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Abstract 
 

In today's competitive manufacturing environment, special attention is given to the quality 

and reliability of manufactured products. Condition monitoring and more precisely Fault 

Detection and Diagnosis (FDD) are aimed at addressing that attention for increased 

customer satisfaction.  The economic implications of FDD are highly valued in 

the industry, and academia is leveraged to provide smart responses. The focus of this 

research is the development of an FDD algorithm for internal combustion engine faults via 

engine block vibration using deep learning. The FDD solution would have to be 

implemented in software where it could operate in the absence of human intervention. The 

proposed solution includes two elements namely: input feature construction and fault 

classification. 

Short-time Fourier Transform (STFT) and Convolutional Neural Networks (CNNs) 

perform the aforementioned elements. The FDD solution detects and diagnoses fault 

signatures from 4 different knock sensors mounted on a V8-type Ford engine. The solution 

comprises the STFT which converts the knock sensors’ signal from the time domain to 

the crank angle-frequency domain, hence providing features to be used for diagnosis. These 

features are then used as input to a CNN, which can learn the crank angle-frequency 

patterns found in the input data and subsequently perform classification. Transfer learning 

is used in the proposed solution to circumvent domain shift and improve generalization. 

This gives the FDD solution advantages such as high diagnosis accuracy, robustness against 

perturbations in data quality and no need for human intervention. 
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Notation and abbreviations 
 

 

Abbreviations  

ICE Internal Combustion Engine 

FDD Fault Detection and Diagnosis 

FT Fourier Transform 

STFT Short Time Fourier Transform 

PCA Principal Component Analysis 

PC Principal Components 

WT Wavelet Transform 

CWT Continuous Wavelet Transform 

DWT Discrete Wavelet Transform 

WPT Wavelet Packet Transform 

CI Compression-Ignition 

SI Spark Ignition 

CMHT Centre for Mechatronics and Hybrid Technologies 

TDC Top Dead Centre 

𝑁𝑂𝑥  Nitrogen Oxides 

𝐶𝑂2  Carbon Dioxide 

𝐶𝑂  Carbon Monoxide  
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EMS Engine Management System 

WVD Wigner-Ville Distribution 

CWD Choi-Williams Distribution 

SVM Support Vector Machines 

SVD Singular Value Decomposition 

SPE Squared Prediction Error 

RBC Reconstruction Based Chart 

MSPCA Multiscale Principal Component Analysis 

Mod-MSPCA Modified Multiscale Principal Component Analysis 

EMSPCA Extended Multiscale Principal Component Analysis 

GMM Gaussian Mixed Mode 

AI Artificial Intelligence 

KNN K-Nearest Neighbour 

ANN Artificial Neural Network 

DL Deep Learning 

HHT Hilbert–Huang transform 

RFE Recursive Feature Elimination 

NRS Neighborhood Rough Set 

ICS Instantaneous Crankshaft Speed 

BPNN Back Propagation Neural Network 

OLSMO Optimized Luenberger Sliding Mode Observer 
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ENN Elman Neural Network 

AE Auto Encoders 

DBN Deep Belief Network 

CNN Convolutional Neural Network 

RNN Recurrent Neural Network 

LSTM Long Short-Term Memory 

GRU Gated Recurrent Unit 

ECU Engine Control Unit 

ECT ECU Configuration Tool 

PID Proportional Integral Derivative 

OEM Original Equipment Manufacturer 

DANN Domain Adversarial Neural Network 

GAN Generative Adversarial Network 
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Notations 

𝑥  Vector 𝑥 

𝑋  Matrix 𝑋 

𝑋𝑡  Transpose of matrix 𝑋 

𝑋 ∘ 𝑌  Hadamard product of matrices 𝑋 and 𝑌 

 Convolution product 

𝑇  Principle Components or Principle Components scores 

𝑃  PCA transformation matrix 

𝑥𝑛𝑒𝑤  New observation measurements 

Σ𝑇  PC Covariance 

Σ  SVD middle singular values matrix 

𝑉  SVD right singular values matrix 

( ̂ ) Features subspace 

( ̃ ) Residual subspace 

𝓣2  Hotteling's T-squared index 

𝒬 SPE index 

φ Combined index 

𝜓  Mother wavelet function 

𝜙  Scaling function 
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Chapter 1:  Introduction 

1.1 Overview 

The condition monitoring of an industrial product is of prime importance in today’s 

highly competitive manufacturing environment, as it is capable of discerning the 

product’s behaviour. It is an essential part of predictive maintenance and is capable 

of identifying deviations from a product’s operation, caused by an incipient fault. The 

data it generates can be used to improve product design and can be examined to 

correlate operating loads, life cycle and failure types. A key benefit of condition 

monitoring is enhanced reliability. High reliability assures a strong engineering 

design process, and most importantly customer loyalty. The direct consequences are 

a reduction in operating costs and an increase in market share and profit. However, 

even the best-engineered product is not perfect and malfunctions can occur over an 

evolutionary process, leading to failure. Hence, condition monitoring raises three 

questions: Has a fault occurred?’, ‘Where did it occur and how large?’, and ‘How 

will it progress in the future?’. These questions are answered by fault detection, fault 

diagnosis, and fault prognosis respectively. 

In the case of complex machinery such as Internal Combustion Engines (ICEs), 

where many components are rotating or reciprocating, a data-driven approach offers 

a suitable engineering starting point to help answer the three big questions mentioned 
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above. To this end, vibroacoustic signals provide a fertile ground in the field of 

condition monitoring. 

Mechanical, aerodynamic and combustion sources are the main causes of noise 

generation in ICEs. Noise caused by the effects of airflow perturbation can be 

attributed to an aerodynamic source. The turbulence phenomena occurring in the 

intake and exhaust ducts of an engine in addition to the turbocharger and cooling fan 

are good examples of aerodynamic sources. Shock between surfaces, vibrations, 

contacts and impacts generate noise which can be attributed to a mechanical source. 

Good examples are belt/chain vibration, gear vibration, and impacts between pistons 

and cylinders. The process governing the combustion source of noise lies in the (high) 

rate of cylinder pressure increase, which follows primarily the ignition delay period. 

Cylinder pressure frequency spectrum discontinuity and increase in the level of the 

high-frequency region are caused by this pressure rise. The result is engine block 

vibration and finally combustion noise radiation [1]. Both mechanical and 

combustion forces cause vibration of the engine structure, translating into the 

emission of noise. This interconnection between noise and vibration generation in 

ICEs is the reason why they can be studied under the umbrella name of vibro-

acoustics. Hence vibro-acoustic signals are capable of furnishing valuable 

information on engine fault conditions that affect combustion, mechanics and 

aerodynamics as shown in Figure 1.1, which illustrates the most relevant sound and 

vibration sources in ICEs.  
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Figure 1.1 Engine noise generation 

A typical way of studying faults is to consider the ICE in different sub-

systems/components. The knowledge of the transmission path of the vibroacoustic 

phenomena, which emanate from the manifestation of these faults can be 

superimposed with the sub-system division of the engine to have a better picture of 

its state. Below is a list of typical faults and their vibroacoustic transmission path 

impacting the whole ICE-subsystems: 

• Injection system → faults concerning injectors and the fuel pump are transmitted 

from the engine block to the cylinder covers. 
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• Ignition system → faults concerning spark plugs fall under the combustion source 

of noise. This noise is transmitted to the engine block as vibration and also to the 

manifolds. 

• Pistons and Timing system → piston clearances, piston slap, clearance inside the 

cam-timing system (phasers, lash adjusters), slack belt/chain have a mechanical 

source of noise. This can be transmitted via engine block vibration and also 

through acoustic radiation from the chain cover and cylinder head. 

• Pistons → knock and misfire fall under the combustion source of noise. This noise 

is transmitted to the engine block as vibration and also to the manifolds. 

• Lubricating system → a fault involving the oil pump is transmitted to the oil sump 

by a dynamic connection between the oil and the oil sump. 

• Intake and exhaust pipes → losses in the intake/exhaust manifold fall under the 

aerodynamic source of noise, and is transmitted by air 

• Cooling system → a faulty fan falls under an aerodynamic source and is 

transmitted by air 

• Alternator → whistle noise, interacting with the system resonance and is relevant 

to the aerodynamic source. 

• Turbocharger → a faulty blade implies an aerodynamic source of noise and is 

transmitted by air. On the other hand, shaft imbalance is a mechanical source, 

transmitted structurally via the bearings to the compressor casing through 

vibration. 



 

5 

  

  

Engines’ vibroacoustic signals are nonstationary signals, whose properties change 

over time. Hence one of the functions of a fault detection and diagnosis strategy is to 

process the signals to decipher their time-varying nature. It should also be noted that 

signals from rotating machinery usually exhibit cyclic characteristics. Modern 

engines usually have multiple sensors providing vibroacoustic information. 

Therefore, another function of the strategy is the utilization of multivariate statistical 

methods which explain the fault diagnosis as a pattern recognition problem. To 

conclude, the last function of the strategy is to solve the pattern recognition problem 

to perform classification. Artificial intelligence has proven to be a great tool to solve 

such problems via deep learning.  

1.2 Research Motivation 

The research is aimed at the development of a condition monitoring software for ICEs 

in the absence of human intervention. It would use only already existing engine 

sensors, learn from previously acquired data and would detect and localize engine 

faults with an accuracy higher than that of a human. In addition, the software would 

also be able to perform in an environment with perturbations in data quality. 

1.3 Research Objective 

The objective of this research is to employ deep learning in the development of a fault 

detection and diagnosis algorithm for internal combustion engine faults via engine 

block vibration. The algorithm is required to perform the following tasks: 
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• Use knock sensors only. 

• Train using labelled data. 

• Account for perturbations in data quality caused by day-to-day variations in data 

collection. 

• Detect and localize known fault conditions. 

1.4 Proposed Solution 

The proposed solution satisfies the objectives via two principal steps as shown in 

Figure 1.2. 

 

Figure 1.2 Fault Detection and Diagnosis Solution 
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1.5 Research Contribution and Novelty 

There has been research made where knock sensors were used to perform combustion 

diagnosis. For example, in [2], a knock sensor was used for the diagnosis of phasing, 

combustion duration, and maximum pressure location. In [3], four knock sensors 

were used for knock detection in a 4-cylinder engine. Knock sensors in research are 

mostly used for knock detection, and mostly performed on straight-line engines like 

in [4] and [2]. The novelty of this research relies on the combination of 2 points:  

• Vibration signals used for FDD come from 4 knock sensors mounted on a V-type 

engine, where a fault can come from any of the two banks of the engine, thereby 

increasing the complexity of localization by the number of cylinders on each bank 

• The algorithm applied uses Short Time Fourier Transform to resolve signals in 

the crank angle frequency domain in combination with Convolutional Neural 

Network (CNN) for classification 

1.6 Thesis Structure 

This thesis is organized as follows: Chapter 2 presents a literature review on Fault 

Detection and Diagnosis (FDD) focused on internal combustion engines. It starts by 

covering the ICE and its mechatronic evolution up to the present day, signal 

processing techniques, principal component analysis and artificial intelligence. 

Chapter 3 covers the experimental phase of the research. It goes through the Ford 
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Coyote Engine specifications, the dynamometer specifications, the combustion 

analyzer, data logging and management and dataset construction. Chapter 4 presents 

the methodology that was used throughout the thesis, covering the construction of the 

input for classification using deep learning. Chapter 5 documents the results obtained 

and the discussions that follow. The conclusions of the thesis and future 

recommendations are provided in chapter 6. 
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Chapter 2:  Literature Review 

2.1 The Internal Combustion Engine 

In the mid-1800s, the concept of heat engines using internal combustion was first 

developed by Nicholas Otto, Rudolph Diesel and Jean Lenoir. Since that period, 

internal combustion engines (ICEs) have become the primary transportation mover, 

and this will probably continue for decades. Fundamentally, an ICE converts 

chemical energy stored in fuel (mostly petroleum-based products) into thermal 

energy through combustion, and the subsequent expansion of the working fluid 

converts the thermal energy into mechanical work thanks to the crank-slider 

mechanism, converting linear force/work to rotational torque/work to the output shaft 

[5]. Discrete volumes of air and fuel are processed cyclically, with combustion 

occurring in a closed chamber. ICEs can be divided into two main groups namely: 

Compression Ignition (CI) engines which run on Diesel, and Spark Ignition (SI) 

engines which run mostly on Gasoline. In Canada, 90% of light-duty vehicles are 

powered by SI gasoline engines as of 2022 [6], while the greatest proportion of 

medium and heavy-duty vehicles have diesel engines. 

Since the advent of ICEs, tremendous improvements in their design have been made 

over the years to increase performance. The global warming concerns introduced a 

novel paradigm in ICE design, which is emissions reduction. Modern-day engines 

have to perform well, be fuel efficient and achieve low emissions of greenhouse gases 
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such as 𝑁𝑂𝑥, 𝐶𝑂2 and 𝐶𝑂. These complex constraints made modern ICEs embrace 

the concept of mechatronic systems, involving an abundant utilization of numerous 

electronics, sensors and microprocessor-based control strategies, to remain 

competitive. Figure 2.1 shows the timeline of the adoption of engine sensors and 

actuators. Nowadays, engines are controlled by an Engine Management System 

(EMS) which regulates cylinder deactivation, idle speed, air-fuel ratio, and ignition, 

to reduce fuel consumption and emission levels [7]. The numerous sensors available, 

help the EMS in real-time condition monitoring of the engine and actuators to control 

the camshaft, spark plug timing, injector, throttle camshaft phasing, and cylinder 

deactivation. The architecture of the EMS control system is composed of various 

control loops (also called modules). Figure 2.2 depicts a schematic representation of 

a control system architecture.  
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Figure 2.1 Gasoline engine sensors and actuators timeline [8] 
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Figure 2.2 Gasoline engine control system architecture [8] 

In coordination with the torque control module, some core functions found in the 

EMS’s architecture are air-fuel ratio control, electronic throttle control, ignition 

timing control, knock control, idle speed control, diagnosis control, aftertreatment 

control, turbocharger and camshaft controls. These modules work together, in parallel 

to the torque control module to provide the required engine output for the torque 

demand. The multiple control functions are managed by a software control algorithm 

which is implemented by a mathematical model-based design, while non-linear 

feedforward control is implemented using engine maps (i.e. matrix-based lookup 

tables derived through extensive engine test bench operations during calibration). The 
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automotive market is very competitive and engine manufacturers save time and cost 

by employing model-based calibration, where some of the work carried out by a 

calibration engineer on engine dynamometers is replaced by optimization algorithms 

applied to an engine model. 

2.1.1 Knock Sensor 

Knock is the term given to the noise that is caused by the spontaneous autoignition 

of part of the air-fuel mixture ahead of the propagating flame front. During knock, 

the isolated and uncontrolled burning generates a rapid heat release in the end gas 

zone which induces pressure waves that propagate and interact with the flame front, 

causing pressure oscillations in the combustion chamber [9]. The subsequent 

oscillations intensify engine vibrations and increase the risks of damage which could 

manifest as cylinder head gasket leakage, cylinder bore scuffing, piston ring land 

cracking, and piston crown melting. Engine performance is also affected by knock as 

it prevents SI engines from reaching optimized combustion phasing and high 

compression ratios. On top of high-octane fuel utilization, knock can be greatly 

reduced through the adjustment of fuel injection and ignition timing in addition to 

proper calibration inside the EMS. Such corrective measures are made possible 

thanks to knock detection, which can be based on ion current, combustion noise, in-

cylinder pressure or body vibration. Although knock detection based on in-cylinder 

pressure provides the highest accuracy, vibration-based detection is mostly used 
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nowadays. This is because pressure sensors are expensive and the high temperatures 

and pressures present in the cylinders reduce their lifespan. This solution is mostly 

suited for research purposes. On the other hand, vibration analysis provides a low-

cost solution with relatively high accuracy [10]. Therefore, the vibration assessment 

of an engine can be captured by a knock sensor, which is a low-cost accelerometer 

(usually piezoelectric) as shown in Figure 2.3. However, the measured signal does 

not only contain the knock signature but also other vibration signatures and noises. 

Hence signal processing algorithms are used to extract relevant features for knock 

recognition and intensity evaluation. Nonetheless, the capacity of knock sensors to 

record the vibration signatures of an engine is highly valuable for research. With 

advanced signal processing algorithms, relevant features can be extracted for the 

detection, diagnosis and prognosis of other engine faults. 

 

Figure 2.3 A knock sensor and its main components [11] 
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2.2 Data Processing Techniques 

This chapter discusses common signal processing techniques used in the field of fault 

diagnosis and prognosis, with particular attention to the techniques applied for the 

analysis of internal combustion engine data. Sensor measurements are made in the 

time domain; and therefore, an intuitive approach is to use time-series analysis to 

process data. Some of these techniques are the mean, variance, standard deviation, 

root mean square, kurtosis, and skewness. They usually employ statistical indices to 

extract information from data. However, time-series analysis has a major drawback 

when it comes to the analysis of complex machinery with rotating and reciprocating 

parts. This is because, in time-series analysis, it is very difficult to decipher events in 

the data.  The cyclic nature of engine data is more geared for their analysis in the 

frequency domain, where engine measurements can be decomposed into their 

constituent frequencies using the Fourier Transform (FT). With this technique, events 

can be deciphered by the occurrence of peaks that indicate their presence. The FT 

uses Equation 2.1 as follows: 

𝑋(𝜔) =  ∫ 𝑥(𝑡)𝑒−2𝜋𝑖𝜔𝑡𝑑𝑡
∞

−∞

 
2.1 

Xia et al [12] used FT on a diesel engine to detect piston ring faults by comparing 

engine vibration data under normal and faulty conditions as shown in Figure 2.4. The 

baseline vibration band of the engine was between 2500 and 3500Hz, and the piston 
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ring fault induced some other frequency band from 1000 to 2500Hz. The change in 

the vibration spectrum was an indicator of a fault, and the shape of the spectrum was 

an indicator of the type of fault. 

 

Figure 2.4 Engine frequency spectra difference under normal and faulty conditions 

[12] 

The FT works very well for periodic signals. In internal combustion engines, signals 

in the low-frequency band are mostly periodic. Such low-frequency signals are speed, 

torque, or pressure. Although data processing in the frequency domain provides 

information on the spectral dynamics of a signal, the temporal dynamics of the signal 

are lost. This loss of information is the major limitation of frequency domain analysis. 

In other words, it is not possible to determine the time at which the intrinsic 

frequencies of a signal occurred. The frequency domain assumes that signals are 

stationary (meaning signal properties do not change over time), and this assumption 
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does not make it a good fit for processing engine data, whose properties are non-

stationary. To overcome these shortcomings time-frequency techniques are used. 

2.3 Time-Frequency Techniques 

Time-frequency techniques help decompose a signal into its spectral and temporal 

components simultaneously. This is a good fit for processing non-stationary data. 

Common time-frequency techniques used are the Wigner-Ville Distribution (WVD), 

Wavelets, Choi-Williams Distribution (CWD), and Short Time Fourier Transform 

(STFT). STFT is a natural extension of FT that addresses the latter’s limitations. In 

STFT, the signal measurement is divided into time segments called windows onto 

which FT is applied. This enables the generation of time-localized frequency 

information of the signal. There are several types of window functions used for 

segmentation such as Gaussian or Hamming windows. The Gaussian window is 

suited for transient signals, while the Hamming window is suited for narrowband and 

random signals. Hence, a window function can perform better than another one 

depending on the desired output. The continuous STFT is expressed as shown in 

Equation 2.2. 

𝑋(𝜏, 𝜔) =  ∫ 𝑥(𝑡)𝑊(𝑡 − 𝜏)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞

 
2.2 

 



 

18 

  

  

where 𝑊(𝑡 − 𝜏) is the window function (Hamming Type). By adjusting the value of 

𝜏, the window function can shift in time. 

The discrete STFT is expressed as shown in Equation 2.3. 

𝑋(𝑚,𝜔) = ∑ 𝑥(𝑛)𝜔

∞

𝑛=−∞

(𝑛 − 𝑚)𝑒−𝑗𝜔𝑛 
2.3 

Modern data acquisition systems are discrete and hence, Equation 2.3 is more suited 

for data analysis exercises. The power of a signal can be represented in a spectrogram, 

which portrays the temporal and spectral energy density over the signal’s lifespan as 

formulated in Equation 2.4. 

𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚(𝑚,𝜔) = |𝑋(𝑚,𝜔)|2 2.4 

 

 

Figure 2.5 STFT of engine body vibration signal with faulty and healthy injectors 

[13] 
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Figure 2.5 shows how STFT was used to make a comparison between a healthy 

(right) and faulty (left) fuel injector of a diesel engine under load conditions using 

vibration signals captured by three accelerometers mounted near the flywheel [13]. 

The STFT revealed that the dominant amplitude vibrations were between 0-10KHz 

for the healthy injector and above 10KHz for the faulty one. Although STFT can be 

a good signal processing tool, it has some limitations due to its window function, 

which has a fixed spectral and temporal resolution. A wide time window provides a 

precise frequency resolution but hinders the possibility of detecting frequency 

changes in transient events due to poor time localization. On the other hand, a narrow 

window function provides a precise temporal resolution but hinders the possibility of 

detecting the exact frequencies occurring at that time point due to poor frequency 

localization.  

The effect of the window size as shown in Figure 2.7 was demonstrated by Gao et al. 

[14] where three different time windows (1.6, 6.4 and 25.6ms) were used to apply 

STFT on a non-stationary signal in Figure 2.6. The signal in Figure 2.6 is composed 

of impulsive signal trains organized in four clusters, each containing two transient 

elements of different center frequencies at 1,500 and 650 Hz, respectively. The four 

clusters have a 12ms time separating interval. In each cluster, the two transient 

elements are time-overlapped. 
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Figure 2.6 A Nonstationary Signal [14] 
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Figure 2.7 Results of the STFT of the nonstationary signal with window sizes of a) 

1.6ms, b) 12ms and c) 6.4ms [14] 

In Figure 2.7 a, the smallest window size of 1.6ms provided a high temporal 

resolution where the four signal trains were identified, while the spectral resolution 
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was too low to characterize the two time-overlapped transient elements found in each 

cluster of Figure 2.6. This resulted in the frequency elements of 1500 and 650Hz 

being portrayed as one lump group in the time-frequency plane. In Figure 2.7 b, the 

largest window of size of 25.6ms provided a high spectral resolution, where the two 

frequency elements were portrayed. However, the temporal resolution was too low 

and could not characterize the four impulse trains separated by a time interval of 

12ms. Figure 2.7 c with a window size of 6.4ms provided the transient elements to 

be characterized in time and frequency. In reality, the given frequency contents of an 

experimentally measured signal are not known a priori and hence, the selection of an 

appropriate window size for the STFT is not guaranteed.  

In fact, it is fundamentally impossible to have perfect time and frequency resolution 

of a signal simultaneously. This is known as the Heisenberg uncertainty principle, 

represented mathematically as: 

𝜂𝑐 = 𝛥𝑡
2𝛥𝜔𝑐

2 ≥
1

4
 

2.5 

 

where 𝜂𝑐 is the time-frequency spread of the signal, 𝛥𝑡
2 is the spread of the signal in 

time domain, and 𝛥𝜔𝑐
2  is the spread of the signal in the frequency domain [15]. Having 

a variable window size with a high-frequency resolution at low frequencies and a 

high time resolution at high frequencies could circumvent SFTF limitations. This 

introduces multiresolution signal processing, thanks to Wavelets. 
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2.4 Wavelets   

The concept of wavelet was introduced in 1984 by Jean Morlet, a geophysical 

engineer working at Elf Aquitaine who developed and implemented a technique 

consisting of shifting and scaling window functions in analyzing acoustic echoes used 

in oil prospecting. Later on, it was identified that Morlet rediscovered orthogonal 

transformations based on the same concept. The oldest known contribution to the 

concept of wavelet was by Alfred Haar in his PhD dissertation entitled “On the theory 

of the orthogonal function systems” in 1909 at the University of Gottingen, Germany. 

Unlike STFT where the window size is fixed, wavelet transform employs a variable-

size window in investigating the various frequency components within a signal. The 

investigation is achieved by the comparison of the signal with a set of template 

functions obtained from scaling (that is contraction or dilation) and shifting (that is 

temporal translation) of a mother wavelet 𝜓(𝑡), and looking for their similarities. The 

wavelet transform of a signal can be expressed as shown in Equation 2.6. 

𝑋𝑤(𝑠, τ) =
1

√𝑠
∫ 𝑥(𝑡)𝜓̅ (

𝑡 − τ

𝑠
) 𝑑𝑡

∞

−∞

 

 

2.6 

where 𝑠 > 0 is the scaling parameter determining the spectral and temporal 

resolutions of the mother wavelet 𝜓 (
𝑡−τ

𝑠
). τ is the shift parameter translating the 

scaled wavelet along the time axis, 𝜓̅ is the complex conjugate of the mother wavelet 
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𝜓(𝑡).  For a mother wavelet given by 𝜓(𝑡) = 𝑒𝑖2𝜋𝑓0𝑡 𝑒−(𝛼𝑡2/𝛽2) , its scaled version 

called daughter wavelet will be given by: 

𝜓 (
𝑡 − τ

𝑠
) =  𝑒𝑖2𝜋𝑓0(

𝑡−τ
𝑠

) 𝑒
−𝛼

(𝑡−τ)2

𝑠2𝛽2
 

2.7 

  

with 𝑓0, 𝛼 and 𝛽 being constants. The spectral resolution of the mother wavelet will 

be expressed as 𝛥𝑓 = √𝛼/(𝑠 · 2𝜋𝛽) while the temporal resolution will be expressed 

as 𝛥𝑡 = 𝑠𝛽/2√𝛼. From these expressions, it can be deduced that the spectral and 

temporal resolutions have respectively an inverse and direct relationship with the 

scaling parameter 𝑠. 

Figure 2.8 illustrates the variation of time and frequency resolutions of the mother 

wavelet at two locations in the time-frequency plane: (𝜏1, 𝜂/𝑠1) and (𝜏2, 𝜂/𝑠2). The 

change in scale from 𝑠1 at the point (𝜏1, 𝜂/𝑠1) to 𝑠2 = 2𝑠1 at the point (𝜏2, 𝜂/𝑠2) 

divided the temporal resolution by 2 (since the width of the time window was 

doubled) while multiplying the spectral resolution by 2 (since the width of the 

window was halved). The variation of the scale 𝑠 and time shift 𝜏 of a mother wavelet 

enables her transform to capture the intrinsic constituents of a time series through its 

entire spectrum by using small scales (corresponding to high frequencies) to 

decompose high-frequency constituents and large scales (corresponding to low 

frequencies) to decompose low-frequency constituents. Such a transformation is a 
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good match for ICE signal processing, where low-frequency signals last longer in 

time while high frequency signals last shorter. 

 

Figure 2.8 Time and Frequency resolutions of the wavelet transform [14] 

The mathematical tool of wavelet transform can decompose a signal and extract 

“features” that characterize it. A wavelet is different from a sine or cosine wave due 

to certain properties which enable wavelets to have a zero average, finite energy and 

centred in the neighbourhood of t = 0, [16]. What qualifies as a wavelet is the 

admissibility condition, formulated in Equation 2.8. 
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∫
|𝜓̂(ƒ)|

2

(ƒ)

∞

−∞

𝑑ƒ < ∞ 
2.8 

  

where 𝜓̂(ƒ) is the Fourier transform of the wavelet 𝜓(𝑡).  Under the admissibility 

condition, the Fourier transform of the wavelet function vanishes at zero frequency 

which is expressed as: 

|𝜓̂(𝑓)|
2
|𝑓=0 = 0 2.9 

 

The zero at zero frequency property indicated in Equation 2.9 also means that 

the wavelet function has a zero average in time such that: 

∫ 𝜓(𝑡)𝑑𝑡 = 0
∞

−∞

 
2.10 

 

Via the process of dilation/contraction and translation of the wavelet function in 

Equation 2.6, a series of scaled and translated daughter wavelets can be obtained in 

the form 

𝜓𝑠,τ(𝑡) =
1

√𝑠
𝜓 (

𝑡 − τ

𝑠
) ,         𝑠 > 0,    τ ϵ 𝑅 

2.11 
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The 1
√𝑠

⁄   term in Equation 2.11 is to ensure that the energy of the wavelet function 

is the same under various scales. If the energy of a wavelet function 𝜓(𝑡) is given by:  

𝜀 =  ∫ |𝜓(𝑡)|2𝑑𝑡
∞

−∞

 
2.12 

 

then the scaled and translated wavelet 𝜓𝑠,τ(𝑡) has her energy given by: 

𝜀′ = ∫ |
1

√𝑠
𝜓 (

𝑡 − 𝜏

𝑠
)|

2

𝑑𝑡 =
∞

−∞

1

𝑠
∫ |𝜓 (

𝑡

𝑠
)|

2

𝑑𝑡 = 𝜀
∞

−∞

 
2.13 

 

In general, a wavelet can be expressed as a Continuous Wavelet Transform (CWT) 

as well as in discrete form (Discrete Wavelet Transform (DWT)). The CWT of a 

signal x(t) is expressed as shown in Equation 2.6. 

CWT can also be expressed as a convolution product such that Equation 2.6 is 

reformulated as: 

𝑋𝑤(𝑠, τ) =
1

√𝑠
∫ 𝑥(𝑡)𝜓̅ (

𝑡 − τ

𝑠
) 𝑑𝑡

∞

−∞

= 𝑥(𝑡) 𝜓Ə(τ) 
2.14 

 

𝜓Ə(τ) =
1

√𝑠
𝜓̅ (

𝑡

𝑠
) 

2.15 
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where  is the convolution product. Equation 2.14 introduces the notion of filtering 

linked to wavelet transform. This point is illustrated by the FT of the wavelet function 

𝜓Ə(τ) such that: 

𝜓̂𝑠
Ə(𝜔) = √𝑠𝜓̂̅(𝑠𝜔) 2.16 

 

CWT acting via a convolution process introduces the notion of the complement of a 

wavelet function. Consider 𝑋𝑤(𝑠, τ) for 𝑠 < 𝑠0 is given, the reconstruction of 𝑋 from 

its wavelet transform will require the complementary information 𝑋𝑤(𝑠, τ) for 𝑠 > 𝑠0. 

The required information is obtained by a scaling function which is an accumulation 

of wavelets with scales larger than 1. The scaling function 𝜙 is expressed by Equation 

2.17 such that: 

|𝜙̂(𝜔)|
2

= ∫ |𝜓̂(𝑠𝜔)|
2 𝑑𝑠

𝑠

∞

1

 
2.17 

  

The properties of the scaling function are defined by: 

‖𝜙‖ = 1 2.18 

𝜙𝑠 =
1

√𝑠
𝜙 (

𝑡

𝑠
) 

2.19 
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𝜙̂𝑠(𝑡) = 𝜙̅𝑠(−𝑡) 2.20 

 

Figure 2.9 shows a Haar’s wavelet function with its scaling function and their Fourier 

transform. 

 

Figure 2.9 Haar wavelet functions with corresponding Fourier Transform [17] 

The scale width (also called frequency band width) is conditioned by the value of 𝑠, 

where 𝑠 can be any real value in CWT. Small incremental variations of 𝑠 result in 

redundant information and this was the main reason for the discretization of wavelets. 

Discretization is fulfilled by applying octave intervals to the scale such that 𝑠 = 2𝑗, 

𝑗 being an integer. The discretized wavelet and scaling functions are respectively 

expressed in Equations 2.21 and 2.22. 

𝜓𝑗(𝑛) =
1

√2
𝜓 (

−𝑛

2𝑗
) 

2.21 
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𝜙𝑗(𝑛) =
1

√2
𝜙 (

−𝑛

2𝑗
) 

2.22 

 

As CWT operates by convolution and filtering, the computation of discrete 

wavelength coefficients can be made using a family of digital filters as stated by 

Mallat [16]. Consider ℎ𝑗  and 𝑔𝑗 respectively as the high pass and low pass filter 

impulse responses representing the wavelet and scaling functions at scale 𝑗. The 

coefficients obtained for high pass filtering are called detailed coefficients while 

those obtained for low pass filtering are called approximation coefficients. Let 𝑐 and 

𝑑 be respectively the approximation and detailed coefficients, such that the transform 

is in the form: 

𝑐𝑗+1[𝑛] = 𝑐𝑗 𝑔𝑗[𝑛] 2.23 

 

𝑑𝑗+1[𝑛] = 𝑐𝑗 ℎ𝑗[𝑛] 2.24 

 

From equations 2.23 and 2.24, the coefficients at scale 𝑗 are used for the coefficients 

at scale 𝑗 + 1. It can also be deduced from both equations that approximation 

coefficients are used to determine the next level coefficients; hence the original signal 
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can be assumed to be at an approximation coefficient of level zero such that 

𝑥[𝑛] = 𝑐0. Figure 2.10 portrays the filtering process.  

 

Figure 2.10 Wavelet's consecutive filtering process [17] 

The inverse of the filtering operation is called the synthesis coefficient and reconnects 

the approximation and details coefficients.  The synthesis operation is formulated in 

Equation 2.25.   

𝑐𝑗[𝑛] =
1

2
(𝑐𝑗+1   𝑔̃𝑗[𝑛] + 𝑑𝑗+1   ℎ̃𝑗[𝑛]) 

2.25 

 

ℎ̃𝑗[𝑛] and 𝑔̃𝑗[𝑛] are respectively the high and low pass impulse responses of the 

synthesis filters. Figure 2.11 portrays the synthesis operation. 
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Figure 2.11 Signal synthesis of wavelet coefficient [17] 

From the illustrations in Figure 2.10 and Figure 2.11, it can be easily deduced that 

each approximation coefficient (which is the result of the low pass filter output) is 

broken down at each level into two frequency bands via the low and high pass filters 

ℎ and 𝑔. This multilayered filtering operation reduces the filtered output’s frequency 

content by half. Hence the signal’s down-sampling does not lose any information as 

a synthesis operation can be driven from the down-sampled coefficients. DWT is 

completed with down-sampling, which is of great use to reduce computer memory 

storage during calculations. DWT down-sampling is expressed in Equation 2.26 and 

Equation 2.27.  

𝑐𝑗+1[𝑛] = 𝑐𝑗 𝑔𝑗[2𝑛] 2.26 

𝑑𝑗+1[𝑛] = 𝑐𝑗 ℎ𝑗[2𝑛] 2.27 
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The DWT filtering of a signal is concretely illustrated in Figure 2.12 (Note that A is 

the approximate information, D is the detailed information, H is the low-pass filter 

and G is the high-pass filter). 

 

Figure 2.12 Four-level signal decomposition procedure using Discrete Wavelet 

Transform [14]  

The filtering of a signal in DWT can be done in parallel, instead of using the down-

sampling expressions in Equations 2.26 and 2.27, thereby reducing the computation 

time of multi-level coefficients. This is achieved by multiplying the signal 𝑥[𝑛] by 

the DWT matrix 𝑊𝑗 containing the H and G filter matrices as shown in Equation 2.28. 
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2.28 

Given the filter (in this case high pass) length L, the matrix G is expressed in Equation 

2.29 such that: 

 

 

 

2.29 

The H matrix is similar to G but will have an H filter instead. Therefore, the DWT of 

a signal 𝑋 is given by 𝑊𝑥 = 𝑊𝐽𝑋 and the synthesis matrix is given by 𝑊𝑠 = 𝑊𝑗
𝑡 where 

𝑊𝑗
𝑡 is the transpose of 𝑊𝐽. 

DWT are very good at detecting transients at low frequencies but do not perform well 

for signals in which relevant information is found at high frequencies. This is due to 

the signal decomposition algorithm, where only the output of the low pass filter is 
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broken down at each level and thus creates a high-time localization but a low-

frequency resolution. The solution to this problem led to Wavelet Packet Transform 

(WPT) where both low-pass and high-pass filters’ output are broken down at each 

level.  The WPT down-sampling is expressed in Equations 2.30 and 2.31. 

𝑊𝑗+1,2𝑘[𝑛] = 𝑊𝑗,𝑘 𝑔𝑗[2𝑛] 2.30 

 

𝑊𝑗+1,2𝑘+1[𝑛] = 𝑊𝑗,𝑘 ℎ𝑗[2𝑛] 2.31 

  

In Equations 2.30 and 2.31, 𝑊𝑗,𝑘 is the coefficient at level 𝑗 for the daughter wavelet 

𝑘. 𝑊𝑗+1,2𝑘[𝑛] represents the approximation coefficient of the signal’s decomposition, 

while 𝑊𝑗+1,2𝑘+1[𝑛] represents its detailed coefficient. Even values of 𝑘 indicate that 

the coefficients result from low pass filtration, while odd values of 𝑘 indicate that the 

coefficients result from high pass filtration. The operation of WPT is illustrated in 

Figure 2.13 (Note that A is the approximate information, D is the detailed 

information, H is the low-pass filter and G is the high-pass filter). 
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Figure 2.13 Four-level signal decomposition procedure using Wavelet Packet 

Transform [14] 

Various types of wavelet functions with their corresponding scaling functions have 

been created with some examples from Figure 2.14 to Figure 2.17. 
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Figure 2.14 Harr [18] 

 

Figure 2.15 Daubechies -3 [18] 

 

Figure 2.16 Daubechies – 20 [18] 

 

Figure 2.17 Dimey [18] 

Figure 2.14 to Figure 2.17 portray the real components of the various wavelet 

functions; nonetheless, wavelet functions have both real and imaginary components. 

Figure 2.18 and Figure 2.19 portray wavelet functions with their two projections (real 

and imaginary) in 3 dimensions. 
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Figure 2.18 Hermine Wavelet Basis [19] 

 

Figure 2.19 Morlet Wavelet Basis [19] 
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Each wavelet function and its scales form a family, with its advantages and 

disadvantages. The selection of a wavelet function for analysis does not follow any 

preestablished standards and most attempts to address this problem have been 

confined to specific cases. Upadhya et al. [20] developed a quantitative method for 

selecting mother wavelets for the detection of voltage sags based on cross-correlation 

sequences between the voltage signal and the mother wavelet. Megahed et al. [21] 

presented an algorithm for the selection of a mother wavelet for power systems fault 

transient grounded on the ideal reconstruction of the power signal. The metric used 

was the root mean square error between the original signal and the reconstructed 

signal. For signals buried in high levels of noise, a method tracking high kurtosis to 

Shannon entropy ratios for various wavelets was presented by Hemmati et al. [22] to 

extract features in rolling element bearing fault diagnosis.  Energy and Shannon 

entropy criteria were used by Juhani et al. [23] for control valve leakage detection, 

where the winning mother wavelet would have to generate coefficients with the 

lowest Shannon entropy and the highest energy. When it comes to the selection of an 

appropriate wavelet, a general rule of thumb is to usually pick a wavelet basis which 

resembles the signal. 

Wu et Liu [24] used WPT for fault diagnosis of an internal combustion engine. 

Daubechies mother wavelet was used on engine sound emission signals to extract 

features using Shannon entropy. Neural networks were then used for operating 

conditions recognition and classification of synthetic faults such as cylinder misfire, 
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air leakage in the intake manifold, engine coolant temperature and camshaft sensor 

faults. Moosavian et al. [25] used various mother wavelets for the denoising of engine 

vibration signals obtained from the cylinder heads for spark plug diagnosis. The 

denoised signals were later processed using 12 different statistical features before 

classification through Support Vector Machines (SVM). Ravikumar et al. [26] also 

used vibration signals from a tri-axial accelerometer mounted in the gearbox casing 

for diagnosis of an internal combustion engine gearbox. DWT based on the Haar 

wavelet function was used to extract features, tracking entropy change which was 

used as input to the K star algorithm for diagnosis. 

2.5 Principal Component Analysis 

Principal Component Analysis (PCA) is a distance-based ordination technique 

mainly used to unveil patterns in multivariate data. Its purpose is to show the relative 

positions of data points in fewer dimensions while keeping as much information and 

investigate the relationship between dependent variables [27]. PCA employs 

orthogonal transformation to decompose the dependent set of variables into a new set 

of uncorrelated independent variables onto which a hierarchical ranking is applied 

based on their variance. The variables with the highest variance are retained and 

called Principal Components (PCs) while the remaining ones are eliminated. 

Considering a set of dependent measurements defined in a matrix form as 𝑋(𝑘) =

(𝑥1 …𝑥𝑝)(𝑘) containing 𝑝 variables with each variable having 𝑘 measurements. In the 
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matrix, each column represents the number of measurements 𝑘, for a single sensor 

𝑥𝑖. The following transformation is performed: 

𝑇 = 𝑋𝑃 2.32 

 where 𝑇 is the principal component score matrix, and 𝑃 is the principal component 

matrix. The principal component scores in 𝑇 are the uncorrelated signals 

corresponding to the cross-correlated signals in 𝑋. Like in 𝑋, each column in 𝑇 

represents the number of measurements, 𝑘 for a single variable 𝑡𝑖. The columns in 𝑇 

are arranged hierarchically starting from the highest variant component 𝑡1 to the least 

variant component 𝑡𝑝. The PCA strategy in the field of fault detection conserves the 

most variant sensor measurements that contain the fault signature (useful 

information) and eliminates the sensor measurements that do not contain useful 

information. 

The concept of PCA can be illustrated as shown in Figure 2.20, where the inputs are 

𝑥1 and 𝑥2 while the 𝑡1 and  𝑡2 are the PCs. From Figure 2.20, it can be seen that 𝑡1 

and  𝑡2 are orthogonal, and this condition is necessary to satisfy uncorrelation. 𝑡1 is 

more variant and hence contains more information in comparison to 𝑡2. Each 

component represents a different event, so a fault detection strategy employing PCA 

can detect faults more effectively if any of the main events change.  
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Figure 2.20 Principal Component Analysis [17] 

It should be noted that matrix 𝑇 is obtained from the transformation of matrix 𝑃. 𝑃 

should satisfy two conditions which are: the orthogonality of basis vectors (Principal 

Components) and the association of the principal direction with the largest variance. 

In a nutshell, for any matrix of measurements 𝑋, the goal is to get an orthogonal 

transformation of matrix P which would map 𝑋 to a new matrix 𝑇 which possesses a 

diagonal matrix. Therefore, the transformation eliminates the cross-correlation in the 

measurement matrix. The solution to this problem is first obtained by calculating the 

covariance of 𝑇 as shown in [28] such that: 

Σ𝑇 =
1

𝑛 − 1
𝑇𝑡𝑇 

=
1

𝑛 − 1
(𝑋𝑃)𝑡𝑋𝑃 
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=
1

𝑛 − 1
𝑃𝑡(𝑋𝑡𝑋)𝑃 

2.33 

  

𝑆 = 𝑋𝑡𝑋 2.34 

In Equation 2.34, 𝑆 is a symmetric 𝑚 x 𝑚 matrix. The symmetry of 𝑆 makes it 

decomposable into its eigenvalues and eigenvectors such that: 

𝑆 = 𝐵𝛬𝐵−1 2.35 

where the eigenvectors are located in 𝐵, while the eigenvalues are located in 𝛬, which 

is a diagonal matrix. 𝐵 is an orthogonal matrix, meaning its inverse is equal to its 

transpose (𝐵−1 = 𝐵𝑡). Hence, 

Σ𝑇 =
1

𝑛 − 1
𝑃𝑡(𝐵𝛬𝐵𝑡)𝑃 

2.36 

  

The solution to the problem is to make sure that Σ𝑇 is diagonal and since 𝛬 is 

diagonal, selecting 𝑃 = 𝐵 solves the problem such that: 

Σ𝑇 =
1

𝑛 − 1
𝛬 

2.37 

To obtain the eigenvectors while preventing numerical errors, Singular Value 

Decomposition (SVD) is used. SVD is used to factor out matrices into three 
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components: a left singular matrix 𝑈, a right singular matrix 𝑉, and a middle singular 

values matrix Σ. For any matrix 𝑋, the factorization is such that: 

𝑋 = 𝑈Σ𝑉𝑡 2.38 

 The PCA transformation matrix 𝑃 can be calculated using Equation 2.38. A better 

comprehension can be made if SVD is applied to 𝑆 = 𝑋𝑡𝑋 such that: 

𝑋𝑡𝑋 = 𝑉Σ𝑡U𝑡𝑈Σ𝑉𝑡 

 

2.39 

Matrix U is unitary, meaning that its inverse is equal to its transpose. Equation 2.39 

is then reformulated as: 

𝑋𝑡𝑋 = 𝑉Σ𝑡ΣV𝑡 2.40 

In SVD, the square root of eigenvectors of 𝑋𝑡𝑋  is given by the singular values matrix 

Σ in Equation 2.38. Hence Equation 2.40 is given as: 

𝑋𝑡𝑋 = 𝑉𝛬V𝑡 2.41 

From the comparison of Equation 2.41 with Equations 2.34 and 2.35, it can be 

observed that 𝐵 = 𝑉. Keeping in mind that the diagonality of Σ𝑇 is thanks to the 

selection of  𝑃 = 𝐵, the PCA transformation matrix 𝑃 equates to the SVD right 

singular matrix 𝑉. SVD ensures the hierarchical ranking of eigenvalues and their 
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corresponding eigenvectors to enable the PCs to follow the same order from the most 

variant (𝑡1) to the least variant (𝑡𝑝). 

PCA is very useful when it comes to putting the spotlight on patterns in multivariate 

data in addition to the relationship between its dependent variables. The inverse of 

Equation 2.32 is given by: 

X = TP𝑡 2.42 

Re-expressing 𝑋 in a more extensive form is given by: 

X = 𝑋̂ + 𝑋̃ 

= 𝑇̂𝑃̂ + 𝑇̃𝑃̃ 

= [𝑇̂    𝑇̃][𝑃̂    𝑃̃]𝑡 

= TP𝑡 2.43 

 T and P matrices are each split into two subspaces illustrated by a hat ( ̂ ) and tilde 

( ̃ ) sign. The hierarchical ranking of PCs in PCA indicates that the first subspace 

which is illustrated by the hat has the high varying PCs while the second subspace 

illustrated by the tilde has the residuals. The split of data into two subspaces enables 

PCA to exhibit fault detection capacities. The dominant features of a monitored 

system are represented by the hat, while the tilde represents the residuals such as 

noise and errors. For any dataset with 𝑚 PCs, 𝑛 components can be extrapolated to 
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the feature subspace and 𝑚 − 𝑛 PCs to the residual subspace. There are different rules 

used to select the appropriate number of PCs in the literature. However, three rules 

stand out from the crowd namely: the Heuristic rule, the Kaiser rule and the manual 

determination rule. In the Heuristic rule, the PCs representing 95% of all PCs’ 

variance are extrapolated to the feature subspace while the rest are deferred to the 

residual. In the Kaiser rule any PC with a variance greater than the average variance 

of all PCs is extrapolated to the feature subspace. In the last method, the extrapolation 

of the PCs to the subspaces is left to the end user. 

The completing part of PCA fault detection is the translation of the information found 

in the PCs to a detection algorithm. Joe Qin and Haqshenas [29], [30] pinpointed 

three indices namely: Hotteling’s 𝓣2, Squared Prediction Error (SPE) 𝒬, and 

Combined index φ. These indices operate by a comparison of the system’s 

measurements under test with that of the system under healthy operation (baseline 

measurements). Hotteling’s 𝓣2 measures PC’s variation between new and baseline 

measurements due to its close relation to 𝐹 distribution. Hotteling’s 𝓣2 displays a 

weighted extrapolation of the new measurements on the baseline’s feature subspace. 

Anomalies in new measurements that preserve the covariance relationship between 

variables in the baseline measurements are detectable using this index. In SPE, the 

extrapolation of new measurements is made on the baseline’s residual subspace 

instead. Anomalies in new measurements that violate the covariance relationship 

between variables in the baseline measurements are detectable using this index. The 
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combined index φ merges 𝓣2 and 𝒬 within it, and enables any anomaly in new 

measurements preserving the covariance relationship between variables or not in the 

baseline measurements to be detectable. Hotteling’s 𝓣2 is mathematically expressed 

as shown in Equation 2.44. 

    𝓣2 = 𝑥𝑛𝑒𝑤𝑃̂𝛬̂−1𝑃̂𝑡𝑥𝑛𝑒𝑤
𝑡  2.44 

= 𝑥𝑛𝑒𝑤𝐷̂𝑥𝑛𝑒𝑤
𝑡  2.45 

where 𝑥𝑛𝑒𝑤is the new set of measurements, and 𝐷̂ is the 𝒯2extrapolating matrix, 

which is formulated as shown in Equation 2.46. 

𝐷̂ =  𝑃̂𝛬̂−1𝑃̂𝑡   2.46 

𝛬̂ =
1

𝑛 − 1
𝑇̂𝑇̂𝑡 

2.47 

 where 𝑛 is the measurement size. SPE 𝒬 is mathematically formulated as shown in 

Equation 2.48: 

𝒬= ‖𝑥̃𝑛𝑒𝑤‖2 = ‖𝑥𝑛𝑒𝑤𝐶̃‖
2
 2.48 

 

𝐶̃ = 𝑃̃𝑃̃𝑡 2.49 

𝐶  is the 𝒬 extrapolating matrix. Hence, 𝑥̃ is the extrapolation of the measurement 

vector 𝑥 to the residual subspace using 𝐶̃ such that 𝑥̃ = 𝑥𝑃̃𝑃̃𝑡.  
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The Combined index φ is mathematically expressed as shown in Equation 2.50. 

φ =
𝒬

𝛿2
+

𝓣2

𝒯2
 

2.50 

 

= 𝑥𝑛𝑒𝑤𝛷𝑥𝑛𝑒𝑤
𝑡  

 

2.51 

where 𝛿2and 𝒯2 are respectively the 𝒬 and 𝓣2 upper limits [31] and 𝛷 is the φ 

extrapolation matrix defined as: 

𝛷 =
𝑃̃𝑃̃𝑡

𝛿2
+

𝑃̂𝛬̂−1𝑃̂𝑡

𝒯2
 

2.52 

The indices in 𝛷 are calculated and compared against their respective thresholds or 

upper limits such that any violation of the threshold will imply the presence of a fault 

in the system. Weighted chi-square distribution was shown by Box et al. [32] to be a 

good approximation of quadratic forms like 𝒬 and hence expressed in Equation 2.53 

as: 

𝛿𝒬 = (
𝑣

2𝑚
)𝜒2 (

2𝑚2

𝑣
) 

2.53 

where the sample mean and variance are represented respectively by 𝑚 and 𝑣. The 

term 
𝑣

2𝑚
  in Equation 2.53 represents the weight of the chi-squared distribution 𝜒2 

while 
2𝑚2

𝑣
 represents the chi-squared degrees of freedom. 
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Jackson [33] was able to formulate the upper limit of Hotteling 𝓣2 thanks to the fact 

that 𝓣2 follows 𝐹 distribution. Hence the upper limit is given by: 

𝒯2 =
𝑙 (𝑛− 𝑙)

𝑛−𝑙
𝐹(𝑙.𝑛− 𝑙,𝛼) 

2.54 

 where the sample size and the number of variables are represented by 𝑛 and 𝑙 

respectively. The required confidence level is represented by 𝛼. Equation 2.54 is 

appropriate when there is a high sample size 𝑛. Tracy et al. [34] formulated the upper 

limit for smaller sample sizes, given by: 

𝒯2 =
𝑙 (𝑛2 −𝑙)

𝑛(𝑛−𝑙)
𝐹(𝑙.𝑛− 𝑙,𝛼) 

2.55 

 On the other hand, Yue and Qin [31] were able to formulate the upper limit of the 

combined index φ thanks to the fact that φ can be approximated by a chi-squared 

distribution. Hence the upper limit is defined as: 

𝜁𝛼
2 = 𝑔φ𝜒𝛼

2ℎφ 2.56 

From Equation 2.56, 𝑔φ represents the weight of the chi-squared distribution 𝜒2 while 

ℎφ represents the chi-squared degrees of freedom. The required confidence level is 

represented by 𝛼. 𝑔φ and ℎφ are formulated as: 

𝑔φ =

𝑙
𝒯𝛼
4 +

𝜃2

𝛿𝛼
4

𝑙
𝒯𝛼
2 +

𝜃1

𝛿𝛼
2

 

2.57 
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ℎ𝜑 =
(

𝑙
𝒯𝛼
2 +

𝜃1

𝛿𝛼
2)

2

𝑙
𝒯𝛼
4 +

𝜃2

𝛿𝛼
4

 

2.58 

where 𝜃1 = 𝑡𝑟𝑎𝑐𝑒(𝛬̃) and 𝜃2 = 𝑡𝑟𝑎𝑐𝑒(𝛬2̃) with 𝛬̃ defined as: 

𝛬̃ =
1

𝑛 − 1
𝑇̃𝑇̃𝑡 

2.59 

Another statistical index was proposed by Haqshenas [29] based also on the PCs 

covariance, 𝑇. Taking the assumption that a measurement signal contains the baseline 

measurement in addition to faulty components, then the measurement signal can be 

formulated as: 

X = 𝑋∗ + 𝐹 2.60 

 where 𝑋∗ is the baseline healthy component and 𝐹 the faulty components. The PCs 

covariance is: 

𝐶𝑂𝑉(𝑇) = 𝐸(𝑇𝑇𝑡) − 𝐸(𝑇)𝐸(𝑇)𝑡 

                                       = 𝐸(X𝑃𝑃𝑡𝑋𝑡) − 𝐸(𝑋𝑃)𝐸(𝑋𝐹)𝑡 2.61 

Considering Equation 2.60, Equation 2.61 becomes: 

𝐶𝑂𝑉(𝑇) = 𝐸(𝑋∗𝑃𝑃𝑡𝑋∗𝑇) + 𝐸(𝐹𝑃𝑃𝑡𝐹𝑡) + 𝐸(𝑋∗𝑃𝑃𝑡𝐹𝑡)

+ 𝐸(𝐹𝑃𝑃𝑡𝑋∗𝑡) 

2.62 
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Taking the assumption that 𝑋∗ and 𝐹 are independent, Equation 2.62 is reformulated 

as: 

𝐶𝑂𝑉(𝑇) = 𝐶𝑂𝑉(𝑋∗𝑃) + 𝐶𝑂𝑉(𝐹𝑃) 2.63 

 From Equation 2.63, Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 = 𝐶𝑂𝑉(𝑋∗𝑃) was defined in Equation 2.33 as the 

PC covariance of the baseline measurement. If Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 = 𝐶𝑂𝑉(𝑇), Equation 2.63 

becomes: 

𝛴𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 = 𝛴𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 + 𝐶𝑂𝑉(𝐹𝑃)  2.64 

 Hence, 

𝐶𝑂𝑉(𝐹) = 𝑃(Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 − Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦)𝑃𝑡 2.65 

 Equation 2.65  represents the fault covariance extrapolation into the feature 

subspace. The PCA model is constructed based on the healthy (or baseline) 

measurements, where the PC covariance matrix is diagonalized. Hence,  Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 is 

a diagonal matrix in Equation 2.65. On the other hand, Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 is not diagonal due 

to the fault effects as its PCs were found using the baseline PCA model. In addition, 

the faulty condition dictates the diagonal elements found in the Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 matrix. 

Therefore, the presence of a fault in a monitored system is represented and 

characterized by the (Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 − Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦) term. Consequently, Haqshenas [29] 

defined the following index: 
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𝑆𝑐 = ∑
∑ (𝛴𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 − 𝛴𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦) ∘ (𝛴𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 − 𝛴𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦)𝑚

𝑖=1

𝜆𝑖

𝑚

𝑖=1

 
2.66 

where 𝜆𝑖 is the baseline PC variance. Due to the symmetric nature of the covariance 

matrix in Equation 2.66, the summation can be performed in any order (that is row-

wise then column-wise or vice versa). The multiplication symbol ∘ in Equation 2.66 

represents the Hadamard (entry-wise) multiplication. 𝑆𝑐 is compared against a 

threshold, such that if it is higher than the latter, the monitored system is stated as 

faulty. The advantage of Haqshenas’ index is that it produces a single output used for 

comparison with the threshold in contrast to other indices. In a nutshell, statistical 

indices help indicate the presence of a fault in a system but are not able to do fault 

diagnosis. 

Fault diagnosis is the process of sourcing a fault and its severity through its 

symptoms, applying knowledge and analyzing results. Accurate fault diagnosis starts 

after detection, where the required features are extracted for efficient fault 

classification or identification. Identification and subsequent curative actions can 

increase productivity and reduce the cost of maintenance in many industrial 

applications. 

One of the most used methods in fault diagnosis is contribution plots, which are 

graphical representations used to pinpoint which variable, sensor, or feature has the 

most impact on a fault. Alcala and Qin [35] defined three different plots for 𝓣2, 𝒬, 
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and φ indices. An example of a contribution plot is given in Figure 2.21 where the 

contribution of each variable (in this case four) is shown in each sample. From the 

example, it can be deduced that the variable in blue has the highest contribution to 

the fault.  

 

Figure 2.21 RBC chart example [17] 

Each of the three indices has its corresponding plot defined such that: 

𝑐𝑖, 𝓣2 = (𝑥𝑛𝑒𝑤𝐷̂0.5𝜉𝑖)
2 2.67 

  

𝑐𝑖,𝒬 = (𝑥𝑛𝑒𝑤𝐶̃𝜉𝑖)
2 2.68 

  

𝑐𝑖,φ = (𝑥𝑛𝑒𝑤𝛷0.5𝜉𝑖)
2 2.69 
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where 𝑥𝑛𝑒𝑤 is the new set of measurements and  𝑐𝑖,( )  is the contribution of the 𝑖𝑡ℎ 

variable. 𝜉𝑖 is a standard basis, whose size equates to that of the number of variables. 

It is a zero vector where only the 𝑖𝑡ℎ element equates to 1 such that: 

𝜉𝑖 = [0 0 0…0 1 0…0 0]𝑡 2.70 

 Overall, the contribution equations extrapolate each variable to a scoring subspace. 

However, discrepancies in the contribution are observed when these equations are 

applied to healthy measurements in such a way that faults existing in low-contribution 

variables are not adequately represented as they would be in a scenario where the 

faults would exist in high-contribution variables. To make the faults existing in 

different variables even, normalization of the contributions is used. In order to reach 

this goal, Dunia and Joe Qin [36] used the following mathematical expressions: 

   𝑅𝐵𝐶𝑖, 𝓣2 =
(𝑥𝑛𝑒𝑤𝐷̂0.5𝜉𝑖)

2

𝑑̂𝑖𝑖

 
2.71 

  

𝑅𝐵𝐶𝑖,𝒬 =
(𝑥𝑛𝑒𝑤𝐶̃𝜉𝑖)

2

𝑐̃𝑖𝑖
 

2.72 

  

  𝑅𝐵𝐶𝑖,𝜑 =
(𝑥𝑛𝑒𝑤𝛷0.5𝜉𝑖)

2

𝜙𝑖𝑖
 

2.73 

where, 



 

55 

  

  

𝑑̂𝑖𝑖 = 𝜉𝑖
𝑡𝐷̂𝜉𝑖 2.74 

 

𝑐̃𝑖𝑖 = 𝜉𝑖
𝑡𝐶̃𝜉𝑖 2.75 

  

𝜙𝑖𝑖 = 𝜉𝑖
𝑡𝛷𝜉𝑖 2.76 

 The index 𝑆𝑐 in Equation 2.66 was extended by Haqshenas [29] for fault diagnosis, 

simplifying Equation 2.65 to: 

𝐶𝑂𝑉(𝐹) = 𝑃(Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 − Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦) 𝑃𝑡 

The fault covariance is used for isolation via a newly defined index. This is performed 

by finding every variable contributing to the fault in the matrix 𝐶𝑂𝑉(𝐹) and 

normalizing it by its variance. This index is given by: 

𝐹𝑐 = (∑𝐶𝑂𝑉(𝐹)

𝑚

𝑖=1

∘ 𝐶𝑂𝑉(𝐹)) ∘ 𝛴𝜆 

2.77 

where 𝛴𝜆 = [
1

𝜆1
… 

1

𝜆𝑛
] is a vector containing the inverse of PC variances  𝜆𝑖. The 

output of 𝐹𝑐 is a vector with a size equal to the number of variables where the value 

of the 𝑖𝑡ℎ element constitutes the fault contribution of the 𝑖𝑡ℎ variable. Therefore, for 

a detected fault, the fault variables can be isolated. 
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2.6 Multiscale Fault Diagnosis 

The concepts of PCA and wavelet transforms were discussed in the previous sections. 

PCA is a strong tool used in multivariate analysis and wavelet transform is a strong 

time-frequency signal processing tool used for spectral and temporal decomposition 

of signals. The combination of wavelets and PCA creates a strong multivariate 

multiscale tool called Multiscale Principal Component Analysis (MSPCA) which 

stretches the field of fault diagnosis and is suitable for complex dynamic systems. 

MSPCA applies DWT on signals followed by PCA on the resulting coefficients 

originating from DWT. This way, PCA resolves the correlation between sensor 

measurements at different spectral resolutions, scrutinizing for valuable information 

between signals and their frequency scales. Figure 2.22 schematizes the concept of 

MSPCA where 𝑔 and ℎ are the low pass and high pass filters respectively. 

 

Figure 2.22 MSPCA Technique 
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MSCPCA was later modified by Yoon and MacGregor [37] to incorporate RBC 

(Reconstruction Based Charts) in the diagnosis. The DWT in the MSCPA resulted in 

down-sampling of the signals at each consecutive scale, creating shorter length 

coefficients. The Mod-MSPCA proposed up-scaling and reconstruction. Instead of 

feeding the wavelet coefficients directly in PCA, they are reconstructed via 

reconstruction filters. This conceptualizes the translation of measurement 

decomposition to their fragmentation into a combination of scaled-based signals. The 

decomposition of a data matric 𝑋 at 𝐽 different scales is formulated as follows: 

𝑊𝐽𝑋 = 𝐻1𝑋 + 𝐻2𝑋 + ⋯+ 𝐻𝐽𝑋 + 𝐺𝐽𝑋 2.78 

where 𝐺 and 𝐻 are respectively the low and high pass filters. By applying 

reconstruction filters to the Equation 2.78, the reconstruction can be written as: 

𝑊𝑠𝑊𝐽𝑋 = 𝐻1
𝑡𝐻1𝑋 + 𝐻2

𝑡𝐻2𝑋 + ⋯+ 𝐻𝐽
𝑡𝐻𝐽𝑋 + 𝐺𝐽

𝑡𝐺𝐽𝑋 

= 𝑋1 + 𝑋2 + ⋯ + 𝑋𝐽 + 𝑋𝐽+1 2.79 

where 𝑊𝑠 is the wavelet reconstruction (or synthesis) matrix. The newly 

reconstructed components (𝑋1 + ⋯+ 𝑋𝐽+1) are fed into PCA in the Mod-MSPCA.  

At this level of analysis, it should be noted that both Mod-MSPCA and MSCPCA 

use DWT where only the low pass filter is decomposed to the next level. However 

valuable information is lost in the high pass filter components of the signal and if the 

system dynamics exhibit changing patterns in high frequencies, its complete 

description might be lost and the subsequent FDD strategy might be less efficient. To 
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solve this problem, Ismail [17] replaced the DWT with WPT. Hence reformulating 

the reconstruction of the data matrix 𝑋 such that: 

𝑊𝑠𝑊𝐽𝑋 = 𝐻1
𝑡𝐻1𝑋 + 𝐺1

𝑡𝐺1𝑋 + 𝐻2
𝑡𝐻2𝑋 + ⋯+ 𝐻

2𝐽−1
𝑡 𝐻2𝐽−1𝑋 + 𝐺

2𝐽−1
𝑡 𝐺2𝐽−1𝑋  

= 𝑋1 + 𝑋2 + ⋯ + 𝑋2𝐽−1 + 𝑋2𝐽 2.80 

The newly reconstructed components (𝑋1 + 𝑋2 + ⋯+ 𝑋2𝐽−1+𝑋2𝐽) are fed into PCA 

allowing the FDD strategy to be performed in tighter high-frequency bands of 

measurements spectrum. This upgrade to the Mod-MSPCA done by Ismail [17] is 

called Extended Multiscale Principal Component Analysis (EMSPCA). The FDD of 

MSPCA, Mod-MSPCA and EMSPCA used the same statistical system monitoring 

concept where a comparison between the baseline (healthy) and the monitored 

system is performed. As such, a modification of statistical indices defined in 

Equations 2.44, 2.48, 2.50, 2.66 and 2.77 was needed for decomposition at any 𝐽scale 

such that: 

𝓣𝑗
2 = ∑

𝒯𝑖

𝜆𝑖,𝑗

𝐴

𝑖=1

 

2.81 

 

𝒬𝑗 = ∑𝑥̃𝑖,𝑗
2

𝑚

𝑖=1

 
2.82 
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φ𝑗 =
𝒬𝑗

𝛿𝑗
2 +

𝓣𝑗
2

𝒯𝑗
2  

2.83 

  

where 𝑗 = 1.2….𝐽+1 and 𝐴 is the number of PC. 

The statistical indices at each scale are totalized such that: 

𝓣2 = ∑𝓣𝑗
2

𝐽

𝑗=1

 

2.84 

  

𝒬 = ∑𝒬𝑗

𝐽

𝑗=1

 

2.85 

  

φ =
𝒬

𝛿2
+

𝓣2

𝒯2
 

2.86 

 The multiresolution version of Hasquenas index was formulated as: 

𝑆𝑐,𝑗

= ∑
∑ (Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 − Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦)𝑗 ∘ (Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 − Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦)𝑗

𝑚
𝑖=1

𝜆𝑖,𝑗

𝑚

𝑖=1

 

2.87 

  

The fault diagnosis RBC defined in Equations 2.71, 2.72 and 2.73 then become: 
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𝑅𝐵𝐶𝑖,𝓣𝑗
2 =

(𝑥𝑗𝐷̂𝑗
0.5𝜉𝑖)

2

𝑑̂𝑗,𝑖𝑖

 
2.88 

 

𝑅𝐵𝐶𝑖,𝒬𝑗
=

(𝑥𝑗𝐶̃𝑗𝜉𝑖)
2

𝑐̃𝑗,𝑖𝑖
 

2.89 

 

𝑅𝐵𝐶𝑖,φ𝑗
=

(𝑥𝑗𝛷𝑗
0.5𝜉𝑖)

2

𝜙𝑗,𝑖𝑖
 

2.90 

 

where: 

𝑑̂𝑗,𝑖𝑖 = 𝜉𝑖
𝑡𝐷̂𝑗𝜉𝑖 2.91 

  

𝑐̃𝑗,𝑖𝑖 = 𝜉𝑖
𝑡𝐶̃𝑗𝜉𝑖 2.92 

  

𝜙𝑗,𝑖𝑖 = 𝜉𝑖
𝑡𝛷𝑗𝜉𝑖 2.93 

  

The revised fault diagnosis index is given by: 
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𝐹𝑐,𝑗 = (∑𝐶𝑂𝑉(𝐹)

𝑚

𝑖=1

∘ 𝐶𝑂𝑉(𝐹))

𝑗

∘ 𝛴𝜆𝑗
 

2.94 

In Equation 2.87, 𝑆𝑐,𝑗 provides a single value at each spectral decomposition level 

and therefore is capable of detecting a fault and providing information on the fault 

frequency in its corresponding level. The fault diagnosis, via 𝐹𝑐,𝑗 portrays a detailed 

contribution map to the fault where for each spectral level, the contribution of each 

variable is presented. The fault type is hence characterized by the topography of the 

contribution map. It should be noted that both 𝑆𝑐,𝑗 and 𝐹𝑐,𝑗 monitor the variation 

between the “Healthy” and “Faulty” PCs covariance matrices. M. Ismail [17] added 

another step in his EMSPCA due to the vibroacoustic nature of his analyses. The 

vibration and sound measurements have different scales and variances and hence 

could result in misleading information if fed to the EMSPCA. Sound and vibration 

have different sensitivities to faults and hence, he added a normalization step in the 

signal pre-processing such that: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 =
𝑟𝑎𝑤 𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑐𝑒𝑛𝑡𝑟𝑒)

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑐𝑒𝑛𝑡𝑟𝑒)
 

2.95 

The raw signal is the monitored signal which is computed against the baseline 

(healthy) signal as for any signal-based algorithm, the monitored signal is compared 

to the baseline. 
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Cao et al. [38] used PCA for the fault diagnosis of cracks on a centrifugal pump’s 

blades. The multi-source signals obtained from the pump via a variety of sensors were 

processed by PCA to reduce the dimensionality and increase the feature resolution of 

the signals. The extracted features were used as input to a Gaussian Mixed Model 

(GMM) for classification. In [39], PCA was used to reduce the dimensionally of the 

data samples obtained from a marine diesel engine fuel oil supply system, using SVM 

for diagnosis. Xu et al. [40] used advanced PCA techniques for the fault diagnosis of 

turbomachinery damage subjected to uncertainty. The proposed methodology was a 

combination of discrete wavelet packet transform, Bayesian hypothesis testing, and 

probabilistic principal component analysis. The set of sensor data recording time 

series signals was decomposed in various wavelet coefficients. Possible 

imperfections assessment in the decomposed coefficients and subsequent avoidance 

of over-denoising was provided by the ratio of posterior odds Bayesian approach. 

The Bayesian wavelet clean-up method’s effectiveness was assessed using power 

spectral density estimated by the Welch method. Moreover, multivariate correlation 

and uncertainty were addressed by probabilistic principal component analysis of the 

multiple time series for crack damage diagnosis. Sheriff et al [41] used MSPCA for 

fault detection of a chemical processing plant thanks to its capacity for deterministic 

feature extraction and decorrelation of autocorrelated sensor measurements. The 

proposed algorithm is operated first by wavelet decomposition of the input data 

matrix followed by PCA on each of the wavelet coefficients. Then 𝓣2 or 𝒬 threshold 
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limits were applied to retain the wavelet coefficients of concern at each scale. Then 

the data matrix was reconstructed with the retained coefficients and scales and finally, 

PCA was applied to the reconstructed data matrix to obtain an approximate data 

matrix and residuals. 

2.7 Artificial Intelligence 

A complete fault diagnosis and prognosis strategy consists of three main tasks 

mainly: determining whether the monitored system is normal or not; locating the 

incipient fault and its reason; and predicting the trend of fault development. 

Essentially, fault diagnosis and prognosis can be considered as a pattern recognition 

problem, in regards to condition monitoring of ICEs. Artificial intelligence (AI), 

considered a powerful pattern recognition tool has retained the attention of 

researchers and exhibits promise in rotating machinery fault recognition applications. 

Direct fault pattern recognition is impossible due to the variability and abundance of 

monitored signals’ content. Most common intelligent fault diagnosis strategies have 

a workflow consisting of pre-processing of signals by feature extraction algorithms 

to modify the input pattern in such a way that they can be transformed to low 

dimensional feature vectors for smoother match and comparison [42].  The feature 

vectors are then fed as inputs to the AI techniques to achieve fault recognition. The 

fault recognition step sums up to mapping of the information gained in the feature 

space, to machinery fault in the fault space. Several AI techniques have been used in 
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fault diagnosis of rotating machinery, more specifically classifiers and statistical 

learning techniques such as K-Nearest neighbour (KNN), Bayesian classifier, 

Support Vector Machines (SVM) and Artificial Neural Networks (ANNs). One of the 

most recent techniques employed in the field of fault diagnosis is Deep Learning 

(DL). AI can also be categorized under the prism of the learning approach (that is 

supervised or unsupervised learning). In supervised learning, the training data used 

is already labelled. Here, the training data is used to infer a mapping function or 

learning algorithm from the input variable 𝑋 to the output variable 𝑌. The labels (also 

called desired outputs) are already known for any given pair of input-output, 𝑀 =

{∑(𝑋𝑖, 𝑌𝑖 )}𝑖
𝑁 where 𝑁 is the number of training examples. In unsupervised learning, 

the AI model uses unlabelled, unclassified and categorized learning data. The main 

goal of unsupervised learning is to decipher the patterns hidden in unlabelled data. 

Unlike supervised learning which is used for classification and/or regression, 

unsupervised learning is mostly used for clustering and/or self-organizing maps. The 

mosaic of AI techniques is shown in Figure 2.23 while the relationship between AI 

disciplines is shown in Figure 2.24. 
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Figure 2.23 Categories of AI techniques used in Machinery Health Monitoring [43] 

 

Figure 2.24 Relationship between AI disciplines [44] 



 

66 

  

  

2.7.1 K-Nearest Neighbour 

K-Nearest Neighbour (KNN) is an instanced based supervised learning algorithm 

based on the postulate that instances in a dataset will mostly exist in close vicinity to 

other instances with the same characteristics [44]. Given any set of classified 

instances, 𝑇 = [(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑁 , 𝑦𝑁)] where 𝑥𝑖is the feature vector of the 

unlabelled instance and 𝑦𝑖 the labelled instance. 𝑦𝑖 = 𝑐1, 𝑐2, … , 𝑐𝑘, 𝑖= 1, 2…N. For a 

given training sample (𝑥, 𝑦), the KNN algorithm looks for the nearest K instances to 

𝑥 based on a certain distance metric. 𝑁𝑘(𝑥) is the vicinity (neighbourhood) 

containing these k instances. The label 𝑦 of the test sample 𝑥 can be calculated on the 

basis of decision rules such that: 

𝑦 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑐𝑗

∑ 𝐼(

𝑥𝑖𝜖𝑁𝑘(𝑥)

𝑦𝑖 = 𝑐𝐽).         𝐼 = 1,2, … ,𝑁;          𝐽

= 1,2, … , 𝐾 

2.96 

where 𝐼 is the indicator function. 

When a classification label is attributed to the instances, then an unclassified 

instance’s label can be deduced by observing the attribute of it nearest neighbours as 

shown in Figure 2.25  
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Figure 2.25 KNN Diagram [44] 

Figure 2.25 shows that when K = 1 or 5, the test sample is classified as positive while 

when K =3, it is classified as negative.  In a nutshell, the KNN algorithm possesses 

the following three basic elements: the number of measured instances k, the distance 

metric and the classification decision rule. KNN has the advantage of having a simple 

implementation in contrast to other AI algorithms. 

Wang [45] was able to identify up to 5 levels of severity in gears cracks via KNN and 

the redundant statistical features built using Debauchees 44 binary WPT.  Pandya et 

al. [46] used the Hilbert–Huang transform (HHT) for feature extraction as input to 

KNN in an article on bearing fault diagnosis. A comparison with other AI techniques 

such as Naïve Bayes, ANN and weighted KNN was performed in the paper. It should 

be noted that KNN faces some difficulties such as the optimal selection of the 

parameter k and the indifferentiable neighbourhood boundary [47]. A modified 
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version of KNN was used by some researchers to overcome these problems. Lei et 

al. [48] used a weighted KNN integrated into their fault diagnosis strategy of 

bearings, where the extracted features were weighted per their sensitivity to the 

machine’s health states during the training process of the KNN model. Dong et al. 

[49] used particle swarm optimization to improve KNN and obtained better diagnosis 

results for bearings. Furthermore, Li et al. [50] used KNN in combination with PCA 

where the latter helped the compression of high dimensional time-frequency features 

into low dimensional uncorrelated eigenvectors as input to KNN for life-grade 

recognition of rotating machinery. 

2.7.2 Naïve Bayesian Classifier 

Mitchell [51] defined the Naïve Bayes methods as a supervised classification method, 

leveraging probabilistic computations based on Bayes’ Theorem and the assumption 

of conditional independence. Given a training set 𝑇 = [(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑁 , 𝑦𝑁)] 

labelled as 𝑦,  𝑦𝑖 = 𝑐1, 𝑐2, … , 𝑐𝑘, 𝑖= 1, 2…N and assuming there exist 𝑆𝑖 possible 

values for 𝑥𝑙, 𝑙= 1, 2, …, n; with 𝐾 possible values for 𝑌. Naïve Bayes starts by 

learning the combined probability distribution 𝑃(𝑋, 𝑌) of the input and output by 

conditional probability distribution based on the assumption of conditional 

independence, such that: 

𝑃(𝑋 = 𝑥|𝑌 = 𝑐𝑗) = 𝑃(𝑋(1) = 𝑥(1), … , 𝑋(𝑛) = 𝑥(𝑛)|𝑌 = 𝑐𝑗) 
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= ∏ 𝑃(𝑋(𝑙) = 𝑥(𝑙))
𝑛

𝑙=1
        𝑗 = 1, 2, … , 𝐾 

2.97 

 Then, on the basis of the learnt model, the output label 𝑦 showing the biggest 

posterior probability for the input 𝑥 can be computed through Bayes’ Theorem: 

𝑃(𝑌 = 𝑐𝑗|𝑋 = 𝑥) =
𝑃(𝑋 = 𝑥|𝑌 = 𝑐𝑗)𝑃(𝑌 = 𝑐𝑗)

∑ 𝑃(𝑋 = 𝑥|𝑌 = 𝑐𝑗)𝑃(𝑌 = 𝑐𝑗)𝑗

 
2.98 

  

and  

𝑦 − arg𝑚𝑎𝑥
𝑐𝑗

𝑃(𝑌 = 𝑐𝑗)∏ 𝑃(𝑋(𝑙) = 𝑥(𝑙))|
𝑙

𝑌 = 𝑐𝑗) 
2.99 

Its high efficiency and ease of implementation make naïve Bayes classification a 

common classification method. 

Seshadrinath et al. [52] used duel tree wavelet transform for feature extraction before 

implementing the naïve Bayes fault diagnosis model for induction machines. Cunha 

Palácios et al. [53] used the time domain as the analysis ground of their fault diagnosis 

strategy via naïve Bayes, where they used the amplitude of current signals from motor 

faults. Flett and Bone [54] proposed a diagnosis strategy for a diesel engine valve 

train and compared the results of different classifiers such as ANN, KNN and naïve 

Bayes classifiers with the latter having the best overall performance. 
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2.7.3 Support Vector Machines 

Support Vector Machines (SVM) is a supervised learning algorithm used for 

classification, clustering and regression. Its algorithm builds an optimal separating 

hyperplane 𝑓(𝑥) = 0  between data sets. Given a training set 𝑇 =

[(𝑥1, 𝑦1), (𝑥2, 𝑦2),… (𝑥𝑁 , 𝑦𝑁) labelled as 𝑦,  𝑦𝑖𝜖{−1, 1}, it solves a constrained 

quadratic problem based on the minimization of structural risk [55] , such that: 

𝑓(𝑥) = 𝑊𝑇𝑥 + 𝑏 = ∑𝑊𝑖𝑥𝑖 + 𝑏

𝑁

𝑖=1

 

2.100 

where 𝑊 is a vector of dimension N and 𝑏 is a scalar. The separation of the samples 

between the positive and negative classes necessitates the hyperplane to be subjected 

to:  

𝑦𝑖𝑓(𝑥1) = 𝑦𝑖(𝑊
𝑇𝑥 + 𝑏) ≥ 1,    𝑖 = 1. 2. … ,𝑁 2.101 

As shown in Figure 2.26, both hyperplanes 𝐻1 and 𝐻2 meet the constraint in Equation 

2.101. However, the optimal separating hyperplane 𝐻∗, is the one which 

discriminates the datasets by creating the maximum distance between the plane and 

the nearest data; that is the maximum margin, given by 𝛾 = 2
‖𝑊‖⁄ .  The 

optimization objective of the linear SVM is given in Equation 2.102. 

𝑚𝑖𝑛
𝑊,𝑏

    
1

2
‖𝑊‖2 

2.102 
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Using the Kuln-Tucher condition to convert the optimization problem into the 

equivalent Lagrangian dual quadratic optimization problem, the classifier based on 

the support vector can be obtained [44]. 

 

Figure 2.26 Linear SVM classification [47] 

Classification problems often exhibit a linear nature as shown in Figure 2.26 due to 

the fact that the hyperplane used is straight. However, in more challenging 

classification problems the optimal solution may employ a curved hyperplane as 

shown in Figure 2.27. 
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Figure 2.27 Non-linear SVM classification with curved hyperplane [56]  

It should also be noted that some datatypes are nonlinearly separable, hence the 

classification problem is denoted as non-linear and is solved using some type of 

kernel method. This method typically requires the support vectors to be transformed 

to a higher-dimensional input space. To rephrase it, this extra step converts a 

nonlinearly separable set of features to a set of linearly separable ones [56]. A critical 

step before the training and evaluation of SVM is feature selection. The feature 

selection methods can be categorized into three main types namely: embedded 

methods, filter methods, and wrapper methods [57]. 

In embedded methods, the feature selection tool is integrated into the classifier and 

the selection is automatically performed during the SVM training phase. This is 

achieved by what is called the “Kernel trick”; a kernel method capable of improving 
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the computational efficiency of SVM in training and conveniently aiding in 

preventing overfitting in ill-conditioned problems where the dimensionality of 

monitored signals is by far exceeding the number of available examples for training. 

A kernel function illustrates pairwise analogous measures between all example 

patterns summarized in a kernel matrix of dimension N x N, where N is the number 

of observations. Rather than depending on the raw feature vector as direct input to 

the SVM classifier, the kernel trick permits the SVM to be trained using the kernel 

matrix, hence mapping the raw measurements to a higher dimensional feature space 

for both linear and non-linear problems as shown in Figure 2.28. 

 

Figure 2.28 Conceptual portray of the 'Kernel Trick’ [56] 

Filter methods on the other hand perform dimensionality reduction of features prior 

to the classification and perform relevance measures on the training set, hence 
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removing the least important features before inserting a hyperplane. The feature 

reduction helps in: 

- Redundancy reduction in raw measurement for greater sample training data 

proportion relative to the dimensionality of the features 

- Interpretation facilitation of the final classifier by pinpointing the data having the 

most predictive information relevant to differentiating classes  

- Training process acceleration and computational load reduction 

An example of feature reduction involves the removal of near-zero variance and 

significantly correlated features. 

Wrapper methods train the classifier through successive iterations where the 

feedback from the previous iteration is used to select a subset of features for the next 

one. Certainly, wrapper methods exploit more computation power in contrast to 

embedded methods, but nonetheless, they are able to remove data points that when 

taken independently, do not encroach on the differentiation between class labels. The 

most commonly used wrapper method is the Recursive Feature Elimination (RFE) 

which selects features by their recursive ranking among smaller and smaller subsets 

of features via cross-validation. 

There are instances where real measurements can be associated with more than one 

class or group. In such situations, the SVM is extended using a multi-class 

classification algorithm. The one-versus-all approach is one of the simplest 
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techniques used in multi-class classification, where the measurements belonging to a 

certain group 𝑗 have to be differentiated from all other groups 𝑗 = 1, 2, … , 𝑘. In this 

scenario, all the groups other than 𝑗 are combined into one group and the selection of 

the hyperplane discriminating the samples in 𝑗 from the combined group is done using 

the standard SVM algorithm. Multiple class problems can be generalized by 

employing trained multiple one-versus all classifiers and use the obtained answers to 

combine them with a decision function. With (𝑤(𝑗), 𝑏(𝑗)) as notation, the optimal 

hyperplane for class 𝑗, and 𝑡(𝑗) = 𝑠𝑔𝑛(〈𝑤(𝑗), 𝑥 + 𝑏(𝑗)〉) the decision function for 𝑗 

after all the 𝑘 optimal separating hyperplanes have been found, the final classifier ℎ 

is expressed in Equation 2.103. 

ℎ(𝑥) = arg𝑚𝑎𝑥
𝑗

(𝑡(𝑗)(𝑥)) 2.103 

Li et al. [58] used SVM on acoustic signals analysis based on pseudo-Wigner-Ville 

Distribution (PWVD) for the diagnosis and prediction of several rotor crack depths. 

Li et al. [59] proposed a fault diagnosis method for mechanical systems using second-

generation WPT, Neighborhood Rough Set (NRS) and SVM, capable of performing 

fault detection, dimensionality reduction and pattern classification. Wang et al. [60] 

performed engine fault diagnosis using engine noise signals, onto which HHT was 

applied for feature extraction followed by the use of SVM for training, taking as input 

the noise signals’ fault feature vectors. Zhang et al. [61] used instantaneous 

crankshaft speed (ICS) as their basis for the combustion fault diagnosis of a large V-
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type marine engine. Feature extraction was done by using a cyclic polar map 

representation based on ICS.  The newly extracted features were used as input to an 

SVM model. Li et al. [62] implemented a multi-kernel SVM for the fault diagnosis 

of a gas turbine engine, which achieved improved results in contrast to traditional 

SVM. 

2.7.4 Artificial Neural Networks 

ANN is thought to be one of the most widely used algorithms [44]. Their concept 

originates from biological neural networks which they emulate in a reduced manner. 

The smallest unit of ANN is a neuron or perceptron, which is a processing element 

interconnected with other perceptrons. Perceptrons are arranged in a layer or vector, 

with the output of one layer being the input to the subsequent layer and possibly other 

layers. ANNs are formed of three components: input layer, hidden layer and output 

layer. A perceptron may be connected with all or a subset of other perceptrons in a 

subsequent layer as shown in Figure 2.30, hence simulating the brain’s synaptic 

connections as shown in Figure 2.29.  

 

Figure 2.29 A human neuron [44] 
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Weighted data signals entering a perceptron are analogous to electric signals into a 

nerve cell, creating a transfer of information in the network. A back propagation 

neural network (BPNN) is a multilayered perceptron consisting of forward and 

backward propagation by supervised learning. Multi-class layers process the input 

samples as shown in Figure 2.30 in forward propagation and they are finally mapped 

to the target class via the output layer. Given a training set 𝑇 =

[(𝑥1, 𝑦1), (𝑥2, 𝑦2),… (𝑥𝑁 , 𝑦𝑁)] with 𝑁 samples, where 𝑥𝑖 𝜖 ℛ𝑑 contains 𝑑 features 

and 𝑦𝑖 𝜖 ℛ𝑙 include 𝑙 health states, the output of the ℎth hidden layer is given as 

shown in Equation 2.104. 

(𝑥𝑖
ℎ)𝑗 = 𝜎ℎ (∑ 𝑊𝑗

ℎ · 𝑥𝑖
ℎ−1 + 𝑏𝑗

ℎ

𝑛ℎ−1

𝑖=1

) ,

𝑗 = 1, 2, … , 𝑛ℎ ,    ℎ = 1, 2, … ,𝐻, 

 

2.104 
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Figure 2.30 Back Propagation Neural Network architecture with 2 hidden layers 

[47] 

In Equation 2.104, (𝑥𝑖
ℎ)𝑗 is the output of the 𝑗th neuron in the ℎth hidden layer, and 

𝑥𝑖
0 = 𝑥𝑖. The number of neurons in the ℎth hidden layer is given by 𝑛ℎ. 𝜎ℎ is the 

activation function of the ℎth hidden layer and 𝑛ℎ−1 is the number of neurons in the 

(ℎ − 1)th hidden layer. 𝑊𝑗
ℎ is the weights between the neurons in the previous layer 

and 𝑗th neuron in the ℎth hidden layer and 𝑏𝑗
ℎ is the bias of the ℎth hidden layer. The 

output of a BPNN is predicted as: 
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(𝑦̂𝑖)𝑘 = 𝜎𝑜𝑢𝑡 (∑𝑊𝑗
𝑜𝑢𝑡 · 𝑥𝑖

𝐻 + 𝑏𝑗
𝑜𝑢𝑡

𝑛𝐻

𝑖=1

) , 𝑘 = 1, 2, … , 𝑙, 

2.105 

where (𝑦̂𝑖)𝑘 is the output predicted for the 𝑘th neuron in the output layer. 𝜎𝑜𝑢𝑡 is the 

output layer’s activation function. 𝑊𝑗
𝑜𝑢𝑡 and 𝑏𝑗

𝑜𝑢𝑡 are the output layer’s weights and 

bias respectively. For a given training set {𝑥𝑖, 𝑦𝑖}, the objective of the BPNN 

optimization aims at the reduction of the error between the target and the predicted 

output by: 

𝑚𝑖𝑛
𝑊,𝑏

       𝐸𝑖 =
1

2
∑[(𝑦𝑖)𝑘 − (𝑦̂𝑖)𝑘]

2

𝑙

𝑘=1

 

2.106 

 For the resolution of this problem, the training parameters 𝑊 and 𝑏 are updated by 

gradient descent such that: 

𝑊 ⃪ 𝑊 −  𝜂 ·
𝜕𝐸𝑖

𝜕𝑊
 ,                      𝑏 ⃪ 𝑏 −  𝜂 ·

𝜕𝐸𝑖

𝜕𝑏
 , 2.107 

 where 𝜂 represents the learning rate. The error gradient spreads backward from the 

output layer to the input layer and updates the training parameters layer by layer 

[63]. ANNs effectuate algorithms that simulate neurological-related capabilities like 

learning from experience, performing generalizations from analogous events and 

judging states where poor results were achieved in the past. 

Zabihi-Herasi et al [64] used ANN for combustion fault detection and diagnosis on a 

12-cylinder 588 kW trainset diesel engine based on vibration data obtained from the 

intake manifold and cylinder heads. Feature extraction was performed using discrete 
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wavelet transform and they were used as input into a Multilayer Perceptron (MLP) 

for diagnosis of faulty cylinders subjected to the abnormal fuel injection. In [65], 

combustion torque was used as the basis for the misfire fault diagnosis of a gasoline 

engine. Due to the impossibility of directly measuring combustion torque, an 

Optimized Luenberger Sliding Mode Observer (OLSMO) was used to estimate 

dynamic engine combustion torque in transient conditions. Feature extraction was 

done by summation of the estimated combustion torque for each combustion cylinder 

in one cycle. The extracted features were used as input for various ANN architectures 

such as Back-Propagation Neural Network (BPNN), and Elman Neural Network 

(ENN) for comparison with the latter showing the best results. Wang et al. [66] used 

engine acoustics signals for fault diagnosis of a gasoline engine. An incomplete 

wavelet packet analysis (WPA) model consisting of a five-level discrete wavelet 

transform (DWT) and a four-level WPA was applied to engine noise signals for 

feature extraction. This was followed by classification using BPNN which was 

capable of diagnosing nine different fault conditions. 
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2.7.5 Deep learning 

It might be difficult to determine which features should be extracted as input to AI 

algorithms. Deep Learning (DL) has the potential to alleviate this problem.  As such 

DL has shown top-notch performance in fields such as computer vision, audio 

recognition, natural language processing, as well as fault diagnosis. DL-based 

diagnosis models are capable of automatically learning features from the monitored 

input data and simultaneously recognizing health states in accordance with the 

learned features. Via non-linear functions models, they are capable of adaptively 

capturing representation information from natural input signals and approximate 

complex non-linear functions with little error. They are mostly composed of feature 

extraction layers and classification layers. First, the models use hierarchical networks 

like autoencoders (AEs), deep belief networks (DBNs), convolutional neural 

networks (CNNs), and Recurrent Neural Networks (RNNs) for abstracted features 

learning layer by layer. Second, the output layer is placed after the last extraction 

layer for the recognition of the health state, usually with ANN-based classifiers due 

to their high capacity in multiclass classification. The error between the target and 

the actual output in the training phase is minimized by backpropagation to update the 

training parameters of the models.  
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2.7.5.1 Convolutional Neural Network 

 

Figure 2.31  Image recognition Convolutional Neural Network architecture: 

Overview and details [67]  
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Convolutional Neural Network (CNN) as shown in Figure 2.31 is a supervised DL 

method which has shown great achievements in image identification, target tracking 

and speech recognition [68]. CNN is generally composed of convolution layers, 

pooling layers and full-connected layers. Figure 2.32 details the basic principle of 

convolution and pooling. 

 

 

Figure 2.32 a) Convolution process and b) Pooling process [47] 
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The filter kernels 𝑘𝑐 𝜖 ℛ𝐻𝐿𝐷 used in convolution to convolute the input vector 

𝑥𝑐−1 𝜖 ℛ𝑀𝑁 from the precedent (𝑐 − 1)th layer where 𝐻 is the kernels’ height; 𝐿 

and 𝐷 are respectively the kernels’ length and depth. The output mapping of the 𝑐th 

layer is obtained such that: 

𝑥𝑖
𝑐 = 𝜎𝑟(𝑥𝑖

𝑐−1
 𝑘𝑐 + 𝑏𝑐) 𝜖 ℛ(𝑀−𝐻+1)(𝑁−𝐿+1)𝐷            𝑐

=  2, 3, … 

 

(𝑥𝑖
𝑐−1
 𝑘𝑐)𝑗,𝑘,𝑑 = ∑ ∑ ∑𝑥(𝑖),𝑗+ℎ−1,𝑘+𝑙−1,𝑚

𝑐

𝐿

𝑙=1

𝐻

ℎ=1

𝑀

𝑚=1

·  𝑘ℎ,𝑙,𝑑
𝑐  

 

2.108 

In Equation 2.108 𝜎𝑟 is the activation function rectified linear unit (ReLU). Down-

sampling processing in the pooling layers is effectively used to reduce overfitting and 

diminish the number of training parameters as shown in Figure 2.32b. Max pooling 

and mean pooling are the commonly used down-sampling forms and hence the 

pooling feature map is expressed as shown in Equation 2.109. 

(𝑣𝑖
𝑝)𝑚,𝑛,𝑑 = 𝑑𝑜𝑤𝑛 {𝑥(𝑖),𝑗,𝑘,𝑑

𝑝−1 |∀𝑥(𝑖),𝑗,𝑘,𝑑
𝑝−1  𝜖 𝑥𝑖

𝑝−1, 𝑗, 𝑘 𝜖𝑁+   , 𝑠𝑟𝑡} 

𝑠. 𝑡.    𝑠𝑟 ≤ 𝑗 ≤ 𝑠𝑟𝑚,       𝑠𝑟(𝑛 − 1) ≤ 𝑗 ≤ 𝑠𝑡𝑛 

 

2.109 

𝑑𝑜𝑤𝑛 (·) is the down-sampling functions including max (·) and mean (·) respectively, 

and 𝑠𝑟𝑡 are the filters in the pooling layer. The compilation of convolution and 

pooling layers, permits CNN to learn the deep layer features from the input data. 
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These features are subsequently flattened into a 1D vector as the input to the fully 

connected layers. Furthermore, they are mapped into the target class via the 

multilayer neural network. The output of the fully connected layers is given as: 

𝑥𝑖
𝑓

= 𝜎𝑟(𝑊
𝑓 · 𝑥𝑖

𝑓−1
+ 𝑏𝑓),           𝑓 = 2, 3, … 2.110 

 In Equation 2.110,  𝑥𝑖
1 = flatten (𝑣𝑖

𝑝) is the fully connected layers’ output and θ𝑓 =

{𝑊𝑓 ,  𝑏𝑓} are the training parameters of the fully connected layers. 

Qin et al. [69] used a multi-domain twin CNN for the misfire fault diagnosis of a 

diesel engine. In their proposed model, vibration signals from the engine’s cylinder 

heads are fed into the input layer of the model. Three input layers were constructed 

to automatically extract and combine the time domain, time-frequency domain and 

handcraft time domain statistical features. The extraction of this multi-domain 

information of vibration signals was achieved thanks to twin convolutional networks 

with a large first layer kernel. This configuration enabled the model to be robust to 

environmental noise and changes in operating conditions and achieve 97.019% 

accuracy with signal signal-to-noise ratio of 4 dB. In the study presented by Huangfu 

et al.  [70], knock sensors’ and accelerometers’ signals were decomposed in 2D Mel-

frequency Spectral Coefficients feature maps. These 2D spectrograms were stacked 

into a 3D matrix, hence creating an analogy with an image. This image containing 

patterns was used as input to a CNN for classification. The proposed method helped 

in the diagnosis of gasoline engine combustion faults related to spark plugs. In the 
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paper presented by Shahid et al. [71], the MPU sensor signal measuring the angular 

speed of a marine diesel engine was converted to a 1D vector Crank Angle Degree 

(CAD) signal. The 1D signal was the input to a CNN engineered for multi-class 

classification which combined feature extraction and pattern recognition in a single 

learner. The reduced time complexity and robustness of the 1D-based CNN 

architecture were put forward in contrast to 2D-based CNNs. Hence the proposed 

architecture was tested for the diagnosis of misfires and load changes together in 

engine operations with more than 99% accuracy. 

2.7.5.2 Recurrent Neural Network 

Recurrent Neural Networks (RNNs) are a category of ANNs that are tailored to 

process sequential data and time-series data, by defining the dependencies between 

various time stamps [72]. However, long-term dependencies are handled by two types 

of RNNs: The Long Short-Term Memory (LSTM) and the Gated Recurrent Unit 

(GRU). Under the prism of DL, LSTM has become the main focus due to its 

production of interesting results for RNN-based models [73]. This success is due to 

the fact that the information flow in and out of the cell is regulated by the introduction 

of a memory cell. This memory cell regulates and protects the cell state and is 

composed of three non-linear gated units. Information flow along an entire network 

is facilitated thanks to these gated units which eliminate the problem of gradient 

vanishing by selective pattern remembering, for a long period of time [74]. For this 
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reason, LSTM networks leverage a huge potential in prediction and prognostics. The 

LSTM cell architecture is shown in Figure 2.33. 

 

Figure 2.33 An LSTM cell with a detailed overview of its internal operations 

An LSTM cell memory is defined by a cell state 𝑐𝑘 and a hidden state 𝑠𝑘, both updated 

during each time step. For each time instance, 𝑘 the external input 𝑥𝑘is fed to the 

model, and the cell generates the corresponding output 𝑠𝑘 The LSTM combines the 

hidden state 𝑠𝑘−1 of the precedent time step with the new input 𝑥𝑘, to update the cell 

state 𝑐𝑘. As a result, the hidden state 𝑠𝑘  is updated using a filtered version of 𝑐𝑘, and 

this updated hidden state also functions as the output of the cell. In each of the gated 

units, the 𝜎 operator is exploited by a neural layer to create a vector 𝑰𝑘(0≤ 𝑰𝑘 ≤ 1). 

Each element in 𝑰𝑘 commands the (partial) maintain or erase of its corresponding 

state cell element. The first gate also known as the forget gate rules during each time 

instance 𝑘, what portion of information found in the prior cell state 𝑐𝑘−1 becomes 
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irrelevant based on 𝑥𝑘 which contains the new information, and the precedent hidden 

state 𝑠𝑘−1. This operation is mathematically expressed as: 

𝑰𝑘
𝑓

=  𝜎(𝑊1
𝑠𝑠𝑘−1 + 𝑊1

𝑥𝑥𝑘 + 𝑏1) 2.111 

 The input gate rules the relevancy of the information inlaid in the input 𝑥𝑘 and prior 

hidden cell state 𝑐𝑘−1 combined. Two mathematical operations govern the insertion 

of this new information. The elements of 𝑐𝑘−1 which are going to be uploaded by the 

new information are determined by a calculated vector, 𝑰k
i . 𝑐̃𝑘typically houses the 

actual information that should be added to the prior cell state 𝑐𝑘−1. The information 

found in the precedent hidden state 𝑠𝑘−1 and the input 𝑥𝑘 is compressed by the 

hyperbolic tangent operator between -1 and 1, thereby helping in the network 

regulation such that: 

𝑰𝑘
𝑖 =  𝜎(𝑊2

𝑠𝑠𝑘−1 + 𝑊2
𝑥𝑥𝑘 + 𝑏2) 2.112 

and 

𝑐̃𝑘 =  𝑡𝑎𝑛ℎ(𝑊3
𝑠𝑠𝑘−1 + 𝑊3

𝑥𝑥𝑘 + 𝑏3) 2.113 

The updated cell state 𝑐𝑘 is obtained by the combination of the information obtained 

from the forget and input gates. The relevant information in the prior cell state 𝑐𝑘−1 

and in the new information in 𝑐̃𝑘 which will be inserted in the updated cell state 𝑐𝑘, 

is determined by the sigmoid outputs 𝑰k
f  and 𝑰k

i , onto which entry wise multiplication 

is performed such that: 
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𝑐𝑘 = 𝑰𝑘
𝑓

∘ 𝑐𝑘−1 + 𝑰𝑘
𝑖 ∘ 𝑐̃𝑘 2.114 

 The LSTM cell’s output 𝑐𝑘 is defined by the output gate which is also a filtered 

version of the updated cell state ck. The components that should be erased from the 

cell state ck are determined by the vector 𝐈𝑘
𝑜, which in its essence is influenced by the 

information contained in 𝑥𝑘 and sk−1. Hence: 

𝑰𝑘
𝑜 =  𝜎(𝑊4

𝑠𝑠𝑘−1 + 𝑊4
𝑥𝑥𝑘 + 𝑏4) 2.115 

and 

𝑠𝑘 = 𝑰𝑘
𝑜 ∘ 𝑡𝑎𝑛ℎ(𝑐𝑘) 2.116 

In summary, the LSTM cell’s memory is characterized by a cell state c𝑘 𝜖 ℝ𝑛𝑠 and 

hidden state s𝑘 𝜖 ℝ𝑛𝑠, both subject to updates at each time step. The initial cell state 

c0 and initial hidden state s0 are initialized to zero. Given an input 𝑥𝑘 𝜖 ℝ𝑛𝑖, the 

trainable weight matrices are denoted as 𝑊j
𝑠 𝜖 ℝ𝑛𝑠  𝑛𝑠 and 𝑊j

𝑥 𝜖 ℝ𝑛𝑠  𝑛𝑖 for 𝑗 𝜖 

{1,…,4}. The corresponding bias vectors are defined by 𝑏j 𝜖 ℝ
𝑛𝑠 for 𝑗 𝜖 {1,…,4}. 

Calvo-Bascones et al [75] presented a methodology to perform the prognosis of a 

diesel engine generator’s cooling system. The focus of the methodology was to 

analyze the degradation of its cylinders via inputs such as the gross power and the 

temperatures of the intake and exhaust manifold gas with that of the coolant at the 

engine block outlet. LSTM was used to learn the temporal features and evolution of 

two computed indicators (Deviation and Similarity) which were based on the 
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aforementioned inputs and characterize the behaviours of the engine. Run-to-failure 

data of a marine diesel engine in [76] was used to investigate the prognostics of two 

faults namely: an air filter fault and a turbocharger fault. The data obtained was used 

to construct remaining useful life targets, mapped to sensor measurements. The 

LSTM network was used to learn this temporal mapping. 

Zhang et al. 2023 [77] used a multivariate LSTM trained using the Adam 

optimization algorithm to realize power demand predictions with input data delivered 

by the advanced driving assistance system combined with road condition data given 

by map service providers. This NN architecture inserts itself in a data-driven 

predictive energy consumption minimization strategy to explore the fuel-saving 

potential of a connected plug-in hybrid vehicle. The proposed strategy achieved a 

fuel consumption reduction of 3.1% when compared to the adaptive energy 

consumption minimization strategy and 13.2% when compared to rule-based control. 
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Chapter 3:  Experimental Set-up 

The experimental phase of the research was conducted at the Centre for Mechatronics 

and Hybrid Technologies (CMHT) at McMaster University. The CMHT houses a 

dynamometer laboratory (henceforth referred to as “dyno lab”) where ICEs can be 

tested as shown in Figure 3.1. 

 

Figure 3.1 Engine connected to a dynamometer 
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As shown in Figure 3.1, the dynamometer shaft is coupled to the engine shaft and 

hence engine power output can be measured with accuracy. The test cell houses 

various measurement equipment to collect data related to pressure, temperature, 

vibration, sound, and light. The test cell is part of a larger framework which is the 

dyno lab as shown in Figure 3.2. Further description of the dyno lab’s main facilities 

is found downstream of this chapter. 

 

Figure 3.2 Engine Dyno Lab 

The dyno lab integrates the control loops, connecting pipes, accessories, 

communication and measuring systems in addition to an operator place for total 

control of experimental research activities. The dyno lab provides open access to all 



 

93 

  

  

engine components and thus enables engine fine-tuning and development under 

optimum operating conditions. In addition to performance testing (which includes 

fuel consumption, emissions, speed, torque and in-cylinder pressure), other engine 

development and test activities can be conducted on aspects such as combustion, 

engine controller calibration, engine controller unit (ECU) development, and 

emerging technologies in FDD. The dyno lab at the CMHT was instrumental in [78] 

where it was used to provide data for the elaboration of an FDD solution for faults 

such as exhaust gas recirculation valve and cylinder leakage. The CMHT dyno lab 

was used in [79] where engine data was collected by Mehdi Sadeghkazemi to assess 

the performance of a novel NanoSpark spark plug. The data collected by Mehdi 

Sadeghkazemi is the one used for the implementation of the FDD solutions in this 

research. 

Further to the process followed by [79] and prior to conducting the actual engine 

testing, some preliminary safety guards were followed to address the issue of results 

repeatability. Engine tests were performed more than once to check the testing 

process's precision. Parameters that could affect engine outputs (torque, exhaust 

temperature, fuel consumption and emissions) were monitored to satisfy the 

repeatability condition. These could be any of the engine fluids’ conditions, control 

parameters, accessory parameters and ambient air conditions in the test cell. This 

monitoring process is essential when comparing the alternative engine hardware 

changes as well as FDD implementation. 
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At constant air temperature and speed, the intake manifold pressure is proportional 

to the air and fuel mass flow rates into the cylinders. Hence the engine load and power 

are dictated by the cylinder charge. The ECU controls the air mass flow and fuel 

injection timing by taking information from the torque and power demand, and other 

vehicle subsystems to determine the opening of the throttle and control the latter 

thanks to a PID controller [80]. In order to avoid unfair comparison, the engine load 

was set by overriding the throttle position directly from the ECU. Other affecting 

parameters to the air mass flow such as air intake temperature and intake and exhaust 

valve timing were monitored. In addition to engine load, the second parameter 

determining engine operating points is engine speed and it was controlled by 

operating the engine in Throttle-Speed mode via the dynamometer. 

 

 

 

 

 

 

 

 



 

95 

  

  

3.1 Testing Set-up 

Table 3.1 lists the engine test cell facilities at the Centre for Mechatronics and Hybrid 

Technologies (CMHT) which were used for data collection under and as described in 

[79]. 

Table 3.1 Testing set-up facilities 

Facility Description 

Engine (Gasoline) 2018 Ford Coyote Engine, Gen 3 

Engine Dynamometer Horiba Schenk Titan T 250 

Engine Control Unit (ECU) EFI Technologies Open Access ECU 

Crank Angle Position Sensor Kistler Optical Encoder type 2614CK 

Combustion Analyzer Kistler KiBox to Go type 2893A 

Dynamometer Accessories Fuel Supply System, Engine Coolant Circuit, 

Lube Cooling Circuit, Electrical Power Supply 

System 

 

 

 

 

 



 

96 

  

  

3.1.1 Ford Coyote Engine 

 

Figure 3.3 Ford Coyote Engine 

The engine used for the experiment is manufactured by Ford Motors Company and 

is a Generation 3 2018 Ford Coyote Engine as shown in Figure 3.3. Table 3.2 

summarizes the engine’s specifications. 
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Table 3.2 Ford Coyote Engine Specifications 

Metric Specification 

Maximum Horsepower 343 kW @ 6750 rpm 

Maximum Torque 569 Nm @ 4500 rpm 

Number of cylinders 8 

Displacement 5.038 litres 

Compression ratio 12.1 

Bore 93.0 mm 

Stroke 92.7 mm 

Firing order 1-3-7-2-6-5-4-8 

Fuel system Direct Fuel Injection 

Spark plug 12405 

Spark plug gap 1.25-1.35 mm 

Valvetrain Dual Overhead Camshaft (DOHC), 

4 valves/cylinder 

Weight (without accessory drive 

components) 

205.5 kg 
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3.1.2 Engine Dynamometer 

The CMHT has at its disposal a Titan T 250 dynamometer manufactured by HORIBA 

Automotive Test Systems as shown in Figure 3.1 with specifications summarized in 

Table 3.3.  

Table 3.3 HORIBA Titan Engine Dynamometer Specifications 

Metric Specifications 

Power 220 KW 

Torque 600 Nm 

Speed 8000 rpm 

Idle Speed >700 rpm 

Mass moment of inertia > 0.15 𝑘𝑔𝑚2 

 

It is composed of 5 modules (shown in Figure 3.4), namely: 

• Loading Unit, which consists of a Dynas3 asynchronous electric 

motor/generator with a power unit, a shaft connection to the engine and 

a SPARC controller 

• Test stand automation system, which controls and monitors engine tests using 

STARS software 
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• Data logging, which consists of measuring sub-modules coupled to other 

optional measuring instruments all housed in a measuring box for the 

measurement of variables during engine testing 

• Media conditioning, which are optional units that can be applicable to engine 

fuel, lube and coolant conditioning 

• Operator place, which consists of an instrumentation and control cabinet 

coupled to a PC with a built-in cable lead and holder for the STARS-PC 

automation software 

 

Figure 3.4 Titan T 250 test stand overview [79] 



 

100 

  

  

3.1.3 Engine Control Unit 

The Ford Coyote engine used for the experiment has an ECU manufactured by EFI 

Technologies Incorporation, which is a supplier to Ford Motor Company for its 

racing activities. Engine data logging and control parameters are openly accessible to 

users via the ECU. When investigating the effects of a certain hardware configuration 

on engine performance, it is possible to maintain other parameters constant or locked 

in order to exclude their effect on engine outputs thanks to the ECU. To maintain 

consistency in results, all control parameters in addition to factors affecting the 

engine fluids’ conditions and ambient air should be monitored and if necessary, kept 

the same. A portion of this recommendation is executed by the ECU control functions 

while the other portion related to the engine dynamometer is executed by the 

HORIBA Titan T 250 media conditioning unit module. The ECU Configuration Tool 

(ECT) is the software that operates the EFI and enables data logging and analysis. It 

also enables engine management system calibration for calibration adjustments, 

duplication or loading. 

3.1.4 Combustion Analyzer 

To tap into the knock sensor signals coming from the engine, a measurement and 

analysis system called KiBox To Go manufactured by Kistler Instruments AG was 

used. This equipment was developed to measure in-cylinder pressure and engine 

signals. It is operated by its associated software called KiBox Cockpit and can 
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synchronously present and analyze combustion results in real-time and 

simultaneously with other control and process variables of the ECU. It has a 

resolution of 10 samples per crank angle (equivalent to 7200 samples per engine 

cycle) via its 8 analog input channels. The measurement set-up can be connected to 

an engine’s ECU and provide the latter combustion and other engine measurements 

for control and diagnosis. On the other hand, the KiBox can also be set up in a 

standalone configuration, where it is not connected to the engine ECU. The 

standalone configuration as shown in Figure 3.5 was what was used in this research. 

 

Figure 3.5 KiBox set-up in a standalone configuration 

The high resolution provided by the KiBox was one of the parameters that dictated 

the use of this equipment to perform knock sensor data collection. The equipment is 

also capable of collecting the signal of the crank wheel sensor and determining the 

current crank angle position thanks to a crank angle adapter which can use the engine 

crank wheel position sensor or Kistler optical encoders if a higher precision is 
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required. Hence the measured variables can be resolved in the crank angle domain 

with reference to the Top Dead Centre (TDC) of cylinder number 1 (indicated in 

Figure 3.8) at the power stroke. This resampling capacity in the crank angle domain 

is the second parameter that dictated the use of the KiBox. The determination of the 

TDC is a critical step for data analysis in the crank angle domain. For this purpose, a 

pressure sensor was inserted at a precise location in the cylinder head as shown in 

Figure 3.6, with Table 3.4 resuming the technical characteristics of the Kistler 6125C 

pressure transducer.  

 

Figure 3.6 Kistler 6125C pressure transducer (left) and combustion chamber 

location (right) 
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Table 3.4 Kistler 6125C pressure transducer technical characteristics 

Metric Range 

Measuring range 0 to 300 bar 

Operating temperature range -20 … 350 °C 

Natural frequency > 70 kHz 

Overload 300 bar 

Torque wrench setting 10 Nm 

Insulation resistance at 300 C ≥ 1013 Ω 

Thermal shock error (at 1500 rpm and IMEP = 9 

bar) 

Δ𝑝 ≤0.3 𝑏𝑎𝑟 

 

The engine was operated by the dynamometer in motoring mode, to simulate the 

coasting of the reference cylinder. Coasting is the unfuelled running of the engine, 

where the crankshaft is solely driven by mechanical forces in the absence of 

combustion. In motoring mode, only air is present in the cylinders and it can be 

considered as an ideal gas such that the compression expansion process becomes 

frictionless. Hence the in-cylinder pressure signal, deprived of any combustion 

effects, enables the TDC to be determined by locating the point of peak pressure 

while considering thermodynamic losses caused by heat transfer and air leakage. The 

position of the TDC is very important as an error of 10 can cause up to 10% error in 
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indicated mean effective pressure, which directly correlates with engine torque and 

power [81]. The resulting TDC was stored as a reference in KiBox Cockpit for 

subsequent data collection. 

3.1.5 Crank Angle Encoder 

The TDC reference coupled to the crank angle signal is needed by the KiBox setup 

for the synchronization of engine data collected and engine revolution. The relatively 

low resolution of the crank angle signal, oriented the experimental phase of the 

research to opt for an optical encoder, namely Kistler optical encoder type 2614CK 

as shown in Figure 3.7 which offers a much higher resolution of 0.50 of crank angle 

and can operate to speeds up to 1200rpm.  

 

Figure 3.7 Type 2614CK Kistler optical encoder 
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3.1.6 Dynamometer Accessories 

The engine dyno lab as shown in Figure 3.2 houses a number of circuits, loops, and 

systems which contribute to the operation, monitoring and control of the engine. Fuel 

is delivered with the required pressure to the engine thanks to a fuel system, in which 

fuel flow is measured for fuel consumption calculations. The lube and coolant 

circulation pumps with the fuel supply pump, in addition to the engine ignition system 

and ECU are electrified by the power system. The supply voltage also directly feeds 

some engine sensors and actuators, which imposes the supply to be free of any 

oscillations in order to have no impact on engine control phenomena on aspects such 

as variable camshaft timing and lambda control. 

The dyno lab’s lube and coolant circuits are connected to the engine for the control 

of the latter’s oil and coolant temperatures. The engine and dyno lab’s cooling circuits 

are directly connected to each other, allowing the engine’s coolant carrying excess 

heat to circulate through the dyno’s cooling circuit. On the other hand, the engine’s 

and dyno’s lube circuits are not in direct contact and the heat transfer from the engine 

to the dyno circuit is performed via a cross-flow heat exchanger. The adjustment of 

the set points coupled to the control of the lube and coolant flow via their 

corresponding control flow valves enables the regulation of the engine’s lube and 

cooling temperatures thanks to the STARS automation system onto which both lube 

and cooling systems are linked. 
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It should be noted that additional sensors are installed in the dyno lab to measure 

intake air pressure, temperature, and flow, ambient air pressure, temperature and 

humidity, exhaust gas temperature, engine lube and coolant temperature and pressure, 

and the fuel line pressure. The different quantities measured enable the engine dyno 

operator to perform monitoring during engine tests and analyze the effect of each 

parameter on the engine output to protect the integrity of the engine and engine dyno 

facilities.  

3.2 Data Logging and Management 

Throughout the experiment, three different data logging/control paths were present 

namely: The Coyote engine’s ECU, the Horiba dynamometer’s software STARS, and 

the Kistler combustion analyzer. In the optic of keeping the recorded engine 

parameters as close as possible for a fair comparison between engine hardware 

changes, close attention was kept on engine air flow as it was the parameter that 

affected the most engine torque, in addition to control variables such as throttle 

position, exhaust and intake valve timing, and finally the ambient conditions. All 

comparative tests were conducted within the same day for a specific engine speed to 

avoid day-to-day variations. A large number of parameters from the three 

aforementioned paths were recorded with different formats of origin. Therefore, to 

facilitate the post-processing step of the experiment, an extensive MATLAB m-file 

was developed to process the large volume of recorded data. With recorded 



 

107 

  

  

parameters within an acceptable range to satisfy the repeatability of tests, four main 

variables were of key interest throughout the experiment. The variables were the four 

knock sensor signals which were logged via the Kistler combustion analyzer path and 

used for the purpose of fault detection and diagnosis of the various engine 

configurations that simulate a particular health state. In the MATLAB m- file, these 

signals were logged as indicated in Table 3.5. 

Table 3.5 Logged knock sensor signals 

Signal Name Location on Engine 

UNI0 Right Front Knock Sensor (1) 

UNI_A0 Left Front Knock Sensor (2) 

UNI_B0 Right Rear Knock Sensor (3) 

 UNI_C0  Left Rear Knock Sensor (4) 

 

The knock sensors are hidden by the intake manifold as shown in Figure 3.8 b. Hence 

the manifold had to be removed to reveal the position of the knock sensors in Figure 

3.8 a as described in Table 3.5 
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Figure 3.8 Knock sensor locations 
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3.3 Engine Faults Dataset 

The data used for the development of the fault detection and diagnosis strategy in this 

research was collected by Mehdi Sadeghkazemi [79] on the case study of spark plugs. 

The spark plug design has a significant impact on flame kernel development, engine 

performance and emissions. One of the key aspects of a spark plug design that must 

be set properly before the plug is installed in the engine is the spark plug gap. This is 

due to three main reasons: (1) if the gap is too wide, the electric arc may not have 

enough energy to bridge the gap, which would result in a misfire. (2) if the gap is too 

narrow a lean air/fuel mixture may not be ignited, which could result in a misfire. (3) 

there is a direct proportional relationship between the required voltage and the gap 

[82]. 

Over the course of data collection, one of the cylinders was subjected to different 

health states by exchanging the Original Equipment Manufacturer (OEM) spark plug 

with an aftermarket one. The aftermarket spark plug was precisely profiled to have 

two incorrect gaps of 0.020″ and 0.080″, one less than and the other above the 

recommended gap range. In this way, the fault conditions could be achieved in a 

controlled manner. It should be noted that aftermarket spark plugs were used for 

changing the gap due to the fact that on the OEM spark plug, the changes could not 

be easily done without causing fault effects difficult to evaluate by the scrapping of 

the precious metal terminals. This is what dictated the choice of aftermarket spark 
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plugs that do not use precious metal, and hence precise quantifiable and repeatable 

fault conditions were achieved. The likelihood of retarded combustion or uneven 

firing causing the engine to run erratically due to the fault conditions was 

acknowledged throughout the experiment. Evaluating the fault and detection strategy 

over a controlled combustion irregularity was the prime motive. Three engine 

configurations, simulating three different health states were defined for the engine 

test; namely: 

• Healthy, where the OEM spark plug was used with the correct gap of 0.051″ 

• Fault 1, where the aftermarket spark plug was used with a gap of 0.020″ 

• Fault 2, where the aftermarket spark plug was used with a gap of 0.080″ 

The data set as summarized in Table 3.6 consists of measurements from the four 

knock sensors in Table 3.5, recorded in the crank angle domain at 10 samples per 

crank angle or 7200 samples per engine cycle to fully grasp the engine vibration 

dynamics under the various health states. The two operating conditions for the 

engine were 700 rpm at 15% load and 1000 rpm at 25% load. For every engine run, 

the speed and load were kept constant throughout. Seven hours worth of data was 

collected over seven days for each operating condition, resulting in a data set 

containing 168,000 engine cycles in total, meaning 28,000 engine cycles for each 

combination of spark plug gap and engine speed. It should be noted that for each 

health condition, the data was gathered in two stages on the same day. That is, the 

first half of the data was gathered during the morning (AM) and the second half in 
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the afternoon (PM). The data from days 1 to 7 was what was used to build, train and 

test the deep learning model for classification. To simulate an operating 

environment with perturbations in data quality, additional engine cycles were 

gathered on the 8th day to perform another test on the model. Hence, the complete 

data set is composed of 192,000 cycles equivalent to 32,000 engine cycles for each 

combination of spark plug gap and engine speed. 

Table 3.6 Engine Fault Dataset for both 700rpm and 1000rpm operating conditions 

 Number of Cycles 

Test Day Healthy – 0 0.020″ aftermarket - 1 0.080″ aftermarket - 2 

1 8000 8000 8000 

2 8000 8000 8000 

3 8000 8000 8000 

4 8000 8000 8000 

5 8000 8000 8000 

6 8000 8000 8000 

7 8000 8000 8000 

8 8000 8000 8000 

 

 It should be noted that the different health states were simulated in Cylinder 

number 1 for the demonstration of the fault detection and diagnosis strategy. Should 
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the strategy be extended to all cylinders, additional measurements will have to be 

gathered for the various conditions in each cylinder. Finally, the 192,000 engine 

cycles were considered as samples composed of multidimensional time series 

corresponding to the 4 knock sensor measurements. The samples were then labelled 

in accordance with their health states (fault conditions) into three classes namely: 

healthy gap – 0, smaller gap (faulty) – 1, and larger gap (faulty) – 2. Further post-

processing of the three classes coupled with model training was performed in the 

methodology section of the research. 
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Chapter 4:  Methodology 

This chapter presents the process that was used to satisfy the research objectives. 

Figure 4.1 depicts an overview of the methodology, composed of two main steps: 

• Input construction 

• Convolutional neural network 

Each sample, corresponding to an engine cycle serves as the input data to the 

algorithm. If 𝑋1 = [𝑥1
1, 𝑥1

2, … , 𝑥1
𝑚]𝑡 is a column vector with length 𝑚, 

corresponding to the number of measurements (7200) of a knock sensor signal for 

one engine cycle, then given 4 knock sensors used in this engine, the input data is 

represented as: 

𝑋 = [𝑋1,  𝑋2,  𝑋3,  𝑋4] 4.1 
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Figure 4.1 Methodology 

4.1 Input construction 

This step helped extract the input data's most significant characteristics to facilitate 

the detection and diagnosis part of the overall strategy and remove as many noisy 

elements in the data as possible. 𝑋 is multidimensional, where every 𝑋𝑖 or channel, 

captures the engine vibrations from its location as shown in Figure 3.8. Each 

channel, which represents a knock sensor is analogous to a camera and the engine 

vibration is analogous to a scene. The recording of the engine vibration by the knock 

sensors can be conceptualized as taking a picture of the same scene from cameras 

located at four different angles. In other words, the knock sensors capture the 

vibration signature of the engine from four different positions. This way, if a fault’s 

vibration signature is expressed more in a certain location, the knock sensor closest 

to that point could record better that signature. To eliminate the differences in scale 
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of the various signals, which if left as such might allow skewed features and mislead 

the FDD strategy, a Z score normalization pre-processing step was applied to the 

input data as discussed in Equation 2.95. Following normalization, STFT was 

applied to the input data to represent the vibration signature in the crank angle 

frequency domain. The sampling rate was 10 samples per crank angle; hence for 

the operating point of 700rpm, the sampling frequency equivalent in the time 

domain is 42 kHz, while for the 1000rpm operating point, the sampling frequency 

is 60 kHz. The sampling frequency is calculated using Equation 4.2. Taking for 

example the 1000rpm case, the sampling rate can be calculated as shown in 

Equation 4.3. 

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =  
𝑛0 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑐𝑟𝑎𝑛𝑘 𝑎𝑛𝑔𝑙𝑒
 × 

𝑛0 𝑜𝑓 𝑐𝑟𝑎𝑛𝑘 𝑎𝑛𝑔𝑙𝑒𝑠 𝑝𝑒𝑟 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

𝑛0 𝑜𝑓 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠
× 

𝑛0 𝑜𝑓 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

𝑚𝑖𝑛𝑢𝑡𝑒
 4.2 

  

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =  
10 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

1 𝐶𝐴
 × 

360 𝐶𝐴

1 𝑟𝑒𝑣
× 

1000 𝑟𝑒𝑣

1 𝑚𝑖𝑛
 × 

1 𝑚𝑖𝑛

60 𝑠𝑒𝑐
=

60000 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑠𝑒𝑐

=  60𝐾𝐻𝑧 

4.3 

  

The generated spectrogram was obtained by using the following parameters: 

Hamming window of 128 points, a 75% overlapping and DFT containing 1024 

samples. The data matrix is transformed 

𝑓𝑟𝑜𝑚 𝑋 =

[
 
 
 
𝑥1

1 𝑥2
1

𝑥1
2 𝑥2

2

𝑥3
1 𝑥4

1

𝑥3
2 𝑥4

2

⋮ ⋮
𝑥1

𝑚 𝑥2
𝑚

⋮ ⋮
𝑥3

𝑚 𝑥4
𝑚]

 
 
 
 𝑡𝑜 𝑋 =

[
 
 
 
𝑠1
1 𝑠2

1

𝑠1
2 𝑠2

2

𝑠3
1 𝑠4

1

𝑠3
2 𝑠4

2

⋮ ⋮
𝑠1

𝑚 𝑠2
𝑚

⋮ ⋮
𝑠3

𝑚 𝑠4
𝑚]
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𝑠1
𝑖 , 𝑠2

𝑖 , 𝑠3
𝑖 , 𝑠4

𝑖  are respectively the spectrograms of their corresponding 𝑥1
𝑖 , 𝑥2

𝑖 , 𝑥3
𝑖 , 𝑥4

𝑖 . 

𝑠 is a 2D array of shape (a,b). For each sample, the corresponding spectrograms 

were reshaped to be in the form 𝑠𝑖 as shown in Figure 4.2 such that 𝑠𝑖 is a 3D array 

∈ ℂ𝑎×𝑏×𝑐 where 𝑎 𝑎𝑛𝑑 𝑏 represent the size of the spectrogram with 𝑎 being the 

number of frequency bins and 𝑏 the number of time steps, while 𝑐 represents the 

number of channels. It should be noted that the size of the spectrogram generated 

with the parameters mentioned earlier is constant irrespective of engine speed. This 

is because the raw data is resampled according to crank angle revolution and not 

speed. Hence the sampling frequency is automatically adjusted during the signal 

resampling in the crank angle domain so that a resolution of 10 samples per crank 

angle is always obtained. 

 

Figure 4.2 Schematic representation of 𝑠𝑖 
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The data matrix, 𝑋 ∈ ℂ𝑚×𝑎×𝑏×𝑐 becomes a 4D tensor as shown in Equation 4.4 with 

shape (m,a,b,c). 

𝑋 = (

𝑠1

𝑠2

⋮
𝑠𝑚

) 

4.4 

  

Furthermore, the absolute values of the spectrograms were computed and expressed 

on a log scale for better feature representation as shown in Figure 4.3.  

 

Figure 4.3 Spectrogram of a knock sensor signal 
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From Figure 4.3,  it can be observed that most of the dynamics happen within the 

frequency range between 1 sample/crank angle and 2.5 samples/crank angle which 

correspond respectively to 6KHz and 15KHz. Therefore, the spectrogram was 

truncated to keep features only within that range as shown in Figure 4.4. At this 

point, 𝑋 ∈ ℝ𝑚×𝑎×𝑏×𝑐 and each sample in 𝑋  constitutes the input to the second 

section of the methodology. The result of the input construction step is a 3D array 

∈ ℝ𝑎×𝑏×𝑐. 

 

Figure 4.4 Truncated Spectrogram 
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4.2 Convolutional Neural Network 

A combination of feature extraction and pattern recognition was performed on the 

input data to perform the FDD. The CNN architecture was able to learn the crank 

angle-frequency patterns found in the input data. Indeed, the CNN could detect 

effectively variations in contrast within the spectrogram, which are caused by 

differences in magnitudes at specific frequency bands for various fault conditions. 

The CNN architecture used for the FDD strategy in this research was inspired by 

the LeNet5 design [83] which has the following characteristics: 

• The convolutional layers are composed of three parts: convolution, pooling, and 

nonlinear activation functions 

• The convolution is used to extract special features 

• Subsampling is performed using average pooling 

• The activation function is tanh 

• Fully connected layers are used as the last classifier 

• Computation reduction thanks to the sparse connection between layers 

It should be noted that these characteristics can be altered to tailor a particular 

problem as the architecture serves mainly as a basis for further development. The 

selection of LeNet5 in contrast to other designs such as AlexNet and VGGNet was 

dictated by the fact that it is simple, computationally efficient and has inferential 

performance in real-time fault diagnosis. The LetNet5 advantages were highlighted 
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in a comparison between the three architectures in [84] where they were used in 

smart behaviour biometric systems taking as inputs face data for identification and 

eye blink characteristics for behaviour tracking. 

The input to the CNN architecture is a 3D matrix of shape (𝑎, 𝑏, 𝑐). However, the 

type of CNN used was a 2D-based CNN, and the input had to be reshaped to have 

a shape in the form (𝑎, 𝑏 × 𝑐) as shown in Figure 4.5. 

 

Figure 4.5 Input reshaping 

 

The first layer consists of a 2D convolutional layer with a 5x5 kernel, 16 filters, 

and a ReLU activation function in addition to batch normalization. Following this, 

there is a max pooling layer with a size of 2, which divided the size of the feature 

maps by 2 as shown in Table 4.1. These two layers are then followed by the 

application of a dropout of 0.25 whose purpose is to regularize the weights. Batch 

normalization and dropout are essential as they help in preventing overfitting 

problems. The next convolution and pooling layers are similar to the previous two 
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with the difference of the convolution layer having 32 filters instead. Even though 

max pooling layers diminish the size of the extracted feature maps, augmenting the 

number of filters in operations of convolution helps to pull out complex hidden 

features. 

After these layers, the input sizes are disregarded via the introduction of a flattening 

operation, then the flattened featured maps are fed consecutively to two fully 

connected layers of 128 and 64 units respectively and finally fed to another fully 

connected layer, whose units correspond to the number of classes – in this case, 

three. Table 4.1 describes the properties of each layer and the number of parameters. 

The data set from days 1 to 7 was divided with the results in the following 

proportions: 70% training,20% validation and 10% testing. The training set is 

purposed at training the model to learn the patterns and relationships within this 

data. This helps the model to adjust its weights and parameters to minimize the loss 

function. The validation set helps in the tuning of the model’s hyperparameters. The 

model does not see this data during the training and the data is used to prevent 

overfitting and evaluate the model by ensuring it fits well on data that it has not 

seen before. Finally, the testing set is used to provide an unbiased evaluation of the 

performance of the model on entirely new data. It is performed in two steps: first 

on the 10% of the remaining data that was not used from the initial dataset (Days 1 

to 7) and second on the data gathered on Day 8. A key step before the division of 

the data set is the shuffling of the samples. This step has the advantage of providing 
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a better distribution across the dataset, avoiding bias in training, improving model 

generalization, and reducing the impact of outliers and noise.  

Table 4.1 CNN model architecture and hyperparameters 

Layer Output shape Number of Parameters 

Con2D, 16 kernels (None, 99, 884, 16) 416 

Batch normalization (None, 99, 884, 16) 64 

Max pooling 2D (None, 49, 442, 16) 0 

Dropout (None, 49, 442, 16) 0 

Con2D. 32 kernels (None, 45, 438, 32) 12832 

Batch normalization (None, 45, 438, 32) 128 

Max pooling 2D (None, 22, 219, 32) 0 

Dropout (None, 22, 219, 32) 0 

Flatten (None, 154176) 0 

Dense (None, 128) 19734656 

Batch normalization (None, 128) 512 

Dropout (None, 128) 0 

Dense (None, 64) 8256 

Batch normalization (None, 64) 256 

Dropout (None, 54) 0 

Dense (None, 3) 195 
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From Table 4.1, the convolutional layers contain 13,376 parameters, keeping them 

lightweight for feature extraction with down-sampling through max pooling, which 

helps computational efficiency. However, the fully connected layers contribute to the 

bulk of the model’s 19.8 million parameters, largely due to the flattened vector 

feeding into a dense layer with 128 units. This configuration allows the model to 

capture rich feature representations at the cost of memory and computational demand, 

mainly due to the fully connected layers after flattening. That is why for this research 

a computer with 32GB RAM and an Intel(R) Core (TM) i9-14900, 2.00 GHz was 

used in addition to an NVIDIA RTX 4500 Ada Generation graphic card with 24GB 

GPU memory. The average time for model building is 2 hours, but once the model is 

built, the testing time is 71 seconds. 

 

4.3 Comparison  
 

The methodology outlined in 4.1 and 4.2 is compared to LSTM summarized in Table 

4.2 to asses its performance, strengths and weaknesses and/or suitability. The input 

to the LSTM network as illustrated in Figure 4.5 is similar to the input used for the 

CNN with the first LSTM layer consisting of 64 units. This layer is designed to return 

sequences, allowing the next LSTM layer to process the sequential data as well. After 

this, a batch normalization operation is applied to normalize the activations and 

improve convergence. A dropout of 0.25 is also introduced to regularize the network 
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by randomly deactivating 25% of the units during training, which helps to prevent 

overfitting. Next comes a second LSTM layer with 64 units, which does not return 

sequences as it feeds into fully connected layers instead. Like the previous LSTM 

layer, batch normalization and dropout (with a rate of 0.25) follow this layer to ensure 

smooth training and mitigate overfitting risks. After the LSTM layers, the network 

transitions into the fully connected (dense) layers. The first dense layer has 128 units 

with a ReLU activation function. It is followed by batch normalization and a higher 

dropout rate of 0.5, to provide stronger regularization as the network narrows down 

the features. The second dense layer is similar, consisting of 64 units with a ReLU 

activation function. As before, batch normalization and a dropout rate of 0.5 are 

applied. Finally, the model concludes with an output dense layer, where the number 

of units corresponds to the number of output classes. 
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Table 4.2 LSTM model architecture and hyperparameters 

Layer Output shape Number of Parameters 

LSTM, 64 units (None, 103, 64) 243968 

Batch normalization (None, 103, 64) 256 

Dropout (None, 103, 64) 0 

LSTM. 64 units (None, 64) 33024 

Batch normalization (None, 64) 256 

Dropout (None, 64) 0 

Dense (None, 128) 8320 

Batch normalization (None, 128) 512 

Dropout (None, 128) 0 

Dense (None, 64) 8256 

Batch normalization (None, 64) 256 

Dropout (None, 64) 0 

Dense (None, 3) 195 
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Chapter 5:  Results and Discussions  

The section is decomposed into three sections. The first section discusses the results 

of both load cases (700 rpm at 15% load and 1000 rpm at 25% load) over the initial 

dataset which is composed of the data acquired from day 1 to day 7. On the other 

hand, the second section discusses the results of both load cases over the data 

acquired on day 8, which simulates an operating environment with perturbations in 

data quality. The third section discusses the results obtained in response to the 

challenges observed in the second section. 

5.1 Initial Dataset 

The dataset was divided into training, validation and testing sets, respectively 

representing 70%, 20% and 10% of the initial dataset. The training was performed 

over 30 epochs and the hyperparameters were fine-tuned using the validation set. The 

loss and accuracy curves for the 700rpm load case are shown in Figure 5.1. The 

training loss curve remained flat throughout the epochs, indicating that the model was 

fitting the training data well. The validation loss was initially low but suddenly spiked 

near the end of the training. The validation accuracy mirrors the validation loss as it 

was initially high and spiked near the end.  The sudden spike is an indication of 

overfitting and early stopping was implemented in the model-building process to 

overcome that effect as demonstrated in the new loss and accuracy curves for training 

and validation shown in Figure 5.2. 
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Figure 5.1 Initial loss and Accuracy curves for the 700rpm load case 

 

 

Figure 5.2 New loss and accuracy curves with early stopping for the 700rpm load 

case 

 

The evaluation of a classification problem is usually done using a confusion matrix, 

which is a cross-tabulation used to describe the performance of a model on a set of 

data for which true values are known. It helps to understand which classes were 
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confused by the model, by showing for each class how many predictions were correct 

and incorrect. Furthermore, other metrics derived from the confusion matrix can be 

used to evaluate the performance of pattern recognition applications. These metrics 

are precision, and recall, which provide a score between 0 and 1 for a set of predicted 

items 𝑃 with respect to a ground truth 𝐺. Set theory as shown in Figure 5.3 can be 

used to define precision and recall. Recall is the ratio between the number of correct 

results and the number of expected results (Equation 5.1) while precision is the ratio 

between the number of correct results to the number of all results (Equation 5.2). 

Finally, the F-1 score helps to understand the trade-off between recall and precision 

via a harmonic mean (Equation 5.3). The confusion matrix of the model on the testing 

set is shown in Figure 5.4 and the overall performance of the model is summarized 

in Table 5.1 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
|𝐺 ∩ 𝑃|

|𝐺|
 

5.1 

  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
|𝐺 ∩ 𝑃|

|𝑃|
 

5.2 

  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2
|𝐺 ∩ 𝑃|

|𝐺| + |𝑃|
 

5.3 
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Figure 5.3 Set theory illustrating the ground truth (G), predicted results (P), True 

positives (TP), false positives (FP) and false negatives (FN) [85] 

 

 

Figure 5.4 Confusion matrix for the 700rpm load case 
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Table 5.1 700rpm load case model performance 

Fault 

Categories 

Performance Indicators 

Accuracy Precision Recall F1-score 

Healthy 0.99 0.99 1.00 1.00 

Fault 1 0.99 1.00 0.99 1.00 

Fault 2 0.99 1.00 1.00 1.00 

 Model Accuracy on Testing set (Days 1-7) = 0.99 

 

Despite the spike observed on the validation loss and accuracy curves, the model performed 

very well. From Table 5.1, the following observations were made: 

• Accuracy: The proportion of true results (both true positives and true negatives) 

among the total number of cases examined. In this case, the model had an 

overall accuracy of 0.99, meaning it correctly classified 99% of the instances. 

• Precision: The proportion of positive identifications that were actually correct. 

For Faults 1 and 2, the precision was 1.00, indicating that when the model 

predicted these faults, it was always right. For the Healthy category, it was high 

(0.99), but not perfect. 

• Recall: The proportion of actual positives that were correctly identified by the 

model. For Fault 1 and Fault 2, the recall was 0.99 and 1.00, respectively, 

meaning the model identified 99% and 100% of these faults when they were 
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present. For the Healthy category, the recall was 1.00, indicating it identified all 

healthy cases correctly. 

• F1-score: All F1-scores were 1.00, indicating perfect balance and performance 

across all categories 

The loss and accuracy curves of the 1000 rpm load case are shown in Figure 5.5. The 

training loss started high and decreased steadily, indicating that the model was learning and 

improving over time. Both training and validation losses decreased over time, suggesting 

that the model was learning well. On the other side, the training accuracy quickly reached 

nearly 100% and remained stable. The validation accuracy was a mirror image of the 

validation loss, as the validation accuracy also increased rapidly and remained close to 

100% with some fluctuations. The confusion matrix of the model on the testing set is shown 

in Figure 5.6and the overall performance of the model is summarized in Table 5.2. 

 

Figure 5.5 Loss and Accuracy curves for the 1000rpm load case 
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Figure 5.6 Confusion matrix for the 1000rpm load case 

 

Table 5.2 1000rpm load case model performance 

Fault 

Categories 

Performance Indicators 

Accuracy Precision Recall F1-score 

Healthy 1.0 1.0 1.0 1.0 

Fault 1 0.99 1.0 1.0 1.0 

Fault 2 1.0 1.0 1.0 1.0 

 Model Accuracy on Testing set (Days 1-7) = 0.99 
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From Table 5.2, the following observations were made: 

• Accuracy: The model had an overall accuracy of 0.99, meaning it correctly 

classified 99% of the instances in the testing set. This indicates the model is 

highly reliable in making predictions across all categories 

•  Precision: For all categories (Healthy, Fault 1, and Fault 2), the precision was 

1.0, meaning that whenever the model predicted any of these categories, it was 

always correct. There were no false positives, indicating perfect precision. 

• Recall: For Healthy, Fault 1, and Fault 2, recall is 1.0, indicating the model 

successfully identified 100% of the actual instances in these categories. This 

means there were no false negatives, and the model never missed any instances 

of these categories. 

• F1-score: All F1-scores are 1.0, indicating a perfect balance and performance 

across all categories. The model achieved the ideal combination of precision 

and recall, signifying optimal performance. 
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5.1.1 Comparison study on the initial dataset 
 

The performance of the proposed methodology is compared to the LSTM model 

whose confusion matrix is shown in Figure 5.7 and overall performance 

is summarized in Table 5.3 for the 700rpm load case. Figure 5.8 and Table 5.4 are 

respectively for the 1000rpm load case. The performance of the LSTM models was 

similar to that of the CNN models for the 700rpm and 1000rpm load cases with 

performance indicators having an overall score of 99% approximately. 

 

Figure 5.7 Confusion matrix for the700rpm load case with LSTM 
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Table 5.3 700rpm load case model performance with LSTM 

Fault 

Categories 

Performance Indicators 

Accuracy Precision Recall F1-score 

Healthy 1.00 0.98 1.00 0.99 

Fault 1 0.96 1.00 0.96 0.99 

Fault 2 1.00 0.97 1.00 0.98 

 Model Accuracy on Testing set (Days 1-7) = 0.98 

 

 

Figure 5.8 Confusion matrix for the1000rpm load case with LSTM 
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Table 5.4 1000rpm load case model performance with LSTM 

Fault 

Categories 

Performance Indicators 

Accuracy Precision Recall F1-score 

Healthy 0.98 1.00 0.98 0.99 

Fault 1 0.99 0.99 0.99 0.99 

Fault 2 0.99 0.98 0.99 0.99 

 Model Accuracy on Testing set (Days 1-7) = 0.99 

 

5.2 Model Evaluation on Day 8 
 

The high accuracies experienced in sections 5.1 and 5.1.1 were because the data split 

for training, validation and testing used all of the days from the initial dataset (that is 

days 1 to 7). Unlike the initial data set where samples from all 7 days were shuffled 

and split into training, validation and testing sets for generalization, the data acquired 

over Day 8 was not used for the model building. Hence Day 8 data simulates an 

operating environment with perturbations in data quality and can help in 

generalization. For the 700rpm load case, the confusion matrix of the model is shown 

in Figure 5.9, while its overall performance is summarized in Table 5.5 
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Figure 5.9 Confusion matrix for the 700rpm load case on Day 8 

 

Table 5.5 700rpm load case model performance on Day 8 

Fault 

Categories 

Performance Indicators 

Accuracy Precision Recall F1-score 

Healthy 0.76 0.63 0.76 0.69 

Fault 1 0.21 0.33 0.21 0.26 

Fault 2 0.68 0.58 0.68 0.63 

 Model Accuracy on Day 8 = 0.55 
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From Table 5.5 the following observations can be made: 

• Healthy 

o Accuracy: 76% of the Healthy instances were correctly identified. This 

suggests the model did a decent job of recognizing Healthy instances 

o Precision: Of all instances predicted as Healthy, only 63% were actually 

Healthy. This indicates that the model had a moderate level of false 

positives, where it incorrectly classified other categories as Healthy. 

o Recall: The model identified 76% of the actual Healthy cases, meaning 

it missed 24% of Healthy instances. While not poor, it suggests that 

some Healthy cases were incorrectly classified as faults. 

o F1-score: The F1-score of 0.69 reflects a balance between precision and 

recall but suggests that the model’s performance in accurately and 

consistently identifying Healthy instances was only moderate. 

• Fault 1 

o Accuracy: Only 21% of the instances predicted within the Fault 1 

category are correctly classified, which indicates very poor 

performance. The model struggled significantly to identify Fault 1 

accurately. 

o Precision: When the model predicted Fault 1, it was correct only 33% of 

the time. This is quite low, indicating a high rate of false positives where 

the model incorrectly classifies other categories as Fault 1. 
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o Recall: The model only detected 21% of actual Fault 1 cases, meaning 

it missed nearly 80% of them. This very low recall shows that the model 

failed to identify most Fault 1 instances, leading to significant under-

detection. 

o F1-score: The F1-score of 0.26 reflects the severe imbalance between 

poor precision and low recall, indicating that the model was not effective 

at detecting or correctly classifying Fault 1 cases. 

• Fault 2 

o Accuracy: 68% of instances in the Fault 2 category were correctly 

classified, indicating a moderate level of performance. The model was 

somewhat effective at recognizing Fault 2 instances but could be better. 

o Precision: Of all instances predicted as Fault 2, only 58% were actually 

Fault 2. This suggests a moderate rate of false positives, where the model 

incorrectly classified other categories as Fault 2. 

o Recall: The model correctly identified 68% of the actual Fault 2 cases, 

showing that while it could detect most Fault 2 cases, it still missed 

about 32% of them. 

o F1-score: The F1-score of 0.63 indicates a moderate balance between 

precision and recall, with performance being better than for Fault 1 but 

still not optimal, especially in terms of precision. 
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The model had a lot of difficulties especially in detecting and classifying Faults 1 and 

2, with Fault 1 being particularly challenging. This could be explained by the fact 

that in this load case, the engine is almost idling, meaning that the combustion 

dynamics and the vibrational signatures are very mild, making it very difficult for an 

artificial intelligence model to perform correctly. 

For the 1000rpm load case, the confusion matrix of the model is shown in Figure 5.10 

while its overall performance is summarized in Table 5.6. 

 

Figure 5.10 Confusion matrix for the 1000rpm load case on Day 8 
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Table 5.6 1000rpm load case model performance on Day 8 

Fault 

Categories 

Performance Indicators 

Accuracy Precision Recall F1-score 

Healthy 0.90 0.90 0.90 0.90 

Fault 1 0.48 0.87 0.48 0.61 

Fault 2 0.87 0.61 0.87 0.72 

 Model Accuracy on Day 8 = 0.75 

 

         From Table 5.6, the following observations were made: 

• Healthy 

 

o Accuracy: 90% of the Healthy instances were correctly identified. 

o Precision: Of all instances predicted as Healthy, 90% were actually 

Healthy. This indicates good performance in avoiding false positives. 

o Recall: The model identified 90% of the actual Healthy cases. This 

shows that it effectively detected most Healthy cases. 

o F1-score: The balance between precision and recall for the Healthy 

category was good, reflected in the F1-score of 0.90. 

o The model performed well, with high accuracy, precision, recall, and 

F1-score. 

 



 

142 

  

  

• Fault 1 

o Accuracy: This suggests that only 48% of the instances predicted within the 

Fault 1 category were correctly classified, which indicates poor 

performance. 

o Precision: When the model predicted Fault 1, it was correct 87% of the time. 

This was fairly high, indicating that there were relatively few false positives 

for Fault 1. 

o Recall: The model only detected 48% of actual Fault 1 cases, meaning it 

missed more than half of them (low recall). 

o F1-score: The lower F1-score of 61% reflected the imbalance between good 

precision and poor recall, indicating that the model struggled to detect Fault 

1 accurately. 

o The model struggles significantly with recall, meaning it failed to detect a 

substantial number of Fault 1 cases, despite good precision. 

• Fault 2 

o Accuracy: This indicates that 87% of instances in the Fault 2 category were 

correctly classified, showing relatively good performance. 

o Precision: Of all instances predicted as Fault 2, only 61% were actually Fault 

2, suggesting a moderate level of false positives. 

o Recall: The model correctly identified 87% of the actual Fault 2 cases, 

showing strong performance in detecting Fault 2. 
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o F1-score: This score of 72% indicated that the model had a reasonable 

balance between precision and recall for Fault 2, but there is room for 

improvement, particularly in precision. 

o The model was good at detecting Fault 2 but struggled with precision, 

leading to some false positives. The F1-score indicates a better balance here 

than for Fault 1, but precision could still be improved.  

 The model performed reasonably well overall, its performance on Fault 1 needs 

improvement to ensure better detection and fewer missed cases. The difficulty in 

detecting and classifying Fault1 could also be explained by a higher change in the 

distribution of the samples compared to the samples used in the training phase. Most 

importantly, the model is capable of detection, concerning the Healthy category. This 

way, it is highly probable that a sample not categorized as healthy is a fault. 

5.2.1 Comparison Study on Day 8 
 

The performance of the proposed methodology is compared to the LSTM model 

whose confusion matrix is shown in Figure 5.11 and overall performance 

is summarized in Table 5.7 for the 700rpm load case. Figure 5.12 and Table 5.8 are 

respectively for the 1000rpm load case. 



 

144 

  

  

 

Figure 5.11 700rpm load case confusion matrix on Day 8 with LSTM 

 

Table 5.7 700rpm load case performance on Day 8 with LSTM 

Fault 

Categories 

Performance Indicators 

Accuracy Precision Recall F1-score 

Healthy 0.69 0.58 0.69 0.63 

Fault 1 0.15 0.36 0.15 0.22 

Fault 2 0.89 0.64 0.89 0.75 

 Model Accuracy on Day 8 = 0.58 
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Comparing the two methods for the 700rpm load case, the following key 

observations could be made: 

• Healthy 

o CNN had better accuracy (0.76) and recall (0.76) than LSTM, meaning it 

was slightly better at identifying healthy data 

o Both models showed fairly balanced precision and recall, with the CNN 

slightly outperforming in every metric for this category 

• Fault 1 

o Both models struggled with Fault 1 but the CNN performed better in 

accuracy, recall, and F1-score 

o LSTM had a higher precision (0.36 vs. 0.33), indicating fewer false positives 

but still struggled overall with this fault category 

• Fault 2: 

o The LSTM dominated in this category, with a significant improvement in 

accuracy (0.89 vs. 0.68), recall (0.89 vs. 0.68), and F1-score (0.75 vs. 0.63) 

compared to the CNN. 

o This suggested the LSTM model was far better at identifying and classifying 

Fault 2 instances. 

Although the LSTM had a higher overall accuracy of 58% compared to 55% for the 

CNN, the CNN however offered a more balanced performance across the various 

health states. 
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Figure 5.12 1000rpm load case confusion matrix on Day 8 with LSTM 

 

Table 5.8 1000rpm load case performance on Day 8 with LSTM 

Fault 

Categories 

Performance Indicators 

Accuracy Precision Recall F1-score 

Healthy 0.71 0.75 0.71 0.73 

Fault 1 0.31 0.86 0.31 0.45 

Fault 2 0.78 0.46 0.78 0.58 

 Model Accuracy on Day 8 = 0.60 
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Comparing the two methods for the 1000rpm load case, the following key 

observations could be made: 

• Healthy 

o CNN significantly outperformed LSTM in all metrics for the healthy 

category, with 0.90 accuracy, precision, recall, and F1-score 

o LSTM achieved reasonably good performance, but CNN demonstrated 

substantively better classification of healthy instances, making it superior in 

this regard 

• Fault 1 

o CNN again outperformed LSTM, particularly in accuracy (0.48 vs. 0.31) 

and F1-score (0.61 vs. 0.45). 

o Both models exhibited high precision, with LSTM at 0.86 and CNN at 0.87, 

meaning both models were adept at minimizing false positives for this fault. 

However, CNN showed better recall (0.48 vs. 0.31), meaning it captured 

more of the true Fault 1 instances 

• Fault 2 

o CNN achieved better overall accuracy (0.87 vs. 0.78) and F1-score (0.72 vs. 

0.58) compared to LSTM. 

o LSTM was outperformed by CNN in recall (0.78 vs. 0.87) meaning the CNN 

captured more true Fault 2 instances 
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o The CNN showed superior precision (0.61 vs. 0.46), reducing false positives 

more effectively in the Fault 2 classification 

With an overall accuracy of 75%, compared to 60% for LSTM, CNN demonstrated 

superior performance. It should be noted that even though CNN demonstrated its 

superiority in front of LSTM, both models did not perform very well on Day 8. To 

circumvent this shortcoming, another approach could be used to improve the 

classification accuracy across all categories. This will be discussed in the next 

section, in an attempt to improve the performance of the proposed methodology since 

it provided better results. 

5.3 Transfer Learning Solution 
 

The data collected from days 1 to 7 can be categorized as the source domain, while 

the data from Day 8 forms the target domain. Traditional (FDD) methods assume that 

the data remains independent and identically distributed (i.i.d.), which limits their 

efficiency when the data distribution changes. Since the target domain has a different 

distribution, it represents an environment where the quality of the data fluctuates 

compared to the source domain. From the perspective of conventional FDD 

strategies, the target domain appears as though it comes from a different engine. This 

is due to the day-to-day variations in internal combustion engine performance, even 

under identical load conditions. Transfer learning comes in an attempt to solve the 

problem by reducing the data distribution between the source and target domains 
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(day1-7 and day 8 respectively), so that it can pull out useful knowledge from the 

source domain and apply it to the target domain for improved classification 

performance in the target domain. It should also be noted that the source domain 

contains abundant data while the target domain contains few data. During the 

constitution of the engine data set as discussed in 3.3, the target domain was entirely 

labelled and as such, only a small portion of it will be used for knowledge sharing in 

the transfer learning as illustrated in Figure 5.13. 

 

Figure 5.13 Fault knowledge sharing 
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Transfer learning can be defined as follows: Given a learning task 𝑇𝑠 derived from 

the source domain 𝐷𝑠 and a learning task 𝑇𝑡 derived from the target domain 𝐷𝑡, 

transfer learning seeks to enhance the performance of the predictive function 𝑓𝑇(∙) 

for the learning task 𝑇𝑡 using the knowledge extracted from 𝐷𝑠 and 𝑇𝑠, where 𝐷𝑠 ≠

𝐷𝑡 and/or 𝑇𝑠 ≠ 𝑇𝑡. In addition, the size of 𝐷𝑠 is significantly larger than the size of 

𝐷𝑡[86]. In this research, the concept of transfer learning was combined with deep 

learning which has become a major breakthrough in the field of machine learning. 

The combination of the two is called deep transfer learning and is defined as follows: 

A transfer learning task defined by (𝐷𝑠 , 𝑇𝑠, 𝐷𝑡, 𝑇𝑡 , 𝑓𝑇(∙)) is a deep transfer learning 

task, where 𝑓𝑇(∙) is a non-linear function that indicated a deep neural network. The 

deep transfer learning FDD solution illustrated in Figure 5.14 is divided into two 

main steps: 

• Step 1: CNN model pre-train. In this step, the labelled engine data from the source 

domain is used to pre-train a CNN. This corresponds to the model generated in 5.1 

for the two load cases. 

• Step 2: CNN pre-train model finetuning. In this step, the parameters of the first 

several layers of the pre-trained CNN network (the first nine layers in the models 

generated for this research) are frozen and labelled data from the target domain 

(with few historical data) is used to finetune the parameters of the remaining layers 

of the pre-trained CNN network. 
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Figure 5.14 Architecture of the proposed solution 

 

5.3.1 Using 5% of the Day 8 
 

For both pre-trained networks corresponding each to a different load case, the last 6 

layers were finetuned for just 10 epochs, using only 5% of the dataset acquired on day 

8 for training (that is 600 out of 12000 samples for the 700rpm load case and 600 out 

of 12000 samples for the 1000rpm load case). The performance of the transfer learning 

was then evaluated on the rest of the dataset. The confusion matrix and model 

performance summary of the 700rpm load case are shown in Figure 5.15 and Table 5.9 

respectively, and the confusion matrix and model performance summary of the 

1000rpm load case are shown in Figure 5.16 and Table 5.10. 
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Figure 5.15 700rpm load case transfer learning model confusion matrix 

 

Table 5.9 700rpm load case transfer learning model performance on Day 8 

Fault 

Categories 

Performance Indicators 

Accuracy Precision Recall F1-score 

Healthy 0.99 0.99 1.00 1.00 

Fault 1 0.98 1.00 0.99 0.99 

Fault 2 0.99 0.99 1.00 0.99 

 Model Accuracy on Day 8 = 0.99 
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Figure 5.16 1000rpm load case transfer learning model confusion matrix 

 

Table 5.10 1000rpm load case transfer learning model performance on Day 8 

Fault 

Categories 

Performance Indicators 

Accuracy Precision Recall F1-score 

Healthy 0.97 1.00 0.98 0.99 

Fault 1 0.99 0.97 1.00 0.99 

Fault 2 0.99 1.00 0.99 0.99 

 Model Accuracy on Day 8 = 0.98 
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The transfer learning solution provided better overall performance for all categories 

(Healthy, Fault 1 and Fault 2). It achieved on Day 8 an accuracy of 0.99 for the 

700rpm load case compared to 0.55 for the traditional network and for the 1000rpm 

load case, an accuracy of 0.98 compared to 0.75 for the traditional network. 

5.3.2 Morning and Afternoon Split of Day 8 
 

Even though using only 5% of the Day 8 dataset gave excellent results, the 

randomness in the constitution of this 5% inserted some level of data distribution mix 

in a non-negligible amount. As section 3.3 of Chapter 3 mentioned, the data was 

gathered in the morning (AM) and the afternoon (PM), corresponding to 6000 

samples each for Day 8. This indicates a difference in data distribution within the 

same day between the AM and PM datasets. Two scenarios were used to assess the 

performance of transfer learning. The first one is AM vs PM, where the AM data 

(split with 80% training and 20% validation) is used for finetuning and the model 

is tested on PM data. The second one is PM vs AM where the PM data (split with 

80% training and 20% validation) is used for finetuning and the model is tested on 

AM data. Figure 5.17 and Table 5.11 show respectively the confusion matrix and 

classification report of the AM vs PM scenario for the 700rpm load case and the 

1000rpm load case as represented by Figure 5.19 and Table 5.13. On the other hand, 

Figure 5.18 and Table 5.12 show respectively the confusion matrix and classification 
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report of the PM vs AM scenario for the 700rpm load case, while the 1000rom load 

case is represented by Figure 5.20 and Table 5.14. 

 

Figure 5.17 700rpm load case AM vs PM confusion matrix 

 

Table 5.11 700rpm load case AM vs PM performance 

Fault 

Categories 

Performance Indicators 

Accuracy Precision Recall F1-score 

Healthy 0.02 0.19 0.02 0.03 

Fault 1 0.25 0.20 0.25 0.22 

Fault 2 1.00 0.59 1.00 0.74 

 Model Accuracy on PM data = 0.42 
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Figure 5.18 700rpm load case PM vs AM confusion matrix 

 

Table 5.12 700rpm load case PM vs AM performance 

Fault 

Categories 

Performance Indicators 

Accuracy Precision Recall F1-score 

Healthy 0.99 0.40 0.99 0.57 

Fault 1 0.00 0.09 0.01 0.01 

Fault 2 0.41 0.99 0.41 0.58 

 Model Accuracy on AM data = 0.47 
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Figure 5.19 1000rpm load case AM vs PM confusion matrix 

 

Table 5.13 1000rpm load case AM vs PM performance 

Fault 

Categories 

Performance Indicators 

Accuracy Precision Recall F1-score 

Healthy 0.78 0.99 0.78 0.87 

Fault 1 0.59 0.97 0.59 0.73 

Fault 2 0.99 0.62 1.00 0.77 

 Model Accuracy on PM data = 0.78 
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Figure 5.20 1000rpm load case PM vs AM confusion matrix 

 

Table 5.14 1000rpm load case PM vs AM performance 

Fault 

Categories 

Performance Indicators 

Accuracy Precision Recall F1-score 

Healthy 0.99 0.99 0.99 0.99 

Fault 1 0.81 0.99 0.81 0.89 

Fault 2 1.00 0.84 1.00 0.92 

 Model Accuracy on AM data = 0.94 
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The performance of the 700rpm load presented the same difficulties as its traditional 

counterpart, outlined in section 5.2 (which had a 55% accuracy). For the AM vs PM 

scenario, the accuracy was 42% and the model could at best detect Fault 2 with 100% 

accuracy. Regarding the PM vs AM scenario, the accuracy was 47% and the model 

could at best detect the Healthy category with an accuracy of 99%. The low score in 

the accuracy in addition to the other performance metrics indicates a high variability 

regarding this load case. On the other hand, the 1000rpm load case AM vs PM 

scenario provided slightly better results with an accuracy of 78% compared to its 

traditional counterpart in section 5.2 where an accuracy of 75% was obtained. The 

PM vs AM scenario had an accuracy of 94% which is far better than the performance 

discussed in section 5.2. This indicates that the PM data had a more general 

distribution compared to the AM data. The same trend is observed in 700rpm load 

cases with a smaller extent. The lower accuracy of Fault 1 for the 1000rapm load case 

is consistent with observations made in the previous section since it is the fault with 

the smallest gap.  
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Chapter 6:  Conclusion and Future Work 
 

The reliability of internal combustion engines is of prime importance in today’s 

highly competitive manufacturing environment. The objective of this research is to 

employ deep learning for the development of a fault detection and diagnosis 

algorithm for internal combustion engine faults via engine block vibration. The 

proposed solution is data-driven, uses signals from knock sensors only, learns 

labelled data and accounts for perturbations in data quality. 

Over the course of this research, Short Time Fourier Transform demonstrated its 

capacity to decipher the time-varying nature of knock sensor signals and its ability to 

provide useful features. STFT was coupled with Convolutional Neural Networks, 

which could perform fault detection and diagnosis by considering the extracted 

features as patterns and performing pattern recognition to solve the problem. The 

great capacity exhibited by CNN models is because they can automatically learn 

patterns in features from monitored input data and simultaneously identify health 

conditions based on those learned features. Using non-linear functions, these models 

can adaptively capture representational information from input signals and 

approximate complex non-linear functions with minimal error.  

A large number of papers have portrayed the usefulness of CNN in the field of fault 

detection and diagnosis and as such, the solution proposed in this research was 

evaluated over experimental data from a test cell, where the signal of 4 knock sensors 
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mounted on a V8 type engine was acquired to constitute a dataset composed of three 

different spark-plug health states. The proposed solution performed very well on the 

initial dataset (days 1 to 7) with high accuracies over the three health states or fault 

categories. An interesting observation made was the difficulty the trained model had 

in the classification of the samples from the Day 8 dataset, with the 700rpm load case 

scenario providing poor results and the 1000rpm scenario providing fair results 

overall but most importantly capable of detection of the health category. The lower 

accuracies observed over the Day 8 dataset were most likely due to the phenomenon 

of domain shift, which is a change in the data distribution between the training set 

which is used to build a classification model algorithm and the dataset onto which 

the latter is evaluated. The 700rpm load case was particularly challenging because, 

at this load condition, the engine is in idling mode; a condition where the control 

strategy governing the engine operation induces even more variability. A 

comparative study was made using an LSTM-based model which faced the same 

challenges as the proposed solution but was outperformed by the latter. To resolve 

the domain shift problem, the concept of transfer learning was used to enhance the 

performance of the proposed solution. Hence, the model generated from the initial 

dataset was considered a pre-trained model. While its first few layers were frozen, its 

last layers were finetuned. This finetuning of the last layers is mostly because they 

are learning the high-level distinguishable features between domains while the first 

few layers learn the low-level sharable features between domains. As such, two fine-
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tuning approaches were used. One consisted of finetuning the pre-trained model with 

5% of the dataset used on Day 8 at random. Another approach was to split the Day 8 

dataset into morning and afternoon halves and use one half for finetuning and the 

other half for testing in an alternating manner. The second approach was the closest 

to realistic conditions as it conserved a certain level of data distribution disparity in 

contrast to the first one where a non-negligible mix of data distribution was present. 

Finally, the scenario where the afternoon data was used for finetuning and the 

morning data for testing provided the best results with 94% accuracy, taking data 

distribution disparity as an essential condition for model evaluation. Another 

interesting observation was the increased stability of engine performance at high 

speeds. There was more variation in engine performance in idling mode (700rpm load 

case). Hence engine testing in idling conditions should be performed with careful 

attention. In addition, ambient air conditions affect engine outputs and thus mass 

airflow is a critical parameter to monitor as it linearly affects engine outputs. 
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6.1 Future Research 
 

The aforementioned shift in data distribution opens a new ground for improvements. 

In industrial applications, a deep neural network trained on a machine with historical 

data may not perform well on a different machine of the same model, largely due to 

variations between machines and sensors. Even though the transfer learning solution 

adopted in this research was able to circumvent the problem via finetuning, there is 

still the use of labelled historical data from the target domain. The transfer learning 

solution could be improved by using an unbalanced dataset composed only of fault-

free data. This is a condition where the finetuning is performed with a dataset that is 

unevenly distributed across classes. In this scenario, a pre-trained model could be 

finetuned with data coming from another machine that has only one class. Further 

improvement to the FDD solution could be done by employing domain adaptation, 

where the distribution discrepancy between source and target domains could be 

reduced. This solution would be semi-supervised as the data coming from the target 

domain would be unlabelled. Another direction for improvement could be domain 

generalization, where the model would be trained with labelled data coming from 

various (source) domains only. Using this concept, the model would learn domain 

invariant features and could be then evaluated on a target domain. These are some 

potential research topics which would be worth diving in. Other deep learning 
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strategies employing Domain Adversarial Neural Network (DANN) or Generative 

Adversarial Network (GAN) could be leveraged to fulfill those goals. 
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