





MASTER OF ENGINEERING (1997) McMaster University

(Civil Engineering)
TITLE:
AUTHOR:
SUPERVISORS:

NUMBER OF PAGES:

McMASTER UNIVERSITY. LIBRARE

Hamilton, Ontario
Nonisothermal Film Casting of a Viscous Fluid
Spencer Smith, B.Eng. C. S.
Dr. D. F. E. Stolle and Dr. B. Koziey

xvi, 146















2.3.2 The Influence of the Film’s Self Weight .................... 50
2.4 Performance of the Nonisothermal Model . . ......... ... ... ... .... 52
2.4.1 Effect of Heat Transfertothe ChillRoll .. ............ .. ... 55
2.4.2 Effect of Heat Transfertothe Air ........................ 57
2.4.3 Effect of the Temperature Sensitivity of the Viscosity ......... 59
2.5 Comparison to Published ExperimentalData ....................... 60
2.6 SummaryofResults ...... ... ... ... i 64
Chapter 3 Two-Dimensional Model ............ ... ... ... .. .. ... .0, 67
3.1 Governing Equations and Boundary Conditions ..................... 68
3.1.1 Mechanical Equations ............. ... ... ... ... ... ... 69
3.1.2 Heat Transfer Equations ................. ... ..couun... 71
3.2 Solution of the Coupled System .. ............ ... . ... ... ..... 72
3.2.1 Finite Element Equations ................... ... ... .... 72
3.2.2 Solution Algorithm . ....... ... ... ... ... . L. ... 75
3.3 Performance of the Isothermal Model .. .......... ... ... .. ... .... 77
3.3.1 Comparison with a Closed-Form Solution that Assumes no Edge
Bead . ... ... . e 77
3.3.2 Comparison with Published Results that Allow an Edge Bead ... 82
3.4 Performance of the Nonisothermal Model . . . ....................... 83
3.4.1 The Influence of Gravity on Film Casting . . ................. 84
3.4.2 Nonisothermal Effecton EdgeBead ...................... 87
3.5 Performance of Model with Nontrivial Boundary Conditions and Heat Transfer
...................................................... 92
3.5.1 Boundary ConditionsattheDie .......................... 92
3.5.2Localized CoolingJets .. ......... ... ... ... 95
3.6 SummaryofResults ......... ... ... ... . .. 97
Chapter 4 Conclusions and Recommendations ............................... 99
4.1 CoNCIUSIONS . .. ...t 100
4.2 Recommendations for Future Work ............ ... ... .. ... ..... 102
4.2.1 More Experimental Data . ................. ... ... ...... 103
4.2.2 Improve Mathematical Model ............... ... ... ... 103
4.2.3 Enhance Numerical Algorithm .......................... 104
4.2.4 Change of Focus from AnalysistoDesign ................. 105
43 Concluding Statement . .............. . ...ttt 105
References . .. ...t e e 107
Appendix A Closed-Form Solutions . . ......... ... ... .o i it 113

Vi






Figure 1.1
Figure 1.2
Figure 2.1
Figure 2.2
Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

List of Figures

Overview of the cast filmprocess .............................. 4
Overview of the cast film processintheairgap ................... 6
Setup for one-dimensional filmcasting ......................... 21
Derivation of the 1D momentum equation ...................... 22
Derivation of the 1D continuity equation ....................... 23
Mechanical and thermal boundary conditions and heat transfer

characteristics . . .. ... ... ... 25
Derivation of the 1D conservation of thermal energy equation ....... 27

Definition of the variables for the calculation of the heat transfer coefficient
in the air gap (o 29

I U

Definition of the variables for the calculation of the Graetz number . ... 32

Definition of the variables for the calculation of the Capillary number (Cn)
37

Ranges of viscosity values for which viscous dissipation, inertia, surface
tension and self-weight may have to be included in the mathematical model
offilmeasting . ........ ... .. it e e 39

Temperature distributions for fixed boundary conditions at the die and at
the roll for theory (—), upwinding (O) and no upwinding (--0--)

Temperature profiles for an infinite sheet for the theoretical (~), upwind (O)
and standard Galerkin (O) solutions. . ............... ... .. .. ... 48

Isothermal drawn film solutions for the theoretical velocity (—) and
thickness (-) and the numerical velocity (O) and thickness ()

viii







































intentionally add edge beads.
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Figure 1.2  Overview of the cast film process in the air gap











































Figure 2.1  Setup for one-dimensional film casting
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Ranges of viscosity values for which viscous dissipation,
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assumption of constant thickness. In fact, the numerical solution shows a U-shape with a
significant edge bead. This shape is qualitatively similar to the experimental data of
Chambon et al. (1996) for a viscous polymer. However, the U-shaped profile does not
compare well with typical industrial polymer casting, which shows a close to uniform
thickness over the middle of the film and a rapid rise near the edge. Another feature of
Figure 3.7 is several sharp oscillations in the slope of the thickness profile near the edge of
the film. A possible explanation for these changes is that the assumption made in the

model’s derivation that the thickness gradient is small does not apply at the edge of the

film.

h/hg;,

0 0.2 0.4 0.6 0.8 1
X/ W gie

Figure 3.7  Thickness profiles across two cross-sections for the closed-
form solution (---) and for the numerical simulation (—)

The above comparisons between the closed-form and numerical solutions were
made at one draw ratio; comparisons can also be made to see how the solutions change as

the draw ratio is varied. Figure 3.8 shows the dependence of thickness, neck-in and force
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on the draw ratio. In this figure, the thickness for the numerical simulation is taken as that
at the line of symmetry and the force (F) is found from numerically integrating the

following equation:

Wroll

F=2 f ho,,dx, (3.15)
0

in which w,; is the film’s half width at the roll. Figure 3.8 shows that the force agrees
well between the two solutions. This agreement is a result of equilibrium requiring that
the tensile force at the die and roll be equal. Both the closed-form and the numerical
solutions should have a similar force at the roll, since both have similar responses at the
die. For the thickness, the numerical solution follows the same trend as the closed-form
solution, while remaining consistently below it. This behaviour is likely due to the edge
beads, as thicker edges mean that, for a constant mass flux, less material is available to
pass over the middle of the film. Finally, the width can be compared between the two
solution techniques. Although a similar trend is observed, the numerical solution now lies
above the closed-form one. This finding may again be related to the presence of an edge
bead, as a thicker edge will likely resist neck-in more effectively. Moreover, if the finite
element prediction for thickness is below the closed-form solution, then the reverse has to

be true for the width values, or else the mass flux is not conserved.
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3.4.1 The Influence of Gravity on Film Casting

The study of Barq et al. (1992) provides a good context for investigating the
influence of gravity on film casting, as this study deals with a low viscosity polymer.
Although Barq et al. (1992) provides a good starting point for the investigation, a full
comparison with their results cannot be made as some of their data were not published for
proprietary reasons.

The polymer used by Barq et al. (1992) is polyethylene terephthalate (PET), for
which they provide the following data: 1, = 119 Pa's, E/R = 6498 K, T, =553 K, k=0.25
W/(m K), p = 1340 kg/m® and C = 1991 J/(kg K). These data use Equation 2.13 for the
viscosity-temperature dependence. The values of the other material parameters are
approximated at a temperature of 278 °C. This temperature was chosen as a
representative value as, according to the experimental data of Barq et al. (1992), this is the
average temperature of the film midway between the die and roll.

In the simulations that follow, gravity and inertia have an influence because the
viscosity of the polymer is low. To see the influence of self-weight one simulation was
vertical and the other horizontal. For the horizontal simulation the sag of the film was
neglected. The simulations assume the following processing conditions: w;, =0.5m, L =
0.2 m, ug, = 0.1 m/s, hy, =0.001 m and Dr = 10. Regarding the thermal conditions, the
temperature data presented by Barq et al. (1992) shows an approximately linear trend
decreasing from T, =282 °C to 270 °C; therefore, using T, = 30 °C and Equation 2.41,
the heat transfer coefficient was estimated as 34.0 W/(m* K). In the numerical simulations

a 5408-element mesh was used.









Vertical

Horizontal

~

Flow




88

different heat transfer coefficients. Neck-in decreases as the heat transfer increases, due to
the associated increase in viscosity and the corresponding increase in the film’s resistance
to changing geometry. An exception to this trend occurs at & = 5 W/(m? K), for which the
neck-in increases slightly compared with the isothermal simulation. The reason for this

behaviour is unclear.

W oo/ W gie

0.5

0 5 10 15 20 25 30
Dr

Figure 3.12 Neck-in ratio as a function of the draw ratio fora =0 (--*), 5
(), 10 (---), and 15 (—) W/(m? K)

The change in the velocity field as the heat transfer increases is seen from
considering the streamlines at a draw ratio of 16 (Figure 3.13). With increasing ¢, there is
a corresponding increase in the region in which u, is relatively independent of x,, as shown
by the parallel streamlines in Figure 3.13. Another observation from the streamline plots is
that the free surface necks in more rapidly as the nonisothermal influence increases. This
results because, as o increases the temperature decreases more rapidly and there is an

associated increase in viscosity for the same x, value. The increase in downstream
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eqlb Reqlb

cont

Kenem Renem (B.2)

+
Keqlb Kgrad Ki nrt

K =K + K

where
+
thrm advt cond Knewc

in which K., K., and K, are the stiffness matrices for equilibrium, continuity and the
conservation of thermal energy, K, and K,,, are the contributions to K., from the
gradient of stress and from inertia; K 4,, K4 and K., refer to the contributions to K,
from advection, conduction and Newton’s law of cooling; and R, and Ry, are the load
vectors for equilibrium and thermal energy. In these equations the stiffness matrices and
R, are functions of the degree of freedom vector a.

The expanded form of the stiffness matrices and load vectors is found by
substitution of the discretization (Eq. B.1) into the weighted residual forms of the

governing equations (Eq. 2.26, Eq. 2.27 and Eq. 2.30). The results are as follows:

le

le
- T _
Kiraa = thu4nBudx1 Koqve = pCfN:ulhBdel
0 0
le le
Kinrc - ngphulB”dxl Kcond = ka;"hBdel
0 0
le du le
= T 1 _ T
Kconl: ) ‘{Nh ulBh * FX—I-N" dx1 Knewc - 2a£N7Nde1 (B.3)
le
R, = Pg[hNTdx, + <F(le) 0..~F(0)..0>7
0
le
R =

thrm

ZaIN;dxl
0

where le is the element length.
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w = 1"'eq.lb t wconc + wchrrn

ﬂ = d"ueq.lb + dwconc + dwchrm (B.S)
da da da da
where:
weqlb = Keqlba - Reqlb
Veone = Keone (B.9)
llj'l:hrm = KChrma - Rl:hrm

Equation B.9 shows that the stiffness matrices and load vectors correspond to specific
rows of the residual vector. This occurs because of the first matrix in the calculation of
each of the terms in Equations B.3. The matrices N," and B,", for example, when
multiplied with another matrix will result in nonzero entries only in the first and fourth
rows. The result then, is that these rows correspond to the equilibrium residual (‘¥,,). A
similar pattern is observed for the other two finite element equations and their associated
residual load vectors (¥,,,, and ¥,,,.).

To simplify the derivation of the tangential stiffness matrix further, the derivative

with respect to the degree of freedom vector (a) is broken down into three steps:

d d d d

—_— = + +

da da " da h da

T

where a, = <u,, 0 0 .. u, 0 0>7 (B.10)
a, =<0 h 0. 0h 0>
a,=<00T ..00T>"
n

The derivatives with respect to a,, a, and a; provides the columns of K that are

associated with the u,, h and T degrees of freedom, respectively. The idea then, is to
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dx 1
l“) rad d thT.qn__ldx
da, da u L
e
f hBT4 —1 90 4 .
Y dx, da
le du
= thT,4 l_d_n_ daT dxl
Y dx, dT da,
dN a le du
fh B4 T Tyx, = thT-4 L Ay g,
dx dT da, A " dx, dT
dK. a dK. a dxK a dK.
b) Inertia Term Restdual inre ince® | linre® | inre
da da,, da, da
) dk. a a [t
t = T
c;;: = dau[fNuphulBudxlauJ
0
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0 0
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le le du
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Y 0 1
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l) CH:advtza d T dT
= N €)h(0€) —-J(0°®)-2
=y dau[ 2(8)pCu, (091 h(09) Z2=-7(0%)
dN (0€)a dT
- T u u e . ey,
= NT(E)QCT}’(O )Ef:J(O )2

NT(£) pCN, (09 h(0°) 2X-7(0°)-2
dax,
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= N C o¢)h(0¢®) —-J(0°¢
— <o | ¥1(8)PCu, (0°)h(0°) ——J(0%) -2

h h 1
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NI(§)pC— """y (0°) 2L.5(0°) 2
da, dx,

NI(£) pCN, (0°) 1, (0°) 2L-7(0°)-2
dx,

iif) K,gve2 _ d

daT - daT

Z(€) pCu, (0°)h(0°)-7(0°) 2B, (8) a,)

= N7(§)pCu (0°)h(0€) J(0°) 2B (§)

dK_ . .a dK_ ., a dK__ a dK _  a
b) Advection standard, agve o __adve , T adve’ 7 adve
da da, da, da,
dK
i) ;""‘ = [fN pCh—N dx, a ] fN pCh—-N dx,
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iii) HKaave2 NlpCu hB.d = leNT Cu hB._d
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4 20
o=De, where D=n|2 4 0 (B.26)
001
ii) Momentum Equation
ou,
féeaﬁoaﬁho&) + féuaphuB axgd‘z = féuuphbuon (B.27)
Q Q Q

To express this equation in a finite element notation a gradient operator is introduced:

9
ox,
V= 3 (B.28)

3,

This operator is used to express the gradient of the velocity vector:

-aul aul-
du dx, OJx,
5= - (VanT= | ' 5 ? (B.29)
s ot M

dx, 0x,

To express this matrix in terms of the degree of freedom vector the following matrix

expansion is introduced:
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(au1 aul. 3 [ P
0 — 0
ax1 dx, ox, u, axz u,
= (1 0] + (0 1]
du, du, 0 9 [y, 0 9 \u,
.-671 a_"Z. 9%, 9%, (B.30)

=Lxu[1 0] + L, u(01]
1 2
=LxlNua[l 0] + szNua[O 1]

=Bxla[1 0] + sza[O 1]

Finally, a vector is introduced for expressing the acceleration vector:

- T
b =<g, 0> (B.31)
in which g,, is the component of the acceleration due to gravity in the x; direction.
iif) Continuity Equation
oh du, _
féh[wua+hax]o!2- 0 (B.32)

The gradient operator can be used to express the thickness and velocity gradients as

follows:

oh ~Vh = B, a, where B, = VNh
[+
du (B.33)
(o] T T
3 ~V'u = B, a, where B, = A"/ N,
X

a

iv) Conservation of Thermal Energy Equation

ST + fga—Tkh—oQ +

fstpChu féT-ZaToQ = [6T2aT,, & (B.34)
Q Q
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Once again the gradient operator is used, this time for the temperature gradient:

aT
ox

a

~ VT = B,a, where B, = VN, (B.35)

With the notation defined, it is now possible to proceed with the derivation of the
tangential stiffness matrix. This derivation follows the same approach as that outlined
above for the 1D case; that is, the derivatives are taken for each residual, each of their

components and with respect to each of the three degree of freedom vectors.

1) Equilibrium Residual, Weqp _ d

da E(I<grada + Kinrca - Reqlb)
dK _a dK _a dK _a dK
a) Stress Gradient Residual, grad_ - grad . grad_ grad®
da da v da h da r
dK _a
D graa? . _d fBTDB hdQa | = fBTDB hdo
da da (¢ “ " u A

v d
ii grad_ - BToN.d0a.| = [BToN. dQ
) da dah(£ u h h] _!; u h
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iit - -
) HForas® -4 fBgnDsth, where D = iD
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= fBTﬁsh M o
u da
Q T
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= fBTDsh_d_n 2740 = fBTDshan a0
u dT da,
b) Inertia Term Residual ince? | Hineed | Kippe2 | K2
da dau dah daT

l) znrc _ d T Ty T
= = da. fNuph(Vu )'N KQa,
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a
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Now that all of the contributions to K; have been found, the results can be
summarized. The tangential stiffness matrix is best expressed as the assemblage of

submatrices based on the terms derived above:

eql bu” eqlbu“ eqlb

713

K K K
eql bu“ eql bu12 eql bh“ eqlbrl L

K K K
eqlb"zx eq.lbuzz eql bhz1 eqlb eqlb,.za

T21

cont cont cont
U1 u i3

12

A AR XN

thrm
Y11

eql bu; L

eq.lb“u
(B.43)

cont
v21

thrm
vz1

A A A R R

eql bu51

ES

eql b"Gl

cont
U3y

R

thrm,, thrmy, |

1

Where the submatrices are defined as follows:
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ll’wach = Kogen® ~ Rogen = 0
dw ; (B.47)
T — T .
where K eh = fN —u ds; R wdth = wauzds
1 0

where s is the distance along the free surface.

The procedure for finding the tangential stiffness matrix for the free surface is the
same as that used above, except that the temperature degrees of freedom have no

influence and there are now width degrees of freedom.

. . AY ien d
Width Resndual, dwa: = Fa‘(K,d;ha - Rwdch)

] ) . dK .. a dK , .a dK . a dK
a) Tangential from stiffness matrix, wach? _ Pwaen? | Pugen® | Pluaen?
da da da, da,
o K aend dw dw
i i = N'—[1 0]N T
) aa f [ INdsa, f N — [l O]N ds
dK ..a
“) wdth =0
da h
iif) dedcha 12 e
NT T
da. [ [1 0)uB,dsa, {quleds

b) Tangential for load vector wdth - IR e + AR e + AR paich

da da da, da ,

le le
2 = (fNT[o 11N dsa "J = [Nil0 11N ds
0






