is convolved with a different 2-D convolution filter called

a kernel, and the convolution outputs for all input feature maps are summed together to

produce an output feature map. The set of kernels that are used for each of the different

input feature maps can then be thought of as a single 3-D kernel. This computation is then

repeated with multiple distinct 3-D kernels to produce multiple output feature maps. Due

to this, each layer’s kernel can be thought of as a 4-D tensor. Finally, multiple inferences

can be performed consecutively on a batch of multiple sets of features maps.

Each layer input can then be thought of as a 4-D tensor, letting Cin/Cout represent a

layer’s number of input/output channels or feature maps, H/W represent the height/width

of a layer’s output feature maps, N is the batch size, and n is the current inference being
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performed in the batch. Each layer’s kernel is then a 4-D tensor with dimensions of size

Cout, Cin, Hk, Wk, where Hk/Wk are the height/width of the kernel. A dimension’s stride,

which is explained below, is represented by the dimension with a s subscript (e.g. Ws is the

stride for the W dimension).

A convolutional layer’s calculation for each output element is then described by the

following, where X(d) is the layer output, X(d−1) is the layer input, and W(d) is the layer’s

weight/kernel:

X(d)[n][cout][h][w] =

Cin−1∑
cin=0

Wk−1∑
wk=0

Hk−1∑
hk=0

X(d−1)[n][cin][hHs + hk][wWs + wk] W
(d)[cout][cin][hk][wk] .

(2.6)

For illustration, Fig. 2.3 shows a visual representation of an example convolutional layer

performing (2.6).

To understand how convolutional layers’ computation in (2.6) can be mapped to matrix

multiplication, consider how a 1-D convolution can be mapped to a vector-matrix multipli-

cation as follows:

[
a0 a1 a2

]
∗
[
b0 b1 b2

]
=



b0 0 0

b1 b0 0

b2 b1 b0

0 b2 b1

0 0 b2




a0

a1

a2

 =



b0a0

b1a0 + b0a1

b2a0 + b1a1 + b0a2

b2a1 + b1a2
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
. (2.7)

Similarly, a convolutional layer’s computation in (2.6) can be mapped to a matrix-

matrix multiplication C = AB [12], where each row of the A matrix is formed from
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Figure 2.3: Example of a convolutional layer in Alexnet [11]. The bottom portion of the
figure shows a convolutional layer where N = 1, Cin = 3, Cout = 48, H = W = 55,
Hk = Wk = 11, and Hs = Ws = 4. The input feature maps have a width of 224
(before padding), and the next convolutional layer that is partially shown has a kernel size
of Hk = Wk = 11.

the X(d−1) elements by iterating through the indices in (2.6) as described below:

A[i][j] = X(d−1)[N ][cin][hHs + hk][wWs + wk] , (2.8)

where:

i = nCinHW + hW + w (2.9)

j = cinHkWk + hkWk + wk . (2.10)

Each column j of the B matrix is formed from W(d) by collapsing the Cin, Hk, Wk
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dimensions of W [cout] as described below:

B[i][j] = W(d)[cout][cin][hk][wk] . (2.11)

where:

i = cinHkWk + hkWk + wk (2.12)

j = cout . (2.13)

2.1.3 Transformers and Attention Layers

Transformer models, introduced in 2017 [13], are a more recent deep learning model that

has since been shown to be superior in quality in many popular benchmarks compared to

prior deep learning models like CNNs, and it is the base model used in popular works such

as BERT [14] and GPT [15] models. The computationally intensive portion of transformer

models are based around the following operations, which mainly consist of a sequence of

large matrix multiplications as shown below:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (2.14)

Hi = Attention(QWQ
i ,KWK

i ,VWV
i ) (2.15)

MultiHead(Q,K,V) = Concat(H1, ...,Hh)W
O , (2.16)

where all bolded variables are matrices, and all matrices and variables are either derived

from layer inputs or are a form of pretrained weight values or constants.

While the methods presented in our work may be well suited for accelerating these
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types of deep learning models, further descriptions of transformer models and exploration

of their acceleration are considered out of the scope of this thesis and left as a future work.

2.1.4 Commonality

As shown in this section, the computationally most intensive portions of many common

DNN models used today are based around the few types of neural network layers discussed

above which can all mainly reduce to matrix multiplication. Therefore, increasing the

efficiency of general matrix multiplication (GEMM) is a key area of interest to focus on for

advancing the field of deep learning hardware acceleration.

2.2 Deep Learning Hardware Acceleration

This section provides a literature review of a range of prior works and common strategies

used to improve the acceleration of deep learning workloads in custom hardware. It is

impossible to evaluate all possible approaches and works due to the popular and fast-paced

nature of this field. Nonetheless, we review a representative range of strategies and works

relevant to the contributions in this thesis.

2.2.1 Systolic Arrays

Systolic arrays, which will also be referred to as matrix multiplication units (MXU)s for

convenience, are an effective choice for use in GEMM accelerators as they significantly

reduce the required memory traffic and can reach high clock frequencies due to their short

and regular interconnects. Systolic-array architectures have been used in state-of-the-art

GEMM and deep learning accelerators such as the Tensor Processing Unit (TPU) [3], [5],
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Figure 2.4: Demonstrating how matrix multiplication is performed on a systolic array of
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[6], among others [8], [16].

A systolic array consists of a 2-D array of simple connected processors. Each processor

typically consists of only a multiplier and adder unit, and the processors pass data to ad-

jacent processors in a consistent pattern, demonstrated in Figure 2.4. This makes the wire

connections between processors very short and regular and increases the clock frequency

of the circuit. In contrast, the processor arrays in GPUs can contain multiple longer and

more complex physical connections between the various components and a central control

unit.

This makes systolic arrays very efficient for deep learning acceleration. For example,

while an 8-core CPU might be able to perform up to 8 multiplications or additions per

clock cycle, systolic array accelerators such as the Google TPU will perform up to 64K

multiplication and additions per clock cycle.

Multi-Systolic-Array Systems

However, a systolic array can only be fully utilized when the input matrix sizes at minimum

match the dimensions of the systolic array or are larger, and real workloads have limits to

the matrix sizes being multiplied. For example, the average matrix size that the computa-

tions reduce to in ResNet [17] DNN models are in the range of approximately 300×2000.

There is then a limit to how fast the workload can be accelerated on a single systolic array

design because, even if more compute resources are instantiated to scale up the size of the

systolic array, the systolic array will begin to be underutilized after its size surpasses the

workload’s matrix sizes, and the workload will not be able to execute any faster.

This is particularly true in modern workloads such as DNN acceleration, where the

matrix sizes that the workloads break down to are smaller than the maximum systolic array
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size that could be instantiated in an accelerator. To combat this, multiple smaller systolic

arrays can be used in parallel [5], [6], [18], [19], which allows for the total compute power

in the systolic-array system to increase while the minimum supported matrix sizes remain

the same.

2.2.2 Quantization

The weight and layer inputs to a DNN can be scaled and given an offset such that they are

represented on integer values [20]. The bitwidth of the representation in practice can range

from 16 bits [21] to an extreme of 1 bit [22] [23] [24]. Following this quantization, GEMM

can be performed directly with the integer values, and a re-scaling and new offset are given

between each layer.

The benefit of using small-width integers instead of the conventional 32-bit floating-

point (FP32) representation is very significant for hardware acceleration. The values are

represented by fewer bits, which frees up space in memory and also reduces the memory

bandwidth required to read/write the values from/to memory. Additionally, small-width

integer arithmetic units consume far fewer hardware resources than their FP32 counterparts

[25]. Table 3 from the work by Guo et al. [25] shows that an 8-bit adder or multiplier

consumes roughly 10x fewer resources than a FP32 multiplier or adder on a Xilinx FPGA.

For 1-bit quantization, the XNOR operation is performed on the data instead of multipli-

cation, followed by a bit count operation. These operations can be efficiently implemented

using look-up tables (LUT)s which are one of the base logic elements used in FPGAs to al-

low for their re-programmable logic. Taking this concept further, networks with LUT-based

neurons [26] have been explored. Modern FPGAs usually contain LUTS that can be pro-

grammed to perform any desired function which takes 6-7 binary inputs and produces 1-2
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binary outputs. On the other hand, an XNOR operation takes 2 binary inputs and produces

1 binary output. This means that the number of XNOR operations that can be implemented

per LUT will be constrained by the number of LUT outputs, and each LUT can then only

implement at most 2 XNOR operations, which would consume at most 4 inputs, leaving

2-3 inputs unused. Therefore, a LUT-based network could use more accurate larger-than-

1-bit inputs to make use of these unused LUT inputs, while consuming the same number

of LUTs as a binary network using 1-bit inputs and XNOR operations.

The study from Nurvitadhi et al. [27] tested FPGA accelerators designed to support

8-bit and binary (1-bit) data and compared it to an accelerator designed for FP32 data.

The 8-bit and binary designs had roughly an 8x and 75x increase in peak performance per

watt, respectively, compared to the FP32 design. It has been shown that negligible error

is introduced for as low as 8-bit representations [25]. For bitwidths below this, however,

noticeable increases in error start to be introduced.

2.2.3 Precision-Scalable Architectures

Precision-scalable architectures allow for a way to efficiently execute workloads across

multiple input precisions for applications where the input bitwidths are expected to vary

[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41]. Deep learning

acceleration is a great use-case for precision-scalable hardware architectures, where neural

networks can perform the majority of their inference on reduced-bitwidth operations with

little to no loss in accuracy but the bitwidths required to provide sufficient accuracy vary

across different deep neural network models, applications, and between individual layers

within the same neural network model [28]. For example, some neural network models

can be executed with high accuracy even when performing the majority of the operations
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on small bitwidths, however, a smaller portion of the layers still need to be computed

on larger bitwidths to preserve accuracy [28]. Therefore, a fixed-bitwidth accelerator must

make a trade-off between either supporting only lower bitwidths while reducing the model’s

accuracy, or supporting larger bitwidths for higher accuracy but under-utilizing the MAC

units during majority of computation as most stages require only lower-bit inputs.

Precision-scalable architectures address this trade-off by providing structures that can

more efficiently support execution of varying input bitwidths. These designs are less op-

timized for accelerating inputs of a fixed bitwidth compared to a design made specifically

for that certain bitwidth, however, they have the flexibility to provide more efficient ac-

celeration when executing on other bitwidths. One approach is to use MAC units con-

sisting of multiple smaller-bitwidth multipliers [29] which can either be individually used

to multiply/accumulate multiple smaller-bitwidth products, or they can be reconfigured to

collectively multiply/accumulate fewer larger-bitwidth products per clock cycle. Another

approach referred to as bit-serial architectures [30], is to have MAC arrays which repeatedly

perform fixed-size smaller-bitwidth vector operations on different bit slices of the vectors,

summing up the separate vector products to get the final full-bitwidth result.

2.2.4 Pruning and Sparsity

Pruning is a technique in which a neural network is intentionally trained in such a way that

many of its weights become zero-valued. For example, it has been shown that AlexNet can

be pruned so that 85% of the weights in the convolutional layers are removed with less than

1% degradation in accuracy [42]. This provides potential speedup opportunities for accel-

erators as the calculations then decompose to sparse GEMM, and all of the multiplications

with zero values can be skipped.
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In the works by Parashar et al. [43] and Zhang et al. [44], compression schemes for

weights and intermediate data were developed such that they are stored in a compressed

form and require fewer data transfers and fewer storage requirements throughout compu-

tation. In the study from Nurvitadhi et al. [27], an FPGA accelerator design for sparse

networks gave a 4x speedup on FP32 data compared to their accelerator for dense FP32

models.

Criticisms of this technique are that creating a hardware design capable of scheduling

zero skipping prevents the design from reaching the same high clock frequency as a systolic

array architecture suitable only for dense GEMM [27]. For example, the sparse GEMM

accelerator design from Nurvitadhi et al. [27] ran at a frequency of 300 MHz vs 440 MHz

for the dense GEMM systolic array accelerator. Furthermore, quantizing pruned networks

to integer widths under 12 bits can introduce large accuracy degradation [45], preventing

the sparse GEMM engines from taking advantage of the many benefits of using small-width

integer arithmetic 2.2.2.

2.2.5 Memory Optimizations

While GEMM requires a large amount of computational power, it also requires large amounts

of data to be moved and accessed by the computational logic [46]. Additionally, off-chip

memory accesses can have higher energy costs than other operations [47]. Due to this,

memory bandwidth, especially for off-chip memory access, can be a performance bottle-

neck or energy concern. To address this, prior works have proposed solutions to mitigate

these issues [46] [47] by increasing data reuse and using efficient data tiling and caching

techniques. Additionally, quantization [20] and sparse neural networks [42] are used to

reduce memory bandwidth requirements as discussed in Sections 2.2.2 and 2.2.4. The

23



Ph.D. Thesis - Trevor E. Pogue McMaster University - Electrical & Computer Engineering

algebraic optimizations and hardware architectures proposed in this thesis are generally

orthogonal to memory bandwidth optimizations and both techniques can be used in com-

bination with each other.

2.2.6 Hardware Architecture Design Automation

It can be a difficult engineering feat to design a single deep learning accelerator that sup-

ports execution of a wide range of DNN models like the Google TPU [3], [5], [6]. Further-

more, it may be possible to make certain design choices that are more resource-efficient

when optimizing a hardware design for one specific DNN model. Prior works have ex-

plored automated design flows which map a neural network described in a deep learning

software framework like Caffe [21] or Pytorch [48], and automatically generate an FPGA

accelerator design optimized for that DNN model based on the target FPGA platform [49]

[50] [51] [52] [53] [54] [55].

These design space exploration methods can automatically derive architectural features

such as efficient off-chip memory layouts and efficient systolic array dimensions based

on the DNN layer sizes and an FPGA platform’s resource limitations. Pseudocode with

for loops is derived to model a layer’s computational schedule and represent the order

in which data is fed into the systolic array, and the loop tile sizes can be used to model

the dimensions of the systolic array. In some cases, automated loop transformations are

applied to the layer’s pseudocode in order to find transformations for increasing data reuse,

reducing off-chip bandwidth, and increasing on-chip parallelization in the automatically

generated designs [53] [16].

In the work by Wang et al. [56], a flow is presented for generating an FPGA design

for a CNN model based on the dimensions and weights of a model obtained from Caffe
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[21]. The method chooses architecture elements obtained from a library of hand-coded

Verilog to maintain more low-level optimizations than other techniques. Additionally, un-

like other methods, the analysis works for highly irregular network topologies such as in

GoogleLeNet [57] and ResNet [17] DNN models.

The loop transformation methods mentioned above use more trivial applications of an

otherwise more robust compiler optimization theory called polyhedral compilation [58]

[59]. Polyhedral compilation has been included in many compiler libraries including GCC

[60] and LLVM [61]. In polyhedral compilation, all iterations of a loop nest are represented

as different integer points in a space, all of which form a polytope that can be transformed

as a whole, rather than manipulating individual iterations. The dependencies between dif-

ferent iterations are also modeled in this manner. Affine transformations on the polytopes

can be found that produce execution schedules that reduce the average dependency distance

between iterations to improve data reuse/locality. These techniques have also been used in

DNN accelerator design automation [16] [55].

The techniques discussed in this subsection provide the opportunity for an additional

level of optimization in an accelerator design by producing hardware designs optimized for

specific DNN models and FPGA platforms. On the other hand, this prevents the designs

from being suitable for ASIC implementation, which is inherently more optimized than

FPGA designs. It also complicates usage scenarios where more than one single DNN

model may be required to run on the accelerator, which may be a more practical real-life

usage scenario. Furthermore, it has been shown by works such as Google’s TPU design

[3], [5], [6] that it is possible to make one hardware design that is highly efficient but still

supports the execution of a wide range of DNN models.
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2.2.7 Hardware-Oriented DNN Model Design Automation

The architecture of a DNN model can be designed from the ground up in such a way that

it can be executed more effectively on a specific hardware platform. The DNN model can

be designed to support a given throughput and latency constraint based on given hardware

budget or available hardware resources on a given hardware platform such as the on/off-

chip memory size, total registers, and/or total DSP units on the device. The design space

dimensions can include the types of layers to use, size of the layers, as well as the pruning

severity and quantization widths.

In the work from Jiang et al. [62], a method is presented in which the design space

exploration steps first choose a DNN model and generate an FPGA design to accelerate

it that meets certain throughput specifications. Other model designs are then explored in

search of ones that reduce the implied hardware accelerator resource requirements. Next,

the selected model architecture is trained and fine-tuned such that results providing both

higher accuracy and hardware efficiency are rewarded. This has also been done specifically

for mapping execution of binarized neural networks to a hardware platform [23]. DNN

model architecture/hardware accelerator architecture co-design has also been explored in

the work by Abdelfattah et al. [63], where a DNN model was produced that has 1.3%

better accuracy than ResNet [17] on certain metrics, while at the same time, the resulting

hardware accelerator architecture increased performance per area by 41%.

These methods have the benefit of making a DNN model meet given latency and

throughput constraints on a wider range of devices. On the other hand, it restricts the

usage of more well-known DNN models that might be already pre-trained on large data

sets and have more well-analyzed success/error rates.
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2.2.8 Fast Convolution Algorithms

In 1980, Winograd presented a minimal-filtering algorithm [64] showing that the opera-

tions in a convolution can be re-arranged such that fewer multiplications and additions are

performed for the same result compared to conventional convolution algorithms. The work

from Lavin et al. [65] shows how this algorithm can be substituted into the compute pat-

tern for convolutional layers of CNNs, resulting in a speedup of 2× or more in throughput

for these layers. Furthermore, the algorithm can be used to speed up the computation in

both custom hardware architectures as well as in software running on CPUs or GPUs. This

algorithm has since been exploited in numerous CNN accelerator works [66] [67] [68].

This method is the most similar approach to the methods explored in this thesis of

advancing and applying efficient algebraic algorithms to deep learning hardware architec-

tures. While the work from Lavin et al. [65] provided a good initiative in this direction,

the hardware research community has since focused primarily on application of this one

efficient algebraic technique which is only beneficial for speeding up convolutional lay-

ers. However, as revealed in the work from this thesis, there are multiple other under-

explored efficient algebraic algorithms that can be extended and applied to deep learning

hardware architectures. Furthermore, the methods from this thesis are based around speed-

ing up matrix multiplication and are therefore applicable to speeding up a wider range of

common DNN model layers including fully-connected, convolutional, recurrent, and at-

tention/transformer layers. Finally, the Winograd convolution technique [65] still results

in matrix multiplication, which may therefore still be complementary to our methods and

applicable in addition to the techniques presented in this thesis.
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2.3 Efficient Algebraic Algorithms

As shown in Section 2.2, recent years have seen many works on hardware-oriented DNN

model optimizations and system-level improvements for deep learning hardware architec-

tures. At a certain point, however, after hardware-oriented DNN model optimizations reach

their limit, after the known parallelism and system-level optimizations for executing their

compute patterns are exploited, and after technology scaling slows to a halt, there is an

accelerator wall which causes limited improvement on the implementation side [69]. A

less-explored avenue to continue advancement after this point is to reduce the workload at

the algebraic level, by calculating the same deep learning model algebra, nevertheless us-

ing a re-arranged compute pattern which produces the same output from fewer or cheaper

operations performed in hardware.

Consider the matrix multiplication C = AB for A of size M × K and B of size

K×N . Using the conventional inner product, C is calculated from MNK multiplications

and MN(K − 1) additions, where each element ci,j of C is calculated as follows:

ci,j =
K∑
k=1

ai,kbk,j . (2.17)

As discussed in Section 2.1, the majority of the computational workload in deep learning

models can commonly be mapped to the matrix multiplication shown in (2.17), and as can

be seen, the operations in this equation are a series of multiply-accumulate operations. For

all deep learning accelerators, unless additional algebraic innovations are used, the through-

put is ultimately limited by the maximum number of multiply-accumulate operations from

(2.17) that can be performed per clock cycle. Due to this, deep learning accelerators con-

tain a large number of MAC units, causing multipliers and MAC units to commonly be one
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of the area-dominant resources in GEMM and deep learning accelerators [70], [3], [5], and

an accelerator’s throughput can be directly limited by how many multipliers its hardware

budget can afford.

As a result, surpassing this theoretical performance per multiplier limit should be a key

area of interest for advancing the field of deep learning hardware acceleration. As dis-

cussed in Section 2.2.8, this approach has been touched upon with Winograd’s minimal

filtering algorithms applied to convolutional neural networks (CNN)s [65], [64], [66], [70].

However, this algorithm is applicable only to CNN deep learning models, and there are nu-

merous other efficient algebraic algorithms that are also applicable to GEMM and therefore

a broader range of DNN models.

In this thesis, we continue in this under-explored direction and provide further algebraic

enhancements for matrix multiplication algorithms and their custom hardware implementa-

tions for the application of deep learning acceleration. This section provides the necessary

background on prior efficient algebraic algorithms and their hardware implementations out-

side the application of deep learning to build the foundation for our contributions.

2.3.1 Fast Inner Product (FIP)

In 1968, Winograd introduced an alternative inner-product algorithm [7] that we refer to

as the Fast Inner Product (FIP). Compared to the traditional inner product in (2.17), FIP

allows matrix multiplication to be performed with approximately half of the multiplication

and accumulation operations traded for low-bitwidth additions. In FIP [7], each element

ci,j of C is calculated as follows:

ci,j =

K/2∑
k=1

(ai,2k−1 + b2k,j)(ai,2k + b2k−1,j)− αi − βj , (2.18)
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where:

αi =

K/2∑
j=1

ai,2j−1 · ai,2j (2.19)

βj =

K/2∑
i=1

b2i−1,j · b2i,j . (2.20)

For even K, calculating C then requires the following number of multiplications:

MNK +MK +NK

2
, (2.21)

and the following number of additions:

3 ·MNK +MK +NK

2
−MN −M −N . (2.22)

This means that an accelerator performing this equation instead of (2.17) can trade nearly

half of its multipliers for low-bitwidth adders while achieving the same throughput. Since

the hardware footprint of fixed-point multipliers dominates that of adders [71], [25], [72],

FIP can theoretically significantly improve the throughput per compute area roof of an

accelerator, where roof refers to the upper bound of that metric and compute area refers

to the area of computational logic used to perform arithmetic operations. Despite the high

impact potential of these benefits, the FIP algorithm [7] has never before been implemented

in a deep learning hardware accelerator.
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Custom FIP Hardware Architectures

The FIP algorithm [7] has been explored by Gustafsson et al. for application to finite

impulse response (FIR) filtering [73] in a non-systolic-array architecture proposal. Three

prior works have also been proposed for systolic-array architectures for exploiting FIP [74]

[75] [76].

However, none of the prior works on FIP architectures are focused on application to

deep learning, which uses a certain range of matrix sizes and data representations, making

it deserving of a stand-alone study. For all prior works related to deep learning acceleration

which cite FIP [7], upon closer inspection, it becomes evident that the work either does

not evaluate FIP, or the context of the citation is, in fact, referring to Winograd’s more-

popular minimal filtering algorithms for convolutional neural networks [65], [64] rather

than Winograd’s inner-product algorithm [7], on which our work presented in Chapter 4 is

based. Furthermore, the work from Bravo et al. [76] reports no clear improvements from

their FIP implementation, and all three other prior works on FIP architectures [73] [74]

[75] are purely design proposals and do not provide empirical insight into its trade-offs.

The benefits of FIP in hardware rely on the premise that the hardware footprint of

adders are cheaper than that of multipliers. Since the hardware complexity of fixed-point

multipliers typically scales quadratically with the input bitwidth compared to linearly for

adders, this premise has been shown to hold true for fixed-point data types [71], [25], [72].

However, the exact benefits in performance/resources/clock frequency when applying FIP

to deep learning acceleration are still not immediately clear, and finding this out requires a

comparison of hardware implementations that use multipliers/accumulators of the specific

data sizes/types commonly used in deep learning accelerators.
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In Chapter 4, we address the discussed gaps in prior research by implementing and eval-

uating FIP for the first time in a deep learning accelerator, we then identify a weakness of

FIP in hardware and propose a new algorithm and its hardware architecture that inherently

address that weakness, and we provide deep learning-specific optimizations for the FIP and

FFIP algorithms and hardware architectures.

2.3.2 Karatsuba Scalar Multiplication (KSM)

The Karatsuba algorithm [9], introduced in 1962, was one of the first proposed multi-

plication algorithms asymptotically faster than the traditional approach. To explain the

algorithm, we first begin by reviewing the conventional method for multi-digit scalar mul-

tiplication. Fig. 2.5 (a) shows the conventional method for performing 2-digit scalar mul-

tiplication where a w-bit multiplication is split into four smaller-bit scalar multiplications

before being summed to form the final product. Algorithm 1 shows the generalization of

this, where n-digit multiplication is performed by carrying out the same steps recursively

for each smaller-bit multiplication.

Fig. 2.5 (b) shows the Karatsuba algorithm [9] for 2-digit scalar multiplication where

a w-bit multiplication is split instead into three smaller-bit scalar multiplications before

being summed to form the final product. Algorithm 2 shows the generalization of this,

where n-digit multiplication is performed by carrying out the same steps recursively for

each smaller-bit multiplication.
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Figure 2.5: SM2 algorithm illustration on left, KSM2 algorithm illustration on right. Com-
pared to SM2, KSM2 requires only 3 single-digit multiplications, however, it requires 3
more additions, increasing the overall operation count.

Algorithm 1 Conventional n-Digit Scalar Multiplication.

1: function SM[w]
n (a, b)

2: if (n > 1) then
3: a1 = a[w−1:⌈w/2⌉]

4: a0 = a[⌈w/2⌉−1:0]

5: b1 = b[w−1:⌈w/2⌉]

6: b0 = b[⌈w/2⌉−1:0]

7: c1 = SM[⌊w/2⌋]
n/2 (a1, b1)

8: c10 = SM[⌈w/2⌉]
n/2 (a1, b0)

9: c01 = SM[⌈w/2⌉]
n/2 (a0, b1)

10: c0 = SM[⌈w/2⌉]
n/2 (a0, b0)

11: c = c1 ≪ w
12: c += (c01 + c10) ≪ ⌈w/2⌉
13: c += c0
14: else
15: c = a× b
16: end if
17: return c
18: end function
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Algorithm 2 n-Digit Karatsuba Scalar Multiplication.

1: function KSM[w]
n (a, b)

2: if (n > 1) then
3: a1 = a[w−1:⌈w/2⌉]

4: a0 = a[⌈w/2⌉−1:0]

5: b1 = b[w−1:⌈w/2⌉]

6: b0 = b[⌈w/2⌉−1:0]

7: as = a1 + a0
8: bs = b1 + b0
9: c1 = KSM[⌊w/2⌋]

n/2 (a1, b1)

10: cs = KSM[⌈w/2⌉+1]
n/2 (as, bs)

11: c0 = KSM[⌈w/2⌉]
n/2 (a0, b0)

12: c = c1 ≪ w
13: c += (cs − c1 − c0) ≪ ⌈w/2⌉
14: c += c0
15: else
16: c = a× b
17: end if
18: return c
19: end function

Custom Karatsuba Hardware Architectures

Prior works on KSM-based low-bitwidth accurate integer multiplier circuits have shown

some area benefits for input bitwidths in the range of 64 bits or less, with minimal area im-

provements in the smallest ranges of 16 bits [77], [78]. This affirms that, while KSM theo-

retically reduces the complexity of large-bitwidth integer multiplication, the extra addition

operations it introduces limit its area reduction in multiplier circuits for smaller integers of

more commonly-used bitwidths.

To address this, Chapter 5 shows how KSM can be extended to matrix multiplication

to reduce the impact of these extra additions similarly to how the algorithm in Fig. 2.5 (a)

can be extended to matrix multiplication as illustrated in Fig. 2.6. In Fig. 2.6, four separate

partial-product matrix multiplications are performed between matrices each containing bit
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Figure 2.6: MM2 algorithm illustration. The 4 single-digit matrix multiplications of com-
plexity O(d3) dominate the O(d2) complexity of the matrix additions.

slices of every element, and they are later summed together to form the final matrix prod-

uct. Algorithm 3 shows the generalization of this, where n-digit matrix multiplication is

performed by carrying out the same steps recursively for each smaller-bit matrix multipli-

cation. The elements in matrices A0 and B0 contain the lower bits (bits ⌈w/2⌉ − 1 to 0)

of every element in the A and B matrices, while A1 and B1 contain the upper bits (bits

w − 1 to ⌈w/2⌉) of every element in matrices A and B. This allows for w-bit matrix mul-

tiplication using smaller m-bit multipliers. The MM1 algorithm on line 15 of Algorithm 3

is a conventional matrix multiplication algorithm such as that in (2.17).

Chapter 5 then shows how Karatsuba scalar multiplication extended to matrix multipli-

cation can be exploited in hardware to increase the performance-per-area limits of matrix

multiplication hardware. It is also shown there how this can be used to reduce the mini-

mum possible execution times of precision-scalable hardware architectures such that they

scale less than quadratically with the input bitwidths w. The hardware algorithms used

in prior works on precision-scalable hardware architectures use variations of the SM and

MM algorithms shown in Algorithms 1 and 3 to combine partial products and compute
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Algorithm 3 Conventional n-Digit Matrix Multiplication.

1: function MM[w]
n (A, B)

2: if (n > 1) then

3: A1 =

a
[w−1:⌈w/2⌉]
1,1 , ... a

[w−1:⌈w/2⌉]
1,K

... ... ...

a
[w−1:⌈w/2⌉]
M,1 , ... a

[w−1:⌈w/2⌉]
M,K


4: A0 =

a
[⌈w/2⌉−1:0]
1,1 , ... a

[⌈w/2⌉−1:0]
1,K

... ... ...

a
[⌈w/2⌉−1:0]
M,1 , ... a

[⌈w/2⌉−1:0]
M,K


5: B1 =

b
[w−1:⌈w/2⌉]
1,1 , ... b

[w−1:⌈w/2⌉]
1,N

... ... ...

b
[w−1:⌈w/2⌉]
K,1 , ... b

[w−1:⌈w/2⌉]
K,N


6: B0 =

b
[⌈w/2⌉−1:0]
1,1 , ... b

[⌈w/2⌉−1:0]
1,N

... ... ...

b
[⌈w/2⌉−1:0]
K,1 , ... b

[⌈w/2⌉−1:0]
K,N


7: C1 = MM[⌊w/2⌋]

n/2 (A1,B1)

8: C10 = MM[⌈w/2⌉]
n/2 (A1,B0)

9: C01 = MM[⌈w/2⌉]
n/2 (A0,B1)

10: C0 = MM[⌈w/2⌉]
n/2 (A0,B0)

11: C = C1 ≪ w
12: C += (C10 +C01) ≪ ⌈w/2⌉
13: C += C0

14: else
15: C = MM[w]

1 (A,B)
16: end if
17: return C
18: end function
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variable-bitwidth w-bit matrix products using smaller m-bit multipliers, where the number

of m-bit multiplications and minimum possible execution time if fully utilizing the m-bit

multipliers scales quadratically with the input bitwidths w. In contrast, the minimum pos-

sible execution time of the precision-scalable hardware architectures proposed in Chapter

5 scale less than quadratically with the input bitwidths w.

2.3.3 Strassen Matrix Multiplication (SMM)

The Strassen algorithm [79], proposed in 1969, was one of the first matrix multiplication

algorithms showing that the n3 complexity of the traditional approach is not optimal. To

understand the algorithm, first consider how the matrix multiplication C = AB below can

be computed by dividing A and B into 4 matrix blocks, where C is then computed by

carrying out 8 matrix block multiplications and 4 matrix block additions between the A

and B blocks as follows:C11 C12

C21 C22

 =

A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

 . (2.23)

This process can then be carried out recursively again on each matrix block product by

splitting the matrix blocks again into smaller blocks and repeating the same process again.

The Strassen algorithm [79], shown in (2.24)-(2.25), provides a way to carry out (2.17)
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instead using 7 matrix block multiplications and 18 matrix block additions as follows:

T1 = A11 +A22

T2 = A21 +A22

T3 = A11

T4 = A22

T5 = A11 +A12

T6 = A21 −A11

T7 = A12 −A22

S1 = B11 +B22

S2 = B11

S3 = B12 −B22

S4 = B21 −B11

S5 = B22

S6 = B11 +B12

S7 = B21 +B22

(2.24)

Q1 = T1 · S1

Q2 = T2 · S2

Q3 = T3 · S3

Q4 = T4 · S4

Q5 = T5 · S5

Q6 = T6 · S6

Q7 = T7 · S7

C11 = Q1 +Q4 −Q5 +Q7

C12 = Q3 +Q5

C21 = Q2 +Q4

C22 = Q1 −Q2 +Q3 +Q6

. (2.25)

Winograd Form

The Winograd form of the Strassen algorithm [80] has the same asymptotic complexity but

requires 15 matrix block additions at each level of recursion rather than 18. However, for

fixed-point data types, this form increases the multiplier input datapath bitwidth by up to 2

bits at each recursion level rather than 1 bit. Due to this, we focus on the original form of
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the Strassen algorithm from (2.24)-(2.25) in our work instead.

Executing Strassen on GPUs and CPUs

Strassen’s algorithm has been well explored in prior work for execution on general-purpose

CPUs and GPUs [81], [82], [83], [84], [85], [86], [87], [88]. However, its execution on

CPUs and GPUs in these prior works does not achieve the promised theoretical speedups

unless the widths/heights of the matrices being multiplied are in the range of at least 1024

elements or even much larger. This limits the applicability of Strassen’s algorithm on CPUs

and GPUs for modern workloads such as deep learning that do not always decompose to

such large matrix multiplications.

Strassen’s algorithm cannot achieve the promised speedups in CPUs and GPUs be-

cause irregularities introduced in the algorithm such as the extra data accesses required for

reading/computing/storing additional intermediate matrices before/after the matrix multi-

plication steps all add to the overall execution time beyond what would be expected purely

from a theoretical analysis of only the number of required arithmetic operations [83], [87].

Custom Strassen Hardware Architectures

While software implementations of the Strassen algorithm on CPUs and GPUs has been

well explored in prior work, custom hardware designs for efficiently exploiting the Strassen

algorithm in hardware remain under-explored. A systolic-array design concept for imple-

menting Strassen’s algorithm for one level of recursion on 2×2 matrices has been proposed

in the work by Elfimova et al. [74] without evaluation of an implementation. Another

hardware design for implementing Strassen’s algorithm for one level of recursion on 2×2

matrices has also been proposed in the work by León-Vega et al. [89], where the Strassen
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architecture reduced the DSP usage by up to 12.5% at the expense of 25-40% increase in

LUT resources to implement the additional adders.

In Chapter 6, we address this gap by presenting and evaluating a new hardware ar-

chitecture that efficiently translates the theoretical Strassen complexity reductions directly

into hardware resource savings beyond what has been presented in prior work. Unlike the

only two prior works on custom hardware designs for executing the Strassen algorithm, we

propose architectures in this work that allow for Strassen’s algorithm to be implemented

on matrices larger than 2×2, which is essential for minimizing the complexity penalty of

the additional adders, and the architectures are capable of implementing multiple levels

of Strassen recursion to achieve greater hardware resource savings. Furthermore, the pro-

posed architectures allow proven traditional systolic arrays to be still used at the core, or

they allow Strassen’s algorithm to be used in combination with other hardware designs that

can efficiently perform further algebraic optimizations on matrices after the Strassen por-

tion is carried out, such as techniques proposed in Chapter 4 and Chapter 5. Finally, the

proposed Strassen architectures are multi-systolic-array designs, meaning they can multi-

ply smaller matrices with higher utilization than single-systolic-array designs with the same

computational strength.

Furthermore, the Strassen architecture proposed in Chapter 6 is a multi-systolic-array

architecture, meaning it can multiply smaller matrices with higher utilization than single-

systolic-array designs. Prior multi-systolic-array designs achieve this property by imple-

menting variations of (2.23) in hardware by dividing larger matrices into smaller tiles/blocks,

executing the smaller matrix tile multiplications on multiple smaller systolic arrays, and

later summing the tile products to form the final larger matrix multiplication product. Chap-

ter 6 shows how to efficiently implement (2.24)-(2.25) in hardware to require less hardware
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area to achieve this same goal as in prior works of efficiently supporting multiplication of

smaller matrices.

2.4 Summary

The field of deep learning has seen increasing breakthroughs and commercial adoption in

recent years for enabling a wide range of applications including image/speech recognition

and human-like chatbots. This has led to a growing need for computer hardware that can

quickly and efficiently execute these deep learning applications, which increasingly require

massive amounts of computational power to execute.

To understand how to further improve deep learning hardware to address these needs,

this chapter first discussed in Section 2.1 how the computationally dominant portions of

deep learning workloads can commonly be decomposed to matrix multiplication, highlight-

ing the importance of focusing on speeding up matrix multiplication in order to continue

advancement in the field deep learning acceleration. Section 2.2 then discussed relevant

prior approaches for improving deep learning execution in hardware, and it was identi-

fied that advancement and application of efficient matrix multiplication algorithms in deep

learning hardware architectures is an under-explored field in this area with potential for

new exploration. Section 2.3 then presented relevant background and prior works on effi-

cient algebraic algorithms and their hardware implementations outside the application of

deep learning to provide the foundation for presenting our contributions in Chapters 4 - 6

of deriving and applying new or under-explored efficient matrix multiplication algorithms

in custom deep learning hardware architectures.
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Chapter 3

Deep Learning Accelerator System

Architecture

The key contributions of this thesis are the proposed algebraic algorithms and/or custom

hardware architectures for exploiting them and their application to deep learning acceler-

ation. However, in order to ensure that there are no unseen side-effects, it is important to

integrate the hardware architectures into a full-system implementation to fully assess the

end benefits at the application level. Furthermore, our goal is to validate the benefits of

the hardware architectures when overlaid on top of systems based on the most efficient

systolic array accelerators used in practice. Therefore, the high-level organization of our

system design shown in Fig. 3.1 intentionally shares similarities with the TPUv1 [3] and

some similarities with the TPUv2-TPUv4 as well [5] [6]. Based on this, we provide here

the system-level implementation we used for the sake of completeness and for better un-

derstanding of the context in which our main contributions have been validated.
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3.1 Overview

The accelerator system, shown in Fig. 3.1, consists of a GEMM Unit for multiplying and

accumulating matrix products, a Post-GEMM Unit for performing DNN-specific functions

after matrix multiplication, a Memory Unit for storing and accessing data, an Instruction

Unit for decoding instructions sent from the host, and an RxTx Unit for communicat-

ing with the host through PCIe. The design is specialized for performing inference of

non-sparse DNN models on fixed-point inputs consisting of convolutional layers, fully-

connected layers, and pooling layers. However, the system is also a highly-optimized

GEMM accelerator in general. Based on this, the contributions from this thesis are also

applicable to matrix multiplication acceleration in general, and therefore can be extended

to aiding all deep learning model layers that can mainly decompose to matrix multiplica-

tion, including fully-connected, convolutional, recurrent, and attention/transformer layers,

with most of our contributions being relevant for computation of fixed-point data types.

The system design allows for matrix multiplication or neural network inference to be

carried out in a highly deterministic/time-predictable manner where data is passed through

at high throughput rates without intermediate stores/loads and operation scheduling to be

required between the GEMM and post-GEMM execution stages. The data flows directly

from matrix multiplication to accumulation to post-GEMM operations. This allows the

accelerator to achieve very high utilizations that approach its theoretical throughput roof.

This was a difficult property to achieve, but a highly efficient system was necessary as a

starting point for demonstrating the full benefits of the proposed MXU architectures which

allow accelerators to surpass their normal throughput limits when overlayed onto efficient

systems already reaching close to their normal theoretical limits.
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MXU

Accumulation

Arithmetic Unit
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Figure 3.1: The example accelerator system design used to host and evaluate the baseline
and proposed MXUs when overlaid on top of systems based on the most efficient systolic
array accelerators used in practice, e.g., the TPU [3], [5], [6].
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Algorithm 4 Layer IO memory access pattern implemented in the counters from Fig. 3.2
for in-place mapping of 2-D convolution to GEMM, provided for the sake of completeness.

1: for nt = 0; nt < Nt ·Nts; nt += Nts
2: for ht = 0; ht < Ht ·Hts; ht += Hts
3: for kh = 0; kh < KH ·KHs; kh += KHs
4: for kw = 0; kw < KW ·KWs; kw += KWs
5: for cint = 0; cint < Cint·Cints; Cint += Cints
6: for h = 0; h < H ·Hs; h += Hs
7: for w = 0; w < W ·Ws; w += Ws
8: koffset = kh+ kw + cint

9: moffset = ht + h+ w
10: address = moffset + koffset
11: end for
12: end for
13: end for
14: end for
15: end for
16: end for
17: end for

3.2 Memory Subsystem

The memory accesses are controlled by multi-digit counters (also referred to as tilers)

shown in Fig. 3.2 containing programmable digit sizes and strides which calculate GEMM

read/write patterns, as well as map two-dimensional convolution to matrix multiplication

to perform Algorithm 4 for any matrix or convolution window sizes without requiring a

stand-alone memory remapping stage. The size and strides for each layer are calculated of-

fline once per neural network, and then can be re-used for all inferences of the same neural

network after that where they are updated in the memory tilers in real time between each

layer. The tilers allow the Memory Unit and external dynamic random-access memory

(DRAM) to be interfaced from the Arithmetic Unit using simple first-in first-out (FIFO)

interfaces.

The convolutional layer inputs consist of three dimensions, depth Cin, height H , and
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Figure 3.2: Layer IO memory access counters for performing in-place mapping of 2-D
convolution to GEMM.
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b1 bB b1 bB

KH

CinCint
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HHt

Figure 3.3: Layer IO memory access and blocking scheme to partition the memory and
perform in-place mapping of two-dimensional convolution to GEMM, provided for context.

width W . The Cin and H dimensions are each split into two separate dimensions to di-

vide them into tiles, and a dimension with the t subscript denotes the number of tiles in

that dimension (e.g. the H dimension is split into Ht tiles each of a new smaller size H).

Consider that KH and KW stand for the height and width of the kernel size, a dimen-

sion suffixed with s represents the dimension’s stride (e.g. Ws is the stride for the W

dimension), and Nt stands for the number of tile columns in the B/weight matrix. The

convolution is then mapped in-place to GEMM as shown in Algorithm 4 where all of the

layer input dimensions are mapped to tiled matrices by mapping each dimension to either a

K or M dimension. Similarly, the weight dimensions are tiled and mapped to either the K

or N dimensions for GEMM. Each memory location contains X elements along the Cin

dimension, where X is the MXU width.
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Figure 3.4: The baseline MXU architecture.

3.3 GEMM Unit

The GEMM unit contains the MXU as well as SRAM and addition logic for accumulating

matrix tiles. Fig. 3.4 shows how the PEs are laid out into an MXU architecture. The MXU

input buffers shown are triangular-shaped register arrays containing X shift registers of

varying depths, with each shift register SRk with depth k loading one ai,k or bk,j value per

clock cycle.

Within the GEMM Unit, an A matrix represents the inputs of a DNN layer after being
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rearranged by the memory subsystem described in Section 3.2 for converting the convo-

lutional layer operation to GEMM, a B matrix represents the layer weights after being

rearranged for GEMM, and a C matrix represents the GEMM output that corresponds to

the layer’s output values. In order to perform GEMM on an MXU, the input matrices are

divided into tiles and fed to the MXU one-by-one. Following each tile multiplication, the

partial tile products are accumulated outside of the MXU to generate each final matrix prod-

uct tile. Prior to each tile multiplication, a B tile is loaded into the MXU. It then remains

in place as the A tile flows through the MXU producing the tile product, during which a

new Ai,: vector is fed into the MXU each clock cycle. Additionally, to hide the latency of

loading B tiles, the MXU PEs each contain one extra b buffer to load the next B tile into

the MXU as the current tile is being multiplied.

3.4 Post-GEMM Unit

The post-GEMM unit contains neural network-specific functions to be performed on the

matrix multiplication outputs. This includes adding the bias values, inter-layer rescaling

for quantization [20], activation, padding, and pooling.

The re-scaling unit in Fig. 3.1 carries out inter-layer rescaling that is necessary for

readjusting the zero points and scaling factors of the quantized data which may be different

in each layer. This is executed to carry out the method defined by Jacob et al. [20], where

each 2-dimensional data vector going through the post-GEMM unit passes through a series

of vector operation units that perform the a variable shift and multiplication on each of the

elements in the data vector. Prior to this, an addition is performed on each element to add

the neural network layer’s bias. Following this, a ReLU activation is performed on each

element by passing zero if the element is less than zero, otherwise passing the same value.
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3.5 Host Access and Accelerator Instructions

The accelerator has direct memory access (DMA) to the system memory in the host through

a Peripheral Component Interconnect Express (PCIe) 3.0 connection. We use a PCIe DMA

controller and host driver provided by Xillybus [90]. From the hardware end, the PCIe

controller is interfaced through FIFOs. From the software end, the driver is interfaced

through shell scripts which we interface with through Python to provide an end-to-end

framework for running deep learning applications on the accelerator.

The host sends variable-length instruction packets to the accelerator each containing

a 32-bit header consisting of an 8-bit opcode and a 24-bit field determining the number

of bytes remaining in the packet after the header. Each instruction packet can contain the

following information:

• Input data: This contains the input data to the neural network such as images for

image classification.

• Weight data: The neural network weights.

• Layer memory tiler count/size parameters: The size and stride of each neural network

layer.

• Quantization parameters: Contains inter-layer rescaling parameters for quantization.

• Other layer parameters: This includes other information about each layer such as

layer input bitwidths, layer dimensions, pooling kernel dimensions.

• Top-level instruction: this includes instructions for the accelerator such as initiating

inference and passing the result back to the host, and reading performance counters.

50



Ph.D. Thesis - Trevor E. Pogue McMaster University - Electrical & Computer Engineering

The weights and model parameters for a specific neural network are pre-loaded onto the

accelerator once each time that a new neural network model needs to be accelerated.

3.6 Timing Optimizations

3.6.1 Memory Subsystem Timing Optimizations

It was initially found that the maximum frequency of the memory access control counters

was lower than the GEMM Unit clock frequency, which would lower the throughput of the

entire accelerator and restrict the full frequency advantages of the FFIP method described

in Chapter 4 from being properly evaluated. To resolve this, we partitioned the Layer

IO memory into submemories each containing a block of the total memory and separate

memory tiler controllers. This allowed each memory block to be accessed concurrently at

a slower clock speed and for their read data to then be accessed in an interleaved manner

by the main clock.

To do this, we derived a memory partitioning scheme for dividing the convolutional

layer inputs into blocks in a way that still supports in-place remapping of two-dimensional

convolution to GEMM as described above. The partitioning scheme supports dividing the

memory into B blocks for any B that is a power of 2, allowing the memory tiler controllers

to run at a frequency of 1/B times the main clock frequency. In our results, we use B = 2.

The W dimension is divided into different blocks as show in Fig. 3.3, where each W slice

is Ws elements wide.

One remaining issue, however, is that when the KW dimension increments to a certain

range, the submemory may need to access elements from a block that it does not contain.

For example, consider the case in Fig. 3.3 where kh = kw = 3, Hs = Ws = 2, and
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B = 2. When kw ∈ {1, 2} then element 1 in block 1 will be accessed by the main clock

for w = 1 followed by element 1 in block 2 for w = 2. However, when kw = 3 then

the block 1 submemory should require access starting with an element from a block that it

does not contain. To resolve this, when kw = 3 then block 2 will be accessed first by the

main memory for w = 1, followed by the next block 1 slice for w = 2. In other words,

the next memory elements are instead taken from the adjacent submemory, the kw and w

incrementer digits are adjusted in each submemory, and the interleaving order in which the

submemories are accessed from the main clock is modified.

We also run the weight memory control logic at a fraction of the main clock speed by

accessing the memory in bursts and thus requiring memory control to be communicated to

the DRAM controller at an infrequent rate relative to the main clock speed. The external

DRAM memory is used only for storing the weights, and the layer inputs/outputs always

stay in on-chip memory. This allows the device’s external memory bandwidth to rarely be

a bottleneck for the implementations evaluated in our experimental setup.

3.6.2 MXU Timing Optimizations

As discussed in Section 3.3, prior to each tile multiplication, a b/y tile is loaded into the

MXU. It then remains in place as the a/g tile flows through the MXU to produce the tile

product. As show in Fig. 3.5, our initial implementation for the mechanism which shifts b/y

tiles into the MXU was to implement a basic one-dimensional shift register vector to shift

each column of weights into the MXU, and then have an enable control signal that connects

to each element in the vector to stop the shifting all at once when the weight column is fully

loaded. However, this required enable control signals to be connected non-locally to every

element’s shift register enable inputs without being able to locally buffer the enable control
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signals close to their destinations.

In order to mitigate this, we instead designed an improved shift-register-based mecha-

nism shown in Fig. 3.6 in which the control signal connections are fully localized by being

buffered directly before their destination in each element’s shift register enable input to

improve the frequency potential of the MXU. In this design, the control signal has its own

shift register mechanism separate from the datapath shift register which is pre-loaded with

1’s. To allow this mechanism, the weights are shifted in every-other clock cycle instead of

every clock cycle. Shifting in the weight vectors more slowly like this does not affect the

throughput so long as the layer input Mt tile size can usually be at least twice as large as

the Nt tile size used for the weights, which was found to be true for the models we used for

evaluation.

3.7 Summary

The key contributions of this work are the proposed algebraic algorithm and/or their custom

hardware architectures and their evaluation in a deep learning accelerator system. Further-

more, our goal is to evaluate the hardware architectures when overlaid on top of a system

based on the most efficient systolic array accelerators used in practice. Therefore, this

section expanded upon our system design shown in Fig. 3.1 that intentionally shares simi-

larities with the TPUv1 [3] and some similarities with the TPUv2-TPUv4 as well [5], [6],

and provides the context in which our main contributions have been validated to better

understand their overall impact.

The source code for our accelerator implementation is available on GitHub [91] and

is hand-coded in SystemVerilog and implemented to be highly configurable. The MXU

height/width can be parameterized to be any value that is a multiple of 4. The bitwidth of
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the a and b values are also fully parameterizable, as well as whether they are on signed or

unsigned representations.
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Chapter 4

Fast Inner-Product Algorithms and

Hardware Architectures

In 1968, Winograd introduced an alternative inner-product algorithm [7] shown in (2.18)

that we refer to as the Fast Inner Product (FIP) that can be used to reduce the complexity of

matrix multiplication. Prior research on algebraic enhancements applied to deep learning

acceleration has been focused primarily on using Winograd’s minimal filtering algorithms

applied to convolutional neural networks (CNN)s [65], [64]. However, other fast algebraic

algorithms such as the unrelated FIP algorithm also proposed by Winograd on which our

work in this chapter is based remain under-explored for application to deep learning hard-

ware designs.

Compared to the traditional inner product (referred to as baseline), FIP allows matrix

multiplication to be performed with approximately half of the multiply-accumulate (MAC)

operations traded for low-bitwidth additions. Since MAC units are commonly the area-

dominant computational resource in DNN accelerators [70], [3], [5], cutting the number of

required MAC units in half could nearly double the performance per compute area.
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Despite the high impact potential of these benefits, the FIP algorithm [7] has never

before been implemented in a deep learning hardware accelerator. The first step in our

work in this chapter is to address this oversight and carry out that investigation. We show

that, while the number of required MAC units is nearly halved as expected, there is also a

reduction in clock frequency and, as a consequence, throughput.

In order to address this weakness of FIP, we introduce a new inner-product algorithm

referred to as the Free-pipeline Fast Inner Product (FFIP) that achieves the same near 2×

reduction in required MAC units, however, it inherently improves the clock frequency and,

as a consequence, overall throughput for a similar hardware cost compared to FIP. Addi-

tionally, as expected from our theoretical analysis, the effective size of the largest systolic

array that could be fit in our experimental compute platform was increased from 56×56

processing elements (PE)s when using a baseline systolic array to 80×80 PEs when using

(F)FIP systolic arrays, an increase of over 2× in effective number of PEs.

Our work shows that the FFIP architecture is functionally equivalent to traditional

systolic-array architectures, and that it can be seamlessly incorporated into any deep learn-

ing accelerator system that uses traditional fixed-point systolic arrays for the arithmetic to

double the throughput per MAC unit and significantly increase its performance per com-

pute area for inference of all deep learning models that will execute on the systolic array.

This is because any such accelerator could substitute its traditional systolic-array PEs for

just nearly half the number of proposed FFIP PEs without fundamentally altering the accel-

erator’s functionality or internal interfaces in any way. Furthermore, systolic-array accel-

erators have been proven effective for accelerating a wide range of modern deep learning

models [3], [5], [6], [55], [16]. Our results indicate that FFIP, when overlaid on top of

the most efficient systolic-array accelerator systems used in practice, can further improve
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compute efficiency and increase the theoretical performance limits across a wide range of

devices, system implementations, and deep learning models.

In summary, our key contributions from this chapter, which have been published in [8],

are the following:

• We implement FIP for the first time in a deep learning accelerator and validate our

generalized analysis of its ability to increase an accelerator’s theoretical throughput

and compute efficiency limits for the data types commonly used in deep learning

acceleration. As part of this undertaking, we also identify a weakness in FIP of a

reduction in clock frequency. To address this, we introduce a new inner-product

algorithm (FFIP) in Section 4.2.2 to inherently bypass this trade-off. Additionally,

we provide deep learning-specific optimizations for both the FIP and FFIP algorithms

in Section 4.1.2.

• We propose a generalized PE architecture in Section 4.2.2 for performing FFIP in

hardware which inherently improves the clock frequency and, as a consequence,

overall throughput for a similar hardware cost compared to FIP. Additionally, we

provide deep learning-specific hardware optimizations for the systolic-array archi-

tectures housing FIP or FFIP PEs in Section 4.2.4. We demonstrate in Section 4.3

how an example implementation of the FFIP architecture achieves higher throughput

and compute efficiency across different deep learning models than the best-in-class

prior solutions implemented on the same type of compute platform. More impor-

tantly, the results indicate that when FFIP is overlaid on top of the most efficient

systolic-array systems used in practice, it can further increase compute efficiency in

the general case across a wide range of devices, system implementations, and deep

learning models.
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4.1 Free-pipeline Fast Inner Product (FFIP)

This section introduces a new inner-product algorithm referred to as the Free-pipeline Fast

Inner Product (FFIP) that, in hardware, achieves the same near 2× reduction in required

MAC units as FIP [7] while also addressing a key weakness of FIP by inherently improving

the clock frequency and, as a consequence, overall throughput of an accelerator for a similar

hardware cost compared to FIP.

In FFIP, each element ci,j of C is calculated as follows:

ci,j =

K/2∑
k=1

g
(j)
i,2k−1 · g

(j)
i,2k − αi − βj , (4.1)

where α and β are the same as in Eqs. (2.19) and (2.20), and:

g
(j)
i,2k−1 = ai,2k + y2k−1,j for j = 1 (4.2a)

g
(j)
i,2k = ai,2k−1 + y2k,j for j = 1 (4.2b)

g
(j)
i,k = g

(j−1)
i,k + yk,j for j > 1 (4.2c)

yi,j =


bij for j = 1

bij − bi,j−1 for j > 1 .

(4.3)

The extra subtractions in (4.3) require O(NK) operations to calculate, which is negli-

gible since the complexity is dominated by the overall O(MNK) from (4.1). Similarly to

(2.18), (4.1) also results in (MNK +MK +NK) /2 multiplications for even K and the

same number of additions as in (2.22) as well.
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The resulting terms being multiplied in (4.1) are identical to those being multiplied in

(2.18). The difference between Eqs. (2.18) and (4.1) lies in the terms being fed to the

addition in (4.2c). This allows the addition output g(j)i,k in (4.2c) to be passed directly into

the adjacent adder for g(j+1)
i,k , which we later show improves the inner-product’s hardware

frequency at essentially no cost. Additionally, although each g
(j−1)
i,k takes j− 1 iterations to

form before being passed to the next g(j)i,k , Section 4.2 shows how these iterations for all g

terms in the systolic array are each being performed in parallel in a pipeline every clock cy-

cle. Therefore, after an initial latency that is negligible relative to the entire execution time,

every matrix product will thereafter be produced in a pipeline at a consistent throughput.

4.1.1 Proof

For j = 1, one can substitute the g(j)i,k and yi,j terms for their values specified in Eqs. (4.2a),

(4.2b), and (4.3), and observe the same terms as in (2.18). For j > 1, (4.1) is proven by

first showing that (2.18) can be rewritten as:

ci,j =

K/2∑
k=1

([ai,2k + b2k−1,j−1] + [b2k−1,j − b2k−1,j−1])

([ai,2k−1 + b2k,j−1] + [b2k,j − b2k,j−1])− αi − βj

=

K/2∑
k=1

(h
(j−1)
i,2k−1 + y2k−1,j)(h

(j−1)
i,2k + y2k,j)− αi − βj ,

(4.4)

where:

h
(j−1)
i,2k−1 = ai,2k + b2k−1,j−1 (4.5a)

h
(j−1)
i,2k = ai,2k−1 + b2k,j−1 , (4.5b)
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and therefore:

h
(j)
i,2k−1 = ai,2k + b2k−1,j (4.6a)

h
(j)
i,2k = ai,2k−1 + b2k,j . (4.6b)

Now, h(j)
i,2k−1 and h

(j)
i,2k can also be rewritten as:

h
(j)
i,2k−1 = (ai,2k + b2k−1,j−1) + (b2k−1,j − b2k−1,j−1)

= h
(j−1)
i,2k−1 + y2k−1,j

(4.7a)

h
(j)
i,2k = (ai,2k−1 + b2k,j−1) + (b2k,j − b2k,j−1)

= h
(j−1)
i,2k + y2k,j .

(4.7b)

Therefore, h(j)
i,k = h

(j−1)
i,k + yk,j and holds the equivalent property as (4.2c), showing that

h
(j)
i,k = g

(j)
i,k and that (4.4), which is equivalent to (2.18), is equivalent to:

ci,j =

K/2∑
k=1

(g
(j−1)
i,2k−1 + y2k−1,j)(g

(j−1)
i,2k + y2k,j)− αi − βj

=

K/2∑
k=1

g
(j)
i,2k−1 · g

(j)
i,2k − αi − βj ,

(4.8)

which is equivalent to (4.1).
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4.1.2 Deep Learning-Specific Optimizations

For the application of FIP and FFIP to deep learning, a values represent the layer inputs of

a DNN layer, b values represent the layer weights, and c values correspond to the layer’s

output values. The β term in the FIP and FFIP algorithms is a function of the weights.

Hence, it remains constant over each inference and can be pre-computed after training.

The β terms can also be incorporated into the biases, allowing the β subtraction in (2.18) to

be performed during the bias addition stage at no extra cost. Each βj term is then subtracted

from biasj as follows:

biasj = biasj − βj , (4.9)

where each j represents a layer output channel. This allows the computation from (4.1) to

be reduced to:

c
′

i,j =

K/2∑
k=1

g
(j)
i,2k−1 · g

(j)
i,2k − αi , (4.10)

where c
′ is a layer output before biasing and activation.

Finally, the yi,j values in FFIP from (4.3) are also a function of the layer weights, and

can also be pre-computed after training.

4.2 Fast Inner-Product Architectures

4.2.1 Definitions

• w: The bitwidth that the weight and activations are quantized to.
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• d: A bitwidth increase applied to certain locations in the FIP and FFIP PE datapaths,

where d = 1 if a and b are both signed or both unsigned, and d = 2 if either a or b is

signed while the other is unsigned.

• X , Y : The width and height of an MXU, respectively, in effective number of MAC

units. For a baseline MXU, this refers to the the actual width and height in num-

ber of MAC units. For FIP and FFIP MXUs, X and Y refer to the MAC width

and height required to achieve the same computational power if implemented on a

baseline MXU. However, for FIP and FFIP, the number of actual instantiated MAC

columns is X/2, and the number of actual instantiated MAC rows is Y + 1 (where

the extra row is for calculating the α terms as explained in Section 4.2.3).

4.2.2 Processing Element (PE) Architectures

Fig. 4.1a shows two traditional PEs which implement the baseline inner-product algorithm

as in existing state-of-the-art systolic-array deep learning accelerator architectures [3], [5],

[6], [55], [16]. Figs. 4.1b and 4.1c show PE architectures for implementing the FIP and

FFIP algorithms in an MXU hardware architecture, respectively. The FIP and FFIP PEs

shown in Figs. 4.1b and 4.1c each individually provide the same effective computational

power as the combined computational power of the two baseline PEs shown in Fig. 4.1a

which implement the baseline inner product.

As can be seen, compared to the baseline PEs, the FIP and FFIP PEs therefore provide

the same computational power with half the number of multipliers, where the removed

multipliers are instead traded for cheap additions on w or w + d bits. Furthermore, half of

the accumulations on 2w + clog2(X) bits are also traded for lower-bitwidth additions on

w or w + d bits. Finally, one last benefit is that the MXUs using FIP and FFIP PEs have a
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Figure 4.1: The PE architectures for implementing the (a) baseline, (b) FIP, and (c) FFIP
inner-product algorithms in hardware. The FIP and FFIP PEs shown in (b) and (c) each
individually provide the same effective computational power as the two baseline PEs shown
in (a) combined which implement the baseline inner product as in existing systolic-array
deep learning accelerators. Critical paths are highlighted.
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latency that is X/2 fewer clock cycles than a baseline MXU.

The resulting terms being multiplied in Fig. 4.1c are the same as in Fig. 4.1b, however,

the addition outputs g(j)i,k (the elements g(j)i−1,2k−1 and g
(j)
i−1,2k in Fig. 4.1c) can now be passed

directly into the adder inputs of the next adjacent PE below. This is beneficial because the

addition outputs g(j)i,k stored in registers now serve the dual purpose of:

1. Acting as pipelining registers for the addition outputs in (4.2), allowing the g(j)i,k terms

to be buffered directly before the multiplication, and

2. Serving as systolic buffers to store the g
(j)
i,k inputs for the adjacent PE below.

In contrast, the FIP algorithm from (2.18) requires the inputs (a and b in this case) to be

stored in systolic buffers prior to addition before passing them to the adjacent PEs below,

but doing so does not serve the dual purpose of also acting as pipelining registers before

the multiplication. Therefore, the FFIP algorithm inherently results in a higher maximum

frequency for a similar hardware cost.

However, in order to facilitate the usage of the FFIP PEs and gain their benefits, it

is mandatory to fundamentally change the systolic-array data flow of the original FIP al-

gorithm in a non-obvious way requiring a high-level mathematical understanding of the

algebra being performed, and is something that goes beyond the capabilities of today’s

CAD tools. Our FFIP algorithm defined in Section 4.2.2 provides these required high-level

mathematical changes.

FFIP PE versus FIP PE with Additional Registers

After investigating and implementing the FIP algorithm in hardware, a key downside we

found was that the FIP implementation results in a reduction in clock frequency and, as
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a consequence, throughput in the resulting architecture. As illustrated in Fig. 4.1b, this

reduction in clock frequency comes from the fact that the longest path between registers

that the logic in the FIP PE has to traverse through is across two adders and one multiplier

rather than just one adder and multiplier. While additional registers could be placed at the

FIP PE multiplier inputs to match the critical path of the FFIP PE, this adds a significant

cost in registers in the PE array compared to using FFIP. The register requirements for each

FIP PE would then increase from (4.11) to (4.12):

4w + (2w + clog2(X) + 1) = 6w + clog2(X) + 1 (4.11)

2(w + d) + (6w + clog2(X) + 1) (4.12a)

= 8w + 2d+ clog2(X) + 1 , (4.12b)

where (4.12) is derived by adding to (4.11) the register sizes that would be required to

buffer the multiplier inputs. In contrast, the register requirements for each FFIP PE is:

2(w + d) + 2(w + 1) + (2w + clog2(X) + 1) (4.13a)

= 6w + 2d+ clog2(X) + 3 . (4.13b)

Fig. 4.2 shows that the FFIP register overhead defined in (4.13) starts to increase more

rapidly for bitwidths below 4, which may make it less desirable to use below that width.

However, outside of this range, FFIP register requirements are significantly less than an

FIP PE with extra registers added to match the critical path/frequency of an FFIP PE.
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Figure 4.2: PE register requirements at different w bitwidths for the FIP PE, FFIP PE, and
FIP PE with extra registers before the multiplier to match the frequency of the FFIP PEs.
Values are calculated using Eqs. (4.11) - (4.13) for X = 64 and d = 1.

67



Ph.D. Thesis - Trevor E. Pogue McMaster University - Electrical & Computer Engineering

Finally, while there will also be other registers to consider in an accelerator outside of

the PEs in the datapath and control logic, these register utilizations are highly implementation-

specific and will vary depending on the details of the system implementation used to house

the systolic array. Furthermore, as the systolic array size increases, the number of PEs in-

crease quadratically and their total register contributions determined by Eqs. (4.11), (4.12),

or (4.13) will dominate other registers outside of the systolic array.

4.2.3 Matrix Multiplication Unit (MXU) Architectures

Fig. 4.3 shows how the PEs are laid out into an MXU architecture. The suggested MXU

input buffers shown are triangular-shaped register arrays containing X shift registers of

varying depths, with each shift register SRk loading one ai,k or bk,j/yk,j value per clock

cycle. The depth of each SRk is ⌈k/2⌉ for the FIP and FFIP MXUs, and k for the baseline

MXU. In order to perform general matrix multiplication (GEMM) on a MXU, the input

matrices are divided into tiles fed to the MXU one-by-one. Following each tile multipli-

cation, the partial tile products are accumulated outside of the MXU to generate each final

matrix product tile. Prior to each tile multiplication, a b/y tile is loaded into the MXU. It

then remains in place as the a/g tile flows through the MXU producing the tile product,

during which a new ai vector is fed into the MXU each clock cycle. Additionally, to hide

the latency of loading b/y tiles, we suggest the MXU contains an extra b/y tile buffer which

loads the next tile as the current tile is being multiplied.

4.2.4 Deep Learning-Specific Optimizations

In quantized deep learning inference, the weights and activations can each be quantized to

signed or unsigned integers by choosing different zero points to quantize the values with
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Figure 4.3: The FFIP MXU architecture. The FIP MXU is the same except that FIP PEs
are used instead and the y generator block is not present, and b inputs are passed in instead
of y inputs. The α terms are calculated and subtracted as shown by first passing the a inputs
through an additional row of MAC units before they enter the rest of the MXU.
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[20]. However, for the FIP and FFIP architectures it is beneficial to quantize the weights

and activations such that they are both represented on either signed or unsigned integers.

Otherwise, representing one on signed and the other on unsigned adds a penalty in the

hardware footprint of the FIP and FFIP PEs because then, due to the possible range of the

result, d must equal 2 instead of 1, and the sum of a and b elements must then be represented

on w + 2 bits rather than the w + 1 bits needed if they were both signed or both unsigned.

This would lead to extra register requirements in the FFIP PE and cause multiplication on

w + 2-bit inputs rather than w + 1 bits for both the FIP and FFIP PEs.

Furthermore, if the employed quantization scheme requires adding a constant offset

to the weights to adjust their zero point, the contributions of the zero-point offset in the

GEMM product must then be separately calculated and subtracted from the result to elim-

inate their contribution (for any architecture, not just FIP and FFIP) [20]. We provide a

solution to mitigate this penalty in the FIP and FFIP architectures when layer-wise zero-

point offsets are used on the weights. We show how to pass some of these extra required

computations into the pre-existing α generator logic as shown in Fig. 4.3. To help illustrate

how this works, consider that the weight zero-point offsets can be represented by a constant

matrix R being added to the weights where each element has a constant value. This results

in the MXU performing the following computation:

A (B +R) = AB +AR . (4.14)

Therefore, to eliminate the contribution of the constant matrix R in the matrix product, the

AR product must be subtracted from the MXU output. In order to do this and combine its

subtraction with the existing α generator logic, we provide the zero-point adjuster block

shown in Fig. 4.3, which calculates the AR elements using only one multiplier, and show
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how to efficiently combine its AR output elements with the α elements. This way, both

the AR and α values are subtracted from the MXU output vectors at the same time and an

additional hardware subtraction vector dedicated to subtracting only the AR elements is

not required on the MXU output.

Finally, as discussed in Section 4.1.2, the β terms do not need to be calculated as they

do for α since they can be pre-computed and added to the biases. Furthermore, the y values

can either be calculated in real time with the y generator as shown in Fig. 4.3, or they can

be pre-computed at the cost of storing them in 1 extra bit in memory.

4.2.5 Multiplier Compute Efficiency

In this subsection, we define a performance-per-area metric called the multiplier compute

efficiency in (4.18c) which we use to compare the FFIP architecture against baseline models

and prior works. The metric is used to compare the amount of computational work that can

be performed per compute area regardless of the clock frequency.

The hardware complexity of fixed-point multipliers typically scale quadratically with

the input bitwidth compared to linearly for adders and registers [71], [25], [72], causing the

hardware footprint of multipliers to dominate that of adders and registers. Due to this, mul-

tipliers and MAC units are commonly the area-dominant computational resources in deep

learning and GEMM-based accelerators [70], [3], [5]. Therefore, we derive a performance-

per-area metric defined below for quantifying how much the algebraic optimizations ex-

ploited in an architecture reduce the computational complexity of the area-dominant op-

erations (multiplications) and measure how effectively an architecture can utilize these re-

sources relative to a conventional design using no algebraic optimizations.
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The multiplier compute efficiency is defined as follows:

mults/multiplier
clock cycle

=
(mults/s)/#multipliers

f
, (4.15)

where mults/s above is measured by taking the number of multiplications required to carry

out an execution using conventional algebra and dividing it by the measured execution

time, #multipliers is the number of instantiated multipliers in the design, and f is the clock

frequency that the hardware design is operating at.

Now, the metric from (4.15) has the following limit when executing the conventional

MM algorithm in hardware:

MM

mults

multiplier

clock cycle

roof = 1 . (4.16)

In contrast, the FIP and FFIP algorithms requires half the number of multiplications as

MM for the same throughput. Therefore, the multiplier compute efficiency can reach the

following limit in (F)FIP architectures:

(F)FIP

mults

multiplier

clock cycle

roof = 2 , (4.17)

showing how (F)FIP can increase the throughput roof of accelerators without increasing

the area.

Based on the above definitions, we use the following three performance metrics for
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judging prior state-of-the-art solutions against FFIP:

throughput (GOPS) = op/s · 10−9 (4.18a)

throughput
compute area

(
mults

multiplier

)
=

mults/s · 10−9

#multipliers
(4.18b)

throughput

compute area

clock cycle


mults

multiplier

clock cycle

 =

mults/s

#multipliers

f

. (4.18c)

The throughput metric defined in (4.18a) measures the raw performance that a solution

is able to achieve on a device and is the foremost commonly used metric for comparison in

the field. We use the throughput per compute area and throughput per compute area per

clock cycle metrics defined in Eqs. (4.18b) - (4.18c) to help compare the scaling potential

of a design regardless of how many computational resources are available on the device it

is scaled onto, or so that prejudice is not given towards implementations that could theo-

retically achieve higher throughputs but did not scale up their design to take full advantage

of all the compute resources available on the device. The throughput per compute area

per clock cycle metric serves a similar purpose as throughput per compute area, however,

it also normalizes for clock frequency to further abstract the performance criteria from

the implementation platforms and their technology nodes, which will have varying timing

potentials, and this metric will also remove any doubt regarding FFIP’s performance im-

provements coming solely from increase in clock frequency compared to the prior works.

However, we still include the throughput per compute area metric because a key benefit

of FFIP is that it does inherently allow for a higher clock frequency for a similar hardware

cost compared to FIP.
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4.3 Results

This section demonstrates the generality of the FIP-based approaches by evaluating exam-

ple implementations of our (F)FIP architectures for DNN inference as integrated into the

the deep learning accelerator system described in Chapter 3. The theoretical benefits of the

FIP architecture are validated for the first time in a deep learning accelerator. Additionally,

we validate the theoretical benefits of the proposed FFIP architecture against the baseline

and FIP architectures, and against state-of-the-art prior works. Although the theoretical

concepts presented in this work are general and applicable to both custom integrated cir-

cuits and field-programmable gate array (FPGA) implementations, our FFIP algorithm and

architecture were validated on FPGA, and we therefore confirm our theoretical insights

by comparing the benefits of the proposed FFIP architecture against the best-in-class of

prior state-of-the-art deep learning accelerator solutions that are also evaluated on FPGA.

We compare designs for non-sparse neural network acceleration and input sizes quantized

to 8 - 16 bits, which are bitwidths commonly used in practice as they provide a balanced

trade-off between accuracy versus hardware efficiency [20].

Full system-level validation of the (F)FIP MXUs as integrated into the experimental

accelerator system from Section 3 has been done on an Arria 10 SoC Developement Kit

[92] containing the Arria 10 SX 660 device by measuring model throughput in real-time.

However, this device contains fewer soft logic resources than the Arria 10 GX 1150 used

in the prior works we compare against, and we generate compilation results in Section

4.3.2 for our design on the same Arria 10 GX 1150 device used in prior works for a more

fair and consistent comparison. Throughput values of our designs on the Arria 10 GX

1150 device are then calculated using an accurate throughput estimation model based on

our highly deterministic and time-predictable system implementation, which accurately
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predicts actual throughputs measured on the Arria 10 SX 660 device available to us. The

models used for evaluation are AlexNet [11] and ResNet [17].

4.3.1 FFIP Compared to Baseline and FIP

The baseline, FIP, and FFIP MXUs from Section 4.2.3 have been instantiated inside an

example accelerator system used for validation that was discussed in Section 3. Different

accelerator designs were compiled where the system architecture remained the same, and

only the MXU size and type changed. The MXU height/width was incremented by multi-

ples of 8 from sizes 32 to 80, or until the device no longer contained enough digital signal

processing (DSP) units to instantiate the design. For each MXU size, we compiled a base-

line, FIP, and FFIP MXU, except for the baseline MXU designs above size 56×56 which

no longer fit on the device due to the DSP resources reaching their limit.

The memory resource deviation seen in the 72×72 FFIP MXU in Fig. 4.4 is due to

the FPGA compiler placing some of the datapath buffers outside of the MXU into mem-

ory resources. However, due to the heuristic nature of FPGA compilers, where even bit-

equivalent designs will produce small variations in hardware utilizations for different ran-

dom seeds, this deviation is interpreted as a random outlier and not something inherent to

FFIP.

The FIP architecture uses up to 15-20% more ALMs and registers than the baseline

to implement the pre-adders that nearly half the multipliers and accumulators are traded

for as discussed in Section 4.2.2. However, as expected from our theoretical analysis,

the FIP architecture provides the much more significant near 2× reduction in DSP units,

which are hard logic resources used to implement MAC units in FPGAs since that operation

cannot be mapped efficiently onto the soft logic resources [25]. The clock frequency of the
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Figure 4.4: Evaluating the baseline, FIP, and FFIP MXUs at different sizes instantiated into
an example deep learning accelerator system design used for validation, with 8-bit fixed-
point inputs on an Arria 10 SX 660 FPGA.
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FIP designs, however, is approximately 30% lower than the clock frequency of the baseline

designs, which consequently reduces the throughput by the same ratio. As anticipated from

our theoretical analysis, the FFIP architecture inherently addresses this weakness of the FIP

architecture for a similar hardware cost by maintaining the same near 2× reduction in the

number of required DSPs, however, FFIP improves the clock frequency by over 30%,

and as a consequence, the overall throughput of the accelerator is improved by the same

amount compared to FIP. Additionally, the effective size of the largest systolic array that

can be fit onto the device before maxing out the DSPs is increased from 56×56 PEs to

80×80 when using FIP and FFIP, a 2× increase in effective number of PEs.

Finally, while additional registers could be placed at the FIP PE multiplier inputs to

match the critical path of the FFIP PEs, this would come at a significant extra cost in

additional registers compared to using FFIP. A detailed analysis for this is provided in

Section 4.2.2.

4.3.2 FFIP Compared to the State-of-the-Art on FPGA

Although the theoretical concepts presented in this work are general and applicable to both

custom integrated circuits and FPGA implementations, our FFIP algorithm and architecture

were validated on FPGA, and we therefore confirm our theoretical insights by comparing

the benefits of the proposed FFIP architecture against the best-in-class of prior deep learn-

ing accelerator solutions that are also evaluated on FPGA.

For the results in Section 4.3.2, #multipliers is calculated as #DSPs for AMD/Xilinx

FPGAs where each DSP instantiates one 18×27-bit multiplier [93], and #DSPs × 2 for

Intel/Altera FPGAs where each DSP instantiates two 18×19-bit multipliers [94]. The only

exception to this is for the works using Intel/Altera FPGAs from Liu et al. [95] and Fan et
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al. [96], where two 8-bit multiplications are packed onto each 18×19-bit multiplier in the

DSPs and additional ALMs as explained in Section 4.3.2, and therefore #multipliers =

#DSP × 4.

We also note that, when evaluating solutions on FPGA, it is more common in the field

to measure the performance per compute area using throughput/DSP rather than through-

put/multiplier. However, we use the latter in order to make the evaluation more generalized

and to detach it from the specific DSP architectures currently being used in modern FP-

GAs. For example, the DSPs on most AMD/Xilinx FPGAs [93] contain one fixed-point

multiplier, whereas the DSPs on most Intel/Altera FPGAs [94] contain two fixed-point

multipliers, which would make GOPS/DSP comparisons unfair when comparing designs

on Intel versus AMD FPGAs, and would decrease the generality of the comparison.

As derived in Section 4.2.5, (F)FIP increases the theoretical roof of the performance

metrics defined in Eqs. (4.18a) - (4.18c) in the general case, regardless of the implemen-

tation technology. To empirically validate this, we compare our results in this section

against the prior state-of-the-art, and since our FFIP algorithm and generalized architecture

were validated on FPGA, we confirm our theoretical insights by comparing the benefits of

the proposed FFIP architecture against the best-in-class prior solutions also evaluated on

FPGA. We demonstrate that FFIP is extremely competitive and surpasses the prior works

in the evaluated performance metrics.

Due to the clear advantages, increasing the theoretical limits of the performance metrics

defined in Eqs. (4.18a) - (4.18c) from Section 4.2.5 has been focused on recently in other

works as well. The works by Yepez et al. [66] and Jiang et al. [99] do this by exploit-

ing Winograd’s minimal filtering algorithms applied to convolutional neural networks as
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Table 4.1: Comparison with state-of-the-art 8-bit-input accelerators for different models on
the same FPGA family.

TNNLS ’22 [95] TCAD ’22 [96] Entropy ’22 [97] Ours (FFIP 64×64)

FPGA Arria 10 GX 1150 Arria 10 GX 1150 Arria 10 GX 1150 Arria 10 GX 1150

Data type 8-bit fixed 8-bit fixed 8-bit fixed 8-bit fixed

ALMs 304K 304K 303K 118K

Registers 889K 890K - 311K

Memories 2334 2334 1953 1782

DSPs 1473 1473 1503 1072

Frequency
(MHz)

200 220 172 388

Model ResNet-50 VGG
16

Bayes
ResNet-18

Bayes
VGG
11

R-CNN
(ResNet-

50)

R-
CNN
(VGG
16)

ResNet-50 ResNet-
101

ResNet-
152

GOPS 1 1519 1295 1590 534 719 865 2529 2752 2838

mults
multiplier

2 0.129 0.110 0.135 0.045 0.120 0.144 0.590 0.642 0.662

mults
multiplier

clock cycle

3 0.645 0.549 0.613 0.206 0.695 0.837 1.521 1.655 1.707

1 Throughput, defined in (4.18a), motivation and explanation provided in Section 4.2.5.
2 Throughput per compute area, defined in (4.18b), motivation and explanation provided in Section 4.2.5.
3 Throughput per compute area per clock cycle, defined in (4.18c), motivation and explanation provided in Section 4.2.5.
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Table 4.2: Comparison with state-of-the-art 16b-bit-input accelerators for different models
on the same FPGA family.

TCAD ’20 [98] TVLSI ’20 [66] TCAS-
II ’22
[99]

TCAS-I
’23

[100]

Ours (FFIP 64×64)

FPGA Arria 10 GX 1150 Arria 10 Arria 10
GX

1150

Arria 10
SoC

Arria 10 GX 1150

Data type 16-bit fixed 16-bit fixed 8/16-bit
fixed 4

16-bit
fixed

16-bit fixed

ALMs 286K 335K 208K 181K 180K - 189K 199K

Registers - - - - - - - 530K

Memories 2356 2692 2319 1310 1310 1565 - 2713

DSPs 1518 1518 1518 1344 1344 1161 1536 1072

Frequency
(MHz)

240 240 240 250 250 163 200 346

Model ResNet-
50

ResNet-
152

VGG
16

VGG16 Modified
VGG16

CTPN(
VGG
+Bi

LSTM)

Modified
StyleNet

ResNet-
50

ResNet-
101

ResNet-
152

GOPS 1 600 697 968 1642 1788 1224 670 2258 2458 2534

mults
multiplier

2 0.099 0.115 0.159 0.305 0.333 0.264 0.109 0.527 0.573 0.591

mults
multiplier

clock cycle

3 0.412 0.478 0.664 1.222 5 1.330 5 1.617 56 0.545 1.521 1.655 1.707

1-3 See the corresponding definitions from Table 4.1.
4 Weights and layer outputs are quantized to 8 bits. Layer input is quantized to 16-bit due to Winograd convolutional transformations.
5 These works use Winograd’s minimal filtering algorithms [65] to reduce multiplication complexity.
6 This is a central processing unit (CPU)-FPGA heterogeneous work where portions of the inference are performed on CPU.
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Table 4.3: Comparison with state-of-the-art accelerators on different FPGAs for the same
models and input bitwidths.

TVLSI
’19

[101]

TCAS-
II ’21
[102]

Ours
(FFIP

64×64)

TNNLS
’22
[95]

TCAS-
I ’23
[103]

Ours
(FFIP

64×64)

TCAD
’20
[98]

Ours
(FFIP

64×64)

TNNLS
’22

[104]

Ours
(FFIP

64×64)

TCAD
’20
[98]

Ours
(FFIP

64×64)

Model AlexNet AlexNet AlexNet ResNet-
50

ResNet-
50

ResNet-
50

ResNet-
50

ResNet-
50

ResNet-
101

ResNet-
101

ResNet-
152

ResNet-
152

Data type 16-bit
fixed

8/16-
bit

fixed 4

16-bit
fixed

8-bit
fixed

8-bit
fixed

8-bit
fixed

16-bit
fixed

16-bit
fixed

8/16-
bit

fixed 5

16-bit
fixed

16-bit
fixed

16-bit
fixed

FPGA XC7VX
690T

VC709 Arria
10 GX
1150

Arria
10 GX
1150

XCV
U9P

Arria
10 GX
1150

Arria
10 GX
1150

Arria
10 GX
1150

VX980 Arria
10 GX
1150

Arria
10 GX
1150

Arria
10 GX
1150

ALMs (Intel)
/ LUTs
(AMD)

468K 121K 199K 304K - 118K 286K 199K 480K 199K 335K 199K

Registers 649K 160K 530K 889K - 311K - 530K - 530K - 530K

Memories
(20Kb Intel) /
(36Kb AMD)

1465 1470 2713 2334 - 1782 2356 2713 1457 2713 2692 2713

DSPs 1436 664 1072 1473 2048 1072 1518 1072 3121 1072 1518 1072

Frequency
(MHz)

200 200 346 200 200 388 240 346 100 346 240 346

GOPS 1 434 220 1974 1519 287 2529 600 2258 600 2458 697 2534

mults
multiplier

2 0.151 0.166 0.460 0.129 0.070 0.590 0.099 0.527 0.096 0.573 0.115 0.591

mults
multiplier

clock cycle

3 0.756 0.829 1.330 0.645 0.351 1.521 0.412 1.521 0.961 1.655 0.479 1.707

1-3 See the corresponding definitions from Table 4.1.
4 Weights and layer inputs are quantized to 8 and 16 bits, respectively.
5 Weights are quantized to 8 bits and layer input/output is quantized to 8 or 16 bits at different stages.
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shown by the work from Lavin et al. [65]. However, as shown in Table 4.2, the FFIP archi-

tectures surpass the prior works in effective ability to reduce the multiplication complexity

of the neural network workloads, shown by comparing the operations/multiplier/clock cy-

cle metric defined in (4.18c). Furthermore, Winograd’s minimal filtering algorithms are

applicable only to convolutional layers, whereas FIP and FFIP are applicable to all deep

learning models and layer types that mainly decompose to matrix multiplication, such as

fully-connected, convolutional, recurrent, and attention/transformer layers. Finally, the

Winograd convolution technique [65] still results in matrix multiplication, which can there-

fore still achieve further compute efficiency improvements by also executing the resulting

matrix multiplication on a systolic-array architecture housing FFIP PEs.

Additionally, the Arria 10 DSPs [94] can each perform two multiplications between

one 18-bit and one 19-bit integer input. As demonstrated in the works by Liu et al. [95]

and Fan et al. [96], it is possible to pack the multiplier inputs such that each 18×19-

bit multiplier performs two multiplications of 6-bit inputs. The remaining two 2×8-bit

multiplications and two 2×6-bit multiplications required are then performed and summed

using extra ALMs. The works by Liu et al. [95] and Fan et al. [96] use this technique to

improve the DSP efficiency for 8-bit inputs. However, this technique requires a noticeable

extra cost in ALMs, it is specific to the particular DSP architecture currently being used in

Intel/Altera FPGAs [94], and it does not work for 16-bit inputs. We also note that the works

from Liu et al. [95] and Fan et al. [96] report the total resources available on the FPGA

in their comparison with prior work, however, we list their total instantiated resources that

are also reported in their work in our comparison since it is the more common practice and

is more favourable for them to use in the comparison here.

We also note that, while our system implementation required more FPGA memory
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resources than some of the other works, the FFIP architecture proposed in this chapter af-

fects only to the systolic array of an accelerator and does not consume any of the memory

resources itself. The memory subsystem design used in our example accelerator implemen-

tation that is consuming the majority of the FPGA memory resources was used to ensure

that off-chip memory bandwidth was not a bottleneck on the Arria 10 SoC Developement

Kit available to us in order to ensure we could properly evaluate the benefits of FFIP on

that platform. FFIP can be used in any accelerator system that uses traditional fixed-point

systolic arrays for the arithmetic without fundamentally altering the accelerator’s function-

ality or internal interfaces in any way, and its usage is orthogonal to the memory subsystem

being used in the accelerator.

To make comparisons as fair as possible, we aligned as many variables as possible to the

best of our ability in the comparisons in Tables 4.1 - 4.3 in regards to making comparisons

against implementations on the same FPGA, the same input/datapath bitwidths, and the

same deep learning models. However, since it is not feasible in implementation time to

evaluate any one solution for all deep learning models on all platforms, Tables 4.1 and 4.2

compare prior works on the same FPGA family and the same datapath/input bitwidths but

for varying deep learning models. However, since it was not possible to find any more

recent prior works evaluated on Arria 10 devices that also evaluate identical deep learning

models as we did, we also provide Table 4.3, which compares prior works sometimes

evaluated on different FPGAs than our validation platform, but for identical deep learning

models and identical or similar input/datapath bitwidths.

Despite the strategies used in some prior works for increasing the theoretical limits of

the performance metrics defined in Eqs. (4.18a) - (4.18c), the results from Tables 4.1 -

4.3, demonstrate that the proposed FFIP approach is the most effective at doing so and
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can provide performance improvements against the best-in-class prior works in almost all

evaluated performance metrics and every evaluated comparison criteria. When comparing

the lowest to highest performing models evaluated on FFIP for throughput per compute

area per clock cycle against the next-most competitive result from the prior works in each

table, FFIP is approximately 1.6-2× higher in Table 4.1, it is overall on-par in Table 4.2

(even when including the CPU-FPGA heterogeneous system in the comparison [99]), and

1.6-3.7× higher in Table 4.3. Furthermore, once we account for the higher clock frequency

achieved due to the inherent hardware-efficient nature of FFIP, it is further improved over

the next-most competitive works in each table, achieving approximately a 3.7-4.6× im-

provement in Table 4.1, a 1.4-1.8× improvement in Table 4.2, and a 2.8-6× improvement

in Table 4.3. Finally, our FFIP implementation allowed us to achieve the highest overall

throughput over the next-most competitive prior works in each table, achieving approxi-

mately a 1.4-1.8× improvement in Table 4.1, a 1.1-1.4× improvement in Table 4.2, and

a 1.7-4.6× improvement in Table 4.3, allowing us to increase the throughput limits of the

evaluation device well beyond its theoretical throughput limits.

4.4 Summary

We present an algorithm and general architecture that improve Winograd’s under-explored

inner-product algorithm [7] that can be seamlessly incorporated into any deep learning

accelerator system that uses traditional fixed-point systolic arrays to double the through-

put per MAC unit, significantly increasing the accelerator’s performance per compute area

across all deep learning models that will execute on the systolic array.

We implement and evaluate FIP for the first time in a deep learning accelerator system.

We then identify a weakness of FIP and propose the new FFIP algorithm and generalized
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hardware architecture that inherently address that weakness in the general case. We provide

deep learning-specific optimizations for the FIP and FFIP algorithms and systolic-array

hardware architectures. We derive how the (F)FIP architectures increase the theoretical

compute efficiency and performance limits in the general case.

Finally, although the theoretical concepts presented in this chapter are general and ap-

plicable to both custom integrated circuits and FPGA implementations, since our proposed

FFIP algorithm and architecture were validated on FPGA, we empirically confirm our the-

oretical insights through comparison with prior state-of-the-art solutions also evaluated

on FPGA. As anticipated from our theoretical analysis, our full-system validation results

shown in Fig. 4.4 and Tables 4.1 - 4.3 confirm that the generalized FFIP systolic-array

architecture we propose, when implemented, does in-fact surpass the traditional theoretical

compute efficiency and performance limits, and can improve performance compared to the

best-in-class prior state-of-the-art solutions in almost all evaluated performance metrics,

each evaluated comparison criteria, and all evaluated deep learning models. Most impor-

tantly, our results indicate that, when overlaid on top of the most efficient systolic-array

systems used in practice, FFIP can further increase compute efficiency in the general case

across a wide range of devices, system implementations, and deep learning models.
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Chapter 5

Karatsuba Matrix Multiplication

Algorithm and Hardware Architectures

In 1962, Karatsuba proposed one of the first scalar multiplication algorithms asymptotically

faster than the traditional approach [9], which can theoretically be used to reduce the com-

plexity of integer multiplication. However, the extra additions it introduces can increase its

execution speed in general-purpose computers or limit its area reduction in custom multi-

plier circuits for smaller integers of more commonly-used bitwidths [77], [78].

In this work, we show how the scalar Karatsuba multiplication algorithm can be ex-

tended to integer matrix multiplication, after which the impact and complexity of the ex-

tra additions is reduced. Furthermore, we investigate and present new fixed-precision and

precision-scalable hardware architectures for efficiently exploiting the Karatsuba algorithm

extended to matrix multiplication (referred to as Karatsuba matrix multiplication or KMM),

showing how the proposed algorithm and hardware architectures can provide real area or

execution time reductions for integer matrix multiplication compared to scalar Karatsuba

or conventional matrix multiplication.
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The proposed architectures can also be implemented using proven systolic array and

conventional multiplier architectures at their core, maintaining all the implementation ben-

efits of these architectures. Systolic arrays, which we will also refer to as matrix multiplica-

tion units (MXU)s for convenience, are an effective choice for use in GEMM accelerators as

they significantly reduce the required memory traffic and can reach high clock frequencies

due to their short and regular interconnects. Systolic-array architectures have been used in

state-of-the-art GEMM and deep learning accelerators such as the Tensor Processing Unit

(TPU) [3], [5], [6], among others [8], [16].

In summary, our key contributions in this chapter are the following:

• We propose the Karatsuba matrix multiplication (KMM) algorithm and carry out a

complexity analysis of the algorithm compared to conventional scalar Karatsuba and

matrix multiplication algorithms to facilitate further future investigations of potential

applications and hardware implementations of KMM. We also identify complexity

shortcomings of KMM that restrict its benefits in hardware and show how this is

mitigated when KMM is combined with an alternative accumulation algorithm.

• We present a new family of hardware architectures for efficiently exploiting KMM in

custom hardware. We then model the area or execution time benefits of the KMM ar-

chitectures and evaluate the proposed architectures both in isolation and in an end-to-

end accelerator system compared to baseline designs and prior state-of-the-art works

implemented on the same type of compute platform.

5.1 Notation

We use the following notation throughput this chapter:
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• ALG[w]
n : An algorithm that operates on w-bit scalars or matrices with w-bit elements,

where each scalar or matrix element is divided into n digits. For example, SM[8]
2 rep-

resents a scalar multiplication (SM) algorithm for operating on 8-bit 2-digit numbers

where each digit is 4 bits wide, such as the multiplication between the hexadecimal

values 0x12× 0x10 = 0x120.

– ALGn or ALG: The algorithm acronym may also be specified without the sub-

script n and/or superscript [w] when the number of digits and/or input bitwidths

are not directly relevant for the current context, and it may refer to the use of the

algorithm for any value of n or w for each missing subscript and/or superscript.

• OPERATION[w]: An arithmetic operation that works with w-bit values. For example,

MULT[w], ADD[w], ACCUM[w] represent a multiplication, addition, and accumula-

tion of w-bit values, respectively, and SHIFT[w] represents a left or right shift by w

bits.

• x[a:b]: The value contained in bits a down to b of a scalar x. For example, the value

of bits 7 down to 4 in the hexadecimal number 0xAE is equal to 0xA and is written

as 0xAE[7:4] = 0xA. Similarly, 0xAE[3:0] = 0xE.

• C(ALG[w]
n ): The complexity of algorithm ALG in number of w-bit multiplications,

additions, accumulations, and shift operations.

• C(ALGn): The complexity of algorithm ALG in number of arithmetic operations.

• r: The number of recursion levels implemented in KSM or KMM, equal to ⌈log2n⌉.

• d: The height and width of two matrices being multiplied.
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Figure 5.1: KMM2 algorithm illustration. Compared to the scalar algorithms KSM2 versus
SM2, the increase in number of additions with complexity O(d2) in KMM2 versus MM2

is now insignificant relative to the reduction of 3 instead of 4 single-digit matrix multipli-
cations of complexity O(d3), allowing the overall #operations in KMM2 to be less than
conventional MM2.

5.2 Karatsuba Matrix Multiplication (KMM)

In this section, we formally define KMM, analyze its complexity compared to conventional

scalar Karatsuba and matrix multiplication algorithms, identify complexity shortcomings

of the KMM algorithm that restrict its benefits in hardware, and show how this is mitigated

when combining KMM with an alternative accumulation algorithm.

5.2.1 KMM Definition

Fig. 5.1 shows the 2-digit Karatsuba scalar multiplication algorithm [9] from Fig. 2.5 ex-

tended to matrix multiplication analogously to how Fig. 2.6 extends conventional 2-digit
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Algorithm 5 n-Digit Karatsuba Matrix Multiplication.

1: function KMM[w]
n (A, B)

2: if (n > 1) then

3: A1 =

a
[w−1:⌈w/2⌉]
1,1 , ... a

[w−1:⌈w/2⌉]
1,K

... ... ...

a
[w−1:⌈w/2⌉]
M,1 , ... a

[w−1:⌈w/2⌉]
M,K


4: A0 =

a
[⌈w/2⌉−1:0]
1,1 , ... a

[⌈w/2⌉−1:0]
1,K

... ... ...

a
[⌈w/2⌉−1:0]
M,1 , ... a

[⌈w/2⌉−1:0]
M,K


5: B1 =

b
[w−1:⌈w/2⌉]
1,1 , ... b

[w−1:⌈w/2⌉]
1,N

... ... ...

b
[w−1:⌈w/2⌉]
K,1 , ... b

[w−1:⌈w/2⌉]
K,N


6: B0 =

b
[⌈w/2⌉−1:0]
1,1 , ... b

[⌈w/2⌉−1:0]
1,N

... ... ...

b
[⌈w/2⌉−1:0]
K,1 , ... b

[⌈w/2⌉−1:0]
K,N


7: As = A1 +A0

8: Bs = B1 +B0

9: C1 = KMM[⌊w/2⌋]
n/2 (A1,B1)

10: Cs = KMM[⌈w/2⌉+1]
n/2 (As,Bs)

11: C0 = KMM[⌈w/2⌉]
n/2 (A0,B0)

12: C = C1 ≪ w
13: C += (Cs −C1 −C0) ≪ ⌈w/2⌉
14: C += C0

15: else
16: C = MM[w]

1 (A,B)
17: end if
18: return C
19: end function
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scalar multiplication in Fig. 2.5 to matrix multiplication. Algorithm 5 shows the gener-

alization of this, where n-digit Karatsuba matrix multiplication is performed by carrying

out the same steps recursively for each smaller-bit matrix multiplication. In Algorithm 5,

the full matrix product is split into three separate partial-product matrix multiplications be-

tween matrices each containing bit slices of every element. The elements in matrices A0

and B0 contain the lower bits (bits ⌈w/2⌉−1 down to 0) of every element in the A and B

matrices, while A1 and B1 contain the upper bits (bits w−1 down to ⌈w/2⌉) of every ele-

ment in matrices A and B. The As and Bs matrices are formed by summing A1 +A0 and

B1 + B0, and therefore their elements have a bitwidth of ⌈w/2⌉ + 1. The partial-product

matrices are then summed analogously to how the partial scalar products are summed after

multiplication in KSM from Algorithm 2.

5.2.2 KMM Complexity Analysis

In this subsection, we derive the complexity of KMM and compare it to the complex-

ity of the conventional MM, and KSM algorithms. To do this, we decompose each al-

gorithms’ complexity to number of w-bit multiplications, additions, and shift operations.

This provides a general technology-agnostic foundation for evaluating different possible

KMM hardware implementations and modelling the costs and benefits of implementing

the algorithm in hardware across different possible implementation technologies where the

cost of each type of operation may vary depending on the implementation platform used.

For example, implementations on FPGA may result in multipliers mapping to DSP units,

additions and accumulations mapping to soft look-up-table (LUT) and register resources,

whereas ASIC implementations will result in different costs and trade-offs than this for

each type of operation.
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Additionally, while the main focus of this work is on leveraging KMM in custom hard-

ware designs, we also compare KMM’s complexity more simply in number of arithmetic

operations to allow modelling the time complexity of KMM execution on general-purpose

hardware containing fixed operator word sizes. This analysis (plotted in Fig. 5.2) indicates

that KMM requires significantly fewer operations to execute large-integer matrix multipli-

cation on general-purpose hardware than conventional KSM or MM algorithms. This is

relevant when the matrix element bitwidths are larger than the word size of the general-

purpose hardware operators, for example, inputs larger than 32 bits when executing on a

CPU containing arithmetic logic units (ALU)s that support 32-bit inputs.

MM Complexity

The complexity of conventional n-digit MM between two matrices of size d× d is derived

by counting the number of operations that are performed in Algorithm 3:

C(MM[w]
n ) = C(MM[⌊w/2⌋]

n/2 ) + 3 C(MM[⌈w/2⌉]
n/2 )

+ d2
(
ADD[w+wa] + 2 ADD[2w+wa]

)
+ d2

(
SHIFT[w] + SHIFT[⌈w/2⌉]

)
(5.1a)

C(MM[w]
1 ) = d3

(
MULT[w] + ACCUM[2w]

)
. (5.1b)

Typically, ACCUM[2w] = ADD[2w+wa], where wa is an additional bitwidth added to ac-

count for accumulation. However, in Section 5.2.3, we discuss a method for reducing the

complexity of the accumulations to be less than this.

The ADD[w+wa] terms in (5.1a) come from the additions forming the (C10+C01) term

on line 12 of Algorithm 3. Here, the bitwidth of the C10 and C01 elements is w + wa
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because they are accumulations of w-bit products of ⌊w/2⌋ and ⌈w/2⌉-bit values. The two

ADD[2w+wa] terms in (5.1a) come from the additions to C on lines 12 and 13 of Algorithm

3. The bitwidth of these additions is kept on 2w+wa bits since C results in accumulations

of 2w-bit products of w-bit values.

KSM Complexity

The complexity of KSM is derived by counting the operations performed in Algorithm 2:

C(KSM[w]
n ) = 2

(
ADD[2w] + ADD[⌈w/2⌉] + ADD[2⌈w/2⌉+4]

)
+ SHIFT[w] + SHIFT[⌈w/2⌉]

+ C(KSM[⌊w/2⌋]
n/2 ) + C(KSM[⌈w/2⌉+1]

n/2 )

+ C(KSM[⌈w/2⌉]
n/2 ) (5.2a)

C(KSM[w]
1 ) = MULT[w] . (5.2b)

The two ADD[⌈w/2⌉] terms in (5.2a) come from the ⌈w/2⌉-bit additions forming the

as and bs terms on lines 7 and 8 of Algorithm 2. The two ADD[2⌈w/2⌉+4] terms in (5.2a)

come from forming the (cs − c1 − c0) term on line 13 of Algorithm 2, where these terms

can be first summed together on 2⌈w/2⌉ + 4 bits before being shifted and added to the

other product terms. The bitwidth 2⌈w/2⌉ + 4 is required because cs is a (2⌈w/2⌉+2)-

bit product of (⌈w/2⌉+1)-bit values, and the additional two bits are to account for sign

extension and subtraction of the c1 and c0 terms. The two ADD[2w] terms in (5.2a) come

from the additions to c on lines 13 and 14 of Algorithm 2. These additions are on 2w-bit

values since c will ultimately result in the 2w-bit product of two w-bit values.

To compare KSM to KMM and the other matrix multiplication algorithms, we analyze
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the complexity of an algorithm we will refer to as KSMM which performs conventional

matrix multiplication as in (2.17), except KSM is used for the multiplications between all

elements rather than conventional scalar multiplication. KSMM then has the following

complexity:

C(KSMM[w]
n ) = d3

(
C(KSM[w]

n ) + ACCUM[2w]
)
. (5.3)

KMM Complexity

The complexity of KMM is derived by counting the operations performed in Algorithm 5:

C(KMM[w]
n ) = 2 d2

(
ADD[2⌈w/2⌉+4+wa] + ADD[2w+wa]

)
+ d2

(
2 ADD[⌈w/2⌉] + SHIFT[w] + SHIFT[⌈w/2⌉]

)
+ C(KMM[⌊w/2⌋]

n/2 ) + C(KMM[⌈w/2⌉+1]
n/2 )

+ C(KMM[⌈w/2⌉]
n/2 ) (5.4a)

C(KMM[w]
1 ) = C(MM[w]

1 ) . (5.4b)

The two ADD[⌈w/2⌉] terms in (5.4a) come from the ⌈w/2⌉-bit additions forming the As

and Bs terms on lines 7 and 8 of Algorithm 5. The two ADD[2⌈w/2⌉+4+wa] terms in (5.4a)

come from forming the (Cs−C1−C0) term on line 13 of Algorithm 5, where these terms

can be first summed together on 2⌈w/2⌉+4+wa bits before being shifted and added to the

other product terms. The bitwidth 2⌈w/2⌉+ 4+wa is required because the bitwidth of Cs

is 2⌈w/2⌉+2+wa since it is accumulations of (2⌈w/2⌉+2)-bit products of (⌈w/2⌉+1)-bit

values, and the additional two bits are to account for sign extension and subtraction of the

C1 and C0 terms. The two ADD[2w+wa] terms in (5.4a) come from the additions to C on
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lines 13 and 14 of Algorithm 5. The bitwidth of these additions is kept on 2w + wa bits

since C results in accumulations of 2w-bit products of w-bit values.

(5.4a) shows that KMM significantly reduces the complexity of the 8 addition and shift

operations in (5.2a) that are performed (n/2)log
2
3d3 times in KSMM by reducing their

occurrence by a factor of d. On the other hand, KMM trades d3 accumulations of 2w-bit

values in (5.1b) or (5.3) for nlog
2
3d3 smaller-width accumulations in (5.4b). However, in

Section 5.2.3 we show how the penalty of this in hardware is mitigated when combining

KMM with an alternative accumulation algorithm.

Arithmetic complexity

If only counting the number of operations without considering operation bitwidths or type,

we can simplify (5.1) to:

C(MMn) = 2 n2d3 + 5 (n/2)2d2 , (5.5)

(5.3) can be simplified to:

C(KSMMn) = (1 + 11 (n/2)log
2
3) d3 , (5.6)

and (5.4) can be simplified to:

C(KMMn) = (n/2)log
2
3(6 d3 + 8 d2) . (5.7)
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Figure 5.2: Plotting (5.5) and (5.6) relative to (5.7) for different n with d = 64. As can
be seen, KSMMn requires over 75% more operations than KMMn. Additionally, KMMn

and KSMMn require exponentially fewer operations than MMn with respect to n, however,
KMMn requires fewer operations than MMn even starting at n = 2, while KSMMn does
not fall below MMn until n > 4.

5.2.3 Mitigating the Accumulator Complexity Increase in KMM

As found in Section 5.2.2, KMM has one penalty of trading d3 accumulations of 2w-bit

values in (5.1b) or (5.3) for nlog
2
3d3 smaller-width accumulations in (5.4b). In this sub-

section, we show how this downside is mitigated when using Algorithm 6 as the MM1

algorithm in KMM on line 16 of Algorithm 5. Algorithm 6 performs MM1 using an alter-

native accumulation structure that reduces the accumulation hardware complexity.

In conventional matrix multiplication, each product of w-bit elements is added to a

running sum kept on 2w + wa bits, where wa = ⌈log2d⌉ and is an extra bitwidth added

to account for accumulation in order to accumulate d elements which adds extra hardware

complexity. This means that normally p accumulations of 2w-bit elements will require

being added to a (2w+wa)-bit running sum and each addition will be on 2w+wa bits and
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Algorithm 6 MM1 algorithm with reduced accumulator complexity used in the baseline
MM1 MXUs of all compared architectures. p is defined as the number of multiplication
products that are pre-accumulated on a smaller bitwidth to reduce the accumulation com-
plexity before being added to the full-bitwidth accumulation sum. We use p = 4 in our
evaluation.

1: function MM1(A, B, p)
2: for i = 0; i < M ; i ++ do
3: for j = 0; j < N ; j ++ do
4: Ci,j = 0
5: for k = 0; k < K; k += p do
6: x = 0
7: for q = 0; q < p; q ++ do
8: x += Ai,k+q ×Bk+q,j

9: end for
10: Ci,j += x
11: end for
12: end for
13: end for
14: return C
15: end function

therefore contain the following complexity:

p ACCUM[2w] = p ADD[2w+wa] . (5.8)

However, the average bitwidth of the addition operations is reduced when using Algorithm

6 for accumulation of p elements of bitwidth 2w because p elements are first added together

in isolation on a smaller running sum requiring a bitwidth of only 2w+wp bits for keeping

p elements, where wp = ⌈log2p⌉. Only after this initial pre-sum will this result then be

added to the full running sum that is kept on a larger 2w + wa bits for keeping d elements.

This reduces the average bitwidth for every p accumulations to the following:

p ACCUM[2w] = ADD[2w+wa] + (p− 1) ADD[2w+wp] . (5.9)
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Furthermore, in systolic-array architectures, each accumulation output is buffered in a ded-

icated register, which adds further hardware complexity to the accumulation operation.

However, the number of required accumulation registers when using Algorithm 6 is also

reduced by a factor of p as shown in the hardware implementation from Fig. 5.3 in Sections

5.3.1 since the accumulation result only needs to be buffered after being added to the full

running sum kept on 2w + wa bits.

5.3 KMM Hardware Architectures

In this section, we present a general family of hardware architectures for efficiently exploit-

ing the KMM algorithm in hardware and derive metrics for analyzing the area or execution

time benefits of the KMM architectures. The first type of KMM architecture, described in

Section 5.3.2, is a fixed-precision architecture optimized for executing inputs that are not

expected to vary in bitwidth. We then present a precision-scalable KMM architecture in

Section 5.3.3 that can more efficiently execute across multiple input precisions for applica-

tions where the input bitwidths are expected to vary.

5.3.1 Baseline MM1 Architecture

Fig. 5.4 shows the internal structure of each baseline MM1 MXU at the core of each

KMM architecture, and Fig. 5.3 shows the internal structure of the processing elements

(PE)s inside the MM1 MXUs. Fig. 5.3 also shows the structure for how Algorithm 6 from

Section 5.2.3 can be implemented in hardware and how the algorithm is able to reduce the

hardware cost of the accumulator logic. This accumulation structure allows for the number

of (2w+wa)-bit accumulation adders and their output registers to be reduced by a factor of
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ai,k

bk,j−1ai+1,k

ci,j
(partial sum)

PEk

load

2w

ww

+

PEk+p−1
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2w+wa

ai,k+p−1

bk+p−1,j−1ai+1,k+p−1

+

ci−1,j
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ai,k+1

bk+1,j−1ai+1,k+1

+

bk,j bk+p−1,jbk+1,j

×× ×

Figure 5.3: Showing the internal PE structure of the MM1 MXUs shown in Fig. 5.4 as well
as the structure for implementing Algorithm 6 in hardware to reduce the hardware cost of
the accumulator logic. p is a hardware parameter equal to the number of multiplication
products that are pre-accumulated on a smaller bitwidth to reduce the accumulation com-
plexity before being added to the full-bitwidth accumulation sum. We use p = 4 in our
evaluation.
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ci−X/p−3,jPE PE PE

PE PE PE

ci−X/p−Y −2,j+Y −1

PE PEPE

ci−X/p−4,j+1

bk,j ...bk+X−1,j+X/p−1 MM
[w]
1 MXU

ai,k...ai−X/p+1,k+X−1

Figure 5.4: Baseline MM1 MXU architecture present at the core of the KMM architectures,
provided for context. X and Y refer to the MXU width and height in number of multipliers.
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p, where they are instead traded for additions on lower-bitwidth values in the range of 2w

to 2w + ⌈log2p⌉ bits that do not require their output to be buffered in registers.

5.3.2 Fixed-Precision KMM Architecture

Fig. 5.5 shows the proposed fixed-precision KMM architecture for executing on inputs of

a fixed precision of w bits that are not expected to vary in bitwidth. Rather than having one

MXU with w-bit-input multiplier units, this architecture consists of three sub-MXUs that

compute matrix multiplication on either ⌊w/2⌋, ⌈w/2⌉+1, or ⌈w/2⌉-bit inputs.

The additions on lines 7 and 8 of Algorithm 5 are performed on X scalar adders at the

MXU inputs. Similarly, the additions on lines 13 and 14 of Algorithm 5 are performed on

Y scalar adders at the MXU outputs. Due to the nature of right/left shifting by a constant

offset in custom hardware, the shift operations at the output of the MXUs do not require any

area overhead. If desired, each of the three sub-MXUs can also be instantiated as another

KMM MXU containing three more sub-MXUs to implement additional levels of KMM

recursion. The final level of MXUs will be MM1 MXUs.

5.3.3 Precision-Scalable KMM Architecture

Fig. 5.7 shows the proposed precision-scalable KMM architecture for implementing one

level of KMM recursion. This architecture can more efficiently use m-bit-input multipliers

to execute across varying input precisions of bitwidth w for applications where the input

bitwidths are expected to vary. Unlike in prior works [28], [29], [30], [31], [32], [33], [34],

[35], [36], [37], [38], [39], [40], [41], the minimum possible execution time when fully

utilizing the compute resources scales less than quadratically with the input bitwidths. As

discussed further in Section 5.3.4, the input matrices are divided into tiles and fed into the
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Figure 5.5: Fixed-precision KMM architecture for executing on inputs of a fixed precision
of w bits.
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≪

C1i,:

+

Csi,:

−

≪

C0i,:

⌈w/2⌉

w

Ci,:

KMM Post-Adder Unit

Figure 5.6: KMM Post-Adder Unit from Fig. 5.5 for executing C1i,:
≪w

+
(
Csi,: −C1i,:

−C0i,:

)
≪⌈w/2⌉ +C0i,:

.

MXU one-by-one to perform GEMM. In this architecture, each set of input matrix tiles may

be read multiple times and either the MM1, MM2, or KMM2 algorithm may be executed

depending on the input bitwidths w and the multiplier bitwidth m. An iteration state signal

t is reset when a new set of input tiles is read and is incremented each time the same set of

input tiles is re-read.

MM1 and MM2 Mode

If w ≤ m, the architecture will execute the MM1 algorithm, bypassing any MXU in-

put/output addition or shifting steps, A0 and B0 will be fed into the MXU as inputs, and

each set of input tiles is read only once.

If 2m− 2 < w ≤ 2m, the architecture will execute the MM2 algorithm and each set of

input matrix tiles will be read a total of four times before proceeding to the next set of input

tiles. The MM2 algorithm is used instead of KMM2 for this input bitwidth range because

the bitwidth of the elements in the As and Bs matrices in Algorithm 5 would be m + 1

which would be too large by 1 bit to fit onto the m-bit multipliers in the MXU. In each read

for this input bitwidth range, the MXU will accept either the A1 and B1 inputs or the A0
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Figure 5.7: Precision-scalable KMM architecture for more efficiently using m-bit-input
multipliers to execute across varying input precisions of bitwidth w for applications where
the input bitwidths are expected to vary.
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and B0 inputs depending on the tile read iteration t. A1 and B1 will contain bits 2m − 1

down to m of the A and B matrix elements. A0 and B0 will contain bits m− 1 down to 0

of the A and B matrix elements.

The MXU output vectors Cxi,:
in Fig. 5.7 will be equal to either (C1i,:

≪ 2m),

(C10i,:
≪ m), (C01i,:

≪ m), or C0i,:
depending on the tile read iteration t to incre-

mentally execute lines 11-13 of Algorithm 3 throughout the tile read iterations, where m

is considered equivalent to the value of ⌈w/2⌉ in Algorithm 3. Specifically, depending on

the tile read iteration t, the MXU output vectors will be equal to (C1i,:
≪ 2m) to form the

addition on line 11 of Algorithm 3, C0i,:
to form the addition on line 13, and separately

(C10i,:
≪ m) or (C01i,:

≪ m) to collectively form the addition on line 12.

Each partial matrix tile product will need to be accumulated with prior ones outside of

the MXU, however, this is the same functionality already present in GEMM where multiple

matrix tile products must be summed to form a final matrix product, and this functionality

will therefore already be present in GEMM accelerators outside of the MXU such as in the

GEMM and deep learning accelerator system from discussed in Chapter 3.

KMM2 Mode

If m < w ≤ 2m − 2, the architecture will execute the KMM2 algorithm and each set of

input matrix tiles will be read a total of three times before proceeding to the next set of

input tiles. For each read, the MXU will accept or form either the A1 and B1 inputs, the

As and Bs inputs, or the A0 and B0 inputs depending on the tile read iteration t. A1 and

B1 will contain bits 2(m− 1)− 1 down to m− 1 of the A and B matrix elements. A0 and

B0 will contain bits m − 2 down to 0 of the A and B matrix elements. The MXU output

vectors Cxi,:
in Fig. 5.7 will be equal to either

[
(C1i,:

≪ 2(m− 1))− (C1i,:
≪ (m− 1))

]
,
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[
Csi,: ≪ (m− 1)

]
, or

[
C0i,:

− (C0i,:
≪ (m− 1))

]
depending on the tile read iteration t to

incrementally execute lines 12-14 of Algorithm 5 throughout the tile read iterations, where

m− 1 is considered equivalent to the value of ⌈w/2⌉ in Algorithm 5.

Each partial matrix tile product will need to be accumulated with prior ones outside

of the MXU, however, this functionality will already be present in GEMM accelerators as

explained above in Section 5.3.3.

A precision-scalable MM2 architecture can also be implemented that has a similar struc-

ture as the precision-scalable KMM architecture, except that it will only either execute the

MM1 algorithm if w ≤ m or the MM2 algorithm if m < w ≤ 2m. We also note that a

precision-scalable KSMM architecture exploiting KSM2 would not be as efficient to imple-

ment in hardware compared to a precision-scalable KMM architecture. This is because, in

addition to the extra adders that would be required at the output/inputs of every multiplier

as discussed in Section 5.2.2, multiplexers would also have to be placed at the output/inputs

of every multiplier in the MXU as well for output/input arbitration depending on the width

of the inputs. In contrast, the KMM architecture reduces this extra adder complexity as

already discussed, and it can employ an efficient more conventional systolic array at the

core not requiring multiplexers surrounding each multiplier.

5.3.4 System Integration

To house and evaluate the KMM MXU architectures, we integrate the them into a deep

learning accelerator system design based on the one described in Chapter 3. We were

able to swap the KMM and baseline precision-scalable MM MXU architectures into the

accelerator system in place of the baseline MXU. This change was mostly seamless but

also required updates to the memory system such that each set of input matrix tiles can
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optionally be re-read up to three or four times before proceeding to the next set of input

tiles. The number of times that the matrix tiles are re-read and the purpose for this is

explained in Section 5.3.3.

The presented KMM architectures are illustrated for unsigned integer inputs, however,

if the inputs are signed, a 1-dimensional adder vector can be used to add a constant offset

to the inputs of an MXU to convert them to unsigned. The zero-point adjuster method from

Chapter 4 can then be used to efficiently eliminate the effects of this constant offset in the

matrix products before exiting the MXU.

5.3.5 Multiplier Compute Efficiency

In this subsection, we extend the the multiplier compute efficiency performance-per-area

metric that was defined in (4.18c) so that it is better suited for comparing the KMM archi-

tecture against baseline models and prior works. The extended metric is used to compare

the amount of computational work that can be performed per compute area per clock cycle

regardless of the input bitwidths. The importance of this property is expanded upon more

later in this subsection, as well as in Section 5.4.1.

The throughput metric in (4.18c) measures the number of w-bit multiplications being

performed, where w is the algorithm input bitwidths. However, in order to execute KMM

in hardware, the algorithm input bitwidths w must be larger than the multiplier bitwidths,

and the number of larger w-bit multiplications that can be performed per multiplier will be

lower than the actual effective number of multiplications being performed per multiplier.

Therefore, the maximum achievable value for the metric from (4.18c) will vary depending

on the input bitwidths w and is not ideal for reflecting the true amount of computational

work being performed per multiplier regardless of the input widths.
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To address this, we can instead measure (4.18c) directly in terms of effective m-bit

multiplications being performed per multiplier, where m may be smaller than the algorithm

input bitwidths w. This derives the following metric for measuring the true amount of

effective multiplications being performed per multiplier regardless of the algorithm input

bitwidths w:

m-bit mults/multiplier
clock cycle

=
(m-bit mults/s)/#multipliers

f
, (5.10)

where m-bit mults/s above is measured by taking the number of m-bit multiplications re-

quired to carry out an execution on w-bit inputs using conventional algebra and dividing

it by the measured execution time, #multipliers is the number of instantiated multipliers

in the design, and f is the clock frequency that the hardware design is operating at. Con-

ventional algorithms used in prior work to perform larger w-bit multiplications on smaller

m-bit multipliers are the SM or MM algorithms (Algorithm 1 and 3). The number of m-bit

multiplications required to carry out a larger w-bit multiplication using conventional alge-

bra (i.e. SM or MM) is equal to the number of w-bit multiplication in the execution times

4r, where r is equal to:

r = ⌈log2n⌉ = ⌈log2⌈w/m⌉⌉ . (5.11)

The limit (also referred to as the roof) of the metric in (5.10) when executing the con-

ventional MM algorithm in hardware is then the following since it has no algebraic opti-

mizations for reducing the computational complexity:

MM[w]
n

m-bit mults/multiplier
clock cycle

roof = 1 . (5.12)
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In contrast, the KMM algorithm requires only 3r smaller-bitwidth multiplications to form

every w-bit product rather than 4r as in MM. Therefore, the multiplier compute efficiency

can reach the following limit in KMM architectures:

KMM[w]
n

m-bit mults/multiplier
clock cycle

roof =
(
4

3

)r

. (5.13)

5.3.6 Area Unit (AU) Compute Efficiency

In this subsection, we define a performance-per-area metric in (5.21) that accounts for the

area overhead of registers, adder units, and multipliers all in a single unit of comparison

based around the area of a full adder. Using this abstracted method for modelling the

circuit area allows for a general complexity analysis that is less biased towards one specific

implementation platform or technology.

We first derive the relative area of adders and registers by modeling that the area of a w-

bit adder will be approximately equal to the area of w full adders. We then approximate the

area of a w-bit flip-flop/register relative to a w-bit adder according to approximate transistor

counts of full adders versus D-flip-flops based on several sources. While there are different

specific implementations for these components, we use the approximate transistor count

trends for the implementations in prior work [105], [106], [107], where a standard CMOS

full adder uses 28 transistors [105] and a 1-bit flip-flop consumes 18-21 transistors [106],

[107] (which we then approximate as 19.5), to arrive at the general area estimation shown

in (5.14a) and (5.14b) of 1 flip-flop equalling the area of approximately 19.5/28 = 0.7 full

adders. So long as these area ratios vary within reasonable bounds as found in prior work

[105], [106], [107], the conclusions from our results do not change.

We then model the approximate area of a w-bit multiplier circuit based on the area
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of a w-bit adder. While there are different possible multiplier circuit implementations,

the area of multiplier circuits used in practice commonly scale quadratically with the area

of a full adder [71], [25], [72], [108]. Furthermore, the KMM architectures are not tied

to being implemented using one specific multiplier circuit type. Therefore, in order to

provide a more general analysis and insight catering to a broader range of possible KMM

implementations, we approximate the area of a multiplier based on the general trend of

equalling the square of the input bitwidths times the area of a full adder as shown in (5.14c).

We then arrive at the following general area approximations:

Area(ADD[w]) = w AU (5.14a)

Area(FF[w]) = 0.7 w AU (5.14b)

Area(MULT[w]) = w2 AU . (5.14c)

Based on this, we can then derive the AU of each architecture by substituting in the

areas from (5.14) for each of the corresponding hardware components in the architectures.

The area of a baseline MM1 MXU is then as follows:

Area(MM[w]
1 ) = XY Area(MULT[w] + 3 FF[w]

+ ACCUM[2w]) . (5.15)

Here, the area of an accumulator is based on Algorithm 6 and its implementation in Fig.

5.3, where the number of accumulator registers and (2w+wa)-bit accumulation adders in

the MXU are reduced by a factor of p. Based on this, by substituting in the areas in (5.14)

for the adders and registers forming the accumulators in Fig. 5.3, every p accumulators on
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average then contain the following area:

p Area(ACCUM[2w]) = (p− 1) Area(ADD[2w+wp])

+ Area(ADD[2w+wa] + FF[2w+wa]) . (5.16)

In (5.15) - (5.16), X and Y are the MXU width and height in number of multipliers, wp =

⌈log2p⌉, and wa is the following additional bitwidth added to account for accumulation:

wa = ⌈log2X⌉ . (5.17)

As discussed in Section 5.3.4, the register requirements in (5.15) are derived from the fact

that each PE in the MM1 MXU will contain registers for buffering the a and b inputs being

multiplied, as well as one additional b buffer for loading the next b tile into the MXU as the

current tile is being multiplied.

The area of the KSMM architecture, which is a baseline MM1 MXU using KSM mul-

tipliers rather then conventional multipliers, is then:

Area(KSMM[w]
n ) = XY Area(KSM[w]

n + 3 FF[w]

+ACCUM[2w]) , (5.18)
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where:

Area(KSM[w]
n ) = Area(ADD[2w])

+2 Area(ADD[2⌈w/2⌉+4] + ADD[⌈w/2⌉])

+Area(KSM[⌊w/2⌋]
n/2 + KSM[⌈w/2⌉+1]

n/2 )

+Area(KSM[⌈w/2⌉]
n/2 ) (5.19a)

Area(KSM[w]
1 ) = Area(MULT[w]) . (5.19b)

The addition of c0 on line 14 of Algorithm 2 is not included in this area estimate because

it can be performed before line 13 where c0 will be on w bits and will not overlap with

c1 ≪ w. Therefore, this addition can be performed at no cost in hardware by simply

concatenating the two terms together.

The area of the KMM architecture is then:

Area(KMM[w]
n ) = 2XArea(ADD[⌈w/2⌉])

+2Y Area(ADD[2⌈w/2⌉+4+wa] + ADD[2w+wa])

+Area(KMM[⌊w/2⌋]
n/2 + KMM[⌈w/2⌉+1]

n/2 )

+Area(KMM[⌈w/2⌉]
n/2 ) (5.20a)

Area(KMM[w]
1 ) = Area(MM[w]

1 ) . (5.20b)

Due to the nature of right/left shifting by a constant offset in custom hardware, the shift

operations in the KSMM and KMM algorithms do not add additional area in the corre-

sponding architectures.

We can now compare the AU compute efficiency limits of the MM1, KSMM, and KMM
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architectures using:

throughput/Area Unit
clock cycle

roof =
throughput roof/Area(ARCH)

f
, (5.21)

where ARCH represents one of the mentioned architectures. Throughput roofs are equal for

fixed-precision MM1, KSMM, and KMM architectures with equal X/Y MXU dimensions.

Therefore, the value of (5.21) for each architecture relative to the MM1 architecture can be

found through the inverse of its AU from (5.15), (5.18), or (5.20) relative to the inverse of

the MM1 AU in (5.15) as plotted later in Fig. 5.9.

5.4 Results

5.4.1 Evaluation Metrics

In Section 5.4, we compare the KMM architectures against other designs using the multi-

plier and Area Unit compute efficiency metrics defined in (5.10) and (5.21) from Sections

5.3.5 and 5.3.6, respectively. These are both used to compare an architecture’s throughput

per area capabilities regardless of the clock frequency.

Additionally, the multiplier compute efficiency also measures the amount of computa-

tional work being performed per compute area regardless of the clock frequency or input

bitwidths. This is an important quality because prior works using the same compute plat-

form as us for evaluation only evaluate throughput for input bitwidths w that are equal to

the multiplier bitwidths m. However, in order to execute KMM in hardware, the input

bitwidths w must be larger than the multiplier bitwidths. Therefore, to fairly compare the
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performance of the prior works against our KMM architecture, we need to use a perfor-

mance metric with a maximum achievable value that does not change regardless of the

input bitwidths w being executed, which is not the case for the GOPS metric. Furthermore,

the multiplier compute efficiency is also useful for comparison with prior works because

it is measurable using only throughput, number of multipliers, and frequency, which are

commonly provided or derivable in prior works.

The Area Unit compute efficiency metric also accounts for the area overhead of reg-

isters and adder units and provides a more general abstracted method for modelling the

circuit area that is less biased towards one specific implementation platform or technology.

However, it is only useful for comparing architectures which compute on inputs of the same

bitwidth, and it is only derivable when knowing not only the number of multipliers used

in an architecture, but also the number of adders and registers which is information that is

not readily available from prior works, but we can use it to model the efficiencies of the

fixed-precision KMM architecture against our baseline designs which we know all of these

details about.

5.4.2 Comparison to Prior Work

Although the theoretical concepts presented in this work are general and applicable to both

custom integrated circuits and FPGA implementations, our example KMM implementa-

tions were validated on FPGA, and we therefore compare against state-of-the-art prior

works that are also evaluated on FPGA.

As discussed in Chapter 5.3.4, we use the deep learning accelerator system design de-

scribed in Chapter 3 to house and evaluate our example KMM and baseline MXU archi-

tectures. Full system-level validation of the experimental accelerator as integrated into the
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Table 5.1: Proposed precision-scalable KMM and baseline MM systolic-array architectures
integrated into a deep learning accelerator system compared with each other and prior state-
of-the-art deep learning accelerators on Arria 10 GX 1150 FPGA.

TNNLS ’22 [95] TCAD ’22 [96] Entropy ’22 [97] MM[w,8]
2 64×64 KMM[w,8]

2 64×64

DSPs 1473 1473 1503 1518 1518

ALMs 304K 304K 303K 149K 153K

Registers 889K 890K - 391K 390K

Memories 2334 2334 1953 2446 2446

Frequency
(MHz)

200 220 172 334 335

Model ResNet-
50

VGG16 Bayes
ResNet-

18

Bayes
VGG11

R-
CNN

(ResNet-
50)

R-
CNN

(VGG16)

ResNet-
50

ResNet-
101

ResNet-
152

ResNet-
50

ResNet-
101

ResNet-
152

Input
bitwidth

(w)

8 8 8 8 8 8 1-8 /
9-16

1-8 /
9-16

1-8 /
9-16

1-8 /
9-14 /
15-16

1-8 /
9-14 /
15-16

1-8 /
9-14 /
15-16

Throughput
(GOPS)

1519 1295 1590 534 719 865 2200 /
550

2405 /
601

2495 /
624

2200 /
735 /
552

2412 /
804 /
603

2502 /
834 /
626

8-bit mults 1

multiplier
clock cycle

0.645 0.550 0.639 0.206 0.696 0.837 0.792 /
0.792

0.865 /
0.865

0.898 /
0.898

0.792 /
1.055 /
0.792

0.865 /
1.154 /
0.865

0.898 /
1.197 /
0.898

1 Multiplier compute efficiency, used to compare the amount of computational work being performed per compute area regardless of the input
bitwidths or clock frequency, defined in (5.10) from Section 5.3.5, relevance explained in Section 5.3.5 and 5.4.1.

system from Chapter 3 has been done on an Arria 10 SoC Developement Kit [92] contain-

ing the Arria 10 SX 660 device by measuring throughput in real-time. However, this device

contains fewer soft logic resources than the Arria 10 GX 1150 used in the prior works we

compare against, and we generate compilation results for our design on the same Arria 10

GX 1150 device used in prior works for a more fair and consistent comparison. Throughput

values of our designs on the Arria 10 GX 1150 device are then calculated using an accurate

throughput estimation model based on our highly deterministic and time-predictable sys-

tem implementation, which accurately predicts actual throughputs measured on the Arria

10 SX 660 device available to us. Tables 5.1-5.3 show throughputs for ResNet [17] neural

network models.
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Table 5.2: Comparison of an FFIP [8] systolic-array architecture, which doubles perfor-
mance per MAC unit, with combined FFIP+KMM systolic-array architectures when inte-
grated into deep learning accelerator systems on Arria 10 GX 1150 FPGA.

TC ’24 [8] (FFIP 64×64) FFIP+KMM[w,8]
2 64×64

DSPs 1072 1072

ALMs 118K 133K

Registers 311K 334K

Memories 1782 2445

Frequency
(MHz)

388 353

Model ResNet-
50

ResNet-
101

ResNet-
152

ResNet-
50

ResNet-
101

ResNet-
152

Input
bitwidth (w)

8 8 8 1-8 /
9-14 /
15-16

1-8 /
9-14 /
15-16

1-8 /
9-14 /
15-16

Throughput
(GOPS)

2529 2752 2838 2325 /
775 /
581

2542 /
847 /
635

2637 /
879 /
659

8-bit mults 1

multiplier
clock cycle

1.521 1.655 1.707 1.536 /
2.048 /
1.536

1.679 /
2.239 /
1.679

1.742 /
2.322 /
1.742

1 Multiplier compute efficiency, used to compare the amount of computational work
being performed per compute area regardless of the input bitwidths or clock fre-
quency, defined in (5.10) from Section 5.3.5, relevance explained in Section 5.3.5
and 5.4.1.
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In Table 5.1, the number of multipliers in the work from An et al. [97] is calculated

as #DSPs × 2, where each DSP in the Intel/Altera FPGAs instantiates two 18×19-bit

multipliers [94]. This is also how the number of multipliers is calculated in the architectures

in Table 5.2. The works from Liu et al. [95] and Fan et al. [96] in Table 5.1 pack two 8-

bit multiplications onto each 18×19-bit multiplier in the DSPs and additional ALMs, and

therefore #multipliers = #DSP × 4 in those works. Our architectures in Tables 5.1

and 5.1 contain 64×64 + 64 multipliers, where 3036 are instantiated on DSPs, and the

remainder are instantiated using soft logic resources due to the DSP resources being fully

utilized. 64×64 multipliers are used in the MXU of our designs from Tables 5.1 and 5.1,

while the remaining 64 multipliers in the each design are located outside the MXU in the

Post-GEMM Unit discussed in Section 3.4 for performing inter-layer quantization rescaling

functions.

Table 5.1 compares the KMM architecture with state-of-the-art accelerators evaluated

on the same FPGA family for the same instantiated multiplier bitwidths and similar neural

network models. The proposed KMM architecture is very efficient, achieving the highest

throughput and compute efficiency compared to the prior works in Table 5.1. The KMM

design here achieves compute efficiencies approaching the KMM2 limit of 1.33 when exe-

cuting on bitwidths in the range of 9-14 bits that is derived in (5.13) and surpasses the limit

of 1 in prior works that is derived in (5.12).

It is also noted that the proposed systolic arrays in Tables 5.1 and 5.2 that are integrated

into a full accelerator system include a number of other components such as memory sub-

systems and control as described in Chapter 3, and these other system components form

the frequency-limiting critical path as opposed to the proposed systolic-array architectures.
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Table 5.2 shows an example of how KMM can be combined with other algebraic tech-

niques to further increase compute efficiency limits. FFIP [8] (Chapter 4) provides a way to

reduce the number of required multiplications by a factor of 2, by trading half the multipli-

cations for cheap low-bitwidth additions. Because the number of required multiplications

is reduced by 2, the limit for the multiplier compute efficiency metric in (5.13) becomes 2

for FFIP, and (8/3)r for FFIP+KMM. In Table 5.2, we combine KMM with FFIP [8] by

using an FFIP MXU as the base MXU in the KMM architecture instead of a conventional

MM1 MXU to further increase the compute efficiency compared to standalone FFIP. The

FFIP+KMM architectures in Table 5.2 have additional memory resources instantiated com-

pared to the FFIP-only design in order to support inference on up to 16-bit inputs, and this

also adds a penalty in the soft logic resources and clock frequency. However, the multiplier

compute efficiency of the FFIP+KMM designs surpass the FFIP limit of 2, and approach

the FFIP+KMM2 limit of 2.67.

5.4.3 Comparison to Baseline Designs

Precision-Scalable Architectures

Table 5.1 includes the resource usage and performance comparison between the proposed

KMM and the baseline MM architectures. The multiplier compute efficiency of KMM

surpasses that of the baseline MM architecture when executing on bitwidths in the range

of 9-14 bits, achieving compute efficiencies approaching the KMM2 limit of 1.33 that is

derived in (5.13) and surpassing the limit of 1 of the baseline MM architecture and prior

works that is derived in (5.12), validating KMM’s ability to increase compute efficiency as

expected from our analysis. This is also reflected in the GOPS from Table 5.1, where the

KMM architecture achieves a 1.33× speedup over MM for input bitwidths in the range of
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Table 5.3: Comparison of proposed fixed-precision KMM and baseline MM1 and KSMM
systolic-array architectures in isolation (without integration into a deep learning accelerator
system) on Arria 10 GX 1150 FPGA. All designs in this table contain 0 memory resources.

MM[32]
1

24×24
MM[32]

1
24×24

KSMM[32]
2

24×24
KSMM[32]

2
24×24

KMM[32]
2

24×24
MM[64]

1
12×12

MM[64]
1

12×12
KSMM[64]

4
12×12

KSMM[64]
4

12×12
KMM[64]

4
12×12

Input bitwidth 32 32 32 32 32 64 64 64 64 64

DSPs 1152 1152 864 864 864 1224 1224 648 648 648

ALMs 30K 46K 60K 88K 31K 33K 31K 66K 84K 30K

Registers 104K 182K 185K 310K 121K 40K 119K 68K 309K 121K

Frequency (MHz) 232 374 279 373 395 120 311 102 354 402

Throughput roof
(GOPS)

267 431 321 430 455 35 90 29 102 116

9-14 bits.

For illustration, Fig. 5.8 plots the limits of the multiplier compute efficiency metric de-

fined in (5.10) from Section 5.3.5 for the precision-scalable KMM2 architecture compared

to the conventional precision-scalable MM2 architecture for X = Y = 64. As shown,

the KMM architecture surpasses the MM architecture’s limit of 1 for this metric, extend-

ing the limit to 1.33 for bitwidths 9-14 since the KMM2 algorithm requires only 3 m-bit

multiplications for every w-bit product rather than 4 as in the MM2 algorithm.

Fixed-Precision Architectures

Table 5.3 shows synthesis results for baseline MM1, KSMM, and proposed KMM systolic-

array architectures in isolation (not integrated into a deep learning accelerator) for different

input bitwidths and levels of KSM and KMM recursion. The input bitwidths are intention-

ally larger than the DSP units’ native multiplier bitwidths and are chosen to allow for larger

multiplications to be broken down into smaller multiplications of bitwidths at or just below

the native widths supported by the DSPs, which house 18-bit multipliers. It is expected

that the larger-bit multiplications in the MM1 designs will be mapped to smaller 16-bit
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Figure 5.8: Maximum achievable multiplier compute efficiencies (derived in Section 5.3.5)
for the precision-scalable MM2 and KMM2 architectures.

multipliers, and onto fewer 16 to 18-bit multipliers in the KMM and KSMM designs.

The reduction in multiplication complexity of KMM and KSMM achieved through

breaking down larger multiplications into smaller-bitwidth multiplications can be seen rel-

ative to conventional approaches (evaluated through the MM1 architectures) by comparing

the reduction in number of DSP units for the KMM and KSMM designs relative to MM1.

Furthermore, the reduction in addition complexity of KMM relative to KSMM can be seen

in the reduction in ALMs in the KMM architectures compared to the KSMM architectures.

The MM1 and KSMM architectures innately have a lower clock frequency than KMM

because it is expected that each multiplication being performed in the PEs require n2 or

nlog
2
3 DSP units, respectively, whereas the KMM designs require only 1 DSP unit in each

individual KMM systolic-array PE. This leads to a less localized design. In contrast, the

KMM design uses multiple independent systolic arrays requiring 1 DSP unit per multipli-

cation to perform a single 16 to 18-bit multiplication, and the DSPs in each systolic array

do not require interconnections with the DSPs in other systolic arrays, leading to a more
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Figure 5.9: Maximum achievable AU compute efficiencies (derived in Section 5.3.6) for
the fixed-precision MM1, KSMMn, and KMMn architectures.

localized design. Due to this, we provide results of two design variants for each of the

MM1 and KSMM architectures, where one variant contains additional pipelining registers

added into the PE datapaths such that the clock frequency can reach closer to that of the

KMM designs. However, it can be seen that the MM1 and KSMM designs are still unable

to match the frequency of KMM even with extra pipelining registers, especially for the

64-bit input designs.

In summary, the trend in Table 5.3 is that the KMM designs may contain more regis-

ter resources than the MM1 and KSMM designs depending on the amount of pipelining

registers used, however, the KMM designs use significantly fewer ALM resource than the

KSMM designs, significantly fewer DSP units than the MM1 designs, and achieve signifi-

cantly higher clock frequencies than both KSMM and MM1.

Fig. 5.9 also provides a more general modelling of the performance-per-area of the
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KMM architectures that is less biased towards one specific implementation platform or

technology by plotting the AU compute efficiency limits derived in Section 5.3.6 that can

be achieved for the fixed-precision MM1, KSMM, and KMM architectures for different

supported fixed-precision input widths and instantiated multiplier bitwidths for X = Y =

64. The KMM and KSMM architectures for each bitwidth implement as many levels of

Karatsuba recursion as possible while still reducing the area, with a minimum of least one

level of Karatsuba recursion being implemented (even if the one level has a larger area

than using conventional MM1). This results in one recursion level being implemented in

the KSMM architectures for every bitwidth. For the KMM architectures, this results in

one recursion level for bitwidths 8-32, two recursion levels for bitwidths 40-56, and three

recursion levels for bitwidth 64.

As can be seen, the KMM architecture achieves a higher throughput per Area Unit than

the conventional MM1 architecture starting sooner at a lower bitwidth compared to the

KSMM architecture, and it is consistently higher than the KSMM architecture across all

input/multiplier bitwidths.

5.5 Summary

In this chapter, we propose the extension of the scalar Karatsuba multiplication algorithm to

matrix multiplication, showing how this maintains the reduction in multiplication complex-

ity of the original Karatsuba algorithm while reducing the complexity of the extra additions.

Furthermore, we propose new matrix multiplication hardware architectures for efficiently

exploiting the proposed algorithm in custom hardware, showing that they can provide real

area or execution time improvements for integer matrix multiplication compared to designs
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implementing scalar Karatsuba or conventional matrix multiplication algorithms. The pro-

posed architectures are well suited for increasing the efficiency in acceleration of modern

workloads that can decompose to large matrix multiplications on integer arithmetic, such

as the computationally dominant portion of convolutional neural networks or the attention

mechanism of transformer models [13]. We provide a complexity analysis of the algorithm

and architectures and evaluate the proposed designs both in isolation and in an end-to-end

deep learning accelerator system described in Chapter 3 compared to baseline designs and

prior state-of-the-art works, showing how they increase the performance-per-area of matrix

multiplication hardware.
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Chapter 6

Strassen Multi-Systolic-Array Hardware

Architectures

In 1969, Strassen proposed a matrix multiplication algorithm [79] that we refer to as SMM

showing that the n3 complexity of the traditional approach is not optimal and the algorithm

can theoretically be used to reduce the complexity of naive matrix multiplication. How-

ever, as discussed in Section 2.3.3, its execution on general-purpose central processing

units (CPU)s and graphics processing units (GPU)s has been shown to be not suitable for

achieving the algorithm’s promised theoretical speedups, and execution time even worsens

unless the matrix widths/heights are in the range of at least 1024 elements or larger, lim-

iting its applicability for modern workloads which do not decompose to such large matrix

multiplications. This is because the irregularities introduced in Strassen’s algorithm such

as the extra data accesses required for reading/computing/storing additional intermediate

matrices before/after the matrix multiplication steps all add to the overall execution time

beyond what is expected from a theoretical analysis based on the number of arithmetic

operations performed alone.
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This leaves the question of if the promised theoretical complexity reductions could be

more closely achieved in custom hardware architectures designed specifically for executing

Strassen’s algorithm. However, as discussed in Section 2.3.3, there is limited prior work on

this and it is not immediately clear how to derive such architectures or if they can ultimately

lead to real improvements. In this chapter, we bridge this gap to present and evaluate new

systolic-array hardware architectures for efficiently exploiting Strassen’s algorithm. The

proposed architectures achieve a more efficient implementation of Strassen’s algorithm

compared to what is possible through execution on CPUs and GPUs by pipelining and per-

forming the extra data movement and addition steps at all levels of recursion in parallel

with the matrix multiplications. The Strassen architectures are functionally equivalent to

conventional multi-systolic-array designs while allowing the theoretical complexity reduc-

tions of Strassen’s algorithm to be translated directly into hardware resource savings, even

for multiplication of small matrices. Furthermore, the architectures are multi-systolic-array

designs, which is a type of design that can multiply smaller matrices with higher utilization

than a single-systolic-array design.

Compared to a conventional multi-systolic-array design, the proposed architecture im-

plemented on FPGA uses approximately 10% fewer soft logic resources and 1.3× fewer

DSP units when instantiated for multiplying matrix sizes down to 24×24 at 2 levels of

Strassen recursion. We compare the proposed systolic array architectures in isolation as

well as in a larger end-to-end deep learning accelerator system implementation described

in Chapter 3 compared to baseline designs and prior works implemented on the same type

of compute platform, demonstrating their ability to increase compute efficiency and achieve

state-of-the-art performance.
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6.1 Strassen Architecture

The proposed Strassen architectures achieve a more efficient implementation of Strassen’s

algorithm than what is possible through execution on CPUs and GPUs by pipelining and

performing the extra additions and data movement steps at all levels of recursion in parallel

with the matrix multiplications. The architectures are functionally equivalent to conven-

tional multi-systolic-array designs while allowing the theoretical complexity reductions of

Strassen’s algorithm to be translated directly into hardware resource savings.

6.1.1 Memory Layout and Access Algorithm

In order to perform the extra Strassen data movement and addition steps at all levels of

recursion in parallel with the matrix multiplications, the architecture reads one row/column

at a time of the A and B input matrix sub-blocks from the lowest level of recursion in

(2.24) simultaneously to generate and provide all T and S sub-blocks one row/column at a

time for performing all the matrix multiplications in (2.25) at the lowest level of recursion

in parallel. The T and S sub-blocks are all immediately generated from the A and B input

sub-blocks and consumed in parallel like this to eliminate any additional execution time or

hardware resources needed for storing/re-accessing them for later use.

To achieve this, each A and B matrix fed into the MXU is divided into 4r equal sub-

blocks of size m×k for A and of size k×n for B, where each row/column i/j of each A/B

sub-block is stored in the accelerator’s A and B memories at location i/j plus an offset. An

example of this memory layout for implementing 2 levels of Strassen recursion is shown

in Fig. 6.1. This means that each A memory location i is a vector containing every mth

row of A starting at row i concatenated together (notated as Ai:m:,:), and each B memory

location j is a vector containing every nth column of B starting at column j concatenated
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Address 0

Address 1

Address 2

Address m− 1

Address 1

Address 2

Address 1

Address 2

Address 1

Address 2

Address 0

Address 0

Address 0

Address m− 1

Address m− 1

Address m− 1

A11 A12

A21 A22

Figure 6.1: Example data layout for the A matrix in memory for an architecture imple-
menting Strassen matrix multiplication for 2 levels of recursion (SMM2). Each address i
contains every mth row of A concatenated together starting at row i (notated as Ai:m:,:).
To help illustrate this, the gray coloured rows are all elements of A belonging to address
0, which forms A0:m:,: containing row 0 of every A sub-block from the lowest level of
recursion in (2.24). The organization for the B matrices in memory are the same, except
that the order of the elements is transposed compared to the A matrix layout shown here.
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together (notated as B:,j:n:). This allows one row or column of all 4r A/B sub-blocks from

the lowest level of recursion in (2.24) to all be read at once from a single memory location

and fed into the MXU each clock cycle. Ai:m:,: and B:,j:n: rows/columns are then read

consecutively when feeding the A and B blocks into the MXU.

As shown in (2.24), the input A and B matrices at each level of recursion are divided

into four block quadrants labelled Aij and Bji of size M×K for Aij quadrants and of

size K×N for Bji quadrants. The portions of each Ai:m:,: and B:,j:n: vector belonging to

quadrant Aij and Bji are notated as Aiji:m:,: and Bji:,j:n:. The MXU then computes and

returns row i of all C sub-blocks from the lowest level of recursion in (2.25) in every clock

cycle i, allowing Ci:m:,: to be stored in the same format as A in memory for if C will later

be taken as an A input for a later matrix multiplication.

6.1.2 Strassen Multi-Systolic-Array Design

Fig. 6.2 shows the proposed SMMr multi-systolic-array architecture. Rather than having

one X×Y MXU with X columns and Y rows of MAC units for efficiently multiplying ma-

trices down to size X×Y , this architecture consists of 7r smaller X/2r×Y/2r MXUs that

together efficiently multiply matrices down to the same size but at a higher throughput, and

it achieves this with fewer MAC units than a conventional multi-systolic-array design. This

increases the ratio of throughput strength versus smallest matrix size that can be multiplied

at full utilization and increases the throughput per MAC unit.

The Ai:m:,: and B:,j:n: vectors read into the MXU are first divided into their four Aiji:m:,:

and Bji:,j:n: portions depending on which quadrant of A/B each element belongs to as

shown in Fig. 6.2. They then pass through the A/B addition vectors shown in Fig. 6.3

(a) and (b) to form the Ti:m:,:/S:,j:n: matrices. The A/B addition vectors both contain 5
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Figure 6.2: Top-level diagram of the proposed multi-systolic-array architecture for imple-
menting r levels of recursion of Strassen matrix multiplication (SMMr).
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Figure 6.3: Internal structure of the SMMr MXU addition vectors from Fig. 6.2.
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addition vectors each consisting of K scalar adders or subtractors, where K is the width of

the four Aij blocks and the height of the four Bji blocks as define in Section 6.1.1. The

7 Ti:m:,:/S:,j:n: vectors then pass into the next level of SMMr−1 MXUs to perform the 7

matrix block multiplications. The Qi:m:,: vectors of the matrix block multiplication outputs

then pass through the Qi:m:,: addition vectors shown in Fig. 6.3 (c) consisting of 8 addition

vectors each containing N scalar adders or subtractors to form the final C product, where

N is the width of the four Bji blocks as define in Section 6.1.1.

Each of the 7 SMMr−1 MXUs can contain 7 more SMMr−2 MXUs for implementing

another level of Strassen recursion and repeating the process above, or they can be in-

stantiated as a baseline MM0 MXU shown in Fig. 6.5. For implementing the next level

of SMMr−2 MXUs inside each SMMr−1 MXU, each Ti:m:,:/S:,j:n: input passed into an

SMMr−1 MXU will then be considered as the full Ai:m:,:/B:,j:n: inputs within that MXU

and are split again into the next level of four Aiji:m:,:/Bji:,j:n: vectors. The dimensions of the

matrix blocks being read/computed and the number of scalar adders in the addition vectors

within each SMMr−1 MXU will then be reduced by a factor of 2 at each level of recursion.

For fixed-point implementations, the Ti:m:,:/S:,j:n: inputs to each SMMr−1 MXU that were

formed from an addition or subtraction in the A or B vector addition units will have an

increased bitwidth by 1 bit.

6.1.3 Baseline Designs

We later compare the SMMr architectures with baseline MMr multi-systolic-array archi-

tectures shown in Fig. 6.4 which execute (2.23) in parallel for r levels of recursion. The

baseline MMr architectures are functionally identical to the SMMr architectures, but they
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C22i:m:,:

+
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Figure 6.4: Baseline multi-systolic-array architecture for implementing conventional ma-
trix multiplication from (2.23) for r levels of recursion (MMr ) in hardware.

consist of 8r smaller X/2r×Y/2r MXUs rather than 7r. Fig. 6.5 shows the internal struc-

ture of each baseline MM0 MXU present at the lowest level of recursion in each SMMr

and MMr architecture, and Fig. 6.6 shows the internal structure of the processing elements

(PE)s inside the MM0 MXUs.

We later compare the SMMr architecture with a baseline multi-systolic-array architec-

ture shown in Fig. 6.4 which executes (2.23) in parallel for r levels of recursion. It is

functionally identical to the SMMr MXU but it consists of 8r smaller X/2r×Y/2r MXUs

rather than 7r. Fig. 6.5 shows the internal structure of each baseline MM1 MXU at the

core of each SMMr architecture, and Fig. 6.6 shows the internal structure of the processing

elements (PE)s inside the MM1 MXUs.
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ci−X−3,jPE PE PE

PE PE PE

ci−X−Y −2,j+Y −1

PE PEPE

ci−X−4,j+1

bk,j ...bk+X−1,j+X−1 MM0 MXU

ai,k...ai−X+1,k+X−1

Figure 6.5: Baseline MM0 single-systolic-array architecture present at the lowest level of
recursion in the SMMr and MMr MXU architectures, provided for completeness. X here
represents the width of the a and b vectors entering the MM0 MXU, and Y represents the
width of the c vectors exiting the MXU.

ai,k

bk,j−1ai+1,k

ci,j
(partial sum)

PEk

load

2w

ww

ci−1,j
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×

+

PEk+1
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ww
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×

+
2w+wa

ai,k+1

bk+1,j−1ai+1,k+1

bk+1,j

Figure 6.6: The internal PE structure of each MM0 MXU from Fig. 6.5, provided for
completeness. Here, wa is the additional bitwidth added to account for accumulation, equal
to ⌈log2(X)⌉, where X is the width of the a and b vectors entering the MM0 MXU.
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6.1.4 System Integration

We evaluate the proposed Strassen systolic-array architectures integrated into the deep

learning accelerator system described in Chapter 3 by inserting the SMMr MXU archi-

tectures from Fig. 6.2 into the GEMM Unit in place of the baseline MXU.

In order to perform GEMM on an MXU and multiply matrices of arbitrary sizes that can

be larger than the MXU dimensions, the full A and B matrices are first divided into GEMM

tiles prior to being divided further into smaller blocks for executing (2.23) or (2.24)-(2.25).

The GEMM tiles are then fed into the MXU one-by-one. Each GEMM tile is then consid-

ered as the full A and B matrix from (2.23) or (2.24)-(2.25) while being fed into the MXU

and gets further divided into smaller Aij/Bji blocks within the MXU.

Following each GEMM tile multiplication, the partial GEMM tile products are accumu-

lated outside of the MXU to generate each final GEMM tile product. Prior to each GEMM

tile multiplication, a B GEMM tile is loaded into the MXU. It then remains in place as the

A GEMM tile flows through the MXU producing the GEMM tile product, during which a

new Ai:m:,: vector is fed into the MXU each clock cycle. Additionally, to hide the latency

of loading B GEMM tiles, the MXU PEs each contain one extra b buffer to load the next

B GEMM tile into the MXU as the current GEMM tile is being multiplied.

Each A, B, and C sub-block entering or exiting the top-level MXU for the SMM and

baseline MXUs first pass through triangular-shaped register arrays each containing X shift

registers of varying depths, where each shift register SRk has a depth of k and loads one ai,k

or bk,j element per clock cycle. These triangular buffers are explained further in Chapter 3

and they allow the vector elements to enter the MXU in the necessary order as depicted in

the element indices in Figs. 6.5 and 6.6.
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6.1.5 Multiplier Compute Efficiency

We use the multiplier compute efficiency defined in (4.18c) as a metric for evaluating the

Strassen architectures to quantify how much the algebraic optimizations exploited in an ar-

chitecture reduce the computational complexity to measure how effectively an architecture

can utilize its multipliers relative to a conventional design using no algebraic optimizations.

The limit/maximum achievable value (also referred to as the roof) of the metric in

(4.18c) is then the following when executing a conventional matrix multiplication algorithm

such as (2.23) (MMr ) in hardware since it has no algebraic optimizations for reducing the

computational complexity:

MMr
mults/multiplier

clock cycle
roof = 1 . (6.1)

In contrast, Strassen’s algorithm (SMM) requires 8r/7r times fewer multiplications than a

conventional MM1 algorithm, where r is the number of levels of recursion implemented in

Strassen’s algorithm. Therefore, the multiplier compute efficiency can reach the following

limit in SMMr architectures:

SMMr
mults/multiplier

clock cycle
roof =

(
8

7

)r

. (6.2)

One of the impediments of using Strassen’s algorithm for fixed-point implementations

is that the bitwidths of the multiplication inputs increase by r bits for r levels of Strassen

recursion that are implemented, reducing its potential area savings for custom fixed-point

hardware designs. Nonetheless, this impediment for fixed-point designs can be inherently

mitigated in FPGA implementations so long as r plus the initial input width is not larger

than the maximum input width supported by the FPGA’s DSP units. For example, each DSP
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in common Intel/Altera FPGAs instantiate two 18×19-bit multipliers [94], and common

input bitwidths for applications such as deep learning are 16 bits or less, leaving room for

at least 2 or more levels of Strassen recursion to be implemented before surpassing the

bitwidth limit supported by the DSPs.

6.1.6 Supporting Smaller Matrices with the Same Performance

Multi-systolic-array designs such as the SMMr and baseline MMr architectures have the

ability to efficiently multiply smaller matrices than a single-systolic-array design with the

same performance capability. By executing (2.23) or (2.24)-(2.25) fully in parallel for r

levels of recursion, matrix products of size as small as n × n, which require n3 multipli-

cations to calculate using conventional algebra, can be computed up to once every n/2r

clock cycles in an MMr or SMMr multi-systolic-array design. Therefore, the ratio of an

architecture’s throughput per clock cycle roof versus its smallest supported matrix sizes it

can multiply is:

(S)MMr

mults/clock cycle
min. mat. size (h×w)

roof =
n3/(n/2r)

n× n
= 2r . (6.3)

In contrast, a single-systolic-array design can produce matrix products of size as small

as n × n up to once every n clock cycles, making this ratio the following for a single-

systolic-array design:

MM0
mults/clock cycle

min. mat. size (h×w)
roof =

n3/n

n× n
= 1 . (6.4)

This shows that the SMMr and baseline MMr multi-systolic-array designs can efficiently

multiply matrices 2r times smaller than a single-systolic-array architecture with the same
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performance capability.

As discussed in Section 2.2.1, this is an important property for increasing a systolic-

array accelerator’s maximum achievable throughput on real-life workloads because, even

if more compute resources are instantiated to scale up the size of the systolic array, the

systolic array will begin to be underutilized after its size surpasses the workload’s matrix

sizes. This is particularly true in modern workloads such as deep learning acceleration,

where the matrix sizes that the workloads break down to can be smaller than the maxi-

mum systolic array size that could be instantiated in an accelerator [5], [6], [18], [19]. In

Section 6.2.2, we demonstrate how this property allowed us to scale up our deep learning

accelerator design without compromising utilization to achieve state-of-the-art ResNet [17]

throughput.

6.2 Results

In this section, we evaluate example implementations of the proposed SMM architectures.

These implementations are validated on FPGA, and we therefore compare against state-of-

the-art prior works that are also evaluated on the same FPGA family as ours. We compare

the SMM MXU architectures in isolation against our baseline MXU designs in Table 6.1,

and in Tables 6.2-6.3 we evaluate the SMM MXU architectures compared to prior work

when integrated into an end-to-end deep learning accelerator system described in Chapter

3.

Full system-level validation of the experimental accelerator as integrated into the the

deep learning accelerator system described in Chapter 3 has been done on an Arria 10 SoC

Developement Kit [92] containing the Arria 10 SX 660 device by measuring throughput in

real-time. However, this device contains fewer soft logic resources than the Arria 10 GX
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1150 used in the prior works we compare against, and we generate compilation results for

our design on the same Arria 10 GX 1150 device used in prior works for a more fair and

consistent comparison. Throughput values of our designs on the Arria 10 GX 1150 device

are then calculated using an accurate throughput estimation model based on our highly de-

terministic and time-predictable system implementation, which accurately predicts actual

throughputs measured on the Arria 10 SX 660 device available to us. Tables 6.2-6.3 show

throughputs for ResNet [17] neural networks.

In Table 6.2, the number of multipliers in the work from An et al. [97] is equal to

#DSPs×2, where each DSP in the Intel/Altera FPGAs instantiates two 18×19-bit multipli-

ers [94]. The works from Liu et al. [95] and Fan et al. [96] in Table 6.2 use a technique to

pack two 8-bit multiplications onto each 18×19-bit multiplier in the DSPs and additional

ALMs, and therefore #multipliers = #DSP×4 in those works. The number of multipli-

ers used in the MXUs from our architectures in Tables 6.1-6.2 is equal to 8r or 7r times

X×Y for the MMr and SMMr MXUs, respectively. For example, an MM0 64×64 MXU

(meaning r = 0 and X = Y = 64) would contain 80 × 642 multipliers, an MM1 32×32

MXU would contain 81 × 322 multipliers, and an SMM2 8×8 MXU would contain 72 × 82

multipliers. Due to the FFIP reduction in multipliers as described in our prior work from

Chapter 4, the number of multipliers for the FFIP architectures in Table 6.3 is equal to 8r

or 7r times X × Y/2 + X/2 for the FFIP and FFIP+SMMr designs, respectively. Addi-

tionally, for our deep learning accelerator implementations in Tables 6.2-6.3, there are an

additional Y × 4r multipliers located outside the MXU in the Post-GEMM Unit for per-

forming inter-layer quantization rescaling functions. For our designs requiring more than

3036 multipliers, 3036 are instantiated on 1518 DSPs, and the remainder are instantiated

using soft logic resources due to the DSP resources being fully utilized.
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Table 6.1: Comparison of SMMr multi-systolic-array architectures against the baseline
MM0 single-systolic-array architecture and baseline MMr multi-systolic-array architec-
tures. These results contain the systolic arrays in isolation (without integration into a deep
learning accelerator system).

MM0

48×48
MM1

16×16
SMM1

16×16
MM2

6×6
SMM2

6×6

FPGA Arria 10
GX

1150

Arria 10
GX

1150

Arria 10
GX

1150

Arria 10
GX

1150

Arria 10
GX

1150

ALMs 35,259 33,212 32,287 48,266 42,697

Registers 133,799 129,830 122,365 170,386 158,389

Memories 0 0 0 0 0

DSPs 1,152 1,024 896 1,152 882

Input bitwidth 16 16 16 16 16

Frequency (MHz) 383 364 332 312 285

Throughput roof (GOPS) 1 1765 1491 1360 1468 1313

Min. supported matrix size 2 48×48 32×32 32×32 24×24 24×24

mults/multiplier
clock cycle roof 3 1 1 1.14 1 1.31

mults/clock cycle
min. mat. size (h×w) roof 4 1 2 2 4 4

1 Maximum achievable throughput in giga operations per second, where throughput is equal to
the number of operations required to carry out an execution using conventional algebra divided
by the measured execution time.
2 Minimum input matrix sizes that can be multiplied at peak throughput/full utilization.
3 Maximum achievable multiplier compute efficiency, defined in Section 4.2.5, measures how
effectively the architecture can utilize its multipliers. It can surpass 1 in SMM architectures
because the observed mults/s is equal to the number of multiplications required to carry out an
execution using conventional algebra divided by execution time.
4 Quantifies how much smaller the minimum supported matrix sizes of a multi-systolic-array
design are relative to a single-systolic-array design with the same throughput per clock cycle
roof, definition and relevance provided in Section 6.1.6.

6.2.1 Comparison to Baseline Designs

Table 6.1 shows the resource usage and performance comparison between the proposed

SMMr and the baseline MMr systolic-array architectures in isolation (without integration

into a deep learning accelerator system). Compared to the multi-systolic-array MM1 and

MM2 designs, the SMM1 and SMM2 architectures are functionally equivalent, respectively,

other than having a 9% lower clock frequency, which may not be a significant disadvantage

when considering that the frequency-limiting critical path may be in external control or

139



Ph.D. Thesis - Trevor E. Pogue McMaster University - Electrical & Computer Engineering

other logic outside of the systolic array anyways after integrating it into an end-to-end ac-

celerator system. However, while the MM1 and MM2 architectures have the same through-

put per clock cycle roof as the SMM1 and SMM2 architectures, respectively, they require

3%-13% more ALMs, 6%-8% more registers, and 14%-31% more DSP units, respectively.

The throughput per clock cycle roof of the MM0 and MM2 baseline designs in Table

6.1 are equal and they consume the same number of DSP resources, but the MM0 design

requires fewer ALM and register resources. However, this penalty may be justified in

the MM2 design when considering that the minimum matrix size (height×width) that can

be multiplied while fully utilizing the MXU is 4× smaller in the MM2 design compared

to the MM0 design, which increases its performance scalability for accelerating modern

workloads such as deep learning as discussed in Section 2.2.1 and 6.1.6. This same property

is true for the SMM2 design, except it achieves this with fewer DSP and soft logic resources.

This benefit is demonstrated in Section 6.2.2, where this property allowed us to scale up

our deep learning accelerator design without compromising utilization to achieve state-of-

the-art ResNet throughput.

6.2.2 Comparison to Prior Work

Tables 6.2-6.3 show the SMMr architectures integrated into the deep learning system from

Chapter 3 compared to state-of-the-art accelerators evaluated on the same FPGA family for

the same input bitwidths and similar neural network models. Integrating the SMMr multi-

systolic-array design into our deep learning accelerator allowed us to increase the multiplier

compute efficiency while also scaling up the computational resources and throughput roof

without increasing the minimum supported matrix sizes, allowing it to significantly surpass

the throughput in our prior work from Chapter 4 and other state-of-the-art prior works

140



Ph.D. Thesis - Trevor E. Pogue McMaster University - Electrical & Computer Engineering

Table 6.2: SMMr multi-systolic-array architectures integrated into a deep learning accel-
erator system compared with prior state-of-the-art deep learning accelerators on the same
FPGA.

TNNLS ’22 [95] TCAD ’22 [96] Entropy ’22 [97] SMM1 32×32 SMM2 8×8

FPGA Arria 10 GX 1150 Arria 10 GX 1150 Arria 10 GX 1150 Arria 10 GX 1150 Arria 10 GX 1150

ALMs 304K 304K 303K 306K 145K

Registers 889K 890K - 641K 386K

Memories 2334 2334 1953 2713 2036

DSPs 1473 1473 1503 1518 1518

Frequency (MHz) 200 220 172 293 295

Input bitwidth 8 8 8 8 8 8 8 8 8 8 8 8

Model ResNet-
50

VGG
16

Bayes
ResNet-
18

Bayes
VGG
11

R-
CNN
(ResNet-
50)

R-
CNN
(VGG
16)

ResNet-
50

ResNet-
101

ResNet-
152

ResNet-
50

ResNet-
101

ResNet-
152

Throughput
(GOPS)1

1519 1295 1590 534 719 865 3750 4116 4276 2024 2115 2158

mults/multiplier
clock cycle

2 0.645 0.550 0.639 0.206 0.696 0.837 0.877 0.963 1.002 1.051 1.098 1.120

1 Throughput in giga operations per second, equal to the number of operations required to carry out an execution using conventional algebra divided
by execution time.
2 Multiplier compute efficiency, defined in Section 4.2.5, measures how effectively the architecture utilizes its multipliers. It can surpass 1 in SMM
architectures because the observed mults/s is equal to the number of multiplications required to carry out an execution using conventional algebra
divided by the measured execution time.
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Table 6.3: Comparison of an FFIP single-systolic-array architecture from Chapter 4, which
doubles performance per MAC unit, with combined FFIP+SMMr multi-systolic-array ar-
chitectures when integrated into deep learning accelerator systems.

TC ’24 [8] (FFIP 64×64) FFIP+SMM1 32×32 FFIP+SMM2 8×8

FPGA Arria 10 GX 1150 Arria 10 GX 1150 Arria 10 GX 1150

ALMs 118K 216K 165K

Registers 311K 627K 463K

Memories 1782 2713 2036

DSPs 1072 1518 946

Frequency (MHz) 388 313 297

Input bitwidth 8 8 8 8 8 8 8 8 8

Model ResNet-
50

ResNet-
101

ResNet-
152

ResNet-
50

ResNet-
101

ResNet-
152

ResNet-
50

ResNet-
101

ResNet-
152

Throughput
(GOPS)1

2529 2752 2838 4006 4397 4568 2038 2130 2172

mults/multiplier
clock cycle

2 1.521 1.655 1.707 1.674 1.837 1.908 1.813 1.895 1.933

1 Throughput in giga operations per second, equal to the number of operations required to carry out an execution
using conventional algebra divided by execution time.
2 Multiplier compute efficiency, defined in Section 4.2.5, measures how effectively the architecture utilizes its
multipliers. It can surpass 1 in SMM architectures because the observed mults/s is equal to the number of multi-
plications required to carry out an execution using conventional algebra divided by the measured execution time.
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evaluated on the same FPGA family as shown in Tables 6.2-6.3. If the design is scaled up

using a single systolic array, the minimum supported matrix size increases and compute

resources begin to be underutilized for ResNet execution based on the smaller matrix sizes

that its workload decomposes to, and the effective throughput does not increase well despite

the design having a larger throughput roof.

The SMM1 32×32 and FFIP+SMM1 32×32 designs consume noticeably more memory

resources than the SMM2 8×8 and FFIP+SMM2 8×8 designs. However, it is worth noting

that this is not due to increased memory requirements, but rather is due to the compiler

favouring to swap some register resources for memory resources since the SMM1 32×32

and FFIP+SMM1 32×32 designs have a higher register (and overall area) overhead than

the SMM2 8×8 and FFIP+SMM2 8×8 designs in order to achieve higher throughput roofs.

In Table 6.2, the SMMr architectures achieve the highest throughput and multiplier

compute efficiency compared to the prior works. The SMM1 and SMM2 architectures’

multiplier compute efficiencies in Table 6.2 approach their limits of 1.14 and 1.31 that are

derived in (6.2) which surpass the limit of 1 of the baseline MMr architectures and prior

works that is derived in (6.1), validating SMM’s ability to increase multiplier compute

efficiency and reduce computational complexity as expected from our analysis.

6.2.3 Combining FFIP and SMM

Table 6.3 shows an example of how SMM can be combined with other algebraic tech-

niques to further increase multiplier compute efficiency limits. FFIP, described in Chapter

4, provides a way to reduce the number of required multiplications by up to a factor of 2,

trading half the multiplications for cheap low-bitwidth additions. Because of this, the limit

for the multiplier compute efficiency metric in (4.18c) for an FFIP architecture becomes 2,
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and 2× (8/7)r for a combined FFIP+SMMr architecture. In Table 6.3, we evaluate archi-

tectures that combine FFIP+SMMr by instantiating SMMr MXUs that use FFIP MXUs at

their lowest level of recursion instead of the conventional MM0 MXUs from Fig. 6.5 to fur-

ther increase multiplier compute efficiency compared to a standalone SMMr or standalone

FFIP MXU as seen in the achieved multiplier compute efficiencies of the FFIP+SMMr

architectures listed in Table 6.3.

6.3 Summary

Strassen’s fast matrix multiplication algorithm reduces the complexity of naive matrix mul-

tiplication, however, general-purpose hardware is not suitable for achieving the algorithm’s

promised theoretical speedups, and there is limited prior work on custom hardware archi-

tectures designed specifically for executing the algorithm in hardware. We address this by

presenting custom Strassen multi-systolic-array architectures that are functionally equiva-

lent to conventional multi-systolic-array designs while allowing the theoretical complexity

reductions of Strassen’s algorithm to be translated directly into hardware resource savings

even for multiplication of smaller matrices. Compared to a conventional multi-systolic-

array design, the proposed architecture implemented on FPGA uses approximately 10%

fewer soft logic resources and 1.3× fewer DSP units when instantiated for multiplying ma-

trix sizes down to 24×24 at 2 levels of Strassen recursion. The proposed systolic array

architectures are compared in isolation as well as in a larger end-to-end accelerator system

design compared to baseline designs and prior works implemented on the same type of

compute platform, demonstrating their ability to increase compute efficiency and achieve

state-of-the-art performance.
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Chapter 7

Conclusion

Recent years have seen increasing breakthroughs and commercial adoption of deep learn-

ing, which has enabled ground-breaking applications ranging from human-like chatbots

like ChatGPT, to generating realistic image and video content from prompts, self-driving

cars [1], detecting cancer [2], and beating human champions at the complex game of Go

[3]. However, deep learning inference increasingly requires massive amounts of compu-

tational power to perform, making it ever-more difficult to execute quickly and efficiently.

This can be mitigated by building special-purpose computer hardware that can perform

deep learning inference more efficiently than general-purpose hardware like conventional

central processing units (CPU)s.

To address this need, the field of deep learning acceleration has seen many recent works

on system-level improvements for deep learning hardware acceleration and hardware-oriented

deep neural network (DNN) model optimizations. At a certain point, however, after hardware-

oriented DNN model optimizations reach their limit, after the known parallelism and system-

level optimizations for executing their compute patterns are exploited, and after technology

scaling slows to a halt, there is an accelerator wall which causes limited improvement on
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the implementation side [69]. A less-explored avenue to continue advancement after this

point is to reduce the workload at the algebraic level, by calculating the same deep learning

model algebra, nevertheless using a re-arranged compute pattern which produces the same

output from fewer or cheaper operations performed in hardware.

As discussed in Section 2.1, the majority of the computational workload in deep learn-

ing models can commonly be mapped to the matrix multiplication shown in (2.17), and

as can be seen, the operations in this equation are a series of multiply-accumulate opera-

tions. For all deep learning accelerators, unless additional algebraic innovations are used,

the throughput is ultimately limited by the maximum number of multiply-accumulate op-

erations from (2.17) that can be performed per clock cycle. Due to this, deep learning

accelerators contain a large number of MAC units, causing multipliers and MAC units to

commonly be one of the area-dominant resources in GEMM and deep learning accelera-

tors [70], [3], [5], and an accelerator’s throughput can be directly limited by how many

multipliers its hardware budget can afford.

As a result, surpassing this theoretical performance per multiplier limit should be a

key area of interest for advancing the field of deep learning hardware acceleration. As

discussed in Section 2.2.8, this approach has been touched upon with Winograd’s minimal

filtering algorithms applied to convolutional neural networks (CNN)s [65], [64], [66], [70].

However, this algorithm is applicable to a limited range of DNN model types, and there are

numerous other efficient algebraic algorithms that remain under-explored which are also

applicable to GEMM and therefore a broader range of DNN models.

In this thesis, we continue in this under-explored direction and provide advancements to

several more efficient algebraic algorithms and/or their custom hardware implementations

for the application of deep learning acceleration.
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7.1 Summary of Contributions

Chapter 4 presents an algorithm and general architecture that improve Winograd’s under-

explored inner-product algorithm [7] that can be seamlessly incorporated into any deep

learning accelerator system that uses traditional fixed-point systolic arrays to double the

throughput per MAC unit, significantly increasing the accelerator’s performance per com-

pute area for inference of all deep learning models that will execute on the systolic array.

We implement and evaluate FIP for the first time in a deep learning accelerator system

described in Chapter 3. We then identify a weakness of FIP and propose the new FFIP

algorithm and generalized hardware architecture that inherently address that weakness in

the general case. We provide deep learning-specific optimizations for the FIP and FFIP al-

gorithms and systolic array hardware architectures. We derive how the (F)FIP architectures

increase the theoretical compute efficiency and performance limits in the general case.

Chapter 5 proposes an algorithm and its hardware architectures that extend the Karat-

suba algorithm [9] to matrix multiplication. While the Karatsuba algorithm reduces the

complexity of large integer multiplication, the extra additions required minimize its bene-

fits for smaller integers of more commonly-used bitwidths. In this chapter, we propose the

extension of the scalar Karatsuba multiplication algorithm to matrix multiplication, show-

ing how this maintains the reduction in multiplication complexity of the original Karatsuba

algorithm while reducing the complexity of the extra additions. Furthermore, we propose

new matrix multiplication hardware architectures for efficiently exploiting this extension

of the Karatsuba algorithm in custom hardware. We show that the proposed algorithm and

hardware architectures can provide real area or execution time improvements for integer

matrix multiplication compared to scalar Karatsuba or conventional matrix multiplication
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algorithms, while also supporting implementation through proven systolic array and con-

ventional multiplier architectures at the core. We provide a complexity analysis of the

algorithm and architectures and evaluate the proposed designs both in isolation and in an

end-to-end deep learning accelerator system described in Chapter 3 compared to baseline

designs and prior state-of-the-art works implemented on the same type of compute plat-

form, demonstrating their ability to increase the performance-per-area of matrix multipli-

cation hardware.

Chapter 6 explores hardware architectures for exploiting Strassen’s fast matrix multipli-

cation algorithm. While Strassen’s matrix multiplication algorithm reduces the complexity

of naive matrix multiplication, general-purpose hardware is not suitable for achieving the

algorithm’s promised theoretical speedups, leaving the question of if it could be more effi-

ciently exploited in custom hardware architectures designed specifically for executing the

algorithm. However, there is limited prior work on this and it is not immediately clear how

to derive such architectures or if they can ultimately lead to real improvements. We bridge

this gap, presenting and evaluating new systolic-array architectures that efficiently trans-

late the theoretical complexity reductions of Strassen’s algorithm directly into hardware

resource savings. Furthermore, the architectures are multi-systolic-array designs that can

multiply smaller matrices with higher utilization than single-systolic-array designs. The

proposed design implemented on FPGA for multiplying matrix sizes down to 24×24 at 2

levels of Strassen recursion uses approximately 10% fewer soft logic resources and 1.3×

fewer DSP units than a conventional multi-systolic-array design. We evaluate the proposed

Strassen systolic arrays in isolation as well as in an end-to-end deep learning accelerator

system described in Chapter 3 compared to baseline designs and prior works implemented

on the same type of compute platform, demonstrating their ability to increase compute
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efficiency and achieve state-of-the-art performance.

7.2 Future Work

The proposed advancements in efficient matrix multiplication algorithms and/or their hard-

ware architectures prompt a shift in focus from many previous approaches for deep learning

acceleration, and as a result, open further exciting opportunities for new exploration in this

direction.

7.2.1 Floating-Point Algorithms and Architectures

We primarily focus on algorithms and architectures for fixed-point/integer data types, leav-

ing opportunities for exploration of algorithms and architectures for floating-point data

types. The benefits of (F)FIP in hardware rely on the premise that the hardware footprint of

adders are cheaper than that of multipliers. Since the arithmetic complexity of fixed-point

multipliers typically scale quadratically with the input bitwidth compared to linearly for

adders, this premise has been shown to hold true for fixed-point data types [71], [25], [72].

There may be doubts about the benefits of this for floating-point data types because both

floating-point adders and multipliers contain variable shifter circuits, which do not have an

insignificant hardware footprint relative to the fixed-point multiplier portion of a floating-

point multiplier circuit. However, this still deserves further investigation to confirm. It may

also be possible to extend the KMM algorithm to floating-point data types.

Additionally, it is well known that the SMM algorithm works on floating-point data

types. For fixed-point data, SMM increases the bitwidth of the multiplications by r bits,

where r is the number of implemented Strassen recursion levels. This reduces the area
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benefits for fixed-point ASIC implementations but does not affect floating-point imple-

mentations. Therefore, another possible research direction is to evaluate implementations

of the proposed SMM architecture for floating-point data types.

7.2.2 Toom-Cook Matrix Multiplication

Karatsuba scalar multiplication is a specific case of the Toom-Cook scalar multiplication

algorithm [109] for when the two numbers being multiplied each consist of 2 digits. The

Toom-Cook algorithm generalizes this to provide reduced-complexity algorithms for mul-

tiplying n-digit numbers. This leaves opportunities to explore the extension of the Toom-

Cook algorithm to matrix multiplication similarly to the methods proposed in Chapter 5 for

extending the Karatsuba algorithm to matrix multiplication, and to evaluate any additional

benefits this may bring when implementing the algorithm in hardware.

7.2.3 Non-Systolic-Array Architectures

The proposed architectures are systolic arrays, however, the benefits of the explored algo-

rithms in hardware are not restricted to being realized only in systolic arrays. Therefore,

we encourage others to explore non-systolic array hardware implementations of these al-

gorithms. Non-systolic array architectures may have the benefit of supporting vector op-

erations in addition to strictly matrix multiplications, which would allow higher utilization

for multiplication of smaller matrix sizes.

7.2.4 Transformer Acceleration

Transformer models, introduced in 2017 [13], are a more recent type of deep learning

model that have since been shown to be superior in quality in many popular benchmarks
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compared to prior deep learning models like CNNs, and it is the base model used in popu-

lar works such as BERT [14] and GPT [15] models. The computationally intensive portion

of transformer models are based around a type of layer called multi-head attention, which

mainly consists of a sequence of large matrix multiplications. The proposed hardware ar-

chitectures are well suited for accelerating large matrix multiplications such as those in the

attention mechanism of transformer models, which can be quantized to integer arithmetic,

leaving this as an area of interest for future work.

7.3 Concluding Remarks

The proposed algorithms and hardware architectures surpass the traditional theoretical

compute efficiency and performance limits, and our end-to-end results show that they im-

prove performance-per-area compared to prior state-of-the-art solutions. Most importantly,

our results indicate that the proposed hardware architectures, when overlaid on top of the

most efficient systolic-array systems used in practice, can further increase compute effi-

ciency across a wide range of devices, system implementations, and deep learning models.
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