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Abstract  

Switched Reluctance Motors (SRMs) are known for their low manufacturing costs, 

simple structure, high torque-to-inertia ratio, and minimal maintenance. However, they 

have high torque ripples due to the salient nature of the stator and rotor poles. To address 

this problem, this thesis applies a Deep Learning optimization approach to minimize the 

torque ripple and maximize the average torque by changing the stator and rotor pole arc 

angles, 𝛽𝑠 and 𝛽𝑟 respectively, using Convolutional Neural Networks (CNNs) and 

Generative Adversarial Networks (GANs) implemented in Python. 

 The training data consists of cross-section images of a 6/14 SRM and static and 

dynamic characteristics were captured using the Finite Element Method and MATLAB 

Simulink models. The CNN model takes the cross-section image and predicts the average 

torque and torque ripple. The results of the CNN model are compared to previous papers 

that applied a similar method to predict various parameters of different motors. 

 A variation of the GAN model called FastGAN was used to generate cross section 

motor images. The model takes a noise vector and generates a cross-section quarter 

model image. 
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 The combined FastGAN-CNN model produced an optimal design that increases 

the average torque by 2% and decreases the torque ripple by 24% while being 17 times 

faster than the traditional FEM. 
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Abbreviations 

SRM Switched Reluctance Motor 

AI Artificial Intelligence 

ML Machine Learning 
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CNN Convolutional Neural Network 

SGD Stochastic Gradient Descent 
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MAE Mean Absolute Error 

MRE Mean Relative Error 

MSE Mean Squared Error 

SSIM Structural Similarity Index Measurement 

 

Symbols 

𝑣 Phase Voltage  

𝑅𝑚 Phase Motor Resistance [H] 

𝐿𝑝ℎ Phase Inductance  

𝑖 Phase Current  

𝜆 Flux Linkage  

𝜃 Rotor Position  

𝑁 Number of Turns  

𝜇𝑟 Relative Permeability  

𝜇0 Permeability of Free Space [Ω] 

𝐴𝑐 Cross Section Area of the Air Gap [N*m] 

𝑙𝑐 Air Gap Length [N*m] 

𝑊𝑚 Mechanical Energy [N*m] 

𝑊𝑓 Magnetic Energy [s] 

𝑇 Torque [Hz] 

𝜔 Rotor Speed  

𝑊𝑐 Co-Energy  

𝑇𝑎𝑣𝑔 Average Torque [Hz] 

∆𝑇𝑅𝑀𝑆 Torque Ripple [A] 

𝑤𝑗𝑘
𝑙  

Weight from Neuron 𝑘 in Layer 𝑙 − 1 to Neuron 𝑗 

in Layer 𝑙 

[A] 

𝑔 Activation Function [A] 

ℒ Loss Function [A] 



 

x 

 

𝛽𝑠 Stator Pole Arc Angle [A] 

𝛽𝑟 Rotor Pole Arc Angle [A] 

𝜂 Learning Rate [A] 

𝛼 Momentum [A] 

𝐺 Generator Model [A] 

𝐷 Discriminator Model [V] 

𝑧 Noise Vector [V] 

𝑐 Conditional Input [V] 

𝑝𝑑𝑎𝑡𝑎 Probability Distribution of Dataset [deg] 

𝑝𝑔 Probability Distribution of Generated Images [deg] 

𝑝𝑧 Probability Distribution of Noise [Wb] 
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Chapter  1   

 

Introduction 

1.1   Motiva t ion  

The world is slowly shifting towards using Electric Vehicles (EVs) for transportation. In 

December 2023, the Canadian environment minister announced that by 2035 only EVs will 

be sold [1]. As the production of EVs increases, so does the production of electric motors. 

More emphasis will be placed on improving their performance. There are several kinds of 

motors used in EVs. Some of these motors are Permanent Magnet Synchronous Motors 

(PMSMs), Induction Motors (IMs) and Switched Reluctance Motors (SRMs). 

What provides SRMs a competitive edge over other motors is that they require no 

rare-earth materials to manufacture, making them cheaper to produce [2]. SRMs also have 

a simpler construction than PMSMs and IMs as the stator has simple salient poles, 

concentrated windings around each stator pole, and a rotor with no rotor bars or permanent 
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magnets (see Figure 1.1). As a result of this simple rotor design, SRMs have a high torque-

to-inertia ratio [3] and low maintenance. 

 

Figure 1.1: Comparison between (a) PMSM, (b) IM, and (c) SRM motor structures. 

Despite these advantages, SRMs still face challenges. One of these challenges is 

high torque ripples due to the salient nature of the stator and rotor poles [2]. High acoustic 

noise is another disadvantage due to the high radial and axial forces in SRMs. Depending 

on the geometry dimensions of the motor, the torque ripples can be reduced [3]. To achieve 

this, different optimization techniques can be used. One of the techniques that has increased 

in popularity in the past five years is the implementation of Deep Learning (DL). To the 

author's knowledge, there has been no previously reported work on the application of DL 

to the design of SRMs 
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1.2   Cont r ibut ion  

This work contributed to the following developments, which are presented in this thesis 

and summarized as follows:  

1. A literature review covering the modeling techniques and design optimization 

techniques of SRMs using Machine Learning (ML) and DL. 

2. A data augmentation algorithm developed to train the convolutional neural network 

(CNN) model and the FastGAN model using computer vision techniques. 

3. A CNN model that takes a quarter model cross section image of a motor and 

identifies the average torque and torque ripple with very high accuracy. 

4. A FastGAN model that generates quarter model cross section motor images given 

a noise vector. To verify the correct images are generated, another CNN model is 

trained to predict the stator and rotor pole arc angles given a motor image. 

5. An optimization algorithm that identifies the motor design that produces the lowest 

torque ripple and the corresponding average torque, stator pole arc angle, rotor pole 

arc angle, and cross-section motor image. 
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1.3   Outl ine  

This thesis is outlined as follows: 

Chapter 2 presents the necessary background on SRM operational characteristics 

and the different electromagnetic modeling techniques used to design SRMs.  

Chapter 3 looks at the applications of ML algorithms to the design optimization of 

SRMs.  

In chapter 4, background and literature review on how DL is used to optimize design 

parameters of SRMs is presented. This is achieved by looking at CNNs and generative 

adversarial networks (GANs) as they are the most common models used when processing 

images. 

Chapter 5 presents the methodology used to develop the CNN and FastGAN by 

looking at the data preprocessing and cleaning procedure. The data cleaning algorithm, the 

two models' architecture, and optimization algorithm will be presented. 

Chapter 6 looks at the results obtained from the two models by looking at their 

performance metrics. The optimal design candidate chosen by the optimization algorithm 

is also presented. Moreover, a discussion of the results obtained from the CNN-FastGAN 

and how they are compared to previous papers' models is shown.  

Finally, chapter 7 concludes this thesis and provides any potential future work. 
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Chapter  2   

 

SRM Operational Characteristics and 

Modeling Techniques  

2.1   SRM Opera t ional  Charac te r i s t ic s  

Before discussing the modeling techniques, it is important to have a general understanding 

of the operating characteristics of SRMs. The stator and rotor are made of laminated 

ferromagnetic materials with windings on the stator only. The windings contain current 

that is independently excited from a power converter circuit [4]. Looking at one phase of 

the motor, the SRM's operation follows the laws of electromagnetism. The single-phase 

diagram and equivalent electrical circuit are shown in Figure 2.1. 
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(a) 

 

 

 

 

 

 

(b) 

 

From first principles, the governing equation for the voltage across a single phase of the 

SRM is given by [4]: 

 𝑣 = 𝑅𝑚𝑖 +
𝜕𝜆

𝜕𝑡
, (2.1) 

where 𝑣 is the phase voltage, 𝑖 is the phase current, 𝑅𝑚 is the phase motor resistance, and 

𝜆 is the flux linkage. In integral form equation (2.1) with respect to time becomes: 

 𝜆(𝑡) = ∫ 𝑣(𝑡) − 𝑅𝑚𝑖(𝑡)𝑑𝑡
𝑡

0

+ 𝜆(0), (2.2) 

where 𝜆(0) is the initial flux linkage at 𝑡 = 0. The flux linkage varies with the rotor 

position 𝜃 and 𝑖 [4]. This can be explained by expanding equation (2.1): 

 𝑣 = 𝑅𝑚𝑖 +
𝜕𝜆

𝜕𝑖

𝑑𝑖

𝑑𝑡
+
𝜕𝜆

𝜕𝜃

𝑑𝜃

𝑑𝑡
, (2.3) 

Figure 2.1: The (a) single phase SRM diagram and (b) equivalent electric circuit. 
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where 𝜕𝜆 𝜕𝑖⁄  is the instantaneous inductance and 𝜕𝜆 𝜕𝜃⁄  is the instantaneous back EMF. It 

can be seen that the relationship between 𝜆, 𝜃, and 𝑖 is non-linear in nature, making it 

challenging to model the electromagnetic characteristics of an SRM. An ideal flux linkage 

plot with respect to the rotor position for one electrical cycle is shown in Figure 2.2. The 

inductance-rotor position plot is almost the same as Figure 2.2. The flux linkage is at its 

maximum when the rotor pole is fully aligned with the stator pole and at its minimum when 

the rotor and stator poles are unaligned. Figure 2.3 shows the difference visually. This is 

because the flux linkage is inversely proportional to the air gap length between the stator 

and rotor poles as stated by the following equation:  

 𝜆 =
𝑁2𝑖𝜇𝑟𝜇0𝐴𝑐

𝑙𝑐
, (2.4) 

where 𝑁 is the number of turns, 𝜇𝑟 is relative permeability, 𝜇0 is permeability of free space, 

𝐴𝑐 is the cross section of the air gap, and 𝑙𝑐 is the air gap length. Due to the salient structure 

of the stator and rotor poles in SRMs, the airgap is non-uniform. This affects 𝑙𝑐 and causes 

a non-linear relationship between 𝜆 and 𝜃 [5]. 
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Figure 2.2: Ideal flux linkage-rotor position plot. 

 

Figure 2.3: SRM rotor position relative to phase A in the (a) aligned and (b) unaligned 

positions. 
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Multiplying 𝑖 on both sides of equation (2.1) yields the equation: 

 𝑣𝑖 = 𝑅𝑚𝑖
2 + 𝑖

𝜕𝜆

𝜕𝑡
. (2.5) 

The left-hand side of equation (2.5) is the total instantaneous power delivered to the SRM. 

The first term on the right-hand side is the windage losses. For the power to be conserved, 

this means the second term on the right-hand side is the sum of the mechanical and 

magnetic power output of the SRM [4]. In other words, 𝑖 𝜕𝜆 𝜕𝑡⁄  can be represented as: 

 𝑖
𝜕𝜆

𝜕𝑡
=
𝜕𝑊𝑚
𝜕𝑡

+
𝜕𝑊𝑓

𝜕𝑡
, (2.6) 

where 𝜕𝑊𝑚 𝜕𝑡⁄  is the instantaneous mechanical power and 𝜕𝑊𝑓 𝜕𝑡⁄  is the instantaneous 

magnetic power. By definition, mechanical power is the product of torque and speed, 

 
𝑑𝑊𝑚
𝑑𝑡

= 𝑇𝜔 = 𝑇
𝑑𝜃

𝑑𝑡
, (2.7) 

where 𝑇 is the torque and 𝜔 is the angular velocity of the rotor. Substituting equation (2.7) 

into (2.6) and solving for 𝑇 results in: 

 𝑖
𝜕𝜆

𝜕𝑡
= 𝑇

𝜕𝜃

𝜕𝑡
+
𝜕𝑊𝑓

𝜕𝑡
 (2.8) 

 𝑇(𝜃, 𝜆) = 𝑖(𝜃, 𝜆)
𝜕𝜆

𝜕𝜃
−
𝜕𝑊𝑓(𝜃, 𝜆)

𝜕𝜃
. (2.9) 

Assuming that the flux linkage does not change with rotor position, 𝜕𝜆 𝜕𝜃⁄ = 0, the torque 

is thus defined as: 

 𝑇 = −
𝜕𝑊𝑓

𝜕𝜃
. (2.10) 
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Normally torque is represented in terms of co-energy 𝑊𝑐 instead of magnetic power [4]. 

To understand the concept of co-energy, recall from equation (2.4) that there is a 

relationship between flux linkage and phase current. This is represented in a plot called the 

magnetization curve. Integrating equation (2.8) with respect to 𝜆 and assuming a constant 

rotor position, 𝜕𝜃 𝜕𝑡⁄ = 0, this results in the following integral, 

 𝑊𝑓 = ∫ 𝑖(𝜃, 𝜆)𝑑𝜆
𝜆

0

. (2.11) 

Unlike 𝑊𝑓, which is the integral of current as a function of flux, 𝑊𝑐 is the integral of the 

magnetization curve: 

 𝑊𝑐 = ∫ 𝜆(𝜃, 𝑖)𝑑𝑖
𝑖

0

 (2.12) 

Figure 2.4 shows an example of a magnetization curve along with the visual representation 

of magnetic and co-energy. 

 

Figure 2.4: Graphical representation of magnetic energy and co-energy. 
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Torque is represented as the change in co-energy with respect to the rotor position under 

constant current [4][6], 

 𝑇 =
𝑑𝑊𝑐
𝑑𝜃

|
𝑖=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

. (2.13) 

Two other parameters related to torque that are studied are average torque, 𝑇𝑎𝑣𝑔, and torque 

ripple, ∆𝑇𝑅𝑀𝑆 [3]. 

 𝑇𝑎𝑣𝑔 =
1

𝜃𝑐𝑦𝑐𝑙𝑒
∫ 𝑇(𝜃)𝑑𝜃
𝜃𝑐𝑦𝑐𝑙𝑒

0

, (2.14) 

 ∆𝑇𝑅𝑀𝑆 = √
1

𝜃𝑐𝑦𝑐𝑙𝑒
∫ [𝑇(𝜃) − 𝑇𝑎𝑣𝑔]

2
𝑑𝜃

𝜃𝑐𝑦𝑐𝑙𝑒

0

, (2.15) 

where 𝜃𝑐𝑦𝑐𝑙𝑒 is one complete electrical cycle. It can be seen in Figure 2.4 that to operate at 

a high torque, the phase current need to be high. However, the rate of change of the flux 

linkage decreases as 𝑖 increases. This is known as the saturation region and is where the 

SRM operates. This further shows that there is a non-linear relationship between the flux 

linkage, rotor position, and current. To improve the performance of SRMs, different 

modeling techniques have been used to address this non-linear relationship and improve 

parameters such as average torque, torque ripple, radial force, and loss density on the stator 

and rotor [5]. In the next section, these modeling techniques will be discussed. 

2.2   Model ing Techniques  of  SRMs  
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SRM modeling techniques can be divided into two main categories: numerical and 

analytical techniques [5][6]. Figure 2.5 summarizes the two main techniques. 

 

Figure 2.5: Summary of modeling techniques of SRMs. 

2.2.1   Numerical  Techniques  

The two most common numerical techniques are the finite element method (FEM) and 

boundary element method (BEM). FEM is used in the design and optimization of SRMs 

[7]. The method involves discretizing the machine geometry into finite elements to create 

meshes and a system of equations for each mesh is obtained. The series of equations for all 

the meshes is then collected and solved and post-processed to obtain quantities such as 

torque or flux linkage [7]. An example procedure of FE analysis is shown in Figure 2.6. 

FEM is very accurate and it is highly dependent on the number of finite elements formed. 

Since SRM operates in the saturation region, dense finite elements are needed in such a 
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region. Moreover, an accurate mesh is needed near the airgaps because the rotor position 

is always varying. This is why the main drawback of FEM is high computational cost. 

 

Figure 2.6: Example of FEM procedure. 

BEM is the second numerical technique used to optimize SRMs. It utilizes integral 

equations to solve electromagnetic fields on the boundary domain [6][7]. The advantage 

of BEM is that it uses surface meshes whereas FEM uses volume meshes, thus reducing 

the computation time [5]. The drawback however is that BEM requires more memory 

resources compared to FEM due to highly dense coefficient matrices, especially in the 

saturation region of SRM [6]. This is why it is combined to solve electromagnetic fields 

with another method such as FEM or an analytical method called magnetic equivalent 
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circuit (MEC). For instance, BEM is used to solve electromagnetic fields in the linear 

region and FEM is used in the saturation region. 

2.2.2   Analytical  Techniques  

Analytical techniques consist of Maxwell's equations, MEC, and interpolation and curve 

fitting. Interpolation and curve fitting approaches are comprised of four sub-techniques: 

lookup tables, interpolation, Fourier series, and ML/DL algorithms [6][7]. Figure 2.7 

displays the analytical techniques used for SRMs. 

 

Figure 2.7: Types of analytical methods for SRM modeling. 

Maxwell's equations is a method used to investigate the magnetic vector potential 

or magnetic scalar potential [7]. A set of equations are solved under boundary conditions 

and transformations take place to identify the electromagnetic field in the airgap. Similar 

to BEM, this method is accurate in the linear region, but it is challenging to apply in local 

saturation regions[6]. 
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MEC is a popular technique to analyze electromagnetic fields and design various 

electric machines. The motor geometry is represented as a magnetic circuit and the flux 

distribution is calculated of that circuit. From there the flux density, magnetic field 

intensity, phase flux linkage, and electromagnetic torque can be computed [7]. MEC can 

achieve a close accuracy to FEA and can consider saturation regions [6]. As the rotor 

position changes, so does the flux distribution. This can be solved by stating assumptions 

for flux paths gained from experience in FEA simulations. However, the drawback of MEC 

is that the flux paths need to be defined in advance which can be complicated as the motor 

geometry becomes more complex [7]. 

Lookup tables are a simple technique that can be implemented with good accuracy. 

FEA is used to retrieve the flux linkage, induced voltage, and torque characteristics for 

various rotor positions and phase input currents and are stored in 2D lookup table. 

Interpolation is then applied on these data points to obtain an expression for the torque or 

phase inductance as a function of the rotor position and/or phase current [6] [7]. Tools that 

can be used to implement this method are MATLAB [8], OCTAVE [9], and Compose by 

Altair [7]. 

Interpolation modeling technique uses piece-wise functions to model the non-linear 

relationship between flux linkage and inductance to the rotor position and phase current. 

Some of the interpolation functions are 2D bivariate polynomials, 2D bicubic spline 

polynomials, Gaussian functions, and exponential functions [6] [7]. 
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Fourier series modeling technique uses Fourier decomposition to model the phase 

flux linkage and phase inductance as a function of the phase current and rotor position. For 

instance, the phase inductance can be estimated using Fourier series as follows, 

 𝐿𝑝ℎ(𝑖, 𝜃) = ∑𝐿𝑝ℎ,𝑛(𝑖) cos(𝑛(𝑁𝑟 𝜃 + 𝛿𝑛))

𝑘𝑡

𝑛=0

, (2.16) 

where 𝑁𝑟 is the number of rotor poles. 𝐿𝑝ℎ,𝑛(𝑖) and 𝛿𝑛 are the 𝑛𝑡ℎ Fourier coefficients. The 

more coefficients that are required to be calculated, the more accurate is the model [7]. 

Coefficients can be determined using FEA, experimental and analytical techniques. 

Typically, the number of terms are limited from two to four [7].  

ML/DL algorithms involve training an algorithm or a model that can predict flux 

linkage and torque characteristics based on motor geometry parameters. The learning 

algorithm uses a limited training dataset from numerical techniques or experiments and can 

make reasonably accurate predictions for input on data it has not seen before. The 

advantage of ML/DL algorithms is that it uses low computational power compared to 

numerical methods [6]. ML/DL algorithms have gained popularity in the last five years 

and is an active research subject. In chapters 3 and 4, the ML/DL algorithms used to 

optimize performance in electric motors will be discussed. 
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Chapter  3   

 

Application of ML in the Design 

Optimization of SRMs 

3.1   Taxonomy of  ML Algor i thms  

ML algorithms can be split into four main categories: supervised learning, unsupervised 

learning, semi-supervised learning, and reinforcement learning [10]. Figure 3.1 shows the 

various kinds of ML algorithms. Supervised learning is the most widely used ML algorithm 

type [6]. It is a problem where given a dataset, the ML algorithm tries to find a mapping 

between the input and output. For example, consider a dataset of cats and dogs images. The 

expected outputs (or labels) of the ML algorithm are either 0 to indicate a cat image and 1 

to indicate a dog image. The input of the model is an image. The supervised learning 

problem is to find a mapping between the input image and the output values. There are two 

main types of supervised learning problems: classification and regression problems. 

Classification supervised learning algorithms deal with predicting discrete outputs. The 

previous example is a classification problem because the image can be classified as either 

a cat or a dog. Another example is recognizing handwritten digits from an input image. 

Regression problems on the other hand deal with continuous outputs. Predicting the house 
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price from the size of the house is an example of a regression problem. Another example 

is predicting the height of a person from an image. 

 

Figure 3.1: Taxonomy of ML algorithms. 

Unsupervised learning is a problem type where the dataset given has no labels and 

the ML algorithm tries to find features or patterns without supervision and any prior 

knowledge [6]. There are two kinds of unsupervised learning problems: clustering and 

association. Clustering problems deal with categorizing objects into groups or clusters 

[10]. For example, given a dataset of fruit images, the ML algorithm clusters these images 

into apples, oranges, bananas, and so on. Association finds the relationship between the 

datasets. For instance, someone who buys a PlayStation console tends to buy PlayStation 

games [10]. 

Semi-supervised learning involves datasets that are partially labelled. Similar to 

supervised and unsupervised learning, the ML algorithm can be used to solve either 

problems of classification or clustering. An example of an application of semi-supervised 

learning is text document classifier [10]. 
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Reinforcement learning is a problem where the ML algorithm (called the agent) 

learns to behave in an environment and depending on the agent's actions, it can be rewarded 

or penalized. The agent uses a trial and run method to come up with an outcome in the 

environment [10]. It is analogous to training a pet dog where it is rewarded with a treat 

when it performs the necessary action by the dog owner and it penalized (not getting a 

treat) when it does not. Reinforcement learning can be used as classification algorithms or 

for control applications such as self-driving cars or robotics [10]. 

3.2   ML Algor i thms used for  Des ign 

Opt imiza t ion  of  SRMs  

Reference [6] reviewed the applications of ML algorithms for modelling and design 

optimization of SRMs. There were two ML algorithms used in the literature for geometry 

optimization of SRMs: back-propagating neural network (BPNN) and generalized 

regression neural network (GRNN). 

3.2.1   Back-propagating Neural  Networks  

BPNN is an ML algorithm made up of neurons connected to each other. A neuron is a 

computational node with a number associated with it. Each two neurons are connected and 

that connection has an associated weight to it. A group of neurons can be grouped vertically 

to layers. A BPNN usually consists of three layers: an input layer, a hidden layer, and an 
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output layer. The input layer has the number of neurons the same as the number of inputs 

to the network. The hidden layer number of neurons is determined heuristically. The 

number of neurons in the output layer is based on how many outputs the model is supposed 

to show. Figure 3.2 shows an example of a BPNN. 

 

Figure 3.2: Structure of a BPNN. 

The input layer can be called layer 1, hidden layer is layer 2, and output layer is layer 3. 

𝑤𝑗𝑘
𝑙  represents the weight going into layer 𝑙 coming from neuron 𝑘 in layer 𝑙 − 1 to neuron 

𝑗 in layer 𝑙. For example, 𝑤82
2  is the weight going into layer 2 coming from neuron 2 of 

layer 1 into neuron 8 of layer 2. The training for this network involves two processes: 

forward pass and backpropagation. In forward pass, the input vector 𝑋 = [𝑥1 𝑥2]
𝑇 which 
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corresponds to the features from the data, gets fed into the input layer and forwarded to the 

output layer to produce an output 𝑌 = [𝑦1 𝑦2]
𝑇. To get this output 𝑌, a weighted sum of 

the features and a bias for each layer is computed. Then an element-wise activation function 

𝑔(𝑎) is used for each layer [6]. Mathematically, this can be represented as follows. 

 
𝑋 → 𝑔2(𝑊2

𝑇𝑋 + 𝑏2)⏟        
𝑎2

→ 𝑔3(𝑊3
𝑇𝑎2 + 𝑏3)⏟          
𝑌

, 
(3.1) 

Where, → is a vector function that takes in a vector and outputs another vector, 𝑊𝑙
𝑇 ∈

ℝ𝑛×𝑚 is the weight matrix of layer 𝑙 with 𝑛 neurons in layer 𝑙 and 𝑚 neurons in layer 𝑙 −

1, 𝑏𝑙 ∈ ℝ
𝑛 is the bias term in layer 𝑙, and 𝑔𝑙 is the non-linear activation function for layer 

𝑙. 𝑎2 ∈ ℝ
8 is the resultant vector/activation after the second layer's computation. There are 

many activation functions that can be used. Some of the popular ones are RELU (Rectified 

Linear Unit), Sigmoid, Tanh, and Tansig [6]. In the process of backpropagation, a loss 

function is being minimized by differentiating it relative to the weights and biases of the 

network. The weights and biases are then updated based on the resulting derivative [6]. An 

optimizer is used to find the optimal weights and biases that would minimize the loss 

function. Normally gradient descent algorithm (GDA) is the optimizer used [6]. This 

process is repeated across the whole training time of the model. 

Reference [3] investigated the static and dynamic characteristics of a 6/14 SRM by 

developing a BPNN. The model's architecture is the same as in Figure 3.2, which takes the 

stator and rotor pole arc angles, 𝛽𝑠 and 𝛽𝑟 respectively and predicts the average torque and 

torque ripple. Increasing 𝛽𝑠 can reduce the torque ripple since the flux linkage increases 

however an excessive increase can reduce the output torque. Moreover, increasing 𝛽𝑟 can 
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increase the average torque as it increases the flux linkage however an excessive increase 

in 𝛽𝑟 can reduce the output torque due to a reduction in motor saliency [3]. FEA and 

MATLAB were used to capture the dynamic characteristics and the dataset of the motor. 

The optimizer used to train the BPNN was Levenberg-Marquardt as it has a faster 

convergence time than GDA to find the local minimum of the loss function [3]. The loss 

function used was mean squared error (MSE). A sample of 10,000 design candidates were 

generated and the optimal motor design was the one that had the lowest torque ripple. 

Compared to the baseline model, the average torque increased by 2% and torque ripple 

decreased by 24%. 

3.2.2   General ized Regression Neural  Network  

GRNN is another type of ML algorithm that has a much simpler training procedure than 

BPNN because it relies on only one parameter, the spread factor 𝜎 [11] . Unlike BPNN, it 

is not an iterative algorithm, which means it is a forward pass algorithm only. This makes 

the training time shorter than BPNN [6]. Figure 3.3 shows an example of a GRNN. It 

consists of four layers: an input layer with a number of neurons equal to the number of 

features in the training data. The second layer is called a pattern layer (or radial basis layer) 

and the number of neurons is the same as the number of training examples. A Euclidean 

distance function is applied between the input and the training data input [11]. The pattern 

layer applies a gaussian kernal for each row in the training dataset according to the 

equation: 
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 𝑓 = 𝑒
−𝐷𝑖

2

2𝜎2 , (3.2) 

where 𝐷𝑖 is the Euclidean distance between the input to the model and input in row 𝑖 of the 

training dataset. The third layer is a summation layer that has two units, a numerator and 

denominator. The numerator unit, 𝑁𝑠, contains the same number of neurons as the number 

of GRNN outputs and the denominator unit, 𝐷𝑠, has one neuron [11]. The equations 

governing the summation layer are: 

 𝑁𝑠 =∑𝑌𝑖𝑒
−𝐷𝑖

2

2𝜎2

𝑛

𝑖=1

 (3.3) 

 𝐷𝑠 =∑𝑒
−𝐷𝑖

2

2𝜎2

𝑛

𝑖=1

. (3.4) 

𝑌𝑖 in equation (3.3) is the response in row 𝑖 of the training dataset. The output layer is the 

division of the numerator unit by the denominator unit [11]. 
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Figure 3.3: Structure of a GRNN. ||dist|| is a distance function and 𝑌𝑖̂ is the predicted 

output from the model. 

Reference [12] looked at a 12/8 SRM and implemented GRNN. The model 

considered the stator and rotor angle parameters and predicted the average torque and 

torque ripples at low-speed operation. The torque ripples were reduced by 12% compared 

to the baseline design given in [12]. GRNN was also used in [13] for a 12/8 SRM. A Fruit 

fly optimization algorithm (FOA) was used to improve the spread parameter. The model 

takes the stator pole arc angle, rotor pole arc angle, and the rotor yoke height and predicts 

the torque ripple and efficiency. The mean relative error (MRE) of the prediction of average 

torque was found to be 0.74% and 0.21% for the efficiency. Both papers used FEA to 

gather the dynamic characteristics of the motors. While BPNN and GRNN use lower 

dimensional inputs, there exist other model architectures that can process higher-

dimensional input features, such as images. This will be discussed in chapter 4.  
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Chapter  4   

 

Deep Learning: Convolutional 

Neural Networks (CNNs) and 

Generative Adversarial Networks 

(GANs) 

4.1   Convolu t ional  Neura l  Networks  

CNNs are a subclass of DL algorithms as seen in Figure 4.1. They are one of the popular 

DL algorithms for image and audio processing applications [14]. The focus of this thesis 

will be training CNNs on images. Unlike the networks discussed in the previous section 

which are made of dense layers, CNNs consist of one or more convolutional layers, which 

have the ability to interpret the spatial structure of the images [15]. In this section, a general 

description of CNNs will be provided. 



 

M.A.Sc Thesis – Youssef Asham                                McMaster - Electrical Engineering 

26 

 

 

Figure 4.1: Classification of AI. 

4.1.1   CNN Layers  

CNN models consist of usually five types of layers: convolutional layer, activation layer, 

pooling layer, dense layer, and loss layer [16]. Figure 4.2 shows an example of a CNN 

model. The convolutional layer is the most important layer in any CNN model. It uses 

filters or also known as kernels to be convolved with the input image to produce feature 

maps. Input images consist of three dimensions: width, height, and number of channels, or 

𝑚 ×𝑚 × 𝑐. Common practice in training CNN models is to have the width and height of 

the images to be the same [16]. 𝑐 is three if the image is colored (or in RGB format) and 
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one if it is grayscale. Images are made of pixel values which range from 0 to 255. The 

kernel can be thought of as a matrix with dimensions 𝑛 × 𝑛 × 𝑞, where 𝑛 ≪ 𝑚 and 𝑞 ≤ 𝑐. 

In a convolutional layer, there can be more than one kernel and thus more than one feature 

can be extracted from an image [16]. The values of the kernel act as the weights of the 

model and are initially assigned to random numbers. 

 

Figure 4.2: Example of a CNN architecture for regression. 

There are techniques to initially assign values to those weights, such as Principal 

Component Analysis or random features, and are then adjusted by the model through 

backpropagation [17]. The convolution process involves performing a dot product 

operation between the values of the input image and the weights of the input kernel. Figure 

4.3 shows an example of how the convolution process works. The convolution process is 

performed until the end of the image. The user can change the number of kernels for each 

layer, the size of each kernel, amount of padding for the input image, and the stride. 

Padding increases the width and height of the input image [17]. In Figure 4.3 no padding 

was applied however there are different kinds of padding such as zero padding or mirror 
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padding [17]. Stride is the step size for the kernel and in Figure 4.3, a stride of one is used. 

The higher the stride, the lower the dimensions of the feature map [16]. Convolutional 

layers are beneficial due to their sparse connectivity, which reduces the number of trainable 

weights compared to dense layers and reduces memory [16]. Moreover, the weights of the 

kernels are shared, causing the training model time to decrease [16][17]. 

 

Figure 4.3: Calculation performed for each step of the convolutional layer. Left table is 

the input image, middle table is the kernel matrix, and right table is the resulting feature 

map. 
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The activation layer detects if the values of the feature map pass a threshold. There are 

many kinds of activation functions. One of them is the sigmoid function that takes a real 

number and outputs a value between zero and one according to this equation: 

 𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 − 𝑒𝑥
. (4.1) 

Usually, sigmoid is used for classification tasks and applied in the last layer where 0 can 

indicate a cat image and 1 is a dog image for example. Another common activation function 

is tanh. This is similar to the sigmoid as it takes a real number, but it outputs a value 

between -1 and 1. Tanh is used in generative adversarial networks (GANs), which will be 

discussed in the next section. The equation for the tanh activation function is given as: 

 𝑓𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
. (4.2) 

The most commonly used activation function in CNN models is the rectified linear unit or 

ReLU [16]. This is because it has a low computational load. It is a function that takes a 

real number and if the input is positive then it is left as is and if it is negative it is converted 

to 0. The equation for the ReLU activation function is given as: 

 𝑓𝑅𝑒𝐿𝑈(𝑥) = max
 
(0, 𝑥). (4.3) 

The challenge with using ReLU however is that it can suffer from dying ReLU, where the 

gradient is 0 during backpropagation in the initial training phase [15]. To solve this 

problem, one alternative is to use LeakyReLU, which does not ignore negative inputs [16]. 

The mathematical representation of LeakyReLU is given by: 
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 𝑓𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = {
𝑥, 𝑥 > 0

𝑚𝑥, 𝑥 ≤ 0
, (4.4) 

where 𝑚 is the leak factor. It is commonly set to a small value like 0.001 [16]. 

The pooling layer decreases the size of the feature maps. This reduces computation 

time for the next layer [17]. It also makes the features invariant to local translations. For 

example, applying a pooling layer for a handwritten digit classifier allows the detection of 

centered digits in the image as well as left aligned digits in the image. There are many kinds 

of pooling layers, but the most frequently used ones are max-pooling, min-pooling, and 

global average pooling (GAP) [16]. Similar to the convolutional layer, the user can adjust 

the width of the kernel, stride, and padding. Figure 4.4 shows an example of those three 

pooling operations. 

The dense layer (or also known as the fully connected layer) is a restructuring of 

the previous layer in the network [15]. For instance, if the previous layer has an output 

shape of 2 × 2 × 8, then the dense layer will have the product of the dimensions, 32 

neurons. Sometimes another dense layer can be added to add more depth to the network. 
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Figure 4.4: Examples of pooling operations. 

Loss layer is the last year in a CNN model. It is a dense layer that uses a loss 

function depending on whether the model solves a classification or regression problem. For 

classification problems, the cross-entropy loss function is usually used with a SoftMax 

activation function, and it is represented by the following equation: 

 𝐻(𝑝, 𝑦) = −∑𝑦𝑖 log 𝑝𝑖

𝑁

𝑖=1

 (4.5) 

 𝑝𝑖 =
𝑒𝑎𝑖

∑ 𝑒𝑎𝑗𝑁
𝑗=1

, (4.6) 

where 𝑁 is the number of neurons in the output layer, 𝑦𝑖 is the desired output, and 𝑝𝑖 is 

called the log loss function, which is a probability ranging from 0 to 1 [16]. 𝑒𝑎𝑖 is the non-

normalized output in layer 𝑎 from neuron 𝑖. Mean Squared Error (MSE) is used for 

regression tasks, and it is the square difference between the predicted output value, 𝑦𝑖̂, and 

the desired output. 
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 𝑀𝑆𝐸 =
1

2𝑁
∑(𝑦𝑖̂ − 𝑦𝑖)

2

𝑁

𝑖=1

 (4.7) 

The loss function is optimized throughout the training time. 

4.1.2   Regularizat ion Techniques  

It is desirable to have the CNN model be well-fitted to the training data and test data. If the 

model does very well at predicting outputs for the training data but poorly on unseen data 

(called test data), it is called over-fitting. If the model performs poorly on the training data, 

it is called under-fitting. Figure 4.5 highlights the differences between under-fitting, over-

fitting, and a good fit. There are several techniques that can be employed to reduce over-

fitting and improve the performance of CNN models. The most common ones are dropout, 

data augmentation, batch normalization, and early stopping [15] [16] [18]. Dropout is a 

technique that chooses a set of neurons from the preceding layer and sets them equal to 0. 

This improves the generality of the model and prevents it from depending on all its weights. 

This is achieved by adding a dropout layer and specifying a value from 0 to 1 indicating 

the percentage of neurons in the previous layer to be dropped. 

One of the reasons the model could be over-fitting is due to a complex model and 

few data is present. To solve this problem, data augmentation can be applied to increase 

the diversity of the dataset. Transformations can be applied to the dataset, such as rotating 

the image, scaling, changing brightness of the image. These transformations can then be 

added to the original dataset. 
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Figure 4.5: Difference between over-fitting and under-fitting. 

When training a CNN model or a DL model, it is important that the weights of the 

model are within a reasonable range. If they go beyond that range, then the loss function 

becomes very large. This is known as the exploding gradient problem [15]. This problem 

could happen anytime during training. Usually when training a model, the input data is 

normalized between 0 and 1 or -1 to 1 instead of 0 to 255 to avoid the gradient from 

becoming very large. While this can help maintain the weights at a reasonable range, as 

the training time continues sometimes the weights can be very far off from their random 

initial values. This can cause the loss function to also increase in value, known as covariate 

shift [15] [16]. To solve this problem, batch normalization can be applied to make sure 

these weights do not go beyond that range. The mean of the preceding layer is subtracted 

from the outputs of the previous layer and divided by the standard deviation of that previous 

layer. 

Early stopping is another technique used to avoid over-fitting. This is applied 

during training to monitor the loss function. An example of its usage is to stop training the 

model when the validation error starts to increase or if it goes below a threshold. 
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4.1.3   Types of  Optimizers  

Backpropagation is the most popular method used train CNN models. The weights are 

updated from the output layer to the first layer of the model using GDA [16] [17] using 

the update formula: 

 𝑤𝑖𝑙
𝑘+1 = 𝑤𝑖𝑙

𝑘 − 𝜂𝑘
𝜕ℒ

𝜕𝑤𝑖
, (4.8) 

where 𝑤𝑖𝑙
𝑘 are the weights between layers 𝑙 and 𝑖 at epoch 𝑘. An Epoch is an iteration 

throughout the whole training dataset. 𝜂 is the learning rate and 𝜕ℒ 𝜕𝑤𝑖⁄  is the partial 

derivative of the error/loss function relative to the weights of the model. 𝜂 can be 

understood as the step taken to update the weights of the model and it is a choice by the 

user. It can be constant throughout all epochs, or it can vary [18]. If 𝜂 is too large, then the 

model will take a large step and thus can miss finding the optimal weights and if it is too 

low then the model will take too long to find a solution. The problem with using GDA or 

batch gradient descent in equation (4.8) is that is computationally expensive because the 

whole training dataset is used. Nowadays, backpropagation is used with two main kinds of 

optimizers: stochastic optimizers and adaptive optimizers [18]. 

Stochastic optimizers update the weights for each training sample [16]. Stochastic 

gradient descent (SGD) updates the weights at every training sample. This makes SGD 

more memory efficient especially for large training datasets. The disadvantage is that 

because the weights are updated frequently based on every training sample, this adds noise 

and causes unstable convergence [16]. The equation for SGD is similar to equation (4.8): 
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 𝑤𝑘+1 = 𝑤𝑘 − 𝜂𝑘∇ℒ𝑖(𝑤
𝑘), (4.9) 

where ∇ℒ𝑖(𝑤
𝑘) is the gradient of the loss function with respect of the weights at epoch 𝑘 

evaluated at training sample 𝑖. Mini-batch gradient descent (MBGD) [19] is an 

improvement to SGD by splitting the data into batches with no overlap and the weights are 

updated for every batch. This makes MBGD more computationally efficient and have a 

stable convergence. 

Adaptive optimizers keep the history of previous sampled points. The two most 

common adaptive optimizers are root mean square propagation (RMSProp) [20] and 

adaptive momentum estimation (Adam) [21]. RMSProp and Adam use the concept of 

momentum [18]. Momentum is a parameter set by the user ranging from 0 to 1 and it 

controls how much of the history of previous gradients to keep. The higher the momentum 

parameter 𝛼, the higher the convergence rate but the higher the chance the model could 

miss the global minimum solution [16]. Adam is the most popular optimizer used to train 

neural networks and it uses the following equation [18]: 

 𝑤𝑘+1 = 𝑤𝑘 −
𝜂𝑘

√𝜖 + 𝑣𝑘+1̂
𝛼𝑘+1̂, (4.10) 

where 𝜖 is a scalar used for stability and 𝑣𝑘+1̂ is a scalar variable related to the gradient of 

the loss function similar to equation (4.9). 

4.1.4   Examples of  CNN Architectures  
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There are many CNN architectures that have been developed. Some of the well-known 

architectures and that have been used in the literature to optimize SRM performance are 

visual geometry group (VGG) and residual network (ResNet). VGG was proposed by 

Simonyan et al. [22]. It is a very deep neural network that can handle non-linear patterns 

in an image [17]. VGG uses small convolutional filters with kernel size 3 × 3 to avoid 

overfitting. All layers use the RELU activation function with the exception of the layer 

using softmax for classification. VGG's main disadvantage is its computation time because 

there are many parameters to be updated [16]. There are two main types of VGG 

architectures: VGG-16 and VGG-19. VGG-16 uses 13 convolutional layers and 3 dense 

layers whereas VGG-19 has 16 convolutional layers and 3 dense layers. 

ResNet is another architecture first proposed in [23]. It solves the problem of 

degradation, which is when the network has so many convolutional layers that the accuracy 

saturates or gets worse [17]. This is done by bypassing the original dense layers and adding 

a residual mapping instead. This allows better optimization due to the residual mapping. 

There are many variations to ResNet such as ResNet-18, Resnet-34, ResNet-50, and 

ResNet-101 depending on the processor available and application [17]. The most common 

one is ResNet-50 [16]. Figure 4.6 and Figure 4.7 show example architectures of ResNet 

and VGG respectively. 
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Figure 4.6: The architecture of the ResNet-34. 
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Figure 4.7: The architecture of the VGG-19. 
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4.1.5   CNN Applications for Design Optimizat ion of  

Electr ic Motors  

Reference [24] used VGG16 CNN model to predict the average torque and torque ripple 

of two kinds of Inner Permanent Magnet (IPM) motors where the input images were 

material configuration and magnetic flux density. The CNN model was then used along 

with GA to find the maximum torque and minimum torque ripple. Mean absolute error 

(MAE) was used as the metric. VGG16 was also used in [25] and trained on two types of 

2D IPM motors images to predict average torque and torque ripple. Correlation coefifcient 

was the metric used to measure the performance of the CNN model. In [26], VGG16 model 

was used to predict d-axis and q-axis inductance and d-axis permanent magnet flux of an 

IPM motor. Correlation coefficient was the metric used to measure the performance. 

Shimizu et al [27] used ResNet-18 to predict torque-speed characteristics of a 

PMSM with three rotor shapes. CNN model was used to predict d- and q-axis inductance 

and flux linkage. Mean squared error (MSE) was used to measure the performance of the 

CNN. 

Reference [14] used two CNN models to optimize the rotor design of a IPM motor 

that provides the maximum torque and back-EMF. Barmada et al. [28] used CNN to predict 

average torque of a synchronous reluctance motor. Mean absolute percentage error was 

used as the metric. 
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4.2   Genera t ive  Adversar ia l  Networks  (GANs)  

In ML, algorithms can be split into two broad categories: discriminative and generative 

algorithms [15]. Discriminative algorithms aim to predict labels from a given observation. 

Example is a classification algorithm that takes an image and predicts whether an image is 

a car (labelled as 0) or a horse (labelled as 1). The model would learn the spatial structure 

of the image and determine a mapping from the image to the label. Generative algorithms 

aim to produce new data that is similar to a given dataset [15]. Suppose that the dataset of 

observations is represented by 𝑋, which have been generated according to some 

distribution 𝑝𝑑𝑎𝑡𝑎. A generative algorithm is trained such that the distribution of the model 

with respect to its parameters 𝑝𝑚𝑜𝑑𝑒𝑙(𝛾) is almost the same as 𝑝𝑑𝑎𝑡𝑎. 

There are two main approaches to estimate such distribution: implicit and explicit 

density modelling (see Figure 4.8). Explicit density modeling aims to model 𝑝𝑚𝑜𝑑𝑒𝑙(𝛾) by 

using 𝑋 to train the parameters 𝛾 [29]. The disadvantage of using such technique is that 

𝑝𝑚𝑜𝑑𝑒𝑙 needs to be constrained in order to be calculated and may not be able to fully map 

the complex distribution of 𝑝𝑑𝑎𝑡𝑎 [15][29]. Implicit density modeling does not solve  

𝑝𝑚𝑜𝑑𝑒𝑙 but rather stochastically generates data and uses that generated data to train the 

model [29]. Generative adversarial network (GAN) is an example of an implicit density 

model, which will be discussed in this section. 
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Figure 4.8: Types of generative models. 

4.2.1   Object ive Function  

GANs consist of two DL models: a generator and a discriminator. A generator synthesizes 

realistic cross-section images based on input noise and/or conditional input parameters 

[30]. The discriminator is nothing but a classifier, which evaluates whether the images 

generated by the generator are real or fake compared to the original dataset. Figure 4.9 

shows the GAN architecture. The generator and discriminator models play an adversarial 

game, where the generator aims to generate data that is identical to the real dataset and fool 

the discriminator whereas the discriminator tries to differentiate between the real and fake 

data. 
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Figure 4.9: The GAN Architecture. 

In mathematical notation, the generator 𝐺 performs the following, 

  𝐺(𝑧) = 𝑥, (4.11) 

where 𝑧 ∈ ℝ𝑑 is a d-dimensional noise vector or latent vector and 𝑥 ∈ ℝ𝑚×𝑚×𝑐 is the 

generated image for the purpose of this thesis and 𝑑 ≤ 𝑚. The discriminator 𝐷 is a binary 

classifier than performs the following task. 

 𝐷(𝑥) = {
1,  if 𝑥 is real
0, if 𝑥 is generated/fake

. (4.12) 

The adversarial game can be represented mathematically through the objective function as 

follows [29]:  

 𝑉(𝐷, 𝐺) = min
𝐺
max
𝐷
𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥)] + 𝐸𝑧~𝑝(𝑧)[log 1 − 𝐷(𝐺(𝑧))], (4.13) 

where 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) in the first term is the expectation over the real dataset. To understand 

equation (4.13), the discriminator wants to maximize the first term because it assigns a 

value of 1 to the real data, which is in equation (4.12). In the second term, 𝐸𝑧~𝑝(𝑧) is the 

expectation over the noise. The discriminator wants to assign a low value (minimize) to 

the generated/fake data, 𝐷(𝐺(𝑧)), which is equivalent to maximizing 1 − 𝐷(𝐺(𝑧)). On 
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the other hand, the first term has no generator term, thus it can be omitted. Since the 

generator wants to fool the discriminator that the fake data is real, it is then trying to 

minimize 1 − 𝐷(𝐺(𝑧)). The log function is the cross entropy and another name for 

equation (4.13) is the minmax game [29]. 

4.2.2   Training GANs and i ts  Challenges  

In terms of model architectures, the discriminator consists of convolutional layers with 

activation function LeakyReLU. Dropout and batch normalization layers are usually added 

to avoid overfitting [15]. The last layer is a convolutional layer with one filter and the 

sigmoid is the activation function as a value between 0 and 1 needs to be outputted. For the 

generator, the input is a dense layer with 𝑑 neurons, symbolizing the dimension of the noise 

vector. The noise vector can be based on the gaussian distribution or normal distribution 

[15] [31]. This vector then gets reshaped from one dimensional to three dimensional 

because the output of the generator is supposed to be an image. Transposed convolutional 

layers or up sampling layers are used to perform the task of increasing the dimensions [15]. 

Dropout layers and batch normalization are used to regularize training of the generator. In 

the last layer, the tanh activation function is usually used because normalizing images 

between -1 and 1 improves the performance of the generator compared to normalizing 

images between 0 and 1 [32]. Both the generator and discriminator use the binary cross-

entropy as the loss function. 
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One of the disadvantages of GANs is that it is challenging to train as two models 

are being trained instead of one [29]. The key is to alternate the training of the two models. 

The discriminator is trained by creating a dataset with half of it being real data and half 

being fake data. The discriminator is treated as a supervised classification problem, where 

the label for the real data is assigned a 1 and the fake data is assigned a 0 [15]. During the 

training of the generator, the weights of the discriminator are kept constant, and the 

generator produces the images and are sent to the discriminator and the labels of those 

images are 1. This is because the generator's aim is to fool the discriminator into believing 

the images it produced are real. The loss of the generator is the output of the discriminator 

and the vector of ones [15]. Figure 4.10 summarizes the training process of the generator 

and discriminator. 

The two most common problems encountered when training GANs are vanishing 

gradients and mode collapse [15]. Vanishing gradients occur if the discriminator is much 

stronger than the generator, causing the discriminator loss to be very close to 0. Thus, the 

discriminator will need to be weaker, and this can be done by increasing the dropout 

percentage of the discriminator, reducing the learning rate, decreasing the number of 

convolutional layers, adding noise to the labels, or randomly alternating the real and fake 

labels to some of the images [15]. Mode collapse is the opposite of vanishing gradients, 

where the generator overpowers the discriminator. The generator can find a point mapped 

to the latent space where the discriminator is fooled, causing the generator loss to be close 

to 0. To solve this problem, the discriminator will need to be strengthen using the opposite 

techniques of the vanishing gradient [15]. 
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One might think that if the generator loss is decreasing, this means that the quality 

of the generated images would be better. However in practice, as the generator loss 

increases, the quality of the generated images improves [15]. This is known as 

uninformative loss, making monitoring GAN losses challenging. Many researchers 

mitigated these challenges by developing variations of the GAN, which will be discussed 

in the next sub-section. 

 

Figure 4.10: The training process of (a) discriminator and (b) generator models. Red 

boxes indicate the weights are frozen for the model. 

4.2.3   GAN Variants  
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In this sub-section, five GAN variants will be discussed. It should be noted that there are 

more variations. The first GAN was developed in 2014 by Ian Goodfellow [33]. Dense 

layers were used for both the generator and discriminator. The optimal 𝐷∗ for a fixed 𝐺 is 

as follows [29] [33].  

 𝐷𝐺
∗(𝑥) =

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑔(𝑥)
. (4.14) 

Since the generator is aiming to generate data that has the same distribution as the real data, 

𝑝𝑔(𝑥) = 𝑝𝑑𝑎𝑡𝑎(𝑥), this means the optimal discriminator should give 0.5. This paper acts 

as the backbone for GAN variants.  

In the same year, Mirza et al [34] developed a GAN model that takes a conditional 

input. This model was called conditional GAN (cGAN). The architecture of the model is 

in Figure 4.11. The objective function for the cGAN is similar to equation (4.13) but there 

is an extra term 𝑐 for the conditional input.  

 𝑉(𝐷, 𝐺) = min
𝐺
max
𝐷
𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥|𝑐)] + 𝐸𝑧~𝑝(𝑧)[log 1 − 𝐷(𝐺(𝑧|𝑐))]. (4.15) 

The authors trained the cGAN model on the MNIST dataset. The cGAN model has the 

ability to generate a specific class from the MNIST dataset by embedding the class label 

as a one-hot encoded vector to the generator and discriminator models.  
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Figure 4.11: The architecture of the cGAN. 

In 2015, a convolutional network version of the GAN was developed in [35] called 

Deep Convolutional GAN (DCGAN). DCGAN is superior to GAN because it reduces the 

problem of mode collapse by making the networks deeper [14]. The concept of using 

LeakyReLU and batch normalization layers was also introduced in this paper. This is the 

reason the GAN variations after 2015 are made of CNN layers.  

In 2017, a variation of the cGAN was developed where 𝑐 is an image known as 

image-to-image translation (or pix2pix) by Isola et al [36]. The objective function is 

slightly different than equation (4.13) as it does not use a noise vector. 

 𝐿𝑐𝐺𝐴𝑁𝑠(𝐷, 𝐺) = 𝐸𝑥,𝑦[log𝐷(𝑥, 𝑐)] + 𝐸𝑦 [log (1 − 𝐷(𝑐, 𝐺(𝑐)))], (4.16) 

where 𝑥 is the input image to the generator, 𝑐 is the expected generated image, and 𝐺(𝑐) is 

the actual generated image from the generator. Figure 4.12 shows the architecture of the 

pix2pix model. An example of a use case for the pix2pix model is to convert an aerial 

image to a map image or a grayscale image to a colored image. The authors also added an 

L1 loss term (also known as MAE) to the objective function so that generator outputs an 
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image that is as close to the ground truth image as possible [36]. The final objective 

function is [29]:  

 𝐿𝑐𝐺𝐴𝑁𝑠(𝐷, 𝐺) + 𝜌ℒ𝐿1(𝐺), (4.17) 

where 𝜌 is a tunable parameter and it is set to 100 in the original paper. The generator 

model architecture used is the U-Net architecture and the discriminator uses the PatchGAN 

network.  

 

Figure 4.12: The architecture of the pix2pix model. 

The challenge with using cGAN is that the conditional input is discrete. Examples 

are generating digit 3 from the MNIST dataset, a cat image, or an image of a truck. For 

cases when a continuous conditional input (such as an age of a person or angle of a chair 

in degrees) is available, a different network is required. Reference [37] tackled this issue 

by developing a continuous cGAN (cCGAN). The cCGAN architecture is the same as 

Figure 4.11 however the conditional input first goes through a dense layer network and is 
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converted to an embedding vector that is fed into the generator and discriminator models. 

The authors compared this method to the method in [34] and concluded that their method 

had better results. 

A common problem with training those GAN variants is that a lot of training data 

is required and lots of computational power is used. For these reasons, Liu et al [38] 

developed a light-weight GAN (or FastGAN) model that produces high quality images with 

a low number of training images and low computational costs. The generator uses a 

technique called skip-layer excitation (SLE), which provides a more robust gradient flow 

and provides faster training. The discriminator on the other hand, uses the feature maps 

technique, which focuses on certain parts of an image and thus provides more signals to 

train the generator. The discriminator is also treated as an encoder with small decoders 

[38]. The generator and discriminator losses use hinge losses according to the given 

equations: 

 ℒ𝐷 = −𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [min 
(0, −1 + 𝐷(𝑥))] − 𝐸𝑥~𝐺(𝑧) [min

 
(0, −1 − 𝐷(𝑥̂))] + ℒ𝑟𝑒𝑐𝑜𝑛𝑠  (4.18) 

 ℒ𝐺 = −𝐸𝑧~𝑁[𝐷(𝐺(𝑧))], (4.19) 

where ℒ𝑟𝑒𝑐𝑜𝑛𝑠 is called the reconstruction loss of the discriminator and the noise vector is 

sampled form the normal distribution. 

4.2.4   GAN Applicat ions for Design Optimization of  

Electr ic Motors  
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Few papers used GAN and its variations in electric motor design optimization. The pix2pix 

model was used in [30] to generate magnetic field plot images from a geometry image of 

a V-shaped interior permanent magnet machine. Further optimization using the genetic 

algorithm to find the optimal design that gave the highest torque and lowest weight. The 

authors found 23% of the time was saved using pix2pix and FEM compared to only FEM.  

Shimizu et al [27] used GAN as a data augmentation method. Genetic algorithm 

was used to find the design that provides minimum volume of the PMSM and highest 

torque. GAN was used in [39] to generate cross-section images for a PMSM with a double 

V rotor shape. Optimization was conducted to find the optimal design that generated the 

maximum axle torque and driving cycle efficiency. Reference [14] used a DCGAN to 

optimize the rotor design of a IPM motor that provides the maximum torque and back-

EMF. As it can be seen from the CNN applications subsection and this subsection, there is 

no record of applying CNN and GAN models to optimize the performance of SRMs. In the 

next chapters, the implementation of the CNN and GAN models will be discussed on a 3-

phase 6/14 SRM. 
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Chapter  5   

 

Proposed Approach  

5.1   In t roduct ion  

The motor model that is being investigated is the 3-phase 6/14 SRM at different stator and 

rotor pole angles. This motor can be found at MARC and was used in [40] for furnace 

blower applications rated at 1 HP and 1100 RPM speed. The parameters of the baseline 

SRM model are summarized in Table 5.1. The full cross-section model of the motor is 

shown in Figure 5.1. The FEM analysis was done using the JMAG software where the 

cross-section images of the SRM at different stator and rotor pole angles, 𝛽𝑠 and 𝛽𝑟 

respectively, and the corresponding average torque and torque ripple were obtained 

through simulation. Figure 5.2 shows the dynamic baseline's phase current plot. The 

baseline's stator and rotor pole arc angles are constrained such that a fully unaligned 
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position exists and to guarantee self-starting capability [3]. The range of the 𝛽𝑠 and 𝛽𝑟 

values for this motor is [8.57°: 12.85°]. 

Table 5.1: Parameters of the 6/14 SRM under investigation. 

Parameter Symbol Value 

DC-link Voltage [V] 𝑉𝐷𝐶 163 

Stack length [mm] 𝐿 74 

Stator outer diameter [mm] 𝐷𝑠 139.21 

Shaft diameter [mm] 𝐷𝑠ℎ 12.7 

Air gap length [mm] 𝑙𝑐 0.4 

Stator back iron thickness [mm] 𝑦𝑠 10 

Rotor back iron thickness [mm] 𝑦𝑟 35.78 

Stator pole height [mm] ℎ𝑠 10 

Rotor pole height [mm] ℎ𝑟 7.08 

Stator pole arc angle [°] 𝛽𝑠 9.5 

Rotor pole arc angle [°] 𝛽𝑟 9.3 

Stator taper angle [°] 𝜏𝑠 4 

Rotor taper angle [°] 𝜏𝑟 4 

 



 

M.A.Sc Thesis – Youssef Asham                                McMaster - Electrical Engineering 

53 

 

 

Figure 5.1: The full model of the 6/14 SRM under investigation. 

 

Figure 5.2: The dynamic phase current plot at various rotor positions. 
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A total of 60 data points were obtained. To get a better understanding of the dataset, 

plots of the average torque and torque ripple at various 𝛽𝑠 and 𝛽𝑟 values are presented in 

Figure 5.3. 

(a) (b) 

 

It can be observed that the average torque increases as the stator pole arc angle increases. 

However, the torque ripple exhibits a nonlinear behavior as the stator and rotor pole arc 

angles increase. This shows how sensitive these geometric parameters can be in relation to 

the average torque and torque ripple. The lowest torque ripples occur when 𝛽𝑟 is between 

10° and 11° and when 𝛽𝑠 is around 9°. This can further be seen by observing the average 

torque ripple plot as a function of the rotor pole arc angles at constant 𝛽𝑠 values in Figure 

5.4. 

Figure 5.3: The plot of (a) average torque and (b) torque ripple at various stator pole arc 

angles with constant rotor pole arc angles. 
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Figure 5.4: Average torque ripple for various rotor angles at constant stator angles. 

In this chapter, a detailed explanation of the data preprocessing technique used on 

the training dataset, the CNN and FastGAN models' architecture, and the optimization 

algorithm developed are discussed. 

5.2   Data  Ext rac t ion  

To train a DL model, more data is needed and thus data augmentation was applied. Each 

motor image generated by JMAG had the stator and rotor color to be blue. Since the focus 

is on the stator and rotor angles, color detection was applied for each image using Python's 

OpenCV library. In OpenCV, the red and green color channels are in the opposite order 
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when the image is read. In other words, the images are in BGR format instead of RGB. The 

image was converted from RGB format to HSV, which stands for Hue, Saturation, and 

Volume. The concept behind the color detection algorithm is to create a mask that is then 

applied on the original image to extract the color desired. In this case, a blue mask was 

applied on each image to extract the blue color of the stator and rotor. To apply the mask, 

a lower and upper bound of the HSV blue color is needed. After several experimentations, 

the lower HSV code for blue was found to be [90, 50, 50] and the upper bound was 

[130, 255, 255]. Then a pixelwise AND operation was applied between the image and the 

mask. Any pixels in the original image is within the mask is kept and anything outside the 

mask is set to pixel 0 (i.e. the code for black). 

Due to the symmetry of the motor image and to simplify model training, the 

extracted image was split into four quarters. To increase the dataset more, the colors of the 

stator and rotor were changed randomly for each quarter image 30 times. Since each motor 

image is split into four images and each of the four images is duplicated 30 times with 

different colors, this resulted in a new dataset consisting of 7440 images. A summary of 

the feature extraction process is displayed in Figure 5.5. 
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Figure 5.5: The data cleaning algorithm. 

The programming language used to model the architecture of the CNN model and 

FastGAN is Python 3. The Python libraries that were used for the CNN and FastGAN data 

preprocessing were pandas, PIL, matplotlib, and numpy. Pandas was used to arrange the 

data into a table. For the CNN model, the table consisted of three columns: image path, 

average torque value, and torque ripple value (see Table 5.2). PIL library was used to read 
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the images and rescale them. The images were rescaled to 128 × 128 × 3 for CNN model 

training. Matplotlib library was used to plot distribution of the dataset, plot the models' 

performance, and ensure the correct images have been imported. Numpy library was used 

to represent the images in a matrix format and to normalize the images for more accurate 

training. TensorFlow was the DL framework used for training the CNN and FastGAN 

models. The images were normalized from zero to one for the CNN model and the dataset 

was split into 5208 images for training, 1116 images for validation, and 1116 images for 

testing. 

For the FastGAN model, the same data cleaning algorithm was also applied but 

with an original dataset of 114 images. This resulted in a training dataset of 14136 images. 

The images were rescaled to 256 × 256 × 3 to achieve high quality images. The images 

were normalized to the range (-1, 1) since the generator model uses tanh as the activation 

function. All 14136 images were used for training the FastGAN. 

Table 5.2: Example of CNN training data. 

Image Path Average Torque [Nm] Torque Ripple [Nm] 

…/14_0.png 4.685286 0.443294 

…/14_colored_8.png 4.685286 0.443294 

…/1_0.png 4.478206 0.547822 

…/28_colored_108.png 5.263512 0.674058 

…/60_1.png 5.197041 0.618147 

5.3   CNN Model  Tra in ing  
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The VGG19 was used as the CNN model for this study. In the original paper by Simonyan 

et al. [22], VGG19 is a classification model that consists of 16 convolutional layers and 

three fully connected layers. Since the current problem is a regression problem, the model 

was slightly altered. This was done by removing the three fully connected layers and 

replacing it with two layers: a dense layer comprising of 256 neurons and a layer consisting 

of two output neurons, one for average torque and the other is for torque ripple. The 

activation function for the dense layer was ReLU and for the last layer was the linear 

activation function. The initial weights for training were set to the ImageNet weights. The 

model architecture can be seen in Figure 5.6. 

Choosing the right losses and metrics are key for an effective CNN model training 

for a regression task. The loss function used was the mean relative error (MRE) defined by 

the following equation: 

 
1

𝑁
∑|

𝑦𝑖 − 𝑝𝑖
𝑦𝑖

|

𝑁

𝑖=1

, (5.1) 

where 𝑁 is the number of training images, 𝑦𝑖 is the ground truth average torque and/or 

torque ripple from image 𝑖, and 𝑝𝑖 is the predicted average torque and/or torque ripple of 

image 𝑖 from the CNN model. The metric used for training the CNN model is the mean 

squared error (MSE). The Adam optimizer was used with an initial learning rate of 

0.00007. To avoid overfitting, exponential learning decay method was applied every three 

epochs without going below 1𝑒 − 10 using the following equation: 

 𝜂𝑛𝑒𝑤 = 𝜂𝑜𝑙𝑑𝑒
−0.2, (5.2) 
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where 𝜂𝑜𝑙𝑑 is the previous learning rate and 𝜂𝑛𝑒𝑤 is the new learning rate three epochs 

later. The second method used to avoid overfitting is early stopping by monitoring the 

validation set's MRE with a patience of five epochs and restoring the best weights. Batch 

size was set to 25 and number of epochs were set to 150. 

A second CNN model was developed to validate the FastGAN's generated images. 

The CNN takes a 128 × 128 × 3 image and outputs the corresponding 𝛽𝑠 and 𝛽𝑟. The 

same training images for the first CNN model was used to train this model with the target 

variables changed to the stator and rotor pole arc angles as seen in Table 5.3. Likewise, the 

same model architecture and hyperparameters were used. 

Table 5.3: Example of the second CNN training data. 

Image Path Stator Pole Arc Angle [°] Rotor Pole Arc Angle [°] 

…/14_0.png 10 8 

…/14_colored_8.png 10 8 

…/1_0.png 8 9.1428 

…/28_colored_108.png 11 11 

…/60_1.png 10.75 12 
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Figure 5.6: The model architecture of the CNN models. The second CNN model has 

stator and rotor pole arc angles instead of average torque and torque ripple. 

5.4   Fas tGAN Model  Tra in ing  

As mentioned in chapter 4, the generator uses the SLE technique, and the discriminator is 

self-supervised and uses feature maps technique. The authors in [38] provided the source 

code for the FastGAN model in [41]. The generator consists of an input block that takes a 

noise vector with a length of 256 and outputs a matrix of dimensions 4 × 4 × 1024. The 

input block consists of convolutional transposed layers, which does the opposite of 

convolutional layers, and uses batch normalization to reduce overfitting and gated linear 

unit (GLU) as the activation function [42]. Up-sampling is then performed with SLE 
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blocks to reach the desired image dimension, which is 256 × 256 × 3. The up-sampling 

blocks are made of up-sampling 2D and convolutional layers with batch normalization to 

reduce overfitting and the GLU as the activation function. The SLE blocks consist of 

average pooling and convolutional layers with activation functions of LeakyReLU and 

sigmoid. The output block consists of convolutional layers and tanh as the activation 

function to output an image.  

For the discriminator, the image is taken as the input and is then down sampled 

through a series of convolutional and pooling layers to reduce the dimension of the image 

to 8 × 8. The input block is made of the same layers as the input block in the generator and 

down-sampling blocks are made from convolutional layers with batch normalization and 

LeakyReLU as the activation function. The decoder blocks are made from convolutional 

layers, batch normalization layers, and uses GLU as the activation function. Partial and full 

reconstructions of the image are output so that both the generator and discriminator are 

able to extract the important features in the image using the tanh activation function. 

Classification block is made from two convolutional layers with batch normalization and 

LeakyReLU as the activation function. Figure 5.7 and Figure 5.8 show a summary of the 

generator and discriminator model architectures respectively. 

 The training of both the CNN and FastGAN models was conducted on a Dell G15 

laptop with NVIDIA GeForce RTX 3060 as the GPU. The adversarial hinge loss was used 

for the generator and discriminator along with an additional reconstruction loss for the 

discriminator [38]. The metrics used were Fréchet Inception Distance (FID) and learned 

perceptual similarity (LPIPS). The optimizer used for training both the generator and 
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discriminator was Adam with the learning rate set to 0.0002. Due to GPU limitations and 

to avoid running out of memory, batch size was set to 6 and the number of epochs were 

1000. 

 

Figure 5.7: The FastGAN generator architecture. 
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Figure 5.8: The FastGAN discriminator. 

5.5   Optimiza t ion  Algor i thm  

After constructing the FastGAN and CNN models, a method is needed to find the optimal 

design candidate with the lowest torque ripple and an average torque greater than 4.9 Nm. 

An algorithm was developed to find the optimal design candidate for a series of 500 values 

of 𝛽𝑠 and 𝛽𝑟 ranging from 9° to 12°. For each pair of pole arc angles, an image was 
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generated from the FastGAN. This image was then passed to the 𝛽𝑠-𝛽𝑟-CNN model to 

retrieve the predicted angles. If the predicted angles lie within 1% of the required pole arc 

angles, then the generated image's quality was compared to the quality of images of the 

FastGAN training dataset. The metric used was structural similarity index (SSIM) 

according to the following equation: 

 
1

𝑁𝑠
∑𝑆𝑆𝐼𝑀(𝑋, 𝑌𝑖)

𝑁𝑠

𝑖=1

, (5.3) 

where 𝑁𝑠 is a sample of 𝑠 images from the training dataset, 𝑋 is the generated image, and 

𝑌𝑖 is a random image form the training dataset. The SSIM function used is found in [43] 

and 𝑠 was set to 100. From experimentation, a SSIM score of 0.14 or less was found to be 

the threshold for the generated image to be of high quality. Once the generated image 

passes these two conditions, the average torque and torque ripple were then predicted using 

the 𝑇𝑎𝑣𝑔-∆𝑇𝑅𝑀𝑆-CNN model. Figure 5.9 shows the chart of the DL models used. 

From previous experience in the 6/14 SRM, a 𝛽𝑠 greater than 10° results in high 

torque ripples [3]. This was also observed in Figure 5.3 and Figure 5.4. The designs from 

the algorithm were then sorted in ascending order of  Δ𝑇𝑅𝑀𝑆. 
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Figure 5.9: Flowchart of the overall algorithm developed to find the optimal design 

candidate. 
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Chapter  6   

 

CNN and FastGAN Results and 

Discussion 

6.1   CNN Models '  Resul t s  

The 𝑇𝑎𝑣𝑔-∆𝑇𝑅𝑀𝑆-CNN model was successfully trained after 66 epochs. Figure 6.1 and 

Figure 6.2 show the MRE and MSE plots for the average torque and torque ripple of the 

training and validation data as the number of epochs increased. The early stopping method 

detected epoch 61 had the best validation loss where the MRE for the average torque and 

torque ripple were 6.5155e-04 and 0.0024, respectively. The validation MSE for average 

torque and torque ripple were found to be 3.7594e-05 and 7.5812e-06, respectively. At 

epoch 61, the training MRE for average torque and torque ripple were 5.6061e-04 and 

0.0019, respectively, and the training MSE for average torque and torque ripple were 

2.6624e-05 and 1.3667e-06, respectively. The average torque and torque ripple MRE for 

the test dataset were calculated to be 6.775e-04 and 0.002399, respectively. The MSE 

values were 4.6429e-05 for 𝑇𝑎𝑣𝑔 and 6.7663e-06 for ∆𝑇𝑅𝑀𝑆. Figure 6.3 and Figure 6.4 

illustrate that the CNN predictions closely match the FEM results from JMAG, as indicated 
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by the alignment of blue points with the red reference line. Table 6.1 summarizes the 

training and testing results. 

 

 

Figure 6.1: The MRE plot of (a) average torque and (b) torque ripple of the training and 

validation datasets. 

 

Figure 6.2: The MSE plot of (a) average torque and (b) torque ripple of the training and 

validation datasets. 
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Figure 6.3: The CNN predictions of the test dataset for average torque compared to the 

FEM results. 

 

Figure 6.4: The CNN predictions of the test dataset for torque ripple compared to the 

FEM results. 
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Table 6.1: Summary of training and testing results of the 𝑇𝑎𝑣𝑔-∆𝑇𝑅𝑀𝑆-CNN model. 

Metrics Training Testing 

MRE 

𝑇𝑎𝑣𝑔: 5.6061e-04 

∆𝑇𝑅𝑀𝑆: 0.0019 

𝑇𝑎𝑣𝑔: 6.775e-04 

∆𝑇𝑅𝑀𝑆: 0.002399 

MSE 

𝑇𝑎𝑣𝑔: 2.6624e-05 

∆𝑇𝑅𝑀𝑆: 1.3677e-06 

𝑇𝑎𝑣𝑔: 4.6429e-05 

∆𝑇𝑅𝑀𝑆: 6.7663e-06 

 

The 𝛽𝑠-𝛽𝑟-CNN model was successfully trained after 80 epochs. The early stopping 

method detected epoch 75 had the best validation loss where the MRE for 𝛽𝑠 and 𝛽𝑟 were 

4.7435e-04 and 4.0467e-04, respectively. The validation MSE for 𝛽𝑠 and 𝛽𝑟 were found to 

be 5.7833e-05 and 3.9346e-05, respectively. At epoch 75, the training MRE for 𝛽𝑠 and 𝛽𝑟 

were 2.9248e-04 and 2.6494e-04, respectively, and the training MSE for 𝛽𝑠 and 𝛽𝑟 were 

1.5056e-05 and 1.1507e-05, respectively. The 𝛽𝑠 and 𝛽𝑟 MRE for the test dataset were 

calculated to be 4.7951e-04 and 4.2142e-04, respectively. The MSE values were 5.1922e-

05 for 𝛽𝑠 and 4.3140e-05 for 𝛽𝑟. Table 6.2 summarizes the training and testing results.  

Figure 6.5 and Figure 6.6 show the 𝛽𝑠-𝛽𝑟-CNN model predictions of the test dataset for the 

stator and rotor pole arc angles respectively. 
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Table 6.2: Summary of training and testing results of the 𝛽𝑠-𝛽𝑟-CNN model. 

Metrics Training Testing 

MRE 
𝛽𝑠: 2.9248e-04 

𝛽𝑟: 2.6494e-04 

𝛽𝑠: 4.7951e-04 

𝛽𝑟: 4.2142e-04 

MSE 
𝛽𝑠: 1.5056e-05 

𝛽𝑟: 1.1507e-05 

𝛽𝑠: 5.1922e-05 

𝛽𝑟: 4.3140e-05 

 

 

Figure 6.5: The CNN predictions of the test dataset for stator pole arc angle. 
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Figure 6.6: The CNN predictions of the test dataset for rotor pole arc angle. 

6.2   Fas tGAN Model ' s  Resul t s  

Figure 6.7 shows the progress of the FastGAN training from the quality of images 

generated for every 20 epochs. It was observed that the images generated at epoch 90 were 

of high quality. Thus, training was terminated at that epoch. To verify that FastGAN 

generated the correct quarter model motor images, the 𝛽𝑠-𝛽𝑟-CNN model took the image 

generated by the FastGAN and predicted the stator and rotor pole arc angles with 1% 

tolerance. Figure 6.8 shows an example of the generated image with the baseline 𝛽𝑠 and 𝛽𝑟 

to be 9.5 and 9.3, respectively. 
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Figure 6.7: Generated images quality from FastGAN for every 20 epochs. 

 

Figure 6.8: The generated image for the baseline. The predicted 𝛽𝑠 and 𝛽𝑟 were 9.541617 

and 9.368641 respectively. 
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6.3   Optimiza t ion  Algor i thm 's  Resul t s  

After retrieving the average torque and torque ripple of the generated images using the 

optimization algorithm, the designs that had a stator pole arc angle less than 10° and a 𝑇𝑎𝑣𝑔 

greater than 4.9 𝑁𝑚 were sorted in ascending order of torque ripple. The first point resulted 

in an average torque of 4.95597 Nm and the lowest torque ripple of 0.30418 Nm. The 

corresponding 𝛽𝑠 was 9.03876° and 𝛽𝑟 was 10.72958°. Figure 6.9 shows the baseline 

quarter motor model image and the generated optimal design's quarter motor model image. 

Figure 6.10 displays a 2-D scatter plot of the design candidates with 𝛽𝑠 < 10° and 𝑇𝑎𝑣𝑔 >

4.9 𝑁𝑚. 

 

Figure 6.9: The baseline quarter model motor image compared to the optimal design's 

generated image. 
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Figure 6.10: A scattered plot of the design candidates that had 𝛽𝑠 < 10° and 𝑇𝑎𝑣𝑔 >

4.9 𝑁𝑚. The optimal point is marked in red.  

6.4   Discuss ion of  Findings  

Table 6.3 provides a comparison of the proposed CNN model to the previous CNN models 

developed. It is evident through the metrics that the proposed CNN model predicts 𝑇𝑎𝑣𝑔 

and ∆𝑇𝑅𝑀𝑆 with high precision. 
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Table 6.3: Comparison of the proposed CNN model with previous CNN models. 

Paper Reference Results Our Results 

[24] 
MAE for 𝑇𝑎𝑣𝑔: 0.0473 

MAE for ∆𝑇𝑅𝑀𝑆: 0.0331 

MAE for 𝑻𝒂𝒗𝒈: 0.00334 

MAE for ∆𝑻𝑹𝑴𝑺: 

0.00112 

[27] 

MSE for flux linkage (Φ): 0.0129 

MSE for d-axis inductance 𝐿𝑑: 

0.0278 

MSE for q-axis inductance 𝐿𝑞: 

0.0577 

MSE for 𝑻𝒂𝒗𝒈: 4.6429e-

05 

MSE for ∆𝑻𝑹𝑴𝑺: 

6.7664e-06 

[25] 

Correlation coefficient for d-axis flux 

(Φ𝑑): 0.992 

Correlation coefficient for 𝐿𝑑: 0.881 

Correlation coefficient for 𝐿𝑞: 0.988 

Correlation coefficient 

for 𝑻𝒂𝒗𝒈: 0.9996 

Correlation coefficient 

for ∆𝑻𝑹𝑴𝑺: 0.9998 
[26] 

Correlation coefficient for 𝑇𝑎𝑣𝑔: 

0.996 

Correlation coefficient for ∆𝑇𝑅𝑀𝑆: 

0.959 

[28] 
Mean Absolute Percentage Error 

(MAPE) for 𝑇𝑎𝑣𝑔: 7.54% 

MAPE for 𝑻𝒂𝒗𝒈: 

0.0675% 

 

The optimal design had a reduction of 4.86% in 𝛽𝑠 and an increase of 15.39% in 𝛽𝑟 

compared to the baseline. Moreover, the optimal design had an increase in average torque 

by roughly 2% and a drastic decrease in torque ripple by 24% compared to the baseline. 

The estimated average torque and torque ripple of the optimal design were also verified by 

FEM. The MRE for average torque was 0.62%, and for the torque ripple was 0.29%. This 
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shows how accurate the FastGAN-CNN architecture is. Table 6.4 summarizes the 

comparison of the baseline, and the optimal design and Table 6.5 compares the estimated 

and actual FEM values of the optimal design's average torque and torque ripple. Figure 

6.11 shows the dynamic torque plot of the baseline and optimal design. It can be observed 

that the total torque plot of the optimized design is more centralized on 5 Nm than the 

baseline plot, causing a reduction in the torque ripple. 

Table 6.4: Comparison between the baseline and optimal design variables. 

Parameters Baseline 
FastGAN-CNN Proposed 

Model 

𝛽𝑠 [°] 9.5 9.03876 

𝛽𝑟 [°] 9.3 10.72958 

𝑇𝑎𝑣𝑔 [𝑁𝑚]  4.88 4.95597 

∆𝑇𝑅𝑀𝑆 [𝑁𝑚] 0.398 0.30418 

 

Table 6.5: Comparison of results between the FastGAN-CNN and FEM. 

Parameters 
FastGAN-CNN 

Proposed Model 

Actual FEM 

Results 
MRE 

𝑇𝑎𝑣𝑔 [𝑁𝑚]  4.95597 4.9865 0.62% 

∆𝑇𝑅𝑀𝑆 [𝑁𝑚] 0.30418 0.30329 0.29% 
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Figure 6.11: The total torque plot of one electrical cycle for the baseline and optimal 

design. 

The proposed algorithm reduces the computational overhead compared to FEM. To 

get a single point using FEM and MATLAB, it would take approximately 40 minutes. The 

algorithm took a total of 20 hours to retrieve 500 points, which is roughly equivalent to 2.4 

minutes. This means that the algorithm is 17 times faster than the traditional FEM method. 
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Chapter  7   

 

Conclusions and Future Work 

7.1    Conc lusion  

This work proposed a design optimization approach using DL to minimize the torque ripple 

and maximize the average torque by changing the stator and rotor pole arc angles of a 6/14 

SRM. This is achieved by using the FastGAN to generate cross-section images of the 

motor, followed by a CNN model that accurately predicts the stator and rotor pole arc 

angles with 1% tolerance. Then, the generated image gets passed into another CNN model 

that predicts the average torque and torque ripple. Using this architecture, a series of 500 

design points were generated, and the optimal design was chosen. The optimal design was 

validated using FEM and it improved the average torque by 2% and decreased the torque 

ripple by 24% compared to the baseline. The proposed algorithm was also 17 times faster 

than the traditional FEM for one point. 
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7.2   Future  Work  

7.2.1   Physics  Informed Neural  Networks  

The FastGAN-CNN architecture has demonstrated superior performance in optimizing the 

design. However, this architecture is heavily influenced by the training data provided to 

the models. In some situations, data acquisition can be very costly and conclusions will be 

drawn based on little information. Physics informed neural networks (PINNs) [44] solve 

supervised learning problems while following the physics laws represented as partial 

differential equations and added to the loss function of the model. In 2021, Zhao et al. [45] 

proposed a physics-informed convolutional neural network for a heat source layout 

application. PINNs are used in electromagnetic analysis [46][47] and can be explored in 

electric motor design. 

7.2.2   Diffusion Models  

One of the main disadvantages in GANs is that it is hard to train as there are many 

parameters that can be altered and can easily lead to mode collapse. In [48], the authors 

found that diffusion models outperform state-of-the-art GAN models in high quality image 

generation. To the author's knowledge, there is no previous work that applied diffusion 

models in electric motor design. Diffusion models rely on the concept of applying noise to 

an image and then denoising the image to get a diverse set of images. Using diffusion 

models can also affect the optimization algorithm as there will be no need to check the 
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similarity of the generated image to the training dataset. Thus, a genetic algorithm can be 

used in place of it.   

7.2.3   Explorat ion of Addit ional Geometric 

Parameters  and Topology Optimizat ion  using Deep 

Learning 

This work focused on maximizing the average torque and minimizing torque ripple based 

on cross section motor images with various stator and rotor pole arc angles. Using only 

these two geometric parameters is not enough to design an SRM. Changing geometric 

parameters such as taper angle, stator and rotor pole heights, and stator and rotor back iron 

thickness affect the average torque and torque ripple [49]. These additions can provide a 

more robust design for the SRM. Altering these geometric parameters is a very sensitive 

task as they have an opposite effect on the average torque and torque ripple. Thus, 

understanding this trade-off is crucial to optimize the motor's performance. Including other 

outputs, such as motor efficiency, can also provide more insights on the performance of 

the SRM. GANs can be also useful for topology optimization of SRMs. For instance, 

generating a design for an SRM that has an optimal distribution of ferromagnetic material 

and air [2]. 
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