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Lay Abstract 

With the advance of low cost IoT technology and embedded sensors, telemedical systems have 

become more common within medical research. Thanks to various vendors with automated processes for 

creating printed circuit boards, computationally powerful microcontrollers can easily be integrated with 

sensors that measure physiological parameters to build telemedical monitoring systems. Although many 

remote monitoring systems have been created, very few have made their way into patient’s lives despite the 

increasing need to pre-emptively detect mobility decline and disease in older adults to reduce strain on 

healthcare systems. One major limitation with these medical systems is their lack of understanding 

regarding users' context which ultimately limits their decision making capabilities. For instance, a remote 

system may detect a heart rate of 160 BPM, however, without the context surrounding whether the user is 

active at that time or immobile it is impractical to determine whether this is a benign or dangerous situation. 

The aim of this research was to develop a framework for telemedical systems that integrates context to 

build remote monitoring systems which can better understand physiological data and make informed 

decisions to pre-emptively detect conditions/diseases. A systematic review was conducted to identify which 

contexts are most prevalent in context-aware medical systems, and what the various categories of context-

aware medical applications are. The important contexts discovered were then used to build a framework for 

context-aware medical systems that converts sensor data into contexts/situations in order to run clinical 

tests and quantify the likelihood a patient has a given condition, disease or adverse event. Lastly, the 

framework was used to develop a smart home system with a context-aware emergency alert application and 

then piloted in older adults’ homes. 
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Abstract 

The present work focused on building a framework for context-aware telemedical systems which 

can leverage physiological data from sensors within its context to quantify the likelihood of medical events, 

conditions, and diseases for users. A context-aware smart home system was built for both validating the 

framework and demonstrating how it could be used to build medical applications. A systematic review was 

conducted in order to identify which contexts are most prevalent in context-aware medical systems and 

what the various categories of context-aware medical applications were. A total of 23 articles passed all 

screening levels and underwent data extraction. The most common contexts used were the user location 

(8/23 studies), demographic info (5/23 studies), movement status/activity level (6/23 studies), time of day 

(5/23 studies), phone usage patterns (5/23 studies), lab/vitals (7/23 studies), and patient history data (8/23 

studies). The important contexts discovered used to build a framework for context-aware medical systems 

that converts sensor data into contexts/situations in order to run clinical tests and quantify the likelihood a 

patient has a given condition, disease or adverse event. Context probabilities, clinical test/situation results, 

and post-test probabilities for Parkinson’s and falling within 12 months were compared between 

experiments where healthy users emulated mobility impaired and unimpaired adults who had a positive or 

negative outcome for common clinical tests. The post-test probabilities determined by the system for falling 

within 12 months or having Parkinson’s were statistically significantly (p < 0.05) higher in the mobility 

impaired group relative to the unimpaired group, thus validating the theory's utility in autonomously 

establishing contexts and using them to conduct tests.  This framework was then used to develop a smart 

home system with a context-aware emergency alert application that could utilize mobility and heart rate 

data within its context to determine if physiological data was (or was not) indicative of an emergency. The 

context-unaware alarm triggered an emergency when the user's heart rate was elevated during exercise, 

whereas the context-aware alarm was not triggered as it was able to recognize the active context for the 

user. The context-unaware alarm also triggered while the user emulated sleeping, whereas the context-

aware alarm was not triggered since it could recognize the time of day was within normal sleeping hours. 

Lastly, the system was piloted in older adults’ homes and it was demonstrated that select contexts such as 

immobility time, the time users started or ended their day, and whether users were moving between rooms 

could be determined autonomously using the framework. 
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Chapter 1 

Introduction 

Modern improvements in healthcare have led to increased life expectancy in many countries, 

causing an increased older adult demographic over the past few decades. A consequence of this has been 

financial strain on many healthcare systems due to problems that primarily affect older adults. For instance, 

falls cause over 85% of seniors’ injury related hospitalizations in Canada and 2 billion a year in direct 

healthcare costs[1]. Additionally, these falls are the cause of 95% of all hip fractures, of which the 12 

month morbidity rate in those with a hip fracture is 21%[2]. Many of these older adults are placed in 

retirement homes after a fall/fracture, which also reduces their overall quality of life relative to being able 

to live independently at home. One primary issue is the reactive nature of current healthcare systems, which 

deal with the problem once it occurs as opposed to pre-emptively detecting individuals at high risk for 

falling or other aging related diseases (e.g Parkinsons, Alzheimer’s, etc)[3]. A need exists for regular 

assessments of older adults to intervene in advance of these issues and promote safe aging in place. 

However, it is well understood that it is not practical to have healthcare providers regularly assess every 

older adult to look for high risk individuals. Thus, regular assessments of older adults must be conducted in 

an automated, remote, and cost-effective manner using telemedical systems in order to promote safe aging 

in place. Indeed, many groups have begun to work towards building these remote monitoring systems for 

gait assessment using infrared sensors[4], cameras[5], and other devices[6] to improve quality of life in 

society's older demographic. 

1.1 Motivation 

The goal of the present work was to develop a framework for telemedical systems that promotes 

safe aging in place.  We hoped to create a system for automating clinical tests so that information relevant 

to specific diseases or dangerous events, like falling, could be obtained regularly to pre-emptively detect 

these issues, intervene early, and thus prolong safe aging within one's primary residence. We chose to 

develop a smart home system to implement the developed framework given that an older adult's primary 

residence is their most frequented location, and thus the place that measurements can be taken most often. 

Given that mobility decline is seen in many diseases, and can be treated as a more general indicator 

of a person’s current health if they are not (known to be) suffering from a chronic illness,[7] [8] we chose 

to link our smart home system to a smartwatch that could collect step count data through its inertial 

measurement unit. Mobility decline can also be used as a metric for fall risk or disease progression in the 

case of various chronic diseases such as Parkinson’s, Alzheimer’s, and Amyotrophic Lateral Sclerosis 

(ALS)[9]–[13]. Thus, by focusing on capturing mobility levels the system could have the potential to 

monitor disease progression in some cases, or can at least be reasonably tested to be useful for tracking the 

progression of diseases in the future. Activities of daily living (ADLs) have similar prognostic relevance 

for pre-emptive detection of falls as many people reduce their ADLs, or take longer to complete them, as 

their gait declines[14]. Thus, the smart home system was prepared to capture mobility information through 

an indoor positioning system so we could better understand users ADLs. 

Physiological data, such as heart rate, blood pressure, respiratory rate, etcetera, are relevant for 

determining whether a patient's overall health is within a safe range and avoiding the exacerbation of acute 

problems. However, it became apparent that without the context surrounding physiological data (and other 

sensor data), it would be impractical to make correct medical decisions with a smart home system. For 

instance, if the system returns a heart rate of 160, how does one know if this is sinus tachycardia due to 

https://paperpile.com/c/XeNEhf/sWtoC
https://paperpile.com/c/XeNEhf/AI4PZ
https://paperpile.com/c/XeNEhf/1YlxB
https://paperpile.com/c/XeNEhf/JP06Y
https://paperpile.com/c/XeNEhf/T08bW
https://paperpile.com/c/XeNEhf/Mo0ZC
https://paperpile.com/c/XeNEhf/mhkzO+X8oQb
https://paperpile.com/c/XeNEhf/VsRXg+k9qPI+OC0qd
https://paperpile.com/c/XeNEhf/IBpoh


PhD Thesis - Michael Zon McMaster University - Biomedical Engineering 

 17 

exercise, or a dangerous arrhythmia outside of the person's normal range? Context-awareness sensing, 

which is the notion of using context within medical systems[15], was identified as a pivotal requirement for 

the system as it provides a solution for this by categorizing the heart rate based on the activity. As an 

example, if the person’s heart rate is 160 while their activity levels are higher than usual, and their GPS 

says they are at the gym, then one may classify this as benign based on the activity and location context. By 

contrast, if the person is not moving in their bedroom in the middle of the night the context suggests the 

same heart rate (160) is much more likely to be a dangerous event. Contextual conditions must also be met 

for many clinical tests, such as the requirement that a patient must be sitting with back support and their 

legs uncrossed during a blood pressure measurement[16]. Given the importance of context for 

understanding medical data, the system was adapted to become context-aware and a generalized approach 

to determining contexts and using them to conduct clinical tests was developed.  

Although context became one of our requirements, most groups seemed to collect it through ground 

truth labeling of recorded contexts and then use this data to build machine learning (ML) models[17]–[19]. 

However, it became apparent that clinicians were both hesitant to base their decisions on results from 

ML[20] models and that labeling data each time a new context is desired would not be a practical long term 

solution[21]. Thus, we sought to create a method to autonomously determine contexts through sensor data 

so systems could be installed in older adults’ homes and used to detect useful contexts immediately instead 

of requiring months of training data collection. Additionally, the approach developed was designed to be 

deterministic, instead of stochastic like many ML models, so that the relationship between the data and 

patient outcomes would be clear to healthcare providers and more likely to be adopted. We realized that 

many clinical tests could be broken into simple, high certainty contexts, and that the known relationship 

between these tests and diseases through likelihood ratios could be used to avoid complicated models and 

assign a probability to a user that they have a condition.  

In addition to developing a framework for quantifying users likelihood of adverse outcomes for safe 

aging in place applications, we wanted to demonstrate how context-aware systems could be used to build 

intelligent context-aware applications. Thus, a context-aware emergency system was developed in order to 

demonstrate how context can be used to rule out false positives, such as an elevated heart rate that is 

appropriate for the users activity level. We felt it was important to formalize this notion of assessing 

physiological data in its context to better define the structure of context-aware medical systems. Thus, prior 

context-aware frameworks were adapted to develop a context-aware medical framework. Lastly, the goal of 

the work was to build a context-aware smart home system that could promote safe aging in place. Thus, we 

wanted to pilot the system and framework in older adults to demonstrate its viability. To this end, a small 

pilot study was conducted with research ethics board approval to demonstrate the system and framework 

could autonomously detect some medically relevant contexts. 

1.2 Research Roadmap 

A roadmap was developed to direct research towards the development of telemedical systems for 

safe aging in place through pre-emptive detection of adverse medical events. The complete system 

comprises 6 primary chronologically ordered modules.  

Module 1 entails the development of a low cost and scalable system to enable data acquisition. In 

this work, simple plug and play devices were developed so any older adult could implement the system in 

their primary residence. The system relies on low cost and low power IoT sensors with a scalable software 

architecture that allows for easy integration of new devices through the ESP_NOW protocol[22]. As shown 

in the broader roadmap, older adults' electronic medical records should eventually be linked to their remote 
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health monitoring systems so sensor data which is relevant for disease management can be relayed to 

healthcare providers when necessary (e.g blood pressure data in hypertension monitoring).  

Module 2 is the processing of the collected data and its use in determining contexts. First the data is 

preprocessed, which may include time synchronization between the various sensor modules, interpolation 

in the presence of missing data, or applying filters to smooth noisy sensor data. Next, the sensor data is 

analyzed to create new parameters. An example of this would be using known algorithms to obtain step 

counts from accelerometer data[23]-[24]. Lastly, a context determination step is needed to translate the data 

into useful contexts (which may be user activities) such as sitting, walking, eating, etcetera.  

Once the data has been processed to obtain contextual data, module 3 is used to understand the 

user's situation, defined through aggregates of contexts,[25] and apply clinical tests that can be modeled 

through situations in order to understand/update a user’s probability for a given disease or outcome. The 

framework provides the slow gait speed test as an example, where the smart home system detects a 0.5 m/s 

gait speed which leads to a 2.0 times increased likelihood of falling over 12 months[26]. In the present 

work, tests for fall risk and Parkinson’s are emulated as a starting point to demonstrate the framework. 

Module 4 focuses on using the situations/test results to determine the likelihood an older adult has a 

disease or event based on the known relationships between the tests and disease/event. Baseline pre-test 

probabilities are assigned to users based on epidemiological data (e.g 33% chance to fall in 12 months if 

over 65), and likelihood ratios relating the known test results impact on a disease's odds are used to 

generate post-test probabilities [26]. For instance, in figure 1.1 module 4b John Smith is positive for the 

slow gait, support to rise, and taking more then 3 medications tests. Multiplying the individual likelihood 

ratios on to his pre-test odds of 0.5 leads to a post-test probability of 85% for falling. Additionally, module 

4a shows how learning algorithms can be used to identify new tests based on the relationship between 

multiple older adults that have a disease/event (outcome) and the measured contexts (inputs/predictors). 

The likelihood ratios resulting from these new clinical tests can then be applied to further determine the 

post-test probabilities older adults have a given condition for pre-emptively detecting the issue [27].  

Module 5 of the research roadmap focuses on utilizing the post-test probabilities that define an older 

adult's likelihood for a given outcome. The post-test probability of the disease or event is used to trigger 

diagnosis/detection based on known clinical criteria or thresholds provided by healthcare providers. For 

instance, the system may diagnose Stage 1 Hypertension on its own if systolic blood pressure is constantly 

over 140 mmHg [28], or a physician may decide to implement a fall intervention program for any older 

adult with a chance of falling greater than 80% in the next 12 months. 

Lastly, module 6 applies the interventions by changing medical applications within or outside of the 

smart home based on the findings. This makes the system truly context-aware according to the modern 

definition, which requires changes to the application based on context [15]. For instance, an external 

mobile app may request that the patient check their blood pressure regularly to ensure it is under 140/90 

mmHg given the new information about their hypertensive state. Alternatively, the smart home may start 

prompting the older adult to take their blood pressure pills regularly through a smart-pillbox [29]-[30].  

This generalized research roadmap for telemedical systems starts from sensor data and 

quantitatively assigns probabilities to diseases/events by autonomously determining contexts to conduct 

known clinical tests and avoid cumbersome training data labeling. Thus, it satisfies the goal of providing a 

practical approach to pre-emptive detection of medical issues for promoting safe aging in place. 

https://paperpile.com/c/XeNEhf/wM3LN+m8XV4
https://paperpile.com/c/XeNEhf/UiO5X
https://paperpile.com/c/XeNEhf/GKRM5
https://paperpile.com/c/XeNEhf/GKRM5
https://paperpile.com/c/XeNEhf/84WHs
https://paperpile.com/c/XeNEhf/Uy9G3
https://paperpile.com/c/XeNEhf/fWeOy
https://paperpile.com/c/XeNEhf/s2dep+RedF8


PhD Thesis - Michael Zon McMaster University - Biomedical Engineering 

 19 

 

Figure 1.1 Proposed research roadmap for context-aware telemedical systems for safe aging in place 

through pre-emptive detection of adverse medical events 

1.3 Thesis Overview 

The goal of the present work was to develop a telemedical system and framework that could be used 

to pre-emptively detect medical problems and advance the research roadmap for promoting safe aging in 

place. The implementation of a context-aware smart home system was identified as an effective way to 

conduct regular assessments on older adults to track longitudinal changes in their health and eventually 

intervene when trends deviated from normal. Thus, a context-aware smart-home system was developed to 

meet the goal of pre-emptively detecting medical problems to promote safe-aging in place. In the first 

chapter of this thesis, a systematic scoping review of past context-aware medical systems is conducted in 

order to determine what contexts our system should prioritize prior to being built. Following this, a system 

is built that prioritizes these contexts (namely location, mobility level, and time of day) and an algorithm is 

developed to determine user contexts and quantify the probability that a medical problem exists. Next, 

chapter 4 presents an application of this system/algorithm for detecting emergencies to show the 

frameworks viability. Lastly, the system was sent to multiple older adults as part of a pilot study to 

demonstrate its viability in a clinically relevant setting using data from actual participants. Through 

completing this work, four milestones and contributions were accomplished towards completing the 

context-aware telemedical research roadmap for safe aging in place outlined in figure 1.1.  

In milestone 1, a systematic scoping review (paper I) was conducted to determine what the most 

significant medical contexts being leveraged across systems are, and what the most common context 

detection algorithms were in systems being used in clinical settings. This was done to ensure the system 

developed in the present work collected the most clinically relevant contexts, and to understand what 

algorithmic options existed for determining contexts via the system. Subdomains of context–aware medical 

applications were also created based on the findings to partially validate the domains that were 
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hypothesized for ambient intelligent systems [31] and to create specific domains for context-aware systems 

based on the current research climate.  

Next, many of the general modules in the research roadmap were completed in the process of using 

the most relevant contexts identified in the review to develop the health smart home system for safe-aging 

in place used in the remaining work (paper II). First, hardware and software pertaining to a plug and play 

context-aware smart home system was developed (Sensor Data Acquisition module of the roadmap). 

Following this, the Context Determination Module was completed through the development of a context 

determination algorithm that leveraged Zadeh’s fuzzy probability[32] to determine high certainty contexts 

autonomously without ground truth data. The algorithm was then extended to situation detection by 

representing situations as spatiotemporal context networks in order to model medical emergencies, adverse 

events, and common clinical tests as situations consisting of contexts that are measured by the system. 

Clinical tests were modeled as situations so they could be conducted on users by the system and then used 

to determine their probability of having an adverse medical event or disease. The system and algorithm 

were then used to emulate fall risk and Parkinson’s tests to demonstrate the systems usefulness in pre-

emptively detecting medical problems (Situation Identification & Clinical Testing module). In order to 

convert the test results into an actual probability of users having a medical problem, the test results 

likelihood ratios were applied to the baseline odds of the user having the condition/disease and then these 

new odds were converted to probabilities (Apply Clinical Tests module) [27].  

After the framework and technology was built, it was applied in an emergency detection setting to 

demonstrate the need for context in emergency detection and to show the systems use in the 

Diagnosis/Clinical Inference and Management/Context-Awareness module (paper III). Software was 

developed which allows healthcare providers to determine under what mobility, location, time of day, and 

heart rate contexts an emergency alarm should be triggered. The system's software was extended to allow it 

to read these settings in real-time. It was also extended to transmit the data to a server where it could be 

analyzed in real-time to determine if the emergency conditions were met, thus showing its viability for 

emergency detection (Diagnosis and Clinical Inference module). Both the desktop software controlled by 

the healthcare provider and smartwatch worn by the user were updated based on the emergency alert in 

order to provide an example of the system adapting to contexts and thus being used in a context-aware 

application (Clinical Management/Context-Awareness module).  

Finally (paper IV), after building the hardware/software, developing the framework, and using the 

framework to build a context-aware application the system was sent to multiple older adults in Hamilton in 

order to obtain data from real users, test whether it could easily be used by older adults, and to demonstrate 

that contexts can be determined autonomously in older adults’ homes via the system. This pilot study aimed 

to reinforce what was demonstrated in the prior work, but to do so with data collected in a clinically 

relevant setting as a first step towards using the system in older adults’ homes for pre-emptive detection of 

medical events/conditions. 

1.4 Thesis Organization 

The first chapter of the present work represents an introduction to the problem, the motivations for 

conducting the research, and a roadmap of what is required to build the telemedical system for safe aging in 

place. It also discusses how the work presented in this thesis fits into the roadmap. 

Chapter 2 presents a review of context-aware medical systems that have been used by patients and 

healthcare professionals. Subdomains of context-aware medical applications are developed based on the 

classes of applications that resulted from the search strategy. The most common contexts used in these 

systems are identified along with trends in the algorithms used for context determination. Location and 
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time of day were identified as pivotal contexts to be prioritized in the remaining work and no common 

context determination algorithm was found, leading to the need to develop a custom solution in chapter 3. 

Chapter 3 focuses on building the algorithms and technology that support the context-aware 

telemedical framework for pre-emptive detection of diseases/adverse events. The system is built to 

prioritize obtaining the most important contexts that were identified in chapter 2. A portable plug and play 

smart home system consisting of an indoor positioning system and smartwatch is built, and the fuzzy 

probability theory used to establish contexts without ground truth data is described. Situations and clinical 

tests are described as spatiotemporal context networks and a derivation which adjusts the prognostic value 

of clinical tests as a function of the probability that the system conducted the test is shown. The algorithms 

and smart home system are then used to demonstrate how the system can quantify the likelihood of 

Parkinson’s and falls in older adults and identify high risk individuals in general. 

Chapter 4 applies the framework to build a context-aware application, namely an context-aware 

emergency system, and demonstrates the limitations of emergency systems that lack context. Context-

aware alarms are compared to those that lack context to demonstrate that context can be used to rule out 

false positives in different circumstances. Additionally, a framework for classifying physiological data 

within the context it was measured in is developed. 

Chapter 5 describes a pilot study where the system was sent to older adults throughout Hamilton 

for testing in a clinically relevant setting. High certainty contexts (e.g sleeping once a day) are used to 

establish the systems accuracy in determining contexts autonomously to demonstrate the framework's 

ability to detect contexts in a non–simulated environment. 

Chapter 6 concludes the thesis, providing a summary of the main findings of the chapters along 

with a brief discussion. Additionally, future work is discussed in the context of the research roadmap. Areas 

of the roadmap that were not covered in the present work but are needed to build an optimal context-aware 

telemedical system for safe aging in place, are emphasized. 

The Appendix of the thesis contains 3 works relevant to chapters 2-5. The first appendix heading, 

titled Compact Bluetooth Low Energy based Indoor Positioning System for Smart Home’s, contains a more 

detailed characterization of the hardware, software, and indoor positioning system accuracy of the smart-

home system used in the present work. The section titled, Scoping Review Protocol, contains details about 

the search strategy and study inclusion/exclusion criteria used to conduct the scoping review presented in 

chapter 2. Lastly, the section titled REB protocol describes the protocol and inclusion/exclusion criteria 

used for recruiting participants for the pilot study, whose results are described in chapter 5. 

1.5 Contributions 

The present work sought to further develop telemedical systems for safe aging in place applications. 

Theory and findings pertaining to this field were summarized into 4 manuscripts which were written by the 

author and reviewed by Dr. Qiyin Fang.  

The review paper presented in Chapter 2 comprised a systematic scoping review of current 

context-aware medical systems being used by healthcare providers or their patients. I developed a search 

strategy, wrote the reviews protocol, searched eight databases for relevant papers, screened the 1300+ 

resulting abstracts and extracted data from the relevant papers. I then used the data to investigate common 

algorithms used for context detection and developed subdomains for context-aware medical applications 

based on the results. Guha Ganesh served as a second screener for the study. Dr. Fang supervised the study 

and reviewed the paper. The significant contribution of the review was the identification of the most widely 
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used medical contexts, the discovery that no common context determination algorithm is being used across 

systems, and the creation of the subdomains of context-aware medical systems. 

The system and theory developed in Chapter 3 was initially developed by the author using 

Raspberry Pi devices. Sensors were connected to the Raspberry Pi and software was written that uploaded 

the data to the cloud and stored it on the device. The smartwatch prototype that broadcasted the user’s 

location to the beacons was developed by the author along with the Flutter mobile application that received 

the accelerometer data. Guha Ganesh replaced the Raspberry Pi beacons with ESP32’s and wrote software 

to broadcast the sensor and BLE data to the central Raspberry Pi. The fuzzy probability theory for context 

determination, method to leverage multiple sensors to increase the certainty of contexts, and spatio-

temporal context networks used to model situations/clinical tests was developed by the author. 

Additionally, the derivation to adjust the prognostic value of clinical tests given probabilistic uncertainty in 

the contexts comprising the test was done by the author. Dr. Fang reviewed the theory and manuscript, 

supervised the study, and identified context-awareness sensing as pivotal to useful medical systems. The 

significant contributions of this work include the development of a non machine learning (ML) based 

method of autonomously establishing contexts without ground truth data (roadmap module 2), a 

standardized way of obtaining contexts/clinical tests from sensor data (roadmap module 3), the derivation 

for adjusting the prognostic value of clinical tests from telemedical systems, and a framework to quantify 

the likelihood an older adult has a disease or is susceptible to an adverse event (roadmap module 4).  

Once the system and theory were developed I was inspired to demonstrate via Chapter 4 that there 

is a need for context in medical systems, and that these systems must categorize physiological data 

according to the context it is measured in. The smartwatch prototype was replaced with an Android 

smartwatch with custom software developed by the author and Cody Cooper. Server-side code and a 

desktop application were developed by the author that allowed healthcare providers to set the location and 

mobility/heart rate conditions under which an emergency would be triggered (roadmap module 5 & 6 

demonstration). Dr. Qiyin Fang supervised the study, helped devise the context versus no context 

experiments, and reviewed the manuscript. The significant contribution of this work was the demonstration 

that context is needed to differentiate whether the same physiological data is from a benign or dangerous 

event and that this is needed to rule out false positives in emergency alert systems. An additional 

contribution was the update to Musumba and Nyongesa context-awareness framework[33], which 

summarized Bardram and Hansen’s work[34], that classifies physiological data according to its context to 

reduce false positives.  

Chapter 5 contains the final contribution of this work, where data was collected from older adults 

through a pilot study. A research ethics board (REB) application was completed by the author in order to 

obtain permission to pilot the system in 30 older adults. Guha Ganesh and the author built multiple systems 

and sent them to older adults. The author devised and wrote software for remotely calibrating and 

controlling the system through cloud scripts in light of the no contact requirements during COVID19. 

Additionally, the author developed preprocessing and analysis software to apply the theory from Chapter 3 

to the study data in order to obtain contexts throughout the pilot study. The pilot study was devised by Dr. 

Fang, and Dr. Fang supervised the research resulting from the study’s data. The significant contributions of 

the work were the demonstration that contexts could be established autonomously in a clinically relevant 

setting (older adults’ primary residence) using the theory described in chapter 3 of this thesis. 
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Introduction to Chapter 2 

After identifying the goal of developing a context-aware telemedical system for safe aging in place, 

and understanding the importance of context within medical applications, we sought to understand how to 

best use context in medical applications. To gain this understanding, a systematic scoping review was 

conducted and summarized into a manuscript (Paper I in this chapter) to identify current context-aware 

systems being used by healthcare providers/patients and the specific contexts used in these systems. This 

was deemed to be pertinent prior to building the hardware and software of our context-aware smart home 

system in order to be sure the hardware/software built allowed us to capture key contexts that were being 

used in context-aware medical applications. A secondary objective was to determine if currently used 

context-aware systems relied on similar algorithms for detecting contexts. Thus, we also extracted the 

context determination algorithm used in each paper. Interestingly, these papers did not use a consistent 

algorithm for determining contexts. Additionally, there were a few key contexts such as time of day, 

mobility level, and location which were found to be prevalent in many of the studies/systems. As a result, 

the system built in chapter 3 was intentionally setup to allow for us to detect these key contexts. Lastly, a 

third objective of the review was to determine what subdomains of context-aware medical applications 

exist so we could better define the context-aware medical landscape. Surprisingly, only 23 articles were 

identified which contain systems that are being used in practice, which shows that the application of 

context-awareness to medicine is still quite recent. 

My contribution to the paper presented in this chapter was creating the study protocol and search 

strategy, searching the databases, screening the papers, extracting data from the final articles, and writing 

the manuscript. Guha Ganesh served as the second screener for validation purposes and helped with the 

manuscript formatting. Dr. Qiyin Fang supervised the study, edited the manuscript, acted as corresponding 

author, and handled the submission process. The significance of the present review is in identifying 

context-awareness applications being used in clinical settings, determining the most common medical 

contexts used in these settings, and creating subdomains for context-aware medical applications. 
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Abstract of Review Paper 

Objective: Context-awareness is an emerging field in pervasive computing with applications that 

have started to emerge in medical systems. The present work seeks to determine which contexts are 

important for medical applications and what various domains of context-aware applications exist in 

healthcare. Methods: A systematic scoping review of context-aware medical systems currently being used 

in healthcare settings was conducted. A search strategy was designed and applied to 8 databases, articles 

were then filtered based on their abstract, and then relevant articles had a screening questionnaire applied to 

their full texts prior to data extractions. Applications were grouped into context-aware healthcare 

application domains based on past reviews and the results of the screening. Results: A total of 23 articles 

passed all screening levels and underwent data extraction. The most common contexts used were user 

location (8/23 studies), demographic info (5/23 studies), movement status/activity level (6/23 studies), time 

of day (5/23 studies), phone usage patterns (5/23 studies), lab/vitals (7/23 studies), and patient history data 

(8/23 studies). Conclusions: The present work demonstrates that context-aware healthcare applications are 

still in their infancy but have started to reach healthcare providers and patients. Significance: The present 

work has illuminated many of the early successful context-aware healthcare applications. Additionally, the 

pivotal contexts leveraged by these systems have been discovered allowing future systems to focus on 

prioritizing the integration of these key contexts. 

2.1 INTRODUCTION 

Context-aware computing is the notion of using situational and environmental information about 

users, places and objects to adapt a computer application to fit a user’s needs [1]. Debate surrounding the 

precise definition of context-awareness dates back to the term’s first use by Schilit and Theimer in 1994 

[2]. However, the definitions of context and context-awareness that are widely accepted by researchers in 

the domain of computer science were formulated by Abowd and Dey 5 years later [1]. Regarding context, 

Abowd and Dey define it as,  

“any information that can be used to characterise the situation of an entity. An entity is a person, place, or 

object that is considered relevant to the interaction between a user and an application, including the user 

and applications themselves [1].”  

https://paperpile.com/c/LZdJFk/rOBvg
https://paperpile.com/c/LZdJFk/3uIhb
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    With respect to understanding context, Abowd and Mynatt identified the 5 W’s, namely: Who, What, 

Where, When, and Why, as the minimum information necessary to determine context[3]. Following the 

successful definition of context, the application of contexts to computing systems was defined by Dey, who 

said,  

“A system is context-aware if it uses context to provide relevant information and/or services to the user, 

where relevance depends on the user’s task[1].”   

     Within a medical setting, a telemedical system is context-aware so long as it uses context to change 

its behaviour in a useful manner. This notion is pivotal in many remote monitoring medical applications as 

medical data can often not be differentiated between being benign and dangerous without context. For 

instance, a heart rate of 160 could either be caused by sinus tachycardia as a user's context is exercising or a 

dangerous arrhythmia given the user's context is that they are in bed sleeping. Advanced telemedical 

systems will need to be developed that not only monitor users’ medical data, but can also interpret it in a 

meaningful way. This requirement has led medical researchers to explore how common frameworks within 

the domain of pervasive computing, specifically context-aware computing, can be utilized by telemedical 

systems to determine user context from sensor data to make decisions within medical systems.  

      

Despite the increased use of context identification techniques in medical systems to build more 

advanced applications, a review on context-aware applications in healthcare conducted by Bricon-Souf and 

Newman in 2007 found that current systems are vastly lab prototypes[4]. Thus, as of 2007 the actual 

application of context-aware systems in patient populations was minimal[4]. The other limited number of 

reviews on context-awareness in healthcare also primarily report on prototypes, such as the review by 

Quinde et al. on methods in asthma management[5] and Tobon et al. on context-awareness in wireless body 

area networks.[5], [6]. A recent systematic review by Gubert et al. was useful for identifying the major 

challenges in the field of context-aware healthcare[7].  However, because the objective of the review was 

not to report on the current state of context-aware applications in the medical field,  systems that are 

currently being used by patients/healthcare providers were not identified. Additionally, it is unclear what 

contexts are important for medical context-aware systems and what the different domains of applications 

are.  

     

The objective of this scoping review is to determine what field-tested context-aware medical 

systems exist and to use these to understand the most common contexts needed in medical systems, as well 

as what the different categories of context-aware healthcare applications are.  We have systematically 

reviewed the literature and screened for papers which use context-aware systems in conjunction with 

healthcare providers, or in patients, to provide an overview of the progress made in integrating context into 

healthcare applications since the review by Bricon-Souf and Newman [4]. 

2.2 METHODS 

2.2.1 Objectives 

     The objective of this scoping review is to determine what medical context-aware systems are 

currently being used by healthcare providers and patients. As this goal is focused on broadly identifying 

what exists within the literature at present, the review question lends itself well to a scoping review. 

Additionally, the present work aims to identify which contexts are being used by these systems and to find 

themes/categories for the context-aware applications that are identified throughout the review. An adapted 

Population, Intervention, Comparison, and Outcomes (PICO) framework for the research question is 

provided in the protocol attached to the appendix of this thesis. 

https://paperpile.com/c/LZdJFk/eaKXl
https://paperpile.com/c/LZdJFk/rOBvg
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2.2.2 Design 

     Reporting followed established guidelines, and standard scoping review methodology has been 

used.[8], [9] A protocol for this scoping review is attached to the article's supplementary materials. 

2.2.3 Study Eligibility 

Studies that had context-aware technology used by either patients or healthcare providers were 

included in this review. After level 1 screening of abstracts, a level 2 screening questionnaire was used to 

rule out studies that included prototypes, which were not used by patients or healthcare providers outside of 

a lab setting. Additionally, the questionnaire was used to exclude systems which did not utilize contextual 

information to change the end application, and thus were not truly context-aware. For instance, Wagner’s 

initial study on a context-aware blood pressure measurement system was excluded as it did not utilize 

contexts collected such as whether the user had their legs resting for 5 minutes or was not talking[10]. 

However, the follow up study using this system was included since the application changed based on these 

contexts by telling users not to change their stance or activity (e.g., no talking) based on the collected 

contexts.[11].  Peer reviewed journal articles were included and grey literature (conference proceedings or 

abstracts) and articles not in English were not included in this review. 

2.2.4 Search Design 

     The following online reference databases were searched: Wiley, ACM, EBSCO, IEEE Xplore, 

Pubmed, ScienceDirect, and SpringerLink. For SpringerLink, an option was not provided to filter for words 

within the abstract, so a customized filter program was developed in R. It executed the search strategy on 

the results from the search that was conducted by their system for the keywords present in the full text. 

These steps reduced the initial articles count from 1,369 to 111.   

 

https://paperpile.com/c/LZdJFk/I6MIo+F5qYR
https://paperpile.com/c/LZdJFk/Fu8Kx
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Figure 2.1 PRISMA Diagram of Selection Process 

2.2.5 Screening and Extraction Methods 

     Title and abstract were independently screened using Rayyan by two reviewers and all conflicts 

were resolved prior to level 2 screening. Articles that passed the initial screening were then included if 3 

questions were answered with YES by each reviewer. Question 1 asked whether the system was used by 

patients or healthcare providers. Question 2 asked whether the system was context-aware by changing its 

application based on context data and question 3 asked if the system was used outside of a controlled 

setting (e.g., non-simulated activities outside of a research lab). For studies that passed all three screening 

questions, standardized spreadsheets (Microsoft Excel) were used to extract general study characteristics, 

TIDieR checklist items, contexts used within each study, and some general info regarding the technology 

such as the types of sensors used. 
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TABLE 2.1 
Study Characteristics and Context Selection/Use 

Article  Year  General Description  Sample 

Size  
Mean 

Age  
Test 

Length  
Measured Signal  Assessment Method  Contexts Used  Context-Awareness (How did 

the app Change)  

Patient Satisfaction in a 

Context-Aware 

Hospital Guidance 

System[12]  

2012 7.1-inch Galaxy Tablet 

with the hospital 
guidance system 

app[12] 

13 44 Hospital 

visit  
Patients’ location 

within the hospital  
Patient satisfaction 

survey  
Patient location within 

hospital, appointments and 
procedures patient needs to 

complete   

The application changed based on 

both the patients specific next 
task in the hospital. Additional, 

guidance changed based on their 
current location  

A Hospital Bed 

Allocation Hybrid 

Model Based on 

Situation 

Awareness[13] 

2018 Web app for hospital 

bed allocation   [13] 
50 N/A 5 days   Rate of successful 

placement   
Verify whether bed 

selected was correct  
Room type based on patients’ 

health plan, physician 
specialty, sex, type of 
treatment, risk (e.g infectious), 

degree of dependency, age, 
time of hospitalization  

Bed displayed to bed manager 

varied based on patient specific 
context  

A situation-aware 

system for the detection 

of motion disorders of 

patients with autism 

spectrum disorders[14] 

2014 Wristwatch with 
accelerometer worn by 
patients [[14] 

5 N/A N/A  Detection of 
movement disorders  

Compared with 
ground truth  

Hand gesture type, time of 
day, gesture duration  

The clinical reports varied based 
on contexts such as the duration 
of each gesture, time of day of the 

gesture, and type of movement 
disorder  

A ubiquitous asthma 

monitoring framework 

based on ambient air 

pollutants and 

individuals’ 

contexts[15] 

2019 Smartphone with a 
context-aware asthma 

management app[15]  

3 36.33 
(32F, 

35M, 
42M) 

N/A  Predicted peak 
expiratory flow 

(PEF)  

Compared predicted 
PEF to actual PEF 

from device that 
patients used  

environment/pollutant 
variables, user location, user 

age-gender-height  

App warns patients of potential 
asthma attacks though predicted 

PEF which changed based on 
various contexts (e.g., 
environment/pollutant variables, 

user location, user age-gender-
height and PEF)  

A Visual Context-

Awareness-Based 

Sleeping-Respiration 

Measurement 

System[16] 

2010 Near-infrared camera 

which monitored users 
as they sleep to 

determine respiratory 
rate[16] 

18 N/A N/A  Respiratory rate  Compared RR results 

to those of the 
CO2SMO PLUS 

respiratory monitoring 
machine  

Body motion of user  The system determining 

respiratory rate changes its action 
based on the body motion context 

(proceeds to RR calculation if 
still)  

A wearable system to 

assist walking of 

Parkinson s disease 

patients.[17] 

2010 Accelerometers used 
to detect freezing of 

gait (FOG) context in 
Parkinson’s in real 
time[17] 

10 66.4 237 FOG 
events   

freezing of gait  Physiotherapists 
observed video to 

determine FOG events 
and detection by 
system was compared 

to ground truth  

Gait state (i.e moving vs 
frozen)  

Auditory stimuli delivered if FOG 
context detected  

CARE: Context 

awareness for elderly 

care[18] 

2020 Android mobile app 

that shows activities of 
older adults 
determined by sensors 

in retirement home[18] 
  

15 

patients, 
17 
nurses 

N/A 2 months  long term trends in 

resident activity 
level, time in bed, 
proximity to nurses, 

proximity to other 
residents  

Questionnaire was 

used to determine if 
nurses found the 
application useful  

user location, nurse location, 

time in bed, level of activity  
different data displayed to nurses 

through android app depending 
on user contexts (e.g. how often 
resident is near nurses or other 

residents, their level of activity, 
etc.)  

Connected Elbow 

Exoskeleton System for 

Rehabilitation Training 

Based on Virtual 

Reality and Context-

Aware[19] 

2020 VR based 

physiotherapy 
application paired with 
elbow exoskeleton 

device[19]   

5 N/A 1 month   performance of 

patient over time in 
VR rehab exercise 
where patient moves 

ring along cable, but 
the ring should not 
touch the cable  

position, angle, and 

time deviation during 
the exercise relative to 
a perfect performance 

(e.g., wire kept in 
center of ring for 
position performance)  

Performance on exercise   Patients’ performance on current 

exercise is used to inform how 
difficult the app makes the next 
exercise  

Effects of context-aware 

patient guidance on 

blood pressure self 

measurement 

adherence levels[11] 

2019 smart chair and tablet 
paired to a blood 

pressure (BP) monitor 
to ensure proper 
contexts for BP 

measurement  [11] 

100 29.9 One time  Adherence to the 
requirements for 

proper blood 
pressure 
measurements when 

recommended by the 
system versus not 

recommended  

percent adherence to 
the different 

requirements  

user rest time, legs crossed, 
back-supported, ambient 

noise/talking, participant 
compliance  

App recommended rest time and 
not talking if motion/talking 

contexts were detected. Other 
contexts not recommended  

Evaluation of an 

optimized context-

aware clinical decision 

support system for 

drug-drug interaction 

screening[20] 

2021 Drug-Drug Interaction 

Intervention 
Application in 

Hospitals[20] 

2630 

alarms 
N/A 8 months  Drug drug 

interactions and 
acceptance rate of 

alerts  

Tracked number of 

alerts that results in a 
change to a 

prescription  

Patients current medications, 

age, sex, last potassium levels, 
and renal function  

Application utilized patient 

specific data to determine if it 
flags the current prescription as 

dangerous  

Harnessing Context 

Sensing to Develop a 

Mobile Intervention for 

Depression[21] 

2011  mobile application to 
improve and predict 

Major Depressive 
Order[21]  

8 37.4 8 weeks  Mood, location, 
activity, who the 

users were with or 
near  

Compared predictions 
to those entered 

manually by 
participants  

Location, time of day, who 
users are with, conversing or 

not, mood, contexts from 
phone apps such as recent 
calls, active applications  

Moods predicted and thus 
tracked/displayed to users 

changed based on machine 
learning models that predicted 
mood from context data derived 

from phone sensors  
Integrating 

Personalized Health 

Information from 

MedlinePlus in a 

Patient Portal[22] 

2014 Patient portal in 
hospital that provides 

medical info specific 
to patient's 
context[22]  

80,000 N/A 1 year  use of the lab test 
info buttons and 

MedlinePlus 
explanatory 
information buttons  

Number of clicks and 
percent of sessions the 

buttons were used in  

Patients’ lab test results and 
condition/disease  

The information offered to 
patients through the patient portal 

varied based on what disease they 
had, or lab tests they received  
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Article  Year  General Description  Sample 

Size  
Mean 

Age  
Test 

Length  
Measured Signal  Assessment Method  Contexts Used  Context-Awareness (How did 

the app Change)  

MHS: A Multimedia 

System for Improving 

Medication Adherence 

in Elderly Care[23] 

2011 Pill station equipped 
with webcam that 

registers new 
medications and 
devices that prompt 

user to take meds[23] 

5 over 
60 

3 weeks  Adherence to taking 
medication  

Unclear how ground 
truth medication 

taking is established, 
but likely assumed 
they take the 

medication when a pill 
box is opened  

Users’ current activities such 
as watching tv, talking on 

phone, eating, sitting, moving. 
Exact list of used contexts not 
clear  

The application prompts users to 
take medication based on their 

current contexts. I.e., if pill is 
required with a meal, then they 
are prompted based on the eating 

context  

A Study of Medication-

Taking and 

Unobtrusive, Intelligent 

Reminding[24] 

2009 Medication reminders 
auditory/visual cues at 

user’s location in their 
home[24] 

10 82.7 10.7 
weeks   

Adherence rate for 
taking medication  

pill recorded as taken 
when the smart pill 

box container is 
opened   

Location in home, when they 
are leaving home, phone call in 

progress, in bed, using laptop, 
preferred time for medication  

Audio and visual prompts around 
the home were triggered based on 

contexts such as the user’s 
location, if they are not on the 
phone, the normal time they take 

the pill, if they have not taken the 
pill, if they are about to leave 

home  
Mobile Sensing and 

Support for People 

With Depression: A 

Pilot Trial in the 

Wild[25]  

2016 Mobile app for 
depression 

intervention and 
depression scores[25]   

126 20-57 Over 9 
months   

PHQ-9 depression 
score  

Compared PHQ-9 
scores obtained from 

patients through 
questionnaire over 
time  

time of day, location, 
smartphone usage, activity 

level, walking time, time at 
home, geographic movement, 
number of unique Wi-Fi 

fingerprints, number of calls, 
calendar events  

Interventions recommended 
varied based on user’s context 

(e.g., low activity level, walk 
recommended) and users’ 
feedback on interventions  

Online updating of 

context-aware 

landmark detectors for 

prostate localization in 

daily treatment CT 

images[26] 

2015 Prior treatment images 
used to improve 
landmark detection 

and prostate 
segmentation[26] 

24 N/A Length of 
treatment  

Accuracy in 
segmenting prostate 
volume for algorithm 

relative to 
segmentation by 

physicians  

Dice ratio and average 
surface distance  

patients’ inter-landmark 
distance, intra-landmark 
distance, and prostate 

segmentation from their prior 
images  

The algorithm that identified 
landmarks and performs prostate 
segmentation varied based on the 

patient’s prior treatment images 
and any adjustments from the 

physicians on the 
landmark/segmentation  

Pilot evaluation of an 

optimized context-

specific drug–drug 

interaction alerting 

system: A controlled 

pre-post study[27] 

2015 E4 wristband 

determine users' 
availability for 
memory training [27] 

1116 N/A 14 

months   
acceptance rate of 

alerts when new 
system that included 
context data was 

implemented  

Tracked number of 

alerts that results in a 
change to a 
prescription  

Patients current medications, 

age, sex, last potassium levels, 
and renal function  

Application utilized patient 

specific data to determine if it 
flags the current prescription as 
dangerous  

Prompto: Investigating 

Receptivity to Prompts 

Based on Cognitive 

Load from Memory 

Training 

Conversational 

Agent[28] 

2020 Rule based software 

application to prevent 
dangerous 
prescriptions[28] 

7 67.4 1 week  responses to prompts 

and appropriateness 
of prompt timing 
according to user 

feedback  

percent of prompts 

that were accepted for 
memory training to 
commence  

cognitive load of user 

determined through heart rate 
variability and electrodermal 
activity  

Application prompted users for 

memory training when cognitive 
load measured by E4 wristband 
was low  

Translation of evidence 

into kidney transplant 

clinical practice: 

managing drug-lab 

interactions by a 

context-aware clinical 

decision support 

system[29]  

2020 Smartphone 
application that 

prompts CKD patients 
to take BP 

measurements and 
symptoms[29]  

100 47.44 N/A  clinician satisfaction 
with the system  

The "Questionnaire 
for user interface 

satisfaction"  

renal function via creatine 
clearance, lean body weight, 

pregnancy status  

The system generated drug lab 
interaction alerts based on the 

patient’s specific lab values 
(creatine clearance), lean body 

mass, and pregnancy status  

Integrating a 

Smartphone–Based 

Self–Management 

System into Usual Care 

of Advanced CKD[30]  

2016 Mobile app focused on 
predicting stability of 
bipolar disorder 

patients[30]  

47 59.4 6 months  user satisfaction with 
app, change in blood 
pressure, change in 

CKD relevant lab 
values  

exit interviews to 
assess satisfaction, BP 
measured by hoe 

monitoring device and 
results compared 
between baseline and 

end of study  

Patients’ adherence to BP 
measurements, their 
symptoms, and their 

medications  

Frequency of messaging patient 
for BP changes based on their 
compliance, alerts sent to 

healthcare providers if symptoms 
warrant it, and medication 
discrepancies checked by system 

throughout  
Automatic detection of 

social rhythms in 

bipolar disorder[31] 

2016 social and activity 

contexts inferred from 
smartphone sensor 
data are used to predict 

social rhythm 
metrics[31] 

7 4 users 

25-34, 
3 were 
34-64 

4 weeks  Social rhythm 

metric   
compared SRM from 

models to that 
determined by manual 
inputs from patient  

phone usage patterns, location, 

distance traveled, number of 
conversations per day, duration 
of conversations, time 

speaking to others, speaking 
rate, speech pitch, time active 
vs sedentary, SMS/call 

activity  

inferred behavioral rhythmicity 

and SRM changes based on 
contexts measured  

Alarm Fatigue vs User 

Expectations Regarding 

Context-Aware Alarm 

Handling in Hospital 

Environments Using 

CallMeSmart[32] 

2017 handheld 

communication system 
considers healthcare 
providers current 

context/activity to 
understand whether to 
page the user  [32] 

N/A N/A 2014-

2017  
Satisfaction of 

healthcare workers 
with new system 
relative to old 

system  

Interviews with users  users calendar events (e.g no 

call while in patient consult), 
location (e.g operating room)  

messages are relayed to 

healthcare workers based on 
urgency and their current 
availability as determined by their 

context (e.g., unavailable during 
patient consult)  

MultiSense—Context-

Aware Nonverbal 

Behavior Analysis 

Framework: A 

Psychological Distress 

Use Case[33] 

2017 topic of the discussion 
and what a normal, 

positive, or negative 
response looks like is 
used as context to 

determine distress 
levels[33] 

100 N/A One 
interview 

session  

distress levels of 
person being 

interviewed  

Root mean square 
error in systems 

predicted distress 
levels relative to 
ground truth levels  

users eye contact, smile level, 
and other behaviour indicators 

along with what the users 
affect should be based on the 
topic of conversation (e.g 

smile while describing a 
trauma atypical)  

applications use patients’ non-
verbal behavioral contexts to 

predict their distress levels and 
generate a patient specific report   

https://paperpile.com/c/LZdJFk/P7lZL
https://paperpile.com/c/LZdJFk/P7lZL
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TABLE 2.2 

Application Categories and their Contexts2 

Application 

Category 
Description Subcategories Reference 

Number 
Contexts Found Important Contexts Technology Descriptions 

Smart Inpatient 

and Outpatient 

Software and 

Medical Devices 

Software systems 

to improve 

communication 

between 

healthcare staff 

and patients 

within the hospital 

A) Hospital/ 

Inpatient systems 
B) Outpatient 

systems 

A)[12],[13],[20], 

[22],[27],[29] 

,[32] 

B)[18],[11] 

healthcare provider location*, 

Patient location*, appointment 

time*, procedure type*, age*, 

sex*, physician specialty, 

medication list, lab test results, 

renal function/*, weight, user 

taking or not*, activity level, 

time in bed* 

location, calendar, 

medical history, 

medication list, 

demographic info, 

Software applications 

using expert systems or 

machine learning and 

known contexts to make 

decisions. Smart 

equipment using context 

to improve medical 

devices 

Smart Diagnostic 

and Disease 

Management 

Systems 

Diagnose patients’ 

using algorithms 

and identify ideal 

treatment plans 

A) Diagnostic 

systems 
B) Disease 

management 

A)  [14] 

B)[15],[17],[21], 

[26],[31] 

Movement type/status*, time 

of day*, age*, sex*, height, 

medical history, location*, who 

user is with*, phone use*, 

conversing or not*, medical 

images, disease specific 

contexts (e.g., pollutant levels 

asthma) 

Lab results, medical 

history, demographic 

data, time of day 

Wearable sensors, 

machine learning, and 

user input used to make 

diagnoses and manage 

disease 

Continuous Health 

Monitoring 
Wearable and 

ambient sensors 

for continuous 

healthcare 

monitoring 
  

A) Longitudinal 

physiological 

data monitoring, 
C) emergency 

detection 

A)[16] B) Motion of user's body location, time of day, 

vitals, medical history, 

lab results, 

wearable sensors/medical 

devices to understand 

patients' health and 

contexts like past medical 

history used to determine 

what physiologically 

normal is 
Assisted Living Developing smart 

environments to 

assist patients in 

their daily living 

activities 

A) Disease 

tracking 
B) Physical 

Support 
C) Social 

Support 

A)  [23],  [24],[30] 

B) C) 
User current activity (e.g., 

eating, tv), location*, 

conversing or not*. time in 

bed*, medication list*, 

symptoms, adherence to taking 

measurements (BP) 

IADLs, location, time of 

day, symptoms, 

medication list, 

Mobile, web app and IoT 

devices used around the 

house to understand daily 

activities to help user 

perform tasks (e.g taking 

medication) and manage 

disease 

Therapy and 

Rehabilitation 
Providing 

psychological 

based therapy to 

improve or heal a 

disorder 

A) Smart 

rehabilitation 
B) Psychology 

based therapy 

A)  [19],  [33] 
B)  [28] 

current performance in rehab 

task, cognitive load 
body position, mood, Wearable devices or 

software used to guide 

therapy or provide 

outputs that can be used 

in therapy 

Persuasive and 

Emotional Well 

Being 

Systems aimed at 

improving 

physical and 

mental well-being 

A) Emotional 

analysis/state 

systems 

A) B)[25] Location, time of day, who 

users are with (alone, friends, 

family), conversing or not, 

mood, contexts from phone 

apps such as recent calls, active 

applications 

mood, activities, user 

specific goals 
Mobile and web app 

software leverages 

smartphone sensors and 

IoT devices to understand 

the users state and lead 

them to better lifestyle 

choices 

* context found in more than 1 study3 
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2.4 RESULTS 

2.4.1 Study Selection 

     A total of 1,716 records underwent title and abstract review, which led to 69 papers reviewed at the 

full text level. After full text review 23 papers passed the 3 level 2 screening questions and were thus 

eligible. The PRISMA flow diagram illustrating this can be seen in figure 2.1. The study characteristics, 

contexts used, and how the systems were context-aware can be seen in table 2.1.  The studies were 

categorized into domains based on both a review by Acampora et al. and new domains that have been 

created based on the results from screening[34]. The categories, their descriptions, and which papers fell 

into each category can be seen in Table 2.2. In total, 9/23 studies were in the Smart Inpatient/Outpatient 

Software and Medical Device category, 1/23 in Continuous Health Monitoring, 3/23 were in Assisted 

Living, 3/23 were in Therapy and Rehabilitation, 6/23 were in Smart Diagnostic and Disease Management 

Systems, and 1/23 were in Persuasive and Emotional Well Being. 

2.4.2 Study Characteristics 

     Twelve studies conducted small field tests involving less than 25 patients, eight studies tested their 

systems in 25-150 patients, and 3 studies conducted large scale trials by running the system in either the 

entire hospital or in more than 1000 patients (table 2.1). Twelve studies implemented the context-aware 

solution for over 1 month and the remaining 11 studies either implemented the technology during a single 

patient visit or in a timeframe that was less than 1 month. No pre-existing condition or target 

population/disease was the sole focus of more than two of the studies. 

2.4.3 Technology and Contexts 

     

Most studies relied on either a mobile phone or tablet (9/23), smartwatches (2/23), or integrating a 

software application into a hospital's current system (5/23). The remaining studies used other technology 

(e.g virtual reality headset) or relied on other ambient sensors such as thermal cameras, infrared motion 

sensors, wearable accelerometers, etcetera. The most common contexts used were the user location (8/23 

studies), demographic info (5/23 studies), movement status/activity level (6/23 studies), time of day (5/23 

studies), phone usage patterns (5/23 studies), lab/vitals (7/23 studies), and patient history data (8/23 

studies). Patient history was defined according to the way it is collected in practice (i.e medical, surgical, 

medications, allergies, family, social). The majority of the studies which used patient history relied on their 

medication history (6 of 8). Other contexts were more specific to the context-aware system of interest.  

 

2.5 DISCUSSION 

     The present work sought to determine the current state of context-aware systems in healthcare 

relative to Bricon-Souf and Newman’s review in 2007, where it was determined that the majority of 

systems were still lab prototypes[4]. It appears that in the decade following this review, various research 

teams have managed to develop functional context-aware systems which have been tested in healthcare 

environments through their use by patients or healthcare providers. Most of these applications are still in 

their early stages having been used in less than 150 people in a brief field test. The notable exceptions are 

the system implemented by Borbolla et al., where half of the patients in the hospital were able to view 

information explaining medical tests/disease specific to their current context, and the drug-drug interaction 

system built by Cornu et al. that was tested in a 721 bed hospital.[22], [27] We have used the results of the 

search in conjunction with the ambient intelligent medical application categories proposed by Acampora et 

https://paperpile.com/c/LZdJFk/kBbo1
https://paperpile.com/c/LZdJFk/atnOF
https://paperpile.com/c/LZdJFk/5Hery+UvNrx
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al. to develop the 6 domains for context-aware healthcare systems shown in table 2.1[34]. Although 

Acampora et al.’s categories were formed for ambient intelligent systems, context-awareness is a pivotal 

requirement of ambient intelligent systems[34]. Thus, there is much overlap between these systems and 

their application categories. Evidently, the Smart Inpatient/Outpatient Software and Medical Device 

category, which uses context-aware systems within hospitals and clinics to improve patient care, has had 

the most success in reaching healthcare providers and patients (9/23 studies). The second most prominent 

category in terms of the number of applications being used by patients/healthcare providers is the smart 

diagnostic and disease management systems (6/23). Following this category are assisted living applications 

(3/23) and therapy and rehabilitation applications (2/23). We choose to create sub domains when 

appropriate, such as further dividing smart diagnostic and disease management systems into diagnostic 

systems and disease management systems. However, in the future if major differences in required contexts 

are discovered it may be more logical to divide many of these subcategories into their own domains.  

  

2.5.1 Smart Inpatient/Outpatient Software and Medical Device 

 

     The Smart Inpatient/Outpatient Software and Medical Device class of context-aware applications 

aim to improve the quality of life (work efficiency, measurement accuracy, etc) of hospital stakeholders. 

These stakeholders can be the patients, doctors, nurses, staff, or anyone else working at the hospital. Many 

of these applications solely rely on software to help these stakeholders, however, some interesting 

applications have emerged that use smart-equipment to provide medical information on patients to 

healthcare providers or to simplify procedures performed by providers by integrating context. 

 

  Smart hospital applications of context-aware systems are likely the earliest use cases of context-

awareness in medicine and seem to be the most prevalent source of context-aware applications to date. The 

earliest context-aware application identified in this review, dating back to 2011, is a navigation system 

created by Kim et al., that was used to direct patients within a hospital. In this study, each patient was given 

a tablet with an app which showed them how to navigate to their final destination, what to do at that 

location, and communicated with the hospital’s information system to know when they completed a task 

and should be directed to their next required task[12]. Regarding smart-equipment, one field tested 

application developed by Lindahl et al., involves a context-aware smart-chair equipped with a blood 

pressure (BP) cuff/monitor to facilitate BP measurements of pregnant women at their 12 month ultrasound 

appointment. The purpose of the system is to diagnose hypertensive disease and preeclampsia[11]. The 

primary contexts used by the system were the users position/state during the BP measurement, including 

whether their legs were uncrossed, back was against the chair, and whether they were resting or talking. An 

interesting result shown in the study was that when resting and not talking were enforced by the system and 

legs/back position were not enforced, the compliance for the enforced activities was more than 20% higher 

than the not enforced activities. This shows how a context-aware system can improve medical 

measurements by providing users with feedback on what is needed for the system to obtain proper medical 

measurements. Researchers are also working towards integrating context into operating rooms as shown by 

the system by Franke et al[35]. This system was not field tested and thus was not included in our final 

studies list. Instead, the system was tested on 24 recordings of real surgical operations and showed how the 

current context of the surgery (e.g., next step in procedure) can be used to predict what the surgeon would 

like to occur next and adapt the equipment settings and hospital software accordingly. Some examples 

include automatically determining the billing code based on the procedure, changing the lighting of the 

endoscope based on the current image, automatically switching to navigation displays whenever the pointer 

is being used, and reducing the force of the surgical equipment near sensitive structures [35].  

 

     One final emerging area of applications in smart-hospitals is those that analyze a patient's specific 

context through their electronic medical records to detect possible errors. One application of this that has 

https://paperpile.com/c/LZdJFk/kBbo1
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been field tested is looking at patients' lab values and drug prescriptions to decide whether the drug dosage 

is incorrect or the drug itself should not have been prescribed given the patient's current kidney and liver 

function. Niazhani et al. used clinical guidelines regarding drugs prescribed by nephrologists at a kidney 

transplant clinic to determine the proper dosages and prescribing rules given a patient’s specific context, 

such as their kidney function, liver function, pregnancy status and other demographic data. Their system 

was then field tested in 100 patients and used these rules to alert physicians when problematic drug lab 

interactions (DLI) exist, of which 260 DLI’s were found [29]. The largest field tested study identified was a 

similar system tested in a 721 bed hospital over 14 months developed by Cornu et al. that used contexts 

such as patients’ current medications, age, sex, last potassium levels, and renal function to develop clinical 

decision rules that warn physicians about dangerous drug-drug interactions [27]. Similar systems are being 

worked on for general drug monitoring in the elderly, illustrating that this context-aware healthcare domain 

is a highly active research area [36]. 

 

2.5.2 Assisted Living 

 

     Assisted living applications of context-aware systems primarily focus on supporting patients and 

the elderly during their daily activities to facilitate independent living within their primary residencies and 

an improved quality of life. For instance, an application which may be highly beneficial in those living with 

cognitive impairments due to neurological diseases (e.g., dementia) are context-aware medication reminder 

systems. These systems, which could be used to remind patients of activities other than taking their 

medications, attempt to understand a user's current context to optimize the chance they will see a reminder 

and act on it. An excellent study that was field tested in 10 users over 28 weeks by Hayes et al. 

demonstrated the efficacy of this approach by comparing the results when users underwent 10 weeks 

without prompts, 10 weeks with prompts, and 10 weeks with context-aware prompts [24]. The context-

aware prompts used motion sensors to detect where a user was in their home and then sent a visual/audio 

prompt to a beacon in that room, as well as a message to their smartwatch, when the user should take their 

meds. However, if they were in bed (bed sensor) or on the phone, already took the med from the pill box, or 

not at home (contact sensor) the prompts were not sent. Additionally, prompts were only sent within 90 

minutes of when they should have taken the meds. The context-based prompting resulted in significantly 

better adherence (92.3%) as compared to time-based (73.5%) or no prompting (68.1%) conditions (p < 

0.0002, χ2 = 17.0) [24]. Another class of assisted living applications would be those that focus on 

managing patients' pre-existing diseases. The best field tested example of a system which focuses on this is 

the smartphone based self-management system developed by Ong et al. for chronic kidney disease (CKD) 

[30]. In this system patients were given a smartphone with an application that was linked to their BP 

recording device. They were asked to answer questions about symptoms and medication changes regularly, 

and this info was shared with the care team to facilitate continuous monitoring. If dangerous medication 

changes existed, or symptoms worsened significantly and warranted intervention according to clinical 

guideline-based rules, then the care team received an urgent update. Feedback on BP control was provided 

to patients through the application and the application would make recommendations depending on the 

patient’s context/circumstances. For instance, if the patient had elevated potassium levels dietary 

modifications would be recommended [30]. The final results of the study were quite compelling as the 

mean systolic and diastolic blood pressure of the 47 patients decreased by 3.4 mmHg and 2.2 mmHg, 

respectively. 

 

2.5.3 Smart Diagnostic and Disease Systems 

 

     Smart diagnostic systems focus on determining a patient's condition/disease in the absence of 

physicians and context-aware disease management systems help patients manage user’ conditions 

according to the contexts surrounding their current disease state. This includes applications based on sensor 

https://paperpile.com/c/LZdJFk/38EjJ
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systems that aim to help reduce symptoms and issues present in patient’s living with chronic diseases. A 

good example from Yin et al.’s review of context-aware systems for chronic disease patients is the 

wearable system developed by Bachlin et al. to assist those with Parkinson’s in walking [17], [37]. Given 

that evidence suggests rhythmic auditory stimulation can help Parkinson’s patients move when they are 

stuck due to Freezing of gait, Bachlin et al. developed a system that detects freezing of gait in real-time so 

they can then provide audio cueing to assist patients. In this case the context is the patient’s gait status 

according to the accelerometer data from the patient's knee and ankle. Although the system was not proven 

to improve FOG in their small test of 10 PD patients, the physiotherapists did believe the system was 

helpful [17].  

 

     Coronata et al.’s work is an example of a system that is used for diagnostic purposes, although not 

to diagnose a disease, but instead to detect motion disorders for those with autism spectrum disorder [14]. 

Motion disorders were detected by training an artificial neural network on accelerometer data and using 

contexts such as time of day and duration of the gestures. The system was used on 5 patients within a 

hospital and the online classifier achieved an accuracy of 92%, showing that there is promise for the 

approach [14]. Another application of context-awareness in disease management is the system by Dai et al. 

where they improve prostate segmentation during image guided radiation therapy by using patient-specific 

contexts obtained from their prior images. The system was tested on 24 patients and they found that using 

prior personalized image data led to improved prostate segmentation accuracy, as defined by the dice ratio 

and average surface distance [26]. As disease management is quite specific to the condition of interest, and 

often the patient's ability to follow complex guidelines, context-aware disease management systems have 

the potential to improve patient health by helping them complete necessary daily tasks required to manage 

their disease. Furthermore, it may reduce emergencies like asthma exacerbations, as systems like Kaffash-

Charandabi et al.’s use environmental contexts to predict possible hazardous conditions for patients to 

guide them to avoid scenarios that can lead to the emergency room (asthma exacerbation in this case) [15]. 

 

2.5.4 Therapy and Rehabilitation 

 

     The therapy and rehabilitation category of context-aware healthcare systems focuses on systems 

that provide psychological based therapy for mental illnesses or physical rehabilitation to people with 

conditions that may benefit from physiotherapy. One interesting therapy related system developed by 

Stratou et al. was field tested in 100 patients and demonstrated promising results for determining the state 

of patients during psychological interviews [33]. Their camera based system investigated the users eye 

contact, smile level, and other behavioural indicators to determine their distress levels. An example of the 

context used by the system would be what the users affect should be based on the topic of conversation. For 

instance, if asked to describe a recent positive event in their life and then a negative event, the system 

would expect a smile during the first story and a less positive facial expression during the second story. The 

results were promising as the team was able to show that the models which considered context variables 

had a much better correlation with post-traumatic stress disorder and depression scores in 100 patients 

taken from the general and US veteran population [33]. 

    

 The present work only identified one rehabilitation related context-aware system that was field 

tested in patients and utilized context. In this application which was tested in users with epicondylitis, the 

difficulty of arm exercises which utilize the VR systems controller, and the chosen activity itself, were 

recommended based on the users current progress. Users were instructed to do 20 of exercises with their 

arm, 10 of which were conducted with a virtual weight and 10 with the user holding a real weight while 

using the VR app. Although clinical benefits were not assessed, it was demonstrated that the time taken to 

complete tasks and the amount of deviation from the optimal trajectory decreased as users went from their 

first session to their last. Integrating user specific performance/context into rehabilitation applications will 
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likely be an important development in personalizing programs for patients to improve their mobility, 

especially when physiotherapists are not present to correct imperfections in the patient’s form during the 

exercise [19]. 

 

2.5.5 Continuous Heath Monitoring and Persuasive and Emotional well being 

 

     We defined continuous health monitoring as systems that constantly track physiological data of 

patients (e.g., vitals, blood glucose, etc.). Additionally, we removed activity monitoring from this category 

relative to Acampora et al., given that most behavioural monitoring applications usually monitor behaviour 

to use it to build applications in the other categories such as assisting older adults in their home (assisted 

living)[23], [24], [30], delivering psychological based therapies (therapy and rehabilitation)[28], providing 

emotional support (emotional well-being)[25], etc. Our screening captured minimal continuous health and 

activity monitoring applications that are presently being used by patients and healthcare providers. In 

reality, there are likely many emergency and fall detection systems that use basic contexts like immobility, 

fall sounds, and rapid altitude or acceleration changes to detect falls or emergencies [38]-[39]. However, 

these systems do not focus on, and thus do not mention, context-awareness. Thus, by design they were not 

captured by our search criteria since the present work focuses on systems intentionally integrating context-

awareness. One interesting application was captured that uses a non-contact method to determine 

respiratory rates of people as they sleep. Near infrared cameras assessed the users body context, and if it 

was below a threshold representing a still user the system would focus on the users subtle remaining motion 

(e.g., chest during breathing) to determine their respiratory rate. Results were promising as the correlation 

with another commercially available system (CO2SMO PLUS) was 0.9 [16]. 

 

     Limited studies were found for the persuasive and emotional wellbeing based context-aware 

systems that were currently being used by patients or healthcare providers. This too is likely due to a lack 

of emphasis on understanding context-awareness techniques in healthcare applications that focus on 

persuading people to make better physical (e.g diet) and mental health (e.g meditation apps) choices. We 

have defined a primary difference between persuasive and emotional wellbeing applications versus therapy 

applications (different subdomain) to relate to how the former is readily available to the public and does not 

only focus on improving the mental health of those with known psychiatric related issues. Wahle et al. 

developed a mobile app that allowed any individual to download and use it.  The app recommends 

personalized interventions to help reduce depression levels. Contexts such as the user's calendar events, 

walking time, time at home, and number of calls were used to predict their depression levels. Results were 

promising as a significant reduction in PHQ-9 depression scores from the initial questionnaire were found 

for those with a clinically relevant baseline, and they were able to predict scores above a threshold better 

than a random binary classifier [25]. 

  

2.5.6 Important Contexts and Technology within the Domains 

 

     As each of the 6 categories of context-aware healthcare systems aims to solve a different medical 

challenge, the contexts and technology utilized within each category seem to differ (table 2.1). However, 

there seem to be a few pivotal contexts that are present across domains that most context-aware medical 

systems leverage. User location, time of day, and whether the user is in an active or resting state appear to 

be important in many applications. This is an intuitive result as the user's location and time of day often 

dictate what the application should do. For instance, a nurse may not be sent a low priority pager request in 

the operating room if the time of day aligns with an operations time or a patient consult [32]. Additionally, 

many applications rely on user activity levels to understand whether notifying them to do something is 

likely to be accepted or not [24], [28]. These 3 contexts likely hold significance in any context-aware 

application involving people. Regarding health-related contexts that seem to span multiple health 
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categories, a user’s past medical history (e.g., medications, illnesses, past surgeries), demographics (age, 

sex, weight) and lab values seem to be prevalent across categories. Regarding contexts within each 

subdomain, for smart diagnostic and disease management systems the important contexts aside from past 

medical history seem to be unique to the disease of interest, such as pollutant levels in Kaffash-Charandabi 

et al.’s asthma application and the movement types in Coronata et al.’s motion disorder detection system 

[14], [15]. For assisted living applications the user's current activity in conjunction with location and time 

of day information seems to be a key context to understanding whether it is a good time to interact with 

them (e.g que to take medicine). Disease specific contexts are also used to understand what the application 

must do (e.g que BP measurements) and when to intervene (e.g BP over 140 regularly). Too few therapy 

and rehabilitation applications were found to confidently comment on the important contexts. However, the 

user’s current performance during exercises and whether the user has a low cognitive load at that time, and 

is thus available for therapy related interventions, seem to be promising domain specific contexts. Too few 

continuous health monitoring, and persuasive/emotional well-being applications were found to confidently 

comment on the domain specific contexts as well. However, continuous health monitoring will presumably 

leverage contexts extrapolated from vitals/physiological parameters (e.g tachycardia) and 

persuasive/emotional well-being will likely rely on contexts that help understand the users’ activities and 

availability for prompting to engage in applications that push towards better lifestyle choices. 

     

On top of contexts varying between categories, the technology implemented also varied with some 

categories relying on software versus hardware. For instance, the smart inpatient/outpatient application 

mostly relied on software to improve workflow efficiency in current clinical settings. Smart devices in this 

case mostly relay data to servers to better understand patient measurements, although the potential for 

hardware to help ensure proper measurement conditions has been shown [11]. The smart diagnostic 

systems will likely rely upon wearable sensors whereas disease management systems may leverage 

software more to understand how a user is managing their disease based on their symptoms and self-

reported measurements. We have defined continuous health monitoring applications to be those that 

constantly obtain medical data and ensure it is within normal bounds, so these will presumably rely on 

wearable sensors and software applications that que users and HCPs if anomalies are detected. Assisted 

living applications seem to rely on Internet of Things (IoT) devices and smart phone sensors to understand 

a user's context and determine when to que them to do things like take their meds or to complete something 

else that is required to manage their disease (e.g., BP measurement high blood pressure). Rehabilitation 

applications will likely rely upon wearable sensors paired with software to encourage and guide a user 

through exercises, whereas therapy related applications will likely rely more on software to guide and 

encourage users through evidence-based treatments. Lastly, we predict that persuasive/emotional well-

being applications will mostly leverage smartphone or smartwatch sensors and software to encourage 

people to make good decisions when they seem to be under low cognitive load, and thus available for 

prompting. 

2.6 LIMITATIONS   

     Looking at the date of the applications found in this review, it appears that all applications found to 

be in use within patient populations or used by healthcare providers have been published after Bricon-Souf 

and Newman’s review of context-aware healthcare systems in 2007 [4]. Thus, whereas the field of context-

aware medical systems was mostly in its concept phase until 2007, it appears that we are now in the infancy 

of its development phase. Most of the current applications focus on smart hospitals, assisted living, and 

helping users manage their medications/diseases. Minimal continuous health monitoring and 

persuasive/emotional well-being applications were found in this review, which likely partially reflects the 

lack of current applications emphasis on context-awareness rather than the actual state of context-aware 

systems in this application class. After assessing each paper for its context determination method it became 
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apparent that the majority of context-aware systems currently used by healthcare providers do not have a 

general method of quantitatively determining the likelihood of each context. Some papers relied on 

machine learning methods[19], [26]. However, manually labelling of training data for generating models 

that predict context may not be practical at scale or extrapolate well to users of different demographics in 

new settings.  

2.7 CONCLUSION 

     Although context-aware applications are still in their infancy, systems have finally begun to reach 

healthcare providers and patients. Contexts such as user location, time of day, patient demographic data, 

and medical history have been pivotal to the success of these early applications. Additionally, different 

applications have different context requirements. The present work set out to leverage the information in 

these early applications to better understand the contexts needed to build different healthcare applications. 

Hopefully with this better understanding of the key contexts used within various subdomains of context-

aware healthcare systems researchers can leverage these findings to ensure their systems contain contexts 

that have been useful in the early applications identified in the present work. 
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Introduction to Chapter 3 

Through the scoping review in chapter 2, it became apparent that time of day, location, mobility 

level, past medical history, and a few other contexts were pivotal for context-aware medical systems given 

their prevalence in systems that are currently being used in healthcare settings. Thus, the hardware and 

software developed and described in chapter 3 focuses on building a context-aware smart home system that 

can use many of these key contexts. Additionally, through the review it became apparent that no general 

algorithm was used by the systems for calculating the probabilities that different contexts occurred. As a 

result, a larger focus of chapter 3 is developing a generalized method for determining the probability of 

different contexts. 

 

In addition to creating/describing the system and a context determination algorithm, this chapter 

also focuses on building a generalized approach to quantifying the probability an older adult has a given 

condition or will succumb to an adverse medical event (e.g fall). This is necessary for the overarching goal 

of promoting safe aging in place through pre-emptive detection, as there must be a method to quantify the 

level of risk of each individual so that the context-aware medical smart home system can calculate 

individuals risks over time. By doing so, the system can either intervene when individuals are above some 

risk threshold or when their risk is increasing too rapidly.  

 

In terms of quantifying an individual’s risk, the standard approach used in many medical fields is to 

conduct clinical tests for conditions with known likelihood ratios that increase the odds of users having a 

given condition or disease, and use these test results to quantify users disease probabilities. Thus, this 

approach is adopted in the following chapter and clinical tests are modeled as networks of contexts so they 

can be conducted on users to demonstrate the framework can move from sensor data acquisition to 

quantification of diseases or adverse outcomes. More specifically, in chapter 3 a demonstration of running 

clinical tests with the system for falling in 12 months and having Parkinson’s is conducted to show the 

system can differentiate those at high risk and low risk. However, one significant difference between the 

system completing the tests versus a healthcare provider is that the system does not always have 100% 

certainty that the contexts/conditions comprising the tests have occurred, unlike a human observer. Thus, a 

method is established in chapter 3 that reduced the prognostic value of clinical tests as a function of the 

level of uncertainty in the contexts/conditions. 

 

My contribution to the paper presented in this chapter was building the smart home system, smart-

watch, and mobile application, designing the study, writing the manuscript, and developing the context 

algorithms/framework. Guha Ganesh helped develop the smart home beacons by changing the hardware 

from Raspberry Pi’s to lower cost ESP32s. Dr. Qiyin Fang supervised the study, edited the manuscript, 

acted as corresponding author, and handled the submission process. The significance of the present work is 

in connecting raw sensor data to clinically validated tests through automatically established contexts and 

providing a framework for context-aware telemedical systems to aid in diagnosis by determining the 

probability that users have a condition/disease. 
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Abstract 

 

Telemedical technologies for remote monitoring of patients has become an active area of research, 

especially for smart-home and aging-in-place applications. There is a critical need to establish contexts 

autonomously (without manually labeling data), and use them to aid in pre-emptive detection of 

conditions/disease to promote aging-in-place. In this work, we designed and developed a general 

framework that connects sensor data to the probability of specific contexts.  Using these autonomously 

established contexts, clinical tests were defined as situations through temporal context networks that 

identify the order in which events must occur for a user to have a positive or negative test result. An indoor 

positioning system, a smartwatch, and a smart-chair were used to test the framework using sensor data 

obtained from users emulating mobility of older adults. Two fall risk clinical tests and one Parkinson’s test 

were modeled via context networks and the LR results from the experiments were used to determine the 

post-test probability of falling or having Parkinson’s. The post-test probabilities determined by the system 

for falling or having Parkinson’s were statistically significantly (p < 0.05) higher in the mobility-impaired 

group relative to the unimpaired group. The framework represents an important step in connecting raw 

sensor data to clinically validated tests through automatically established contexts (determined without 

training data), calculating the impact of context uncertainty on the prognostic value of these tests, and 

allowing context-aware telemedical systems to aid in diagnosis by determining the probability that users 

have a condition/disease. 

3.1 INTRODUCTION 

Context-aware computing is the notion of using situational and environmental information about 

users, places and objects to determine a user’s context and adapt a computer application to fit their 

needs[1]. For medical computing applications, clinically relevant context is pivotal for defining 

intervention thresholds and clinical tests. For instance, inappropriate sinus tachycardia (IST), a known risk 

factor for all-cause coronary and cardiovascular mortality in middle-aged men and women, requires heart 

rates over 100 beats per minute (BPM) to be measured while a person is in a resting context[2]. Thus, a 

https://paperpile.com/c/Oq4qVA/eXRC5
https://paperpile.com/c/Oq4qVA/DKLfq


PhD Thesis - Michael Zon McMaster University - Biomedical Engineering 

 46 

telemedical system must be able to identify the resting context, or periods where users are not very active, 

in order to properly conduct this clinical test. Traditionally, once a set of clinical tests for a given condition 

have been performed they are used to quantify the probability a person has a condition or disease. Common 

medical examples of this include Well’s Criteria for pulmonary embolism [3] or deep vein thrombosis [4], 

qSOFA score for sepsis [5], and the HEART score for major cardiac events [6]. These medical tools often 

determine the probability a user has a disease or event by first assigning them pre-test odds based on how 

likely the outcome is for that demographic from prior studies. Next, these baseline odds are multiplied by 

likelihood ratios (LRs) which represent the increased chance of the disease given a positive or negative 

outcome for each clinical test, as determined from clinical studies mapping the tests to the disease [7]. For a 

single clinical test, the effect is as follows 

 

post-test odds =  pre-test odds ⋅ 𝐿𝑅𝑡𝑒𝑠𝑡   Equation 3.1 

 

post-test probability =  
post-test odds

1+ post-test odds
  Equation 3.2 

 

where post-test probability is a simple conversion of the person’s odds for the disease to a probability for 

the disease, and LRtest is the likelihood ratio (LR) of that test for the disease of interest. If the test result is 

positive then the positive LR (LR+) is applied which increases the odds (LR+ > 1), if it is negative then the 

odds are reduced via the negative (LR-) LR (LR- <1). As mentioned in Haider et al’s survey of health 

monitoring systems, context is pivotal to building useful health monitoring systems, but integration of 

context is still an open challenge given most systems do not reach a high level of context-awareness [8]. 

This is in part because many clinical tests have specific context requirements (e.g user at rest in IST). 

Furthermore, past works have not looked at how context identification techniques can be used to conduct 

context-dependent clinical tests so telemedical smart-home frameworks can use standard tools (i.e Eq 1 and 

2) that physicians utilize to aid in diagnosis [9]–[11].  Despite there being standardized methods to 

determine the probability a person has a given disease in medicine,  to the best of our knowledge, a 

framework defining how context-aware telemedical systems can use these tools to quantify a person’s 

disease probability has not been developed to date. The development of this framework, and a context 

determination method that can support it, is the primary goal of the present work.      

 

In order to use these standard medical tools to quantify disease probabilities, clinical tests must be 

conducted by telemedical systems. Given the dependency of these tests on contexts, mapping each test to a 

set of context conditions is necessary to ensure the system fulfills the requirements of each test. Two 

primary methodologies have emerged to allow pervasive computing systems to measure context, namely 

specification and learning-based approaches [12]. Learning-based approaches, such as neural networks, 

support vector machines, and random forests, focus on using statistical methods to determine when 

contexts occur by learning the relationships between sensor data and manually labelled data describing the 

true context during various sensor readings. These techniques are commonly used in smart-home systems 

to determine activities of daily living, with the end goal being to pre-emptively detect functional decline to 

permit safe aging in place [13]–[15]. Although highly accurate, learning based approaches suffer from the 

need to manually label data to predict contexts and being difficult to explain to clinical decision makers and 

patients [16]-[18]. This lack of transparency in how these methods diagnose is likely why ML algorithms 

are not used by healthcare providers when making diagnoses, despite the vast number of studies focused on 

using ML for disease diagnosis [19]-[21].   

 

Specification-based context determination approaches focus on utilizing expert knowledge in order 

to infer simple situations from sensor data [12]. Additionally, it is common in these methods to create rules 

which define how contexts form situations, as in Lakehal et al’s work [22]. A simple example would be 

conducting a test for supine tachycardia to assess the odds of hypovolemia due to blood loss using a 

https://paperpile.com/c/Oq4qVA/NQo5e+cmZ6Z+9feeR
https://paperpile.com/c/Oq4qVA/vbdKj
https://paperpile.com/c/Oq4qVA/mGgyE+TZEHX+sNatc
https://paperpile.com/c/Oq4qVA/3pIK8+4GEHG
https://paperpile.com/c/Oq4qVA/vbdKj
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commercial smartwatch [23]. Based on standard clinical practice, a clinician may request that the heart rate 

assessment take place while the patient is supine and at rest. Thus, one may define the resting state as no 

motion from a wrist-worn accelerometer while in bed and then set a threshold of 100 BPM for tachycardia 

only when pressure sensors under the patient’s bed detect their head is near the headboard (supine). A 

result of over 100 BPM increases a patients’ post-test odds of having greater than 630 milliliters of blood 

loss by 3 folds. Unlike with learning based approaches, upon testing positive a healthcare provider can 

easily explain why they are calling a patient in for further assessment [23]. Specification-based approaches 

are powerful when important clinical information can be derived from simple sensor data as in the 

aforementioned example. Although specification-based approaches, such as spatiotemporal logic and logic 

programming, are effective for defining rules/relationships, current specification-based approaches do not 

provide contexts probabilities [24]-[25]. This is problematic given that contexts based on sensor data often 

cannot be known for certain, and clinical tests/situations based on less certain contexts must have a lower 

LR than the same test conducted using higher certainty contexts. As a result, a new fuzzy probability-based 

specification approach to context-determination is developed in the present work in order to take advantage 

of the rule-based methods of specification techniques while still obtaining probabilities for each contexts 

likelihood as in learning based approaches. 

 

The present work aims to provide a telemedical smart-home framework for translating sensor data to 

the probability that a patient may have a given condition/disease via standard clinical tools/tests and 

automatically generated contexts. To validate the approach, experiments/clinical tests that relate to 

established medical outcomes through LRs are modeled as networks of contexts. The framework is then 

applied through a case study where the post-test probabilities for falling within 1 year and having 

Parkinson's are determined from data collected by a context-aware telemedical smart-home system we 

built. The primary novelties/contributions of the present work are as follows, 

 

1. The application of fuzzy probability to quantify the probability that a context has occurred. 

2. The development of spatiotemporal context networks which use fuzzy probability to model clinical 

tests 

3. A generalized framework for quantifying the probability users have conditions/diseases using 

context-aware telemedical systems 

4. A method to adjust LRs of known clinical tests in light of probabilistic uncertainty in the test 

conditions, thus allowing known clinical tests to be used by telemedical systems. 

 

https://paperpile.com/c/Oq4qVA/OGVA
https://paperpile.com/c/Oq4qVA/OGVA
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Figure 3.1 Overall Context-Aware Telemedical Framework for Automating Clinical Testing and 

Diagnoses using Smart Home Technology 

 
Figure 3.2 Discrete (FSR) and continuous (accelerometer) fuzzy probability calculations to determine the 

probability of the sitting context from a sensor event. Data shown is between T=0s and the user selecting 

they left the chair in the android app. a) Membership function for the sitting probability at different 

accelerometer magnitudes. b) Probability density function for the smartwatch accelerometer data. c) 

Probability they are sitting based on the data (integral of U(x)f(x) d) Discrete membership function for 

sitting vs. chair pressure e) Probability mass function for the chair FSR. f) Illustration of how these 

functions are multiplied to determine the function representing the probability the user is sitting based on 

the sensor data.  
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Figure 4 

3.2 CONTEXT GENERATION FRAMEWORK AND 

ALGORITHM 

 

The design of a general architecture/framework for ambient intelligent context-aware telemedical 

smart-home systems, that is validated in this work, is shown in figure 3.1. First, in the Sensor Data 

Acquisition module, data from the telemedical system is sent to a cloud database and associated with a 

user. Once it arrives it is pre-processed, analyzed and used to determine contexts in the Context 

Determination module (using fuzzy probability in this study) [26]. Next, the contexts probabilities are 

aggregated in the Situation Identification & Clinical Testing module to determine situations and clinical 

tests of interest. These clinical tests have known associations with diseases through LRs which multiply 

onto the individual’s pre-test odds of having the disease in the Apply Clinical Tests module to generate 

post-test odds for the disease. Finally, the post-test odds are converted to a post-test probability. This final 

probability for the user’s chance of having the disease is then compared to thresholds set by healthcare 

providers in the Diagnosis/Clinical Inference module to determine if their probability for the 

condition/disease warrants any interventions. Lastly, any software applications relying on data from the 

telemedical system can retrieve these probabilities to make decisions (e.g trigger intervention) within their 

applications making the overall system, by definition, context-aware through use of the contextual 

information.  

 

Through integration with electronic medical records (EMRs), past medical histories’ LRs for the 

given condition can also be used to further improve the user’s post-test odds accuracy (e.g., taking more 

than 4 medications has positive LR for falls implying its more likely). Learning-based approaches can also 

be utilized to discover new tests/LRs that can be used to modify post-test probabilities in the Discover New 

Tests module. This is done by determining the sensitivity and specificity of contexts determined by the 

system for patients' diagnoses using their medical records. 

 

The rest of the paper focuses on demonstrating the use of the framework through a case study where 

emulated data is used to conduct clinical tests and determine the post-test probabilities a group will fall in 

12 months or has Parkinson’s. In the present work, the Sensor Data Acquisition module is handled by a 

smart-home system. The Context Determination module is then used to obtain contexts from the data which 

are needed to conduct clinical tests for fall and Parkinson’s risk. The Situations Identification & Clinical 

Testing module then runs the tests by modeling known tests as collections of contexts (i.e situations). 

Lastly, the results of the tests and their LRs are used in the Apply Clinical Tests module to determine the 

probability they will fall in 12 months or have Parkinson’s. Prior to demonstrating this, the theory 

surrounding how contexts and clinical tests are obtained from sensor data is described in the next section. 
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3.3 FUZZY PROBABILITY AND CONTEXT ONTOLOGY 

NETWORKS CLINICAL/SITUATIONAL TEST 

CALCULATIONS 

TABLE 3.1 

Notation Used Throughout The Present Work4 

  𝑃(𝑋𝑖 = 𝐶𝑗)𝑠𝑖,𝛥𝑡𝑗
 Probability of context 𝐶𝑗 in time period  𝛥𝑡𝑗 according to data from sensor 𝑠𝑖 

yielding random variable 𝑋𝑖 
          𝑃(𝐶𝑗)𝛥𝑡𝑗

 Probability of context 𝐶𝑗 in time period  𝛥𝑡𝑗 as determined by using all sensors 

measuring that context in the system 
𝜇𝑐𝑖𝑗

(𝑥) Membership function relating sensor 𝑖 to context 𝑗 
𝛥𝑡𝑗 Time interval in which context 𝑗 is being assessed in and that the data was collected 

𝑠𝑖(𝑥) Probability density function for sensor 𝑖's data 
𝑃(𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛)𝑇𝑠≤𝑡≤𝑇𝑓

 The probability a situation occurred between  𝑇𝑠 and 𝑇𝑓  

𝑇𝑠 The start time of the first context in a situation 

𝑇𝑓 The final time of the last context in a situation 

TP True positives (sick correctly identified as sick) 
TN True negatives (Healthy correctly identified as healthy) 
FP False positives (healthy incorrectly identified as sick) 
FN False negatives (Sick incorrectly identified as healthy) 
P Total number positive for the condition being tested for 
N Total number that are negative for the condition being tested for 

Sens Sensitivity of the test 
Spec Specificity of the test 

𝐿𝑅 + Positive likelihood ratio of the test 
𝐿𝑅 − Negative likelihood ratio of the test 

sys Subscript representing that the value is from the system and differs from the original 
𝑃𝑡 = 𝑃𝑡ℎ𝑟𝑒𝑠ℎ Threshold error probability after which the system will run the clinical test 

 

To determine the probability that a clinical test’s conditions have been met, the probability that the 

contexts comprising that test occurred are first determined by applying Zadeh’s fuzzy probability theory 

[26]. By building probability density functions (PDF) from sensor data, each context can be determined by 

leveraging the available sensor data and a fuzzy membership function that describes how each sensor’s data 

relates to the context of interest. A simple example would be a watch accelerometer whose membership 

function assigns high accelerations a low probability that the user is in the sitting context, as shown in 

figure 3.2a. The accelerometer readings in 2b are multiplied by the membership function in 2a to yield the 

function represented by the red curve in 2c, whose integral represents the probability the user is in the 

sitting context. More formally, the probability of a context is written as  

 

 

        𝑃(𝑋𝑖 = 𝐶𝑗)𝑠𝑖,𝛥𝑡𝑗
=  ∫ 𝑢𝑐𝑖𝑗

∞

−∞
(𝑥) ⋅ 𝑠𝑖(𝑥)𝛥𝑡𝑗

⋅ 𝑑𝑥           Equation 3.3 

 

Where 𝑠𝑖(𝑥) is the PDF for sensor 𝑖 (e.g figure 3.2b), 𝜇𝑐𝑖𝑗
(𝑥) is the membership function relating sensor 𝑖 

to context 𝑗 (e.g figure 3.2a), and 𝛥𝑡𝑗 is the time interval over which the data was collected, and the 
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context’s probability is valid. A table containing descriptions for this notation and other notation found 

throughout the paper can be seen in table 3.1. 

For sensor data outputs that are discrete/categorical in nature, the PDF (or probability mass function) is 

described using the Dirac delta function, 

 

       𝑠𝑖(𝑥𝑖)𝛥𝑡𝑗
= ∑ 𝑃𝑘

𝐾
𝑘=1 ⋅ 𝛿(𝑥 − 𝑥𝑘)                                             Equation 3.4 

                 

 Where 𝑥𝑘  are the discrete points/categorical outcomes each with a corresponding probability 

𝑃1, . . . . . 𝑃𝑛 representing how often it occurred during the time interval of interest. The corresponding 

membership function in this case can either be continuous or discrete, but if it is discrete, it must be defined 

for each point 𝑥𝑘. Figure 3.2d-f shows an example of this, where a chair pressure sensor has max pressure 

(𝑥1) 80% of the time (𝑃1=0.8) and no pressure (𝑥2) 20% of the time (𝑃2=0.2). The membership function in 

2d defines a 95% chance the user is sitting when the pressure sensor is at its maximum, and no pressure as 

a 0% chance of sitting. Figure 3.2f shows the multiplication of the PDF and membership functions, which 

leads to a 76% (95%*80%) chance of the sitting context. Given that the context/event 𝐶𝑗 occurring and its 

complement 𝐶𝑗
𝑐 (representing the event not occurring) are disjoint events, meaning the sum of the 

probabilities is 100%, we have for any sensor event,  

 

 

𝑝(𝑋𝑖  =  𝐶𝑗) = 1 − 𝑝(𝑋𝑖 =  𝐶𝑗
𝑐)          Equation 3.5 

            

For contexts where only 1 sensor being correct about the context implies it occurred (e.g any chair sensor 

detecting sitting pressure implies the sitting context) We can write the context probability as 

 

  𝑷(𝑪𝒋)𝜟𝒕𝒋
= 𝟏 − ∏ 𝑷(𝑿𝒊  =  𝑪𝒋

𝒄)
𝒔𝒊,𝜟𝒕𝒋

𝑵
𝒊=𝟏           Equationn3.6  

Using equation 3.5 , this leads to 

𝑃(𝐶𝑗)𝛥𝑡𝑗
= 1 − ∏ (1 − 𝑃(𝑋𝑖  =  𝐶𝑗)

𝑠𝑖,𝛥𝑡𝑗
)𝑁

𝑖=1           Equation 3.7 

       

 

where 𝑃(𝐶𝑗)𝛥𝑡𝑗
 is the probability that the context 𝐶𝑗 has occurred in the time interval 𝛥𝑡𝑗 based on the set of 

sensors 𝑆 available to the telemedical system. Figure 3.3a shows this calculation visually and Figure 3.3b 

provides a simple graphical example of equation 3.7 relevant to the present work. In this 3-sensor system, 

the sitting context is measured by a smartwatch accelerometer and 2 pressure sensors on the seats of 2 

separate chairs. Even if the accelerometer data is high and chair 1 indicates no pressure, meaning these 2 

events are unlikely to indicate the sitting context, the presence of constant applied pressure on chair 2 will 

dominate equation  3.7 leading to a large value for 𝑃(𝑆𝑖𝑡𝑡𝑖𝑛𝑔) (assuming the membership function assigns 

a probability near 1 for sitting when pressure is detected on the chair). Thus, sitting is highly probable 

based on the presence of pressure placed on chair 1, regardless of the pressure value on chair 2 and the 

active accelerometer. If any sensor has a probability near 1.0 for the context of interest, then the 

multiplicative term in equation 3.7 becomes close to 0 resulting in a probability for the context near 1. This 

provides a useful way to ascertain the likelihood of a given context from multiple sensors.  

  

For situations, we define these in the usual way as a collection of contexts that together form new 

meaning [12]. However, we expand on this by formulating them in temporal context networks (figure 3.4a) 

and by defining their probability of occurring through their sub-contexts. Essentially, we require that each 

context must occur at a pre-specified point in time relative to another for a situation to occur. The 

https://paperpile.com/c/Oq4qVA/vbdKj
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probability that a given situation has occurred then becomes the simple product of the probabilities that 

each context has occurred in the chronology specified. This is written as  

 

𝑃(𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛)𝑇𝑠≤𝑡≤𝑇𝑓
= ∏ 𝑝(𝐶𝑗) 𝛥𝑡𝑗

𝑀
𝑗=1                        Equation 3.8 

 

 
Figure 3.3 Illustration of calculating context probabilities. a) general approach for “n” sensors with 

probability density functions s(x) formed from their acquired data and membership functions 𝜇𝑐𝑖,𝑗
(x) 

relating the data to the context. b) Example calculation of determining the sitting context from 

accelerometer data and pressure sensors on 2 chairs.e 5 

 
 

Figure. 3.4 Illustration of using context ontology networks to define situations. a) General framework for 

determining the probability of a situation from various contexts. b) General framework for determining 

LR+ and LR- from contexts. c) Example calculation for the clinical test/situation of a normal gait speed 

and, d) a slow gait speed. e) Context ontology network for assessing fall risk through being negative for 
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support needed to rise and f) positive for support needed to rise. g) Context ontology network used for 

assessing Parkinson’s risk through being negative for the difficulty rising test and h) positive for the 

difficulty rising test. Figure 6 

 

 Here, M is the total number of contexts that comprise the situation, 𝑇𝑠is the start time of the first 

context and 𝑇𝑓  is the end time of the last context in the temporal context network defining the situation. 

Using this theory, common clinical tests can be defined as situations based on the sub-contexts that 

comprise them, as shown in figure 3.4b. To determine if a user is positive or negative for a test, it is broken 

into the contexts that comprise the test conditions and the context that relates to the clinical parameter being 

measured in the correct conditions (e.g., gait speed, elevated heart rate, etc.). In the present work, we use 

this method to conduct two clinical tests for the risk of falling in the next 12 months and one clinical test 

for assessing the likelihood an older adult has Parkinson’s (figure 3.4c-h).  

 

 As shown in figure 3.4c-d, gait speed is assessed by measuring the amount of time it takes a user to 

get from their chair to a washroom, which in the present work is known to be 8.5 meters from the smart-

chair. The clinical test/situation is broken into 5 contexts which are sitting initially, then not sitting and 

walking, followed by walking to the washroom. Lastly, the gait speed (clinical parameter/context) during 

this room transition, as detected by the IPS, is measured. The probability that this situation was in fact 

observed is then used to determine the LR of a fall within 12 months by adjusting the normal LRs. The 

derivation for how this is done is presented in the next section. Gait speeds have been shown to have a 

positive LR (LR+) of 2.0 and negative LR (LR-) of 0.73 for gait speeds less than and above 0.77 m/s, 

respectively [27]. Because each test has a clinical parameter of interest, gait speed in this example, there is 

1 situation that corresponds to being positive for the test (e.g., gait speed <0.77 m/s, figure 3.4d) and 1 that 

corresponds to being negative for the test (e.g., gait speed > 0.77 m/s, figure 3.4c). For simplicity, the 

context that defines the clinical parameter of interest in figure 3.4 and determines if the test result is 

positive or negative is highlighted in red, and the contexts/conditions that are required before assessing this 

parameter/context are in black. Because the situation is not guaranteed to have occurred given that each 

context is a probability based on the sensor data, the LR for the test accepts the probability of the situation 

as an input so it can be adjusted based on the chance the clinical situation did not occur.  

 

The other test for fall risk shown in figure 3.4e-f assesses whether the user needs to use armrest 

support to rise (LR+ = 4.3, LR-=-.77) [28]. The last (figure 3.4g-h) test assesses whether an adult has 

difficulty rising from their seat by determining whether they fall back to the chair during their initial 

attempt to rise, which has an LR+ and LR- for Parkinson’s of 1.9 and 0.58, respectively [29]. These 

activities are measured by the indoor positioning system, smartwatch, and smart-chair data described in the 

methods section, and are verified using the ground truth timestamps from a mobile app that the user 

provides input to. The fuzzy membership functions, sensor data, and time intervals used to determine each 

context probability, and thus the situation/test probabilities, are also described in the Methods section. 

 

https://paperpile.com/c/Oq4qVA/3aOCP
https://paperpile.com/c/Oq4qVA/43kB0
https://paperpile.com/c/Oq4qVA/Xhwc9
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Figure 3.5 Illustration of the outcomes for a clinical test run by a context-aware system and how they relate 

to sensitivity and specificity. a) outcomes for a clinical test run under normal circumstances. b) Outcome 

when incorrectly run tests are all negative. c) Outcome when incorrectly run tests are all positive. d) 

Outcome when incorrectly run tests lead to both positive and negative results. 7 

3.4 ADJUSTING LIKELIHOOD RATIOS DUE TO 

SITUATIONAL UNCERTAINTY 

 Although a telemedical system can be used to conduct a clinical test, unlike when a healthcare 

provider conducts a test the system cannot guarantee the test conditions (e.g user has walked 10 meters for 

gait speed test) have been met with 100% certainty. Thus, the prognostic value of a test conducted by a 

telemedical system must be less than its usual value given the system cannot be sure it occurred. It is 

necessary for those building telemedical systems to determine how to adjust the clinical tests prognostic 

value to account for these uncertain test conditions, otherwise one would be unable to use the vast number 

of known clinical tests that ascertain the likelihood a person has a condition or disease. As mentioned 

earlier (equation 3.1 and 3.2), the pre-test odds a person has a given disease are multiplied by the LR of the 

test to get their new odds for said disease. It is worth mentioning that the pre-test odds are normally based 

on epidemiological data (e.g 1% of those 65+ have Parkinson’s). Regarding the LR, it is derived by running 

a test for a given disease on a population and determining the true positives (TP), true negatives (TN), false 

positives (FP), false negatives (FN), total negatives (N), and total positives (P). Definitions for these terms 

are provided in table 3.1. 

Sensitivity is then defined as TP/P, and specificity as TN/N. Lastly, LR+ and LR- are then defined 

as  

 

𝐿𝑅+ =  
𝑠𝑒𝑛𝑠

1−𝑠𝑝𝑒c
        Equation 3.9     

𝐿𝑅−=
1−𝑠𝑒𝑛s

𝑠𝑝𝑒𝑐
        Equation 3.10 

 

Where LR- is multiplied on to the pre-test odds instead of LR+ if the person has a negative test result. Now, 

to derive the adjusted LRs, one must investigate how TP, TN, FP, and FN change when the system 

conducts a test when it should not.  Let us call 𝑇𝑃𝑠𝑦𝑠, 𝐹𝑃𝑠𝑦𝑠, 𝑇𝑁𝑠𝑦𝑠, 𝐹𝑁𝑠𝑦𝑠 the true positive, false positive, 

true negative, and false negative numbers measured by the system. Similarly, the equivalent variables 

without the “sys” subscript will be the true values unaffected by system measurement uncertainty. The 

sample space comprising 𝑇𝑃, 𝐹𝑃, 𝑇𝑁 and 𝐹𝑁 under normal circumstances is shown in figure 3.5a. We 

will also define 𝐿𝑅 +𝑜𝑟𝑖𝑔 and 𝐿𝑅 −𝑜𝑟𝑖𝑔 as the tests positive and negative LRs when measured by 

physicians under normal circumstances and 𝐿𝑅 +𝑠𝑦𝑠 and 𝐿𝑅 −𝑠𝑦𝑠 as the positive and negative LRs for the 

test when conducted by the context-aware telemedical system. 
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Let us assume the system runs a test  when it is 95% confident that the situation (P(Situation))  

describing the test conditions occurred. This means that on average, 5% of the time, the test will be run at 

the incorrect time, implying the test results are invalid. Let’s call this remaining 5% 𝑃𝑡ℎ𝑟𝑒𝑠ℎ = 1 −
𝑃(𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛).  This leads to two possible scenarios: 1) the system runs the test when it should not and 

obtains a positive result b percent of the time; and 2) the system runs the test when it should not and obtains 

a negative test result c = 1-b percent of the time. We define 𝑑 = 𝑃𝑡ℎ𝑟𝑒𝑠ℎ ⋅ 𝑏 as the percentage of tests that 

will incorrectly lead to positive results and 𝑒 = 𝑃𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 −𝑡ℎ𝑟𝑒𝑠ℎ ⋅ 𝑐 as the percentage of tests that will 

incorrectly lead to a negative result. We will first analyze these two scenarios separately and then look at a 

realistic generalized system where both cases (incorrect positive and negative tests) occur.  

 

First, imagine that the system is used to conduct a clinical test a single time on a sufficiently large 

population and leads to negative results when triggered incorrectly e percent of the time. Now, in this 

scenario both the true positives and false positives will decrease by e percent since e percent of the tests 

will now yield negative results incorrectly. This leads to 𝑇𝑃𝑠𝑦𝑠 = 𝑇𝑃(1 − 𝑒) = 𝑇𝑃 − 𝑒 ⋅ 𝑇𝑃 and 𝐹𝑃𝑠𝑦𝑠 =

𝐹𝑃(1 − 𝑒) =  𝐹𝑃 − 𝑒 ⋅ 𝐹𝑃. Now, these e percent of newly misclassified true positives who all have a 

negative result will increase the false negatives leading to 𝐹𝑁𝑠𝑦𝑠 = 𝐹𝑁 + 𝑒 ⋅ 𝑇𝑃. Similarly, the e percent of 

prior false positives will now correctly have a negative result leading to 𝑇𝑁𝑠𝑦𝑠 = 𝑇𝑁 + 𝑒 ⋅ 𝐹𝑃.  A 

visualization of this scenario is presented in figure 3.5b. We will now consider the opposite scenario, where 

the system’s incorrect testing d percent of the time only leads to positive test results.  Now, it is instead the 

true negatives and false negatives that decrease by d percent as d percent of tests lead to a positive result. 

This leads to 𝑇𝑁𝑠𝑦𝑠 = 𝑇𝑁(1 − 𝑑) = 𝑇𝑁 − 𝑑 ⋅ 𝑇𝑁 and 𝐹𝑁𝑠𝑦𝑠 = 𝐹𝑁 (1 − 𝑑) =  𝐹𝑁 − 𝑑 ⋅ 𝐹𝑁. Now, these 

d percent of true negatives, which are incorrectly identified as positive, leads to an increase in the false 

positive resulting in 𝐹𝑃𝑠𝑦𝑠 = 𝐹𝑃 + 𝑑 ⋅ 𝑇𝑁. Similarly, the false negatives correctly identified as true 

positives now leads to 𝑇𝑃𝑠𝑦𝑠 = 𝑇𝑃 + 𝑑 ⋅ 𝐹𝑁 for the systems true positive count (as visualized in figure 

3.5c).  

 

In reality, both scenarios occur simultaneously and some proportion 𝑒 of the system’s incorrect tests 

will lead to classifying users as negative and another proportion 𝑑 of the system’s incorrect tests will lead 

to classifying user’s as positive. Thus, the two scenarios described both occur simultaneously (figure 3.5d) 

leading to 

𝑇𝑃𝑠𝑦𝑠 = 𝑇𝑃 + 𝑑 ⋅ 𝐹𝑁 − 𝑒 ⋅ 𝑇𝑃   Equation 3.11 

        

         𝐹𝑃𝑠𝑦𝑠 = 𝐹𝑃 + 𝑑 ⋅ 𝑇𝑁 − 𝑒 ⋅ 𝐹𝑃          Equation 3.12    

   

𝑇𝑁𝑠𝑦𝑠 = 𝑇𝑁 − 𝑑 ⋅ 𝑇𝑁 + 𝑒 ⋅ 𝐹𝑃   Equation 3.13  

 

𝐹𝑁𝑠𝑦𝑠 = 𝐹𝑁 − 𝑑 ⋅ 𝐹𝑁 + 𝑒 ⋅ 𝑇𝑃      Equation 3.14 

        

Where TPsys, FPsys, TNsys and FNsys have been derived by adding the perturbations the system introduces 

relative to the usual testing circumstances present in both scenarios. Now, the sensitivity and specificity are 

derived by using the systems values in place of the original values in their usual formulas, 

 

𝑠𝑒𝑛𝑠𝑠𝑦𝑠 =
𝑇𝑃𝑠𝑦𝑠

𝑃
=

𝑇𝑃 + 𝑑 ⋅ 𝐹𝑁 − 𝑒 ⋅ 𝑇𝑃

𝑃
 

               = 𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑔 + 𝑑(1 − 𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑔) − 𝑒 ⋅ 𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑔                    Equation 3.15 

= 𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑔(1 − 𝑒) + 𝑑(1 − 𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑔 
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𝑠𝑝𝑒𝑐𝑠𝑦𝑠  =  
𝑇𝑁𝑠𝑦𝑠

𝑁
=

𝑇𝑁 − 𝑑 ⋅ 𝑇𝑁 + 𝑒 ⋅ 𝐹𝑃

𝑁
 

               = 𝑠𝑝𝑒𝑐𝑜𝑟𝑖𝑔 − 𝑑 ⋅ 𝑠𝑝𝑒𝑐𝑜𝑟𝑖𝑔 + 𝑒(1 − 𝑠𝑝𝑒𝑐𝑜𝑟𝑖𝑔)    Equation 3.16 

= 𝑠𝑝𝑒𝑐𝑜𝑟𝑖𝑔(1 − 𝑑) + 𝑒(1 − 𝑠𝑝𝑒𝑐𝑜𝑟𝑖𝑔) 

 

Solving for 𝐿𝑅+𝑠𝑦𝑠and 𝐿𝑅−𝑠𝑦𝑠 , we obtain 

 

𝐿𝑅+𝑠𝑦𝑠(𝑑, 𝑒)  =  
𝑠𝑒𝑛𝑠𝑠𝑦𝑠

1−𝑠𝑝𝑒𝑐𝑠𝑦𝑠
=

𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑔(1−𝑒)+𝑑(1−𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑔)

1−𝑠𝑝𝑒𝑐𝑜𝑟𝑖𝑔(1−𝑑) − 𝑒(1−𝑠𝑝𝑒𝑐𝑜𝑟𝑖𝑔)
      Equation 3.17 

𝐿𝑅−𝑠𝑦𝑠(𝑑, 𝑒) =
1−𝑠𝑒𝑛𝑠𝑠𝑦𝑠

𝑠𝑝𝑒𝑐𝑠𝑦𝑠
=

1−𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑔(1−𝑒)−𝑑(1−𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑔)

𝑠𝑝𝑒𝑐𝑜𝑟𝑖𝑔(1−𝑑)+𝑒(1−𝑠𝑝𝑒𝑐𝑜𝑟𝑖𝑔)
      Equation 3.18 

 

Looking at the limits, one can see that 

𝑙𝑖𝑚
𝑃𝑡ℎ𝑟𝑒𝑠ℎ→0

𝐿𝑅+𝑠𝑦𝑠= 𝐿𝑅+𝑜𝑟𝑖𝑔  

 

𝑙𝑖𝑚
𝑃𝑡ℎ𝑟𝑒𝑠ℎ→0

𝐿𝑅−𝑠𝑦𝑠= 𝐿𝑅−𝑜𝑟𝑖𝑔. 

 

Thus, when the system never runs tests in an incorrect context (𝑃𝑡ℎ𝑟𝑒𝑠ℎ = 0) the original LRs are retrieved, 

as expected. Similarly, taking the limit as 𝑃𝑡ℎ𝑟𝑒𝑠ℎ → 1, one can easily show that 

 

𝑙𝑖𝑚
𝑃𝑡ℎ𝑟𝑒𝑠ℎ→1

𝐿𝑅−𝑠𝑦𝑠= 𝑙𝑖𝑚
𝑃𝑡ℎ𝑟𝑒𝑠ℎ→1

𝐿𝑅+𝑠𝑦𝑠= 1. 

 

As expected, if the system never tests under the correct circumstances neither the positive nor negative LRs 

have any clinical value in predicting the condition/disease since multiplying the pre-test odds by 1 has no 

effect. Given it is often not feasible to know the true values of 𝑏 and 𝑐, in the present work we assume that 

the proportion of tests the system incorrectly classifies as positive, and negative are equal and set 𝑏 = 𝑐 =
0.5 and 𝑑 = 𝑒 = 0.5𝑃𝑡ℎ𝑟𝑒𝑠ℎ. As a result, the adjusted LRs for the system considering uncertain conditions 

can be written as 

 

𝐿𝑅+𝑠𝑦𝑠(𝑃𝑠𝑡)  =  
𝑠𝑒𝑛𝑠𝑠𝑦𝑠

1−𝑠𝑝𝑒𝑐𝑠𝑦𝑠
=

𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑔(1−
𝑃𝑡
2

)+
𝑃𝑡
2

(1−𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑔)

1−𝑠𝑝𝑒𝑐𝑜𝑟𝑖𝑔(1−
𝑃𝑡
2

) − 
𝑃𝑡
2

(1−𝑠𝑝𝑒𝑐𝑜𝑟𝑖𝑔)
      Equation 3.19 

 

𝐿𝑅−𝑠𝑦𝑠(𝑃𝑠𝑡) =
1−𝑠𝑒𝑛𝑠𝑠𝑦𝑠

𝑠𝑝𝑒𝑐𝑠𝑦𝑠
=

1−𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑔(1−
𝑃𝑠𝑡

2
)−

𝑃𝑠𝑡
2

(1−𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑔)

𝑠𝑝𝑒𝑐𝑜𝑟𝑖𝑔(1−
𝑃𝑠𝑡

2
)+

𝑃𝑠𝑡
2

(1−𝑠𝑝𝑒𝑐𝑜𝑟𝑖𝑔)
       Equation 3.20 

Where  𝑃𝑡  is an abbreviation for 𝑃𝑡ℎ𝑟𝑒𝑠ℎ. 

3.5 METHODS 
This section is divided into 5 main subsections. The first subsection describes the portable smart-

home system, smartwatch, and smart-chair developed to acquire data throughout this study. The next 

subsection describes the experimental protocol used to collect data with the smart-home system. The third 

subsection describes how a case study was formulated from the collected data. Next, subsection 4 describes 

how the data was analyzed to determine the post-test probability a user has of a given condition or disease. 

Lastly, the final subsection contains a short comment on data availability. 
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Figure 3.6 Hardware and software used for data collection. a) ESP32 based Indoor positioning beacons. b) 

Smartwatch for accelerometer data collection and indoor position broadcasting. c) Android application for 

collecting ground truth data. d) Couch equipped with force sensitive resistors.Figure 8

 

3.5.1. Smart-home System/Software: Indoor Positioning System, Smartwatch, and Smart-Chair 
 The primary data collected via the smart-home system is the user's room location through an indoor 

positioning system (IPS), movement via a wrist-worn smartwatch, and whether they are in contact with the 

seat and armrest of the smart-chair. The IPS was constructed by placing a wireless beacon in each room 

(figure 3.6a). Each beacon is equipped with additional environmental, motion, and light sensor modules. 

For the contexts used in the present work, only the Bluetooth low energy (BLE) signals from the beacons 

(broadcasted from the smartwatch) were required during analysis. The BLE sensor stations in each room 

record the relative signal strength indicator (RSSI) of the machine address associated with the smartwatch 

and send the data through the ESP-NOW protocol to a master ESP32 device (Espressif Systems, China) 

located in the living room. The data is then sent to a Raspberry Pi (model 4b) through a serial connection 

which then assigns the room the user is in to be the room with the beacon that has the strongest RSSI value. 

This location information is uploaded to a cloud database (Firestore) via Wi-Fi.  

The custom-built smartwatch consists of an ESP32 with an OLED display (HTIT-WB32, Heltec, 

China) and a BNO055 (Adafruit Industries, USA) accelerometer. A 3D printed watch case was made to 

house the components and secure the watch to the user (figure 3.6b). To ensure the smartwatches data can 

be stored and sent to the cloud without the home’s wireless network, a cross-platform mobile app was 

developed using Flutter which connects the smartwatch to a smartphone. The device's orientation and linear 

acceleration along the watches standard cartesian axes (x, y, z) are sent from the smartwatch to the mobile 

app at 50Hz and then uploaded to Cloud Firestore for analysis after the experiments. Additionally, the 

mobile app allows the users to enter what they are currently doing during the experiments (figure 3.6c). 

These entries are time stamped, uploaded to the cloud database, and used as ground truth reference points 

for when events/contexts occurred. Lastly, the smart-chair (figure 3.6d) consists of one force sensitive 

resistor (FSR RP-S40-ST, DFRobot, China) attached to the couches base and a second FSR attached to the 

couch’s armrest. The signals from the FSRs are sent to an analog to digital converter (ADS1115, Adafruit 

Industries, USA) which then sends the result to the Raspberry Pi. The Pi then converts any analog to digital 

converter (ADC) value greater than 80 percent of the FSRs maximum (22-pound max) to a 1 and uploads 

the FSR data of the armrest and seat to the cloud database. 

3.5.2 Experiment Protocol 
 Data was collected and generated in house using the IPS system, smartwatch, and smart-chair 
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during two sets of experiments carried out by volunteers in the smart-home. The experiments were 

designed to collect the data needed to determine the context/situation probabilities of the clinical tests for 

slow gait speed, difficulty rising, and support needed to rise. The first set of experiments intended to 

simulate a healthy mobility unimpaired older adult leaving the couch and walking with a normal gait speed 

to the washroom. The user begins sitting on the couch and uses the mobile app to select that the experiment 

has begun. After approximately 1 minute they leave the smart-chair’s seat without using the armrest and 

select that this occurred in the mobile application (figure 3.6c) so that this event’s ground truth time can be 

sent to the cloud database. Lastly, they walk to the washroom at a normal gait speed, select they have 

arrived in the washroom in the mobile app, and after waiting another 30 seconds they select restart 

experiment which sends the experiments end time to the cloud. The second set of experiments intended to 

simulate a mobility impaired adult who has difficulty leaving the smart-chair and walks slowly to the 

washroom. The only differences relative to the mobility unimpaired experiments are that the user is asked 

to use the armrest when leaving the chair, to fall back on the chair once right after rising, and then to walk 

slowly to the washroom when they leave the chair for a second time. Each one of these events is recorded 

by the user in the mobile app (figure 3.6c) to indicate its time of occurrence. In addition to analyzing the 

data with ground truth timestamps entered by the user, the analysis was conducted while automating the 

start and end times of the contexts using the sensor data. For instance, in this case sitting would be assumed 

to start when pressure on the chair is first detected. This was done to demonstrate that the system could be 

fully automated.  

 

3.5.3 Case Study 
To demonstrate how the framework and system would be used in practice, the 5 mobility impaired 

and 5 mobility unimpaired experiments were assigned to 10 theoretical older adults. Additionally, to 

demonstrate the utility of past medical histories (PMH) data, we assigned some hypothetical past medical 

histories to these adults. Specifically, for fall risk related PMH data a history of using 4 or more 

medications (LR+ 1.9, LR- .76), having had a stroke (LR+ 3.2, LR- 0.87), or having fallen in the last year 

(LR+ 2.8, LR- 0.86) were randomly assigned to the theorized older adults [28], [30], [31]. Additionally, a 

past history of falls was (or was not) assigned to the older adult’s given it reduces the odds a user's mobility 

issues are due to Parkinson’s with an LR+ of 0.65 and an LR- of 3.19 [32]. These LRs were also multiplied 

onto the pre-test odds, however, the LRs were not adjusted given these contexts can be known with 

certainty.  

  

3.5.4. Data Analysis, Post-Test Probability Determination and Fall/Parkinson’s Risk Assessment  
 Sensor data was downloaded from the cloud and analyzed in R. Code was developed which 

determines the PDF from the sensor data, creates membership functions, and integrates the multiplication 

of these functions to determine context and situation probabilities according to equation 3.7 and equation 

3.8, respectively. Probability density functions were built via gaussian kernel density estimation and 

integrals of continuous functions were approximated through adaptive quadrature. 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/Oq4qVA/alK1o+43kB0+zVAWP
https://paperpile.com/c/Oq4qVA/D64Ol
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TABLE 3.2 

Membership Functions Used to Relate Sensor Data to Contexts and the Time Intervals in which Data 

was Collected for the Contexts 5 
Context Data Type Sensor Start Auto End Auto Start GT End GT (x1, y1) (x2, y2) Function Type 

Sitting Acceleration watch Pressure 

Detected 

No Pressure Experiment 

Start 

Left Chair (0.25, 0.5) (0.75, 0) Trapezoidal R 

Not Sitting Acceleration watch Pressure 

Detected 

No Pressure Experiment 

Start 

Left Chair (0.25, .0.0) (0.75, 0.5) Trapezoidal L 

Sitting Max Pressure  Chair Seat 

FSR 

Pressure 

Detected 

No Pressure Experiment 

Start 

Left Chair (MP, 0.0) (not MP, 1.0) Discrete 

Walking Change 

Location (d) 

IPS No Pressure Location 

Change IPS 

Left Chair Entered 

Washroom 

(not CL, 0.0) (CL, 1.0) Discrete 

Gait Speed Speed IPS No Pressure Location 

Change IPS 

Left Chair Entered 

Washroom 

(1.0, 0.77) (0.0, .77) Trapezoidal R 

Arm Rest 

Use 

Max Pressure  Chair 

Arm FSR 

No Pressure Start Auto - 

5s 

Left Chair Start GT – 

5s 

(MP, 0.0) (not MP, 1.0) Discrete 

Second Sit Max Pressure  Chair Seat 

FSR 

1st No 

Pressure 

2nd Pressure 

Detect 

Fall to 

Couch 

Left Chair 

Again 

(MP, 0.0) (not MP, 1.0) Discrete 

Enter 

Washroom 

Location IPS Location is 

washroom 

Location is 

washroom 

Entered 

Washroom 

Entered 

Washroom 

(not WR, 0.0) (WR, 1.0) Discrete 

 

*All time points in the Start GT and End GT column were determined based on users selecting the same 

text within the mobile application. GT = ground truth,  WR  = washroom, MP = max pressure, CL = change 

location
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 Adjusted LRs were computed in R by using equation 3.17 and equation 3.18.  If the probability the 

user had a positive test was greater than the probability they had a negative outcome for the same test (e.g., 

3e probability greater than 3f), then LR+ was used (equation 3.19), otherwise LR- was used (equation 

3.20). To determine the post-test probabilities, such as the probability a user will fall in the next 12 months, 

pre-test probabilities were converted into pre-test odds, multiplied by the relevant LRs for that 

condition/disease to obtain post-test odds, and then these odds were converted to post-test probabilities, as 

shown below for a single LR [7]. 

 

pre-test odds =  
pre-test probability

1−pre-test probability
   Equation 3.21 

 

post-test odds =  pre-test odds ⋅ 𝐿𝑅𝑠𝑦𝑠−𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛   Equation 3.22 

 

post-test probability =  
post-test odds

1+ post-test odds
 Equation 3.23 

 

 Pre-test probabilities were based on epidemiology data as done in a clinical setting. The pre-test 

probability of falling at least once in 12 months was set to 33% given that studies have indicated this is the 

fall risk for those over 65 [30]. The probability was then converted into pre-test odds (1:2) and then the 

probability that the 2 fall risk clinical tests/situations occurred were used to adjust the LRs for the clinical 

tests prior to using the LRs to get the post-test probabilities. The same procedure was used to determine the 

post-test probability of Parkinson’s using the difficulty rising test with a pre-test probability for Parkinson’s 

of 1% for adults over 65 and 2% for those over 85 [33]. The LRs for Parkinson’s and falls for the various 

medical history data was also multiplied into the pre-test odds prior to calculating the post-test 

probabilities. After determining the post-test probabilities for Parkinson’s and falling within 12 months, a 

one-sided Wilcoxon Signed Rank Test was used to determine if the post-test probabilities were greater in 

the mobility impaired group to a statistically significant (p < 0.05) degree. Age and past medical history 

were controlled for by conducting a paired analysis between the two groups where pairs had the same past 

medical history and age range.  

 

https://paperpile.com/c/Oq4qVA/bJYPN
https://paperpile.com/c/Oq4qVA/alK1o
https://paperpile.com/c/Oq4qVA/wQ5wG
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Figure 3.7 Membership functions used in the study. 9 

    

The membership functions (defined in figure 3.7) used to relate the sensor data to the contexts of the 

clinical situations shown in figure 3.4 are described in table 3.2. The relationship between the three 

function types, (x1, y1), and (x2, y2) from the table are shown below. 

 Additionally, table 2 describes the time intervals in which the data was collected for each context 

when automating the time intervals and using the ground truth time intervals based on user input from the 

mobile application. As an example, for the gait speed clinical test the situation consists of the sitting, not 

sitting, walking, entered washroom, and slow gait context probabilities (figure 3.4b) and the sitting context 

was calculated using equation 3.7 with the accelerometer and chair pressure data.  

   The trapezoidal R membership function for relating gait speed to having a slow gait was set to y=1.0 

(100% slow) for values less than or equal to 0.77 m/s and y=0 for values greater than this in accordance 

with the literature [27]. Since this was a single measurement the PDF used in equation 3.7 was a single 

termed Dirac delta function which existed at the measured speed (equation 3.4 with 1 term). The support to 

rise test (figure 3.4e) used the same membership functions, time intervals, and PDFs for the sitting and not 

sitting context with the addition of the armrest-used context as determined from the pressure sensor on the 

armrest. Lastly, the difficulty rising test (figure 3.4g) uses the same time interval, PDFs, and membership 

functions for the initial sitting context. However, the prior tests used the last pressure detection as the 

beginning of the not sitting context. In this case, the not sitting context interval is measured from the first 

release of pressure (or mobile app selection) to the first detection of pressure again. The second sitting 

context’s time interval is then between this second pressure time and the time when pressure is released 

from the sensor, or the user indicated they left the couch again (ground truth case). Falling back to the seat 

is defined by these events occurring within 10 seconds. In the case of a mobile adult where there is no 

second sitting event, the system uses data from the 10 seconds following when the user left the seat 

(automated case), or indicates they have left the seat in the app, to calculate the probability of a second 

sitting context indicative of difficulty rising. 

https://paperpile.com/c/Oq4qVA/3aOCP
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3.5.5. Data Availability 
 The data used in this manuscript is included in the supplementary files. Data pertaining to the 

mobility impaired experiment is in directories with the name “unhealthy” in it whereas the mobility 

unimpaired directories have the name “healthy”. There are 10 directories with data, 1 for each emulated 

experiment (5 being mobility impaired and 5 mobility unimpaired). 

3.6 CASE STUDY 
Dr. Smith, a family doctor whose patient population primarily consists of older adults has noticed 

that approximately a third of older adults in his practice fall within a 12-month timeframe. Many of these 

fall’s lead to hip fractures followed by death within 1-3 years. As a result, Dr. Smith is highly interested in 

identifying which of his patients are at high risk of falling. In order to identify those at higher risk of falling 

he asks 5 patients that he suspects to be mobility impaired to use a context-aware telemedical smart home 

system (CATS) comprising a smartwatch, indoor positioning system, and smart-chair which can conduct 

common clinical tests that assess fall risk. He also asks 5 patients he suspects to be mobility unimpaired to 

use the system to test whether it can differentiate between the two groups. The system is linked to Dr. 

Smith’s electronic medical records in order to determine which patients are taking more than 4 medications 

(LR+ = 1.9), have had a stroke before (LR+=3.2), or have fallen in the last year (LR+=2.4), as these factors 

also have known LRs for the chance someone over 65 will fall within 12 months [28], [30], [31]. 

 

The system also conducts tests for Parkinson’s by assessing who has difficulty rising from the 

smart-chair (LR+=1.9) and who has fallen in the past, as the lack of a fall history has a positive association 

with Parkinson’s (LR+=3.19) [32]. 

3.7 RESULTS 

3.7.1 Fuzzy Probability Calculations 

 

An illustration of using fuzzy probability with sensor data to determine context probabilities is 

shown in figure 3.2. Here, the maximum pressure on the seat is defined to imply a person is sitting with 

95% probability, reduced from 100% used in the study for the purpose of the illustration. Figure 3.2c and 

3.2f illustrate how the sensor data (3.5a, 3.5d) is multiplied by the membership functions (3.5b, e) to relate 

it to the context of interest and obtain a distribution whose integral represents the probability the context 

occurred (sitting in this case) based on the sensor event. 

 

 

3.7.2 Situation/Context Probabilities 

 

The mean context probabilities for contexts comprising the 3 clinical situations/tests are shown in 

table 3.3. Results are divided based on the two groups, namely the experiments emulating mobility 

impaired and unimpaired adults, and whether the time intervals were determined automatically by the 

system or based on the ground truth events entered by the user in the smartphone application.  For all sets 

of experiments, the entered washroom context had a probability of 1.0 as the IPS always recorded a 

transition to the washroom and only contained living room locations prior to this.  The average gait speed 

for the healthy mobile adult experiments using ground truth time points and automated time points was 

1.09 m/s (sd 0.08 m/s) and 1.01 m/s (sd 0.25 m/s), respectively, and for the  

immobile adult experiments using ground truth time points and automated time points was 0.14 m/s (sd 

0.01 m/s) and 0.24 m/s (sd 0.02 m/s), respectively.  

https://paperpile.com/c/Oq4qVA/alK1o+43kB0+zVAWP
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TABLE 3.3 

Mean Context Probabilities for the Mobile and Immobile Adult Experiments When Automating the 

Time Intervals and Using the Manually Entered Ground Truth Time Points6 

 Difficulty Rising Test Support To Rise Test Gait Speed Test 

Group P(Sit) P(Not Sit) P(Sit 

Again) 

P(Sit) P(Arm 

Rest Use) 

P(Not Sit) P(Sit) P(Not Sit) P(Walked) P(Slow) 

Mobile GT 0.99 (0.02) 1.00 (0.00) 0.01 (0.00) 0.99 (0.02) 0.00 (0.00) 1.00 (0.00) 0.99 (0.02) 1.00 (0.00) 0.95 (0.10) 0.00 (0.00) 

Mobile 

Auto 0.98 (0.00) 1.00 (0.00) 0.02 (0.00) 1.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.98 (0.00) 1.00 (0.00) 1.00 (0.00) 0.20 (0.00) 

Immobile 

GT 0.97 (0.02) 1.00 (0.00) 0.96 (0.02) 0.97 (0.02) 0.80 (0.00) 0.97 (0.01) 0.97 (0.02) 0.97 (0.01) 0.80 (0.08) 1.00 (0.00) 

Immobile 

Auto 0.91 (0.05) 1.00 (0.00) 0.94 (0.03) 0.92 (0.05) 1.00 (0.00) 1.00 (0.00) 0.91 (0.05) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 

7TABLE 3.2 M 

*Probabilities are reported as mean (IQR) and LR are reported as mean (standard deviation) 
EAN SITUATION PROBABILITIES FOR THE CLINICAL 

8TABLE 3.4 

Mean Situation Probabilities for the Clinical Tests and the Resulting Likelihood Ratios9 

 Difficulty Rising (DR) Support to Rise (SR) Slow Gait (SG) 

Group P(DR) P(No DR) LR P(SR) P(No SR) LR P(SG) P(No SG) LR 

Mobile GT 0.01 (0.00) 0.99 (0.02) 0.59 (0.01) 0.00 (0.00) 0.99 (0.02) 0.77 (0.00) 0.00 (0.00) 0.95 (0.08) 0.75 (0.03) 

Mobile Auto 0.02 (0.00) 0.97 (0.00) 0.60 (0.00) 0.00 (0.00) 1.00 (0.00) 0.77 (0.00) 0.20 (0.00) 0.79 (0.00) 0.74 (0.00) 

Immobile GT 0.94 (0.00) 0.04 (0.02) 1.74 (0.01) 0.75 (0.01) 0.19 (0.00) 1.54 (0.03) 0.75 (0.07) 0.00 (0.00) 1.31 (0.13) 

Immobile Auto 0.86 (0.01) 0.05 (0.03) 1.55 (0.02) 0.92 (0.05) 0.00 (0.00) 2.38 (0.66) 0.91 (0.05) 0.00 (0.00) 1.66 (0.17) 

EXP 

*Probabilities are reported as mean (IQR) and LR are reported as mean (standard deviation) 

ERIMENTS WHEN 

3.7.3 Clinical Test/Situation Identification and Adjusted Likelihood Ratios 

 

The individual context probabilities (means listed in 3.2) were used in equation 3.7 to determine the 

clinical test/situation probabilities that were used as inputs in equation 3.17 and 3.18 to calculate the 

adjusted LRs.  Plots of the adjusted LR+ and LR- for the three clinical tests while varying the situational 

uncertainty/probability from 0 to 1 are shown in figure 3.8.  

 

     The mean situation probabilities and the resulting mean adjusted LRs can be seen in table 3.4. 

Again, results are divided based on the 2 sets of experiments and whether the time intervals for the contexts 

were determined automatically or from the events entered by the user on their phone. 

 

3.7.4 Post-Test Probabilities For Fall Risk and Parkinson’s 

 

Table 3.5 summarizes the results for the probabilities of each clinical test occurring and the 

resulting LRs based on these situations probabilities, where the time intervals were determined from the 

ground truth mobile app data. For each user’s clinical test, the LR+ or LR- was selected based on which 

situation had the highest probability of having occurred.  Additionally, elements of the emulated older adult 

participant’s past medical history and their LR for falling in the next 12 months or Parkinson’s are shown 

in the first 4 columns of the table. The second last column of the table is the user’s post-test probability of 
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falling within 12 months determined by multiplying the user’s pre-test odds of falling (1:2) by the fall 

related LRs in the prior columns and then converting these post-test odds to probabilities. The last column 

is the same procedure but for Parkinson's tests. 

Table 3.6 provides the same information, with the difference being that the context and situation 

probabilities were all calculated while using the sensor data to automate the start and end times of the 

contexts.  

     For the one-sided paired Wilcoxon Signed Rank Test investigating whether the post-test 

probabilities of falling were higher in the mobility impaired group relative to the unimpaired group, the 

results were statistically significant when using the ground truth timestamps (p = 0.031) and automated 

time stamps (p = 0.031). The same analysis investigating if the Parkinson’s post-test probabilities were 

higher yielded statistically significant results when using the ground truth timestamps entered by the user (p 

= 0.031) and automated timestamps determined by the system (p = 0.029). No statistically significant 

differences were observed in the analyses of the post-test probabilities obtained using the automated vs 

ground truth time intervals for Parkinson’s and falling within 12 months.  

 
Figure 3.8 Adjusted LRs vs uncertainty level for a) the support to rise fall risk test. b) the slow gait fall risk 

test. c) the difficulty rising Parkinson's test. 

10 

TABLE 3.5 

Adjusted LRs and Post Test probability of Falls/Parkinson’s for Various Users when Using the 

Ground truth Data10 

  

Fall  

 

Parkinson’s 

 

Name 

 

Age 

 

LR meds > 4 

 

LR Past Stroke 

 

LR Fall Last Year 

 

LR slow gait 

 

LR support to rise 

 

Prob (Fall) 

 

LR Fall History 

 

LR Difficulty Rising 

 

Prob 

(Parkinson's) 

John 91 1.90 3.20 2.40 0.77 0.77 0.62 0.65 0.58 0.0076 

Jane 72 0.76 3.20 2.40 0.74 0.77 0.39 0.65 0.58 0.0038 

Henry 82 0.76 0.87 2.40 0.74 0.77 0.15 0.65 0.59 0.0039 

Barry 73 0.76 0.87 0.61 0.77 0.77 0.045 0.65 0.60 0.0039 

Sue 86 0.76 0.87 0.61 0.73 0.77 0.17 3.19 0.58 0.036 

Kathy 90 1.90 3.20 2.40 1.11 1.40 0.93 0.65 1.72 0.022 

Warren 67 0.76 3.20 2.40 1.31 1.37 0.85 0.65 1.73 0.011 
Gary 73 0.76 0.87 2.40 1.42 1.06 0.57 0.65 1.70 0.011 

Sam 71 0.76 0.87 0.61 1.29 1.40 0.3 0.65 1.81 0.012 

Heidi 88 0.76 0.87 0.61 1.43 2.48 0.8 3.19 1.72 0.1 

11TABLE 3.3 SITUATION/TEST PROBABILITIES, ADJUSTED LRS AND POST TEST PROBABILITY OF FALLS FOR VARIOUS USERS 

WHEN USING THE GROUND TRUTH DATA 
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ABLE 3.4 SITUATION/TEST PROBABILITIES, ADJUSTED LRS AND POST TEST PROBA      

TABLE 3.6 

Adjusted LRs and Post Test probability of Falls/Parkinson’s for Various Users when Automatically 

Determining the Contexts/Tests 12 

  

Fall  

 

Parkinson’s 

 

Name 

 

Age 

 

LR meds > 4 

 

LR Past Stroke 

 

LR Fall Last Year 

 

LR slow gait 

 

LR support to rise 

 

Prob (Fall) 

 

LR Fall History 

 

LR Difficulty Rising 

 

Prob 

(Parkinson's) 

John 91 1.90 3.20 2.40 0.74 0.77 0.71 0.65 0.60 0.0079 
Jane 72 0.76 3.20 2.40 0.74 0.77 0.5 0.65 0.60 0.0039 

Henry 82 0.76 0.87 2.40 0.74 0.77 0.21 0.65 0.60 0.0039 
Barry 73 0.76 0.87 0.61 1.92 0.77 0.15 0.65 0.60 0.0039 
Sue 86 0.76 0.87 0.61 0.74 0.77 0.066 3.19 0.61 0.038 

Kathy 90 1.90 3.20 2.40 1.76 2.75 0.98 0.65 1.48 0.019 
Warren 67 0.76 3.20 2.40 1.59 2.09 0.94 0.65 1.56 0.01 
Gary 73 0.76 0.87 2.40 1.79 2.94 0.87 0.65 1.63 0.011 
Sam 71 0.76 0.87 0.61 1.59 2.10 0.51 0.65 1.55 0.01 
Heidi 88 0.76 0.87 0.61 1.56 2.00 0.49 3.19 1.54 0.091 

13T 

3.8 DISCUSSION 

In this section, we discuss each of the central components of the general framework that allow 

sensor data to be mapped to clinical tests and ultimately the probability a user has a condition/disease. First, 

fuzzy probability is discussed, followed by how this is used to obtain context and situation probabilities. 

Next, the way that clinical tests are modeled as situations is described along with the need to adjust LRs 

due to situational uncertainty. Following this, the application of these LRs to determine fall and Parkinson’s 

risk is discussed in the context of the experiments. Lastly, how this forms the general framework is 

described along with some limitations of the framework. 

 

3.8.1 Fuzzy Probability Calculations 

  

 The goal of the present work was to develop a framework for telemedical smart-home systems that 

uses sensor data to quantitatively determine the probability a given user has a certain disease/condition 

(Parkinson’s) or predisposition to a dangerous event (fall). Automatic assessment of older adults physical 

health is a key area that smart-home systems can contribute to. As outlined in Majumder et al’s review, 

many groups have started to build solutions for automatic health assessments [34]. A growing body of 

literature focuses on using stochastic machine learning techniques to determine user’s contexts and 

diagnose patients based on trained models. However, the present work aims to provide a method of 

diagnosing conditions by leveraging standard clinical tools (LRs), context-awareness sensing, and situation 

identification techniques. The motivation behind this is to allow telemedical systems to aid healthcare 

providers in diagnosing patients without requiring manual labeling of data for training learning models. As 

demonstrated in figure 3.2, membership functions are required for this fuzzy probability-based method that 

relates the sensor data to the context of interest. Although the method is deterministic in nature, it assigns 

probabilities for each context to quantify the level of certainty in each context, similar to many stochastic 

ML based approaches. For the sitting context, because low accelerometer values are not guaranteed when 

sitting, we have empirically set the maximum probability of sitting based on low accelerometer readings to 

50%. As seen in equation 3.7, the model relies on sensor events that have a high probability of representing 

the context of interest as any single event with a probability close to 1 will result in a context probability 

close to 1. Thus, the probability that the user is sitting is dominated by the fact that the chair's pressure 

sensor is at a maximum (figure 3.2d-f), which can reasonably be assumed to imply the user is sitting, and 

not solely by the low accelerometer readings (figure 3.2a-c). One contribution of the present work is a 
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methodology that leverages multiple sensors that provide information on a single context while only 

needing one sensor to be reasonably certain about the context to obtain a high probability that it occurred. 

In the future, sensor events of interest and their membership functions will need to be determined in 

coordination with clinical expertise. For instance, in the case of the gait speed test we created a membership 

function that defines a slow gait with 100% probability below the 0.77 m/s threshold studied by Luukinen 

et al. 2 and 0% above this threshold [27]. However, 0.76 m/s and 0.78 m/s likely have similar clinical 

utility for fall prediction. Thus, clinical expertise will be needed to determine the appropriate way to 

transition between slow and normal gaits such that this can be reflected in the membership function relating 

speed to whether one is positive or negative for the slow gait test. 

 

3.8.2 Situation/Context Probabilities  

 Situations are typically defined as collections of contexts that have spatiotemporal relationships 

which can be used to understand more complex events. Here, we have modeled clinical tests as situations 

within spatiotemporally defined context networks, where each context can be inferred from simple sensor 

events. Since certain test conditions must be met prior to performing the test, the difference between being 

positive (LR+) or negative (LR-) for the test is usually a single context or clinical parameter of interest 

(e.g., gait speed). For clinical tests with predefined contexts/conditions, such as gait speed for fall risk 

assessment, the use of specification-based approaches is more appropriate than asking a learned model to 

infer the relationship between the contexts and the outcome. Since the relationship between the parameter 

being measured by the sensors and outcome is known, there is nothing to be learned, especially if the 

relationship between said parameter and the sensor data is obvious. For instance, only measurements of the 

users' distance traversed over a specified time interval are needed to measure self-selected gait speed. Thus, 

we assume that a chair seat that begins to have pressure applied implies the user is sitting and that a change 

in location according to our IPS implies the user has left the chair. Here, the distance from the chair to the 

washroom is known in advance via the home’s floorplan so gait speed is easily determined without learning 

models using the time (and distance) it took to move from the chair to a new room. Evidently, 

specification-based approaches are the logical solution for conducting already known clinical tests that can 

be determined through easily measured contexts. Although various specification-based context-awareness 

techniques exist, to the best of our knowledge, these methods do not return probabilities for contexts which 

makes understanding the true likelihood of a situation/clinical test difficult to determine. A possible 

exception may be the application of Dempster-Shafer theory which returns ranges of probabilities. 

However, various researchers raised issues with its rules for combining evidence, including Zadeh whose 

theory the current approach is based on [36]. Thus, we have developed a specification-based context 

determination model along with fuzzy probability context networks for situation identification in order to 

utilize sensor data to obtain context/situation probabilities. 

 Unlike many stochastic ML based approaches to context determination, the fuzzy probability-based 

method developed in the present work is deterministic in that no models need to be trained which leads to 

the same outcome for a set of inputs to the algorithm. The methodology does provide a probability for each 

context similar to what can be derived from ML methods such as neural networks, random forests, support 

vector machines, etcetera. There are two main advantages to this approach that are worth highlighting. 

Firstly, in order to identify new contexts, one does not need to gather training data, spend time labeling it, 

and then build models. Instead, membership functions need to be paired with sensors that can provide 

information on the likelihood of the context. This is more scalable for adding additional contexts over time 

as it is not practical to collect training data for every user context. A second advantage, which was a 

primary consideration when choosing a deterministic method, was the lack of adoption of ML based 

methods in clinical practice. Issues have been identified within the current evidence-based medicine 

approach to providing care surrounding difficulty justifying decisions to patients when the path between 

their data/circumstances and the decision cannot be clearly identified due to algorithmic complexity [16]-

[18]. Deterministic methods provide a clear and reproducible route between the users’ data and the 
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diagnosis, thus, adoption by healthcare providers should be less problematic, especially when the method is 

paired with standard clinical diagnostic tools such as post-test probabilities derived from LRs of known 

clinical tests. 

 

3.8.3 Clinical Test/Situation Identification And Adjusted Likelihood Ratios 

 Since ground truth data is not available for telemedical systems when human observers are not 

present, and thus whether an event occurred or not cannot be known for certain, it is pivotal that whether a 

clinical event, context, or situation occurs be a probability based on sensor data. Additionally, it is 

important that tests run based on more certain contexts have a higher prognostic value than those run under 

less certain test conditions. This posed an interesting question for how to treat the LRs of clinical 

tests/situations given the conditions of the test cannot be guaranteed in the absence of a human observer. 

We have demonstrated that by considering how patients would be misclassified as a function of the 

probabilistic uncertainty that defines the number of incorrect tests, adjusted LRs for each clinical test can 

be derived. The results are logical as figure 3.7 shows that when there is no uncertainty the LR clinical 

utility/value is equivalent to those measured by clinicians under normal circumstances. Thus, they are at a 

maximum in the case of LR+ and minimum in the case of LR-. As the level of uncertainty approaches 100 

percent, the LR+ ratios decrease and approach 1 while the LR- ratios increase and approach 1. This is also a 

logical result as the test provides no clinical utility or change to the post-test probability when there is no 

certainty it occurred. For the purpose of this work, we assumed that each incorrect test misclassified users 

as positive or negative at equal rates (c = d), however, certain sensor events and situations may misclassify 

users as positive or negative at different rates. Adjusting the LRs also helps reduce false positives in the 

absence of a human-run test, as the clinical utility of a test run by a telemedical system can only be equal to 

or less than that run by a healthcare provider that can ensure the contexts have occurred.   

 

3.8.4 Post-Test Probabilities for Fall Risk And Parkinson’s 

 To demonstrate that the entire system can be automated, we conducted an analysis where the start 

and end time of each context was based on various sensor events instead of the ground truth inputs from the 

users.. The post-test probabilities for falls and Parkinson’s when automating the results (table 3.6) still led 

to significant differences between the mobility impaired and mobility unimpaired groups, demonstrating 

that the system can operate autonomously to identify high and low risk users.  

   As different experiments lead to different sensor PDFs, the clinical test LRs for each experiment (shown 

in table 3.5 and 3.6 for different users) fall at different locations on the adjusted LR curves. By utilizing 

standard clinical tools, namely multiplying the pre-test odds for a condition (given by epidemiological data) 

by the adjusted LRs of validated clinical tests, the system can determine the post-test probability of a user 

having a condition/disease without requiring training data. Each user in table 3.5 and 3.6 has their LRs 

relating to falls multiplied by their pre-test odds to easily determine their post-test odds, and thus post-test 

probability, as seen in the last column. The same logic is applied to determine their post-test odds for 

Parkinson’s, which in this case is only based on the difficulty rising situation and having a history of falls. 

In all mobility impaired experiments, the system correctly identified the arm rest was used to rise and that 

walking was slowed given these experiments are positive for the support to rise and gait speed test. 

Additionally, the probability of having Parkinson’s or falling within 12 months was greater in the mobility 

impaired group to a statistically significant degree, confirming the system could distinguish between the 

two groups/experiments. Integration of telemedical systems with EMRs further enhances the clinical utility 

of the framework by leveraging user’s past medical histories (table columns 3-6), which often have their 

own predictive ability for a condition. In this sense, the system mimics how physicians leverage 

information obtained through medical histories to qualitatively assess the probability of various disease 

outcomes. Thus, the presented framework successfully integrates past medical history (PMH) to make 

clinical decisions. To our knowledge, this is the first general framework to link sensor data acquisition to 



PhD Thesis - Michael Zon McMaster University - Biomedical Engineering 

 68 

the post-test probability of any condition/disease using validated clinical test’s LRs and past medical 

histories. 

 

3.8.5 Context-Aware Telemedical Smart Home Framework 

 Although the fuzzy probability theory presented here is one method of determining context/situation 

probabilities for adjusting LR and calculating post-test probabilities, we have left this out of our general 

framework shown in figure 3.1. Future groups may determine their own specification-based method of 

relating sensor data to context probabilities and thus clinical test/situation probabilities. Thus, the 

framework as presented leaves room for this. However, the clinical test/situation probabilities determined 

after sensor data acquisition and processing can still be used to determine adjusted LRs, calculate post-test 

probabilities for conditions, and set intervention thresholds based on the post-test probabilities. This 

framework represents the crux of what was done in the present work, as senor data was acquired, used to 

determine contexts, translated into situations that represented clinical tests, and then the outcomes of these 

tests were used in conjunction with medical histories to determine the probability of outcomes such as 

Parkinson’s or falling. Generally, when the system is triggered to intervene due to the clinical test 

outcomes/situations, this decision is sent to other applications that interface with the telemedical system 

causing changes to occur, thus making the overall system context aware. As identified by other researchers, 

this autonomic decision-making system’s goal is not to replace medical specialists, but to perform time 

consuming tasks such as regularly conducting these clinical tests so older adults can age at home 

comfortably [37].  

We have separated the roles of specification and learning-based approaches in telemedical systems 

within the framework and identified them as complementary, not competing, techniques. Whereas 

specification-based situation identification techniques are used to conduct clinically validated tests in the 

Apply Clinical Tests module (figure 3.1), as demonstrated in this work, learning-based approaches are used 

to discover new clinical tests (Discover New Tests module) by identifying how contexts obtained by the 

system relate to conditions/diseases. For instance, the system may collect contexts relating to users' typing 

habits and a learning-based approach may discover that slow typing is sensitive and specific for diagnosing 

Parkinson’s. The keyboard stroke example provided in figure 3.1 is based on typing features used in studies 

which have successfully combined keyboard and phone interaction features to obtain a sensitivity and 

specificity of over 70% for Parkinson’s diagnosis in data collected from patients remotely[38]–[40]. As 

systems identify collections of contexts via specification-based approaches, like fuzzy probability theory, 

the relationship between these contexts and the likelihood of having a disease can be determined through 

learning-based approaches like neural networks that use patient outcomes found in EMRs, to relate the 

contexts to various conditions. LRs can then be derived from the tests sensitivity and specificity which can 

be used to adjust the post-test probability that patients have a disease along with the specification-based test 

results. We believe this framework is advantageous as clinicians can easily interpret the test results since 

the specification approach uses currently conducted clinical tests. 

 

3.8.6 Limitations and Future Directions 

 To demonstrate the frameworks use within a practical context, the data was assigned to hypothetical 

older adults with varying medical histories and turned into a case study. In this study, Dr. Smith sent 10 of 

his patients the system, 5 of which were suspected to be mobility impaired. The system was able to conduct 

clinical tests and send Dr. Smith a report on all 10 patients. Dr. Smith was then able to determine which 

patients are at high risk for having Parkinson’s or falling so he could act early to improve his patients’ 

outcomes. This represents the end goal of the system/framework, which is to help healthcare providers pre-

emptively detect possible adverse events and diseases. 

One limitation of this approach is that the LRs used to generate the probabilities for the 

conditions/diseases are assumed to independently predict the outcome of interest, whereas this is likely not 

the case in some scenarios. For instance, although taking 4 meds is likely independent of having a slow 

https://paperpile.com/c/Oq4qVA/43nwT+s3a3i+n9n6D
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gait, there is likely some overlap between those who have a slow gait and those that need support to rise. 

Thus, future work will need to either calculate the joint LRs when patients are positive for potentially 

related tests, only use the test with the highest LR when tests are not believed to be independent or set 

intervention thresholds when multiple potentially related tests are positive. The latter approach is likely best 

and clinical expertise will be needed to determine intervention thresholds that would benefit healthcare 

providers. As an example, Al-Ama recommended a fall intervention program when post-test probabilities 

for a fall within 12 months exceeded 50% in their case study depicting a user who was at risk of falling due 

to self-reported mobility problems and benzodiazepine-use [41]. Future work will aim to pilot the system in 

a retirement home to compare the post-test probabilities determined by the smart-home system in a real 

world setting to those determined by physicians. 

3.9 CONCLUSION 

 Telemedical and smart-home systems for remote monitoring and aging-in-place have become a 

prominent area of research over the last decade due to rapid advancements in IoT technology. However, a 

general model that uses these systems to conduct clinical tests and quantifies the probability patients have a 

given condition has not been well-defined. In the present work, a new specification-based context 

identification technique was developed using fuzzy probability theory to determine the probability a given 

context or situation occurred based on multiple sources of sensor data. Clinical tests with known 

associations (through LRs) with Parkinson’s and falling were then modeled as situations so they could be 

conducted on different participants whose data was obtained within our smart-home system. The 

participants were separated into a mobility impaired and mobility unimpaired group for a case study, and 

assigned past medical histories to show how systems can use this info to further adjust post-test 

probabilities. Through this study, we were able to show that the system could differentiate a high and low 

risk Parkinson’s and falls group.   

    Normally, the results of the clinical tests LR’s would be applied directly to the pre-test odds for the users 

(which were based on epidemiological data) to obtain the probability they have each condition. However, a 

method for reducing the LRs of clinical tests measured by telemedical systems was derived to account for 

probabilistic uncertainty in the test’s conditions/contexts. This is significant as it should allow systems to 

utilize known tests to aid in diagnosis, instead of needing to derive new tests or predict diseases from 

learning based models, which differs from what is done in actual medical practice. . In the future, physician 

guidance will be needed to determine the specific probability for each condition that an intervention should 

be triggered. Additionally, a conservative approach to combining LR’s of different clinical tests may be 

needed as it is possible some tests are not fully independent.  

To our knowledge, this is the first general framework for telemedical systems to use sensor data and 

context-aware computing to conduct clinical tests to quantitatively determine the probability an adult has a 

given condition/disease. Our hope is that this will set the foundation for future work focusing on  providing 

disease probabilities through clinical test automation for healthcare providers using current clinical 

knowledge.  
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Introduction to Chapter 4 

After building the system and developing the general framework, chapter 4 focuses on applying the 

framework to build a context-aware application, meaning an application that adapts based on the measured 

contexts. Although in chapter 3 the general framework includes the system being triggered in response to 

contexts, little emphasis is placed on the context-awareness element of the system. Thus, in the following 

chapter a context-aware emergency system is built to demonstrate the systems use in building context-

aware applications that truly adapt to context. Additionally, it was important to demonstrate the importance 

of context for ruling out false positives and building more intelligent applications. We originally 

understood that a context unaware system would have difficulty differentiating between some benign and 

dangerous heart rates, such as a user with a heart rate of 160 beats per minute due to working out, versus 

having their heart rate elevated to 160 due to an arrythmia. We wanted to demonstrate that by applying 

contexts such as the user’s mobility level, we could prevent the system from falsely triggering an 

emergency alert due to an elevated heart rate that is appropriate for the activity level. It was deemed 

important to formalize this notion of understanding physiological data within its context, thus, chapter 4 

places some emphasis on adapting prior context-aware frameworks to build a context-aware medical 

framework. The emergency system built uses the theory developed in the prior chapter. Namely, the 

situations that define the emergencies are mapped to the spatiotemporal context networks defined in 

chapter 3, where each context is determined using fuzzy probability.  

My contribution was adapting the smart home system to stream and process data in real-time, 

developing the desktop application which allows healthcare providers to adjust the alarm settings, 

designing the experiments that compared the context-aware versus context-unaware alarms, and writing the 

manuscript. Guha Ganesh helped develop the smart home beacons by changing the hardware from 

Raspberry Pi’s to lower cost ESP32s. Dr. Qiyin Fang supervised the study and edited the manuscript. The 

significance of the present work is in demonstrating that context is required to rule out false positives in 

emergency systems, and identifying the need to classify physiological data within its context for context-

aware medical system frameworks. 
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Abstract 

Objective: The objective of the present work is to develop a framework for analyzing physiological 

data from telemedical systems within its context and to use this framework to build an automated 

emergency response system. Methods: A portable smart home system was built that leverages an indoor 

positioning system and smart watch to communicate to a healthcare desktop application where healthcare 

providers can stream patients data, view historical averages, and set emergency alarms. To integrate 

context, emergency scenarios were defined as situations and modeled through temporal context networks 

that identify the events which must occur for a situation to be considered an emergency. Individual contexts 

were determined using fuzzy probability theory and the probability an emergency occurred was determined 

through the probabilities of the individual contexts. Context-aware alarms that considered the time of day, 

location, and activity levels were tested against context-unaware alarms (which do not use activity, 

location, and time) for detecting abnormal bouts of immobility and inappropriately elevated heart rates. 

Experiments were conducted where users increased their heart rate through exercise and emulated sleeping 

at night in order to test the alarms. Results: The context-unaware alarm triggered an emergency when the 

users heart rate was elevated during exercise, and the context-aware alarm was not triggered since the 

active context was detected. The context-unaware alarm triggered while the user emulated sleeping, and the 

context-aware alarm was not triggered because the time of day was within sleeping hours and the location 

of the user was their bedroom. A context-awareness sensing framework for medical systems was developed 

that requires physiological data to be classified according to its context in order to rule out false positives. 

Conclusions: The present work demonstrates how medical data can be classified according to its context 

and how context surrounding physiological data is required to rule out false positives and automate 

emergency systems. Significance: The framework presented represents an important step towards allowing 

telemedical systems to automate tasks for healthcare providers by developing a medical context-awareness 

framework that subcategorizes physiological data according to its context. It also shows how this 

framework can be used to build useful applications such as an emergency alarm system. 
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4.1 INTRODUCTION 

4.1.1 Wearables and Smart Home Technology in Healthcare 

 

Smart home technology is a growing industry projected to penetrate approximately 43.4% - 52.4% 

of homes in North America by 2024 [1]. Although multiple definitions for smart homes have been 

proposed, a smart home is generally considered any home with interconnected devices and services that 

perform actions to improve users’ quality of life [2]. The increased use of smart home technology for 

remote monitoring and diagnosis has led to the advent of the Health Smart Home subsector within the 

smart home space. Health smart homes focus on residents’ health status and include any primary residence 

equipped with communicating devices that control the physical environment, track the residents’ health, 

and monitor their surroundings. [3] To date, the vast majority of medically-oriented smart home research 

has focused on identifying falls/emergencies, activities of daily living, and Parkinson’s in older adults [4]–

[10]. Results from small (n=103) clinical trials using typing data from smart home technologies to detect 

Parkinson’s have been extremely promising, given a reported sensitivity and specificity for Parkinson’s 

diagnosis of 96% and 97%, respectively [11]. This is especially promising given that nearly half (47%) of 

Parkinson's diagnoses made in a primary care setting are incorrect [12]. Parkinson’s diagnoses are likely to 

be smart home technologies’ initial medical success given that tremors which manifest themselves in 

patients’ hands are easily detected by low-cost accelerometers present in wrist-worn smartwatches or 

mobile phones [13]–[15]. The integration of wearable devices within smart home systems, such as the 

smartwatches used in many of these Parkinson’s studies, has paved the way for new medical applications, 

which monitor mobility and patients’ vitals to detect medical anomalies.  For instance, many of the current 

fall-detection systems utilize similar wearable devices that contain accelerometers, barometers, and other 

low-cost sensors to detect falls through sudden drastic changes in elevation [6], [16], [17].  Additionally, 

the WATCH AF clinical trial demonstrated that commercial smartwatches can be used in hospitalized 

patients to detect dangerous arrhythmias, like atrial fibrillation, from PPG data with high sensitivity 

(93.7%), specificity (98.2%) and accuracy (96.1%) [18].  Emergency response systems, however, have had 

less success in automatically detecting similar crises outside of clinical settings, as they lack the necessary 

contextual information surrounding the collected vitals data to automatically detect medical emergencies. 

For instance, without understanding user context, these systems cannot determine whether an abnormally 

high heart rate determined from PPG data is exercise induced or from a dangerous arrhythmia. As a result, 

current emergency systems require users to be able to call for help via a button, which is a less than ideal 

solution in an emergency [19], [20]. 

 

4.1.2 Context-awareness Sensing and Patient-Centered Smart Home Technology 

 

Contextualizing health data within medical applications is pivotal to developing successful 

emergency and telemedical systems. Even the context surrounding basic vitals measurements is key to 

diagnosing conditions such as hypertension, hypovolemia through orthostatic vitals, and arrhythmias. For 

instance, prior to measuring blood pressure (BP), medical professionals ensure that a patient’s prior context 

does not include coffee or cigarette consumption within the previous 30 minutes, and that the patient has 

been sitting for at least 5 minutes. Regardless of whether these conditions are met, the current context, 

namely having one’s blood pressure checked by a physician, is in itself known to raise BP enough to 

warrant naming the phenomenon the White Coat Effect [21]. As a result, hypertension diagnosis most often 

relies upon measurements from outside of a clinic, since the context of the in-clinic measurements is known 

to provide inaccurate readings [22].  

 

Blood pressure is not the only vital that relies on context to provide clinically useful information. 

Heart rates greater than 100 bpm when at rest are considered a risk factor for ischemic stroke (Relative 
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Risk = 2.03) or may be indicative of a dangerous arrhythmia, but is appropriate when exercising.  

Physicians even take advantage of changes in context to make diagnoses, as a change in heart rate greater 

than 30 bpm when transitioning from sitting to standing is considered to be a possible indicator of 

hypovolemia [23]. Without considering context, telemedical systems cannot hope to differentiate between 

abnormal heart rates indicative of arrhythmias or hypovolemia, and an equivalent elevated heart rate due to 

exercise. 

 

Even though physicians regularly assess health data within its current context, there is an 

unfortunate lack of literature on the use of context-awareness sensing, which integrates aspects of the 

person, place, time, and prior events, in telehealth systems [24]. The limited prior research in this area has 

focused on using context to decide when to send medical data to healthcare providers and the application of 

simple thresholds to inform providers when medical data is outside of the physiologically normal range 

[25], [26]. However, prior research has not investigated how intelligent systems can utilize context, such as 

location and time, to correctly subcategorize the same set of vitals/mobility data obtained from telemedical 

systems into normal and dangerous in order to build novel medical applications. Furthermore, the ability of 

context-aware vitals to reduce false positives in these applications, a known issue in new healthcare 

applications due to increased healthcare provider workload, is also unexplored [27]. Presumably, the lack 

of context assigned to data collected via telehealth systems is one reason why no automated emergency 

systems for arrhythmias and falls are available to date, and that current systems usually rely on the user’s 

calling for help. 

 

 
Figure 4.1 Overview of the portable smart home system and the communication between its components.  

4.2 OBJECTIVES  

The present work seeks to develop a framework for how telehealth systems can utilize context-

awareness sensing when assessing physiological data to build novel medical applications (i.e. automated 

emergency systems), make context-dependent diagnoses, and reduce false positive alerts. First, we update 
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Musamba and Nyongesa’s context-aware computing framework with a healthcare-specific component that 

subcategorizes physiological data according to its context [28]. Next, we utilize this framework to 

categorize mobility and heart rate data from a programmed smartwatch according to the contexts of room 

location, activity levels, and the time of day, provided from our indoor positioning system. Fuzzy 

probability and spatiotemporal context networks are then used to model dangerous vs. benign cardiac and 

mobility data, and demonstrate how context is needed to differentiate correct and incorrect medical 

decisions from the same physiological data within the emergency response system presented here. These 

context-informed decisions allow us to build an automated medical emergency system that does not rely on 

user input to identify emergencies and can be updated in real-time by healthcare providers through a cloud-

based IoT infrastructure.  

4.3 MATERIALS AND METHODS 

4.3.1 System Architecture and Overview 

The primary components of the system are a programmable Android-based smartwatch, ESP32 

microcontrollers, a Raspberry Pi computer, a central server for processing the data, and a NoSQL cloud 

database for hosting the data. An overview of the system’s architecture and the interaction between its 

various components is presented in Figure 4.1. The smartwatch sensors collect medically relevant data 

from the patient (mobility and heart rate) and emit bluetooth signals to the ESP32 microcontrollers. The 

ESP32 microcontroller then sends the bluetooth relative signal strength indicator (RSSI) to a master ESP32 

using the ESP now protocol. The master ESP32 then sends this information to a Wifi-enabled Rasberry Pi, 

which determines the users’ position and uploads it to a cloud database. One ESP32 computer is present in 

each room in order to determine whether a patient is located in that room based on the maximum received 

signal strength index (through RSSI) among the devices at each point in time.  

 

  

Figure 4.2 Healthcare application. a) Historical health data and patient look-up. b) Patient message center. 

c) Watch receiving a message from the patient message center. d) Tab to input emergency alert settings. e) 

Real-time data streaming 11 
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Sensor data is uploaded to a cloud database through Wi-Fi via the smartwatch, with the exception of 

the users’ room location, which is uploaded through Wi-Fi via the Raspberry Pi. The central server code 

running on a computer reads the cloud data for each patient every 15 seconds, computes historical averages 

for each patient (e.g mean heart rate in the last 24 hours), and writes the results into the cloud database. 

Healthcare providers can stream sensor data in real-time, view a patient’s historical averages, or send 

messages to a chosen user's smartwatch through a standalone desktop application that reads/writes to the 

cloud database (Figure 4.2). Each context-aware medical application is present as a different tab within the 

healthcare provider’s app. Input provided by the applications’ users is used to inform the conditions under 

which the server code detects an emergency (e.g what heart rate to trigger an emergency), communicate 

with the patient’s watch, or trigger another component of the smart home system. Technical details 

regarding the hardware/software implementation, and how users are automatically registered within the 

system through the watch application, can be found in the appendix at the end of the present work.  

 

4.3.2 Spatiotemporal Context Networks for Dangerous Cardiac Events and Fuzzy Probability 

 

In order to categorize the physiological data according to context, fuzzy probability theory was used 

to determine the probability that users were in the resting vs. active state and normal vs. tachycardic state. 

The discrete fuzzy function describing the active vs. resting state as a function of the smartwatches’ step 

count data is shown in Figure 4.3a). No steps recorded is assumed to imply a resting state, whereas steps 

being recorded implies an active state. The fuzzy function describing the immobile vs not immobile state as 

a function of accelerometer readings is shown in 4.3b. Accelerometer readings at less then 0.1 m/s2 is 

assumed to imply immobility. Lastly, the tachycardic state as a function of heart rate is shown in Figure 

4.3c, where a heart rate over 100 beats per minute is defined as tachycardic in accordance with standard 

clinical guidelines. Using Zadeh’s fuzzy probability theory, the probability that a user is in a given context 

at a given time period is determined through the integral of the product of the probability density function 

(PDF) representing the physiological data and the fuzzy function describing the relationship between this 

data and the contexts that can be predicted with it. 

 

 
Figure 4.3 a) Membership function for activity level versus step count rate. b) Membership function for 

immobile or not immobile versus accelerometer readings. c) Membership function for bradycardia and 

tachycardia versus PPG readings. 12 

 

𝑃(𝑋𝑖 = 𝐶𝑗)𝑠
𝑖′∆𝑡𝑗

=  ∫ 𝜇𝑐𝑖𝑗
(𝑥) 

∞

−∞
⋅  𝑠𝑖(𝑥)∆𝑡𝑗

⋅  𝑑𝑥  Equation 4.1 

 

Where 𝑋𝑖 is the random variable describing the outputs for sensor 𝑠𝑖 that is mapped to the context 𝐶𝑗 

by the membership function 𝜇𝑐𝑖𝑗
, and ∆𝑡𝑗 is the time over which the data was collected for context 𝑗.  
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For instance, if the smartwatch records a heart rate over 100 bpm, then the fuzzy function in 4.3c 

describes the data as tachycardic. If the smartwatch only records heart rates over 100 bpm over a given 

period of time, then the integration of the multiplication of the PDF of heart rates and fuzzy function will 

lead to a 100% probability of the tachycardia context for the user in this period. Step count and raw 

accelerometer readings are used with the fuzzy functions in Figure 4.3a and 4.3b in the same manner to 

determine the probability that the user is active, resting, or immobile.  

 

The emergency situations can be modeled through context networks as shown in Figure 4.4. The 

probability of the situation being an emergency is a simple multiplication of the probability of the contexts 

in the network having occurred in the order specified by the context network within the time of day the 

contexts are relevant, as shown on the vertical time axis. For instance, in Figure 4.4a, the probability of an 

abnormal tachycardic event is the probability that the user was not active at any point in the day and that 

their heart rate was above 100 bpm during this same time period. The exact length of time that the inactive 

and elevated heart rate context need to occur for can be varied by healthcare providers within the desktop 

application (Figure 4.2d). The situation in 4.4b models an emergency detected due to an abnormal bout of 

immobility outside of sleeping hours. Lastly, 4.4c and 4.4d monitor for abnormal heart rates during sleep. 

More details on using sensor data to determine contexts and situation probabilities can be found in our prior 

work (see Chapter 3) 
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4.3.3 Context-Aware Emergency Alert System Implementation 

 

 

 
Figure 4.4 Situation networks for emergency alarms. a) General tachycardia alarm. b) Immobility alarm. c) 

Alarm for elevated heart rate during sleep. d) Alarm for abnormally low heart rate during sleep. 13 

 

The emergency alert system uses the smartwatches’ inertial measurement unit (accelerometer, 

gyroscope, and magnetometer) and optical PPG sensor to monitor the users’ mobility and heart rate, 

respectively. Bradycardia, tachycardia, and complete immobility are considered dangerous events that 

trigger the emergency system. After a username and password are entered by a study participant during the 

watch application’s start-up procedure, the user is registered within the database’s emergency section. 

Healthcare providers have control over the parameters shown in Figure 4.2d, which dictate if a situation is 

an emergency. More specifically, the minimum and maximum allowable heart rate, how long the user’s 

heart rate can be above or below these thresholds, how long a user can be immobile, and what locations and 

times of day these conditions are considered abnormal are set by health care providers 

(HCP)/administrators through the desktop application. These settings are then sent to the cloud database 

and stored as emergency conditions for the chosen user. Whether both heart rate and immobility 

abnormalities must be present, or one will suffice, and whether the system should trigger based on 

complete immobility or a lack of walking are also set through the desktop application (fig 4.5a mobility 

status column). After the alarm conditions are set, the user’s smartwatch reads these settings from the 

database and constantly samples its inertial measurement unit and PPG sensor to calculate the probability 
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of the activity, mobility, and tachycardic/bradycardic contexts (Figure 4.3 and equation 4.1) to see if the 

situation has occurred with 100% probability (i.e. all contexts have data above or below the threshold for 

the time specified). If the conditions set within the desktop application are met and thus confirm that the 

situation has occurred, the watch sends an emergency alert to the patient’s subsection of the cloud database, 

which is then received by the central server code. The server then checks the context of this emergency 

alert by determining whether the current room location and time of day match the conditions set by the 

HCP for that alarm. If the patient is in the room associated with the alarm at the correct time, an emergency 

notification is sent to the cloud database which is subsequently read by both the desktop app and the 

patient’s smartwatch (Figure 4.5b). The patient is notified via the smartwatch that help is on the way and 

asked to confirm whether they need help or this is a false alarm (Figure 4.5c). If they select the false alarm 

option, the response is written to the cloud database, and the desktop app is informed that the patient has 

deemed the emergency a false alarm (Figure 4.5d).  

 
 

Figure 4.5 a) Emergency alert settings for the alarms based on mobility status. b) Alarm being triggered 

based on location, immobility, time of day, and heart rate requirements being met. c) Patient’s watch being 

prompted for feedback to inform them of the alright and confirm if it is an emergency. d) Response from 

patient being relayed to the healthcare provider via the desktop application. Note that the check-boxed 

alarms are the context-unaware ones used on one of the watches and the unchecked alarms are the context-

aware alarms set on the other watch. 14 

 

4.3.4 Validation of Context Requirements for Automated Emergency Systems 

Emergency alarms were programmed on the watches through the context-aware emergency system 

in the desktop application. Alarms without context provided by user location, mobility status, and time of 

day were tested against alarms that utilized context, specifically those shown in Figure 4.4c and 4.4d, in 

order to validate the requirement of context in automating emergency alert systems. First, a context-

unaware watch was set with an emergency alarm that was programmed to trigger in any room where heart 

rate falls below 60 (bradycardia), or above 100 (tachycardia) and is sustained for at least 1 minute (Figure 
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4.5a, first row). The participant then wore a second context-aware watch, which had an alarm set to trigger 

on the same heart rate conditions, but to avoid being triggered if the active state was recognized (figure 

4.4a, requirement for rest,  alarm set in second row of figure 4.5d). The participant was then asked to 

exercise by jogging for 2 minutes. Next, the context-unaware watch was set to trigger on abnormal bouts of 

complete immobility lasting over 1 hour (Figure 4.5d, row 3). The context-aware watch was then set to 

trigger on the same long bouts of immobility, but not in the bedroom nor between the hours of 11 p.m. and 

8 a.m. when the participant sleeps (Figure 4.4b; setting shown in Figure 4.5d, row 4). The participant was 

then asked to sleep with the watches on. The tachycardia and bradycardia night time alarms (Figure 4.4c 

and 4.4d) were also programmed onto the context-aware watch (settings shown in row 5 of 4.5d). However, 

this was just to illustrate the situation networks could be programmed through the application as artificially 

raising or lowering the users heart rate without activity level changes would require pharmacological 

intervention. 

 
Figure 4.6 Realtime streaming data for a participant. a) Heart rate at rest. b) Heart rate going from rest to a 

jogging state. c) Heart rate when going from rest to jogging and back to rest, followed by the watch being 

removed. d) Step count changes over 100 seconds of the jogging period. 15 

4.4 RESULTS 

4.4.1 Real-time Data Streaming 

 

The location, heart rate, and step count results for a user during the emergency alarm testing can be 

seen in Figure 4.6. Figure 4.6a-c shows the participants’ heart rate when going from rest, to jogging, and 

then back to rest. Figures 4.6d shows the participants’ step count over the jogging period. The participants’ 

removal of the smartwatch was noted by the system, as can be seen by the OFF_body status in Figure 4.6c.  

 

4.4.2 Context-Aware Vitals Framework 
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The context-aware vitals framework, which is an expansion on Bardram and Hansen’s work, [29] 

put into a flow diagram by Musumba and Nyongesa, [28] is shown in Figure 4.7. The general framework 

section represents elements that are similar across general context-aware frameworks taken from Musumba 

and Nyongesa’s diagram. The middle section, labeled context-aware medical systems, is unique to medical 

applications of context-aware systems. To start, sensors – such as the smartwatch and indoor position 

system present in this work, collect data such as heart rate, accelerometer, and position readings. Next, this 

data is used to calculate features (e.g steps from the accelerometer data). After this, the data is used to 

understand the users’ context. The medical data is then subcategorized according to the context it was 

collected in, to conduct clinical tests that require certain contexts to be met. For instance, as in this work, 

abnormally high heart rates are assessed in a resting context to rule out sinus tachycardia. Lastly, the 

outcome of the clinical tests are used to understand the users' relative risk or post-test probabilities for 

conditions via likelihood ratios and inputted into applications which make decisions based on the findings 

from the users. An illustration of the aforementioned process of determining post-test probabilities based on 

contexts and sensor data can be found in our prior work (see Chapter 3). 

 
Figure 4.7 Context-aware medical systems framework.16 

4.4.3 Context-Aware Emergency Alert System 

 

Results from the trial with the context-unaware and context-aware alarms that triggered on 

bradycardia or tachycardia are shown in Figure 4.8. After 1 minute of  sinus tachycardia during the active 

state, the context-unaware alarm was triggered (Figure 4.8a), whereas the context-aware alarm on the other 

arm that does not trigger during the active state was not triggered (Figure 4.8b). The results of the second 

set of alarms, that triggered on complete immobility, are shown in Figure 4.8c and 4.8d. The context-

unaware alarm (Figure 4.8c) triggered after 1 hour of immobility, thus interrupting the participants’ rest. 

The context-aware alarm did not trigger in the same setting, as the location of the user was the bedroom 

(Figure 4.8d). 

https://paperpile.com/c/ZmplDM/6jjH
https://paperpile.com/c/ZmplDM/Dtna
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Figure 4.8 Context-aware vs context-unaware alarms. a) context-unaware alarm triggering on sinus 

tachycardia. b) context-aware alarm not triggering on sinus tachycardia c) context-unaware alarm triggering 

on immobility in the bedroom at night. d) context-aware alarm not triggering in the bedroom at night (same 

data as c). 17 

4.5 DISCUSSION 

4.5.1 Principal Findings 

The present work focused on adding medical system-specific considerations to previous 

frameworks for context-aware systems and demonstrated the application of the modified framework to 

developing emergency systems that are better able to rule out false positives using contextual data. This 

framework is an expansion of Musumba and Nyongesa’s work with an additional consideration for medical 

systems where physiological data is classified according to its context [28]. In this framework, sensor data 

is used to calculate different features, which are then used to determine the contexts. As an example, 

the accelerometer data of the smartwatch may be used to determine the step count feature, which is then 

used to determine whether the person is at rest or is mobile. In the general non-medical context-aware 

framework shown in Musumba and Nyongesa’s work, the contexts are sent to a context provision module, 

which then gives the context to the correct applications so they can make decisions accordingly. In the 

medical context-aware framework, there is an extra step where the sensors collecting physiological data 

need to have their data classified based on the context it was measured in. This is because the normality of 

physiological parameters varies within a given context, which necessitates classifying them based on the 

context they are measured in. For instance, without knowing if a user is active or not it is inappropriate to 

classify an elevated heart rate as abnormal or benign (e.g. exercise-induced sinus tachycardia). 

Additionally, during many clinical tests, physicians use physiological changes during context changes to 

assess a patient's health. As an example, orthostatic vitals are measured by asking the user to transition 

from a sitting context to a standing context and are used to assess possible hypovolemia due to 

https://paperpile.com/c/ZmplDM/Dtna
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gastrointestinal bleeds or other causes [30]. Given that medical practitioners assess physiological data both 

within a given context and when context changes occur, the context-aware medical framework has been 

adjusted to reflect this healthcare specific consideration.  

To demonstrate how this framework can be useful we built a context-aware emergency system into 

our health smart home desktop application that can be programmed by healthcare providers to trigger on 

certain context conditions. The general context-aware smart home application contains a tab for looking at 

historical data (Figure 4.2a), real-time data streaming (Figure 4.6), sending messages to the patients’ watch 

(Figure 4.2c), and programming context-aware alarms (Figure 4.5a). Each tab represents an application that 

may or may not utilize context. For the present work we added an alarm system that does utilize context to 

allow healthcare providers to trigger alarms that look for abnormal mobility or heart rates while considering 

the users’ location, time of day, and activity levels. To demonstrate the usefulness of this in ruling out false 

positives, we compared alarms set on a context-unaware and context-aware watch, worn simultaneously by 

a user. The first set of alarms was programmed to identify abnormally high heart rates. As shown in Figure 

4.8a, the context-unaware alarm mistakes sinus tachycardia due to exercise as a dangerous event. However, 

the context-aware alarm (Figure 4.8b) is able to rule out this false positive by considering that the user is 

active and thus the heart rate is appropriately elevated. In the future, additional parameters can be added so 

that abnormal heart rates (HR) are triggered if the HR surpasses what is expected for each activity level. 

The second set of alarms focused on identifying abnormal bouts of immobility lasting over 1 hour, which 

could be due to several events, such as an undetected fall or inability to get up from a given position. 

Again, the context-unaware alarm was unable to rule out normal situations such as a user sleeping in a 

bedroom (Figure 4.8c). In contrast, the context-aware alarm (Figure 4.8d) was able to rule out this benign 

situation by considering the time of day (daytime hours) and location (not bedroom) in which the alarm 

should trigger.   

 

We hypothesize that lack of context within emergency alert systems is likely why, to our 

knowledge, no automated emergency alert system like the one presented in this work exists to date. As a 

result, current systems require users to call for help, which may not be possible during a medical 

emergency. Considering context allows systems to differentiate normal and abnormal medical data that 

would otherwise appear the same to telemedical systems, thus allowing us to build an automated 

emergency system.  Low-cost automated systems are a necessity as manually spot-checking vitals is not a 

practical alternative. This is evident given that postoperative hypotension after abdominal surgery is missed 

in about half of the total cases in general hospital wards and mortality in these wards from cardiorespiratory 

events is significantly worse (40% mortality) than in ICUs where vitals are automatically monitored by 

expensive equipment [31], [32]. Thus, successful integration of automated context-aware emergency 

systems within hospitals holds great promise for improving patient outcomes. 

4.6 CONCLUSIONS 

As IoT technology becomes more ubiquitous, the cost and complexity of IoT systems has decreased 

such that remote monitoring smart home systems can be compact, affordable and simple enough to be 

installed independently by the average consumer. The portable smart home system developed in the present 

work can be installed by older adults in a matter of minutes and is a cost effective (~$150 watch plus $50 

Raspberry Pi and $20 beacons for each room) smart home solution that only relies on open-source 

electronic devices to reach a price point comparable to most consumer electronics. By uploading user data 

to cloud databases through Wi-Fi, sensor data from multiple patients containing mobility, heart rate, and 

location can be remotely viewed by HCPs in real-time. Additionally, by transmitting Bluetooth signals 

from wearable devices, users’ locations within buildings can be ascertained and used to assign context to 

their medical data. We demonstrate the necessity for context by showing that automated emergency 

https://paperpile.com/c/ZmplDM/btLp
https://paperpile.com/c/ZmplDM/Hv2fp+DjHnQ
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systems need basic contextual information such as location, activity, and time of day to rule out many false 

positives. We also created a context-aware medical systems framework by updating past general 

frameworks, so that physiological data can be differentiated according to its context, as is required for the 

context-aware emergency system presented here and for various context-dependent diagnoses. Future work 

will aim to pilot our context-aware emergency system in an assisted living facility or hospital to detect 

medical emergencies.  

Appendix 

The smartwatch code was developed in Java (AndroidStudio version 4.0.1) and executed on a 

Ticwatch (Mobvoi, Ticwatch s2). During the watch application’s start-up procedure (Figure 4.3a), a 

username is requested which is used to create a new patient entry within Google’s NoSQL Cloud Firestore 

database. The information requested at start-up (username, password, age, weight and height) , along with 

the sensor data, is then stored in the users’ subsection of the applications database. Within the app, the 

username is converted to a unique UUID and then the first 4 bytes (8 characters) of this UUID are replaced 

with a fixed character sequence. The final UUID (fixed plus unique part) is broadcasted over Bluetooth 

from the smartwatch, and thn Python code (version 3.7) on the ESP32s present in each room of the home 

searches for the fixed character sequence. When the character sequence is found by the ESP32, the received 

signal strength indicator (RSSI) of the Bluetooth parcel containing the fixed and unique sequence is 

recorded and sent to the ESP32 connected to the Raspberry Pi. The Raspberry Pi then uses the unique part 

of the UUID to upload the RSSI value to the patient’s data collection within the cloud database, and a 

“room_location” parameter in the Raspberry Pi python code ensures the signal of each ESP32 is associated 

with the correct room. This “room_location” parameter (e.g room_location = kitchen) is the only thing 

unique between the ESP32s and dictates which rooms’ outlet the ESP32 is plugged into. Bluetooth signals 

are sampled at 1 Hz on the ESP32 and data is uploaded to the cloud every 5 seconds. The remaining data, 

namely the accelerometer, gyroscope, heart rate, step count, step detector, and off-body detector data, is 

collected on the watch and uploaded to Cloud Firestore every 15 seconds. All data points collected by the 

sensors and uploaded by the watch or Pi to the cloud are uploaded with an associated epoch timestamp. 

Server-side code written in Python runs continuously on a central computer and uses the RSSI values from 

the ESP32s located throughout the patients’ home to determine which room users are located in. The final 

room location, and historical averages computed by the server, is uploaded to the cloud database for use in 

the desktop executable app developed using PyQt5.  
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Introduction to Chapter 5 

After identifying significant medical contexts, using them to build a context-aware medical system 

and framework for safe aging in place, and demonstrating its use in a context-aware (emergency) 

application, the final objective was to evaluate the system in data collected from older adults. The goal was 

to demonstrate that the system is viable in a small study population and that it can be used to identify some 

clinically relevant situations and behaviours in older adults. To do this, the system was sent to 6 

participants who used the system for 1 month or more. Data from the system was used to calculate the 

average probability, and accuracy, for several contexts and these contexts were then used to build 

situations. Additionally, a sub analysis was conducted on 2 older adults living in the same home to 

demonstrate that information pertaining to how they spend time in their home, and when they may be 

located in rooms together, can be determined. The fuzzy probability approach to context determination 

derived in chapter 3 (and used in chapter 4) is utilized to demonstrate it can successfully be used on data 

acquired from older adults with the system. Given a future direction of work is to test the hypothesis that 

wandering behaviour exhibited by older adults within their home can be indicative of cognitive decline, one 

of the situations of interest was whether we could capture transitions between rooms in the home. 

Additionally, whether users are starting or ending their day was investigated as this may represent a useful 

time to que older adults to take their medications.  

 

 My contribution was building the systems sent to participants, writing the REB application, 

enlisting participants, identifying useful contexts that can be obtained from the system, and writing the R 

code that processed and analyzed the study data. Guha Ganesh helped build the systems hardware and 

designed the plastic enclosures that housed the hardware. Ishita Paliwal helped enroll and obtain consent 

from participants. Dr. Qiyin Fang supervised the study, coordinated with Age-Well/Mira to recruit 

participants, and reviewed the manuscript. The significance of the present work is in demonstrating that the 

smart home system and theory described in this thesis can be used to autonomously determine some simple 

but clinically useful contexts without the need for ground truth data. 
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Autonomous Context Detection for Safe Aging in Place using 

Fuzzy Probability and Context-Aware Smart Home Technology 
  
Michael Zon1,2, Guha Ganesh1, Qiying Fang1,3 
1McMaster University, School of Biomedical Engineering, Hamilton, ON, 
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ABSTRACT 

 

Objective: Machine learning based context/activity recognition within older adults homes has been 

a prominent area of research given the amount that can be understood about one's health from their activity 

levels and their proficiency in completing activities of daily living. However, manually labeling datasets to 

build activity recognition models is time consuming and impractical for each new environment of interest. 

The present work seeks to validate a context detection method within older adults homes which does not 

rely on training data. Methods: A smart home system built in a lab consisting of an indoor positioning 

system and smartwatch was sent to multiple older adults. Mobility data from the smartwatch and 

location/motion sensing data from the smart home devices was analyzed using fuzzy probability to 

determine contexts autonomously. The system's accuracy for detecting contexts, and situations composed 

of those contexts, was determined by investigating its ability to successfully measure contexts in 

circumstances where that context could reasonably be assumed to have occurred based on other sensor 

events. Results: The accuracy (acc) for measuring the contexts and probability (prob) they occurred was 

assessed. These contexts were walking/mobile (acc 100%, prob 1.0), resting/immobile (acc 100%, prob 

0.99), being present in a room (acc 71%, prob 0.84), arriving in a new room (acc 92%, prob 0.96), and 

equipping the watch in the morning (acc 100%, prob 1.0). The situations that were assessed based on these 

contexts were users' room transitions (74% accuracy, prob 0.8), resting in a room (acc 79%, prob 0.78), 

starting the day (acc 96%, prob 1.0), ending the day (acc 91%, prob 1.0), and sleep/resting duration over 

night (acc 89%, prob 1.0).  Conclusions: The present work demonstrates that certain contexts and activities 

can be determined autonomously through specification-based approaches without requiring ground truth 

data to train machine learning models. Significance: Determining contexts autonomously will allow 

researchers to detect activities/contexts in new environments without collecting training data, which is 

likely required to implement remote monitoring systems in older adults homes to promote safe aging in 

place. High certainty autonomously determined contexts may also be used as the ground truth for training 

machine learning models so that learning based approaches can be applied in new environments without 

requiring ground truth data collection.  
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5.1 INTRODUCTION 

 

Throughout the globe, increases in life expectancy are leading to increased healthcare costs for first 

world nations given the larger percentage of older adults with chronic conditions requiring care [1]–[3]. In 

addition to the desire of older adults to live independently at home, living in retirement homes is costly for 

both healthcare systems and patients [4]. For these two reasons, there has been a large emphasis on taking 

actions which will prolong the amount of time older adults can live independently at home. Unfortunately, 

it is impractical to regularly visit and assess each older adult at their home to pre-emptively detect declines 

in mobility and diagnose/prevent diseases. However, as demonstrated by Musich et al.,  who showed 

reduced costs from patients who did receive regular health screenings, pre-emptive detection of mobility 

decline/disease and prevention efforts is pivotal for decreasing healthcare costs [5]. To this end, much 

attention has been given to smart home systems. These systems can persist within older adult homes to 

regularly assess their health and mobility status similar to regular screening programs, and facilitate early 

intervention when problems are detected [6]–[8]. Additionally, many systems have focused on using 

Markov models or machine learning to recognize activities of daily living via training data and understand 

which adults are at risk for events like falls based on activity decline [9], [10]. Given the strong link 

between in home location and the specific activity a user is conducting, a major component of many of 

these remote monitoring systems has been indoor positioning detection through either Wi-Fi, BLE, of 

RFID tagging of the user [11], [12].  

 

Although much progress has been made towards telemedical remote monitoring smart home 

systems, there are still several challenges for these systems to provide useful data so they can be adopted by 

users and healthcare providers. For one, ease of use and simple setup for older adults is pivotal for 

adoption, yet many systems require older adults to interact with hardware or software they may be 

unfamiliar with.[13] Another issue is the reliance on ground truth data to build machine learning models to 

predict activities/contexts. Many groups collect data over a period of time and require someone to annotate 

the data to then build models which can predict activities from future data [9], [10].  However, this is an 

impractical approach given that there is no guarantee that the models will extrapolate to data from a 

different user in a different building with the same accuracy, and there are too many total activities to label 

data for each one. Thus, a method of automatically detecting contexts/activities without ground truth data is 

needed. Lastly, although an increasing number of systems have started to discuss context-awareness, many 

of these remote monitoring applications still do not leverage contextual data [14]. This is problematic given 

that physiological parameters have different meanings within different contexts, which must be understood 

to correctly inform medical decisions. For instance, a heart rate of 160 BPM can either indicate a user is 

exercising at 6 pm, which may be obvious if their location context is a local gym, or it could indicate a 

dangerous arrhythmia if they are stationary in their bed at 4 a.m.  

 

The objective of the present work is to build a context-aware remote monitoring system that is easy 

for older adults to use, can detect activities without requiring ground truth data, and leverages context to 

better understand the meaning of user data. First, we built a plug and play indoor positioning system, paired 

with a smartwatch, that can be sent to older adults and installed without assistance to obtain 

mobility/physiological data. We then built and tested a remote calibration procedure with older adults to 

obtain room level localization so we could understand user’s contexts within their home. Next, we 

demonstrate the validity of this approach by testing its accuracy on some ground truth location data in the 

older adults’ homes. Lastly, we analyze the users smartwatch and location data using fuzzy probability to 

understand their context without ground truth data [15]. Early results for detecting contexts and situations 

(which are collections of contexts) autonomously using the system are then shown to demonstrate the 

practicality of determining contexts autonomously. 
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5.2 METHODS 

5.2.1 System Architecture 

 

A smart home system was built and shipped to older adults who then set up the system in their 

home. A full description of the hardware and software for the system can be found in our past works (see 

Chapter 3). Briefly, the hardware of the system consists of ESP32 based beacons that are placed in multiple 

rooms, a programmed android smartwatch, and a Raspberry Pi. Each ESP32 beacon is connected to a 

humidity, ultrasonic, passive infrared, and photoelectric sensor, and then relays data from these sensors to a 

master ESP32. Additionally, Bluetooth signals from the user's smartwatch are collected by the ESP32 

beacons and sent to the master ESP32. This master ESP32 then relays the data through a serial connection 

to a Wi-Fi enabled Raspberry Pi computer which then stores the data locally and uploads the data to a cloud 

database (Google Cloud Firestore). The smartwatch was a TicWatch S2 and custom software was 

developed in Android Studio that broadcasts Bluetooth signals and stores accelerometer, gyroscope, heart 

rate, and step count data locally. 

 

5.2.2 Pilot Study Details 

 

To assess the feasibility of the system a longitudinal study was carried out on a small number of 

older adults. The only eligibility criteria was that older adults were 60 years of age or older and spoke 

English. The study was approved by the Hamilton Integrated Research Ethics Board and participants' 

verbal consent was provided before sending them the systems. Participants were asked which rooms they 

would permit having a beacon in, and access was requested for the kitchen, living room, master bedroom, 

and master washroom. For homes with 2 stories, beacons were always situated on both the main and 

upstairs floor. Setup instructions were included with the system, and aside from this the team was not 

involved in setup. The instructions asked participants to plug the beacons into specific rooms, to wear the 

smartwatch throughout the day with the custom application we developed turned on, and to plug the 

ethernet cable from the Raspberry Pi into their router in order to provide the system with internet 

connectivity. The full Research Ethics Board protocol describing the study details, setup procedure, 

consent, and devices is attached to the appendix of this thesis. 

 

5.2.3 System Control and Calibration 

 

In order to adjust the parameters of the system, cloud functions on the python code controlling the 

system would listen to cloud directories for changes to file parameters. This allowed for remote rebooting 

of the system and increasing the frequency that the system writes data to the cloud. To calibrate the system, 

participants were called and instructed to stand in 3 positions within each room in their home. These 

positions were the middle of the room, midway between the room's middle and an entrance, and at the 

location they are most frequently located within that room. A remote calibration script was written in 

python that reads the relative signal strength indicator (RSSI) values each beacon is receiving from the 

watch, and then stores these values for the user's location at each position. The result of this was a set of 

files that represent the signal strength that each beacon receives while the user is in multiple positions 

within each room in their home. Note that data is collected for rooms that do not have beacons in order to 

detect user location in all rooms as opposed to just those that contain beacons.  

 

The Bluetooth low energy (BLE) data collected during calibration was used to determine the user’s 

location throughout the duration of the study. Let 𝐶𝑝,𝑖 represent the RSSI strength at a calibration point 𝑝 in 

some room, from beacon 𝑖. Let 𝑆(𝑡)𝑖 be the RSSI strength of a point during the study at time 𝑡 for beacon 𝑖. 
In order to figure out the room 𝑟 that the user is in at a given point of time based on the signals from each 
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beacon, the Euclidean distance from each calibration point at each point in time is determined. Then, the 

current room is taken to be the room that the calibration point with the minimum Euclidean distance from 

the current RSSI readings was obtained in. More precisely, we obtain 𝐿(𝑝, 𝑡) representing the Euclidean 

distance from the users current position at time 𝑡 to each calibration point 𝑝 for the 𝑁 calibration points and 
𝑀 beacons (in a home) as follows 

 

𝐿𝑝(𝑡)  =  ∑  𝑀
𝑖=1 √(𝑆(𝑡)𝑖  −  𝐶𝑝,𝑖)2     Equation 5.1 

 

Then, 𝐿(𝑡)  = 𝑚𝑖𝑛𝑝 ∑  𝑁
𝑝=1 𝐿𝑝(𝑡)  gives the location of the user at time 𝑡. Since multiple calibration 

points 𝑝 are gathered within each room, but for the purposes of this study only the specific room they are in 

is of interest, the room 𝑟 that point 𝑝 was collected in is assumed to be the user’s location at time 𝑡. 

 

5.2.4 Calibration Data Validation 

 

In order to test whether the calibration data could accurately predict the room users were situated in, 

we used ground truth data where the user’s location was known to determine the accuracy that the right 

room was selected. More specifically, we removed each calibration point and calculated the user's location 

with the remaining calibration points. We assessed the average accuracy of the system in selecting the 

correct room for the subset of rooms that had beacons, and the subset of rooms without beacons, in order to 

see if results varied drastically based on the presence of a beacon. 

The calculation of location is based on the method described in 5.2.3, and the percent of locations 

that were correctly determined were calculated for 4 different homes that the 6 participants lived in. The 

total rooms in each home, and which ones had a beacon, can be seen in table 5.1. Additionally, the signal 

strength of beacons near the smartwatch were compared to those that were further to verify there was 

increased signal strength closer to the beacons.  This was done by comparing the signal strengths from 

beacons in the same room as the user to those in the other rooms via a Wilcoxon signed rank test. A p-value 

under 0.01 was taken to be a statistically significant difference. Additionally, to assess the mean signal 

strength in rooms with and without beacons, the mean and standard deviation of the signal strengths for 

each home were determined for rooms with and without beacons. Then, a meta-estimate for the mean 

signal strength with and without beacons was determined from the individual estimates (and their 

associated standard deviations) via the survcomp package in R using a random effects model.  
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TABLE 5.1 

Beacon Locations in Homes used for Calibration Data Validation  

Beacon 

Count 

Users Floors Total Rooms Rooms with Beacons Rooms without Beacons 

5 1 3 13 Family F1  

Kitchen F1 

 Living F1  

Basement Main F0  

Master Bathroom F2 

Bathroom F1  

Bathroom F2  

Dining Room F1  

Guest One F2  

Guest Two F2  

Laundry F0  

Master Bedroom F2  

Storage F0  

TV Room F2 

4 2 3 14 Basement Main F0  

Family Room F1 

 Kitchen F1 

 Master Bedroom F2 

TV Room F1 

 Dining Room F1 

 Family Room F1 

 Guest Room One F2 

 Guest Room Two F2 

 Kitchen F1 

 Laundry Room F0 

 Master Bedroom F2 

 Master Bathroom F2 

 Bathroom F1 

 Bathroom F2  

Bathroom F0 

 Office F1 

4 2 1 5 Bedroom F1 

 Den F1 

 Kitchen F1 

 Living F1 

Washroom F1 

4 1 3 11 Basement Main F0 

 Kitchen F1 

 TV Room F1 

 Master Bedroom F2 

Backyard F1  

Dining Room F1 

 Guest Room One F2 

 Guest Room Two F2 

 Living Room F1 

 Bathroom F1 

 Bathroom F2 

• F0 = basement, F1 = main floor 1, F2 = upstairs 

14TABLE 5.1 BEACON LOCATIONS IN HOMES USED FOR CALIBRATION DATA VALIDATION 

5.2.5 Context Determination via Membership Functions and Fuzzy Probability 

 

Using Zadeh’s fuzzy probability theory, the probability that a user is in a given context in a 

specified time period was determined [15]. The context was computed as the integral of the product of the 

probability density function (PDF) representing the physiological data and the fuzzy membership function 

describing the relationship between this data and the contexts that can be predicted with it. The calculation 

is shown in equation 5.2 as 
 

https://paperpile.com/c/VPiVPh/b3hl
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𝑃(𝑋𝑖  =  𝐶𝑗)
𝑠𝑖,𝛥𝑡𝑗

=  ∫  
∞

−∞

𝜇𝑐𝑖𝑗
(𝑥) ⋅ 𝑠𝑖(𝑥 )𝛥𝑡𝑗

⋅ 𝑑𝑥 
 

Equation 5.2 

 

 

Where 𝑋𝑖is the random variable describing the outputs for sensor 𝑠𝑖that is mapped to the context 

𝐶𝑗by the membership function 𝜇𝑐𝑖𝑗
, and 𝛥𝑡𝑗is the time over which the data was collected. For sensor data 

outputs that are discrete/categorical in nature (e.g step detected vs not detected) the PDF (or probability 

mass function in the discrete case) is described using the dirac delta function 

 

𝑠𝑖(𝑥𝑖)𝛥𝑡𝑗
= ∑  

𝐾

𝑘=1

𝑃𝑘 ⋅ 𝛿(𝑥 − 𝑥𝑘) 

 

Equation 5.3 

 

Where 𝑥⃗ = {𝑥1, 𝑥2, . . . . . . . . 𝑥𝐾} are the discrete points/categorical outcomes, each with a 

corresponding probability 𝑃1, . . . . . 𝑃𝑛of occurring. In the case of multiple sensors which are conditionally 

independent and measuring the same context , the different sensors can be leveraged to gain increased 

understanding about the context using the below formula.  

 

𝑃(𝐶𝑗 
)𝛥𝑡𝑗

=  1 − 𝑝(𝐶𝑗
𝑐)𝛥𝑡𝑗

= 1 − ∏  

𝑁

𝑖=1

𝑃 (𝑋𝑖  =  𝐶𝑗 

𝑐)
𝑠𝑖,𝛥𝑡𝑗

 
 

= 1 − ∏  

𝑁

𝑖=1

(1 − 𝑃(𝑋𝑖  =  𝐶𝑗)
𝑠𝑖,𝛥𝑡𝑗

) 
Equation 5.4 

 

Where 𝑝(𝐶𝑗 
) 𝑡 𝑠𝑗

≤𝑡≤𝑡𝑓𝑗
 is the probability that the context 𝐶𝑗 has occurred in the time interval 𝑡 𝑠𝑗

≤

𝑡 ≤ 𝑡𝑓 𝑗based on the set of sensors 𝑆 available to the telemedical system. 

 

Using the above method for context determination a few key contexts were determined. The 5 

contexts of interest were whether the user is in a room or not, whether they are stepping/mobile, whether 

they are immobile, whether they are putting the watch on, and whether they are taking the watch off. Table 

5.2 shows the contexts, sensor data used, membership function values, and the type of membership function 

used. For the discrete functions, (x1, y1) and (x2, y2) represent the two points used for the trapezoidal L 

function. The transition to a probability of 0 from 1 occurs at the x2 value. Since a normal person is 

assumed to be stationary the majority of the time in their home, the value for 𝛥|𝑅𝑆𝑆𝐼| under which users 

were assumed to be at rest was taken to be 1.5 times the mean  𝛥|𝑅𝑆𝑆𝐼| obtained from 1 million samples. 

The cut off point at which users were assumed to be moving (x2) was taken to be 2 standard deviations past 

the mean of 3.27. An illustration of a discrete and continuous case using data from one of the participants is 

shown in figure 5.1 (and in Chapter 3), where membership functions are used to determine context 

probabilities. To determine the final mean probabilities for each context, the mean probability and standard 

deviation for measuring that context in each individual participant was determined. Following this, the 

mean probability and mean standard deviation for each context probability was calculated by taking the 

average of the individual participants' context probability means and standard deviations. Accuracies are 

reported as the total number of detections for the contexts of interest over the total instances they should 

have been measured according to the number of times the watch was removed. 
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TABLE 5.2 

Contexts Determined and Their Membership Functions 
Context Data/Sensor Membership 

function x1 & x2 

variable 

(x1, y1 = 

probability1) 

 

(x2, y2 = 

probability2) 

Function 

Type 

In/Out Room RSSI from Watch 

BLE 

location (L(t) = room, 1) (L(t) != Room, 0) Discrete 

Resting/Immobile RSSI from Watch 

BLE 

Delta |RSSI| (6.9, 1) (10.5, 0) Trapezoidal L 

Resting/Immobile Watch step count 

via accelerometer 

Delta steps (0, 1) (>0, 0) Discrete 

Watch Removed Optical PPG from 

watch 

Change in On body 

status of 

smartwatch 

(0, 0) (-1, 1) Discrete 

Watch Put On Optical PPG from 

watch 

Change in On body 

status of 

smartwatch 

(0, 0) (1, 1) Discrete 

Stepping/Mobile Watch step count 

via accelerometer 

Delta Steps (0, 0) (>0, 1) Discrete 

15TABLE 5.2 CONTEXTS DETERMINED AND THEIR MEMBERSHIP FUNCTIONS 

 
Figure 5.1 Discrete (Steps) and continuous (|RSSI| change) fuzzy probability calculations to determine the 

probability of the mobility context from a sensor event.  a) Probability density function for the change in 

RSSI magnitude. b) membership function describing whether users are immobile based on the magnitude 

of the RSSI change. c) illustration of how these functions are multiplied to determine the function with an 

area under the curve that represents the probability the user is immobile based on the sensor data. d) 

Probability mass function for the instance steps were and were not detected. e) discrete membership 

function for whether users are mobile vs step detection. f) Probability they are mobile (green bar) based on 

the integral of U(x)f(x). 18 
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In order to calculate the accuracy of detecting the contexts we need to know how many times each 

context will occur during each day. However, it is not possible to know the total number of instances that 

some of the contexts in table 5.2 will occur on a daily basis (e.g cannot assume how many times a person 

will be in each room each day). Thus, to mitigate this issue we instead focused on measuring these contexts 

in a situation where we could be fairly certain they occurred, and then we calculated the accuracy based on 

the total times the context was detected divided by the total instances of the situation where the context 

should occur. The situation used to define the total instances of the contexts in Table 5.3 was when the user 

took off the watch. At this point, we could be confident that the watch is stationary in a room until it is put 

back on, the user must exist in a different room at some prior time, the user must take steps to move from 

the prior room to the final room they take the watch off in, and that time without motion in the prior room 

is time where they are immobile prior to transitioning to the final room. A full list of the assumptions made 

is shown in Table 5.3. By assuming these contexts exist around the event of the watch being removed, we 

could reasonably assume the total instances that these contexts occurred and then calculate accuracy based 

on the number of times the context was detected (where detection is considered a probability greater than 

70% of the context occurring based on equation 5.1). Thus, accuracy for contexts that were assumed to 

have occurred around this event was defined as the total instances that context was measured around the 

(watch removal) event divided by the total number of instances the watch removal event occurred. To 

determine the final mean probabilities for each context, the mean probability and standard deviation for 

measuring that context in each individual participant when the contexts were detected was determined. 

Following this, the mean probability and mean standard deviation for each context probability was 

calculated by taking the average of the individual participants' contexts probability means and standard 

deviations. 

 

TABLE 5.3 

Assumptions Surrounding Accuracy Assessment for Autonomously Determined Contexts 
Context Assumption 

In Room 1 The user is located in a room aside from the one they take the watch off in at some point before 

taking the watch off 

 

In Room 2 The user must take steps to move from the room they are in prior to removing the watch to the 

room they remove the watch in 

 

Stepping/Mobile Steps will be detected at some point before the user reaches room 2 from room 1 

 

Resting/Immobile If the user is in 1 room and they are not stepping and/or the change in BLE is extremely small, 

they are inactive in that room 

 

Watch Removed The onBody status indicator of the smartwatch is accurate and a value of 0 means the watch has 

been removed 

 

Watch put on The onBody status indicator of the smartwatch is accurate and a value of 1 means the watch has 

been put on 
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5.2.6 Situation Determination via Spatiotemporal Context Networks 

 

 
Figure 5.2 Situations determined based on the measured contexts. a) When the user starts their day. b) 

When the user ends their day. c) Rest time of the user from going to sleep to waking in the morning. d) 

Room transition of the user in their home. e) User at rest in a room in their home. 19 

𝑃(𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛) 𝑇 𝑠 ≤𝑡≤𝑇𝑓  
= ∏  

𝑀

𝑗=1

𝑝(𝐶𝑗) 𝛥𝑡𝑗
 

Equation 5.5 
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Using the contexts of the user, we can establish situations that represent a collection of contexts that 

together form new meaning.[16] Situations are defined as temporal context networks whose probability of 

occurring is based on the probability of each context that defines the situation. Each context must occur at a 

pre-specified point in time relative to another in order for a situation to occur since the situation’s meaning 

can change based on the order. The probability that a given situation has occurred then becomes the simple 

product of the probabilities that each context has occurred in the chronology specified. This is written as  

 

 

Where 𝑀 is the total number of contexts that comprise the situation, 𝑇𝑠 = 𝑚𝑖𝑛{𝑡 𝑠 1,𝑡 𝑠 2
, . . . . , 𝑡 𝑠 𝑀

}is 

the start time of the first context and 𝑇𝑓 = 𝑚𝑖𝑛{𝑡 𝑓1,𝑡 𝑓 2
, . . . . , 𝑡 𝑓 𝑀

}  is the end time of the last context in the 

temporal context network defining the situation. Using this approach, common situations can be defined 

based on the sub contexts described in table 5.3, as shown in figure 5.2. As before, the assumptions 

required for the situations are the same as those required for contexts in table 5.2 since the situations are 

made up of those contexts. Thus, accuracy is reported for the situations given we have reasonable grounds 

to believe the events must have occurred in the prescribed time frames before and after the watch was taken 

off based on the assumptions in table 5.3. If any of the contexts defining the situation are not detected, then 

the situation is assumed to not have occurred or been detected. Additionally, a probability of over 70% 

according to formula 5.5 is counted as successful detection, whereas less than this is counted as a missed 

detection. Accuracies are reported as the total number of detections for the situations of interest over the 

total instances they should have been measured according to the number of times the watch was removed. 

To determine the final mean probabilities for each situation, the mean probability and standard deviation 

for measuring that situation in each individual participant when the contexts were detected was determined. 

Following this, the mean probability and mean standard deviation for each situation probability was 

calculated by taking the average of the individual participants' situation probability means and standard 

deviations. 

5.2.7 Participant Demographics, Compliance and Step Data Validation 

 The only criteria for study participation was that the participant was 60 years of age or older. Of the 

6 participants 4 were female and 2 were male. Participants were asked about the comfortability of the 

smartwatch and whether they would continue using the system in a post-study interview. In order to 

determine user compliance, after the watches were returned the optical PPG sensor which reports when the 

watch was on or off was used to calculate the total time users wore the watch. Users were not asked to wear 

the watch when sleeping so the expected percentage of time they wear the watch is expected to be around 

66% when fully compliant. 

 

 Watch step data for the TicWatch S2 used in the present study was validated by a collaborator and 

compared to the Actigraph gold standard (Dr. Marla Beauchamp’s group, results have not been published 

yet). A group of 21 participants were asked to take 50-100 steps with both the TicWatch and ActiGraph 

equipped on their wrist. Participants recorded their start and end time along with their total step count. The 

=  ∏  

𝑀

𝑗=1

(1 − ∏  

𝑁

𝑖=1

(1 − 𝑃(𝑋𝑖  =  𝐶𝑗)
𝑠𝑖,𝛥𝑡𝑗

)) 

 

=  ∏  

𝑀

𝑗=1

(1 − ∏  

𝑁

𝑖=1

(1 −  ∫  
∞

−∞

𝜇𝑐𝑖𝑗
(𝑥) ⋅ 𝑠𝑖(𝑥 )𝛥𝑡𝑗

⋅ 𝑑𝑥)) 

Equation 5.6 

https://paperpile.com/c/VPiVPh/CMUv
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TicWatch step count was then compared to the ActiGraph and participant recorded step count. A t-test 

using the difference in the participants recording and the ActiGraph reading, and the participants recording 

and the TicWatch S2 reading, was done to see if one device was statistically more accurate than the other. 

5.2.8 Case Study in a 2 Participant Home on Functional Areas and Kitchen Activity 

A sub analysis was conducted on 2 participants living together to compare and observe the amount 

of time they spent in different functional areas within their home at different points in the day. Using 

equation 5.1, their location versus time was determined over the study. Next, the amount of time spent in 

each room at various points in the day was determined by adding up the amount of time spent in each room 

at different time intervals. More specifically, each day was split into eight 3-hour time intervals starting 

from midnight in order to observer differences between the morning, midday, and evening periods. 

Following this, for each 24-hour period the amount of time spent in each room within the 3-hour time 

intervals was determined. Two heatmaps were then generated for each participant to visualize and compare 

their data over the same time period. The first heatmap showed their time spent in each functional area over 

1 day, where the columns represent each 3-hour time interval, and the rows are the different functional 

areas. The second heatmap looked at the participants behaviour on a 1-week basis by determining their time 

spent in each functional area over 24-hour periods instead of 3-hour periods. A heatmap with each 

functional area as the rows, and each day as the columns, was then generated to observe and compare the 2 

participants behaviours over the course of the same 1 week period. 

 

To investigate a single functional area in more depth and compare IPS location data to other sensor 

data, kitchen activity as determined by the IPS system and passive infrared (PIR) sensor were compared. 

For the 2-participant home, PIR sensor triggering times in the kitchen throughout the study were 

determined. Following this, 45 seconds of BLE data before and after this time was obtained for each 

participant. The location of each participant according to this data subset was then calculated using 

equation 5.1, and whether the participant was in the kitchen was determined. The total number of times the 

PIR was triggered each day, total number of instances each participant was in the kitchen during the PIR 

triggering events, and the total number of instances both participants were found in the kitchen during PIR 

triggering was then plotted. A Pearson correlation coefficient was calculated between the number of times 

the PIR was triggered in the kitchen and the number of times participant one was found in the kitchen that 

day in the same time intervals. The same analysis was also done for participant two. Additionally, a 

Pearson correlation coefficient was also calculated between the number of times the PIR was triggered in 

the kitchen and the number of times either participant was found in the kitchen that day in the same time 

intervals. For each Pearson correlation coefficient, a P-value was determined and taken to be significant at 

a value of less than 0.05.  

5.3 RESULTS 

5.3.1 Calibration Validation and BLE RSSI Versus Proximity 

 

The mean RSSI of the beacons that were in the same room as the watch was -74.3 (SD 2.7), 

whereas the mean RSSI of the beacons in rooms the watch was not present was -88.8 (SD 2.5). This 

difference was significant according to the Wilcoxon signed rank test comparing the two groups (p < 0.01).  

 

For the leave one calibration point out approach to validating room detection accuracy, the overall 

accuracy in predicting the correct room the user was in was 81.5%. Sub setting this into rooms that did 

have a beacon and rooms that did not, the accuracy for predicting rooms without beacons was 87.3% and 

the accuracy for predicting rooms that did have beacons was 76.7%. 
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5.3.2 Context Determination and Accuracy 

 

TABLE 5.4 

Context Accuracy and Probabilities 
Context Measured Total  Data Time Interval Accuracy 

(%) 

Average 

Probability 

SD 

probability 

In/Out room 

(Second last 

room) 

116 164 T2 = Last step before watch 

removed 

T1 = T2 - 5 minutes 

71 0.84 0.14 

In/Out Room 

(Final Room) 

151 164 T1 = Last step before watch 

removed  

T2 = T1 + 5 minutes 

92 0.96 0.1 

Resting/Immobile 

(using step data) 

164 164 T2 = first time room differs from 

final room before watch removed 

T1 = T2 - 5 minutes 

100 0.99 0.01 

Resting/Immobile 

(using RSSI data) 

164 164 T2 = First time before watches 

final room when removed 

T1 = T2 - 20 minutes 

100 0.99 0.003 

(Last) Watch* 

Removed 

164 164 T1 = T2 =  Instant watch was 

removed 

NA NA NA 

First Watch Put 

On 

164 164 T1 = T2 =  first watch status 

update after watch removed 

100 1 0 

Mobile 164 164 T1 = T2 = instant steps detected 

before final room 

100 1 0 

*T1 = start time for context, T2 = end time for context 

16TABLE 5.4 CONTEXT ACCURACY AND PROBABILITIES 

Table 5.4 shows the accuracy in detecting the contexts for the contexts that were assumed to have 

occurred each time the watch was removed in the evening. A total of 165 measurements are assumed to 

have occurred based on 165 watch removal events over 398 days worth of data from the 6 participants. For 

the 6 participants, the number of instances for each context based on removing the watch (and thus 

situations) were 15, 15, 17, 20, 42 and 56. 
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5.3.3 Situation Determination and Accuracy 

 

TABLE 5.5 

Situation Accuracy and Probabilities 
Situation Contexts Measured 

Occurrences 

Total 

Measurement 

Accuracy 

(%) 

Average 

Probability 

SD 

probability 

Room 

Transition 

1.  Second last room 

2. stepping/ mobile 

3. Final room 

122 164 74 0.80 0.18 

Starting Day 1. Watch put on  

2. T > 6 a.m  

3. T < 11 a.m 

158 164 96 1 0 

Ending Day 1. Watch removed 

2. T > 8 p.m. & T < 1 a.m. 

150 164 91 1 0 

Resting in 

Room 

1. Resting/ immobile (steps) 

2. second last room 

129 164 79 0.78 0.23 

Rest Time 

Evening to 

Morning 

1. Ending day 

2. Starting day 

146 164 89 1 0 

17TABLE 5.5 SITUATION ACCURACY AND PROBABILITIES 

The accuracy and average probability for the situations described in figure 5.2 are shown in table 5.5.  

 

5.3.4 Participant Demographics, Compliance and Step Data Validation 

 

TABLE 5.6 

Participant Info and Compliance 18 

Sex Age Watch on 

Time (Days) 

Watch Off 

Time (Days) 

On Time/Total 

Time 

Watch Size 

an Issue 

Willing to 

Continue 

Pre-existing Conditions 

Female 62 113.7 55.92 0.67 Yes Yes None 

Male 75 48.01 121.67 0.28 Yes Yes Alzheimer’s 

Male 72 42.44 143.50 0.23 Yes No None 

Female 71 52.7 36.22 0.59 Yes No Peripheral Arterial Disease 

Female 66 21.6 21.1 0.51 No Yes Osteoarthritis 

Female 72 45.46 11.57 0.80 No Yes Macular Degeneration 

 

Information pertaining to the age, sex, and pre-existing conditions of the participants can be seen in 

Table 5.6. Additionally, the duration that the patients were and were not wearing the watch is shown. 4 out 

of the 6 participants reported the watch was too large and the mean percentage of time participants were 

wearing the watch was 51% (SD 22%). The TicWatch S2 recorded 6.6 steps less than the participants 

recorded on average, whereas the ActiGraph recorded 32.7 less steps. The difference between these two 

means was significant in a Student’s t-test at p=2.8 × 10−6. 
 

5.3.5 Case Study in a 2 Participant Home on Functional Areas and Kitchen Activity 

 

Figure 5.3a shows participant one’s amount of time spent in each room for each 3-hour time interval 

over 1 day. Figure 5.3b contains the same information but for the other participant living in the home. 

Figure 5.3c contains the heatmap showing participant one’s time spent in each functional area over 24-hour 

periods over the course of a week. Figure 5.3d contains the same information for participant 2, who also 

lives in the home. 

 

A plot of the number of times the PIR sensor was triggered in the kitchen each day is shown in 
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figure 5.4. One can see how many times participant one and two were located in the kitchen according to 

the IPS (figure 5.4a), and how many times both participants were found together in the kitchen (figure 

5.4b). The Pearson correlation coefficient (r) between the PIR kitchen triggering and participant one’s 

kitchen instances was 0.57 and statistically significant (p = 4 x 10-6). The Pearson correlation coefficient (r) 

between the PIR kitchen triggering and participant two’s kitchen instances was 0.36 and statistically 

significant with a P-value of p = 7x10-3. Lastly, the Pearson correlation coefficient (r) between participant 

one’s kitchen instances and participant two’s kitchen instances was 0.39 and statistically significant  (p 

=3x10-3). 

 

 
Figure 5.3 Visualization of the time spent by two participants that live together in various areas of their 

home. a) Participant 1’s time spent throughout their home in a 24 hour period. b) Participant 2’s time spent 

throughout their home in the same 24 hour interval. c) Participant 1’s time spent throughout their home 

over the course of a week. d) Participant 2’s time spent throughout their home over the same week.20 
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Figure 5.4 a) Plot showing the total number of times the PIR sensor in the kitchen was triggered each day 

and how many times participant 1 (P1) and participant 2 (P2) were located in the kitchen according to the 

IPS during this time b) Plot showing the total number of times the PIR sensor in the kitchen was triggered 

each day and how many times participant 1 and participant 2 were located in the kitchen together at this 

time according to the IPS. 21 

5.4 DISCUSSION 

The present work sought to demonstrate that some clinically relevant contexts can be determined 

autonomously without training models from ground truth data obtained by manual data curation. Given that 

manual labeling of ground truth data is not practical in each participant's home, an alternative method of 

understanding the total instances of each context and assessing accuracy is needed. The current approach 

determines context accuracy by measuring contexts that must have occurred around known events that 

could be measured with higher certainty, such as the watch being removed in the evening. Then, the 

accuracy for detecting these contexts was based on the total number of times the context was measured 

before/after the known event relative to the total number of times the known event occurred. We chose to 

base our total measurements around the event of the user removing their watch in the evening given we 

could be certain the watch was stationary in a single room once it was removed, and that the user must have 

been in another room at some time before this. We were able to show that the system is reasonably accurate 

at detecting contexts that logically follow from this watch removal event, such as placing the watch back 

on, being present in a room before and after the watch is removed, and being mobile or at rest. Using these 

contexts, we could then similarly understand some situations with reasonable accuracy, such as the 

approximate rest time of the user, when they started and ended their day, whether they were resting in a 

room, etc. It was assumed that the time between the watch being removed and then being put on 6 or more 

hours later in the morning was a proxy for their total rest time. However, it is not guaranteed the user goes 

to sleep right when they take their watch off or puts it back on right away in the morning so this likely 

serves more as a rough estimate of their morning to evening routine. 

 

We choose to focus on simple contexts to prove this concept, however, simple contexts and 

situations like the approximate time older adults start and end their day can be useful for applications. For 

instance, many groups have focused on building smart-pill boxes that remind patients when to take their 

medications,[17]–[19] and have demonstrated improved performance of context-aware prompting for 

medication [20], [21]. Thus, detection of the starting day and ending day situations may be useful for 
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context-aware prompting of patients to take medications through the watches user interface. There is also 

ample evidence that older adults with cognitive impairment and dementia often exhibit seamlessly aimless 

or disoriented ambulation within facilities, often referred to as wandering behavior [22], [23]. Thus, we 

focused on the room transition situation in hopes of understanding older adults trajectories in their homes to 

eventually try to detect wandering behavior and early signs of dementia. Lastly, the resting in room 

situation, immobile context, and step data from the system can be used to understand an older adult's 

activity levels. These are highly relevant contexts for understanding an older adult's health, as demonstrated 

by a recent meta-analysis from Cunningham et al. of activity levels and health outcomes. Through this 

meta-analysis they demonstrated that physically inactive older adults have an increased risk of all-cause 

mortality, cardiovascular mortality, falls/fractures, cognitive decline, and dementia. Ideally, monitoring for 

declines in mobility/activity related contexts can allow for the identification of high-risk individuals. By 

identifying these individuals prior to late-stage mobility decline, early intervention through exercise 

programs can be used to reduce falls and all-cause mortality in order to promote safe-aging in place [24], 

[25].  

 

In order to investigate how the IPS system and other sensor data could work together, we correlated 

the number of instances the kitchen PIR was triggered with the number of instances the IPS system 

detected the participants in the kitchen around the triggering time. This was done as part of a sub-analysis 

that focused on 2 participants living in the same household, as we wanted to determine if we could observe 

shared behaviours between the two participants. We were able to observe some joint kitchen activity 

between the married couple, as there was a statistically significant and moderate correlation (r=0.39) 

between the number of instances they were both found in the kitchen each day around PIR triggering. This 

can also be observed in figure 5.4 as the plot shows many instances where both participants are in the 

kitchen when the PIR is triggered. Additionally, the correlation between both participants kitchen instances 

per day and the PIR triggering was also statistically significant, and had a moderately strong correlation in 

the case of participant one (r = 0.57). The stronger correlation of participant one aligns with the results 

shown in the heatmaps in figure 5.3, as participant one is observed to spend more time in the kitchen over 

the 1-week interval shown (5.9 hours vs 4.7 hours for participant two). Aside from this, the heatmaps are 

mostly useful to visualize differences in the two participants time spent in different areas throughout their 

home. Figure 5.3a and 5.3b allow one to understand how their time spent varies at different points in the 

day, whereas 5.3c and 5.3d provide a more longitudinal overview by providing a visual method of 

assessing behaviours seen across a 1-week span. 

   

Although accuracy can be assigned to many contexts with some light assumptions, other contexts, 

such as whether participants entered a specific room or not, are difficult to assess the accuracy of. Despite 

measuring a user’s location with the indoor positioning system, we cannot assume the total instances that 

they enter a room such as the kitchen. In the future, higher certainty events, such as a measurement from a 

sensor that detects the fridge opening/closing, will be needed to design a subset of kitchen visits that are 

known to occur. Using these known events, we can then similarly assign an accuracy to other 

measurements that indicate the user was in the kitchen, such as measurements from the indoor positioning 

system or motion sensor. High certainty sensor measurements may provide a means to assess the accuracy 

of the indoor positioning system in new environments. Additionally, the measured use of appliances may 

also serve as a method to calibrate the IPS system. For instance, if there was no kitchen beacon one would 

still expect the position of a user living alone to register that they are in the kitchen each time the stove was 

used or the fridge was opened, and one could use these sensor events to calibrate what signals from the 

beacons are representative of the user being located in the kitchen. This would replace the current 

calibration procedure we used, where the participant was asked to stand at various points in their home 

while we collected signals from all the beacons. Indeed, many groups have begun exploring self-calibrating 

systems and other calibration free approaches given this is a more viable long-term solution for new 

environments [26]–[28]. Preliminary results for detecting location were reasonable as the accuracy in 
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detecting the user was 81.5%, however, being able to collect calibration points more regularly through the 

systems other sensor events should lead to better results. We chose to test the system with a smaller number 

of beacons (usually 4) in participants' homes. However, for homes with many rooms the signal strength at 

the 4 beacons is often similar for two rooms given they may be equidistant from each beacon. Thus, to 

improve the indoor positioning systems accuracy more beacons will need to be assigned to participants in 

the future. 

 

It is clear from the post-study interview that many participants (4 of 6) found the smartwatch too 

bulky and uncomfortable. Furthermore, the participants that were not willing to continue with the study 

said they would continue if a smaller watch was used. Given the smartwatch software works on any 

android smartwatch, a smaller android device can easily be selected in the future. However, these other 

devices should be tested to confirm the step counter is accurate. This appears to be the case for the 

TicWatch S2 given it’s step count results were closer to participants’ ground truth measures than the 

ActiGraph (gold standard). Despite issues with the size of the watch, participants still wore the watch 51% 

of the time. This is reasonable compliance given that most users sleep without their watch for 8 hours a day 

such that one would expect 66% at best. 

 

Although sufficient samples per participant were collected to have confidence in the results, the 

total number of participants was still small and future work will be needed to assess differences that may be 

observed between participants. The preliminary study results are promising for autonomous context 

detection for remote monitoring systems. Aside from it being impractical to collect and label training data 

for each medical context of interest, there is no guarantee that learning algorithms built from data in one 

home or clinical setting will achieve the same accuracy on new users or in new environments. Thus, 

practical solutions to autonomously determining contexts are needed to avoid retraining in each new 

environment (or assuming the same accuracy in the new environment if one does not retrain). Furthermore, 

high certainty contexts determined autonomously can be used as ground truth events to allow training of 

algorithms in new environments, which may serve as a middle ground that leverages learning based 

approaches along with the practicality of specification-based approaches, such as the one described in this 

work. For instance, a system may label the ground truth for a watch's accelerometer data as sitting when a 

chair pressure sensor surpasses 100 pounds. Following this, one can train a personalized algorithm that 

detects sitting for that user using smartwatch accelerometer data in any environment, without needing to 

label the sitting context's ground truth manually. Similar approaches have begun to be employed, such as in 

Cruciani et al’s. work, where accelerometer and GPS data is used to label sitting, walking, standing, and 

running. Results are promising as the weakly supervised approach obtains a 74% accuracy, which is only 

13% less than the dataset where the ground truth is labeled manually [29]. Many groups are exploring ways 

of automatically labeling data given this provides a means of training models in multiple environments 

without relabeling each time, which is not practical to do in each new setting [30], [31]. Creative ways of 

reducing activity/context recognition's requirement of obtaining ground truth data will allow researchers to 

spend more time focusing on solving medical challenges through remote monitoring technology and less 

time annotating datasets. 

5.5 CONCLUSION 

     In conclusion, we piloted our context-aware smart home system in older adults’ homes and 

demonstrated its ability to autonomously determine contexts. Additionally, assessments of the systems 

accuracy for determining room locations within homes were promising for both rooms with and without 

our beacon devices. Situations composed of contexts measured by the system were also determined 

autonomously to demonstrate clinically relevant information (e.g bouts of immobility, the time users 

start/end the day, etcetera) could be established.  
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     Autonomous context detection via remote monitoring systems serves as an alternative approach to 

laborious labeling of ground truth data for each environment, which may not be practical for each clinical 

setting of interest. Future work will focus on establishing additional contexts in more participants and 

demonstrating how high certainty autonomously determined contexts can be used as ground truth data for 

learning based approaches. 
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Chapter 6 

Conclusions and Next Steps 

6.1 SUMMARY 

 

The present work described a framework for building context-aware telemedical systems to 

promote safe aging in place through the pre-emptive detection of diseases and adverse medical events. In 

this dissertation, the framework was applied in the context of smart home technology given one's primary 

residence represents a practical location for monitoring health trends in older adults. Theory was developed 

to autonomously determine contexts/situations from sensor data and map these situations to known clinical 

tests to establish post-test probabilities describing an individual's chance for various conditions/events. 

Additionally, the need for context in emergency systems was presented along with a revised context-

awareness framework which categorized physiological data according to its context. Lastly, the system's 

ability to autonomously establish contexts in older adults’ homes was demonstrated in a pilot study for 

validation purposes.  

 

A systematic review was provided in Chapter 2 to determine the most significant medical contexts 

needed in context-aware medical systems, along with what context determination algorithms are most used. 

We sought to provide researchers with a list of context-aware medical systems being used by medical 

professionals and then developed subdomains for context-aware medical applications. Location, time of 

day, patient history, and mobility were identified as key medical contexts and used to inform design 

decisions for our smart home system. No common context-determination method was seen across systems 

which led to the need to develop our own generalized method of determining contexts. 

 

The context-aware telemedical framework, smart home system, and theory for autonomously 

determining contexts and using them to assign probabilities of adverse medical events to users was 

provided in Chapter 3. Fuzzy probability was utilized to define a general way of determining contexts 

from sensor data, and situations/clinical tests were modeled through spatiotemporal context networks, 

where spatiotemporal refers to the technique’s emphasis on the order that contexts occur and the location 

they occur in. Traditional approaches to establishing the probability a patient has a condition/disease from 

the likelihood ratios of clinical tests were integrated into the framework. This was done to ensure that the 

framework used tools for pre-emptive detection of adverse medical events that healthcare providers already 

leverage. A method to adjust the prognostic value of clinical tests based on uncertainty in the systems data 

was derived to ensure the post-test probability of a user having a condition reflects the probability that the 

system measured the required contexts. Emulated experiments of mobility impaired vs unimpaired 

individuals showed the framework and smart home system could be used to identify those at high risk for 

falling in 12 months and having Parkinson’s. 

 

Chapter 4 demonstrated an application of the framework to build a context-aware application, 

namely an emergency detection system. A desktop application was built that communicated healthcare 

providers' preferred alarm settings to the smart home system and then context-aware versus context-

unaware alarms were compared to show the need for context to avoid false positives. It was demonstrated 

that context-unaware alarms could not be used to monitor dangerously high heart rates due to their inability 

to rule out sinus tachycardia from events like exercising. This led to an update of Musumba and Nyongesa 

context-awareness framework[1], which summarized Bardram and Hansen’s work[2], that categorized 
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physiological data according to its context for context-aware medical systems. This allows for healthcare 

providers and the system to understand if the data is normal given the user's current activity/context. 

 

Finally, this work concludes with a pilot study using the smart home system and framework in older 

adults’ homes, as described in Chapter 5. An REB application was submitted and accepted which allowed 

us to build up to 30 systems to collect data and determine contexts using data from older adults. The study 

is ongoing and what is presented in Chapter 5 are preliminary results demonstrating that the smart home 

system and framework can be used to determine contexts such as whether an older adult is immobile, 

mobile, transitioning in their home, ending or starting their day, etc.  

6.2 DISCUSSION AND FUTURE DEVELOPMENTS 

The discussion in this chapter focuses on the relationship between chapters 2-5 and their position on 

the roadmap (figure 1.1) that describes a practical context-aware telemedical system for safe aging in place. 

The future developments section focuses on what remains to be completed within the roadmap, and the 

next logical steps for the present work. 

 

6.2.1 Discussion 

 

Initially, the motivation for this work began with the notion of building a smart home system to 

promote safe-aging in place through understanding of older adults' mobility levels and activities. Activity 

recognition in smart home environments in particular has become a prevalent research area as various 

groups attempt to collect information pertaining to older adults' instrumental activities of daily living 

(IADLs)[3], [4] as a proxy for understanding their health [5]. Recent trends in context-awareness sensing in 

the field of computer science had just begun to appear within medical systems, and it was understood that 

context would be important for our smart home system (and telemedical systems in general) given many 

clinical tests have specific contextual requirements (e.g sitting during blood pressure assessment) [6]. 

 

Prior to building a context-aware smart home, we sought to determine which contexts were most 

relevant for medical systems based on current trends so we could prioritize them in our system. 

Additionally, we wanted to know what approaches most groups were using for context determination. 

Through the systematic review, we were able to ascertain that time of day, location, and past medical 

history were highly relevant contexts that needed to be included within our system and framework. 

Surprisingly though, there did not appear to be a standard method for determining contexts. Reviews 

focusing on context determination separated methodologies into specification and learning based 

approaches, however, both had their limitations [7]. Learning based approaches suffered from the need to 

manually label training data and build ML models that may not have the same accuracy in new 

environments. Specification based approaches did not require training data but lacked a way to quantify the 

certainty in the contexts they measured. As a result, the decision was made to develop a new generalized 

context determination approach that combined spatio-temporal logic[8], [9] and fuzzy logic[10] from 

specification based approaches, but quantified the probability the contexts took place as in many learning 

based approaches. 

 

Chapter 3 presents the generalized context determination theory whose development was 

necessitated by the lack of standard context algorithms found in the prior chapter’s review. Having 

understood that location and mobility were pivotal contexts we built a smart watch based smart home 

system that could detect a user's location in their home through Bluetooth low energy (BLE) signals 

broadcasted by the smartwatch. As demonstrated in the section of the appendix describing the systems 

accuracy in detecting users within rooms, the system is quite accurate with a 96% detection accuracy when 
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each room contains a beacon. This is relevant given many of the locations results, such as whether the user 

is in the living room or washroom, are used in chapter 3 to conduct clinical tests (e.g gait speed test based 

on the time to transition from living room to washroom). The watch also recorded mobility and step counts 

through accelerometer data, which was another priority of ours given the known relationship between 

mobility decline and many age related diseases [11]–[13]. As the overlaying goal was to promote safe-

aging in place through pre-emptive detection of adverse events/disease, a way to translate the sensor data 

and contexts into useful clinical information was required. Using artificial intelligence based approaches 

(e.g neural networks, random forest, etc) has become quite common in research for detecting aging related 

conditions[14], [15], however, the lack of interpretability of these approaches has seemed to preclude their 

use in clinical environments. It appears that clinicians who base decisions on clinical logic have not been 

willing to trust decisions to black box algorithms, regardless of the high cited accuracy in predicting 

various conditions.  Additionally, collecting training data on each condition/event of interest seemed 

unnecessarily burdensome if it could be avoided. Thus, we looked towards standard clinical methods of 

assigning probabilities of outcomes to people via tests that have likelihood ratios with known impacts on 

the outcomes probability [16].  The advantage of this being that the framework would not need data from 

multiple users who have the disease of interest for training and would also use an approach that is already 

accepted by healthcare providers. Surprisingly, this had not been done in any systems found in our review, 

or outside our review to the best of our knowledge. Modeling clinical tests through spatiotemporal context 

networks proved simple, and thankfully many contexts (e.g gait speed) were simple to obtain when using 

fuzzy probability with the systems sensor data. However, it was challenging to determine how to reduce the 

prognostic value of the clinical test given a test's original prognostic value was from situations that were 

known to have occurred with 100% certainty, which could not also be assumed to be the case with our 

system. Thus, a method to adjust the likelihood ratios (LRs) of tests in light of context uncertainty was 

derived, with results logically leading to no prognostic value for the test (LR=1) in the limit of 0% certainty 

it occurred. This completed the framework and allowed us to demonstrate its utility in assigning post-test 

probabilities to emulated users for falling and Parkinson’s. These two conditions were selected given that 

over 6,600 older adults are diagnosed with Parkinson’s each year, and falls cause over 85% of seniors’ 

injury related hospitalizations in Canada, illustrating the large benefit that would come from pre-emptive 

detection of both these conditions [17], [18].  

 

After completing the framework, the next logical step was to demonstrate how it could be used to 

build context-aware applications. It became apparent that Musumba and Nyongesa context-awareness 

framework[1], which summarized Bardram and Hansen’s work[2] work on context-aware systems, needed 

to be updated for context-aware medical systems given that physiological data has different meanings in 

different contexts. This phenomenon has been known in medical settings for some time, for instance, even 

blood pressure measurements within an outpatient setting are known to be unreliable relative to at home 

measurements (a phenomenon called whitecoat syndrome) [19]. Heart rate can also be misleading without 

context given dangerously high levels are normal with extreme activity increases.  To demonstrate the 

notion that context was required by useful systems, and that the framework could create context-aware 

applications, we built a context-aware emergency alert system and compared context-aware alarms to 

context-unaware alarms. We demonstrated the need for context in an emergency system by showing that 

we could prevent false positive alarms (which occurred in the context-unaware alarms) by ruling out high 

heart rates during bouts of elevated activity levels. Additionally, we showed the systems software 

application could respond to context to become context-aware. Finally, we updated the context-aware 

systems framework[1], [2] for context-aware medical systems to deal with changes in physiological data 

that occur in different contexts.  

 

Having demonstrated the system’s/framework’s ability to create context-aware applications, the 

final step was to begin trialing the system in older adults homes to establish our system works in a 

clinically relevant setting. After completing an REB we built 10 systems and shipped them to older adults 
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for data collection. As the strength in our current approach was the lack of training data needed, an 

approach to measuring the accuracy of context measurements without training data was desired to validate 

the method in a practical manner. Thus, similar to how we focused on easily confirmable clinically relevant 

contexts (e.g large force on couch implying sitting/immobile with high likelihood), we chose to focus on 

using high certainty contexts for validation. By leveraging the fact we could depend on the participants to 

take the watch off at night we were able to determine the systems accuracy for measuring key contexts that 

we knew existed around this event. The study is in its early stages, and other contexts will be added to the 

analysis in the future. Other remaining work for the study, and on the research roadmap, will be discussed 

in the Future Directions section. 

 

Significant contributions have been made to the field of context-aware medical systems, especially 

pertaining to pre-emptive detection of medical conditions for safe aging in place applications. The 

systematic review of context-aware medical systems provides researchers with insights into what contexts 

have been most useful in the small number of systems which have found use in clinical settings. The lack 

of standardization across context detection techniques in the resulting studies also brings attention to the 

need for more general approaches in context-aware medical systems. The framework presented in Chapter 

3 is this work's primary contribution, having provided a generalized approach to move from sensor data to 

context detection, and then model clinical tests through context networks to apply them to older adults for 

pre-emptive detection of disease. Whereas many approaches rely on machine learning models and require 

extensive labeling of training data[20]–[22] , the present work provides an autonomous context detection 

method and utilizes standard clinical tools to quantify the probability an individual is at risk for an 

event/disease. A generalized approach to assign probabilities for conditions using standard clinical tools 

and likelihood ratios by remote monitoring systems has not been done to the best of our knowledge, and is 

significant given it represents a method for remote monitoring systems to quantify older adults chance for 

various diseases/outcomes using a clinically established approach. Additionally, it is unclear whether 

artificial intelligence (AI) based diagnosis (in its current state) will be accepted in clinical practice due to a 

lack of clarity in how the algorithm makes decisions, and this methodology provides an alternative to AI 

based diagnosis. Furthermore, the derivation for reducing the prognostic value of clinical tests based on the 

probability the test occurred allows researchers to use established relationships between tests and diseases 

in telemedical systems by providing a means to reduce known likelihood ratios that map the test to the 

disease of interest. The demonstration in chapter 4 of the ability for context-aware alarms to rule out false 

positives is useful. However, the more important contribution is likely the natural progression of context-

aware systems framework to context-aware medical systems by classifying physiological data according to 

the context it was measured in. This will promote analyzing vitals and medical data within their context so 

systems can differentiate benign situations like exercise induced sinus tachycardia from dangerous 

situations like an atrial fibrillation with the same heart rate. Lastly, the preliminary results demonstrating 

that contexts can be autonomously measured in older adults’ homes via data collected in a clinically 

relevant setting is significant given that many studies have relied on labeling data to build models to 

establish activities/contexts [20]–[23]. This is an important step forward for telemedical systems focused on 

pre-emptive detection of events/diseases as it is unlikely to be practical to label data for each new clinical 

environment a system is used in (e.g primary residence, ICU, emergency room, etc). Even if researchers 

choose to avoid labeling training data by assuming the prior models will work, they will still likely need to 

label data to validate that the old model's predictions are correct in the new setting. Hopefully, the present 

work's focus on autonomous context detection techniques will shift attention away from methods that 

require significant resource allocation to labeling data or lead to using autonomously labeled high certainty 

contexts as ground truth data. 

 

6.2.2 Future Developments 
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The work presented in this thesis primarily focused on modules 1 (system development), 2 (context 

determination), 3 (situation identification), and 4b (application of clinical tests), while presenting 

demonstrations of module 5 (diagnosis and clinical inference) and module 6 (management/context-

awareness). However, much remains to be done before this system and methodology can be used in 

practice, and parts of modules remain to be started.  

 

Preliminary results in older adults’ homes have been presented. However, more participants are 

required, and additional contexts should be assessed, in order to better understand the accuracy of the 

system in context determination. Clinical tests for fall risk (i.e gait speed) should be conducted in the pilot 

study using spatiotemporal context networks and the post-test probability of falling for participants 

according to the system should be compared to fall questionnaire data to validate the approach. The 

relationship between the test and fall outcomes has already been established[24], so one would expect to 

see the LR in the study participants approach the values from the literature as more participants were 

added. For the system to be useful for healthcare providers, clinicians should be consulted to determine 

what post-test probability for each condition would warrant an alert (module 5). Ideally, this alert would be 

sent to their usual medical record software, as shown in the roadmap, to ensure remote monitoring systems 

were properly integrated into older adults' current care system. The final test of the system for each 

disease/event would then be a randomized control trial where groups above the desired post-test probability 

according to the system received an intervention and success would be reduced outcomes or disease 

progression in the intervention group relative to the control. This would satisfy the long-term goal of this 

technology for promoting sage aging in place through early intervention, as there would be sufficient 

evidence to suggest reduced adverse outcomes above an intervention threshold detected by the system in 

various diseases or preventable medical events (e.g falls). 

 

Regarding the actual technology, the systems hardware would benefit from a lower power design 

with intermittent sampling[25] to allow multiple battery powered beacons to be added to the system that are 

not constrained to wall outlets within the participants home. This would improve the user experience and 

allow the devices to be spread across any desired location instead of placed only where an outlet is present. 

Additionally, many participants felt that the watch was too bulky. Thus, the smartwatch software should be 

uploaded to a smaller sized android watch to increase user satisfaction and compliance. Software wise, the 

data should be made accessible to older adults, who then should be able to delete their data and add/revoke 

access to various healthcare providers as they desire. Data security for smart home and wearable systems 

has been identified as a primary research challenge given the sensitive nature of peoples medical 

information [26]. Blockchain technology may be a logical fit here as it provides a decentralized way to 

share asymmetrically encrypted data with new identities without the need to communicate or share a key in 

advance [27]. Many groups have already begun to investigate the security advantages of blockchain 

technology for smart home systems[28]–[30], and open source standardized modules for data access 

control such as OpenZeppelin’s[31] AccessControl modules already exist on the Ethereum blockchain and 

have recently seen some use from medical researchers [32]. Of course, the system would need to be made 

HIPAA compliant, which on-chain user authentication and data access controls should help with. Software 

packages and architectures should also be developed for the system in order to standardize and simplify the 

process of converting raw sensor data into contexts via membership functions and determining the 

probabilities of situations. 

 

Regarding the fuzzy probability-based context determination algorithm, it should be adapted to 

consider variability and margins of error in sensor measurements. This can be captured quite well by 

adjusting the values of the sensor according to the manufacturers error prior to using them to form the 

probability density function that is part of the context calculation (Equation 5.2). The direction of the 

adjustment should be in the direction that decreases the likelihood of the context according to what would 
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decrease the membership function. This can be summarized by the following adaptation to equation 5.2 

shown below  

𝑎𝑟𝑔𝑚𝑖𝑛𝛿𝜖{−1,1}𝑃(𝑋𝑖  =  𝐶𝑗)
𝑠𝑖,𝛥𝑡𝑗

=  ∫  
∞

−∞

𝜇𝑐𝑖𝑗
(𝑥) ⋅ 𝑠𝑖(𝑥 − 𝛿 ∗ 𝐸 )𝛥𝑡𝑗

⋅ 𝑑𝑥 
 

Equation 6.1 

Where 𝐸 is the error in the sensor measurement and gamma is the direction of the adaptation to the values. 

The 𝑎𝑟𝑔𝑚𝑖𝑛 ensures the error is properly integrated such that it reduces the contexts probability instead of 

increases it. For instance, if one was basing the probability of standing on barometer readings then the 

readings would be decreased given that higher values imply standing instead of sitting. Note that a similar 

approach of adapting the values within equation 5.2 could be used to adjust for other forms of sensor error 

or variability. Using this approach, the uncertainty will be propagated properly through each context and 

any situations that are comprised of the contexts.  

 

Lastly, this work did not touch upon module 4b of the research roadmap which describes the 

discovery and eventual application of new clinical tests composed of system measured contexts. An 

example is provided in figure 4b that is inspired from numerous studies that have combined keyboard and 

phone interaction features to obtain a sensitivity and specificity of over 70% for Parkinson’s diagnosis in 

data collected from patients remotely [33]–[35]. By linking multiple older adults’ diagnoses (outcome 

variable) to the contexts collected (predictors), learning algorithms can be used to identify which contexts 

predict which diagnoses and the result can be used in module 4a to better estimate post-test probabilities for 

the outcome. Of course, this would likely require significant integration of telemedical systems in standard 

clinical practices given multiple older adults’ outcomes according to their EMRs would be required in 

conjunction with their pooled system/context data. 

 

6.2.3 Conclusions 

 

In conclusion, the present work contributes to the development of context-aware telemedical 

systems for safe aging in place through the development and validation of a framework for pre-emptive 

detection of adverse medical events. The framework was applied to emulated data to demonstrate its ability 

to establish post-test probabilities for falls and Parkinson’s, and then piloted on older adults to demonstrate 

autonomous context collection. A systematic review of clinically used context-aware medical systems was 

shown in Chapter 2. In Chapter 3, the smart home system was built and the framework for pre-emptive 

detection of medical events via post-test probabilities was demonstrated. Chapter 4 presented the system’s 

use in emergency detection for building a context-aware application, as well as the revised context-aware 

medical systems framework that classifies physiological data within its context. Lastly, Chapter 5 presents 

autonomously determined contexts from preliminary data obtained from a pilot study of the system in older 

adults homes. Additional work to establish other contexts autonomously, and conduct fall related tests, is 

ongoing. Progress has been made towards promoting safe-aging in place through context-aware telemedical 

systems, and the future is promising for developing proactive, instead of reactive, healthcare systems. As 

context-awareness is a prerequisite for ambient intelligent medical systems[36], it will be interesting to see 

how personalized ambient intelligent systems begin to impact healthcare following the successful 

integration of context-awareness into healthcare monitoring. 
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Appendix 

Introduction to IPS Characterization Paper 
 

The following paper describes and characterizes the IPS system used throughout this thesis. A detailed 

description of the hardware used in the system is presented. Additionally, schematics of the flowof 

information throughout the system are described. After describing the system, tests are conducted to assess 

the stability of the RSSI readings obtained from two separate devices (a BLE tag and smartwatch) in a 

residential home and our group’s smart home. Two devices and locations are tested in order to determine if 

the results appear consistent when using different broadcasting signals and home setups. Additionally, tests 

are conducted to determine if the system can accurately predict the location of the user within the homes. 

This is highly relevant to the present thesis given results are often based on knowing the location of the 

users from the IPS system. Results are promising as the system had a 96% accuracy at detecting room 

location for rooms containing beacons. 
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Compact Bluetooth Low Energy based Indoor Positioning System 

for Smart Home’s 
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Abstract— Objective: Indoor positioning system’s (IPS) are part of the internet of things (IoT). In this 

work, we designed an IPS that requires little prior knowledge of its location of integration and allows 

the end-user to self-install/setup the system themselves. Additionally, a dynamic calibration process is 

implemented to learn room boundaries based on the distribution of the BLE signal strength. The 

system uses beacon modules that directly plug into wall outlets. These beacons relay sensor and 

Bluetooth data to a Hub module. Methods: Several testing procedures were followed to validate the 

functionality of the designed IPS. Raw and filtered relative signal strength indicators (RSSI) and 

variability of RSSI were measured during testing. Room detection was determined by comparing a 

user input location (ground truth) with the IPS detected location for over 300 tests. Results: The IPS 

produced a 96% accuracy of correctly detecting room location. When using the backup motion 

sensor, the IPS achieved a 93% accuracy. Testing the same system in different environments 

produced similar results at above 90% accuracy. Conclusions: The measured raw and filtered RSSI 

values proved to be a highly accurate method of correlating distance using BLE signal strength. The 

use of PIR motion and ultrasonic sensors as backup presence detectors provided improved validity 

when compared with existing indoor positioning systems. Significance: The ease of use and modular 

design of this IPS makes it an ideal choice for implementation in larger scale smart healthcare 

monitoring systems. 
 

I. INTRODUCTION 

 The knowledge of a user’s position along with external data parameters like environmental sensor 

data or vital signatures enable the development of healthcare monitoring applications. In addition, storing 

the user’s location changes over longer periods of time will provide useful information that relates to 

behavior analysis and activity monitoring [1]. The Global Positioning System (GPS) is currently the 

dominate positioning technology, which has been embedded in transportation, mapping, and guidance 

systems everywhere. For applications predominately indoors, however, GPS is of limited usage due to the 

difficulty in communicating with GPS satellites as well as the increased requirement for positioning 

precision. Indoor environments propose a great challenge when it comes to position tracking because of the 

obstacles and interferences to wireless electromagnetic signals from the building structure. A system that 

can successfully overcome these challenges will prove to be extremely beneficial. Indoor position tracking 

opens a gateway to several unique applications. A simple example would be automating light fixtures based 

on presence of certain individuals or devices, which would classify as an IoT application. The knowledge 

of room detection can be used to analyze room transition patterns and potentially apply wayfinding 

applications like the one used by Giuliano et al in a museum [2]. It is extremely important to set a fully 

functioning foundation for an Indoor tracking system because it would serve as the backbone to a plethora 

of application ideas. The technical, medical, and general applications provide immense benefits and 

integrating them with a powerful indoor positioning system at its core is our goal.  
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 Indoor tracking has a significant impact when implemented in a clinical setting, it opens several 

approaches to health monitoring intervention platforms when combining time and location data with 

measured health parameters. The use of this data would be critical in the development of real time context 

aware healthcare monitoring applications. Specifically, the use of indoor tracking would be highly 

beneficial for Alzheimer’s and Dementia patients who have a history of getting lost. Additionally, the IPS 

would provide caregivers in long term care facilities a method of monitoring multiple patients efficiently. 

Caregiver burnout is a serious concern, technology that aims to assist caregivers can have a positive impact 

for the safety of both caregivers and older adults [3]. This project is working to create a technology that is 

shaped by the insights of older adults and their goals/needs for independence, in addition to providing 

support and respite for caregivers.  

 

 Position tracking is commonly performed by analyzing signal properties of communication 

protocols to identify a user / device’s location. An early 2021 systematic review by Pascacio et al covered 

the various communication protocols used to develop existing IPS technologies and outlined their 

similarities and differences [4]. Currently, common IPS’ determine location using either Bluetooth, WIFI 

or RFID communication protocols. WIFI is often used as a preferred indoor tracking method because of its 

speed and integration. However, using WIFI to perform indoor tracking requires extensive battery power 

usage on tracking devices, which limits the time a user can be tracked. WIFI based systems are ideal for 

indoor tracking in large indoor spaces like hospitals or industrial buildings. H.-P. Bernhard et al propose the 

development of an WIFI based presence detection system for an automotive assembly factory [5]. Their 

system would track the location of assembled cars moving from various testing locations and the location 

of their corresponding parts that are either added/removed. RFID is like WIFI with high fluctuations in 

signal strength and a limited measurable distance, however it has a lower power consumption. RFID is 

harder to implement because most commercial wearable devices like smartwatches and cellphones have 

BLE and WIFI integrations instead. [6]. Additionally, RFID signal strength has a lower detection distance 

when compared to BLE signals. Bluetooth Low Energy (BLE) works within a 30m radius and has multiple 

parameters that can be assessed for location tracking applications. Some of these properties include, 

relative signal strength indicator (RSSI), Angle of Arrival/Angle of Departure (AOA, AOD), and TX power 

[7]. Bluetooth based IPS’ are optimized to determine position at almost the centimetre level which makes 

them ideal for indoor tracking applications.  

 

 The two main types of IPS’ are proximity/presence-based vs coordinate (x, y)-based. Mokhtari et al 

uses BLE tags and a proximity-based approach to perform room level detection and activity monitoring [8]. 

Their research concluded that proximity-based systems struggle with accurate detection during longer 

recording periods because of data saturation with several room transitions. Noertjahyana et al developed a 

similar system except using the trilateration approach [9]. This approach led to a higher degree of precision 

and accuracy. The IPS developed in this paper focuses on room level detection (proximity) with the use of 

RSSI and motion/ultrasonic sensor feedback. Their IPS uses a combination of BLE and sensor data to 

confirm whether the tracked individual is present in a room. The main advantage here is that a proximity-

based detection system can be implemented at any point of interest, without prior knowledge of room 

topography. In contrast, the trilateration approach is dependent on processing power and improves as the 

number of beacons relaying information increases. Trilateration uses several matrices of calculated RSSI 

based distance values to coordinate an exact x, y position within a known indoor location setting.  

 

 Smart devices should prove beneficial to the user, be comfortable, non-intrusive, and easy to 

integrate. Successful smart home devices must be able to dynamically adapt to any home environment and 

still function at the highest efficiency possible. Many existing IPS require knowledge of detailed building 

topography for successful implementation and functionality. This means that these systems would require 

extensive work on their setup and calibration process. Signal integrity is the most important aspect of all 

data acquisition systems. The BLE communication protocol is constantly evolving and is currently stable at 
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in its 4th generation BLE 4.0. The 5th generation has newly been established and improves on some of the 

struggles of 4.0, however sufficient documentation renders it unapplicable for this use case. In this work, an 

IPS is developed that requires no prior knowledge of room topography with a very minimal setup and 

configuration process. However, it still maintains a high degree of precision and accuracy using BLE signal 

analysis and environmental sensor data. The system uses compact wall adapter beacon enclosures in 

conjunction with smartwatches/BLE tags as tracking devices. The system prioritizes being extremely easy 

to integrate and configure while retaining an extremely high degree of indoor presence detection accuracy.  

 

 One fundamental aspect of this system is its adaptability within various indoor environments. 

Previous literature on indoor tracking proves that in an indoor space, the presence of furniture and wall 

introduce high levels of signal loss and are the source of RSSI fluctuation [10,11]. Therefore, there is a 

need for an IPS that can successfully adapt within any indoor environment regardless of fluctuations. 

Developing an IPS that does not have to be preprogrammed based off building topography and room layout 

is another reason why adaptability is vital. A system like this would make integration within large buildings 

like hospitals or retirement homes significantly easier and still maintain a high degree of efficiency.  
 

 

II. SYSTEM DESIGN

Fig. 1: IPS System level design diagram, Red: Ambient beacon, Green: Raspberry Pi based Hub Module, 

Blue: BLE tag (iTag’s and smartwatches) 

 

A. Hardware and Electrical 

 

 The overall hardware system consists of three major components: sensors, microcontrollers and 

BLE devices. The sensors and microcontrollers are physically connected to each other whereas the BLE 
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devices are standalone and communicate with each microcontroller using Bluetooth signal communication. 

Each beacon consists of four sensors (Ultrasonic, PIR Motion, Ambient Light, and Temperature) connected 

to a single microcontroller (ESP32). The beacons  

 

 

 

 

 

require a 5V power source to operate, which is why AC-DC adapters are integrated within the enclosure 

itself. Fig. 2 illustrates the Hub – Multiple Beacon approach used. The red outline corresponds to multiple 

BLE beacon modules connected to outlets in the tracked rooms. The green outline consists of one hub 

module that contains a microcontroller and Raspberry Pi connected via micro-USB. This hardware setup 

ensures all data arrives at a central location and is processed on a separate device. 

 
 

 
Fig. 2: Hardware Flow Diagram, Red: Beacon Module Component Composition, Green: Hub Module 

Component Composition 

 

B. Software and Data Architecture 

 

 The software component of the IPS is split amongst the different devices being used. The 

microcontroller uses the C++ programming language to perform BLE signal acquisition and filtering along 

with all the sensor data  

 

 

 

 

 

collection. The Raspberry Pi 4 uses Python to perform data parsing methods and wireless transfer of BLE 

and sensor data to a Google Firestore cloud database. The data acquisition process and relationship between 

the components within the IPS is shown in Fig. 3. 
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Fig. 3: Software and Data Transfer Flow Chart, Red: Beacon module sensor and BLE data communication 

pathway from rooms to the hub module, Green: Hub module post processing data management, allocation, 

and calibration process pathway 

 

 

 

 Four types of communication protocols are used in the IPS: ESP-NOW, WIFI, BLE and USB-

UART Serial. The first is the ESP-NOW communication platform, it is the key method of sending BLE 

signal strength and sensor data between microcontrollers without the need for WIFI. ESP-NOW is a 

2.4GHz frequency-based communication protocol developed by Espressif [12]. It uses a peer-to-peer 

communication methodology, which is why we chose to design a Hub Module – Multiple Beacon Module 

approach. The beacon modules receive advertising packets from known smartwatches and tags using BLE 

communication and sensor data from the physical sensors on the beacon. The signal strength from these 

devices is stored momentarily on the microcontrollers and are sent along with sensor data to the hub 

module using ESP-NOW communication. The hub module will constantly receive data flow from several 

beacons within the indoor environment. 

 

 Anytime data is received by the hub microcontroller, it will relay this data to a Raspberry Pi via 

serial communication. Physically, the hub will contain both a microcontroller and Raspberry Pi that are 

connected serially via micro-USB. All transferred data is saved locally on the physical raspberry pi device 

and is additionally periodically sent to Google Cloud Firestore to monitor IPS’ externally. 

 

 The calibration process consists of an online database that receives user input locations while 

wearing their tracking device. For example, to calibrate a beacon placed in your bedroom the user would 

enter their location relative to room they want to allocate that beacon with (e.g., middle, left, right of the 

room). After this, they will be prompted to walk around the perimeter of the room for a period of 20 

seconds to collect the maximum RSSI range of the room. During this period, the system dynamically 

records signal strength values rapidly from all surrounding beacons and determines a range of RSSI 

fluctuation patterns within the room itself and its sublocations.  

 

C. Beacon Design 



PhD Thesis - Michael Zon McMaster University - Biomedical Engineering 

 125 

 

 The beacon module is a custom designed electronic device that encompasses sensor measurement, 

BLE signals and Wireless communication using a microcontroller to process these data points. Each 

module uses the ESP32-Devkit-C as its microcontroller unit. The ESP32 is the core of the IPS as it handles 

all BLE and sensor data communications. The electrical and mechanical components are labelled as the IPS 

enclosure in Fig. 4. Inside each beacon module is a custom-built PCB that connects all the sensors and 

microcontroller and eliminates the need for perf boards or breadboard-based connections. 
 

 
Fig. 4a: Beacon Module Enclosure with Labelled External Sensors 

 

 The enclosure is a PLA composed 3D printed case that was designed using Solidworks 2019 CAD 

software. It consists of a lid that contains mounting options for sensors and a base that encloses the AC-DC 

adapter and ESP32 PCB shield. The PCB was designed using Autodesk Eagle and contains two layers with 

all sensor connections and microcontroller mounting on the top layer.  

 

I. METHODS 

A. Experimental Setup 

  

 The functionality and performance of the IPS were evaluated in two residential houses with 

simulated activities. Testing parameters were documented and tabulated prior to conducting each individual 

test in Table I. The two houses where experiments were conducted are located in suburban residential 

neighborhoods in the City of Mississauga and Hamilton (McMaster Smart Home for Aging-in-Place 

(SHAPE) facility), both of which are in the Greater Toronto Metropolitan Area (GTA). Conducting the 

same experiments in two different locations allowed for analysis of environmental changes and improved 

validity in the system’s functionality. The suburban residential neighborhood setting provides a typical 

wireless signal environment, e.g., WIFI, Bluetooth, cellular networks, etc. Both houses are typical single-

family dwellings with multiple stores (two floors plus basement).  The house in Mississauga (House 1) 

contains typical residential household electrical outlet settings (one per wall). The SHAPE facility (House 

2) is a house with special electrical wiring systems that has multiple outlets per wall.   

 

 The experiments required human test subjects are labelled as subject 1 and 2 respectively. 

Additionally, only two types of devices were used for the tests, the Amazfit Bip Smartwatch and a generic 

iTag. Certain tests do not have their orientation labelled because the device is constantly moving and does 

not remain in one fixed orientation relative to the beacon. 
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TABLE I 

 Experimental Test Log and Parameters 

Test 

Subject 

Type of Test Tested 

Device 

Height Ground 

Level (m) 

Device 

Position 

Device 

Location 

Orientation 

Relative to Beacon 

Subject 1 RSSI Stability (1m) iTag 1.54 Around 
Neck on 

Pendant 

House 1 - 
Family Room 

Directly Facing 
Beacon 

Subject 1 RSSI Stability (2.5m) iTag 1.54 Around 

Neck on 
Pendant 

House 1 - 

Family Room 

Directly Facing 

Beacon 

Subject 2 RSSI Stability (1m) Amazfit 0.48 On Right 
Wrist 

House 1 - 
Family Room 

Directly Facing 
Beacon 

Subject 2 RSSI Stability (2.5m) Amazfit 0.48 On Right 

Wrist 

House 1 - 

Family Room 

Directly Facing 

Beacon 

N/A RSSI Stability (1m) Amazfit 0.65 Flat on 

Desk 

House 2 - 

Basement 

Facing Upwards 

N/A RSSI Stability (1m) iTag 0.65 Flat on 
Desk 

House 2 - 
Basement 

Facing Upwards 

Subject 1 Room Detection - RSSI Amazfit 0.65 - 1.27 Wrist House 1 N/A 

Subject 2 Room Detection - RSSI iTag 0.65 - 1.27 Wrist House 1 N/A 

Subject 1 Room Detection - RSSI Amazfit 
Smartwatch 

0.65 - 1.27 Wrist House 2 N/A 

Subject 2 Room Detection - RSSI iTag 0.65 - 1.27 Wrist House 2 N/A 

Subject 1 Location vs Ground Truth Amazfit 0.65 - 1.27 Wrist House 2 N/A 

Subject 2 Location vs Ground Truth Amazfit 0.43 - 1.06 Wrist House 2 N/A 

Subject 1 Location vs Ground Truth iTag 0.65 - 1.27 Wrist House 1 N/A 

Subject 2 Location vs Ground Truth iTag 0.43 - 1.06 Wrist House 1 N/A 

 

B. RSSI Fluctuation and Filtering 

 

 Initial testing was conducted to determine static fluctuation in RSSI when a smartwatch and iTag 

are in a still position. Stability tests were performed at fixed distances of 1, 2.5, 5 and 10m from a single 

beacon in two different test environments. Tests were performed in an interval of 100 seconds with a test 

subject standing at a fixed position with the device of choice.  During this interval, the relative signal 

strength indicator (RSSI) is plotted. The objective of this experiment is to observe the effects of RF 

interference on BLE signal strength and determine how effective filtering is on these noisy RSSI signals. 

Additionally, the key differences observed between distance and signal strength will prove that the use of 

signal strength analysis is an effective method to determine location or presence. Equation (1) will be used 

to calculate the distance based off measured RSSI values for both raw and filtered data. The measured 

power would be the estimated RSSI at 1m distance from the beacon. This value varies depending on the 

beacon used to measure RSSI. N is an environmental factor that ranges between 2-4 and is determined after 

correlating the calculated distances with fixed ground truth distances. The RSSI value is the measured 

signal strength. Using this equation, the resulting distance vs time graphs will be plotted for further 

analysis.  

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 10
(𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑃𝑜𝑤𝑒𝑟 −𝑅𝑆𝑆𝐼)

10×𝑁             (1) 
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C. Room RSSI Variation 

  

 To ensure room detection would be as accurate as possible, RSSI fluctuations were measured in 

various rooms within the McMaster Smart Home and Residential Home. For this experiment, a user would 

be wearing a smartwatch on their wrist or an iTag pendant around their neck while they walk around a 

room for a period of 100 seconds. Tests were conducted in 4 rooms at both testing locations. The purpose 

of this experiment is to record RSSI variations through rooms of various sizes. Analyzing this data helped 

with designing a calibration algorithm and observing how RSSI varies based on room size visually.  

 

D. Room RSSI Variation 

 

 To ensure room detection would be as accurate as possible, RSSI fluctuations were measured in 

various rooms within the McMaster Smart Home and Residential Home. For this experiment, a user would 

be wearing a smartwatch on their wrist or an iTag pendant around their neck while they walk around a 

room for a period of 100 seconds. Tests were conducted in 4 rooms at both testing locations. The purpose 

of this experiment is to record RSSI variations through rooms of various sizes. Analyzing this data helped 

with designing a calibration algorithm and observing how RSSI varies based on room size visually.  

 

 

 

 

E. Location vs Ground Truth  

 

 A method of validating whether a user is in the detected room was required to successfully assess 

the quality and efficiency of the IPS. This validation experiment was performed using a custom designed 

mobile application that seeks user input on a user’s current room location. The mobile app required a user 

to enter a room, wait 10 seconds and validate the room they are currently in (Ground Truth). This selection 

is then compared with the calculated location that the IPS determined based off signal strength (Location). 

150 room selections were completed by two separate test subjects as they traversed between either 4 or 5 

rooms depending on the test location.    

 

F. Sensor Based Room Detection 

 

 The addition of sensors along with BLE signal strength analysis provides meaningful data that can 

be analyzed in real time or post processed. The IPS is equipped with a PIR motion sensor (HC-SR501), 

Ultrasonic Range Finder (HC-SR04), Ambient Light sensor (TEMT6000) and a DHT-11 temperature 

sensor. The ultrasonic and PIR motion sensor were primarily used for motion detection with temperature 

and ambient light used for context awareness applications. Following a similar process as test #3 (Location 

vs Ground Truth), the motion and ultrasonic distance measurement thresholds were compared with a user 

input location. For example, when walking into “room 1” the expected sensor output from room 1’s beacon 

should detect presence via the motion sensor and fall within the calibrated threshold for the ultrasonic 

sensor. The mobile app required a user to enter a room, wait 10 seconds and validate the room they are 

currently in (Ground Truth). This selection is then compared with the calculated location that the IPS 

determined based off the motion sensor and ultrasonic sensor outputs. 150 room selections were completed 

by two separate test subjects as they traversed between either 4 or 5 rooms depending on the test location.    

 

G. Room Transition and Detection Speed 

 

 Performance testing of the IPS involves determining how fast it can detect room changes and 

presence. This experiment consisted of a user traversing between two adjacent rooms of similar size while 
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the time difference between timestamped presence detection is compared to determine detection speed. The 

same experiment was repeated for rooms that are at greater distances apart from each other. 

 

H. RSSI Filtering 

 

 The filtering performed in this paper consists of a simple exponential filter applied on raw RSSI 

values in real time. An exponential filter works using a recursive algorithm and prioritizes the previously 

filtered value along with a filter weight to accurately determine the newly filtered value yn as shown in 

equation (2). The variable xn holds the measured raw RSSI value and the variable yn-1 holds the previously 

calculated filtered value. When analyzing the filter’s performance, the most important variable to consider 

is “w” the weight factor. Several researchers use similar filters that operate using a weight factor or similar 

constants like the Kalman filter and Particle Filter [13,14]. 

 

𝑦𝑛 = 𝑤 × 𝑥𝑛 + (1 − 𝑤) ×  𝑦𝑛−1              

(2) 

 

 Throughout experimental analysis of RSSI fluctuation data, various filter weights were used, and 

newly filtered datasets were obtained. However, for the functional IPS, an optimal filter weight was 

desired. To accurately determine what value of “w” is required further analysis of the exponential filtering 

on RSSI values was required. To determine this value, the root mean square (RMS) of filtered RSSI 

fluctuation datasets were calculated and plotted. Each dataset contained 100 RSSI values that were filtered 

using weight factors that varied from 0-100%. 

 

I. RESULTS 

A. RSSI Fluctuation and Filtering 

 

 Fig. 5a displays an RSSI vs Distance graph from average RSSI measurements taken during interval 

tests in the McMaster Smart Home basement. The figure shows raw and filtered RSSI levels, and their 

calculated distances based off Equation 1. 

 

 The raw and filtered RSSI values of the Amazfit smartwatch at distances (1, 2.5, 5 and 10 meters) 

are graphed and illustrated in Fig. 5c. Graphed raw RSSI values show rapid changes at every measured 

distance while maintaining a reasonably distinguishable range. Graphed filtered RSSI values show smaller 

changes and have clearly distinguishable ranges. The observed RSSI ranges are approximately -50 to -60 at 

1m, -55 to -65 at 2.5m, -65 to -75 at 5m and -75+ at 10m.  

 

 In addition to the plotted raw and filtered RSSI, the measured datasets were analyzed to determine 

standard deviation, mean RSSI and variance. The calculated standard deviation values of the Amazfit 

smartwatch during the 10m test in the Residential Home was 1.68 – Filtered. In the McMaster Smart 

Home, the 10m test results was 1.90 – Filtered. Testing was performed using an additional device known as 

an iTag for comparison between smartwatch and BLE tag RSSI values. The calculated standard deviation 

values of the iTag during the 10m test in the Residential Home were 2.57 - Raw and 1.56 – Filtered. In the 

McMaster Smart Home, the 10m test results were 2.21 – Raw and 1.74 – Filtered.  
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Fig 5a: Mean Measured RSSI at Fixed Distances (1, 2.5, 5 and 10m) in the Smart Home Basement 

 
Fig. 5b: Filtered RSSI at Fixed Distances (1, 2.5, 5 and 10m) in the Smart Home Basement 

 
Fig. 5c: Calculated RSSI based Distance Measurements of Amazfit Smartwatch at a fixed 1m relative to the 

IPS Beacon in the Smart Home Basement 
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B. Room RSSI Variation 

 

 Measured RSSI changes from both the Amazfit smartwatch and iTag while moving within a single 

room were measured and graphed. Graphed RSSI in the washroom of the residential and smart home show 

a similar range for both devices as shown in Fig 6a, b. Bedrooms and workspaces produced higher RSSI 

variation where RSSI reached a minimum value -88 dB and maximum of -55 dB. In the case of the 

washroom RSSI data, the maximum value recorded was -46 dB and the minimum was – 64 dB.  

 

 Further analyzed properties like standard deviation, maximum and minimum RSSI were calculated 

displayed in Table II. A maximum standard deviation of 5.68 was calculated from the Amazfit smartwatch 

in the residential home bedroom. A maximum standard deviation of 5.61 was calculated from the iTag in 

the residential home office room. In the McMaster smart home, similar maximum standard deviation values 

were calculated and are greater than 5 as well.  

 
Fig. 6a: Measured RSSI vs Time in the Residential Home Washroom 

 
Fig. 6b: Measured RSSI vs Time in the McMaster Smart Home Washroom 

 

 

 

 

 

 

 

 

 

 

 



PhD Thesis - Michael Zon McMaster University - Biomedical Engineering 

 131 

TABLE II 

RSSI Signal Properties of the Amazfit Smartwatch and iTag from RSSI Variation Testing 

Room RSSI Measurement iTag Amazfit Smartwatch 

Test Type Mean 

(dB) 

Max 

(dB) 

Min 

(dB) 

Std. 

Deviation 

Mean 

(dB) 

Max 

(dB) 

Min 

(dB) 

Std. 

Deviation 

 

House 1 – Residential Home 

RSSI Fluctuation - Bedroom -76.45 -56.00 -84.00 4.67 -73.66 -55.00 -80.00 5.68 

RSSI Fluctuation - Washroom -59.65 -48.00 -61.00 2.54 -56.76 -52.00 -64.00 2.89 

RSSI Fluctuation - Office -74.43 -59.00 -88.00 5.61 -77.65 -59.00 -86.00 5.43 

RSSI Fluctuation - Bedroom 2 -54.32 -46.00 -58.00 2.43 -56.51 -50.00 -61.00 2.87 

House 2 - SHAPE Facility 

RSSI Fluctuation - Bedroom -66.84 -57.00 -82.00 5.23 -68.40 -51.00 -78.00 5.32 

RSSI Fluctuation - Washroom -56.67 -52.00 -61.00 2.45 -53.45 -46.00 -59.00 2.13 

RSSI Fluctuation - Office -71.21 -61.00 -84.00 5.12 -65.64 -54.00 -74.00 5.17 

RSSI Fluctuation - Kitchen -54.89 -51.00 -60.00 2.77 -58.63 -49.00 -60.00 3.25 

C. Location vs Ground Truth 

 

 Mobile app entries and IPS determined locations were compared and the detection results are 

displayed in Table III.  

 

The IPS achieved a calculated percentage accuracy of 96.7% in the residential home and 95.33% in the 

smart home.
 

TABLE III 

User Input Location vs Ground Truth Location Test Results 

Room Detection Analysis 

Parameters 

Subject 1 Subject 2 Total 

House 1 – Residential Home (4 Rooms) 

Number of Tests 150 150 300 

Total Correct Location Matches 146 144 290 

Incorrect Location Matches 4 6 10 

% Accuracy 97.33 96.00 96.67 

House 2 - SHAPE Facility (5 Rooms) 

Number of Tests 150 150 300 

Total Correct Location Matches 144 142 286 

Incorrect Location Matches 6 8 14 

% Accuracy 96.00 94.67 95.33 

 

D. Sensor Based Room Detection 

 

     Mobile app entries and recorded sensor values were compared, and the detection results are displayed in 

Table IV. The motion sensor achieved a total 93% accuracy. The ultrasonic sensor at a 200 cm threshold 

produced a lower accuracy of 78.67%. Temperature and ambient light sensors were tested for functionality 

and successfully relayed their measured values in real time after a beacon is connected.  
 

 

 

 

 

TABLE IV 

Tabulated Results of Motion and Ultrasonic Range Detection Testing 
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Motion and Ultrasonic Detection Analysis Subject 1 Subject 2 Total 

Motion Detection Testing 

Number of Tests 150 150 300 

Correct Motion Detection (Presence Detected) 141 138 279 

Incorrect Motion Detections (Presence Not 

Detected) 9 12 21 

% Accuracy 94.00 92.00 93.00 

Ultrasonic Detection Testing (2m Threshold) 

Number of Tests 150 150 300 

Correct Ultrasonic Detection (Within 

Threshold) 126 110 236 

Correct Ultrasonic Detection (Not Within 

Threshold) 24 40 64 

% Accuracy 84.00 73.33 78.67 

 

E. Room Transition and Detection Speed 

 

 Each room transition was performed 15 times for both the Amazfit smartwatch and iTag. An 

average speed in seconds was calculated based off the 15 tests and reported in Table V. Adjacent room 

transitions displayed average speeds of 1.47  

 

and 2.23 seconds in the residential home and 2.57, 1.50 and 2.83 in the McMaster Smart Home. The far 

room transitions displayed average speeds of 5.20 and 6.55 seconds in the residential home and 5.97 and 

6.29 in the McMaster Smart Home.
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TABLE V 

Tabulated Results of Room Transition and Detection Speed Testing 

Room Transition and Detection Speed Testing Amazfit iTag Average Speed (s) 

House 1 - Residential Home Detection Speeds in Seconds (4 Rooms) 

Bedroom to Washroom (Adjacent) 1.56 1.37 1.47 

Washroom to Prayer Room (Adjacent) 2.54 1.91 2.23 

Prayer Room to Office (Far) 4.53 5.87 5.20 

Office to Bedroom (Far) 5.69 7.41 6.55 

House 2 - SHAPE Facility Detection Speeds in Seconds (5 Rooms) 

Washroom to Office (Adjacent) 2.81 2.32 2.57 

Office to Kitchen (Adjacent) 1.12 1.88 1.50 

Kitchen to Dining Room (Adjacent) 2.53 3.12 2.83 

Dining Room to Bedroom (Far) 5.62 6.31 5.97 
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F. RSSI Filtering  

 

 Testing of the generic sinusoidal function revealed that the phase shift is not 

affected by the filter, however the amplitude is, as shown in Fig. 7a. The sin(x) function 

remains the same at a weight factor of 1 (100%) and gradually smoothens as weight is 

decreased. It is evident that at lower weights (w = 0.5 and 0.2), the filtered function 

responds slowly to changes that are evident in the original signal (w = 1). Using the filtered 

Sin(x) function’s graphed response, a similar process was applied to a singular dataset from 

the RSSI fluctuation tests to produce Fig. 7b. The RMS curve follows an exponential 

growth between 0-20 weight % and then steadily increases.  

 
Fig. 7a: Exponential Filtered Sin(x) Function at Varying Weight Factors 
 

 
Fig. 7b: RMS value as a function of Weight Factor for the RSSI Stability Dataset (1m) 

 

I. DISCUSSION  

A. Objectives and Design Features 
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 Throughout the development of this IPS several objectives were targeted. Our aim 

was to develop a system that can measure indoor locations at the room level, accurately 

determine room transitions, identify traversal pathways of specified BLE devices, 

correlation of room detection with timestamped sensor data, self-installation with minimal 

or no house visits, a reasonable cost to develop and secure data collection. The results of 

our validation tests directly align with several objectives mentioned above and are further 

outlined in detail below. The physical design of the IPS beacons and hub deal with the 

objective of self-installation. Beacons are built to be connected directly into wall sockets to 

eliminate the need for battery replacement or charging. The hub module follows the same 

process and has one additional connection to either a home router or ethernet port 

anywhere within the home. This design made the system extremely user friendly asking for 

minimal effort from the user during setup and installation. The reasonable cost objective 

was achieved as the system (assuming 5 beacons/rooms on average) costs approximately 

$200 to build. To ensure all data remains secure all collected sensor and Bluetooth data 

remains on the hub module device saved locally. The communication of data between 

beacons to the hub all operates on a secure 2.4GHz channel without any need for internet 

connectivity. The design, testing and validation of this IPS took all these objectives into 

consideration throughout the entire engineering design process.  

 

B. RSSI Fluctuation and Filtering 

 

 It is evident that the RSSI at a stable position produced high levels of fluctuation 

due to RF interference within an indoor environment. Obstacles like furniture and metal 

properties within walls can have a serious impact on the RSSI values [15]. When raw RSSI 

is left alone there is substantial overlap between values at short distances as shown in the 

results from Fig. 5c. When the exponential filter is applied to the raw values, determining 

the relative distance of a device is significantly easier as shown in Fig. 5b. This decrease 

proves that filtering the RSSI values provides a significant advantage for the indoor 

tracking algorithm.  

 

 With regards to the main objective of room detection, a clear difference in 

measured RSSI is evident as distance increases. RSSI strength decreases as the tracked 

device moves further away from the beacon. Fig. 5b and c show a clear difference in the 

efficiency of using filtered RSSI vs raw RSSI. Filtered RSSI plots produced significantly 

less deviation making it easier to correlate a distance to determine presence.  

 

C. Room RSSI Variation 

 

 Rooms will produce varying RSSI values when a user is moving around the 

beacon’s relative location. Analyzing these values allows us to determine a range and 

calculate the standard deviation of RSSI for each room. The variation proved to be 

significantly lower in smaller rooms when compared to larger rooms as depicted in Table 
II. To accurately detect if a user is within that room multiple factors must be considered 

along with the RSSI values. This test proved that a calibration setup is required to 
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accurately determine room presence based of a dynamically measured threshold. Room 

size variation made detecting indoor position at the sub room level difficult for the smaller 

room sizes. Potential ways to compensate for this would be to enhance the calibration 

algorithm to react differently on RSSI changes in smaller rooms compared to larger ones. 

 

D. Location vs Ground Truth 

 

 Comparison between user input locations and detected locations resulted in a high 

% accuracy for the overall IPS. A difference of around 1% was observed in the calculated 

% accuracy between the two test locations. This result supports the IPS’ ability to adapt to 

new indoor environments. The physical act of transitioning between rooms causes the IPS 

to receive multiple RSSI signals that are within a similar range to the closest available 

beacons. The similarity in RSSI range is the cause of the incorrect location detection. To 

mitigate this problem, filtering of RSSI values can be improved along with the inclusion of 

a more extensive calibration process during integration. Future experiments will be 

conducted using more than two test subjects and more than five rooms to detect. 

Additionally, a greater number of room transitions would be added to the testing procedure. 

The results of this experiment truly ensured that the system was correctly detecting the 

presence of an individual traversing within their home. It aligned with the objective of 

using IPS data to observe room traversal patterns and pathway guidance application 

development. 

 

E. Sensor Based Room Detection 

 

 Results proved that the motion sensor would be an ideal backup for room detecting 

validation as it produced a high % accuracy for room detection. The ultrasonic sensor 

produced a significantly lower % accuracy, with several false positive room detections. 

Limitations on ultrasonic threshold distance and angle are the reasons for the lower 

accuracy. The ultrasonic sensor has a maximum distance measurement of 200cm directly in 

front of its detector. Whereas the PIR motion sensor has a 5m hemispherical radius in front 

of the detector. A drawback to using physical sensors for room detection is the location of 

the beacons will become limited. The detector heads from the motion and ultrasonic 

sensors must be facing an open area to accurately detect if a person walks in front of or past 

it. The beacons are designed to act as wall adapters and throughout most residential and 

clinical settings outlets are often covered by furniture or equipment.  

 

F. Room Transition and Detection Speed 

 

 Results showed significantly longer detection times for rooms of further distances 

which was expected due to the time it takes to physically traverse larger and further rooms. 

Commercial indoor positioning systems can determine room location at less than 1 second 

speeds with prior knowledge of room layout and building topography [16]. Some possible 
reasons for the longer detection time observed would be the ESP NOW communication 

delay. BLE data is sent across a different communication channel at a different operating 
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frequency. Additionally, the added filtering process could potentially add a significant 

delay due to processing incoming and past RSSI data before room detection analysis even 

begins. Further testing and validation need to be performed to confirm these concerns and 

determine if these are reasons for the longer speeds. Future work would involve exploring 

methods to increase the measured detection speed to achieve similar speeds without the 

need for knowledge of room layout. The detection speed and room transition data aligned 

with our objective of using IPS data to observe room traversal patterns and pathway 

guidance application development. 

 

G. RSSI Filtering  

 

 The RSSI changes based off the implemented exponential filter significantly 

improve the signal quality. Results from the fluctuation and room variation tests prove that 

the filter aids the IPS’s ability to accurately detect rooms. From Fig. 7b, there is a large 

spike in the RMS value through the 0-20% weight range. From previous testing, it was 

noted that larger weight factors significantly increased the processing time and power 

consumption. Therefore, the optimal weight would be to use 20% as it is the smallest 

weight that maintains a smooth filter at the fastest possible processing speed. 

 

 

I. CONCLUSION 

 Indoor position tracking continues to improve in methodology and implementation 

as technology advances. Presently, existing systems can use WIFI, BLE, RFID and 

preprogrammed topographies to track devices at almost the centimeter level. However, the 

system design in this paper performs location tracking at the room level without any 

preprogramming requirements using a dynamic calibration process and filtered BLE RSSI 

signal strength analysis. In addition, the system can validate its own location tracking using 

motion and ultrasonic sensor detection. Several experimental procedures were followed to 

validate this system’s ability to accurately determine the location of both a BLE tag and 

smartwatch. The RSSI quality, variation, calculated location vs. ground truth and sensor 

room detection were tested and validated. The purpose of this study was to track human 

subjects wearing smartwatches or pendant tags, however the IPS can be used to track 

devices that have BLE sticker tags attached to them. Potential future implementations of 

the IPS could potentially include real time indoor tracking of constantly moving medical 

instruments like ultrasound machine carts and crash carts in hospitals. The IPS is the ideal 

device for use as a central core to large scale health care monitoring systems. 
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13.       Review question(s): 

The objective of this scoping review is to determine what medical context aware 
systems are currently being used by healthcare providers and patients. As this goal 
is focused on broadly identifying what exists within the literature at present, the 
review question lends itself well to a scoping review. Although a review of context 
aware systems in healthcare has been conducted in the past, systems that are 
currently being used by patients/healthcare providers were not identified. This is 
likely largely due to a lack of applications past the prototype stage at the time of the 
last review.  

A secondary objective is to identify which contexts are being used by these 
systems and to find themes/categories for the context aware applications that are 
identified throughout the review. An adapted PICO framework for the research 
question is provided below. 

14.       Literature search: 

Standard scoping review methodology will be used and reporting of results will 
follow established guidelines.1, 2 A systematic literature search will be piloted on 
Medline using the broad search concepts of “context-aware*”, “health”, and 
“patient”, with relevant key terms nested under each concept. The process of 
search design will be iterative. Over a series of piloting cycles, a workable final 
search will be obtained that will be adapted to other search databases. Searches 
will be assessed based on whether they yield a hand-selected list of key studies 
that are deemed to fit the research question. The databases that will be searched 
are SpringerLink, EBSCO, PubMed, IEEE Xplore, Wiley, ScienceDirect, and ACM. 
The search interval was from the earliest data available on the database to May 
2021 and only published peer reviewed journal articles were considered. This was 
done to ensure only quality systems and study designs/methods that have been 
reviewed by experts are included, thus giving a more accurate representation of 
the state of context aware systems in healthcare. Rayyann.ai , will be used to 
detect duplicates and keep track of references. 

15.       URL to search strategy: 
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An example search for PubMed yielding 404 results from 1981 to May 1, 2021 is 
shown below. 

(("context$aware*"[Title/Abstract] OR "situation$aware*"[Title/Abstract]) AND 
((health*[Title/Abstract] OR medic*[Title/Abstract] OR hospital*[Title/Abstract] OR 
well*[Title/Abstract] OR diagnos*[Title/Abstract] OR detect*[Title/Abstract] OR 
clinic*[Title/Abstract] OR condition[Title/Abstract])) AND (patient*[Title/Abstract] OR 
doctor*[Title/Abstract] OR nurse*[Title/Abstract] OR elder*[Title/Abstract] OR 
participant[Title/Abstract] OR physician*[Title/Abstract])) 

  

https://pubmed.ncbi.nlm.nih.gov/?term=%28%28%22context%24aware*%22%5BT
itle%2FAbstract%5D+OR+%22situation%24aware*%22%5BTitle%2FAbstract%5D
%29+AND+%28%28health*%5BTitle%2FAbstract%5D+OR+medic*%5BTitle%2FA
bstract%5D+OR+hospital*%5BTitle%2FAbstract%5D+OR+well*%5BTitle%2FAbstr
act%5D+OR+diagnos*%5BTitle%2FAbstract%5D+OR+detect*%5BTitle%2FAbstra
ct%5D+OR+clinic*%5BTitle%2FAbstract%5D+OR+condition%5BTitle%2FAbstract
%5D%29%29+AND+%28patient*%5BTitle%2FAbstract%5D+OR+doctor*%5BTitle
%2FAbstract%5D+OR+nurse*%5BTitle%2FAbstract%5D+OR+elder*%5BTitle%2F
Abstract%5D+OR+participant%5BTitle%2FAbstract%5D+OR+physician*%5BTitle
%2FAbstract%5D%29%29&filter=pubt.journalarticle 

16.       Condition or domain being studied: 

Context aware systems; healthcare; applications used by patients; applications 
used by healthcare providers; Non lab prototypes 

17.       Participants/population: 

             Healthcare providers, caregivers, and patients of any age 

18.       Intervention(s)/exposure(s): 

Context aware technologies, defined as systems where the applications have the 
“ability to adapt to changing circumstances and respond according to the context of 
use (J. Kjeldskov, M. Skov, Supporting work activities in healthcare by mobile 
electronic patient records, in: Proceedings of the 6th Asia–Pacific Conference on 
Human–Computer Interaction, APCHI 2004, Rotorva, New Zealand, 2004). 
Context is defined in the usual way, by Dey, as “any information that can be used 
to characterize the situation of entities (i.e. whether a person, place or object) that 
are considered relevant to the interaction between a user and an application, 
including the user and the application themselves.” (A. Dey, G. Abowd, D. Salber, 
A conceptual framework and toolkit for supporting the rapid prototyping of context-
aware applications in special issue on context-aware c) We further define the 
technology/intervention by focusing only on those applications with a medical focus 
which have been used by patients to help manage their disease or healthcare 
providers to help with their workflow or management of patients conditions. Thus, 
lab prototypes that have not been used by patients/healthcare providers are 

excluded. 

19.       Comparator(s)/control(s): 

https://pubmed.ncbi.nlm.nih.gov/?term=%28%28%22context%24aware*%22%5BTitle%2FAbstract%5D+OR+%22situation%24aware*%22%5BTitle%2FAbstract%5D%29+AND+%28%28health*%5BTitle%2FAbstract%5D+OR+medic*%5BTitle%2FAbstract%5D+OR+hospital*%5BTitle%2FAbstract%5D+OR+well*%5BTitle%2FAbstract%5D+OR+diagnos*%5BTitle%2FAbstract%5D+OR+detect*%5BTitle%2FAbstract%5D+OR+clinic*%5BTitle%2FAbstract%5D+OR+condition%5BTitle%2FAbstract%5D%29%29+AND+%28patient*%5BTitle%2FAbstract%5D+OR+doctor*%5BTitle%2FAbstract%5D+OR+nurse*%5BTitle%2FAbstract%5D+OR+elder*%5BTitle%2FAbstract%5D+OR+participant%5BTitle%2FAbstract%5D+OR+physician*%5BTitle%2FAbstract%5D%29%29&filter=pubt.journalarticle
https://pubmed.ncbi.nlm.nih.gov/?term=%28%28%22context%24aware*%22%5BTitle%2FAbstract%5D+OR+%22situation%24aware*%22%5BTitle%2FAbstract%5D%29+AND+%28%28health*%5BTitle%2FAbstract%5D+OR+medic*%5BTitle%2FAbstract%5D+OR+hospital*%5BTitle%2FAbstract%5D+OR+well*%5BTitle%2FAbstract%5D+OR+diagnos*%5BTitle%2FAbstract%5D+OR+detect*%5BTitle%2FAbstract%5D+OR+clinic*%5BTitle%2FAbstract%5D+OR+condition%5BTitle%2FAbstract%5D%29%29+AND+%28patient*%5BTitle%2FAbstract%5D+OR+doctor*%5BTitle%2FAbstract%5D+OR+nurse*%5BTitle%2FAbstract%5D+OR+elder*%5BTitle%2FAbstract%5D+OR+participant%5BTitle%2FAbstract%5D+OR+physician*%5BTitle%2FAbstract%5D%29%29&filter=pubt.journalarticle
https://pubmed.ncbi.nlm.nih.gov/?term=%28%28%22context%24aware*%22%5BTitle%2FAbstract%5D+OR+%22situation%24aware*%22%5BTitle%2FAbstract%5D%29+AND+%28%28health*%5BTitle%2FAbstract%5D+OR+medic*%5BTitle%2FAbstract%5D+OR+hospital*%5BTitle%2FAbstract%5D+OR+well*%5BTitle%2FAbstract%5D+OR+diagnos*%5BTitle%2FAbstract%5D+OR+detect*%5BTitle%2FAbstract%5D+OR+clinic*%5BTitle%2FAbstract%5D+OR+condition%5BTitle%2FAbstract%5D%29%29+AND+%28patient*%5BTitle%2FAbstract%5D+OR+doctor*%5BTitle%2FAbstract%5D+OR+nurse*%5BTitle%2FAbstract%5D+OR+elder*%5BTitle%2FAbstract%5D+OR+participant%5BTitle%2FAbstract%5D+OR+physician*%5BTitle%2FAbstract%5D%29%29&filter=pubt.journalarticle
https://pubmed.ncbi.nlm.nih.gov/?term=%28%28%22context%24aware*%22%5BTitle%2FAbstract%5D+OR+%22situation%24aware*%22%5BTitle%2FAbstract%5D%29+AND+%28%28health*%5BTitle%2FAbstract%5D+OR+medic*%5BTitle%2FAbstract%5D+OR+hospital*%5BTitle%2FAbstract%5D+OR+well*%5BTitle%2FAbstract%5D+OR+diagnos*%5BTitle%2FAbstract%5D+OR+detect*%5BTitle%2FAbstract%5D+OR+clinic*%5BTitle%2FAbstract%5D+OR+condition%5BTitle%2FAbstract%5D%29%29+AND+%28patient*%5BTitle%2FAbstract%5D+OR+doctor*%5BTitle%2FAbstract%5D+OR+nurse*%5BTitle%2FAbstract%5D+OR+elder*%5BTitle%2FAbstract%5D+OR+participant%5BTitle%2FAbstract%5D+OR+physician*%5BTitle%2FAbstract%5D%29%29&filter=pubt.journalarticle
https://pubmed.ncbi.nlm.nih.gov/?term=%28%28%22context%24aware*%22%5BTitle%2FAbstract%5D+OR+%22situation%24aware*%22%5BTitle%2FAbstract%5D%29+AND+%28%28health*%5BTitle%2FAbstract%5D+OR+medic*%5BTitle%2FAbstract%5D+OR+hospital*%5BTitle%2FAbstract%5D+OR+well*%5BTitle%2FAbstract%5D+OR+diagnos*%5BTitle%2FAbstract%5D+OR+detect*%5BTitle%2FAbstract%5D+OR+clinic*%5BTitle%2FAbstract%5D+OR+condition%5BTitle%2FAbstract%5D%29%29+AND+%28patient*%5BTitle%2FAbstract%5D+OR+doctor*%5BTitle%2FAbstract%5D+OR+nurse*%5BTitle%2FAbstract%5D+OR+elder*%5BTitle%2FAbstract%5D+OR+participant%5BTitle%2FAbstract%5D+OR+physician*%5BTitle%2FAbstract%5D%29%29&filter=pubt.journalarticle
https://pubmed.ncbi.nlm.nih.gov/?term=%28%28%22context%24aware*%22%5BTitle%2FAbstract%5D+OR+%22situation%24aware*%22%5BTitle%2FAbstract%5D%29+AND+%28%28health*%5BTitle%2FAbstract%5D+OR+medic*%5BTitle%2FAbstract%5D+OR+hospital*%5BTitle%2FAbstract%5D+OR+well*%5BTitle%2FAbstract%5D+OR+diagnos*%5BTitle%2FAbstract%5D+OR+detect*%5BTitle%2FAbstract%5D+OR+clinic*%5BTitle%2FAbstract%5D+OR+condition%5BTitle%2FAbstract%5D%29%29+AND+%28patient*%5BTitle%2FAbstract%5D+OR+doctor*%5BTitle%2FAbstract%5D+OR+nurse*%5BTitle%2FAbstract%5D+OR+elder*%5BTitle%2FAbstract%5D+OR+participant%5BTitle%2FAbstract%5D+OR+physician*%5BTitle%2FAbstract%5D%29%29&filter=pubt.journalarticle
https://pubmed.ncbi.nlm.nih.gov/?term=%28%28%22context%24aware*%22%5BTitle%2FAbstract%5D+OR+%22situation%24aware*%22%5BTitle%2FAbstract%5D%29+AND+%28%28health*%5BTitle%2FAbstract%5D+OR+medic*%5BTitle%2FAbstract%5D+OR+hospital*%5BTitle%2FAbstract%5D+OR+well*%5BTitle%2FAbstract%5D+OR+diagnos*%5BTitle%2FAbstract%5D+OR+detect*%5BTitle%2FAbstract%5D+OR+clinic*%5BTitle%2FAbstract%5D+OR+condition%5BTitle%2FAbstract%5D%29%29+AND+%28patient*%5BTitle%2FAbstract%5D+OR+doctor*%5BTitle%2FAbstract%5D+OR+nurse*%5BTitle%2FAbstract%5D+OR+elder*%5BTitle%2FAbstract%5D+OR+participant%5BTitle%2FAbstract%5D+OR+physician*%5BTitle%2FAbstract%5D%29%29&filter=pubt.journalarticle
https://pubmed.ncbi.nlm.nih.gov/?term=%28%28%22context%24aware*%22%5BTitle%2FAbstract%5D+OR+%22situation%24aware*%22%5BTitle%2FAbstract%5D%29+AND+%28%28health*%5BTitle%2FAbstract%5D+OR+medic*%5BTitle%2FAbstract%5D+OR+hospital*%5BTitle%2FAbstract%5D+OR+well*%5BTitle%2FAbstract%5D+OR+diagnos*%5BTitle%2FAbstract%5D+OR+detect*%5BTitle%2FAbstract%5D+OR+clinic*%5BTitle%2FAbstract%5D+OR+condition%5BTitle%2FAbstract%5D%29%29+AND+%28patient*%5BTitle%2FAbstract%5D+OR+doctor*%5BTitle%2FAbstract%5D+OR+nurse*%5BTitle%2FAbstract%5D+OR+elder*%5BTitle%2FAbstract%5D+OR+participant%5BTitle%2FAbstract%5D+OR+physician*%5BTitle%2FAbstract%5D%29%29&filter=pubt.journalarticle
https://pubmed.ncbi.nlm.nih.gov/?term=%28%28%22context%24aware*%22%5BTitle%2FAbstract%5D+OR+%22situation%24aware*%22%5BTitle%2FAbstract%5D%29+AND+%28%28health*%5BTitle%2FAbstract%5D+OR+medic*%5BTitle%2FAbstract%5D+OR+hospital*%5BTitle%2FAbstract%5D+OR+well*%5BTitle%2FAbstract%5D+OR+diagnos*%5BTitle%2FAbstract%5D+OR+detect*%5BTitle%2FAbstract%5D+OR+clinic*%5BTitle%2FAbstract%5D+OR+condition%5BTitle%2FAbstract%5D%29%29+AND+%28patient*%5BTitle%2FAbstract%5D+OR+doctor*%5BTitle%2FAbstract%5D+OR+nurse*%5BTitle%2FAbstract%5D+OR+elder*%5BTitle%2FAbstract%5D+OR+participant%5BTitle%2FAbstract%5D+OR+physician*%5BTitle%2FAbstract%5D%29%29&filter=pubt.journalarticle
https://pubmed.ncbi.nlm.nih.gov/?term=%28%28%22context%24aware*%22%5BTitle%2FAbstract%5D+OR+%22situation%24aware*%22%5BTitle%2FAbstract%5D%29+AND+%28%28health*%5BTitle%2FAbstract%5D+OR+medic*%5BTitle%2FAbstract%5D+OR+hospital*%5BTitle%2FAbstract%5D+OR+well*%5BTitle%2FAbstract%5D+OR+diagnos*%5BTitle%2FAbstract%5D+OR+detect*%5BTitle%2FAbstract%5D+OR+clinic*%5BTitle%2FAbstract%5D+OR+condition%5BTitle%2FAbstract%5D%29%29+AND+%28patient*%5BTitle%2FAbstract%5D+OR+doctor*%5BTitle%2FAbstract%5D+OR+nurse*%5BTitle%2FAbstract%5D+OR+elder*%5BTitle%2FAbstract%5D+OR+participant%5BTitle%2FAbstract%5D+OR+physician*%5BTitle%2FAbstract%5D%29%29&filter=pubt.journalarticle
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Any comparator. 

20.       Types of study to be included initially: 

All studies featuring primary data will be included. Systematic reviews were eligible 
and will be evaluated for any missing references but will not be extracted. 

21.       Context: 

Studies with technology field tested in patients within their homes/daily lives or 
location of treatment, and those used by healthcare providers in their work 
environment. 

22.       Primary outcome(s): 

Any outcome relevant to improving the quality of life of patients or their 
management by healthcare providers. 

23.       Secondary outcome(s): 

N/A 

24.       Data extraction (selection and coding): 

Selection – two screeners will independently evaluate eligibility criteria for both title 
and abstract and for full text citations at each stage of the screening process. 
Screening software (Rayyan.ai) will be piloted on a randomly-selected subset of 
references to ensure consistency between screeners prior to using the software to 
screen all studies returned from the search. Level of agreement (kappa score) will 
be evaluated to assess level of agreement between screeners. 

              

Extraction – A standardized form will be generated using excel for data abstraction. 
We will abstract general characteristics of studies such as the sample size, setting, 
eligibility criteria, participant description, contexts used, technology used, and 
funding source. Additionally, the TIDieR checklist will be adapted for extracting 
information about the characteristics of how the context-aware technology was 
used to assist healthcare providers or patients.2 

25.       Risk of bias (quality) assessment: 

Studies will not be assessed for risk of bias as per the Preferred Reporting Items 
for Systematic Reviews and Meta-Analysis: extension for Scoping Reviews 
(PRISMA-ScR) guidelines.3 

26.       Strategy for data synthesis: 

The findings of this scoping review will be summarized and presented in tables. 
The resulting papers will be analyzed according to the contexts used, technology 
present, and type of application the context aware system was used. The purpose 
of each study’s context-aware system wi be described along with the current state 
of the technology (e.g large field test or early testing by patients/healthcare 
providers). Areas that could benefit from potential future research and gaps in the 
current literature will be identified. 
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27.       Analysis of subgroups or subsets: 

Context aware applications categorized/analyzed by application type 

28.       Type of review: 

Scoping review 

29.       Language: 

English 

30.       Country: 

All countries 

31.       Other registration details: 

N/A 

32.       Reference and/or URL for published protocol: 

N/A 

33.       Dissemination plans: 

Dissemination of the findings of this review will be in the form of a published 
manuscript. 

34.       Keywords: 

Context aware; situation aware; healthcare; telemedical systems; patient; 
healthcare provider 

35.       Details of any existing review of the same topic by the same authors: 

N/A 

36.       Current review status: 

Ongoing 

37.       Any additional information: 

N/A 

38.       Details of final report/publication(s): 

N/A 
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Research Ethics Board Application Protocol 

The following protocol was submitted and approved by the research ethics board so that 
the pilot study could commence. It contains details about the equipment, items sent to 
participants, device installation, inclusion and exclusion criteria, and some survey data 
collected from the participants. The description of how the data analysis will be 
conducted is not relevant to the present thesis. Additionally, of the devices described only 
the Raspberry Pi, ESP32 Devkit, and TicWatch were used in the present work. 

Smart Homes Ageing and Monitoring: Indoor Positioning System Pilot Clinical Trial  

1. Introduction 

    Canada’s demographic continues to shift to an older average age requiring increased 

health care expenditure to maintain our populations health1. Given the limited resources 

of our publicly funded system, new technologies will be required to ensure adequate 

treatment of our increasing elderly patient population with a similar number of healthcare 

providers. Recent studies suggest that declining mobility is an early predictor of 

disability2,3 cognitive decline4,5, and falls leading to hospitalization6,7. Thus, technology 

that can detect early mobility decline is essential to early intervention targeted at 

reducing costly visits to emergency due to falls. Additionally, preventing falls is pivotal to 

keeping our older population safe given fractures induced by falls have been shown to 

result in death within 1 year in 10-20% of individuals over the age of 658.  
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    Studies have shown that many of the clinical measures used to assess mobility do not 

correlate well with functional performance of elderly individuals and fall risk9. This is likely 

because these tests are point of care measurements and do not reflect the environmental 

challenges older adults have in their home (e.g number of stairs)8. Research on indoor 

position systems that track adults’ trajectories within the home have shown promising 

results for assessing the true mobility performance of older adults, especially when paired 

with other sensor data from wearable smartwatches such as step count10. Additionally, 

many of these systems have demonstrated that increasing variability in the paths taken by 

adults between rooms can be indicative of cognitive decline11. However, these systems 

are often too complex for the average older adult making installation within many adults’ 

homes too time consuming to permit large scale trials.  Furthermore, prior systems are 

expensive and have not focused on transmitting data in real time for diagnosing early 

mobility decline12. 

    The primary aim of this pilot study is to assess the feasibility of implementing our low-

cost and simple to install indoor positioning system that can monitor the position, step 

count, heart rate and distance travelled of older adults withing their home.  This indoor 

positioning system has been developed by students in Dr. Fang’s group in McMaster 

University’s Biomedical Engineering Department. It has been developed by programming 

open-source microcontrollers/sensors that are spread across homes which record 

Bluetooth signals sent from devices worn by older adults (e.g., a smartwatch). Thus, 

although the individual sensors are not proprietary the software and system as a whole is 

proprietary technology owned by McMaster University. A survey will be used to evaluate 

users experience with our system. Additionally, results from this pilot study will be used to 

determine whether our system is in fact easy to install, does not inconvenience older 

adults, and provides reliable position and step count data in real-time. 

2. Methods 
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2.1 Participants 

 The number of participants will be kept to a minimum as the primary objective of this 

pilot study is to assess the feasibility of implementing our system and to ensure it is 

convenient for older adults. Thus, we will recruit 30 participants for the primary residence 

based smart-home study in order to ensure any results from our survey or data across 

participants have a reasonable likelihood of being normally distributed.13 We will also 

recruit 10 participants to run simulated tests with our system to investigate the accuracy 

of the positioning system and collected heart rate data. One target source for volunteers 

will be upper-level engineering students in the Engineering Physics program as they will 

have the capability of operating the devices when doing real time call sessions.  

  All study participants will be required to provide informed verbal consent before 

participating. Inclusion criteria for the primary residence-based study will consist of any 

adult 60 years or older with no known history of cognitive deficits. For the simulated tests 

of the system, 10 healthy and willing participants of age 18 or over will be recruited. 

Volunteers will be recruited via advertisements across centers throughout Hamilton 

(library, hospitals, community centers) and word of mouth. Upon recruitment, basic 

information will be collected over the phone such as the number of stairs within their 

home and the number of rooms in their home, since each room will need a device. 

2.3 Instruments 

2.3.1 Bluetooth Tag iTag or nut 

The iTag and Nut are cheap Bluetooth tags that can be carried by people in order to 

broadcast a Bluetooth ID to surrounding devices. The tag has been used in various indoor 

positioning systems and will be attached to a necklace to be worn by the participants. This 

will allow the participants to broadcast an anonymized Bluetooth ID to the other 

components in our system which will then determine their position. In addition to the 
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provided tags, users may choose to use their own Bluetooth tag (ex. Tile, nut, eddystone, 

etc.) but will need to provide the tag’s MAC ID prior to installation. 

 

2.3.2 ESP32 DevkitC sensor station 

The ESP32 DevkitC is an open-source low cost-programmable microcontroller with built in 

Wi-Fi and Bluetooth capabilities. This system on a chip has been used in various medical 

grade applications, including those localizing the position of adults. One ESP32 will be 

encased in plastic to form a sensor station that compactly fits into a box and then plugged 

into the outlet of each room in the participant’s home. The strength of the signal 

emanating from the Bluetooth tag attached to the user that is recorded by the ESP32 

sensor station will be used later to determine the room the participant is in. Additionally, 

the sensor station will have ultrasonic and passive infrared sensors to detect users 

entering the room to confirm the Bluetooth based method is correct about their location. 

A humidity temperature will also be present in the box to understand how the 

environment effects the devices temperature. The signal strength data will be sent to a 

Raspberry Pi device over Bluetooth so all ESP32 signals are located on a single device 

allowing them to be compared to determine the participant’s room location.2.3.3 

Raspberry Pi. 

The Raspberry Pi is a palm sized open-source computing platform that utilizes a Linux 

operating system. It functions as a full desktop computer and has been used in several 

smart-home remote monitoring applications. For our study, the Raspberry Pi will be used 

to put all the ESP32 signals from the different rooms within the participants home on a 

single device where it can be compared. Additionally, the Raspberry Pis will also collect 

Bluetooth signals to improve the accuracy of the indoor positioning system within its 

room. The room with an ESP32 that recorded the largest signal strength for 8 of the last 
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10 seconds will be assumed to be the room the user is located in. This final location of the 

user will then be encrypted according to the Advanced Encryption Standard (AES) set 

forth by the U.S National Institute of Standards and Technology and sent to a Google 

Cloud Firestore database. Our central server at McMaster campus will then read the data 

from the Cloud database, decrypt it, and then delete it from the cloud. Thus, user data will 

only be present online in an encrypted state (not interpretable by 3rd parties) for less than 

1 minute prior to being deleted from this online database. Additionally, the cloud 

Firestore database is not accessible to third parties as access is asymmetrically RSA 

encrypted, requiring a private key located in a locked room within our labs facilities to be 

accessed. Thus, user data is doubly encrypted, once through RSA encryption then again 

through AES encryption. This same locked room holds the AES keys to decrypt the users' 

data and these keys will never be transferred through an online medium. Note that all 

data throughout this study which is transferred online follows this twice encrypted 

protocol. 

2.3.4 Polar M600 and TickWatchS2 

The Polar M600 and TicWatchS2 WearOS based smartwatches compatible with the open-

source android programming environment. Using this open-source platform, the devices 

will be programmed to provide timestamped step count and heart rate data. This data will 

not leave the device and instead will be AES encrypted and removed later to compare 

with the positioning data via the timestamps. 

2.3.5 Fossil Gen 5 smartwatch 

The Fossil Gen 5 smartwatch is another WearOS based watch compatible with the open-

source android programming environment. The device will be programmed to provide 

timestamped step count and heart rate data using the same software that is on the Polar 

M600 and TicWatch S2. Initial tests seem to indicate this device provides more accurate 
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heart rate data than the other 2 devices, but less accurate step count information. Thus, it 

will also be tested throughout the project. Like the other devices, data will not leave the 

device and instead will be AES encrypted and removed later to compare with the 

positioning data via the timestamps. 

2.3.6 Custom Built Smartwatch 

Our lab has manufactured our own smartwatch in order to collect the raw optical PPG 

data associated with the heart rate data from commercial watches (e.g Polar M600). 

Additionally, our watch has sensors to investigate falls (barometer) and temperature (IR 

sensor). This watch will only be used in the simulated tests to explore the accuracy of its 

data collection and compare it to commercial smartwatches. The watch will not be used 

within users’ primary residencies and will be tested for periods less than 1 day at a time. 

Data from these watches during simulated experiments will be AES encrypted, sent 

through WiFi to a secure Cloud Firestore database, downloaded off this server onto our 

encrypted desktop hosted at McMaster, and then deleted from the online database.  

As a backup option to the secure Cloud Firestore file transfer method, we will also 

develop a secured e-mail program in the R-Pi to send the files through encrypted e-mail to 

a secured McMaster e-mail address specifically for this study.   

2.3.7 Bell Turbo Stick 

In order to send the encrypted position/mobility data to our secure server a reliable 

internet connection will be required. The Bell Turbo stick is a USB compatible device that 

provides a continuous connection to Bell’s network. The turbo stick will be plugged into 

the Raspberry Pi, providing a continuous internet connection that does not rely on the 

internet of the participants. Thus, many of the technological challenges involving 

difficulties with older adults in setting up devices with Wi-Fi requirements will be avoided. 
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2.3.8 Desktop Database 

The users' location determined on our Raspberry Pi device will be sent to a secure 

database hosted on one of our labs computers in a locked room at McMaster University. 

A password protected location on this computer will host all the AES encrypted data from 

this trial. Data will only be decrypted during analysis, thus effectively leaving the data to 

appear as random sequences of numbers to anyone who does manage to bypass the 

password to the database. 

2.4 Device Usage Protocol 

Participants will take home 1 ESP32 senor station for each room in their home, 1 

Raspberry Pi, a Bell turbo stick, 1 android smartwatch, and 1 necklace with a Bluetooth 

tag. They will receive an instruction manual that asks them to plug 1 ESP32 based sensor 

station into the wall outlet of each room and to place the Raspberry Pi, with its Bell Turbo 

Stick, in the living room or plugged into their router. After this, they will be asked to wear 

the necklace throughout the day over the 3-month span of this pilot study and to wear a 

smartwatch with our custom software. They will be asked to charge the devices anytime 

they run out of battery. Additionally, 10 participants will be asked to use the devices over 

a shorter period to help calibrate the system and assess the accuracy of the data. 

The smartwatches heart rate and step count data will be compared to the positioning 

data to determine if the results are reasonable. For instance, steps should increase 

proportionally to the number of room transitions detected by the system and heart rate 

should increase when participants transition from one floor to another. The shorter 10 

person simulated experiment will aim to confirm this relationship prior to sending the 30-

person cohort of older adults their devices. 

2.5 Device Usage Log and Satisfaction Survey 
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2.5 Data Collection Sheets: demographic/medical info, device satisfaction and shortened 

PASE 

Data Collection Sheets 
 

 
Title of Study: _______ 

 
1. DEMOGRAPHIC AND MEDICAL INFORMATION 

a. Sex: Male/Female    Age (years): _______    Height (cm): _________    Weight (kg): 
_________ 

Use of Gait Aid:  

☐ Yes ☐ No    Specify:______________  

If yes: In home / Community / Both?  

Balance/Falls History: 

Self-reported difficulty with balance?     ☐ Yes ☐ No 
 

A near fall in the last 12 months?     ☐ Never ☐ Seldom ☐ Often ☐ Very Often 
 

“We all fall from time to time. A fall would be when you find yourself suddenly on 
the ground, without intending to get there, after you were in either a lying, sitting 
or standing position. How many times in the past year did you fall?” 

Have you had any falls in the last year?  ☐ Yes ☐ No  

If yes, how many? ______________ 

Major Co-Morbidities: (circle) 

Vision Gastrointestin
al 

Musculoskelet
al 

Neurological Cardiac/Cardiovascul
ar 

-Macular 
degeneratio
n 
-Cataracts 
-Glaucoma 
 

-Bowel 
incontinence 
-Urinary 
incontinence 
 

-Osteoarthritis 
-Osteoporosis 
 

-Memory 
problem 
-Dementia or 
Alzheimer’s 
disease 
-Multiple 

-Heart disease (incl 
CHF) 
-Peripheral arterial 
disease 
-Hypertension/ High 
blood pressure 
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Mental 
Health 

Respiratory Other  sclerosis 
-Epilepsy 
-Stroke/CVA 
Ministroke/TI
A 
- Traumatic 
Brain Injury 
-Parkinsonism 
 

-Angina 
-Heart attack/MI 
-Aortic Valve Stenosis 
 

-Anxiety 
disorder 
-Mood 
disorder 
-Clinical 
depression 
-Depression 
questionnair
e 
 

-Asthma 
-COPD 
-Bronchitis 
-Emphysema 
 

-Kidney 
disease/failure 
-Diabetes 
-Cancer 
 
 

 
2. SENSOR PLACEMENT  
 

Did you find the pendant inconvenient to use?   

☐ Very inconvenient ☐ somewhat inconvenient ☐ convenient ☐ Very convenient  

Did you find the smartwatch inconvenient to use?   

☐ Very inconvenient ☐ somewhat inconvenient ☐ convenient ☐ Very convenient 

Were the ESP32 devices and Raspberry Pi’s an inconvenience to you throughout the 

study?   

☐ Very inconvenient ☐ somewhat inconvenient ☐ convenient ☐ Very convenient 

What was your overall level of user satisfaction with the devices? 

☐ Very dissatisfied ☐ dissatisfied ☐ satisfied ☐ Very satisfied 

Would you be willing to use this technology in the future in collaboration with health 

professionals for early diagnosis of disability/disease? 

☐ yes ☐ no 
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Which devices would you use in the future? 

Bluetooth Necklace □ Polar Watch □ ESP32 □ Raspberry Pi □  

Why? 

How difficult would it be for you to remember to use the necklace everyday? 

Very difficult □  Difficult □ Neutral □ Easy □ Very easy □ 

How difficult would it be for you to remember to use the watch everyday? 

Very difficult □  Difficult □ Neutral □ Easy □ Very easy □ 

Did the devices interfere with your daily routine? 

No effect  □   Minor effect  □   Neutral  □   Moderate effect  □   Major effect  □   

Which devices interfered with your daily routine? 

_________________________________________________________ 

Ask participants to elaborate on their answer and ask why they chose that option. 

 

What did you not like about the technology? 

_________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________

______ 

How would you improve the technology so it was more convenient for you? 

_________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________

______ 

Shortened Physical Activity Scale for the Elderly (PASE)  

 

Instructions: 
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Please complete this questionnaire by either circling the correct response or filling 
in the blank. Here is an example: 

 
During the past 7 days, how often have you seen the sun? 

[1] NEVER 
[2] SELDOM (1-2 DAYS) 
[3] SOMETIMES (3-4 DAYS) 
[4] OFTEN (5-7 DAYS) 

 
Answer all items as accurately as possible. All information is strictly confidential. 

 
Leisure Time Activity 

 
1. Over the past 7 days, how often did you participate in sitting activities such as 
reading, watching TV, or doing handcrafts? 
[1] NEVER (go to question 2) 
[2] SELDOM (1-2 DAYS) (go to question 1a. and 1b.) 
[3] SOMETIMES (3-4 DAYS) (go to question 1a. and 1b.) 
[4] OFTEN (5-7 DAYS) (go to question 1a. and 1b.) 

 
1a. What were these activities? (open end question) 
 
 

1b. On average, how many hours did you engage in these sitting activities? 
[1] Less than 1 hour 
[2] 1 but less than 2 hours 
[3] 2 - 4 hours 

[4] More than 4 hours 

 
2. Over the past 7 days, how often did you take a walk outside your home or yard 
for any reason? For example, for fun or exercise, walking to work, walking the dog, 
etc. 
[1] NEVER (go to question 3) 
[2] SELDOM (1-2 DAYS) (go to question 2a.) 
[3] SOMETIMES (3-4 DAYS) (go to question 2a.) 
[4] OFTEN (5-7 DAYS) (go to question 2a.) 

 
2a. On average, how many hours per day did you spend walking? 

[1] Less than 1 hour 
[2] 1 but less than 2 hours 
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[3] 2 - 4 hours 
[4] More than 4 hours 

 

3) Over the past 7 days, how often did you take a walk outside your home or yard for 
any reason? For example, for fun or exercise, walking to work, walking the dog, etc. 

(1) NEVER (go to question 3) 
(2) SELDOM (1-2 DAYS)  
(3) SOMETIMES (3-4 DAYS) 
(4) OFTEN (5-7 DAYS)  

3a. On average, how many hours per day did you spend walking? 
(1) Less than 1 hour 
(2) 1 - 2 hours 
(3) 2 - 4 hours 
(4) More than 4 hours 

4) Over the past 7 days, how often did you do any exercises specifically to increase 

muscle strength and endurance, such as lifting weights or pushups, etc.? 

(5) NEVER (go to question 5) 

(6) SELDOM (1-2 DAYS)  
(7) SOMETIMES (3-4 DAYS) 
(8) OFTEN (5-7 DAYS)  

4a. On average, how many hours per day did you spend walking? 
(5) Less than 1 hour 
(6) 1 - 2 hours 
(7) 2 - 4 hours 
(8) More than 4 hours 

5) Over the past 7 days, how often did you engage in sport and recreational activities 

such as jogging, swimming, cycling, singles tennis, aerobic dance, skiing (downhill or 

cross-country) or other similar activities? 

(9)       NEVER (skip 5a) 

(10) SELDOM (1-2 DAYS)  
(11) SOMETIMES (3-4 DAYS) 
(12) OFTEN (5-7 DAYS)  

5a. On average, how many hours per day did you spend walking? 
(9)       Less than 1 hour 
(10) 1 - 2 hours 
(11) 2 - 4 hours 
(12) More than 4 hours 
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4. Activity Difficulty Level Assessment 

1. Do you use a walking aid? 

a. yes 

b. No 

 

2. If you do use a walking aid, what kind do you use? 

__________________________________________________ 

 

3. Do you have difficulty in walking 0.5 km? 

c. No difficulty  

d. Some difficulty  

e. I find it difficult  

f. Need the help of another person for this distance  

g. Unable to manage even with help  

 

4. Do you have difficulty in walking 2 km? 

a. No difficulty  

b. Some difficulty  

c. I find it difficult  

d. Need the help of another person for this distance  

e. Unable to manage even with help 

 

5. Do you have difficulty in climbing up one flight of stairs? 

a. No difficulty  

b. Some difficulty  

c. I find it difficult  

d. Need the help of another person for this distance  

e. Unable to manage even with help  
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Study ID: ____________________________  Date: ___________________ 

 

 

2.6 Procedures 

Two graduate students and an undergraduate student researcher assistant will perform 

the initial calibration in the McMaster SHAPE facility.  They have all been properly trained 

and approved for on campus research activities during COVID-19, including PPE use and 

physical distancing.   

  Ten participants will be asked to move between rooms in their own home and wear a 

smartwatch for 1 week in order to calibrate the system and asses its accuracy prior to the 

larger cohort study. Additionally, they will be asked to wear our custom smartwatch for 1 

week to assess its data's accuracy relative to the commercial smartwatch solutions. After 

the indoor positioning system has been calibrated and tested, 30 older adults will be sent 

devices for use in their home. These adults will be instructed to plug in the ESP32 and 

Raspberry Pi devices and then wear the Bluetooth tag and smartwatch for a period of 3 

months. The smartwatch will be worn on the non-dominant wrist and the Bluetooth tag 

will be attached to a necklace. After the study, participants will answer survey questions 

during a phone call that are primarily targeted at understanding if the devices were an 

inconvenience for them, how the system can be made more convenient for them, and 

what they did not like about the system. A few questions on the physical activity scale for 

the elderly (PASE), co-morbidity information, and fall related questions will be asked as 

these reduced mobility and balance issues have been shown to affect step counts on 

activity trackers. The mobility questions of the survey will also be completed over the 

phone during the initial recruitment interview. If the participant prefers and has access, 
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we will also offer a video call option through Zoom. After the pilot study ends, participants 

will mail the devices back in an envelope we have given them that is addressed to 

McMaster University. They will also complete the survey one more time over a phone call 

to assess for changes in the responses/mobility over the study and consistency in their 

responses. Mail will be used to assess the feasibility of contactless delivery/pickup of the 

system and to ensure participant safety during the pandemic. 

 

 

 

 

2.7 Data Analysis 

 

Participants indoor activity will be broken into periods where no steps were detected and 

they are presumably at rest, and periods where there is an increase in step counts. 

Periods where no room transitions take place and times transitions do take place will also 

be determined from the data. All 4 groups timescale will be converted to minutes for that 

day. An intraclass correlation coefficient (ICC) will then be calculated between the watch 

step count and room transition times, and the times where transitions and steps were not 

recorded. An ICC greater than 0.75 will be considered excellent, 0.60–0.74 good, 0.40–

0.59 fair and less than 0.40 poor14. The absence of reflected light from the heart rate 

sensor will be used to determine when participants were using the watch or not and 

intervals they were not will be removed from the analysis. A paired t-test will also be used 

to compare the heart rates obtained when participants are stationary, versus the heart 

rates obtained when they are transitioning between rooms or upstairs.  

    The results of the survey questions will be aggregated to determine older adults' overall 

satisfaction with the system. We will also calculate a point biserial correlation coefficient 

between the survey questions pertaining to mobility and the total number of step counts 

and total number of room transitions. Most importantly, the written responses will 
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carefully be reviewed to determine how we can make the system more convenient to use 

for older adults. Feedback will then be integrated in order to improve the system and test 

it in a larger cohort.  
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