

A DEEP LEARNING SOLUTION

FOR FAULT DETECTION AND

DIAGNOSIS APPLIED TO

INTERNAL COMBUSTION

ENGINES

A Deep Learning Solution for Fault Detection and Diagnosis Applied to Internal

Combustion Engines

By

Christian Brice Tongkoua Bangmi, BEng (Hons)

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree of

Master's of Applied Science

McMaster University

© Copyright by Christian Brice Tongkoua Bangmi, November 2024

ii

Master of Applied Science

(2024)

McMaster University

(Mechanical Engineering) Hamilton, Ontario, Canada

TITLE: A Deep Learning Solution for Fault Detection and

Diagnosis Applied to Internal Combustion Engines

AUTHOR: Christian Brice Tongkoua Bangmi

BEng (Hons), Mechanical Engineering

Coventry University, United Kingdom

SUPERVISOR: Professor Saeid Habibi

NUMBER OF PAGES: xiv, 174

iii

This work is dedicated to my beloved mother, my dear sisters, and to the loving memory of

my late father.

iv

Abstract

In today's competitive manufacturing environment, special attention is given to the quality

and reliability of manufactured products. Condition monitoring and more precisely Fault

Detection and Diagnosis (FDD) are aimed at addressing that attention for increased

customer satisfaction. The economic implications of FDD are highly valued in

the industry, and academia is leveraged to provide smart responses. The focus of this

research is the development of an FDD algorithm for internal combustion engine faults via

engine block vibration using deep learning. The FDD solution would have to be

implemented in software where it could operate in the absence of human intervention. The

proposed solution includes two elements namely: input feature construction and fault

classification.

Short-time Fourier Transform (STFT) and Convolutional Neural Networks (CNNs)

perform the aforementioned elements. The FDD solution detects and diagnoses fault

signatures from 4 different knock sensors mounted on a V8-type Ford engine. The solution

comprises the STFT which converts the knock sensors’ signal from the time domain to

the crank angle-frequency domain, hence providing features to be used for diagnosis. These

features are then used as input to a CNN, which can learn the crank angle-frequency

patterns found in the input data and subsequently perform classification. Transfer learning

is used in the proposed solution to circumvent domain shift and improve generalization.

This gives the FDD solution advantages such as high diagnosis accuracy, robustness against

perturbations in data quality and no need for human intervention.

v

Acknowledgments

I would like to thank my supervisor Professor Saeid Habibi for his ongoing support

throughout my research and in the completion of my thesis. I am grateful for the invaluable

opportunity I had to work at the Center for Mechatronics and Hybrid Technology (CMHT)

at McMaster University where I had access to state-of-the-art research facilities. I met a

fantastic group of colleagues, and the synergy we developed enriched both my professional

and personal experience. I would like to also thank Cam Fisher for his technical support.

To my mother, your love, strength, and unwavering support have been the foundation of

my achievements. To my three wonderful sisters, each of you has been a source of

inspiration and joy in my life. To my late father, your wisdom and guidance have left an

indelible mark on my journey.

vi

Notation and abbreviations

Abbreviations

ICE Internal Combustion Engine

FDD Fault Detection and Diagnosis

FT Fourier Transform

STFT Short Time Fourier Transform

PCA Principal Component Analysis

PC Principal Components

WT Wavelet Transform

CWT Continuous Wavelet Transform

DWT Discrete Wavelet Transform

WPT Wavelet Packet Transform

CI Compression-Ignition

SI Spark Ignition

CMHT Centre for Mechatronics and Hybrid Technologies

TDC Top Dead Centre

𝑁𝑂𝑥 Nitrogen Oxides

𝐶𝑂2 Carbon Dioxide

𝐶𝑂 Carbon Monoxide

vii

EMS Engine Management System

WVD Wigner-Ville Distribution

CWD Choi-Williams Distribution

SVM Support Vector Machines

SVD Singular Value Decomposition

SPE Squared Prediction Error

RBC Reconstruction Based Chart

MSPCA Multiscale Principal Component Analysis

Mod-MSPCA Modified Multiscale Principal Component Analysis

EMSPCA Extended Multiscale Principal Component Analysis

GMM Gaussian Mixed Mode

AI Artificial Intelligence

KNN K-Nearest Neighbour

ANN Artificial Neural Network

DL Deep Learning

HHT Hilbert–Huang transform

RFE Recursive Feature Elimination

NRS Neighborhood Rough Set

ICS Instantaneous Crankshaft Speed

BPNN Back Propagation Neural Network

OLSMO Optimized Luenberger Sliding Mode Observer

viii

ENN Elman Neural Network

AE Auto Encoders

DBN Deep Belief Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

ECU Engine Control Unit

ECT ECU Configuration Tool

PID Proportional Integral Derivative

OEM Original Equipment Manufacturer

DANN Domain Adversarial Neural Network

GAN Generative Adversarial Network

ix

Notations

𝑥 Vector 𝑥

𝑋 Matrix 𝑋

𝑋𝑡 Transpose of matrix 𝑋

𝑋 ∘ 𝑌 Hadamard product of matrices 𝑋 and 𝑌

 Convolution product

𝑇 Principle Components or Principle Components scores

𝑃 PCA transformation matrix

𝑥𝑛𝑒𝑤 New observation measurements

Σ𝑇 PC Covariance

Σ SVD middle singular values matrix

𝑉 SVD right singular values matrix

(̂) Features subspace

(̃) Residual subspace

𝓣2 Hotteling's T-squared index

𝒬 SPE index

φ Combined index

𝜓 Mother wavelet function

𝜙 Scaling function

x

 Contents

Abstract ... iv

Acknowledgements .. v

Notation and abbreviations ... vi

Chapter 1: Introduction .. 1

1.1 Overview .. 1

1.2 Research Motivation .. 5

1.3 Research Objective .. 5

1.4 Proposed Solution .. 6

1.5 Research Contribution and Novelty ... 7

1.6 Thesis Structure.. 7

Chapter 2: Literature Review ... 9

2.1 The Internal Combustion Engine ... 9

2.1.1 Knock Sensor .. 13

2.2 Data Processing Techniques .. 15

2.3 Time-Frequency Techniques .. 17

2.4 Wavelets ... 23

2.5 Principal Component Analysis... 40

2.6 Multiscale Fault Diagnosis... 56

2.7 Artificial Intelligence ... 63

2.7.1 K-Nearest Neighbour .. 66

2.7.2 Naïve Bayesian Classifier ... 68

2.7.3 Support Vector Machines ... 70

2.7.4 Artificial Neural Networks ... 76

2.7.5 Deep Learning ... 81

Chapter 3: Experimental Set-up ... 91

xi

3.1 Testing Set-up .. 95

3.1.1 Ford Coyote Engine .. 96

3.1.2 Engine Dynamometer ... 98

3.1.3 Engine Control Unit .. 100

3.1.4 Combustion Analyzer ... 100

3.1.5 Crank Angle Encoder .. 104

3.1.6 Dynamometer Accessories .. 105

3.2 Data Logging and Management ... 106

3.3 Engine Faults Dataset... 109

Chapter 4: Methodology .. 113

4.1 Input construction .. 114

4.2 Convolutional Neural Network .. 119

4.3 Comparison .. 123

Chapter 5: Results and Discussions ... 126

5.1 Initial Dataset ... 126

5.1.1 Comparison study on the initial dataset .. 134

5.2 Model Evaluation on Day 8 ... 136

5.2.1 Comparison Study on Day 8 ... 143

5.3 Transfer Learning Solution .. 148

5.3.1 Using 5% of the Day 8 .. 151

5.3.2 Morning and Afternoon Split of Day 8 ... 154

Chapter 6: Conclusion and Future Work ... 160

6.1 Future Research.. 163

References .. 165

xii

List of Figures

Figure 1.1 Engine noise generation.. 3

Figure 1.2 Fault Detection and Diagnosis Solution ... 6

Figure 2.1 Gasoline engine sensors and actuators timeline [8] ... 11

Figure 2.2 Gasoline engine control system architecture [8] .. 12

Figure 2.3 A knock sensor and its main components [11] ... 14

Figure 2.4 Engine frequency spectra difference under normal and faulty conditions [12] 16

Figure 2.5 STFT of engine body vibration signal with faulty and healthy injectors [13] . 18

Figure 2.6 A Nonstationary Signal [14] ... 20

Figure 2.7 Results of the STFT of the nonstationary signal with window sizes of a) 1.6ms,

b) 12ms and c) 6.4ms [14] ... 21

Figure 2.8 Time and Frequency resolutions of the wavelet transform [14] 25

Figure 2.9 Haar wavelet functions with corresponding Fourier Transform [17] 29

Figure 2.10 Wavelet's consecutive filtering process [17] .. 31

Figure 2.11 Signal synthesis of wavelet coefficient [17] ... 32

Figure 2.12 Four-level signal decomposition procedure using Discrete Wavelet Transform

[14] ... 33

Figure 2.13 Four-level signal decomposition procedure using Wavelet Packet Transform

[14] ... 36

Figure 2.14 Harr [18] ... 37

Figure 2.15 Daubechies -3 [18] ... 37

Figure 2.16 Daubechies – 20 [18] .. 37

Figure 2.17 Dimey [18] .. 37

Figure 2.18 Hermine Wavelet Basis [19] .. 38

Figure 2.19 Morlet Wavelet Basis [19] .. 38

Figure 2.20 Principal Component Analysis [17] ... 42

Figure 2.21 RBC chart example [17] ... 53

Figure 2.22 MSPCA Technique ... 56

Figure 2.23 Categories of AI techniques used in Machinery Health Monitoring [43] 65

Figure 2.24 Relationship between AI disciplines [44] ... 65

Figure 2.25 KNN Diagram [44] ... 67

Figure 2.26 Linear SVM classification [47] .. 71

Figure 2.27 Non-linear SVM classification with curved hyperplane [56] 72

Figure 2.28 Conceptual portray of the 'Kernel Trick’ [56] .. 73

Figure 2.29 A human neuron [44] .. 76

Figure 2.30 Back Propagation Neural Network architecture with 2 hidden layers [47] 78

Figure 2.31 Image recognition Convolutional Neural Network architecture: Overview

and details [67] ... 82

Figure 2.32 a) Convolution process and b) Pooling process [47] 83

Figure 2.33 An LSTM cell with a detailed overview of its internal operations 87

xiii

Figure 3.1 Engine connected to a dynamometer .. 91

Figure 3.2 Engine Dyno Lab .. 92

Figure 3.3 Ford Coyote Engine .. 96

Figure 3.4 Titan T 250 test stand overview [79] .. 99

Figure 3.5 KiBox set-up in a standalone configuration ... 101

Figure 3.6 Kistler 6125C pressure transducer (left) and combustion chamber location

(right) ... 102

Figure 3.7 Type 2614CK Kistler optical encoder .. 104

Figure 3.8 Knock sensor locations ... 108

Figure 4.1 Methodology ... 114

Figure 4.2 Schematic representation of 𝑠𝑖 ... 116

Figure 4.3 Spectrogram of a knock sensor signal .. 117

Figure 4.4 Truncated Spectrogram... 118

Figure 4.5 Input reshaping ... 120

Figure 5.1 Initial loss and Accuracy curves for the 700rpm load case 127

Figure 5.2 New loss and accuracy curves with early stopping for the 700rpm load case127

Figure 5.3 Set theory illustrating the ground truth (G), predicted results (P), True positives

(TP), false positives (FP) and false negatives (FN) [85] ... 129

Figure 5.4 Confusion matrix for the 700rpm load case ... 129

Figure 5.5 Loss and Accuracy curves for the 1000rpm load case 131

Figure 5.6 Confusion matrix for the 1000rpm load case ... 132

Figure 5.7 Confusion matrix for the700rpm load case with LSTM................................. 134

Figure 5.8 Confusion matrix for the1000rpm load case with LSTM 135

Figure 5.9 Confusion matrix for the 700rpm load case on Day 8 137

Figure 5.10 Confusion matrix for the 1000rpm load case on Day 8 140

Figure 5.11 700rpm load case confusion matrix on Day 8 with LSTM 144

Figure 5.12 1000rpm load case confusion matrix on Day 8 with LSTM 146

Figure 5.13 Fault knowledge sharing ... 149

Figure 5.14 Architecture of the proposed solution .. 151

Figure 5.15 700rpm load case transfer learning model confusion matrix 152

Figure 5.16 1000rpm load case transfer learning model confusion matrix 153

Figure 5.17 700rpm load case AM vs PM confusion matrix ... 155

Figure 5.18 700rpm load case PM vs AM confusion matrix ... 156

Figure 5.19 1000rpm load case AM vs PM confusion matrix ... 157

Figure 5.20 1000rpm load case PM vs AM confusion matrix ... 158

xiv

List of Tables

Table 3.1 Testing set-up facilities .. 95

Table 3.2 Ford Coyote Engine Specifications ... 97

Table 3.3 HORIBA Titan Engine Dynamometer Specifications 98

Table 3.4 Kistler 6125C pressure transducer technical characteristics 103

Table 3.5 Logged knock sensor signals ... 107

Table 3.6 Engine Fault Dataset for both 700rpm and 1000rpm operating conditions 111

Table 4.1 CNN model architecture and hyperparameters .. 122

Table 4.2 LSTM model architecture and hyperparameters ... 125

Table 5.1 700rpm load case model performance ... 130

Table 5.2 1000rpm load case model performance ... 132

Table 5.3 700rpm load case model performance with LSTM ... 135

Table 5.4 1000rpm load case model performance with LSTM 136

Table 5.5 700rpm load case model performance on Day 8 ... 137

Table 5.6 1000rpm load case model performance on Day 8 ... 141

Table 5.7 700rpm load case performance on Day 8 with LSTM 144

Table 5.8 1000rpm load case performance on Day 8 with LSTM 146

Table 5.9 700rpm load case transfer learning model performance on Day 8 152

Table 5.10 1000rpm load case transfer learning model performance on Day 8 153

Table 5.11 700rpm load case AM vs PM performance ... 155

Table 5.12 700rpm load case PM vs AM performance ... 156

Table 5.13 1000rpm load case AM vs PM performance ... 157

Table 5.14 1000rpm load case PM vs AM performance ... 158

1

Chapter 1: Introduction

1.1 Overview

The condition monitoring of an industrial product is of prime importance in today’s

highly competitive manufacturing environment, as it is capable of discerning the

product’s behaviour. It is an essential part of predictive maintenance and is capable

of identifying deviations from a product’s operation, caused by an incipient fault. The

data it generates can be used to improve product design and can be examined to

correlate operating loads, life cycle and failure types. A key benefit of condition

monitoring is enhanced reliability. High reliability assures a strong engineering

design process, and most importantly customer loyalty. The direct consequences are

a reduction in operating costs and an increase in market share and profit. However,

even the best-engineered product is not perfect and malfunctions can occur over an

evolutionary process, leading to failure. Hence, condition monitoring raises three

questions: Has a fault occurred?’, ‘Where did it occur and how large?’, and ‘How

will it progress in the future?’. These questions are answered by fault detection, fault

diagnosis, and fault prognosis respectively.

In the case of complex machinery such as Internal Combustion Engines (ICEs),

where many components are rotating or reciprocating, a data-driven approach offers

a suitable engineering starting point to help answer the three big questions mentioned

2

above. To this end, vibroacoustic signals provide a fertile ground in the field of

condition monitoring.

Mechanical, aerodynamic and combustion sources are the main causes of noise

generation in ICEs. Noise caused by the effects of airflow perturbation can be

attributed to an aerodynamic source. The turbulence phenomena occurring in the

intake and exhaust ducts of an engine in addition to the turbocharger and cooling fan

are good examples of aerodynamic sources. Shock between surfaces, vibrations,

contacts and impacts generate noise which can be attributed to a mechanical source.

Good examples are belt/chain vibration, gear vibration, and impacts between pistons

and cylinders. The process governing the combustion source of noise lies in the (high)

rate of cylinder pressure increase, which follows primarily the ignition delay period.

Cylinder pressure frequency spectrum discontinuity and increase in the level of the

high-frequency region are caused by this pressure rise. The result is engine block

vibration and finally combustion noise radiation [1]. Both mechanical and

combustion forces cause vibration of the engine structure, translating into the

emission of noise. This interconnection between noise and vibration generation in

ICEs is the reason why they can be studied under the umbrella name of vibro-

acoustics. Hence vibro-acoustic signals are capable of furnishing valuable

information on engine fault conditions that affect combustion, mechanics and

aerodynamics as shown in Figure 1.1, which illustrates the most relevant sound and

vibration sources in ICEs.

3

Figure 1.1 Engine noise generation

A typical way of studying faults is to consider the ICE in different sub-

systems/components. The knowledge of the transmission path of the vibroacoustic

phenomena, which emanate from the manifestation of these faults can be

superimposed with the sub-system division of the engine to have a better picture of

its state. Below is a list of typical faults and their vibroacoustic transmission path

impacting the whole ICE-subsystems:

• Injection system → faults concerning injectors and the fuel pump are transmitted

from the engine block to the cylinder covers.

4

• Ignition system → faults concerning spark plugs fall under the combustion source

of noise. This noise is transmitted to the engine block as vibration and also to the

manifolds.

• Pistons and Timing system → piston clearances, piston slap, clearance inside the

cam-timing system (phasers, lash adjusters), slack belt/chain have a mechanical

source of noise. This can be transmitted via engine block vibration and also

through acoustic radiation from the chain cover and cylinder head.

• Pistons → knock and misfire fall under the combustion source of noise. This noise

is transmitted to the engine block as vibration and also to the manifolds.

• Lubricating system → a fault involving the oil pump is transmitted to the oil sump

by a dynamic connection between the oil and the oil sump.

• Intake and exhaust pipes → losses in the intake/exhaust manifold fall under the

aerodynamic source of noise, and is transmitted by air

• Cooling system → a faulty fan falls under an aerodynamic source and is

transmitted by air

• Alternator → whistle noise, interacting with the system resonance and is relevant

to the aerodynamic source.

• Turbocharger → a faulty blade implies an aerodynamic source of noise and is

transmitted by air. On the other hand, shaft imbalance is a mechanical source,

transmitted structurally via the bearings to the compressor casing through

vibration.

5

Engines’ vibroacoustic signals are nonstationary signals, whose properties change

over time. Hence one of the functions of a fault detection and diagnosis strategy is to

process the signals to decipher their time-varying nature. It should also be noted that

signals from rotating machinery usually exhibit cyclic characteristics. Modern

engines usually have multiple sensors providing vibroacoustic information.

Therefore, another function of the strategy is the utilization of multivariate statistical

methods which explain the fault diagnosis as a pattern recognition problem. To

conclude, the last function of the strategy is to solve the pattern recognition problem

to perform classification. Artificial intelligence has proven to be a great tool to solve

such problems via deep learning.

1.2 Research Motivation

The research is aimed at the development of a condition monitoring software for ICEs

in the absence of human intervention. It would use only already existing engine

sensors, learn from previously acquired data and would detect and localize engine

faults with an accuracy higher than that of a human. In addition, the software would

also be able to perform in an environment with perturbations in data quality.

1.3 Research Objective

The objective of this research is to employ deep learning in the development of a fault

detection and diagnosis algorithm for internal combustion engine faults via engine

block vibration. The algorithm is required to perform the following tasks:

6

• Use knock sensors only.

• Train using labelled data.

• Account for perturbations in data quality caused by day-to-day variations in data

collection.

• Detect and localize known fault conditions.

1.4 Proposed Solution

The proposed solution satisfies the objectives via two principal steps as shown in

Figure 1.2.

Figure 1.2 Fault Detection and Diagnosis Solution

7

1.5 Research Contribution and Novelty

There has been research made where knock sensors were used to perform combustion

diagnosis. For example, in [2], a knock sensor was used for the diagnosis of phasing,

combustion duration, and maximum pressure location. In [3], four knock sensors

were used for knock detection in a 4-cylinder engine. Knock sensors in research are

mostly used for knock detection, and mostly performed on straight-line engines like

in [4] and [2]. The novelty of this research relies on the combination of 2 points:

• Vibration signals used for FDD come from 4 knock sensors mounted on a V-type

engine, where a fault can come from any of the two banks of the engine, thereby

increasing the complexity of localization by the number of cylinders on each bank

• The algorithm applied uses Short Time Fourier Transform to resolve signals in

the crank angle frequency domain in combination with Convolutional Neural

Network (CNN) for classification

1.6 Thesis Structure

This thesis is organized as follows: Chapter 2 presents a literature review on Fault

Detection and Diagnosis (FDD) focused on internal combustion engines. It starts by

covering the ICE and its mechatronic evolution up to the present day, signal

processing techniques, principal component analysis and artificial intelligence.

Chapter 3 covers the experimental phase of the research. It goes through the Ford

8

Coyote Engine specifications, the dynamometer specifications, the combustion

analyzer, data logging and management and dataset construction. Chapter 4 presents

the methodology that was used throughout the thesis, covering the construction of the

input for classification using deep learning. Chapter 5 documents the results obtained

and the discussions that follow. The conclusions of the thesis and future

recommendations are provided in chapter 6.

9

Chapter 2: Literature Review

2.1 The Internal Combustion Engine

In the mid-1800s, the concept of heat engines using internal combustion was first

developed by Nicholas Otto, Rudolph Diesel and Jean Lenoir. Since that period,

internal combustion engines (ICEs) have become the primary transportation mover,

and this will probably continue for decades. Fundamentally, an ICE converts

chemical energy stored in fuel (mostly petroleum-based products) into thermal

energy through combustion, and the subsequent expansion of the working fluid

converts the thermal energy into mechanical work thanks to the crank-slider

mechanism, converting linear force/work to rotational torque/work to the output shaft

[5]. Discrete volumes of air and fuel are processed cyclically, with combustion

occurring in a closed chamber. ICEs can be divided into two main groups namely:

Compression Ignition (CI) engines which run on Diesel, and Spark Ignition (SI)

engines which run mostly on Gasoline. In Canada, 90% of light-duty vehicles are

powered by SI gasoline engines as of 2022 [6], while the greatest proportion of

medium and heavy-duty vehicles have diesel engines.

Since the advent of ICEs, tremendous improvements in their design have been made

over the years to increase performance. The global warming concerns introduced a

novel paradigm in ICE design, which is emissions reduction. Modern-day engines

have to perform well, be fuel efficient and achieve low emissions of greenhouse gases

10

such as 𝑁𝑂𝑥, 𝐶𝑂2 and 𝐶𝑂. These complex constraints made modern ICEs embrace

the concept of mechatronic systems, involving an abundant utilization of numerous

electronics, sensors and microprocessor-based control strategies, to remain

competitive. Figure 2.1 shows the timeline of the adoption of engine sensors and

actuators. Nowadays, engines are controlled by an Engine Management System

(EMS) which regulates cylinder deactivation, idle speed, air-fuel ratio, and ignition,

to reduce fuel consumption and emission levels [7]. The numerous sensors available,

help the EMS in real-time condition monitoring of the engine and actuators to control

the camshaft, spark plug timing, injector, throttle camshaft phasing, and cylinder

deactivation. The architecture of the EMS control system is composed of various

control loops (also called modules). Figure 2.2 depicts a schematic representation of

a control system architecture.

11

Figure 2.1 Gasoline engine sensors and actuators timeline [8]

12

Figure 2.2 Gasoline engine control system architecture [8]

In coordination with the torque control module, some core functions found in the

EMS’s architecture are air-fuel ratio control, electronic throttle control, ignition

timing control, knock control, idle speed control, diagnosis control, aftertreatment

control, turbocharger and camshaft controls. These modules work together, in parallel

to the torque control module to provide the required engine output for the torque

demand. The multiple control functions are managed by a software control algorithm

which is implemented by a mathematical model-based design, while non-linear

feedforward control is implemented using engine maps (i.e. matrix-based lookup

tables derived through extensive engine test bench operations during calibration). The

13

automotive market is very competitive and engine manufacturers save time and cost

by employing model-based calibration, where some of the work carried out by a

calibration engineer on engine dynamometers is replaced by optimization algorithms

applied to an engine model.

2.1.1 Knock Sensor

Knock is the term given to the noise that is caused by the spontaneous autoignition

of part of the air-fuel mixture ahead of the propagating flame front. During knock,

the isolated and uncontrolled burning generates a rapid heat release in the end gas

zone which induces pressure waves that propagate and interact with the flame front,

causing pressure oscillations in the combustion chamber [9]. The subsequent

oscillations intensify engine vibrations and increase the risks of damage which could

manifest as cylinder head gasket leakage, cylinder bore scuffing, piston ring land

cracking, and piston crown melting. Engine performance is also affected by knock as

it prevents SI engines from reaching optimized combustion phasing and high

compression ratios. On top of high-octane fuel utilization, knock can be greatly

reduced through the adjustment of fuel injection and ignition timing in addition to

proper calibration inside the EMS. Such corrective measures are made possible

thanks to knock detection, which can be based on ion current, combustion noise, in-

cylinder pressure or body vibration. Although knock detection based on in-cylinder

pressure provides the highest accuracy, vibration-based detection is mostly used

14

nowadays. This is because pressure sensors are expensive and the high temperatures

and pressures present in the cylinders reduce their lifespan. This solution is mostly

suited for research purposes. On the other hand, vibration analysis provides a low-

cost solution with relatively high accuracy [10]. Therefore, the vibration assessment

of an engine can be captured by a knock sensor, which is a low-cost accelerometer

(usually piezoelectric) as shown in Figure 2.3. However, the measured signal does

not only contain the knock signature but also other vibration signatures and noises.

Hence signal processing algorithms are used to extract relevant features for knock

recognition and intensity evaluation. Nonetheless, the capacity of knock sensors to

record the vibration signatures of an engine is highly valuable for research. With

advanced signal processing algorithms, relevant features can be extracted for the

detection, diagnosis and prognosis of other engine faults.

Figure 2.3 A knock sensor and its main components [11]

15

2.2 Data Processing Techniques

This chapter discusses common signal processing techniques used in the field of fault

diagnosis and prognosis, with particular attention to the techniques applied for the

analysis of internal combustion engine data. Sensor measurements are made in the

time domain; and therefore, an intuitive approach is to use time-series analysis to

process data. Some of these techniques are the mean, variance, standard deviation,

root mean square, kurtosis, and skewness. They usually employ statistical indices to

extract information from data. However, time-series analysis has a major drawback

when it comes to the analysis of complex machinery with rotating and reciprocating

parts. This is because, in time-series analysis, it is very difficult to decipher events in

the data. The cyclic nature of engine data is more geared for their analysis in the

frequency domain, where engine measurements can be decomposed into their

constituent frequencies using the Fourier Transform (FT). With this technique, events

can be deciphered by the occurrence of peaks that indicate their presence. The FT

uses Equation 2.1 as follows:

𝑋(𝜔) = ∫ 𝑥(𝑡)𝑒−2𝜋𝑖𝜔𝑡𝑑𝑡
∞

−∞

2.1

Xia et al [12] used FT on a diesel engine to detect piston ring faults by comparing

engine vibration data under normal and faulty conditions as shown in Figure 2.4. The

baseline vibration band of the engine was between 2500 and 3500Hz, and the piston

16

ring fault induced some other frequency band from 1000 to 2500Hz. The change in

the vibration spectrum was an indicator of a fault, and the shape of the spectrum was

an indicator of the type of fault.

Figure 2.4 Engine frequency spectra difference under normal and faulty conditions

[12]

The FT works very well for periodic signals. In internal combustion engines, signals

in the low-frequency band are mostly periodic. Such low-frequency signals are speed,

torque, or pressure. Although data processing in the frequency domain provides

information on the spectral dynamics of a signal, the temporal dynamics of the signal

are lost. This loss of information is the major limitation of frequency domain analysis.

In other words, it is not possible to determine the time at which the intrinsic

frequencies of a signal occurred. The frequency domain assumes that signals are

stationary (meaning signal properties do not change over time), and this assumption

17

does not make it a good fit for processing engine data, whose properties are non-

stationary. To overcome these shortcomings time-frequency techniques are used.

2.3 Time-Frequency Techniques

Time-frequency techniques help decompose a signal into its spectral and temporal

components simultaneously. This is a good fit for processing non-stationary data.

Common time-frequency techniques used are the Wigner-Ville Distribution (WVD),

Wavelets, Choi-Williams Distribution (CWD), and Short Time Fourier Transform

(STFT). STFT is a natural extension of FT that addresses the latter’s limitations. In

STFT, the signal measurement is divided into time segments called windows onto

which FT is applied. This enables the generation of time-localized frequency

information of the signal. There are several types of window functions used for

segmentation such as Gaussian or Hamming windows. The Gaussian window is

suited for transient signals, while the Hamming window is suited for narrowband and

random signals. Hence, a window function can perform better than another one

depending on the desired output. The continuous STFT is expressed as shown in

Equation 2.2.

𝑋(𝜏, 𝜔) = ∫ 𝑥(𝑡)𝑊(𝑡 − 𝜏)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞

2.2

18

where 𝑊(𝑡 − 𝜏) is the window function (Hamming Type). By adjusting the value of

𝜏, the window function can shift in time.

The discrete STFT is expressed as shown in Equation 2.3.

𝑋(𝑚,𝜔) = ∑ 𝑥(𝑛)𝜔

∞

𝑛=−∞

(𝑛 − 𝑚)𝑒−𝑗𝜔𝑛
2.3

Modern data acquisition systems are discrete and hence, Equation 2.3 is more suited

for data analysis exercises. The power of a signal can be represented in a spectrogram,

which portrays the temporal and spectral energy density over the signal’s lifespan as

formulated in Equation 2.4.

𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚(𝑚,𝜔) = |𝑋(𝑚,𝜔)|2 2.4

Figure 2.5 STFT of engine body vibration signal with faulty and healthy injectors

[13]

19

Figure 2.5 shows how STFT was used to make a comparison between a healthy

(right) and faulty (left) fuel injector of a diesel engine under load conditions using

vibration signals captured by three accelerometers mounted near the flywheel [13].

The STFT revealed that the dominant amplitude vibrations were between 0-10KHz

for the healthy injector and above 10KHz for the faulty one. Although STFT can be

a good signal processing tool, it has some limitations due to its window function,

which has a fixed spectral and temporal resolution. A wide time window provides a

precise frequency resolution but hinders the possibility of detecting frequency

changes in transient events due to poor time localization. On the other hand, a narrow

window function provides a precise temporal resolution but hinders the possibility of

detecting the exact frequencies occurring at that time point due to poor frequency

localization.

The effect of the window size as shown in Figure 2.7 was demonstrated by Gao et al.

[14] where three different time windows (1.6, 6.4 and 25.6ms) were used to apply

STFT on a non-stationary signal in Figure 2.6. The signal in Figure 2.6 is composed

of impulsive signal trains organized in four clusters, each containing two transient

elements of different center frequencies at 1,500 and 650 Hz, respectively. The four

clusters have a 12ms time separating interval. In each cluster, the two transient

elements are time-overlapped.

20

Figure 2.6 A Nonstationary Signal [14]

21

Figure 2.7 Results of the STFT of the nonstationary signal with window sizes of a)

1.6ms, b) 12ms and c) 6.4ms [14]

In Figure 2.7 a, the smallest window size of 1.6ms provided a high temporal

resolution where the four signal trains were identified, while the spectral resolution

22

was too low to characterize the two time-overlapped transient elements found in each

cluster of Figure 2.6. This resulted in the frequency elements of 1500 and 650Hz

being portrayed as one lump group in the time-frequency plane. In Figure 2.7 b, the

largest window of size of 25.6ms provided a high spectral resolution, where the two

frequency elements were portrayed. However, the temporal resolution was too low

and could not characterize the four impulse trains separated by a time interval of

12ms. Figure 2.7 c with a window size of 6.4ms provided the transient elements to

be characterized in time and frequency. In reality, the given frequency contents of an

experimentally measured signal are not known a priori and hence, the selection of an

appropriate window size for the STFT is not guaranteed.

In fact, it is fundamentally impossible to have perfect time and frequency resolution

of a signal simultaneously. This is known as the Heisenberg uncertainty principle,

represented mathematically as:

𝜂𝑐 = 𝛥𝑡
2𝛥𝜔𝑐

2 ≥
1

4

2.5

where 𝜂𝑐 is the time-frequency spread of the signal, 𝛥𝑡
2 is the spread of the signal in

time domain, and 𝛥𝜔𝑐
2 is the spread of the signal in the frequency domain [15]. Having

a variable window size with a high-frequency resolution at low frequencies and a

high time resolution at high frequencies could circumvent SFTF limitations. This

introduces multiresolution signal processing, thanks to Wavelets.

23

2.4 Wavelets

The concept of wavelet was introduced in 1984 by Jean Morlet, a geophysical

engineer working at Elf Aquitaine who developed and implemented a technique

consisting of shifting and scaling window functions in analyzing acoustic echoes used

in oil prospecting. Later on, it was identified that Morlet rediscovered orthogonal

transformations based on the same concept. The oldest known contribution to the

concept of wavelet was by Alfred Haar in his PhD dissertation entitled “On the theory

of the orthogonal function systems” in 1909 at the University of Gottingen, Germany.

Unlike STFT where the window size is fixed, wavelet transform employs a variable-

size window in investigating the various frequency components within a signal. The

investigation is achieved by the comparison of the signal with a set of template

functions obtained from scaling (that is contraction or dilation) and shifting (that is

temporal translation) of a mother wavelet 𝜓(𝑡), and looking for their similarities. The

wavelet transform of a signal can be expressed as shown in Equation 2.6.

𝑋𝑤(𝑠, τ) =
1

√𝑠
∫ 𝑥(𝑡)𝜓̅ (

𝑡 − τ

𝑠
) 𝑑𝑡

∞

−∞

2.6

where 𝑠 > 0 is the scaling parameter determining the spectral and temporal

resolutions of the mother wavelet 𝜓 (
𝑡−τ

𝑠
). τ is the shift parameter translating the

scaled wavelet along the time axis, 𝜓̅ is the complex conjugate of the mother wavelet

24

𝜓(𝑡). For a mother wavelet given by 𝜓(𝑡) = 𝑒𝑖2𝜋𝑓0𝑡 𝑒−(𝛼𝑡2/𝛽2) , its scaled version

called daughter wavelet will be given by:

𝜓 (
𝑡 − τ

𝑠
) = 𝑒𝑖2𝜋𝑓0(

𝑡−τ
𝑠

) 𝑒
−𝛼

(𝑡−τ)2

𝑠2𝛽2

2.7

with 𝑓0, 𝛼 and 𝛽 being constants. The spectral resolution of the mother wavelet will

be expressed as 𝛥𝑓 = √𝛼/(𝑠 · 2𝜋𝛽) while the temporal resolution will be expressed

as 𝛥𝑡 = 𝑠𝛽/2√𝛼. From these expressions, it can be deduced that the spectral and

temporal resolutions have respectively an inverse and direct relationship with the

scaling parameter 𝑠.

Figure 2.8 illustrates the variation of time and frequency resolutions of the mother

wavelet at two locations in the time-frequency plane: (𝜏1, 𝜂/𝑠1) and (𝜏2, 𝜂/𝑠2). The

change in scale from 𝑠1 at the point (𝜏1, 𝜂/𝑠1) to 𝑠2 = 2𝑠1 at the point (𝜏2, 𝜂/𝑠2)

divided the temporal resolution by 2 (since the width of the time window was

doubled) while multiplying the spectral resolution by 2 (since the width of the

window was halved). The variation of the scale 𝑠 and time shift 𝜏 of a mother wavelet

enables her transform to capture the intrinsic constituents of a time series through its

entire spectrum by using small scales (corresponding to high frequencies) to

decompose high-frequency constituents and large scales (corresponding to low

frequencies) to decompose low-frequency constituents. Such a transformation is a

25

good match for ICE signal processing, where low-frequency signals last longer in

time while high frequency signals last shorter.

Figure 2.8 Time and Frequency resolutions of the wavelet transform [14]

The mathematical tool of wavelet transform can decompose a signal and extract

“features” that characterize it. A wavelet is different from a sine or cosine wave due

to certain properties which enable wavelets to have a zero average, finite energy and

centred in the neighbourhood of t = 0, [16]. What qualifies as a wavelet is the

admissibility condition, formulated in Equation 2.8.

26

∫
|𝜓̂(ƒ)|

2

(ƒ)

∞

−∞

𝑑ƒ < ∞
2.8

where 𝜓̂(ƒ) is the Fourier transform of the wavelet 𝜓(𝑡). Under the admissibility

condition, the Fourier transform of the wavelet function vanishes at zero frequency

which is expressed as:

|𝜓̂(𝑓)|
2
|𝑓=0 = 0 2.9

The zero at zero frequency property indicated in Equation 2.9 also means that

the wavelet function has a zero average in time such that:

∫ 𝜓(𝑡)𝑑𝑡 = 0
∞

−∞

2.10

Via the process of dilation/contraction and translation of the wavelet function in

Equation 2.6, a series of scaled and translated daughter wavelets can be obtained in

the form

𝜓𝑠,τ(𝑡) =
1

√𝑠
𝜓 (

𝑡 − τ

𝑠
) , 𝑠 > 0, τ ϵ 𝑅

2.11

27

The 1
√𝑠

⁄ term in Equation 2.11 is to ensure that the energy of the wavelet function

is the same under various scales. If the energy of a wavelet function 𝜓(𝑡) is given by:

𝜀 = ∫ |𝜓(𝑡)|2𝑑𝑡
∞

−∞

2.12

then the scaled and translated wavelet 𝜓𝑠,τ(𝑡) has her energy given by:

𝜀′ = ∫ |
1

√𝑠
𝜓 (

𝑡 − 𝜏

𝑠
)|

2

𝑑𝑡 =
∞

−∞

1

𝑠
∫ |𝜓 (

𝑡

𝑠
)|

2

𝑑𝑡 = 𝜀
∞

−∞

2.13

In general, a wavelet can be expressed as a Continuous Wavelet Transform (CWT)

as well as in discrete form (Discrete Wavelet Transform (DWT)). The CWT of a

signal x(t) is expressed as shown in Equation 2.6.

CWT can also be expressed as a convolution product such that Equation 2.6 is

reformulated as:

𝑋𝑤(𝑠, τ) =
1

√𝑠
∫ 𝑥(𝑡)𝜓̅ (

𝑡 − τ

𝑠
) 𝑑𝑡

∞

−∞

= 𝑥(𝑡) 𝜓Ə(τ)
2.14

𝜓Ə(τ) =
1

√𝑠
𝜓̅ (

𝑡

𝑠
)

2.15

28

where  is the convolution product. Equation 2.14 introduces the notion of filtering

linked to wavelet transform. This point is illustrated by the FT of the wavelet function

𝜓Ə(τ) such that:

𝜓̂𝑠
Ə(𝜔) = √𝑠𝜓̂̅(𝑠𝜔) 2.16

CWT acting via a convolution process introduces the notion of the complement of a

wavelet function. Consider 𝑋𝑤(𝑠, τ) for 𝑠 < 𝑠0 is given, the reconstruction of 𝑋 from

its wavelet transform will require the complementary information 𝑋𝑤(𝑠, τ) for 𝑠 > 𝑠0.

The required information is obtained by a scaling function which is an accumulation

of wavelets with scales larger than 1. The scaling function 𝜙 is expressed by Equation

2.17 such that:

|𝜙̂(𝜔)|
2

= ∫ |𝜓̂(𝑠𝜔)|
2 𝑑𝑠

𝑠

∞

1

2.17

The properties of the scaling function are defined by:

‖𝜙‖ = 1 2.18

𝜙𝑠 =
1

√𝑠
𝜙 (

𝑡

𝑠
)

2.19

29

𝜙̂𝑠(𝑡) = 𝜙̅𝑠(−𝑡) 2.20

Figure 2.9 shows a Haar’s wavelet function with its scaling function and their Fourier

transform.

Figure 2.9 Haar wavelet functions with corresponding Fourier Transform [17]

The scale width (also called frequency band width) is conditioned by the value of 𝑠,

where 𝑠 can be any real value in CWT. Small incremental variations of 𝑠 result in

redundant information and this was the main reason for the discretization of wavelets.

Discretization is fulfilled by applying octave intervals to the scale such that 𝑠 = 2𝑗,

𝑗 being an integer. The discretized wavelet and scaling functions are respectively

expressed in Equations 2.21 and 2.22.

𝜓𝑗(𝑛) =
1

√2
𝜓 (

−𝑛

2𝑗
)

2.21

30

𝜙𝑗(𝑛) =
1

√2
𝜙 (

−𝑛

2𝑗
)

2.22

As CWT operates by convolution and filtering, the computation of discrete

wavelength coefficients can be made using a family of digital filters as stated by

Mallat [16]. Consider ℎ𝑗 and 𝑔𝑗 respectively as the high pass and low pass filter

impulse responses representing the wavelet and scaling functions at scale 𝑗. The

coefficients obtained for high pass filtering are called detailed coefficients while

those obtained for low pass filtering are called approximation coefficients. Let 𝑐 and

𝑑 be respectively the approximation and detailed coefficients, such that the transform

is in the form:

𝑐𝑗+1[𝑛] = 𝑐𝑗 𝑔𝑗[𝑛] 2.23

𝑑𝑗+1[𝑛] = 𝑐𝑗 ℎ𝑗[𝑛] 2.24

From equations 2.23 and 2.24, the coefficients at scale 𝑗 are used for the coefficients

at scale 𝑗 + 1. It can also be deduced from both equations that approximation

coefficients are used to determine the next level coefficients; hence the original signal

31

can be assumed to be at an approximation coefficient of level zero such that

𝑥[𝑛] = 𝑐0. Figure 2.10 portrays the filtering process.

Figure 2.10 Wavelet's consecutive filtering process [17]

The inverse of the filtering operation is called the synthesis coefficient and reconnects

the approximation and details coefficients. The synthesis operation is formulated in

Equation 2.25.

𝑐𝑗[𝑛] =
1

2
(𝑐𝑗+1  𝑔̃𝑗[𝑛] + 𝑑𝑗+1  ℎ̃𝑗[𝑛])

2.25

ℎ̃𝑗[𝑛] and 𝑔̃𝑗[𝑛] are respectively the high and low pass impulse responses of the

synthesis filters. Figure 2.11 portrays the synthesis operation.

32

Figure 2.11 Signal synthesis of wavelet coefficient [17]

From the illustrations in Figure 2.10 and Figure 2.11, it can be easily deduced that

each approximation coefficient (which is the result of the low pass filter output) is

broken down at each level into two frequency bands via the low and high pass filters

ℎ and 𝑔. This multilayered filtering operation reduces the filtered output’s frequency

content by half. Hence the signal’s down-sampling does not lose any information as

a synthesis operation can be driven from the down-sampled coefficients. DWT is

completed with down-sampling, which is of great use to reduce computer memory

storage during calculations. DWT down-sampling is expressed in Equation 2.26 and

Equation 2.27.

𝑐𝑗+1[𝑛] = 𝑐𝑗 𝑔𝑗[2𝑛] 2.26

𝑑𝑗+1[𝑛] = 𝑐𝑗 ℎ𝑗[2𝑛] 2.27

33

The DWT filtering of a signal is concretely illustrated in Figure 2.12 (Note that A is

the approximate information, D is the detailed information, H is the low-pass filter

and G is the high-pass filter).

Figure 2.12 Four-level signal decomposition procedure using Discrete Wavelet

Transform [14]

The filtering of a signal in DWT can be done in parallel, instead of using the down-

sampling expressions in Equations 2.26 and 2.27, thereby reducing the computation

time of multi-level coefficients. This is achieved by multiplying the signal 𝑥[𝑛] by

the DWT matrix 𝑊𝑗 containing the H and G filter matrices as shown in Equation 2.28.

34

2.28

Given the filter (in this case high pass) length L, the matrix G is expressed in Equation

2.29 such that:

2.29

The H matrix is similar to G but will have an H filter instead. Therefore, the DWT of

a signal 𝑋 is given by 𝑊𝑥 = 𝑊𝐽𝑋 and the synthesis matrix is given by 𝑊𝑠 = 𝑊𝑗
𝑡 where

𝑊𝑗
𝑡 is the transpose of 𝑊𝐽.

DWT are very good at detecting transients at low frequencies but do not perform well

for signals in which relevant information is found at high frequencies. This is due to

the signal decomposition algorithm, where only the output of the low pass filter is

35

broken down at each level and thus creates a high-time localization but a low-

frequency resolution. The solution to this problem led to Wavelet Packet Transform

(WPT) where both low-pass and high-pass filters’ output are broken down at each

level. The WPT down-sampling is expressed in Equations 2.30 and 2.31.

𝑊𝑗+1,2𝑘[𝑛] = 𝑊𝑗,𝑘 𝑔𝑗[2𝑛] 2.30

𝑊𝑗+1,2𝑘+1[𝑛] = 𝑊𝑗,𝑘 ℎ𝑗[2𝑛] 2.31

In Equations 2.30 and 2.31, 𝑊𝑗,𝑘 is the coefficient at level 𝑗 for the daughter wavelet

𝑘. 𝑊𝑗+1,2𝑘[𝑛] represents the approximation coefficient of the signal’s decomposition,

while 𝑊𝑗+1,2𝑘+1[𝑛] represents its detailed coefficient. Even values of 𝑘 indicate that

the coefficients result from low pass filtration, while odd values of 𝑘 indicate that the

coefficients result from high pass filtration. The operation of WPT is illustrated in

Figure 2.13 (Note that A is the approximate information, D is the detailed

information, H is the low-pass filter and G is the high-pass filter).

36

Figure 2.13 Four-level signal decomposition procedure using Wavelet Packet

Transform [14]

Various types of wavelet functions with their corresponding scaling functions have

been created with some examples from Figure 2.14 to Figure 2.17.

37

Figure 2.14 Harr [18]

Figure 2.15 Daubechies -3 [18]

Figure 2.16 Daubechies – 20 [18]

Figure 2.17 Dimey [18]

Figure 2.14 to Figure 2.17 portray the real components of the various wavelet

functions; nonetheless, wavelet functions have both real and imaginary components.

Figure 2.18 and Figure 2.19 portray wavelet functions with their two projections (real

and imaginary) in 3 dimensions.

38

Figure 2.18 Hermine Wavelet Basis [19]

Figure 2.19 Morlet Wavelet Basis [19]

39

Each wavelet function and its scales form a family, with its advantages and

disadvantages. The selection of a wavelet function for analysis does not follow any

preestablished standards and most attempts to address this problem have been

confined to specific cases. Upadhya et al. [20] developed a quantitative method for

selecting mother wavelets for the detection of voltage sags based on cross-correlation

sequences between the voltage signal and the mother wavelet. Megahed et al. [21]

presented an algorithm for the selection of a mother wavelet for power systems fault

transient grounded on the ideal reconstruction of the power signal. The metric used

was the root mean square error between the original signal and the reconstructed

signal. For signals buried in high levels of noise, a method tracking high kurtosis to

Shannon entropy ratios for various wavelets was presented by Hemmati et al. [22] to

extract features in rolling element bearing fault diagnosis. Energy and Shannon

entropy criteria were used by Juhani et al. [23] for control valve leakage detection,

where the winning mother wavelet would have to generate coefficients with the

lowest Shannon entropy and the highest energy. When it comes to the selection of an

appropriate wavelet, a general rule of thumb is to usually pick a wavelet basis which

resembles the signal.

Wu et Liu [24] used WPT for fault diagnosis of an internal combustion engine.

Daubechies mother wavelet was used on engine sound emission signals to extract

features using Shannon entropy. Neural networks were then used for operating

conditions recognition and classification of synthetic faults such as cylinder misfire,

40

air leakage in the intake manifold, engine coolant temperature and camshaft sensor

faults. Moosavian et al. [25] used various mother wavelets for the denoising of engine

vibration signals obtained from the cylinder heads for spark plug diagnosis. The

denoised signals were later processed using 12 different statistical features before

classification through Support Vector Machines (SVM). Ravikumar et al. [26] also

used vibration signals from a tri-axial accelerometer mounted in the gearbox casing

for diagnosis of an internal combustion engine gearbox. DWT based on the Haar

wavelet function was used to extract features, tracking entropy change which was

used as input to the K star algorithm for diagnosis.

2.5 Principal Component Analysis

Principal Component Analysis (PCA) is a distance-based ordination technique

mainly used to unveil patterns in multivariate data. Its purpose is to show the relative

positions of data points in fewer dimensions while keeping as much information and

investigate the relationship between dependent variables [27]. PCA employs

orthogonal transformation to decompose the dependent set of variables into a new set

of uncorrelated independent variables onto which a hierarchical ranking is applied

based on their variance. The variables with the highest variance are retained and

called Principal Components (PCs) while the remaining ones are eliminated.

Considering a set of dependent measurements defined in a matrix form as 𝑋(𝑘) =

(𝑥1 …𝑥𝑝)(𝑘) containing 𝑝 variables with each variable having 𝑘 measurements. In the

41

matrix, each column represents the number of measurements 𝑘, for a single sensor

𝑥𝑖. The following transformation is performed:

𝑇 = 𝑋𝑃 2.32

 where 𝑇 is the principal component score matrix, and 𝑃 is the principal component

matrix. The principal component scores in 𝑇 are the uncorrelated signals

corresponding to the cross-correlated signals in 𝑋. Like in 𝑋, each column in 𝑇

represents the number of measurements, 𝑘 for a single variable 𝑡𝑖. The columns in 𝑇

are arranged hierarchically starting from the highest variant component 𝑡1 to the least

variant component 𝑡𝑝. The PCA strategy in the field of fault detection conserves the

most variant sensor measurements that contain the fault signature (useful

information) and eliminates the sensor measurements that do not contain useful

information.

The concept of PCA can be illustrated as shown in Figure 2.20, where the inputs are

𝑥1 and 𝑥2 while the 𝑡1 and 𝑡2 are the PCs. From Figure 2.20, it can be seen that 𝑡1

and 𝑡2 are orthogonal, and this condition is necessary to satisfy uncorrelation. 𝑡1 is

more variant and hence contains more information in comparison to 𝑡2. Each

component represents a different event, so a fault detection strategy employing PCA

can detect faults more effectively if any of the main events change.

42

Figure 2.20 Principal Component Analysis [17]

It should be noted that matrix 𝑇 is obtained from the transformation of matrix 𝑃. 𝑃

should satisfy two conditions which are: the orthogonality of basis vectors (Principal

Components) and the association of the principal direction with the largest variance.

In a nutshell, for any matrix of measurements 𝑋, the goal is to get an orthogonal

transformation of matrix P which would map 𝑋 to a new matrix 𝑇 which possesses a

diagonal matrix. Therefore, the transformation eliminates the cross-correlation in the

measurement matrix. The solution to this problem is first obtained by calculating the

covariance of 𝑇 as shown in [28] such that:

Σ𝑇 =
1

𝑛 − 1
𝑇𝑡𝑇

=
1

𝑛 − 1
(𝑋𝑃)𝑡𝑋𝑃

43

=
1

𝑛 − 1
𝑃𝑡(𝑋𝑡𝑋)𝑃

2.33

𝑆 = 𝑋𝑡𝑋 2.34

In Equation 2.34, 𝑆 is a symmetric 𝑚 x 𝑚 matrix. The symmetry of 𝑆 makes it

decomposable into its eigenvalues and eigenvectors such that:

𝑆 = 𝐵𝛬𝐵−1 2.35

where the eigenvectors are located in 𝐵, while the eigenvalues are located in 𝛬, which

is a diagonal matrix. 𝐵 is an orthogonal matrix, meaning its inverse is equal to its

transpose (𝐵−1 = 𝐵𝑡). Hence,

Σ𝑇 =
1

𝑛 − 1
𝑃𝑡(𝐵𝛬𝐵𝑡)𝑃

2.36

The solution to the problem is to make sure that Σ𝑇 is diagonal and since 𝛬 is

diagonal, selecting 𝑃 = 𝐵 solves the problem such that:

Σ𝑇 =
1

𝑛 − 1
𝛬

2.37

To obtain the eigenvectors while preventing numerical errors, Singular Value

Decomposition (SVD) is used. SVD is used to factor out matrices into three

44

components: a left singular matrix 𝑈, a right singular matrix 𝑉, and a middle singular

values matrix Σ. For any matrix 𝑋, the factorization is such that:

𝑋 = 𝑈Σ𝑉𝑡 2.38

 The PCA transformation matrix 𝑃 can be calculated using Equation 2.38. A better

comprehension can be made if SVD is applied to 𝑆 = 𝑋𝑡𝑋 such that:

𝑋𝑡𝑋 = 𝑉Σ𝑡U𝑡𝑈Σ𝑉𝑡

2.39

Matrix U is unitary, meaning that its inverse is equal to its transpose. Equation 2.39

is then reformulated as:

𝑋𝑡𝑋 = 𝑉Σ𝑡ΣV𝑡 2.40

In SVD, the square root of eigenvectors of 𝑋𝑡𝑋 is given by the singular values matrix

Σ in Equation 2.38. Hence Equation 2.40 is given as:

𝑋𝑡𝑋 = 𝑉𝛬V𝑡 2.41

From the comparison of Equation 2.41 with Equations 2.34 and 2.35, it can be

observed that 𝐵 = 𝑉. Keeping in mind that the diagonality of Σ𝑇 is thanks to the

selection of 𝑃 = 𝐵, the PCA transformation matrix 𝑃 equates to the SVD right

singular matrix 𝑉. SVD ensures the hierarchical ranking of eigenvalues and their

45

corresponding eigenvectors to enable the PCs to follow the same order from the most

variant (𝑡1) to the least variant (𝑡𝑝).

PCA is very useful when it comes to putting the spotlight on patterns in multivariate

data in addition to the relationship between its dependent variables. The inverse of

Equation 2.32 is given by:

X = TP𝑡 2.42

Re-expressing 𝑋 in a more extensive form is given by:

X = 𝑋̂ + 𝑋̃

= 𝑇̂𝑃̂ + 𝑇̃𝑃̃

= [𝑇̂ 𝑇̃][𝑃̂ 𝑃̃]𝑡

= TP𝑡 2.43

 T and P matrices are each split into two subspaces illustrated by a hat (̂) and tilde

(̃) sign. The hierarchical ranking of PCs in PCA indicates that the first subspace

which is illustrated by the hat has the high varying PCs while the second subspace

illustrated by the tilde has the residuals. The split of data into two subspaces enables

PCA to exhibit fault detection capacities. The dominant features of a monitored

system are represented by the hat, while the tilde represents the residuals such as

noise and errors. For any dataset with 𝑚 PCs, 𝑛 components can be extrapolated to

46

the feature subspace and 𝑚 − 𝑛 PCs to the residual subspace. There are different rules

used to select the appropriate number of PCs in the literature. However, three rules

stand out from the crowd namely: the Heuristic rule, the Kaiser rule and the manual

determination rule. In the Heuristic rule, the PCs representing 95% of all PCs’

variance are extrapolated to the feature subspace while the rest are deferred to the

residual. In the Kaiser rule any PC with a variance greater than the average variance

of all PCs is extrapolated to the feature subspace. In the last method, the extrapolation

of the PCs to the subspaces is left to the end user.

The completing part of PCA fault detection is the translation of the information found

in the PCs to a detection algorithm. Joe Qin and Haqshenas [29], [30] pinpointed

three indices namely: Hotteling’s 𝓣2, Squared Prediction Error (SPE) 𝒬, and

Combined index φ. These indices operate by a comparison of the system’s

measurements under test with that of the system under healthy operation (baseline

measurements). Hotteling’s 𝓣2 measures PC’s variation between new and baseline

measurements due to its close relation to 𝐹 distribution. Hotteling’s 𝓣2 displays a

weighted extrapolation of the new measurements on the baseline’s feature subspace.

Anomalies in new measurements that preserve the covariance relationship between

variables in the baseline measurements are detectable using this index. In SPE, the

extrapolation of new measurements is made on the baseline’s residual subspace

instead. Anomalies in new measurements that violate the covariance relationship

between variables in the baseline measurements are detectable using this index. The

47

combined index φ merges 𝓣2 and 𝒬 within it, and enables any anomaly in new

measurements preserving the covariance relationship between variables or not in the

baseline measurements to be detectable. Hotteling’s 𝓣2 is mathematically expressed

as shown in Equation 2.44.

 𝓣2 = 𝑥𝑛𝑒𝑤𝑃̂𝛬̂−1𝑃̂𝑡𝑥𝑛𝑒𝑤
𝑡 2.44

= 𝑥𝑛𝑒𝑤𝐷̂𝑥𝑛𝑒𝑤
𝑡 2.45

where 𝑥𝑛𝑒𝑤is the new set of measurements, and 𝐷̂ is the 𝒯2extrapolating matrix,

which is formulated as shown in Equation 2.46.

𝐷̂ = 𝑃̂𝛬̂−1𝑃̂𝑡 2.46

𝛬̂ =
1

𝑛 − 1
𝑇̂𝑇̂𝑡

2.47

 where 𝑛 is the measurement size. SPE 𝒬 is mathematically formulated as shown in

Equation 2.48:

𝒬= ‖𝑥̃𝑛𝑒𝑤‖2 = ‖𝑥𝑛𝑒𝑤𝐶̃‖
2
 2.48

𝐶̃ = 𝑃̃𝑃̃𝑡 2.49

𝐶 is the 𝒬 extrapolating matrix. Hence, 𝑥̃ is the extrapolation of the measurement

vector 𝑥 to the residual subspace using 𝐶̃ such that 𝑥̃ = 𝑥𝑃̃𝑃̃𝑡.

48

The Combined index φ is mathematically expressed as shown in Equation 2.50.

φ =
𝒬

𝛿2
+

𝓣2

𝒯2

2.50

= 𝑥𝑛𝑒𝑤𝛷𝑥𝑛𝑒𝑤
𝑡

2.51

where 𝛿2and 𝒯2 are respectively the 𝒬 and 𝓣2 upper limits [31] and 𝛷 is the φ

extrapolation matrix defined as:

𝛷 =
𝑃̃𝑃̃𝑡

𝛿2
+

𝑃̂𝛬̂−1𝑃̂𝑡

𝒯2

2.52

The indices in 𝛷 are calculated and compared against their respective thresholds or

upper limits such that any violation of the threshold will imply the presence of a fault

in the system. Weighted chi-square distribution was shown by Box et al. [32] to be a

good approximation of quadratic forms like 𝒬 and hence expressed in Equation 2.53

as:

𝛿𝒬 = (
𝑣

2𝑚
)𝜒2 (

2𝑚2

𝑣
)

2.53

where the sample mean and variance are represented respectively by 𝑚 and 𝑣. The

term
𝑣

2𝑚
 in Equation 2.53 represents the weight of the chi-squared distribution 𝜒2

while
2𝑚2

𝑣
 represents the chi-squared degrees of freedom.

49

Jackson [33] was able to formulate the upper limit of Hotteling 𝓣2 thanks to the fact

that 𝓣2 follows 𝐹 distribution. Hence the upper limit is given by:

𝒯2 =
𝑙 (𝑛− 𝑙)

𝑛−𝑙
𝐹(𝑙.𝑛− 𝑙,𝛼)

2.54

 where the sample size and the number of variables are represented by 𝑛 and 𝑙

respectively. The required confidence level is represented by 𝛼. Equation 2.54 is

appropriate when there is a high sample size 𝑛. Tracy et al. [34] formulated the upper

limit for smaller sample sizes, given by:

𝒯2 =
𝑙 (𝑛2 −𝑙)

𝑛(𝑛−𝑙)
𝐹(𝑙.𝑛− 𝑙,𝛼)

2.55

 On the other hand, Yue and Qin [31] were able to formulate the upper limit of the

combined index φ thanks to the fact that φ can be approximated by a chi-squared

distribution. Hence the upper limit is defined as:

𝜁𝛼
2 = 𝑔φ𝜒𝛼

2ℎφ 2.56

From Equation 2.56, 𝑔φ represents the weight of the chi-squared distribution 𝜒2 while

ℎφ represents the chi-squared degrees of freedom. The required confidence level is

represented by 𝛼. 𝑔φ and ℎφ are formulated as:

𝑔φ =

𝑙
𝒯𝛼
4 +

𝜃2

𝛿𝛼
4

𝑙
𝒯𝛼
2 +

𝜃1

𝛿𝛼
2

2.57

50

ℎ𝜑 =
(

𝑙
𝒯𝛼
2 +

𝜃1

𝛿𝛼
2)

2

𝑙
𝒯𝛼
4 +

𝜃2

𝛿𝛼
4

2.58

where 𝜃1 = 𝑡𝑟𝑎𝑐𝑒(𝛬̃) and 𝜃2 = 𝑡𝑟𝑎𝑐𝑒(𝛬2̃) with 𝛬̃ defined as:

𝛬̃ =
1

𝑛 − 1
𝑇̃𝑇̃𝑡

2.59

Another statistical index was proposed by Haqshenas [29] based also on the PCs

covariance, 𝑇. Taking the assumption that a measurement signal contains the baseline

measurement in addition to faulty components, then the measurement signal can be

formulated as:

X = 𝑋∗ + 𝐹 2.60

 where 𝑋∗ is the baseline healthy component and 𝐹 the faulty components. The PCs

covariance is:

𝐶𝑂𝑉(𝑇) = 𝐸(𝑇𝑇𝑡) − 𝐸(𝑇)𝐸(𝑇)𝑡

 = 𝐸(X𝑃𝑃𝑡𝑋𝑡) − 𝐸(𝑋𝑃)𝐸(𝑋𝐹)𝑡 2.61

Considering Equation 2.60, Equation 2.61 becomes:

𝐶𝑂𝑉(𝑇) = 𝐸(𝑋∗𝑃𝑃𝑡𝑋∗𝑇) + 𝐸(𝐹𝑃𝑃𝑡𝐹𝑡) + 𝐸(𝑋∗𝑃𝑃𝑡𝐹𝑡)

+ 𝐸(𝐹𝑃𝑃𝑡𝑋∗𝑡)

2.62

51

Taking the assumption that 𝑋∗ and 𝐹 are independent, Equation 2.62 is reformulated

as:

𝐶𝑂𝑉(𝑇) = 𝐶𝑂𝑉(𝑋∗𝑃) + 𝐶𝑂𝑉(𝐹𝑃) 2.63

 From Equation 2.63, Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 = 𝐶𝑂𝑉(𝑋∗𝑃) was defined in Equation 2.33 as the

PC covariance of the baseline measurement. If Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 = 𝐶𝑂𝑉(𝑇), Equation 2.63

becomes:

𝛴𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 = 𝛴𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 + 𝐶𝑂𝑉(𝐹𝑃) 2.64

 Hence,

𝐶𝑂𝑉(𝐹) = 𝑃(Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 − Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦)𝑃𝑡 2.65

 Equation 2.65 represents the fault covariance extrapolation into the feature

subspace. The PCA model is constructed based on the healthy (or baseline)

measurements, where the PC covariance matrix is diagonalized. Hence, Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 is

a diagonal matrix in Equation 2.65. On the other hand, Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 is not diagonal due

to the fault effects as its PCs were found using the baseline PCA model. In addition,

the faulty condition dictates the diagonal elements found in the Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 matrix.

Therefore, the presence of a fault in a monitored system is represented and

characterized by the (Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 − Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦) term. Consequently, Haqshenas [29]

defined the following index:

52

𝑆𝑐 = ∑
∑ (𝛴𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 − 𝛴𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦) ∘ (𝛴𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 − 𝛴𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦)𝑚

𝑖=1

𝜆𝑖

𝑚

𝑖=1

2.66

where 𝜆𝑖 is the baseline PC variance. Due to the symmetric nature of the covariance

matrix in Equation 2.66, the summation can be performed in any order (that is row-

wise then column-wise or vice versa). The multiplication symbol ∘ in Equation 2.66

represents the Hadamard (entry-wise) multiplication. 𝑆𝑐 is compared against a

threshold, such that if it is higher than the latter, the monitored system is stated as

faulty. The advantage of Haqshenas’ index is that it produces a single output used for

comparison with the threshold in contrast to other indices. In a nutshell, statistical

indices help indicate the presence of a fault in a system but are not able to do fault

diagnosis.

Fault diagnosis is the process of sourcing a fault and its severity through its

symptoms, applying knowledge and analyzing results. Accurate fault diagnosis starts

after detection, where the required features are extracted for efficient fault

classification or identification. Identification and subsequent curative actions can

increase productivity and reduce the cost of maintenance in many industrial

applications.

One of the most used methods in fault diagnosis is contribution plots, which are

graphical representations used to pinpoint which variable, sensor, or feature has the

most impact on a fault. Alcala and Qin [35] defined three different plots for 𝓣2, 𝒬,

53

and φ indices. An example of a contribution plot is given in Figure 2.21 where the

contribution of each variable (in this case four) is shown in each sample. From the

example, it can be deduced that the variable in blue has the highest contribution to

the fault.

Figure 2.21 RBC chart example [17]

Each of the three indices has its corresponding plot defined such that:

𝑐𝑖, 𝓣2 = (𝑥𝑛𝑒𝑤𝐷̂0.5𝜉𝑖)
2 2.67

𝑐𝑖,𝒬 = (𝑥𝑛𝑒𝑤𝐶̃𝜉𝑖)
2 2.68

𝑐𝑖,φ = (𝑥𝑛𝑒𝑤𝛷0.5𝜉𝑖)
2 2.69

54

where 𝑥𝑛𝑒𝑤 is the new set of measurements and 𝑐𝑖,() is the contribution of the 𝑖𝑡ℎ

variable. 𝜉𝑖 is a standard basis, whose size equates to that of the number of variables.

It is a zero vector where only the 𝑖𝑡ℎ element equates to 1 such that:

𝜉𝑖 = [0 0 0…0 1 0…0 0]𝑡 2.70

 Overall, the contribution equations extrapolate each variable to a scoring subspace.

However, discrepancies in the contribution are observed when these equations are

applied to healthy measurements in such a way that faults existing in low-contribution

variables are not adequately represented as they would be in a scenario where the

faults would exist in high-contribution variables. To make the faults existing in

different variables even, normalization of the contributions is used. In order to reach

this goal, Dunia and Joe Qin [36] used the following mathematical expressions:

 𝑅𝐵𝐶𝑖, 𝓣2 =
(𝑥𝑛𝑒𝑤𝐷̂0.5𝜉𝑖)

2

𝑑̂𝑖𝑖

2.71

𝑅𝐵𝐶𝑖,𝒬 =
(𝑥𝑛𝑒𝑤𝐶̃𝜉𝑖)

2

𝑐̃𝑖𝑖

2.72

 𝑅𝐵𝐶𝑖,𝜑 =
(𝑥𝑛𝑒𝑤𝛷0.5𝜉𝑖)

2

𝜙𝑖𝑖

2.73

where,

55

𝑑̂𝑖𝑖 = 𝜉𝑖
𝑡𝐷̂𝜉𝑖 2.74

𝑐̃𝑖𝑖 = 𝜉𝑖
𝑡𝐶̃𝜉𝑖 2.75

𝜙𝑖𝑖 = 𝜉𝑖
𝑡𝛷𝜉𝑖 2.76

 The index 𝑆𝑐 in Equation 2.66 was extended by Haqshenas [29] for fault diagnosis,

simplifying Equation 2.65 to:

𝐶𝑂𝑉(𝐹) = 𝑃(Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 − Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦) 𝑃𝑡

The fault covariance is used for isolation via a newly defined index. This is performed

by finding every variable contributing to the fault in the matrix 𝐶𝑂𝑉(𝐹) and

normalizing it by its variance. This index is given by:

𝐹𝑐 = (∑𝐶𝑂𝑉(𝐹)

𝑚

𝑖=1

∘ 𝐶𝑂𝑉(𝐹)) ∘ 𝛴𝜆

2.77

where 𝛴𝜆 = [
1

𝜆1
…

1

𝜆𝑛
] is a vector containing the inverse of PC variances 𝜆𝑖. The

output of 𝐹𝑐 is a vector with a size equal to the number of variables where the value

of the 𝑖𝑡ℎ element constitutes the fault contribution of the 𝑖𝑡ℎ variable. Therefore, for

a detected fault, the fault variables can be isolated.

56

2.6 Multiscale Fault Diagnosis

The concepts of PCA and wavelet transforms were discussed in the previous sections.

PCA is a strong tool used in multivariate analysis and wavelet transform is a strong

time-frequency signal processing tool used for spectral and temporal decomposition

of signals. The combination of wavelets and PCA creates a strong multivariate

multiscale tool called Multiscale Principal Component Analysis (MSPCA) which

stretches the field of fault diagnosis and is suitable for complex dynamic systems.

MSPCA applies DWT on signals followed by PCA on the resulting coefficients

originating from DWT. This way, PCA resolves the correlation between sensor

measurements at different spectral resolutions, scrutinizing for valuable information

between signals and their frequency scales. Figure 2.22 schematizes the concept of

MSPCA where 𝑔 and ℎ are the low pass and high pass filters respectively.

Figure 2.22 MSPCA Technique

57

MSCPCA was later modified by Yoon and MacGregor [37] to incorporate RBC

(Reconstruction Based Charts) in the diagnosis. The DWT in the MSCPA resulted in

down-sampling of the signals at each consecutive scale, creating shorter length

coefficients. The Mod-MSPCA proposed up-scaling and reconstruction. Instead of

feeding the wavelet coefficients directly in PCA, they are reconstructed via

reconstruction filters. This conceptualizes the translation of measurement

decomposition to their fragmentation into a combination of scaled-based signals. The

decomposition of a data matric 𝑋 at 𝐽 different scales is formulated as follows:

𝑊𝐽𝑋 = 𝐻1𝑋 + 𝐻2𝑋 + ⋯+ 𝐻𝐽𝑋 + 𝐺𝐽𝑋 2.78

where 𝐺 and 𝐻 are respectively the low and high pass filters. By applying

reconstruction filters to the Equation 2.78, the reconstruction can be written as:

𝑊𝑠𝑊𝐽𝑋 = 𝐻1
𝑡𝐻1𝑋 + 𝐻2

𝑡𝐻2𝑋 + ⋯+ 𝐻𝐽
𝑡𝐻𝐽𝑋 + 𝐺𝐽

𝑡𝐺𝐽𝑋

= 𝑋1 + 𝑋2 + ⋯ + 𝑋𝐽 + 𝑋𝐽+1 2.79

where 𝑊𝑠 is the wavelet reconstruction (or synthesis) matrix. The newly

reconstructed components (𝑋1 + ⋯+ 𝑋𝐽+1) are fed into PCA in the Mod-MSPCA.

At this level of analysis, it should be noted that both Mod-MSPCA and MSCPCA

use DWT where only the low pass filter is decomposed to the next level. However

valuable information is lost in the high pass filter components of the signal and if the

system dynamics exhibit changing patterns in high frequencies, its complete

description might be lost and the subsequent FDD strategy might be less efficient. To

58

solve this problem, Ismail [17] replaced the DWT with WPT. Hence reformulating

the reconstruction of the data matrix 𝑋 such that:

𝑊𝑠𝑊𝐽𝑋 = 𝐻1
𝑡𝐻1𝑋 + 𝐺1

𝑡𝐺1𝑋 + 𝐻2
𝑡𝐻2𝑋 + ⋯+ 𝐻

2𝐽−1
𝑡 𝐻2𝐽−1𝑋 + 𝐺

2𝐽−1
𝑡 𝐺2𝐽−1𝑋

= 𝑋1 + 𝑋2 + ⋯ + 𝑋2𝐽−1 + 𝑋2𝐽 2.80

The newly reconstructed components (𝑋1 + 𝑋2 + ⋯+ 𝑋2𝐽−1+𝑋2𝐽) are fed into PCA

allowing the FDD strategy to be performed in tighter high-frequency bands of

measurements spectrum. This upgrade to the Mod-MSPCA done by Ismail [17] is

called Extended Multiscale Principal Component Analysis (EMSPCA). The FDD of

MSPCA, Mod-MSPCA and EMSPCA used the same statistical system monitoring

concept where a comparison between the baseline (healthy) and the monitored

system is performed. As such, a modification of statistical indices defined in

Equations 2.44, 2.48, 2.50, 2.66 and 2.77 was needed for decomposition at any 𝐽scale

such that:

𝓣𝑗
2 = ∑

𝒯𝑖

𝜆𝑖,𝑗

𝐴

𝑖=1

2.81

𝒬𝑗 = ∑𝑥̃𝑖,𝑗
2

𝑚

𝑖=1

2.82

59

φ𝑗 =
𝒬𝑗

𝛿𝑗
2 +

𝓣𝑗
2

𝒯𝑗
2

2.83

where 𝑗 = 1.2….𝐽+1 and 𝐴 is the number of PC.

The statistical indices at each scale are totalized such that:

𝓣2 = ∑𝓣𝑗
2

𝐽

𝑗=1

2.84

𝒬 = ∑𝒬𝑗

𝐽

𝑗=1

2.85

φ =
𝒬

𝛿2
+

𝓣2

𝒯2

2.86

 The multiresolution version of Hasquenas index was formulated as:

𝑆𝑐,𝑗

= ∑
∑ (Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 − Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦)𝑗 ∘ (Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 − Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦)𝑗

𝑚
𝑖=1

𝜆𝑖,𝑗

𝑚

𝑖=1

2.87

The fault diagnosis RBC defined in Equations 2.71, 2.72 and 2.73 then become:

60

𝑅𝐵𝐶𝑖,𝓣𝑗
2 =

(𝑥𝑗𝐷̂𝑗
0.5𝜉𝑖)

2

𝑑̂𝑗,𝑖𝑖

2.88

𝑅𝐵𝐶𝑖,𝒬𝑗
=

(𝑥𝑗𝐶̃𝑗𝜉𝑖)
2

𝑐̃𝑗,𝑖𝑖

2.89

𝑅𝐵𝐶𝑖,φ𝑗
=

(𝑥𝑗𝛷𝑗
0.5𝜉𝑖)

2

𝜙𝑗,𝑖𝑖

2.90

where:

𝑑̂𝑗,𝑖𝑖 = 𝜉𝑖
𝑡𝐷̂𝑗𝜉𝑖 2.91

𝑐̃𝑗,𝑖𝑖 = 𝜉𝑖
𝑡𝐶̃𝑗𝜉𝑖 2.92

𝜙𝑗,𝑖𝑖 = 𝜉𝑖
𝑡𝛷𝑗𝜉𝑖 2.93

The revised fault diagnosis index is given by:

61

𝐹𝑐,𝑗 = (∑𝐶𝑂𝑉(𝐹)

𝑚

𝑖=1

∘ 𝐶𝑂𝑉(𝐹))

𝑗

∘ 𝛴𝜆𝑗

2.94

In Equation 2.87, 𝑆𝑐,𝑗 provides a single value at each spectral decomposition level

and therefore is capable of detecting a fault and providing information on the fault

frequency in its corresponding level. The fault diagnosis, via 𝐹𝑐,𝑗 portrays a detailed

contribution map to the fault where for each spectral level, the contribution of each

variable is presented. The fault type is hence characterized by the topography of the

contribution map. It should be noted that both 𝑆𝑐,𝑗 and 𝐹𝑐,𝑗 monitor the variation

between the “Healthy” and “Faulty” PCs covariance matrices. M. Ismail [17] added

another step in his EMSPCA due to the vibroacoustic nature of his analyses. The

vibration and sound measurements have different scales and variances and hence

could result in misleading information if fed to the EMSPCA. Sound and vibration

have different sensitivities to faults and hence, he added a normalization step in the

signal pre-processing such that:

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 =
𝑟𝑎𝑤 𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑐𝑒𝑛𝑡𝑟𝑒)

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑐𝑒𝑛𝑡𝑟𝑒)

2.95

The raw signal is the monitored signal which is computed against the baseline

(healthy) signal as for any signal-based algorithm, the monitored signal is compared

to the baseline.

62

Cao et al. [38] used PCA for the fault diagnosis of cracks on a centrifugal pump’s

blades. The multi-source signals obtained from the pump via a variety of sensors were

processed by PCA to reduce the dimensionality and increase the feature resolution of

the signals. The extracted features were used as input to a Gaussian Mixed Model

(GMM) for classification. In [39], PCA was used to reduce the dimensionally of the

data samples obtained from a marine diesel engine fuel oil supply system, using SVM

for diagnosis. Xu et al. [40] used advanced PCA techniques for the fault diagnosis of

turbomachinery damage subjected to uncertainty. The proposed methodology was a

combination of discrete wavelet packet transform, Bayesian hypothesis testing, and

probabilistic principal component analysis. The set of sensor data recording time

series signals was decomposed in various wavelet coefficients. Possible

imperfections assessment in the decomposed coefficients and subsequent avoidance

of over-denoising was provided by the ratio of posterior odds Bayesian approach.

The Bayesian wavelet clean-up method’s effectiveness was assessed using power

spectral density estimated by the Welch method. Moreover, multivariate correlation

and uncertainty were addressed by probabilistic principal component analysis of the

multiple time series for crack damage diagnosis. Sheriff et al [41] used MSPCA for

fault detection of a chemical processing plant thanks to its capacity for deterministic

feature extraction and decorrelation of autocorrelated sensor measurements. The

proposed algorithm is operated first by wavelet decomposition of the input data

matrix followed by PCA on each of the wavelet coefficients. Then 𝓣2 or 𝒬 threshold

63

limits were applied to retain the wavelet coefficients of concern at each scale. Then

the data matrix was reconstructed with the retained coefficients and scales and finally,

PCA was applied to the reconstructed data matrix to obtain an approximate data

matrix and residuals.

2.7 Artificial Intelligence

A complete fault diagnosis and prognosis strategy consists of three main tasks

mainly: determining whether the monitored system is normal or not; locating the

incipient fault and its reason; and predicting the trend of fault development.

Essentially, fault diagnosis and prognosis can be considered as a pattern recognition

problem, in regards to condition monitoring of ICEs. Artificial intelligence (AI),

considered a powerful pattern recognition tool has retained the attention of

researchers and exhibits promise in rotating machinery fault recognition applications.

Direct fault pattern recognition is impossible due to the variability and abundance of

monitored signals’ content. Most common intelligent fault diagnosis strategies have

a workflow consisting of pre-processing of signals by feature extraction algorithms

to modify the input pattern in such a way that they can be transformed to low

dimensional feature vectors for smoother match and comparison [42]. The feature

vectors are then fed as inputs to the AI techniques to achieve fault recognition. The

fault recognition step sums up to mapping of the information gained in the feature

space, to machinery fault in the fault space. Several AI techniques have been used in

64

fault diagnosis of rotating machinery, more specifically classifiers and statistical

learning techniques such as K-Nearest neighbour (KNN), Bayesian classifier,

Support Vector Machines (SVM) and Artificial Neural Networks (ANNs). One of the

most recent techniques employed in the field of fault diagnosis is Deep Learning

(DL). AI can also be categorized under the prism of the learning approach (that is

supervised or unsupervised learning). In supervised learning, the training data used

is already labelled. Here, the training data is used to infer a mapping function or

learning algorithm from the input variable 𝑋 to the output variable 𝑌. The labels (also

called desired outputs) are already known for any given pair of input-output, 𝑀 =

{∑(𝑋𝑖, 𝑌𝑖)}𝑖
𝑁 where 𝑁 is the number of training examples. In unsupervised learning,

the AI model uses unlabelled, unclassified and categorized learning data. The main

goal of unsupervised learning is to decipher the patterns hidden in unlabelled data.

Unlike supervised learning which is used for classification and/or regression,

unsupervised learning is mostly used for clustering and/or self-organizing maps. The

mosaic of AI techniques is shown in Figure 2.23 while the relationship between AI

disciplines is shown in Figure 2.24.

65

Figure 2.23 Categories of AI techniques used in Machinery Health Monitoring [43]

Figure 2.24 Relationship between AI disciplines [44]

66

2.7.1 K-Nearest Neighbour

K-Nearest Neighbour (KNN) is an instanced based supervised learning algorithm

based on the postulate that instances in a dataset will mostly exist in close vicinity to

other instances with the same characteristics [44]. Given any set of classified

instances, 𝑇 = [(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑁 , 𝑦𝑁)] where 𝑥𝑖is the feature vector of the

unlabelled instance and 𝑦𝑖 the labelled instance. 𝑦𝑖 = 𝑐1, 𝑐2, … , 𝑐𝑘, 𝑖= 1, 2…N. For a

given training sample (𝑥, 𝑦), the KNN algorithm looks for the nearest K instances to

𝑥 based on a certain distance metric. 𝑁𝑘(𝑥) is the vicinity (neighbourhood)

containing these k instances. The label 𝑦 of the test sample 𝑥 can be calculated on the

basis of decision rules such that:

𝑦 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑐𝑗

∑ 𝐼(

𝑥𝑖𝜖𝑁𝑘(𝑥)

𝑦𝑖 = 𝑐𝐽). 𝐼 = 1,2, … ,𝑁; 𝐽

= 1,2, … , 𝐾

2.96

where 𝐼 is the indicator function.

When a classification label is attributed to the instances, then an unclassified

instance’s label can be deduced by observing the attribute of it nearest neighbours as

shown in Figure 2.25

67

Figure 2.25 KNN Diagram [44]

Figure 2.25 shows that when K = 1 or 5, the test sample is classified as positive while

when K =3, it is classified as negative. In a nutshell, the KNN algorithm possesses

the following three basic elements: the number of measured instances k, the distance

metric and the classification decision rule. KNN has the advantage of having a simple

implementation in contrast to other AI algorithms.

Wang [45] was able to identify up to 5 levels of severity in gears cracks via KNN and

the redundant statistical features built using Debauchees 44 binary WPT. Pandya et

al. [46] used the Hilbert–Huang transform (HHT) for feature extraction as input to

KNN in an article on bearing fault diagnosis. A comparison with other AI techniques

such as Naïve Bayes, ANN and weighted KNN was performed in the paper. It should

be noted that KNN faces some difficulties such as the optimal selection of the

parameter k and the indifferentiable neighbourhood boundary [47]. A modified

68

version of KNN was used by some researchers to overcome these problems. Lei et

al. [48] used a weighted KNN integrated into their fault diagnosis strategy of

bearings, where the extracted features were weighted per their sensitivity to the

machine’s health states during the training process of the KNN model. Dong et al.

[49] used particle swarm optimization to improve KNN and obtained better diagnosis

results for bearings. Furthermore, Li et al. [50] used KNN in combination with PCA

where the latter helped the compression of high dimensional time-frequency features

into low dimensional uncorrelated eigenvectors as input to KNN for life-grade

recognition of rotating machinery.

2.7.2 Naïve Bayesian Classifier

Mitchell [51] defined the Naïve Bayes methods as a supervised classification method,

leveraging probabilistic computations based on Bayes’ Theorem and the assumption

of conditional independence. Given a training set 𝑇 = [(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑁 , 𝑦𝑁)]

labelled as 𝑦, 𝑦𝑖 = 𝑐1, 𝑐2, … , 𝑐𝑘, 𝑖= 1, 2…N and assuming there exist 𝑆𝑖 possible

values for 𝑥𝑙, 𝑙= 1, 2, …, n; with 𝐾 possible values for 𝑌. Naïve Bayes starts by

learning the combined probability distribution 𝑃(𝑋, 𝑌) of the input and output by

conditional probability distribution based on the assumption of conditional

independence, such that:

𝑃(𝑋 = 𝑥|𝑌 = 𝑐𝑗) = 𝑃(𝑋(1) = 𝑥(1), … , 𝑋(𝑛) = 𝑥(𝑛)|𝑌 = 𝑐𝑗)

69

= ∏ 𝑃(𝑋(𝑙) = 𝑥(𝑙))
𝑛

𝑙=1
 𝑗 = 1, 2, … , 𝐾

2.97

 Then, on the basis of the learnt model, the output label 𝑦 showing the biggest

posterior probability for the input 𝑥 can be computed through Bayes’ Theorem:

𝑃(𝑌 = 𝑐𝑗|𝑋 = 𝑥) =
𝑃(𝑋 = 𝑥|𝑌 = 𝑐𝑗)𝑃(𝑌 = 𝑐𝑗)

∑ 𝑃(𝑋 = 𝑥|𝑌 = 𝑐𝑗)𝑃(𝑌 = 𝑐𝑗)𝑗

2.98

and

𝑦 − arg𝑚𝑎𝑥
𝑐𝑗

𝑃(𝑌 = 𝑐𝑗)∏ 𝑃(𝑋(𝑙) = 𝑥(𝑙))|
𝑙

𝑌 = 𝑐𝑗)
2.99

Its high efficiency and ease of implementation make naïve Bayes classification a

common classification method.

Seshadrinath et al. [52] used duel tree wavelet transform for feature extraction before

implementing the naïve Bayes fault diagnosis model for induction machines. Cunha

Palácios et al. [53] used the time domain as the analysis ground of their fault diagnosis

strategy via naïve Bayes, where they used the amplitude of current signals from motor

faults. Flett and Bone [54] proposed a diagnosis strategy for a diesel engine valve

train and compared the results of different classifiers such as ANN, KNN and naïve

Bayes classifiers with the latter having the best overall performance.

70

2.7.3 Support Vector Machines

Support Vector Machines (SVM) is a supervised learning algorithm used for

classification, clustering and regression. Its algorithm builds an optimal separating

hyperplane 𝑓(𝑥) = 0 between data sets. Given a training set 𝑇 =

[(𝑥1, 𝑦1), (𝑥2, 𝑦2),… (𝑥𝑁 , 𝑦𝑁) labelled as 𝑦, 𝑦𝑖𝜖{−1, 1}, it solves a constrained

quadratic problem based on the minimization of structural risk [55] , such that:

𝑓(𝑥) = 𝑊𝑇𝑥 + 𝑏 = ∑𝑊𝑖𝑥𝑖 + 𝑏

𝑁

𝑖=1

2.100

where 𝑊 is a vector of dimension N and 𝑏 is a scalar. The separation of the samples

between the positive and negative classes necessitates the hyperplane to be subjected

to:

𝑦𝑖𝑓(𝑥1) = 𝑦𝑖(𝑊
𝑇𝑥 + 𝑏) ≥ 1, 𝑖 = 1. 2. … ,𝑁 2.101

As shown in Figure 2.26, both hyperplanes 𝐻1 and 𝐻2 meet the constraint in Equation

2.101. However, the optimal separating hyperplane 𝐻∗, is the one which

discriminates the datasets by creating the maximum distance between the plane and

the nearest data; that is the maximum margin, given by 𝛾 = 2
‖𝑊‖⁄ . The

optimization objective of the linear SVM is given in Equation 2.102.

𝑚𝑖𝑛
𝑊,𝑏

1

2
‖𝑊‖2

2.102

71

Using the Kuln-Tucher condition to convert the optimization problem into the

equivalent Lagrangian dual quadratic optimization problem, the classifier based on

the support vector can be obtained [44].

Figure 2.26 Linear SVM classification [47]

Classification problems often exhibit a linear nature as shown in Figure 2.26 due to

the fact that the hyperplane used is straight. However, in more challenging

classification problems the optimal solution may employ a curved hyperplane as

shown in Figure 2.27.

72

Figure 2.27 Non-linear SVM classification with curved hyperplane [56]

It should also be noted that some datatypes are nonlinearly separable, hence the

classification problem is denoted as non-linear and is solved using some type of

kernel method. This method typically requires the support vectors to be transformed

to a higher-dimensional input space. To rephrase it, this extra step converts a

nonlinearly separable set of features to a set of linearly separable ones [56]. A critical

step before the training and evaluation of SVM is feature selection. The feature

selection methods can be categorized into three main types namely: embedded

methods, filter methods, and wrapper methods [57].

In embedded methods, the feature selection tool is integrated into the classifier and

the selection is automatically performed during the SVM training phase. This is

achieved by what is called the “Kernel trick”; a kernel method capable of improving

73

the computational efficiency of SVM in training and conveniently aiding in

preventing overfitting in ill-conditioned problems where the dimensionality of

monitored signals is by far exceeding the number of available examples for training.

A kernel function illustrates pairwise analogous measures between all example

patterns summarized in a kernel matrix of dimension N x N, where N is the number

of observations. Rather than depending on the raw feature vector as direct input to

the SVM classifier, the kernel trick permits the SVM to be trained using the kernel

matrix, hence mapping the raw measurements to a higher dimensional feature space

for both linear and non-linear problems as shown in Figure 2.28.

Figure 2.28 Conceptual portray of the 'Kernel Trick’ [56]

Filter methods on the other hand perform dimensionality reduction of features prior

to the classification and perform relevance measures on the training set, hence

74

removing the least important features before inserting a hyperplane. The feature

reduction helps in:

- Redundancy reduction in raw measurement for greater sample training data

proportion relative to the dimensionality of the features

- Interpretation facilitation of the final classifier by pinpointing the data having the

most predictive information relevant to differentiating classes

- Training process acceleration and computational load reduction

An example of feature reduction involves the removal of near-zero variance and

significantly correlated features.

Wrapper methods train the classifier through successive iterations where the

feedback from the previous iteration is used to select a subset of features for the next

one. Certainly, wrapper methods exploit more computation power in contrast to

embedded methods, but nonetheless, they are able to remove data points that when

taken independently, do not encroach on the differentiation between class labels. The

most commonly used wrapper method is the Recursive Feature Elimination (RFE)

which selects features by their recursive ranking among smaller and smaller subsets

of features via cross-validation.

There are instances where real measurements can be associated with more than one

class or group. In such situations, the SVM is extended using a multi-class

classification algorithm. The one-versus-all approach is one of the simplest

75

techniques used in multi-class classification, where the measurements belonging to a

certain group 𝑗 have to be differentiated from all other groups 𝑗 = 1, 2, … , 𝑘. In this

scenario, all the groups other than 𝑗 are combined into one group and the selection of

the hyperplane discriminating the samples in 𝑗 from the combined group is done using

the standard SVM algorithm. Multiple class problems can be generalized by

employing trained multiple one-versus all classifiers and use the obtained answers to

combine them with a decision function. With (𝑤(𝑗), 𝑏(𝑗)) as notation, the optimal

hyperplane for class 𝑗, and 𝑡(𝑗) = 𝑠𝑔𝑛(〈𝑤(𝑗), 𝑥 + 𝑏(𝑗)〉) the decision function for 𝑗

after all the 𝑘 optimal separating hyperplanes have been found, the final classifier ℎ

is expressed in Equation 2.103.

ℎ(𝑥) = arg𝑚𝑎𝑥
𝑗

(𝑡(𝑗)(𝑥)) 2.103

Li et al. [58] used SVM on acoustic signals analysis based on pseudo-Wigner-Ville

Distribution (PWVD) for the diagnosis and prediction of several rotor crack depths.

Li et al. [59] proposed a fault diagnosis method for mechanical systems using second-

generation WPT, Neighborhood Rough Set (NRS) and SVM, capable of performing

fault detection, dimensionality reduction and pattern classification. Wang et al. [60]

performed engine fault diagnosis using engine noise signals, onto which HHT was

applied for feature extraction followed by the use of SVM for training, taking as input

the noise signals’ fault feature vectors. Zhang et al. [61] used instantaneous

crankshaft speed (ICS) as their basis for the combustion fault diagnosis of a large V-

76

type marine engine. Feature extraction was done by using a cyclic polar map

representation based on ICS. The newly extracted features were used as input to an

SVM model. Li et al. [62] implemented a multi-kernel SVM for the fault diagnosis

of a gas turbine engine, which achieved improved results in contrast to traditional

SVM.

2.7.4 Artificial Neural Networks

ANN is thought to be one of the most widely used algorithms [44]. Their concept

originates from biological neural networks which they emulate in a reduced manner.

The smallest unit of ANN is a neuron or perceptron, which is a processing element

interconnected with other perceptrons. Perceptrons are arranged in a layer or vector,

with the output of one layer being the input to the subsequent layer and possibly other

layers. ANNs are formed of three components: input layer, hidden layer and output

layer. A perceptron may be connected with all or a subset of other perceptrons in a

subsequent layer as shown in Figure 2.30, hence simulating the brain’s synaptic

connections as shown in Figure 2.29.

Figure 2.29 A human neuron [44]

77

Weighted data signals entering a perceptron are analogous to electric signals into a

nerve cell, creating a transfer of information in the network. A back propagation

neural network (BPNN) is a multilayered perceptron consisting of forward and

backward propagation by supervised learning. Multi-class layers process the input

samples as shown in Figure 2.30 in forward propagation and they are finally mapped

to the target class via the output layer. Given a training set 𝑇 =

[(𝑥1, 𝑦1), (𝑥2, 𝑦2),… (𝑥𝑁 , 𝑦𝑁)] with 𝑁 samples, where 𝑥𝑖 𝜖 ℛ𝑑 contains 𝑑 features

and 𝑦𝑖 𝜖 ℛ𝑙 include 𝑙 health states, the output of the ℎth hidden layer is given as

shown in Equation 2.104.

(𝑥𝑖
ℎ)𝑗 = 𝜎ℎ (∑ 𝑊𝑗

ℎ · 𝑥𝑖
ℎ−1 + 𝑏𝑗

ℎ

𝑛ℎ−1

𝑖=1

) ,

𝑗 = 1, 2, … , 𝑛ℎ , ℎ = 1, 2, … ,𝐻,

2.104

78

Figure 2.30 Back Propagation Neural Network architecture with 2 hidden layers

[47]

In Equation 2.104, (𝑥𝑖
ℎ)𝑗 is the output of the 𝑗th neuron in the ℎth hidden layer, and

𝑥𝑖
0 = 𝑥𝑖. The number of neurons in the ℎth hidden layer is given by 𝑛ℎ. 𝜎ℎ is the

activation function of the ℎth hidden layer and 𝑛ℎ−1 is the number of neurons in the

(ℎ − 1)th hidden layer. 𝑊𝑗
ℎ is the weights between the neurons in the previous layer

and 𝑗th neuron in the ℎth hidden layer and 𝑏𝑗
ℎ is the bias of the ℎth hidden layer. The

output of a BPNN is predicted as:

79

(𝑦̂𝑖)𝑘 = 𝜎𝑜𝑢𝑡 (∑𝑊𝑗
𝑜𝑢𝑡 · 𝑥𝑖

𝐻 + 𝑏𝑗
𝑜𝑢𝑡

𝑛𝐻

𝑖=1

) , 𝑘 = 1, 2, … , 𝑙,

2.105

where (𝑦̂𝑖)𝑘 is the output predicted for the 𝑘th neuron in the output layer. 𝜎𝑜𝑢𝑡 is the

output layer’s activation function. 𝑊𝑗
𝑜𝑢𝑡 and 𝑏𝑗

𝑜𝑢𝑡 are the output layer’s weights and

bias respectively. For a given training set {𝑥𝑖, 𝑦𝑖}, the objective of the BPNN

optimization aims at the reduction of the error between the target and the predicted

output by:

𝑚𝑖𝑛
𝑊,𝑏

 𝐸𝑖 =
1

2
∑[(𝑦𝑖)𝑘 − (𝑦̂𝑖)𝑘]

2

𝑙

𝑘=1

2.106

 For the resolution of this problem, the training parameters 𝑊 and 𝑏 are updated by

gradient descent such that:

𝑊 ⃪ 𝑊 − 𝜂 ·
𝜕𝐸𝑖

𝜕𝑊
 , 𝑏 ⃪ 𝑏 − 𝜂 ·

𝜕𝐸𝑖

𝜕𝑏
 , 2.107

 where 𝜂 represents the learning rate. The error gradient spreads backward from the

output layer to the input layer and updates the training parameters layer by layer

[63]. ANNs effectuate algorithms that simulate neurological-related capabilities like

learning from experience, performing generalizations from analogous events and

judging states where poor results were achieved in the past.

Zabihi-Herasi et al [64] used ANN for combustion fault detection and diagnosis on a

12-cylinder 588 kW trainset diesel engine based on vibration data obtained from the

intake manifold and cylinder heads. Feature extraction was performed using discrete

80

wavelet transform and they were used as input into a Multilayer Perceptron (MLP)

for diagnosis of faulty cylinders subjected to the abnormal fuel injection. In [65],

combustion torque was used as the basis for the misfire fault diagnosis of a gasoline

engine. Due to the impossibility of directly measuring combustion torque, an

Optimized Luenberger Sliding Mode Observer (OLSMO) was used to estimate

dynamic engine combustion torque in transient conditions. Feature extraction was

done by summation of the estimated combustion torque for each combustion cylinder

in one cycle. The extracted features were used as input for various ANN architectures

such as Back-Propagation Neural Network (BPNN), and Elman Neural Network

(ENN) for comparison with the latter showing the best results. Wang et al. [66] used

engine acoustics signals for fault diagnosis of a gasoline engine. An incomplete

wavelet packet analysis (WPA) model consisting of a five-level discrete wavelet

transform (DWT) and a four-level WPA was applied to engine noise signals for

feature extraction. This was followed by classification using BPNN which was

capable of diagnosing nine different fault conditions.

81

2.7.5 Deep learning

It might be difficult to determine which features should be extracted as input to AI

algorithms. Deep Learning (DL) has the potential to alleviate this problem. As such

DL has shown top-notch performance in fields such as computer vision, audio

recognition, natural language processing, as well as fault diagnosis. DL-based

diagnosis models are capable of automatically learning features from the monitored

input data and simultaneously recognizing health states in accordance with the

learned features. Via non-linear functions models, they are capable of adaptively

capturing representation information from natural input signals and approximate

complex non-linear functions with little error. They are mostly composed of feature

extraction layers and classification layers. First, the models use hierarchical networks

like autoencoders (AEs), deep belief networks (DBNs), convolutional neural

networks (CNNs), and Recurrent Neural Networks (RNNs) for abstracted features

learning layer by layer. Second, the output layer is placed after the last extraction

layer for the recognition of the health state, usually with ANN-based classifiers due

to their high capacity in multiclass classification. The error between the target and

the actual output in the training phase is minimized by backpropagation to update the

training parameters of the models.

82

2.7.5.1 Convolutional Neural Network

Figure 2.31 Image recognition Convolutional Neural Network architecture:

Overview and details [67]

83

Convolutional Neural Network (CNN) as shown in Figure 2.31 is a supervised DL

method which has shown great achievements in image identification, target tracking

and speech recognition [68]. CNN is generally composed of convolution layers,

pooling layers and full-connected layers. Figure 2.32 details the basic principle of

convolution and pooling.

Figure 2.32 a) Convolution process and b) Pooling process [47]

84

The filter kernels 𝑘𝑐 𝜖 ℛ𝐻𝐿𝐷 used in convolution to convolute the input vector

𝑥𝑐−1 𝜖 ℛ𝑀𝑁 from the precedent (𝑐 − 1)th layer where 𝐻 is the kernels’ height; 𝐿

and 𝐷 are respectively the kernels’ length and depth. The output mapping of the 𝑐th

layer is obtained such that:

𝑥𝑖
𝑐 = 𝜎𝑟(𝑥𝑖

𝑐−1
 𝑘𝑐 + 𝑏𝑐) 𝜖 ℛ(𝑀−𝐻+1)(𝑁−𝐿+1)𝐷 𝑐

= 2, 3, …

(𝑥𝑖
𝑐−1
 𝑘𝑐)𝑗,𝑘,𝑑 = ∑ ∑ ∑𝑥(𝑖),𝑗+ℎ−1,𝑘+𝑙−1,𝑚

𝑐

𝐿

𝑙=1

𝐻

ℎ=1

𝑀

𝑚=1

· 𝑘ℎ,𝑙,𝑑
𝑐

2.108

In Equation 2.108 𝜎𝑟 is the activation function rectified linear unit (ReLU). Down-

sampling processing in the pooling layers is effectively used to reduce overfitting and

diminish the number of training parameters as shown in Figure 2.32b. Max pooling

and mean pooling are the commonly used down-sampling forms and hence the

pooling feature map is expressed as shown in Equation 2.109.

(𝑣𝑖
𝑝)𝑚,𝑛,𝑑 = 𝑑𝑜𝑤𝑛 {𝑥(𝑖),𝑗,𝑘,𝑑

𝑝−1 |∀𝑥(𝑖),𝑗,𝑘,𝑑
𝑝−1 𝜖 𝑥𝑖

𝑝−1, 𝑗, 𝑘 𝜖𝑁+ , 𝑠𝑟𝑡}

𝑠. 𝑡. 𝑠𝑟 ≤ 𝑗 ≤ 𝑠𝑟𝑚, 𝑠𝑟(𝑛 − 1) ≤ 𝑗 ≤ 𝑠𝑡𝑛

2.109

𝑑𝑜𝑤𝑛 (·) is the down-sampling functions including max (·) and mean (·) respectively,

and 𝑠𝑟𝑡 are the filters in the pooling layer. The compilation of convolution and

pooling layers, permits CNN to learn the deep layer features from the input data.

85

These features are subsequently flattened into a 1D vector as the input to the fully

connected layers. Furthermore, they are mapped into the target class via the

multilayer neural network. The output of the fully connected layers is given as:

𝑥𝑖
𝑓

= 𝜎𝑟(𝑊
𝑓 · 𝑥𝑖

𝑓−1
+ 𝑏𝑓), 𝑓 = 2, 3, … 2.110

 In Equation 2.110, 𝑥𝑖
1 = flatten (𝑣𝑖

𝑝) is the fully connected layers’ output and θ𝑓 =

{𝑊𝑓 , 𝑏𝑓} are the training parameters of the fully connected layers.

Qin et al. [69] used a multi-domain twin CNN for the misfire fault diagnosis of a

diesel engine. In their proposed model, vibration signals from the engine’s cylinder

heads are fed into the input layer of the model. Three input layers were constructed

to automatically extract and combine the time domain, time-frequency domain and

handcraft time domain statistical features. The extraction of this multi-domain

information of vibration signals was achieved thanks to twin convolutional networks

with a large first layer kernel. This configuration enabled the model to be robust to

environmental noise and changes in operating conditions and achieve 97.019%

accuracy with signal signal-to-noise ratio of 4 dB. In the study presented by Huangfu

et al. [70], knock sensors’ and accelerometers’ signals were decomposed in 2D Mel-

frequency Spectral Coefficients feature maps. These 2D spectrograms were stacked

into a 3D matrix, hence creating an analogy with an image. This image containing

patterns was used as input to a CNN for classification. The proposed method helped

in the diagnosis of gasoline engine combustion faults related to spark plugs. In the

86

paper presented by Shahid et al. [71], the MPU sensor signal measuring the angular

speed of a marine diesel engine was converted to a 1D vector Crank Angle Degree

(CAD) signal. The 1D signal was the input to a CNN engineered for multi-class

classification which combined feature extraction and pattern recognition in a single

learner. The reduced time complexity and robustness of the 1D-based CNN

architecture were put forward in contrast to 2D-based CNNs. Hence the proposed

architecture was tested for the diagnosis of misfires and load changes together in

engine operations with more than 99% accuracy.

2.7.5.2 Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a category of ANNs that are tailored to

process sequential data and time-series data, by defining the dependencies between

various time stamps [72]. However, long-term dependencies are handled by two types

of RNNs: The Long Short-Term Memory (LSTM) and the Gated Recurrent Unit

(GRU). Under the prism of DL, LSTM has become the main focus due to its

production of interesting results for RNN-based models [73]. This success is due to

the fact that the information flow in and out of the cell is regulated by the introduction

of a memory cell. This memory cell regulates and protects the cell state and is

composed of three non-linear gated units. Information flow along an entire network

is facilitated thanks to these gated units which eliminate the problem of gradient

vanishing by selective pattern remembering, for a long period of time [74]. For this

87

reason, LSTM networks leverage a huge potential in prediction and prognostics. The

LSTM cell architecture is shown in Figure 2.33.

Figure 2.33 An LSTM cell with a detailed overview of its internal operations

An LSTM cell memory is defined by a cell state 𝑐𝑘 and a hidden state 𝑠𝑘, both updated

during each time step. For each time instance, 𝑘 the external input 𝑥𝑘is fed to the

model, and the cell generates the corresponding output 𝑠𝑘 The LSTM combines the

hidden state 𝑠𝑘−1 of the precedent time step with the new input 𝑥𝑘, to update the cell

state 𝑐𝑘. As a result, the hidden state 𝑠𝑘 is updated using a filtered version of 𝑐𝑘, and

this updated hidden state also functions as the output of the cell. In each of the gated

units, the 𝜎 operator is exploited by a neural layer to create a vector 𝑰𝑘(0≤ 𝑰𝑘 ≤ 1).

Each element in 𝑰𝑘 commands the (partial) maintain or erase of its corresponding

state cell element. The first gate also known as the forget gate rules during each time

instance 𝑘, what portion of information found in the prior cell state 𝑐𝑘−1 becomes

88

irrelevant based on 𝑥𝑘 which contains the new information, and the precedent hidden

state 𝑠𝑘−1. This operation is mathematically expressed as:

𝑰𝑘
𝑓

= 𝜎(𝑊1
𝑠𝑠𝑘−1 + 𝑊1

𝑥𝑥𝑘 + 𝑏1) 2.111

 The input gate rules the relevancy of the information inlaid in the input 𝑥𝑘 and prior

hidden cell state 𝑐𝑘−1 combined. Two mathematical operations govern the insertion

of this new information. The elements of 𝑐𝑘−1 which are going to be uploaded by the

new information are determined by a calculated vector, 𝑰k
i . 𝑐̃𝑘typically houses the

actual information that should be added to the prior cell state 𝑐𝑘−1. The information

found in the precedent hidden state 𝑠𝑘−1 and the input 𝑥𝑘 is compressed by the

hyperbolic tangent operator between -1 and 1, thereby helping in the network

regulation such that:

𝑰𝑘
𝑖 = 𝜎(𝑊2

𝑠𝑠𝑘−1 + 𝑊2
𝑥𝑥𝑘 + 𝑏2) 2.112

and

𝑐̃𝑘 = 𝑡𝑎𝑛ℎ(𝑊3
𝑠𝑠𝑘−1 + 𝑊3

𝑥𝑥𝑘 + 𝑏3) 2.113

The updated cell state 𝑐𝑘 is obtained by the combination of the information obtained

from the forget and input gates. The relevant information in the prior cell state 𝑐𝑘−1

and in the new information in 𝑐̃𝑘 which will be inserted in the updated cell state 𝑐𝑘,

is determined by the sigmoid outputs 𝑰k
f and 𝑰k

i , onto which entry wise multiplication

is performed such that:

89

𝑐𝑘 = 𝑰𝑘
𝑓

∘ 𝑐𝑘−1 + 𝑰𝑘
𝑖 ∘ 𝑐̃𝑘 2.114

 The LSTM cell’s output 𝑐𝑘 is defined by the output gate which is also a filtered

version of the updated cell state ck. The components that should be erased from the

cell state ck are determined by the vector 𝐈𝑘
𝑜, which in its essence is influenced by the

information contained in 𝑥𝑘 and sk−1. Hence:

𝑰𝑘
𝑜 = 𝜎(𝑊4

𝑠𝑠𝑘−1 + 𝑊4
𝑥𝑥𝑘 + 𝑏4) 2.115

and

𝑠𝑘 = 𝑰𝑘
𝑜 ∘ 𝑡𝑎𝑛ℎ(𝑐𝑘) 2.116

In summary, the LSTM cell’s memory is characterized by a cell state c𝑘 𝜖 ℝ𝑛𝑠 and

hidden state s𝑘 𝜖 ℝ𝑛𝑠, both subject to updates at each time step. The initial cell state

c0 and initial hidden state s0 are initialized to zero. Given an input 𝑥𝑘 𝜖 ℝ𝑛𝑖, the

trainable weight matrices are denoted as 𝑊j
𝑠 𝜖 ℝ𝑛𝑠  𝑛𝑠 and 𝑊j

𝑥 𝜖 ℝ𝑛𝑠  𝑛𝑖 for 𝑗 𝜖

{1,…,4}. The corresponding bias vectors are defined by 𝑏j 𝜖 ℝ
𝑛𝑠 for 𝑗 𝜖 {1,…,4}.

Calvo-Bascones et al [75] presented a methodology to perform the prognosis of a

diesel engine generator’s cooling system. The focus of the methodology was to

analyze the degradation of its cylinders via inputs such as the gross power and the

temperatures of the intake and exhaust manifold gas with that of the coolant at the

engine block outlet. LSTM was used to learn the temporal features and evolution of

two computed indicators (Deviation and Similarity) which were based on the

90

aforementioned inputs and characterize the behaviours of the engine. Run-to-failure

data of a marine diesel engine in [76] was used to investigate the prognostics of two

faults namely: an air filter fault and a turbocharger fault. The data obtained was used

to construct remaining useful life targets, mapped to sensor measurements. The

LSTM network was used to learn this temporal mapping.

Zhang et al. 2023 [77] used a multivariate LSTM trained using the Adam

optimization algorithm to realize power demand predictions with input data delivered

by the advanced driving assistance system combined with road condition data given

by map service providers. This NN architecture inserts itself in a data-driven

predictive energy consumption minimization strategy to explore the fuel-saving

potential of a connected plug-in hybrid vehicle. The proposed strategy achieved a

fuel consumption reduction of 3.1% when compared to the adaptive energy

consumption minimization strategy and 13.2% when compared to rule-based control.

91

Chapter 3: Experimental Set-up

The experimental phase of the research was conducted at the Centre for Mechatronics

and Hybrid Technologies (CMHT) at McMaster University. The CMHT houses a

dynamometer laboratory (henceforth referred to as “dyno lab”) where ICEs can be

tested as shown in Figure 3.1.

Figure 3.1 Engine connected to a dynamometer

92

As shown in Figure 3.1, the dynamometer shaft is coupled to the engine shaft and

hence engine power output can be measured with accuracy. The test cell houses

various measurement equipment to collect data related to pressure, temperature,

vibration, sound, and light. The test cell is part of a larger framework which is the

dyno lab as shown in Figure 3.2. Further description of the dyno lab’s main facilities

is found downstream of this chapter.

Figure 3.2 Engine Dyno Lab

The dyno lab integrates the control loops, connecting pipes, accessories,

communication and measuring systems in addition to an operator place for total

control of experimental research activities. The dyno lab provides open access to all

93

engine components and thus enables engine fine-tuning and development under

optimum operating conditions. In addition to performance testing (which includes

fuel consumption, emissions, speed, torque and in-cylinder pressure), other engine

development and test activities can be conducted on aspects such as combustion,

engine controller calibration, engine controller unit (ECU) development, and

emerging technologies in FDD. The dyno lab at the CMHT was instrumental in [78]

where it was used to provide data for the elaboration of an FDD solution for faults

such as exhaust gas recirculation valve and cylinder leakage. The CMHT dyno lab

was used in [79] where engine data was collected by Mehdi Sadeghkazemi to assess

the performance of a novel NanoSpark spark plug. The data collected by Mehdi

Sadeghkazemi is the one used for the implementation of the FDD solutions in this

research.

Further to the process followed by [79] and prior to conducting the actual engine

testing, some preliminary safety guards were followed to address the issue of results

repeatability. Engine tests were performed more than once to check the testing

process's precision. Parameters that could affect engine outputs (torque, exhaust

temperature, fuel consumption and emissions) were monitored to satisfy the

repeatability condition. These could be any of the engine fluids’ conditions, control

parameters, accessory parameters and ambient air conditions in the test cell. This

monitoring process is essential when comparing the alternative engine hardware

changes as well as FDD implementation.

94

At constant air temperature and speed, the intake manifold pressure is proportional

to the air and fuel mass flow rates into the cylinders. Hence the engine load and power

are dictated by the cylinder charge. The ECU controls the air mass flow and fuel

injection timing by taking information from the torque and power demand, and other

vehicle subsystems to determine the opening of the throttle and control the latter

thanks to a PID controller [80]. In order to avoid unfair comparison, the engine load

was set by overriding the throttle position directly from the ECU. Other affecting

parameters to the air mass flow such as air intake temperature and intake and exhaust

valve timing were monitored. In addition to engine load, the second parameter

determining engine operating points is engine speed and it was controlled by

operating the engine in Throttle-Speed mode via the dynamometer.

95

3.1 Testing Set-up

Table 3.1 lists the engine test cell facilities at the Centre for Mechatronics and Hybrid

Technologies (CMHT) which were used for data collection under and as described in

[79].

Table 3.1 Testing set-up facilities

Facility Description

Engine (Gasoline) 2018 Ford Coyote Engine, Gen 3

Engine Dynamometer Horiba Schenk Titan T 250

Engine Control Unit (ECU) EFI Technologies Open Access ECU

Crank Angle Position Sensor Kistler Optical Encoder type 2614CK

Combustion Analyzer Kistler KiBox to Go type 2893A

Dynamometer Accessories Fuel Supply System, Engine Coolant Circuit,

Lube Cooling Circuit, Electrical Power Supply

System

96

3.1.1 Ford Coyote Engine

Figure 3.3 Ford Coyote Engine

The engine used for the experiment is manufactured by Ford Motors Company and

is a Generation 3 2018 Ford Coyote Engine as shown in Figure 3.3. Table 3.2

summarizes the engine’s specifications.

97

Table 3.2 Ford Coyote Engine Specifications

Metric Specification

Maximum Horsepower 343 kW @ 6750 rpm

Maximum Torque 569 Nm @ 4500 rpm

Number of cylinders 8

Displacement 5.038 litres

Compression ratio 12.1

Bore 93.0 mm

Stroke 92.7 mm

Firing order 1-3-7-2-6-5-4-8

Fuel system Direct Fuel Injection

Spark plug 12405

Spark plug gap 1.25-1.35 mm

Valvetrain Dual Overhead Camshaft (DOHC),

4 valves/cylinder

Weight (without accessory drive

components)

205.5 kg

98

3.1.2 Engine Dynamometer

The CMHT has at its disposal a Titan T 250 dynamometer manufactured by HORIBA

Automotive Test Systems as shown in Figure 3.1 with specifications summarized in

Table 3.3.

Table 3.3 HORIBA Titan Engine Dynamometer Specifications

Metric Specifications

Power 220 KW

Torque 600 Nm

Speed 8000 rpm

Idle Speed >700 rpm

Mass moment of inertia > 0.15 𝑘𝑔𝑚2

It is composed of 5 modules (shown in Figure 3.4), namely:

• Loading Unit, which consists of a Dynas3 asynchronous electric

motor/generator with a power unit, a shaft connection to the engine and

a SPARC controller

• Test stand automation system, which controls and monitors engine tests using

STARS software

99

• Data logging, which consists of measuring sub-modules coupled to other

optional measuring instruments all housed in a measuring box for the

measurement of variables during engine testing

• Media conditioning, which are optional units that can be applicable to engine

fuel, lube and coolant conditioning

• Operator place, which consists of an instrumentation and control cabinet

coupled to a PC with a built-in cable lead and holder for the STARS-PC

automation software

Figure 3.4 Titan T 250 test stand overview [79]

100

3.1.3 Engine Control Unit

The Ford Coyote engine used for the experiment has an ECU manufactured by EFI

Technologies Incorporation, which is a supplier to Ford Motor Company for its

racing activities. Engine data logging and control parameters are openly accessible to

users via the ECU. When investigating the effects of a certain hardware configuration

on engine performance, it is possible to maintain other parameters constant or locked

in order to exclude their effect on engine outputs thanks to the ECU. To maintain

consistency in results, all control parameters in addition to factors affecting the

engine fluids’ conditions and ambient air should be monitored and if necessary, kept

the same. A portion of this recommendation is executed by the ECU control functions

while the other portion related to the engine dynamometer is executed by the

HORIBA Titan T 250 media conditioning unit module. The ECU Configuration Tool

(ECT) is the software that operates the EFI and enables data logging and analysis. It

also enables engine management system calibration for calibration adjustments,

duplication or loading.

3.1.4 Combustion Analyzer

To tap into the knock sensor signals coming from the engine, a measurement and

analysis system called KiBox To Go manufactured by Kistler Instruments AG was

used. This equipment was developed to measure in-cylinder pressure and engine

signals. It is operated by its associated software called KiBox Cockpit and can

101

synchronously present and analyze combustion results in real-time and

simultaneously with other control and process variables of the ECU. It has a

resolution of 10 samples per crank angle (equivalent to 7200 samples per engine

cycle) via its 8 analog input channels. The measurement set-up can be connected to

an engine’s ECU and provide the latter combustion and other engine measurements

for control and diagnosis. On the other hand, the KiBox can also be set up in a

standalone configuration, where it is not connected to the engine ECU. The

standalone configuration as shown in Figure 3.5 was what was used in this research.

Figure 3.5 KiBox set-up in a standalone configuration

The high resolution provided by the KiBox was one of the parameters that dictated

the use of this equipment to perform knock sensor data collection. The equipment is

also capable of collecting the signal of the crank wheel sensor and determining the

current crank angle position thanks to a crank angle adapter which can use the engine

crank wheel position sensor or Kistler optical encoders if a higher precision is

102

required. Hence the measured variables can be resolved in the crank angle domain

with reference to the Top Dead Centre (TDC) of cylinder number 1 (indicated in

Figure 3.8) at the power stroke. This resampling capacity in the crank angle domain

is the second parameter that dictated the use of the KiBox. The determination of the

TDC is a critical step for data analysis in the crank angle domain. For this purpose, a

pressure sensor was inserted at a precise location in the cylinder head as shown in

Figure 3.6, with Table 3.4 resuming the technical characteristics of the Kistler 6125C

pressure transducer.

Figure 3.6 Kistler 6125C pressure transducer (left) and combustion chamber

location (right)

103

Table 3.4 Kistler 6125C pressure transducer technical characteristics

Metric Range

Measuring range 0 to 300 bar

Operating temperature range -20 … 350 °C

Natural frequency > 70 kHz

Overload 300 bar

Torque wrench setting 10 Nm

Insulation resistance at 300 C ≥ 1013 Ω

Thermal shock error (at 1500 rpm and IMEP = 9

bar)

Δ𝑝 ≤0.3 𝑏𝑎𝑟

The engine was operated by the dynamometer in motoring mode, to simulate the

coasting of the reference cylinder. Coasting is the unfuelled running of the engine,

where the crankshaft is solely driven by mechanical forces in the absence of

combustion. In motoring mode, only air is present in the cylinders and it can be

considered as an ideal gas such that the compression expansion process becomes

frictionless. Hence the in-cylinder pressure signal, deprived of any combustion

effects, enables the TDC to be determined by locating the point of peak pressure

while considering thermodynamic losses caused by heat transfer and air leakage. The

position of the TDC is very important as an error of 10 can cause up to 10% error in

104

indicated mean effective pressure, which directly correlates with engine torque and

power [81]. The resulting TDC was stored as a reference in KiBox Cockpit for

subsequent data collection.

3.1.5 Crank Angle Encoder

The TDC reference coupled to the crank angle signal is needed by the KiBox setup

for the synchronization of engine data collected and engine revolution. The relatively

low resolution of the crank angle signal, oriented the experimental phase of the

research to opt for an optical encoder, namely Kistler optical encoder type 2614CK

as shown in Figure 3.7 which offers a much higher resolution of 0.50 of crank angle

and can operate to speeds up to 1200rpm.

Figure 3.7 Type 2614CK Kistler optical encoder

105

3.1.6 Dynamometer Accessories

The engine dyno lab as shown in Figure 3.2 houses a number of circuits, loops, and

systems which contribute to the operation, monitoring and control of the engine. Fuel

is delivered with the required pressure to the engine thanks to a fuel system, in which

fuel flow is measured for fuel consumption calculations. The lube and coolant

circulation pumps with the fuel supply pump, in addition to the engine ignition system

and ECU are electrified by the power system. The supply voltage also directly feeds

some engine sensors and actuators, which imposes the supply to be free of any

oscillations in order to have no impact on engine control phenomena on aspects such

as variable camshaft timing and lambda control.

The dyno lab’s lube and coolant circuits are connected to the engine for the control

of the latter’s oil and coolant temperatures. The engine and dyno lab’s cooling circuits

are directly connected to each other, allowing the engine’s coolant carrying excess

heat to circulate through the dyno’s cooling circuit. On the other hand, the engine’s

and dyno’s lube circuits are not in direct contact and the heat transfer from the engine

to the dyno circuit is performed via a cross-flow heat exchanger. The adjustment of

the set points coupled to the control of the lube and coolant flow via their

corresponding control flow valves enables the regulation of the engine’s lube and

cooling temperatures thanks to the STARS automation system onto which both lube

and cooling systems are linked.

106

It should be noted that additional sensors are installed in the dyno lab to measure

intake air pressure, temperature, and flow, ambient air pressure, temperature and

humidity, exhaust gas temperature, engine lube and coolant temperature and pressure,

and the fuel line pressure. The different quantities measured enable the engine dyno

operator to perform monitoring during engine tests and analyze the effect of each

parameter on the engine output to protect the integrity of the engine and engine dyno

facilities.

3.2 Data Logging and Management

Throughout the experiment, three different data logging/control paths were present

namely: The Coyote engine’s ECU, the Horiba dynamometer’s software STARS, and

the Kistler combustion analyzer. In the optic of keeping the recorded engine

parameters as close as possible for a fair comparison between engine hardware

changes, close attention was kept on engine air flow as it was the parameter that

affected the most engine torque, in addition to control variables such as throttle

position, exhaust and intake valve timing, and finally the ambient conditions. All

comparative tests were conducted within the same day for a specific engine speed to

avoid day-to-day variations. A large number of parameters from the three

aforementioned paths were recorded with different formats of origin. Therefore, to

facilitate the post-processing step of the experiment, an extensive MATLAB m-file

was developed to process the large volume of recorded data. With recorded

107

parameters within an acceptable range to satisfy the repeatability of tests, four main

variables were of key interest throughout the experiment. The variables were the four

knock sensor signals which were logged via the Kistler combustion analyzer path and

used for the purpose of fault detection and diagnosis of the various engine

configurations that simulate a particular health state. In the MATLAB m- file, these

signals were logged as indicated in Table 3.5.

Table 3.5 Logged knock sensor signals

Signal Name Location on Engine

UNI0 Right Front Knock Sensor (1)

UNI_A0 Left Front Knock Sensor (2)

UNI_B0 Right Rear Knock Sensor (3)

 UNI_C0 Left Rear Knock Sensor (4)

The knock sensors are hidden by the intake manifold as shown in Figure 3.8 b. Hence

the manifold had to be removed to reveal the position of the knock sensors in Figure

3.8 a as described in Table 3.5

108

Figure 3.8 Knock sensor locations

109

3.3 Engine Faults Dataset

The data used for the development of the fault detection and diagnosis strategy in this

research was collected by Mehdi Sadeghkazemi [79] on the case study of spark plugs.

The spark plug design has a significant impact on flame kernel development, engine

performance and emissions. One of the key aspects of a spark plug design that must

be set properly before the plug is installed in the engine is the spark plug gap. This is

due to three main reasons: (1) if the gap is too wide, the electric arc may not have

enough energy to bridge the gap, which would result in a misfire. (2) if the gap is too

narrow a lean air/fuel mixture may not be ignited, which could result in a misfire. (3)

there is a direct proportional relationship between the required voltage and the gap

[82].

Over the course of data collection, one of the cylinders was subjected to different

health states by exchanging the Original Equipment Manufacturer (OEM) spark plug

with an aftermarket one. The aftermarket spark plug was precisely profiled to have

two incorrect gaps of 0.020″ and 0.080″, one less than and the other above the

recommended gap range. In this way, the fault conditions could be achieved in a

controlled manner. It should be noted that aftermarket spark plugs were used for

changing the gap due to the fact that on the OEM spark plug, the changes could not

be easily done without causing fault effects difficult to evaluate by the scrapping of

the precious metal terminals. This is what dictated the choice of aftermarket spark

110

plugs that do not use precious metal, and hence precise quantifiable and repeatable

fault conditions were achieved. The likelihood of retarded combustion or uneven

firing causing the engine to run erratically due to the fault conditions was

acknowledged throughout the experiment. Evaluating the fault and detection strategy

over a controlled combustion irregularity was the prime motive. Three engine

configurations, simulating three different health states were defined for the engine

test; namely:

• Healthy, where the OEM spark plug was used with the correct gap of 0.051″

• Fault 1, where the aftermarket spark plug was used with a gap of 0.020″

• Fault 2, where the aftermarket spark plug was used with a gap of 0.080″

The data set as summarized in Table 3.6 consists of measurements from the four

knock sensors in Table 3.5, recorded in the crank angle domain at 10 samples per

crank angle or 7200 samples per engine cycle to fully grasp the engine vibration

dynamics under the various health states. The two operating conditions for the

engine were 700 rpm at 15% load and 1000 rpm at 25% load. For every engine run,

the speed and load were kept constant throughout. Seven hours worth of data was

collected over seven days for each operating condition, resulting in a data set

containing 168,000 engine cycles in total, meaning 28,000 engine cycles for each

combination of spark plug gap and engine speed. It should be noted that for each

health condition, the data was gathered in two stages on the same day. That is, the

first half of the data was gathered during the morning (AM) and the second half in

111

the afternoon (PM). The data from days 1 to 7 was what was used to build, train and

test the deep learning model for classification. To simulate an operating

environment with perturbations in data quality, additional engine cycles were

gathered on the 8th day to perform another test on the model. Hence, the complete

data set is composed of 192,000 cycles equivalent to 32,000 engine cycles for each

combination of spark plug gap and engine speed.

Table 3.6 Engine Fault Dataset for both 700rpm and 1000rpm operating conditions

 Number of Cycles

Test Day Healthy – 0 0.020″ aftermarket - 1 0.080″ aftermarket - 2

1 8000 8000 8000

2 8000 8000 8000

3 8000 8000 8000

4 8000 8000 8000

5 8000 8000 8000

6 8000 8000 8000

7 8000 8000 8000

8 8000 8000 8000

 It should be noted that the different health states were simulated in Cylinder

number 1 for the demonstration of the fault detection and diagnosis strategy. Should

112

the strategy be extended to all cylinders, additional measurements will have to be

gathered for the various conditions in each cylinder. Finally, the 192,000 engine

cycles were considered as samples composed of multidimensional time series

corresponding to the 4 knock sensor measurements. The samples were then labelled

in accordance with their health states (fault conditions) into three classes namely:

healthy gap – 0, smaller gap (faulty) – 1, and larger gap (faulty) – 2. Further post-

processing of the three classes coupled with model training was performed in the

methodology section of the research.

113

Chapter 4: Methodology

This chapter presents the process that was used to satisfy the research objectives.

Figure 4.1 depicts an overview of the methodology, composed of two main steps:

• Input construction

• Convolutional neural network

Each sample, corresponding to an engine cycle serves as the input data to the

algorithm. If 𝑋1 = [𝑥1
1, 𝑥1

2, … , 𝑥1
𝑚]𝑡 is a column vector with length 𝑚,

corresponding to the number of measurements (7200) of a knock sensor signal for

one engine cycle, then given 4 knock sensors used in this engine, the input data is

represented as:

𝑋 = [𝑋1, 𝑋2, 𝑋3, 𝑋4] 4.1

114

Figure 4.1 Methodology

4.1 Input construction

This step helped extract the input data's most significant characteristics to facilitate

the detection and diagnosis part of the overall strategy and remove as many noisy

elements in the data as possible. 𝑋 is multidimensional, where every 𝑋𝑖 or channel,

captures the engine vibrations from its location as shown in Figure 3.8. Each

channel, which represents a knock sensor is analogous to a camera and the engine

vibration is analogous to a scene. The recording of the engine vibration by the knock

sensors can be conceptualized as taking a picture of the same scene from cameras

located at four different angles. In other words, the knock sensors capture the

vibration signature of the engine from four different positions. This way, if a fault’s

vibration signature is expressed more in a certain location, the knock sensor closest

to that point could record better that signature. To eliminate the differences in scale

115

of the various signals, which if left as such might allow skewed features and mislead

the FDD strategy, a Z score normalization pre-processing step was applied to the

input data as discussed in Equation 2.95. Following normalization, STFT was

applied to the input data to represent the vibration signature in the crank angle

frequency domain. The sampling rate was 10 samples per crank angle; hence for

the operating point of 700rpm, the sampling frequency equivalent in the time

domain is 42 kHz, while for the 1000rpm operating point, the sampling frequency

is 60 kHz. The sampling frequency is calculated using Equation 4.2. Taking for

example the 1000rpm case, the sampling rate can be calculated as shown in

Equation 4.3.

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =
𝑛0 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑐𝑟𝑎𝑛𝑘 𝑎𝑛𝑔𝑙𝑒
 ×

𝑛0 𝑜𝑓 𝑐𝑟𝑎𝑛𝑘 𝑎𝑛𝑔𝑙𝑒𝑠 𝑝𝑒𝑟 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

𝑛0 𝑜𝑓 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠
×

𝑛0 𝑜𝑓 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

𝑚𝑖𝑛𝑢𝑡𝑒
 4.2

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =
10 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

1 𝐶𝐴
 ×

360 𝐶𝐴

1 𝑟𝑒𝑣
×

1000 𝑟𝑒𝑣

1 𝑚𝑖𝑛
 ×

1 𝑚𝑖𝑛

60 𝑠𝑒𝑐
=

60000 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑠𝑒𝑐

= 60𝐾𝐻𝑧

4.3

The generated spectrogram was obtained by using the following parameters:

Hamming window of 128 points, a 75% overlapping and DFT containing 1024

samples. The data matrix is transformed

𝑓𝑟𝑜𝑚 𝑋 =

[

𝑥1

1 𝑥2
1

𝑥1
2 𝑥2

2

𝑥3
1 𝑥4

1

𝑥3
2 𝑥4

2

⋮ ⋮
𝑥1

𝑚 𝑥2
𝑚

⋮ ⋮
𝑥3

𝑚 𝑥4
𝑚]

 𝑡𝑜 𝑋 =

[

𝑠1
1 𝑠2

1

𝑠1
2 𝑠2

2

𝑠3
1 𝑠4

1

𝑠3
2 𝑠4

2

⋮ ⋮
𝑠1

𝑚 𝑠2
𝑚

⋮ ⋮
𝑠3

𝑚 𝑠4
𝑚]

116

𝑠1
𝑖 , 𝑠2

𝑖 , 𝑠3
𝑖 , 𝑠4

𝑖 are respectively the spectrograms of their corresponding 𝑥1
𝑖 , 𝑥2

𝑖 , 𝑥3
𝑖 , 𝑥4

𝑖 .

𝑠 is a 2D array of shape (a,b). For each sample, the corresponding spectrograms

were reshaped to be in the form 𝑠𝑖 as shown in Figure 4.2 such that 𝑠𝑖 is a 3D array

∈ ℂ𝑎×𝑏×𝑐 where 𝑎 𝑎𝑛𝑑 𝑏 represent the size of the spectrogram with 𝑎 being the

number of frequency bins and 𝑏 the number of time steps, while 𝑐 represents the

number of channels. It should be noted that the size of the spectrogram generated

with the parameters mentioned earlier is constant irrespective of engine speed. This

is because the raw data is resampled according to crank angle revolution and not

speed. Hence the sampling frequency is automatically adjusted during the signal

resampling in the crank angle domain so that a resolution of 10 samples per crank

angle is always obtained.

Figure 4.2 Schematic representation of 𝑠𝑖

117

The data matrix, 𝑋 ∈ ℂ𝑚×𝑎×𝑏×𝑐 becomes a 4D tensor as shown in Equation 4.4 with

shape (m,a,b,c).

𝑋 = (

𝑠1

𝑠2

⋮
𝑠𝑚

)

4.4

Furthermore, the absolute values of the spectrograms were computed and expressed

on a log scale for better feature representation as shown in Figure 4.3.

Figure 4.3 Spectrogram of a knock sensor signal

118

From Figure 4.3, it can be observed that most of the dynamics happen within the

frequency range between 1 sample/crank angle and 2.5 samples/crank angle which

correspond respectively to 6KHz and 15KHz. Therefore, the spectrogram was

truncated to keep features only within that range as shown in Figure 4.4. At this

point, 𝑋 ∈ ℝ𝑚×𝑎×𝑏×𝑐 and each sample in 𝑋 constitutes the input to the second

section of the methodology. The result of the input construction step is a 3D array

∈ ℝ𝑎×𝑏×𝑐.

Figure 4.4 Truncated Spectrogram

119

4.2 Convolutional Neural Network

A combination of feature extraction and pattern recognition was performed on the

input data to perform the FDD. The CNN architecture was able to learn the crank

angle-frequency patterns found in the input data. Indeed, the CNN could detect

effectively variations in contrast within the spectrogram, which are caused by

differences in magnitudes at specific frequency bands for various fault conditions.

The CNN architecture used for the FDD strategy in this research was inspired by

the LeNet5 design [83] which has the following characteristics:

• The convolutional layers are composed of three parts: convolution, pooling, and

nonlinear activation functions

• The convolution is used to extract special features

• Subsampling is performed using average pooling

• The activation function is tanh

• Fully connected layers are used as the last classifier

• Computation reduction thanks to the sparse connection between layers

It should be noted that these characteristics can be altered to tailor a particular

problem as the architecture serves mainly as a basis for further development. The

selection of LeNet5 in contrast to other designs such as AlexNet and VGGNet was

dictated by the fact that it is simple, computationally efficient and has inferential

performance in real-time fault diagnosis. The LetNet5 advantages were highlighted

120

in a comparison between the three architectures in [84] where they were used in

smart behaviour biometric systems taking as inputs face data for identification and

eye blink characteristics for behaviour tracking.

The input to the CNN architecture is a 3D matrix of shape (𝑎, 𝑏, 𝑐). However, the

type of CNN used was a 2D-based CNN, and the input had to be reshaped to have

a shape in the form (𝑎, 𝑏 × 𝑐) as shown in Figure 4.5.

Figure 4.5 Input reshaping

The first layer consists of a 2D convolutional layer with a 5x5 kernel, 16 filters,

and a ReLU activation function in addition to batch normalization. Following this,

there is a max pooling layer with a size of 2, which divided the size of the feature

maps by 2 as shown in Table 4.1. These two layers are then followed by the

application of a dropout of 0.25 whose purpose is to regularize the weights. Batch

normalization and dropout are essential as they help in preventing overfitting

problems. The next convolution and pooling layers are similar to the previous two

121

with the difference of the convolution layer having 32 filters instead. Even though

max pooling layers diminish the size of the extracted feature maps, augmenting the

number of filters in operations of convolution helps to pull out complex hidden

features.

After these layers, the input sizes are disregarded via the introduction of a flattening

operation, then the flattened featured maps are fed consecutively to two fully

connected layers of 128 and 64 units respectively and finally fed to another fully

connected layer, whose units correspond to the number of classes – in this case,

three. Table 4.1 describes the properties of each layer and the number of parameters.

The data set from days 1 to 7 was divided with the results in the following

proportions: 70% training,20% validation and 10% testing. The training set is

purposed at training the model to learn the patterns and relationships within this

data. This helps the model to adjust its weights and parameters to minimize the loss

function. The validation set helps in the tuning of the model’s hyperparameters. The

model does not see this data during the training and the data is used to prevent

overfitting and evaluate the model by ensuring it fits well on data that it has not

seen before. Finally, the testing set is used to provide an unbiased evaluation of the

performance of the model on entirely new data. It is performed in two steps: first

on the 10% of the remaining data that was not used from the initial dataset (Days 1

to 7) and second on the data gathered on Day 8. A key step before the division of

the data set is the shuffling of the samples. This step has the advantage of providing

122

a better distribution across the dataset, avoiding bias in training, improving model

generalization, and reducing the impact of outliers and noise.

Table 4.1 CNN model architecture and hyperparameters

Layer Output shape Number of Parameters

Con2D, 16 kernels (None, 99, 884, 16) 416

Batch normalization (None, 99, 884, 16) 64

Max pooling 2D (None, 49, 442, 16) 0

Dropout (None, 49, 442, 16) 0

Con2D. 32 kernels (None, 45, 438, 32) 12832

Batch normalization (None, 45, 438, 32) 128

Max pooling 2D (None, 22, 219, 32) 0

Dropout (None, 22, 219, 32) 0

Flatten (None, 154176) 0

Dense (None, 128) 19734656

Batch normalization (None, 128) 512

Dropout (None, 128) 0

Dense (None, 64) 8256

Batch normalization (None, 64) 256

Dropout (None, 54) 0

Dense (None, 3) 195

123

From Table 4.1, the convolutional layers contain 13,376 parameters, keeping them

lightweight for feature extraction with down-sampling through max pooling, which

helps computational efficiency. However, the fully connected layers contribute to the

bulk of the model’s 19.8 million parameters, largely due to the flattened vector

feeding into a dense layer with 128 units. This configuration allows the model to

capture rich feature representations at the cost of memory and computational demand,

mainly due to the fully connected layers after flattening. That is why for this research

a computer with 32GB RAM and an Intel(R) Core (TM) i9-14900, 2.00 GHz was

used in addition to an NVIDIA RTX 4500 Ada Generation graphic card with 24GB

GPU memory. The average time for model building is 2 hours, but once the model is

built, the testing time is 71 seconds.

4.3 Comparison

The methodology outlined in 4.1 and 4.2 is compared to LSTM summarized in Table

4.2 to asses its performance, strengths and weaknesses and/or suitability. The input

to the LSTM network as illustrated in Figure 4.5 is similar to the input used for the

CNN with the first LSTM layer consisting of 64 units. This layer is designed to return

sequences, allowing the next LSTM layer to process the sequential data as well. After

this, a batch normalization operation is applied to normalize the activations and

improve convergence. A dropout of 0.25 is also introduced to regularize the network

124

by randomly deactivating 25% of the units during training, which helps to prevent

overfitting. Next comes a second LSTM layer with 64 units, which does not return

sequences as it feeds into fully connected layers instead. Like the previous LSTM

layer, batch normalization and dropout (with a rate of 0.25) follow this layer to ensure

smooth training and mitigate overfitting risks. After the LSTM layers, the network

transitions into the fully connected (dense) layers. The first dense layer has 128 units

with a ReLU activation function. It is followed by batch normalization and a higher

dropout rate of 0.5, to provide stronger regularization as the network narrows down

the features. The second dense layer is similar, consisting of 64 units with a ReLU

activation function. As before, batch normalization and a dropout rate of 0.5 are

applied. Finally, the model concludes with an output dense layer, where the number

of units corresponds to the number of output classes.

125

Table 4.2 LSTM model architecture and hyperparameters

Layer Output shape Number of Parameters

LSTM, 64 units (None, 103, 64) 243968

Batch normalization (None, 103, 64) 256

Dropout (None, 103, 64) 0

LSTM. 64 units (None, 64) 33024

Batch normalization (None, 64) 256

Dropout (None, 64) 0

Dense (None, 128) 8320

Batch normalization (None, 128) 512

Dropout (None, 128) 0

Dense (None, 64) 8256

Batch normalization (None, 64) 256

Dropout (None, 64) 0

Dense (None, 3) 195

126

Chapter 5: Results and Discussions

The section is decomposed into three sections. The first section discusses the results

of both load cases (700 rpm at 15% load and 1000 rpm at 25% load) over the initial

dataset which is composed of the data acquired from day 1 to day 7. On the other

hand, the second section discusses the results of both load cases over the data

acquired on day 8, which simulates an operating environment with perturbations in

data quality. The third section discusses the results obtained in response to the

challenges observed in the second section.

5.1 Initial Dataset

The dataset was divided into training, validation and testing sets, respectively

representing 70%, 20% and 10% of the initial dataset. The training was performed

over 30 epochs and the hyperparameters were fine-tuned using the validation set. The

loss and accuracy curves for the 700rpm load case are shown in Figure 5.1. The

training loss curve remained flat throughout the epochs, indicating that the model was

fitting the training data well. The validation loss was initially low but suddenly spiked

near the end of the training. The validation accuracy mirrors the validation loss as it

was initially high and spiked near the end. The sudden spike is an indication of

overfitting and early stopping was implemented in the model-building process to

overcome that effect as demonstrated in the new loss and accuracy curves for training

and validation shown in Figure 5.2.

127

Figure 5.1 Initial loss and Accuracy curves for the 700rpm load case

Figure 5.2 New loss and accuracy curves with early stopping for the 700rpm load

case

The evaluation of a classification problem is usually done using a confusion matrix,

which is a cross-tabulation used to describe the performance of a model on a set of

data for which true values are known. It helps to understand which classes were

128

confused by the model, by showing for each class how many predictions were correct

and incorrect. Furthermore, other metrics derived from the confusion matrix can be

used to evaluate the performance of pattern recognition applications. These metrics

are precision, and recall, which provide a score between 0 and 1 for a set of predicted

items 𝑃 with respect to a ground truth 𝐺. Set theory as shown in Figure 5.3 can be

used to define precision and recall. Recall is the ratio between the number of correct

results and the number of expected results (Equation 5.1) while precision is the ratio

between the number of correct results to the number of all results (Equation 5.2).

Finally, the F-1 score helps to understand the trade-off between recall and precision

via a harmonic mean (Equation 5.3). The confusion matrix of the model on the testing

set is shown in Figure 5.4 and the overall performance of the model is summarized

in Table 5.1

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝐺 ∩ 𝑃|

|𝐺|

5.1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝐺 ∩ 𝑃|

|𝑃|

5.2

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2
|𝐺 ∩ 𝑃|

|𝐺| + |𝑃|

5.3

129

Figure 5.3 Set theory illustrating the ground truth (G), predicted results (P), True

positives (TP), false positives (FP) and false negatives (FN) [85]

Figure 5.4 Confusion matrix for the 700rpm load case

130

Table 5.1 700rpm load case model performance

Fault

Categories

Performance Indicators

Accuracy Precision Recall F1-score

Healthy 0.99 0.99 1.00 1.00

Fault 1 0.99 1.00 0.99 1.00

Fault 2 0.99 1.00 1.00 1.00

 Model Accuracy on Testing set (Days 1-7) = 0.99

Despite the spike observed on the validation loss and accuracy curves, the model performed

very well. From Table 5.1, the following observations were made:

• Accuracy: The proportion of true results (both true positives and true negatives)

among the total number of cases examined. In this case, the model had an

overall accuracy of 0.99, meaning it correctly classified 99% of the instances.

• Precision: The proportion of positive identifications that were actually correct.

For Faults 1 and 2, the precision was 1.00, indicating that when the model

predicted these faults, it was always right. For the Healthy category, it was high

(0.99), but not perfect.

• Recall: The proportion of actual positives that were correctly identified by the

model. For Fault 1 and Fault 2, the recall was 0.99 and 1.00, respectively,

meaning the model identified 99% and 100% of these faults when they were

131

present. For the Healthy category, the recall was 1.00, indicating it identified all

healthy cases correctly.

• F1-score: All F1-scores were 1.00, indicating perfect balance and performance

across all categories

The loss and accuracy curves of the 1000 rpm load case are shown in Figure 5.5. The

training loss started high and decreased steadily, indicating that the model was learning and

improving over time. Both training and validation losses decreased over time, suggesting

that the model was learning well. On the other side, the training accuracy quickly reached

nearly 100% and remained stable. The validation accuracy was a mirror image of the

validation loss, as the validation accuracy also increased rapidly and remained close to

100% with some fluctuations. The confusion matrix of the model on the testing set is shown

in Figure 5.6and the overall performance of the model is summarized in Table 5.2.

Figure 5.5 Loss and Accuracy curves for the 1000rpm load case

132

Figure 5.6 Confusion matrix for the 1000rpm load case

Table 5.2 1000rpm load case model performance

Fault

Categories

Performance Indicators

Accuracy Precision Recall F1-score

Healthy 1.0 1.0 1.0 1.0

Fault 1 0.99 1.0 1.0 1.0

Fault 2 1.0 1.0 1.0 1.0

 Model Accuracy on Testing set (Days 1-7) = 0.99

133

From Table 5.2, the following observations were made:

• Accuracy: The model had an overall accuracy of 0.99, meaning it correctly

classified 99% of the instances in the testing set. This indicates the model is

highly reliable in making predictions across all categories

• Precision: For all categories (Healthy, Fault 1, and Fault 2), the precision was

1.0, meaning that whenever the model predicted any of these categories, it was

always correct. There were no false positives, indicating perfect precision.

• Recall: For Healthy, Fault 1, and Fault 2, recall is 1.0, indicating the model

successfully identified 100% of the actual instances in these categories. This

means there were no false negatives, and the model never missed any instances

of these categories.

• F1-score: All F1-scores are 1.0, indicating a perfect balance and performance

across all categories. The model achieved the ideal combination of precision

and recall, signifying optimal performance.

134

5.1.1 Comparison study on the initial dataset

The performance of the proposed methodology is compared to the LSTM model

whose confusion matrix is shown in Figure 5.7 and overall performance

is summarized in Table 5.3 for the 700rpm load case. Figure 5.8 and Table 5.4 are

respectively for the 1000rpm load case. The performance of the LSTM models was

similar to that of the CNN models for the 700rpm and 1000rpm load cases with

performance indicators having an overall score of 99% approximately.

Figure 5.7 Confusion matrix for the700rpm load case with LSTM

135

Table 5.3 700rpm load case model performance with LSTM

Fault

Categories

Performance Indicators

Accuracy Precision Recall F1-score

Healthy 1.00 0.98 1.00 0.99

Fault 1 0.96 1.00 0.96 0.99

Fault 2 1.00 0.97 1.00 0.98

 Model Accuracy on Testing set (Days 1-7) = 0.98

Figure 5.8 Confusion matrix for the1000rpm load case with LSTM

136

Table 5.4 1000rpm load case model performance with LSTM

Fault

Categories

Performance Indicators

Accuracy Precision Recall F1-score

Healthy 0.98 1.00 0.98 0.99

Fault 1 0.99 0.99 0.99 0.99

Fault 2 0.99 0.98 0.99 0.99

 Model Accuracy on Testing set (Days 1-7) = 0.99

5.2 Model Evaluation on Day 8

The high accuracies experienced in sections 5.1 and 5.1.1 were because the data split

for training, validation and testing used all of the days from the initial dataset (that is

days 1 to 7). Unlike the initial data set where samples from all 7 days were shuffled

and split into training, validation and testing sets for generalization, the data acquired

over Day 8 was not used for the model building. Hence Day 8 data simulates an

operating environment with perturbations in data quality and can help in

generalization. For the 700rpm load case, the confusion matrix of the model is shown

in Figure 5.9, while its overall performance is summarized in Table 5.5

137

Figure 5.9 Confusion matrix for the 700rpm load case on Day 8

Table 5.5 700rpm load case model performance on Day 8

Fault

Categories

Performance Indicators

Accuracy Precision Recall F1-score

Healthy 0.76 0.63 0.76 0.69

Fault 1 0.21 0.33 0.21 0.26

Fault 2 0.68 0.58 0.68 0.63

 Model Accuracy on Day 8 = 0.55

138

From Table 5.5 the following observations can be made:

• Healthy

o Accuracy: 76% of the Healthy instances were correctly identified. This

suggests the model did a decent job of recognizing Healthy instances

o Precision: Of all instances predicted as Healthy, only 63% were actually

Healthy. This indicates that the model had a moderate level of false

positives, where it incorrectly classified other categories as Healthy.

o Recall: The model identified 76% of the actual Healthy cases, meaning

it missed 24% of Healthy instances. While not poor, it suggests that

some Healthy cases were incorrectly classified as faults.

o F1-score: The F1-score of 0.69 reflects a balance between precision and

recall but suggests that the model’s performance in accurately and

consistently identifying Healthy instances was only moderate.

• Fault 1

o Accuracy: Only 21% of the instances predicted within the Fault 1

category are correctly classified, which indicates very poor

performance. The model struggled significantly to identify Fault 1

accurately.

o Precision: When the model predicted Fault 1, it was correct only 33% of

the time. This is quite low, indicating a high rate of false positives where

the model incorrectly classifies other categories as Fault 1.

139

o Recall: The model only detected 21% of actual Fault 1 cases, meaning

it missed nearly 80% of them. This very low recall shows that the model

failed to identify most Fault 1 instances, leading to significant under-

detection.

o F1-score: The F1-score of 0.26 reflects the severe imbalance between

poor precision and low recall, indicating that the model was not effective

at detecting or correctly classifying Fault 1 cases.

• Fault 2

o Accuracy: 68% of instances in the Fault 2 category were correctly

classified, indicating a moderate level of performance. The model was

somewhat effective at recognizing Fault 2 instances but could be better.

o Precision: Of all instances predicted as Fault 2, only 58% were actually

Fault 2. This suggests a moderate rate of false positives, where the model

incorrectly classified other categories as Fault 2.

o Recall: The model correctly identified 68% of the actual Fault 2 cases,

showing that while it could detect most Fault 2 cases, it still missed

about 32% of them.

o F1-score: The F1-score of 0.63 indicates a moderate balance between

precision and recall, with performance being better than for Fault 1 but

still not optimal, especially in terms of precision.

140

The model had a lot of difficulties especially in detecting and classifying Faults 1 and

2, with Fault 1 being particularly challenging. This could be explained by the fact

that in this load case, the engine is almost idling, meaning that the combustion

dynamics and the vibrational signatures are very mild, making it very difficult for an

artificial intelligence model to perform correctly.

For the 1000rpm load case, the confusion matrix of the model is shown in Figure 5.10

while its overall performance is summarized in Table 5.6.

Figure 5.10 Confusion matrix for the 1000rpm load case on Day 8

141

Table 5.6 1000rpm load case model performance on Day 8

Fault

Categories

Performance Indicators

Accuracy Precision Recall F1-score

Healthy 0.90 0.90 0.90 0.90

Fault 1 0.48 0.87 0.48 0.61

Fault 2 0.87 0.61 0.87 0.72

 Model Accuracy on Day 8 = 0.75

 From Table 5.6, the following observations were made:

• Healthy

o Accuracy: 90% of the Healthy instances were correctly identified.

o Precision: Of all instances predicted as Healthy, 90% were actually

Healthy. This indicates good performance in avoiding false positives.

o Recall: The model identified 90% of the actual Healthy cases. This

shows that it effectively detected most Healthy cases.

o F1-score: The balance between precision and recall for the Healthy

category was good, reflected in the F1-score of 0.90.

o The model performed well, with high accuracy, precision, recall, and

F1-score.

142

• Fault 1

o Accuracy: This suggests that only 48% of the instances predicted within the

Fault 1 category were correctly classified, which indicates poor

performance.

o Precision: When the model predicted Fault 1, it was correct 87% of the time.

This was fairly high, indicating that there were relatively few false positives

for Fault 1.

o Recall: The model only detected 48% of actual Fault 1 cases, meaning it

missed more than half of them (low recall).

o F1-score: The lower F1-score of 61% reflected the imbalance between good

precision and poor recall, indicating that the model struggled to detect Fault

1 accurately.

o The model struggles significantly with recall, meaning it failed to detect a

substantial number of Fault 1 cases, despite good precision.

• Fault 2

o Accuracy: This indicates that 87% of instances in the Fault 2 category were

correctly classified, showing relatively good performance.

o Precision: Of all instances predicted as Fault 2, only 61% were actually Fault

2, suggesting a moderate level of false positives.

o Recall: The model correctly identified 87% of the actual Fault 2 cases,

showing strong performance in detecting Fault 2.

143

o F1-score: This score of 72% indicated that the model had a reasonable

balance between precision and recall for Fault 2, but there is room for

improvement, particularly in precision.

o The model was good at detecting Fault 2 but struggled with precision,

leading to some false positives. The F1-score indicates a better balance here

than for Fault 1, but precision could still be improved.

 The model performed reasonably well overall, its performance on Fault 1 needs

improvement to ensure better detection and fewer missed cases. The difficulty in

detecting and classifying Fault1 could also be explained by a higher change in the

distribution of the samples compared to the samples used in the training phase. Most

importantly, the model is capable of detection, concerning the Healthy category. This

way, it is highly probable that a sample not categorized as healthy is a fault.

5.2.1 Comparison Study on Day 8

The performance of the proposed methodology is compared to the LSTM model

whose confusion matrix is shown in Figure 5.11 and overall performance

is summarized in Table 5.7 for the 700rpm load case. Figure 5.12 and Table 5.8 are

respectively for the 1000rpm load case.

144

Figure 5.11 700rpm load case confusion matrix on Day 8 with LSTM

Table 5.7 700rpm load case performance on Day 8 with LSTM

Fault

Categories

Performance Indicators

Accuracy Precision Recall F1-score

Healthy 0.69 0.58 0.69 0.63

Fault 1 0.15 0.36 0.15 0.22

Fault 2 0.89 0.64 0.89 0.75

 Model Accuracy on Day 8 = 0.58

145

Comparing the two methods for the 700rpm load case, the following key

observations could be made:

• Healthy

o CNN had better accuracy (0.76) and recall (0.76) than LSTM, meaning it

was slightly better at identifying healthy data

o Both models showed fairly balanced precision and recall, with the CNN

slightly outperforming in every metric for this category

• Fault 1

o Both models struggled with Fault 1 but the CNN performed better in

accuracy, recall, and F1-score

o LSTM had a higher precision (0.36 vs. 0.33), indicating fewer false positives

but still struggled overall with this fault category

• Fault 2:

o The LSTM dominated in this category, with a significant improvement in

accuracy (0.89 vs. 0.68), recall (0.89 vs. 0.68), and F1-score (0.75 vs. 0.63)

compared to the CNN.

o This suggested the LSTM model was far better at identifying and classifying

Fault 2 instances.

Although the LSTM had a higher overall accuracy of 58% compared to 55% for the

CNN, the CNN however offered a more balanced performance across the various

health states.

146

Figure 5.12 1000rpm load case confusion matrix on Day 8 with LSTM

Table 5.8 1000rpm load case performance on Day 8 with LSTM

Fault

Categories

Performance Indicators

Accuracy Precision Recall F1-score

Healthy 0.71 0.75 0.71 0.73

Fault 1 0.31 0.86 0.31 0.45

Fault 2 0.78 0.46 0.78 0.58

 Model Accuracy on Day 8 = 0.60

147

Comparing the two methods for the 1000rpm load case, the following key

observations could be made:

• Healthy

o CNN significantly outperformed LSTM in all metrics for the healthy

category, with 0.90 accuracy, precision, recall, and F1-score

o LSTM achieved reasonably good performance, but CNN demonstrated

substantively better classification of healthy instances, making it superior in

this regard

• Fault 1

o CNN again outperformed LSTM, particularly in accuracy (0.48 vs. 0.31)

and F1-score (0.61 vs. 0.45).

o Both models exhibited high precision, with LSTM at 0.86 and CNN at 0.87,

meaning both models were adept at minimizing false positives for this fault.

However, CNN showed better recall (0.48 vs. 0.31), meaning it captured

more of the true Fault 1 instances

• Fault 2

o CNN achieved better overall accuracy (0.87 vs. 0.78) and F1-score (0.72 vs.

0.58) compared to LSTM.

o LSTM was outperformed by CNN in recall (0.78 vs. 0.87) meaning the CNN

captured more true Fault 2 instances

148

o The CNN showed superior precision (0.61 vs. 0.46), reducing false positives

more effectively in the Fault 2 classification

With an overall accuracy of 75%, compared to 60% for LSTM, CNN demonstrated

superior performance. It should be noted that even though CNN demonstrated its

superiority in front of LSTM, both models did not perform very well on Day 8. To

circumvent this shortcoming, another approach could be used to improve the

classification accuracy across all categories. This will be discussed in the next

section, in an attempt to improve the performance of the proposed methodology since

it provided better results.

5.3 Transfer Learning Solution

The data collected from days 1 to 7 can be categorized as the source domain, while

the data from Day 8 forms the target domain. Traditional (FDD) methods assume that

the data remains independent and identically distributed (i.i.d.), which limits their

efficiency when the data distribution changes. Since the target domain has a different

distribution, it represents an environment where the quality of the data fluctuates

compared to the source domain. From the perspective of conventional FDD

strategies, the target domain appears as though it comes from a different engine. This

is due to the day-to-day variations in internal combustion engine performance, even

under identical load conditions. Transfer learning comes in an attempt to solve the

problem by reducing the data distribution between the source and target domains

149

(day1-7 and day 8 respectively), so that it can pull out useful knowledge from the

source domain and apply it to the target domain for improved classification

performance in the target domain. It should also be noted that the source domain

contains abundant data while the target domain contains few data. During the

constitution of the engine data set as discussed in 3.3, the target domain was entirely

labelled and as such, only a small portion of it will be used for knowledge sharing in

the transfer learning as illustrated in Figure 5.13.

Figure 5.13 Fault knowledge sharing

150

Transfer learning can be defined as follows: Given a learning task 𝑇𝑠 derived from

the source domain 𝐷𝑠 and a learning task 𝑇𝑡 derived from the target domain 𝐷𝑡,

transfer learning seeks to enhance the performance of the predictive function 𝑓𝑇(∙)

for the learning task 𝑇𝑡 using the knowledge extracted from 𝐷𝑠 and 𝑇𝑠, where 𝐷𝑠 ≠

𝐷𝑡 and/or 𝑇𝑠 ≠ 𝑇𝑡. In addition, the size of 𝐷𝑠 is significantly larger than the size of

𝐷𝑡[86]. In this research, the concept of transfer learning was combined with deep

learning which has become a major breakthrough in the field of machine learning.

The combination of the two is called deep transfer learning and is defined as follows:

A transfer learning task defined by (𝐷𝑠 , 𝑇𝑠, 𝐷𝑡, 𝑇𝑡 , 𝑓𝑇(∙)) is a deep transfer learning

task, where 𝑓𝑇(∙) is a non-linear function that indicated a deep neural network. The

deep transfer learning FDD solution illustrated in Figure 5.14 is divided into two

main steps:

• Step 1: CNN model pre-train. In this step, the labelled engine data from the source

domain is used to pre-train a CNN. This corresponds to the model generated in 5.1

for the two load cases.

• Step 2: CNN pre-train model finetuning. In this step, the parameters of the first

several layers of the pre-trained CNN network (the first nine layers in the models

generated for this research) are frozen and labelled data from the target domain

(with few historical data) is used to finetune the parameters of the remaining layers

of the pre-trained CNN network.

151

Figure 5.14 Architecture of the proposed solution

5.3.1 Using 5% of the Day 8

For both pre-trained networks corresponding each to a different load case, the last 6

layers were finetuned for just 10 epochs, using only 5% of the dataset acquired on day

8 for training (that is 600 out of 12000 samples for the 700rpm load case and 600 out

of 12000 samples for the 1000rpm load case). The performance of the transfer learning

was then evaluated on the rest of the dataset. The confusion matrix and model

performance summary of the 700rpm load case are shown in Figure 5.15 and Table 5.9

respectively, and the confusion matrix and model performance summary of the

1000rpm load case are shown in Figure 5.16 and Table 5.10.

152

Figure 5.15 700rpm load case transfer learning model confusion matrix

Table 5.9 700rpm load case transfer learning model performance on Day 8

Fault

Categories

Performance Indicators

Accuracy Precision Recall F1-score

Healthy 0.99 0.99 1.00 1.00

Fault 1 0.98 1.00 0.99 0.99

Fault 2 0.99 0.99 1.00 0.99

 Model Accuracy on Day 8 = 0.99

153

Figure 5.16 1000rpm load case transfer learning model confusion matrix

Table 5.10 1000rpm load case transfer learning model performance on Day 8

Fault

Categories

Performance Indicators

Accuracy Precision Recall F1-score

Healthy 0.97 1.00 0.98 0.99

Fault 1 0.99 0.97 1.00 0.99

Fault 2 0.99 1.00 0.99 0.99

 Model Accuracy on Day 8 = 0.98

154

The transfer learning solution provided better overall performance for all categories

(Healthy, Fault 1 and Fault 2). It achieved on Day 8 an accuracy of 0.99 for the

700rpm load case compared to 0.55 for the traditional network and for the 1000rpm

load case, an accuracy of 0.98 compared to 0.75 for the traditional network.

5.3.2 Morning and Afternoon Split of Day 8

Even though using only 5% of the Day 8 dataset gave excellent results, the

randomness in the constitution of this 5% inserted some level of data distribution mix

in a non-negligible amount. As section 3.3 of Chapter 3 mentioned, the data was

gathered in the morning (AM) and the afternoon (PM), corresponding to 6000

samples each for Day 8. This indicates a difference in data distribution within the

same day between the AM and PM datasets. Two scenarios were used to assess the

performance of transfer learning. The first one is AM vs PM, where the AM data

(split with 80% training and 20% validation) is used for finetuning and the model

is tested on PM data. The second one is PM vs AM where the PM data (split with

80% training and 20% validation) is used for finetuning and the model is tested on

AM data. Figure 5.17 and Table 5.11 show respectively the confusion matrix and

classification report of the AM vs PM scenario for the 700rpm load case and the

1000rpm load case as represented by Figure 5.19 and Table 5.13. On the other hand,

Figure 5.18 and Table 5.12 show respectively the confusion matrix and classification

155

report of the PM vs AM scenario for the 700rpm load case, while the 1000rom load

case is represented by Figure 5.20 and Table 5.14.

Figure 5.17 700rpm load case AM vs PM confusion matrix

Table 5.11 700rpm load case AM vs PM performance

Fault

Categories

Performance Indicators

Accuracy Precision Recall F1-score

Healthy 0.02 0.19 0.02 0.03

Fault 1 0.25 0.20 0.25 0.22

Fault 2 1.00 0.59 1.00 0.74

 Model Accuracy on PM data = 0.42

156

Figure 5.18 700rpm load case PM vs AM confusion matrix

Table 5.12 700rpm load case PM vs AM performance

Fault

Categories

Performance Indicators

Accuracy Precision Recall F1-score

Healthy 0.99 0.40 0.99 0.57

Fault 1 0.00 0.09 0.01 0.01

Fault 2 0.41 0.99 0.41 0.58

 Model Accuracy on AM data = 0.47

157

Figure 5.19 1000rpm load case AM vs PM confusion matrix

Table 5.13 1000rpm load case AM vs PM performance

Fault

Categories

Performance Indicators

Accuracy Precision Recall F1-score

Healthy 0.78 0.99 0.78 0.87

Fault 1 0.59 0.97 0.59 0.73

Fault 2 0.99 0.62 1.00 0.77

 Model Accuracy on PM data = 0.78

158

Figure 5.20 1000rpm load case PM vs AM confusion matrix

Table 5.14 1000rpm load case PM vs AM performance

Fault

Categories

Performance Indicators

Accuracy Precision Recall F1-score

Healthy 0.99 0.99 0.99 0.99

Fault 1 0.81 0.99 0.81 0.89

Fault 2 1.00 0.84 1.00 0.92

 Model Accuracy on AM data = 0.94

159

The performance of the 700rpm load presented the same difficulties as its traditional

counterpart, outlined in section 5.2 (which had a 55% accuracy). For the AM vs PM

scenario, the accuracy was 42% and the model could at best detect Fault 2 with 100%

accuracy. Regarding the PM vs AM scenario, the accuracy was 47% and the model

could at best detect the Healthy category with an accuracy of 99%. The low score in

the accuracy in addition to the other performance metrics indicates a high variability

regarding this load case. On the other hand, the 1000rpm load case AM vs PM

scenario provided slightly better results with an accuracy of 78% compared to its

traditional counterpart in section 5.2 where an accuracy of 75% was obtained. The

PM vs AM scenario had an accuracy of 94% which is far better than the performance

discussed in section 5.2. This indicates that the PM data had a more general

distribution compared to the AM data. The same trend is observed in 700rpm load

cases with a smaller extent. The lower accuracy of Fault 1 for the 1000rapm load case

is consistent with observations made in the previous section since it is the fault with

the smallest gap.

160

Chapter 6: Conclusion and Future Work

The reliability of internal combustion engines is of prime importance in today’s

highly competitive manufacturing environment. The objective of this research is to

employ deep learning for the development of a fault detection and diagnosis

algorithm for internal combustion engine faults via engine block vibration. The

proposed solution is data-driven, uses signals from knock sensors only, learns

labelled data and accounts for perturbations in data quality.

Over the course of this research, Short Time Fourier Transform demonstrated its

capacity to decipher the time-varying nature of knock sensor signals and its ability to

provide useful features. STFT was coupled with Convolutional Neural Networks,

which could perform fault detection and diagnosis by considering the extracted

features as patterns and performing pattern recognition to solve the problem. The

great capacity exhibited by CNN models is because they can automatically learn

patterns in features from monitored input data and simultaneously identify health

conditions based on those learned features. Using non-linear functions, these models

can adaptively capture representational information from input signals and

approximate complex non-linear functions with minimal error.

A large number of papers have portrayed the usefulness of CNN in the field of fault

detection and diagnosis and as such, the solution proposed in this research was

evaluated over experimental data from a test cell, where the signal of 4 knock sensors

161

mounted on a V8 type engine was acquired to constitute a dataset composed of three

different spark-plug health states. The proposed solution performed very well on the

initial dataset (days 1 to 7) with high accuracies over the three health states or fault

categories. An interesting observation made was the difficulty the trained model had

in the classification of the samples from the Day 8 dataset, with the 700rpm load case

scenario providing poor results and the 1000rpm scenario providing fair results

overall but most importantly capable of detection of the health category. The lower

accuracies observed over the Day 8 dataset were most likely due to the phenomenon

of domain shift, which is a change in the data distribution between the training set

which is used to build a classification model algorithm and the dataset onto which

the latter is evaluated. The 700rpm load case was particularly challenging because,

at this load condition, the engine is in idling mode; a condition where the control

strategy governing the engine operation induces even more variability. A

comparative study was made using an LSTM-based model which faced the same

challenges as the proposed solution but was outperformed by the latter. To resolve

the domain shift problem, the concept of transfer learning was used to enhance the

performance of the proposed solution. Hence, the model generated from the initial

dataset was considered a pre-trained model. While its first few layers were frozen, its

last layers were finetuned. This finetuning of the last layers is mostly because they

are learning the high-level distinguishable features between domains while the first

few layers learn the low-level sharable features between domains. As such, two fine-

162

tuning approaches were used. One consisted of finetuning the pre-trained model with

5% of the dataset used on Day 8 at random. Another approach was to split the Day 8

dataset into morning and afternoon halves and use one half for finetuning and the

other half for testing in an alternating manner. The second approach was the closest

to realistic conditions as it conserved a certain level of data distribution disparity in

contrast to the first one where a non-negligible mix of data distribution was present.

Finally, the scenario where the afternoon data was used for finetuning and the

morning data for testing provided the best results with 94% accuracy, taking data

distribution disparity as an essential condition for model evaluation. Another

interesting observation was the increased stability of engine performance at high

speeds. There was more variation in engine performance in idling mode (700rpm load

case). Hence engine testing in idling conditions should be performed with careful

attention. In addition, ambient air conditions affect engine outputs and thus mass

airflow is a critical parameter to monitor as it linearly affects engine outputs.

163

6.1 Future Research

The aforementioned shift in data distribution opens a new ground for improvements.

In industrial applications, a deep neural network trained on a machine with historical

data may not perform well on a different machine of the same model, largely due to

variations between machines and sensors. Even though the transfer learning solution

adopted in this research was able to circumvent the problem via finetuning, there is

still the use of labelled historical data from the target domain. The transfer learning

solution could be improved by using an unbalanced dataset composed only of fault-

free data. This is a condition where the finetuning is performed with a dataset that is

unevenly distributed across classes. In this scenario, a pre-trained model could be

finetuned with data coming from another machine that has only one class. Further

improvement to the FDD solution could be done by employing domain adaptation,

where the distribution discrepancy between source and target domains could be

reduced. This solution would be semi-supervised as the data coming from the target

domain would be unlabelled. Another direction for improvement could be domain

generalization, where the model would be trained with labelled data coming from

various (source) domains only. Using this concept, the model would learn domain

invariant features and could be then evaluated on a target domain. These are some

potential research topics which would be worth diving in. Other deep learning

164

strategies employing Domain Adversarial Neural Network (DANN) or Generative

Adversarial Network (GAN) could be leveraged to fulfill those goals.

165

References

[1] E. G. Giakoumis, D. C. Rakopoulos, and C. D. Rakopoulos, “Combustion

noise radiation during dynamic diesel engine operation including effects of

various biofuel blends: A review,” Renewable and Sustainable Energy

Reviews, vol. 54, pp. 1099–1113, Feb. 2016, doi: 10.1016/j.rser.2015.10.129.

[2] B. Pla, J. De la Morena, P. Bares, and A. Aramburu, “A supervised machine

learning technique for combustion diagnosis using a vibration sensor signal,”

Fuel, vol. 343, p. 127869, Jul. 2023, doi: 10.1016/j.fuel.2023.127869.

[3] B. Pla, J. De la Morena, P. Bares, and A. Aramburu, “An unsupervised

machine learning technique to identify knock from a knock signal time-

frequency analysis,” Measurement, vol. 211, p. 112669, Apr. 2023, doi:

10.1016/j.measurement.2023.112669.

[4] J. Sun, X. Zhang, Q. Tang, Y. Wang, and Y. Li, “Knock recognition of

knock sensor signal based on wavelet transform and variational mode

decomposition algorithm,” Energy Convers Manag, vol. 287, p. 117062, Jul.

2023, doi: 10.1016/j.enconman.2023.117062.

[5] J. D. Naber and J. E. Johnson, “Internal combustion engine cycles and

concepts,” in Alternative Fuels and Advanced Vehicle Technologies for

Improved Environmental Performance, Elsevier, 2014, pp. 197–224. doi:

10.1533/9780857097422.2.197.

[6] S. C. Government of Canada, “Vehicle registrations, by type of vehicle and

fuel type.” Accessed: Nov. 30, 2023. [Online]. Available:

ttps://doi.org/10.25318/2310030801-eng

[7] B. Ashok, S. Denis Ashok, and C. Ramesh Kumar, “A review on control

system architecture of a SI engine management system,” Annu Rev Control,

vol. 41, pp. 94–118, 2016, doi: 10.1016/j.arcontrol.2016.04.005.

[8] R. Isermann, Engine Modeling and Control. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2014. doi: 10.1007/978-3-642-39934-3.

[9] Z. Wang, H. Liu, and R. D. Reitz, “Knocking combustion in spark-ignition

engines,” Prog Energy Combust Sci, vol. 61, pp. 78–112, Jul. 2017, doi:

10.1016/j.pecs.2017.03.004.

166

[10] J. Sun, X. Zhang, Q. Tang, Y. Wang, and Y. Li, “Knock recognition of

knock sensor signal based on wavelet transform and variational mode

decomposition algorithm,” Energy Convers Manag, vol. 287, p. 117062, Jul.

2023, doi: 10.1016/j.enconman.2023.117062.

[11] B. O. Fernandez, P. R. Aguiar, F. A. Alexandre, M. A. Aulestia Viera, and E.

C. Bianchi, “Study of Knock Sensors as Low-Cost Alternatives to Acoustic

Emission Sensors,” IEEE Sens J, vol. 20, no. 11, pp. 6038–6045, Jun. 2020,

doi: 10.1109/JSEN.2020.2972778.

[12] W. Xi, Z. Li, Z. Tian, and Z. Duan, “A feature extraction and visualization

method for fault detection of marine diesel engines,” Measurement (Lond),

vol. 116, pp. 429–437, Feb. 2018, doi: 10.1016/j.measurement.2017.11.035.

[13] A. Taghizadeh-Alisaraei and A. Mahdavian, “Fault detection of injectors in

diesel engines using vibration time-frequency analysis,” Applied Acoustics,

vol. 143, pp. 48–58, Jan. 2019, doi: 10.1016/j.apacoust.2018.09.002.

[14] R. X. Gao and R. Yan, Wavelets: Theory and Applications for

Manufacturing. Boston, MA: Springer US, 2011. doi: 10.1007/978-1-4419-

1545-0.

[15] R. Parhizkar, Y. Barbotin, and M. Vetterli, “Sequences with minimal time-

frequency uncertainty,” Appl Comput Harmon Anal, vol. 38, no. 3, pp. 452–

468, May 2015, doi: 10.1016/j.acha.2014.07.001.

[16] S. Mallat, A Wavelet Tour of Signal Processing. Elsevier, 2009. doi:

10.1016/B978-0-12-374370-1.X0001-8.

[17] M. Ismail, “Industrial extended multi-scale principle components analysis for

fault detection and diagnosis of car alternators and starters,” McMaster

University, Hamilton, 2015.

[18] M. Chafii, J. Palicot, and R. Gribonval, “Wavelet modulation: An alternative

modulation with low energy consumption,” C R Phys, vol. 18, no. 2, pp.

156–167, Feb. 2017, doi: 10.1016/j.crhy.2016.11.010.

[19] J. Chen et al., “Wavelet transform based on inner product in fault diagnosis

of rotating machinery: A review,” Mech Syst Signal Process, vol. 70–71, pp.

1–35, Mar. 2016, doi: 10.1016/j.ymssp.2015.08.023.

[20] M. Upadhya, A. K. Singh, P. Thakur, E. A. Nagata, and D. D. Ferreira,

“Mother wavelet selection method for voltage sag characterization and

167

detection,” Electric Power Systems Research, vol. 211, p. 108246, Oct. 2022,

doi: 10.1016/j.epsr.2022.108246.

[21] A. I. Megahed, A. Monem Moussa, H. B. Elrefaie, and Y. M. Marghany,

“Selection of a suitable mother wavelet for analyzing power system fault

transients,” in 2008 IEEE Power and Energy Society General Meeting -

Conversion and Delivery of Electrical Energy in the 21st Century, IEEE, Jul.

2008, pp. 1–7. doi: 10.1109/PES.2008.4596367.

[22] F. Hemmati, W. Orfali, and M. S. Gadala, “Roller bearing acoustic signature

extraction by wavelet packet transform, applications in fault detection and

size estimation,” Applied Acoustics, vol. 104, pp. 101–118, Mar. 2016, doi:

10.1016/j.apacoust.2015.11.003.

[23] J. M. Juhani and R. Ibrahim, “Mother Wavelet Selection for Control Valve

Leakage Detection using Acoustic Emission,” in 2018 IEEE Conference on

Systems, Process and Control (ICSPC), IEEE, Dec. 2018, pp. 224–227. doi:

10.1109/SPC.2018.8703973.

[24] J.-D. Wu and C.-H. Liu, “An expert system for fault diagnosis in internal

combustion engines using wavelet packet transform and neural network,”

Expert Syst Appl, vol. 36, no. 3, pp. 4278–4286, Apr. 2009, doi:

10.1016/j.eswa.2008.03.008.

[25] A. Moosavian, M. Khazaee, G. Najafi, M. Khazaee, B. Sakhaei, and S.

Mohammad Jafari, “Wavelet denoising using different mother wavelets for

fault diagnosis of engine spark plug,” Proceedings of the Institution of

Mechanical Engineers, Part E: Journal of Process Mechanical Engineering,

vol. 231, no. 3, pp. 359–370, Jun. 2017, doi: 10.1177/0954408915595952.

[26] K. N. Ravikumar, C. K. Madhusudana, H. Kumar, and K. V. Gangadharan,

“Classification of gear faults in internal combustion (IC) engine gearbox

using discrete wavelet transform features and K star algorithm,” Engineering

Science and Technology, an International Journal, vol. 30, p. 101048, Jun.

2022, doi: 10.1016/j.jestch.2021.08.005.

[27] C. Syms, “Principal Components Analysis,” in Encyclopedia of Ecology,

Elsevier, 2019, pp. 566–573. doi: 10.1016/B978-0-12-409548-9.11152-2.

[28] I. Jolliffe, “Principal Component Analysis,” in Wiley StatsRef: Statistics

Reference Online, Wiley, 2014. doi: 10.1002/9781118445112.stat06472.

168

[29] S. R. Haqshenas, “Multiresolution-multivariate analysis of vibration signals;

application in fault diagnosis of internal combustion engines,” M.A.Sc,

McMaster University, Hamilton, 2012.

[30] S. Joe Qin, “Statistical process monitoring: basics and beyond,” J Chemom,

vol. 17, no. 8–9, pp. 480–502, Aug. 2003, doi: 10.1002/cem.800.

[31] H. H. Yue and S. J. Qin, “Reconstruction-Based Fault Identification Using a

Combined Index,” 2001, doi: 10.1021/ie000141.

[32] G. E. P. Box, “Some Theorems on Quadratic Forms Applied in the Study of

Analysis of Variance Problems, I. Effect of Inequality of Variance in the

One-Way Classification,” The Annals of Mathematical Statistics, vol. 25, no.

2, pp. 290–302, Jun. 1954, doi: 10.1214/aoms/1177728786.

[33] J. E. Jackson, A User’s Guide to Principal Components, vol. 587. Hoboken,

NJ: Wiley Interscience, 2005.

[34] N. D. Tracy, J. C. Young, and R. L. Mason, “Multivariate Control Charts for

Individual Observations,” Journal of Quality Technology, vol. 24, no. 2, pp.

88–95, Apr. 1992, doi: 10.1080/00224065.1992.12015232.

[35] C. F. Alcala and S. J. Qin, “Reconstruction-based contribution for process

monitoring,” Automatica, vol. 45, no. 7, pp. 1593–1600, Jul. 2009, doi:

10.1016/j.automatica.2009.02.027.

[36] R. Dunia and S. Joe Qin, “A unified geometric approach to process and

sensor fault identification and reconstruction,” Comput Chem Eng, vol. 22,

no. 7–8, pp. 927–943, Jul. 1998, doi: 10.1016/S0098-1354(97)00277-9.

[37] S. Yoon and J. F. MacGregor, “Principal-component analysis of multiscale

data for process monitoring and fault diagnosis,” AIChE Journal, vol. 50, no.

11, pp. 2891–2903, Nov. 2004, doi: 10.1002/aic.10260.

[38] S. Cao, Z. Hu, X. Luo, and H. Wang, “Research on fault diagnosis

technology of centrifugal pump blade crack based on PCA and GMM,”

Measurement, vol. 173, p. 108558, Mar. 2021, doi:

10.1016/j.measurement.2020.108558.

[39] L. Hou, J. Zhang, and B. Du, “A Fault Diagnosis Model of Marine Diesel

Engine Fuel Oil Supply System Using PCA and Optimized SVM,” J Phys

Conf Ser, vol. 1576, no. 1, p. 012045, Jun. 2020, doi: 10.1088/1742-

6596/1576/1/012045.

169

[40] S. Xu, X. Jiang, J. Huang, S. Yang, and X. Wang, “Bayesian wavelet PCA

methodology for turbomachinery damage diagnosis under uncertainty,”

Mech Syst Signal Process, vol. 80, pp. 1–18, Dec. 2016, doi:

10.1016/j.ymssp.2016.04.031.

[41] M. Z. Sheriff, M. Mansouri, M. N. Karim, H. Nounou, and M. Nounou,

“Fault detection using multiscale PCA-based moving window GLRT,” J

Process Control, vol. 54, pp. 47–64, Jun. 2017, doi:

10.1016/j.jprocont.2017.03.004.

[42] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998, doi: 10.1109/5.726791.

[43] S. Khan and T. Yairi, “A review on the application of deep learning in

system health management,” Mech Syst Signal Process, vol. 107, pp. 241–

265, Jul. 2018, doi: 10.1016/j.ymssp.2017.11.024.

[44] R. Liu, B. Yang, E. Zio, and X. Chen, “Artificial intelligence for fault

diagnosis of rotating machinery: A review,” Mech Syst Signal Process, vol.

108, pp. 33–47, Aug. 2018, doi: 10.1016/j.ymssp.2018.02.016.

[45] D. Wang, “K-nearest neighbors based methods for identification of different

gear crack levels under different motor speeds and loads: Revisited,” Mech

Syst Signal Process, vol. 70–71, pp. 201–208, Mar. 2016, doi:

10.1016/j.ymssp.2015.10.007.

[46] D. H. Pandya, S. H. Upadhyay, and S. P. Harsha, “Fault diagnosis of rolling

element bearing with intrinsic mode function of acoustic emission data using

APF-KNN,” Expert Syst Appl, vol. 40, no. 10, pp. 4137–4145, Aug. 2013,

doi: 10.1016/j.eswa.2013.01.033.

[47] Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, and A. K. Nandi, “Applications of

machine learning to machine fault diagnosis: A review and roadmap,” Mech

Syst Signal Process, vol. 138, p. 106587, Apr. 2020, doi:

10.1016/j.ymssp.2019.106587.

[48] Y. Lei, Z. He, and Y. Zi, “A Combination of WKNN to Fault Diagnosis of

Rolling Element Bearings,” J Vib Acoust, vol. 131, no. 6, Dec. 2009, doi:

10.1115/1.4000478.

[49] S. Dong, T. Luo, L. Zhong, L. Chen, and X. Xu, “Fault diagnosis of bearing

based on the kernel principal component analysis and optimized k -nearest

170

neighbour model,” Journal of Low Frequency Noise, Vibration and Active

Control, vol. 36, no. 4, pp. 354–365, Dec. 2017, doi:

10.1177/1461348417744302.

[50] F. Li, J. Wang, B. Tang, and D. Tian, “Life grade recognition method based

on supervised uncorrelated orthogonal locality preserving projection and K-

nearest neighbor classifier,” Neurocomputing, vol. 138, pp. 271–282, Aug.

2014, doi: 10.1016/j.neucom.2014.01.037.

[51] T. M. Mitchell, “GENERATIVE AND DISCRIMINATIVE CLASSIFIERS:

NAIVE BAYES AND LOGISTIC REGRESSION,” 2005. [Online].

Available: www.cs.cmu.edu/∼tom/mlbook.html.

[52] J. Seshadrinath, B. Singh, and B. K. Panigrahi, “Vibration Analysis Based

Interturn Fault Diagnosis in Induction Machines,” IEEE Trans Industr

Inform, vol. 10, no. 1, pp. 340–350, Feb. 2014, doi:

10.1109/TII.2013.2271979.

[53] R. H. Cunha Palácios, I. N. da Silva, A. Goedtel, and W. F. Godoy, “A

comprehensive evaluation of intelligent classifiers for fault identification in

three-phase induction motors,” Electric Power Systems Research, vol. 127,

pp. 249–258, Oct. 2015, doi: 10.1016/j.epsr.2015.06.008.

[54] J. Flett and G. M. Bone, “Fault detection and diagnosis of diesel engine valve

trains,” Mech Syst Signal Process, vol. 72–73, pp. 316–327, May 2016, doi:

10.1016/j.ymssp.2015.10.024.

[55] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector

Machines and Other Kernel-based Learning Methods. Cambridge University

Press, 2000. doi: 10.1017/CBO9780511801389.

[56] D. A. Pisner and D. M. Schnyer, “Support vector machine,” in Machine

Learning, Elsevier, 2020, pp. 101–121. doi: 10.1016/B978-0-12-815739-

8.00006-7.

[57] R. Bhaumik et al., “Multivariate pattern analysis strategies in detection of

remitted major depressive disorder using resting state functional

connectivity,” Neuroimage Clin, vol. 16, pp. 390–398, 2017, doi:

10.1016/j.nicl.2016.02.018.

[58] X. Li, K. Wang, and L. Jiang, “The Application of AE Signal in Early

Cracked Rotor Fault Diagnosis with PWVD and SVM,” Journal of Software,

vol. 6, no. 10, Oct. 2011, doi: 10.4304/jsw.6.10.1969-1976.

171

[59] N. Li, R. Zhou, Q. Hu, and X. Liu, “Mechanical fault diagnosis based on

redundant second generation wavelet packet transform, neighborhood rough

set and support vector machine,” Mech Syst Signal Process, vol. 28, pp. 608–

621, Apr. 2012, doi: 10.1016/j.ymssp.2011.10.016.

[60] Y. S. Wang, Q. H. Ma, Q. Zhu, X. T. Liu, and L. H. Zhao, “An intelligent

approach for engine fault diagnosis based on Hilbert–Huang transform and

support vector machine,” Applied Acoustics, vol. 75, pp. 1–9, Jan. 2014, doi:

10.1016/j.apacoust.2013.07.001.

[61] M. Zhang, Y. Zi, L. Niu, S. Xi, and Y. Li, “Intelligent Diagnosis of V-Type

Marine Diesel Engines Based on Multifeatures Extracted From Instantaneous

Crankshaft Speed,” IEEE Trans Instrum Meas, vol. 68, no. 3, pp. 722–740,

Mar. 2019, doi: 10.1109/TIM.2018.2857018.

[62] Z. Li, S.-S. Zhong, and L. Lin, “Novel Gas Turbine Fault Diagnosis Method

Based on Performance Deviation Model,” J Propuls Power, vol. 33, no. 3,

pp. 730–739, May 2017, doi: 10.2514/1.B36267.

[63] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, Oct.

1986, doi: 10.1038/323533a0.

[64] A. Zabihi-Hesari, S. Ansari-Rad, F. A. Shirazi, and M. Ayati, “Fault

detection and diagnosis of a 12-cylinder trainset diesel engine based on

vibration signature analysis and neural network,” Proc Inst Mech Eng C J

Mech Eng Sci, vol. 233, no. 6, pp. 1910–1923, Mar. 2019, doi:

10.1177/0954406218778313.

[65] T. Zheng, Y. Zhang, Y. Li, and L. Shi, “Real-time combustion torque

estimation and dynamic misfire fault diagnosis in gasoline engine,” Mech

Syst Signal Process, vol. 126, pp. 521–535, Jul. 2019, doi:

10.1016/j.ymssp.2019.02.048.

[66] Y. S. Wang, N. N. Liu, H. Guo, and X. L. Wang, “An engine-fault-diagnosis

system based on sound intensity analysis and wavelet packet pre-processing

neural network,” Eng Appl Artif Intell, vol. 94, p. 103765, Sep. 2020, doi:

10.1016/j.engappai.2020.103765.

[67] V. Kocaman, O. M. Shir, and T. Back, “Improving Model Accuracy for

Imbalanced Image Classification Tasks by Adding a Final Batch

Normalization Layer: An Empirical Study,” in 2020 25th International

172

Conference on Pattern Recognition (ICPR), IEEE, Jan. 2021, pp. 10404–

10411. doi: 10.1109/ICPR48806.2021.9412907.

[68] J. Gu et al., “Recent advances in convolutional neural networks,” Pattern

Recognit, vol. 77, pp. 354–377, May 2018, doi:

10.1016/j.patcog.2017.10.013.

[69] C. Qin et al., “DTCNNMI: A deep twin convolutional neural networks with

multi-domain inputs for strongly noisy diesel engine misfire detection,”

Measurement, vol. 180, p. 109548, Aug. 2021, doi:

10.1016/j.measurement.2021.109548.

[70] Y. Huangfu, E. Seddik, S. Habibi, A. Wassyng, and J. Tjong, “Fault

Detection and Diagnosis of Engine Spark Plugs Using Deep Learning

Techniques,” SAE Int J Engines, vol. 15, no. 4, pp. 03-15-04–0027, Nov.

2021, doi: 10.4271/03-15-04-0027.

[71] S. M. Shahid, S. Ko, and S. Kwon, “Real-time abnormality detection and

classification in diesel engine operations with convolutional neural network,”

Expert Syst Appl, vol. 192, p. 116233, Apr. 2022, doi:

10.1016/j.eswa.2021.116233.

[72] D. Binu and B. R. Rajakumar, “Introduction,” in Artificial Intelligence in

Data Mining, Elsevier, 2021, pp. 1–19. doi: 10.1016/B978-0-12-820601-

0.00005-7.

[73] Y. Yu, X. Si, C. Hu, and J. Zhang, “A Review of Recurrent Neural

Networks: LSTM Cells and Network Architectures,” Neural Comput, vol.

31, no. 7, pp. 1235–1270, Jul. 2019, doi: 10.1162/neco_a_01199.

[74] W. De Groote, S. Van Hoecke, and G. Crevecoeur, “Prediction of follower

jumps in cam-follower mechanisms: The benefit of using physics-inspired

features in recurrent neural networks,” Mech Syst Signal Process, vol. 166, p.

108453, Mar. 2022, doi: 10.1016/j.ymssp.2021.108453.

[75] P. Calvo-Bascones and M. A. Sanz-Bobi, “Advanced Prognosis methodology

based on behavioral indicators and Chained Sequential Memory Neural

Networks with a diesel engine application,” Comput Ind, vol. 144, p. 103771,

Jan. 2023, doi: 10.1016/j.compind.2022.103771.

[76] P. Han, A. L. Ellefsen, G. Li, V. Asoy, and H. Zhang, “Fault Prognostics

Using LSTM Networks: Application to Marine Diesel Engine,” IEEE Sens J,

173

vol. 21, no. 22, pp. 25986–25994, Nov. 2021, doi:

10.1109/JSEN.2021.3119151.

[77] H. Zhang, N. Lei, S. Liu, Q. Fan, and Z. Wang, “Data-driven predictive

energy consumption minimization strategy for connected plug-in hybrid

electric vehicles,” Energy, vol. 283, p. 128514, Nov. 2023, doi:

10.1016/j.energy.2023.128514.

[78] H. Geraei, E. Seddik, G. Neame, E. (Yixin) Huangfu, and S. Habibi,

“Machine Learning-Based Fault Detection and Diagnosis of Internal

Combustion Engines Using an Optical Crank Angle Encoder,” in ASME

2022 ICE Forward Conference, American Society of Mechanical Engineers,

Oct. 2022. doi: 10.1115/ICEF2022-88851.

[79] Mehdi Sadeghkazemi, “Evaluation of Spark Plug Technologies in Spark

Ignition Engines by Pareto Front Optimization,” McMaster University, 2019.

[80] B. Ashok, S. Denis Ashok, and C. Ramesh Kumar, “A review on control

system architecture of a SI engine management system,” Annu Rev Control,

vol. 41, pp. 94–118, 2016, doi: 10.1016/j.arcontrol.2016.04.005.

[81] E. Pipitone and A. Beccari, “Determination of TDC in internal combustion

engines by a newly developed thermodynamic approach,” Appl Therm Eng,

vol. 30, no. 14–15, pp. 1914–1926, Oct. 2010, doi:

10.1016/j.applthermaleng.2010.04.012.

[82] T. Badawy, X. Bao, and H. Xu, “Impact of spark plug gap on flame kernel

propagation and engine performance,” Appl Energy, vol. 191, pp. 311–327,

Apr. 2017, doi: 10.1016/j.apenergy.2017.01.059.

[83] Ö. Gültekin, E. Cinar, K. Özkan, and A. Yazıcı, “Multisensory data fusion-

based deep learning approach for fault diagnosis of an industrial autonomous

transfer vehicle,” Expert Syst Appl, vol. 200, p. 117055, Aug. 2022, doi:

10.1016/j.eswa.2022.117055.

[84] R. Reshma and A. Jose Anand, “Predictive and Comparative Analysis of

LENET, ALEXNET and VGG-16 Network Architecture in Smart Behavior

Monitoring,” in 2023 Seventh International Conference on Image

Information Processing (ICIIP), IEEE, Nov. 2023, pp. 450–453. doi:

10.1109/ICIIP61524.2023.10537732.

174

[85] P. Fränti and R. Mariescu-Istodor, “Soft precision and recall,” Pattern

Recognit Lett, vol. 167, pp. 115–121, Mar. 2023, doi:

10.1016/j.patrec.2023.02.005.

[86] M. Bai, X. Yang, J. Liu, J. Liu, and D. Yu, “Convolutional neural network-

based deep transfer learning for fault detection of gas turbine combustion

chambers,” Appl Energy, vol. 302, p. 117509, Nov. 2021, doi:

10.1016/j.apenergy.2021.117509.

	Abstract
	Acknowledgments
	Notation and abbreviations
	Chapter 1: Introduction
	1.1 Overview
	1.2 Research Motivation
	1.3 Research Objective
	1.4 Proposed Solution
	1.5 Research Contribution and Novelty
	1.6 Thesis Structure

	Chapter 2: Literature Review
	2.1 The Internal Combustion Engine
	2.1.1 Knock Sensor

	2.2 Data Processing Techniques
	2.3 Time-Frequency Techniques
	2.4 Wavelets
	2.5 Principal Component Analysis
	2.6 Multiscale Fault Diagnosis
	2.7 Artificial Intelligence
	2.7.1 K-Nearest Neighbour
	2.7.2 Naïve Bayesian Classifier
	2.7.3 Support Vector Machines
	2.7.4 Artificial Neural Networks
	2.7.5 Deep learning
	2.7.5.1 Convolutional Neural Network
	2.7.5.2 Recurrent Neural Network

	Chapter 3: Experimental Set-up
	3.1 Testing Set-up
	3.1.1 Ford Coyote Engine
	3.1.2 Engine Dynamometer
	3.1.3 Engine Control Unit
	3.1.4 Combustion Analyzer
	3.1.5 Crank Angle Encoder
	3.1.6 Dynamometer Accessories

	3.2 Data Logging and Management
	3.3 Engine Faults Dataset

	Chapter 4: Methodology
	4.1 Input construction
	4.2 Convolutional Neural Network
	4.3 Comparison

	Chapter 5: Results and Discussions
	5.1 Initial Dataset
	5.1.1 Comparison study on the initial dataset

	5.2 Model Evaluation on Day 8
	5.2.1 Comparison Study on Day 8

	5.3 Transfer Learning Solution
	5.3.1 Using 5% of the Day 8
	5.3.2 Morning and Afternoon Split of Day 8

	Chapter 6: Conclusion and Future Work
	6.1 Future Research

	References

