
HYBRID KEY ENCAPSULATION MECHANISMS

A Secure Key Encapsulation Mechanism in Quantum Hybrid Settings

By Brian Goncalves, HBSc.

A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the

Requirements for the Degree Master of Science

McMaster University c© Copyright by Brian Goncalves, August 2018

McMaster University MASTER OF SCIENCE (2018) Hamilton, Ontario (Mathematics)

TITLE:A Secure Key Encapsulation Mechanism in Quantum Hybrid Settings

AUTHOR: Brian Goncalves, HBSc. (McMaster University)

SUPERVISOR: Dr. Douglas Steblia

NUMBER OF PAGES: xi, 43

ii

Lay Abstract

Quantum computers present a threat to current cryptography, as they would be able to break
many widely used public-key encryption schemes. In order maintain the security of communica-
tion infrastructure it is important that quantum-resistant algorithms become more common in
use. However, adoption of quantum-resistant algorithms has been relatively slow, in part due
to not wanting to risk abandoning schemes that are secure currently. In this thesis we focus
on a specific type of scheme called a key encapsulation mechanism (KEM), used to fix a ses-
sion key for communicating. We construct a secure way to combine currently secure KEMs and
quantum-resistant KEMs that are secure now and against quantum computer. Our construction
is simple enough that it can be implemented efficiently to provide quantum-resistant security,
thus encouraging adoption of quantum-resistant algorithms.

iii

Abstract

Quantum computers pose a long-term threat to many currently used cryptographic schemes
as they are able to efficiently solve the computational problems those schemes are based on. This
threat has lead to research into quantum-resistant cryptographic schemes to eventually replace
those currently used, as well as research into how to ease the transition from classical schemes to
quantum-resistant ones. One approach to address these issues is to use a combiner that creates
hybrid schemes, that is schemes which are classically and quantum-resistant, to protect against
quantum attacks and maintain current security guarantees. Such combiners are used as a way
to provide trust from different schemes and their differing computational difficulty assumptions
rather than a single scheme. which may later become vulnerable. An important type of scheme
that must be secure against both classical and quantum attacks are key encapsulation mechanisms
(KEMs), as they are commonly used for constructing public-key encryption and key exchange
protocols. We first define new security notions for KEMs modeling attackers of various levels of
quantum power ranging from fully classical to fully quantum. We then construct a combiner that
creates hybrid schemes for key encapsulation mechanisms which is secure against adversaries with
varying levels of quantum power over time and can be implemented efficiently. Our construction
provides an efficient method to combine KEMs using an additional scheme. This construction is
also general enough that it can be implemented in settings such as key exchange protocols, like
those used in the Transport Layer Security (TLS) protocol for web browsers, without affecting
existing structure meaningfully.

iv

Acknowledgements

First I want to thank my advisor Dr. Douglas Steblia for his guidance, advice, and the opportu-
nities he has given me during my graduate career. I am forever grateful for all these things but
most importantly, I am grateful for introducing me to the field of post-quantum cryptography
which I enjoy more than any other. I consider the decision to study under him the best of my
academic career.

I would also like to thank Dr. Marc Fischlin, Nina Bindel, and Jacqueline Brendel for the
opportunity to work with them on this thesis and co-author a paper together. Their valuable
input and feedback to my research was crucial to this thesis.

I also want to thank my family each of whom supported me throughout my life and academic
career, and encouraged me to achieve all I could.

Lastly, I want to thank Jenna. Her unwavering support, encouragement, and faith in me
throughout these past years has been a vital part of my life, and achieving this accomplishment
which could not have been done without her. I forever grateful to and for her. Thank you.

v

Contents

List of Abbreviations and Symbols viii

List of Figures ix

1 Introduction 1

2 Preliminaries 3

2.1 Basic Cryptographic Notation & Definition . 3

2.2 Quantum Computing . 6

2.3 Proofs & Experiments . 7

3 Two Stage Adversary & Combiners 12

3.1 Two Stage Adversary . 12

3.2 XyZ Security Experiments . 13

3.3 Robust Combiners . 15

4 Separations and Implications 19

4.1 Implications . 19

4.2 Separations . 20

5 XtM Combiner & XyZ Security 26

5.1 XtM Combiner . 26

5.2 Constructing the MAC . 33

5.3 QqQ-IND Security of XtM Combiner . 33

vi

6 Summary, Application, & Conclusions 35

6.1 Summary . 35

6.2 Applications . 37

6.2.1 Authenticated Key Exchange . 37

6.2.2 Authenticated Key Exchange Security . 39

6.2.3 Hybrid Authenticated Key Exchange . 39

6.3 Conclusion . 41

Bibliography 42

vii

List of Abbreviations and Symbols

PKE Public Key Encryption

KEM Key Encapsulation Mechanism

KeyGen Key Generation Algorithm

Enc Encryption Algorithm

Encap Encapsulation Algorithm

Dec Decryption Algorithm

Decap Decapsulation Algorithm

MAC Message Authentication Code

Verify Verification Algorithm

IND Indistinguishability

OW One-Waynesss

CPA Chosen Plaintext Attack

CCA Chosen Ciphertext Attack

OTS One Time Strongly Unforgeable

MVA Multiple Verification Attack

AKE Authenticated Key Exchange

{0, 1}n The set of binary strings of length n

{0, 1}∗ The set of binary strings of arbitrary length

‖ Concatenation symbol

|B| Cardinality of the set B

A(·; r) Algorithm A running on randomness r

← A Output of A
←$ Output selected probabilistically

A.Subroutine A Subroutine of A
Π A Public Key Encryption Scheme

K A Key Encapsulation Mechanism

viii

M A Message Authentication Code

MA The message space of algorithm A
KSA The key space pace of algorithm A
Perm(S) The set of permutations on a set S

GF (2n) Galois Field of order 2n

ix

List of Figures

2.3.1 IND-CPA and IND-CCA security experiments for KEMs. 9

2.3.2 OW-CPA security experiment for PKEs. 10

2.3.3 Security experiment for one-time strong existential unforgeability (with multiple
verifications) of a MAC M = (KeyGen,MAC,Verify). 11

3.2.1 Security experiment for indistinguishable under chosen message attack of a KEM
K = (KeyGen,Encaps,Decaps) against an XyZ adversary A = (A1,A2). 14

3.2.2 Security experiment for one-time strong existential unforgeability (with multiple
verifications) of a MAC M = (KeyGen,MAC,Verify) against an XyZ adversary
A = (A1,A2). 15

3.3.1 Zhang et al.’s first combiner that preserves “detectable IND-CCA” security on input
PKEs Π1 and Π2. 16

3.3.2 Zhang et al.’s second combiner that preserves IND-CCA security on inputs Πd, the
detectable IND-CCA PKE, Πq, the 1-bounded PKE, and Πc, a IND-CPA PKE. . . . 16

3.3.3 Herzberg’s cascade combiner on PKEs Π1 and Π2. 17

3.3.4 The XOR combiner for KEMs on input K1 and K2. 17

3.3.5 The split key pseudorandom function combiner on input KEMs K1 and K2 and
split key pseudorandom function F . 18

4.0.1 Implications (→) and separations (6→) between indistinguishability-based security
notions for KEMs wrt. two-stage adversaries. 19

4.2.1 A KEM K′ that is CcQ-IND secure but not QcQ-IND secure 21

4.2.2 Description of separating KEM K′ that is QcQ -secure, but not QqQ -secure and
the quantum oracle for Bs,t(·). 23

4.2.3 The description of the conversion of the quantum decapsulation algorithm of K′ to
a quantum Bs,t. 23

5.1.1 KEM constructed by the XOR-then-MAC combiner XtM[K1,K2,M] with MAC
M = (KeyGen,MAC,Verify). 27

5.1.2 Game 0 for the proof of Theorem 2. 28

x

5.1.3 Game 1 for the proof of Theorem 2. 29

5.1.4 Game 2 for the proof of Theorem 2. 31

5.1.5 Game 3 for the proof of Theorem 2. 31

6.1.1 KEM constructed by the XOR-then-MAC combiner XtM[K1,K2,M] with MAC
M = (KeyGen,MAC,Verify). 37

xi

Chapter 1

Introduction

Cryptography is a vital part of the modern world. It is used to provide trust in the digital
communication between parties involved by ensuring either the confidentiality or integrity of the
communications of those involved. Thus, it is important to ensure the assumptions and uses
of cryptographic schemes are sound and secure. Currently, many public-key schemes are reliant
upon the computational difficulty of prime factorization [22], or discrete logarithms [12]. However,
in the long term these assumptions may not be secure foundations due to Shor’s algorithm [23]
and quantum computing providing efficient solutions to those problems. It is therefore important
to address the long term issue of the threat that quantum computing poses to cryptography.

There has been much work done to develop quantum-resistant cryptographic schemes based on
problems thought to be difficult to solve even with access to a quantum computer. However, while
such schemes exist, such as Regev’s public-key encryption scheme based on lattice problems [21],
adoption of these schemes for new protocols and applications have been slow. This slow transition
to quantum resistant schemes partially stems from the uncertainty of the computational hardness
assumptions of these schemes owing to their relative novelty as bases for cryptographic primitives.
As such eventual work may show the computational difficulty of the problems those schemes are
based on to be an insecure basis for primitives, in that they may be efficiently solved by quantum
computing as well, or even a classical computer. Thus with Shor’s algorithm [23] and quantum
computing will render many current cryptographic assumptions insecure in the future, and the
slow adoption and uncertainty of the definite security of these quantum resistant schemes; there
is a need in the intervening time for algorithms which addresses these issues of slow adoption,
quantum resistance, and assurance in the computational difficulty assumptions.

Robust combiners offer a tool to solve the above challenge. A robust combiner takes two
or more algorithms of the same kind and combine them such that the result is secure to some
specification as long some amount of the input algorithms meet that security specification. Thus,
using combiners it is possible to construct new secure algorithms from existing ones. Formalized
by Harnik et al. [15] there has been previous work to use combiners to construct secure algorithms
for various primitives. Both Zhang et al. [26] and Herzberg [16] proved results on robust combiner
for public-key encryption. Bindel et al. [7] used combiners to constructed a so called “hybrid”
secure, that is secure against both classical and quantum computers, robust combiner for digital
signatures, which are used to provide authentication of messages. Giacon et al. [13] used combiners
for key encapsulation mechanisms (KEMs), which are used to establish a shared ephemeral key to

1

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

provide confidentiality of messages, the primitive this thesis is focused on. However, the results
of Giacon et al. [13] are focused on robust combiners in the classical setting for KEMs instead of
the so called “hybrid” setting, that is considering both classical and quantum attacks, which this
thesis will.

The main result of this thesis is to construct a KEM combiner which is both classically
and quantum resistant. Such a KEM combiner addresses the issues of slow transition to post-
quantum resistant algorithms and the uncertain computational difficulty of those assumptions;
furthermore, it can be applied to work done jointly with Fischlin et al. [6] on hybrid KEMs and
hybrid authenticated key exchange (AKE) protocols. Additionally, we define a new security model
for KEMs that represents the transition from current day classical computers to full quantum
computers.

The structure of the thesis is as follows. In Chapter 2, we provide an overview of the nec-
essary fundamental definitions of cryptographic algorithms and functions, a brief description of
quantum computing, an overview of standard security proof method, and security definitions for
the necessary schemes. In Chapter 3, we outline the new security model and notions for KEMs to
model the transition from fully classical to fully quantum computers and formally define robust
combiners. In Chapter 4, we prove that those new security notions for KEMs form a nontrivial
hierarchy. In Chapter 5, we construct a hybridly secure robust combiner, that is a combiner
which is secure against both classical and quantum attacks, for KEMs and prove the security
of this combiner within the hierarchy. In Chapter 6 we provide a summary of this thesis, and
discuss applications of the result as done in [6].

2

Chapter 2

Preliminaries

This chapter provides the necessary background for the remainder of this thesis. Section 2.1
introduces the relevant definitions of the needed cryptographic schemes, as well as the matching
notion of correctness, two types of relevant functions. In Section 2.2 we provide an introduction
to quantum computing. In Section 2.3 we define the relevant security notions of the defined
cryptographic schemes and discuss how those security notions are modeled and proven.

2.1 Basic Cryptographic Notation & Definition

In this section we define the basic notation used as well as several fundamental definitions to
cryptography. We begin with a description of some notation.

We let A(x) denote an algorithm A(·) that runs on input x. Certain algorithms require some
randomness and will generate that randomness themselves, however if we wish to specify the
randomness be used, say r, we write that as

A(·; r).

If A produces an output after running we represent this as

y ← A(x).

We note that in general A may produce an output on empty input in. When an algorithm A(·)
has access to some black box oracle which can take input from A(·) it is written as

A(·)B(·).

We refer to subroutines within A(·) as A.Subroutine.

If an output, y, is to be selected from a set, or space, S or as an output for an algorithm A(·)

3

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

probabilistically we will use the notation

y←$ S

for sets, and
y←$A(·)

for algorithms. For the purposes of this thesis when we select an element from a set or space we
will be doing so uniformly at random.

To denote the exclusive or addition, or XOR, of two bit strings b1 and b2 we express it as

b1 ⊕ b2.

We denote the splitting of a string s into n sub-strings as

s1‖ . . . ‖sn ← s.

We begin the definitions with how two parties may interact starting with communicating
messages via a public-key encryption. For simplicity we implicitly assume all algorithms are
polynomial time computable.

Definition 1 (Public-Key Encryption Scheme [1]). We say a triple of algorithms Π =

(KeyGen,Enc,Dec) form a public-key encryption (PKE) scheme, if:

• KeyGen: The key generation algorithm is a probabilistic algorithm which on input 1n (n ∈ N)

outputs a pair, (pk, sk), of public and secret keys.

• Enc: The encryption algorithm is a probabilistic algorithm that takes two inputs, a public-

key pk and a plaintext, m, from a designated message space MΠ, and outputs a ciphertext

c.

• Dec: The decryption algorithm is a deterministic algorithm that takes as input a secret key

sk and ciphertext c and returns the plaintext m.

Definition 2 (Correctness of PKEs). We say that a public-key encryption scheme, Π, is

ε-correct if:

Pr[Dec(sk, c) 6= m|(pk, sk)← KeyGen, c← Enc(pk,m)] ≤ ε.

We say that a PKE, Π, is correct if for all messages m in the message space M, (pk, sk) output

4

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

by KeyGen, and ciphertexts c = Encaps(pk,m) that

Pr[Dec(sk, c) 6= m|(pk, sk)← KeyGen, c← Enc(pk,m)] = 0.

Next, if instead of a message being communicated between the two parties, the parties wish
to share an ephemeral key for a future interaction the parties will interact via a key encapsulation
mechanism.

Definition 3 (Key Encapsulation Mechanism [10]). We say triple of algorithms K = (KeyGen,

Encaps,Decaps) form a key encapsulation mechanism (KEM), if:

• KeyGen: The key generation algorithm is a probabilistic algorithm which on input 1n (n ∈ N)

outputs a pair, (pk, sk), of public and secret keys.

• Encaps: The encapsulation algorithm is a probabilistic algorithm that takes one input, a

public-key pk and produces a pair of related outputs, a ciphertext c and a ephemeral key k

from some designated key space, KSK.

• Decaps: The decapsulation algorithm is a deterministic algorithm that takes as input a secret

key sk and ciphertext c and returns the related ephemeral key k.

Definition 4 (Correctness of KEMs). We say that a KEM K is ε-correct if:

Pr[Decaps(sk, c) 6= k|(pk, sk)← KeyGen, (c, k)← Encaps(pk)] ≤ ε.

We say a KEM, K, is correct if for all (pk, sk) output by KeyGen, and ciphertext key pairs (c, k)

outputted by Encaps(pk) we have that

Pr[Decaps(sk, c) 6= k|(pk, sk)← KeyGen, (c, k)← Encaps(pk)] = 0.

Note that KEM can be constructed from a PKE straightforwardly by selecting a message
uniformly at random then encrypting that message.

Finally, if one party wishes to validate that the message they received was from the party
claiming to send the message then the parties may interact using a message authentication code.

Definition 5 (Message Authentication Code [18]). We say that a triple of algorithms M =

(KeyGen,MAC,Verify) form a message authentication code (MAC), if:

• KeyGen: The key generation algorithm is a probabilistic algorithm outputs a key k.

5

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

• MAC: A possibly probabilistic algorithm that takes as input a key k and a message m ∈

{0, 1}∗ and outputs a tag τ .

• Verify: A (typically) deterministic algorithm that takes as input a key k, a message m, and

a tag τ and returns 1 if MAC(k,m) = τ and 0 otherwise.

Definition 6 (Correctness of MACs). We say that a M is ε-correct if:

Pr[Verify(k,m, τ) = 0|k ← KeyGen, τ ← MAC(k,m)] ≤ ε.

We say a MAC, M, is correct if

Pr[Verify(k,m, τ) = 0|k ← KeyGen, τ ← MAC(k,m)] = 0.

We next define an important type of function used in proving security of schemes.

Definition 7 (Negligible Function [10]). A function F mapping non-negative integers to non-

negative reals is called negligible if for all positive numbers c, there exists an integer λ0(c) ≥ 0

such that for all λ > λ0(c) we have F (λ) < 1
λc .

When proving security, negligible functions act as an upper bound on the probability of a
security failure.

A collection of functions in which distinct inputs are unlikely to collide are called Universal.
Formally, this means:

Definition 8 (Universal Hash Function [9]). Let H be a finite collection of functions, each

of which maps from a set U to B, with B finite. H is called universal if: for all x, y ∈ U, x 6= y

we have that Pr[h(x) = h(y)|h ∈ H] ≤ 1
|B| .

2.2 Quantum Computing

We now provide a brief introduction to quantum computation knowledge used for this thesis.
Nielsen and Chuang [19] provide a standard text with a more complete explanation of the subject.

Let H be a finite-dimensional complex Hilbert space with an inner product. Vectors in H
are denoted with “braket” notation, with |x〉 being vector in H, and 〈x| denoting the complex
conjugate transpose of |x〉. The inner product on |x〉 , |y〉 is then given by 〈x|y〉. A quantum state
is defined as a vector in H with norm 1. Let {|x〉}x be a basis for H, then any quantum state |y〉
in H can be represented in superposition as,

6

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

|y〉 =
∑

φx |x〉,

where φx are complex numbers such that |y〉 has norm 1.

For two quantum systems H1 and H2 the joint quantum system is given by the tensor product
H1 ⊗ H2; for two states |x〉 in H1 and |y〉 in H2, then the joint quantum state is represent
as |x〉 |y〉, or |x, y〉. Quantum operations on H are represented by unitary transformations U.
Consequently, these quantum operations are, in fact, reversible prior to measurement, as during
quantum computation they are unitary matrices. This is notable as it imposes some constraints
with the quantization classical operations such as decryption or decapsulation. In particular, let
A be a classical algorithm with input x in {0, 1}a and output y in {0, 1}b and

{0, 1}a × {0, 1}b → {0, 1}a × {0, 1}b : (x, t) 7→ (x, t⊕A(x))

be a classical reversible mapping. Then the corresponding unitary transformation A acting
linearly on quantum states is given by

A :
∑
x,t

ψx,t |x, t〉 7→
∑
x,t

ψx,t |x, t⊕A(x)〉 .

For full generality an additional workspace register may be included with the input and output
registers. Thus, the general quantization of the classical algorithm is

A :
∑
x,t,z

ψx,t,z |x, t, z〉 7→
∑
x,t,z

ψx,t,z |x, t⊕A(x), z〉 .

2.3 Proofs & Experiments

In this section, we give a description of how security is formally defined and modeled. We
also define the needed security notions for PKEs, KEMs, and MACs for this thesis.

Security of cryptographic schemes is modeled with pairs of goals and attacks [1]. These goals
define the desired security properties that is trying to be achieved by using such schemes. Attacks
refers to the computational power and access that an outside malicious party, or adversary, has
available to them. The notation used for the goal and attack model is typically written as goal-
attack. In the notation it is implicitly assumed that the adversary has classical computational
powers, and when the adversary has quantum computational power it is expressed in goal-attack
notation as goal -qattack. The distinction between classical and quantum security is an important
one, as even a simple quantum adversary is able to break many classically secure algorithms.
For example, schemes relying on the computational difficulty of prime factorization, such as
those based on RSA encryption [22], or discrete logarithms, such as those based on the Diffie-
Hellman key exchange [12], are secure against classical adversaries under various goal-attack
pairs. However, both prime factorization and discrete logarithms are solvable in polynomial time
by simple quantum adversary that runs Shor’s algorithm [23]. Thus, it a distinction that must
be made when discussing a schemes’ security goals and potential attacks.

7

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

Security proofs are done in terms of experiments [1] and games [24] written in pseudocode and
advantages. Experiments are idealized scenarios that are intended to formally describe security
of a cryptographic scheme with respect to a specific goal and a specific attack. Written in
pseudocode the experiment outlines the initialization of a scheme, for example a PKE generating
the public and secret key pair, as well as an adversary and the powers granted to them, as well
as a security break condition that if the adversary meets, implies that the scheme cannot achieve
its intended goal with respect to the attack. Such break conditions are typically weak/limited
versions of the goal the scheme is intended to provide, with the idea being that if an adversary
given certain computational powers cannot even break such a weak version of the security goal
then the scheme is secure to use for the full goal.

To prove security, modifications are made to the pseudocode of the original experiment in
order to create a scenario in which the adversary cannot achieve the security break condition
and thus “win” the security experiment. Each modification denotes a new game [24] and must
be undetectable to the adversary. This last requirement means that after each modification, or
game hop [24] between games, that a negligible function must upper bound the the difference in
probability of the adversary winning in the two games. Ultimately we wish to force the adversary
into a scenario in which the most likely way to win is to simply guess an answer or attempt for
the security break condition.

Finally security of a given scheme is expressed in terms of advantages. Informally, advantages
represent the probability the adversary wins the security experiment for a given scheme and
goal-attack pair. Formally the advantage of a scheme, Π, with respect to the goal-attack pair
goal-attack, and the adversary A is defined to be

Advgoal-attackΠ (A) = Pr
[
Exptgoal-attackΠ (A)

]
,

where Exptgoal-attackΠ (A) denotes the experiment of the scheme with respect to the specified goal
and attack.

We will now define the security experiments for PKEs, KEMs, and MACs. For PKEs and
KEMs the primary security goal is that of indistinguishability, denoted as IND [14] [1]. The
desired property that indistinguishability security provides for PKEs is that an adversary cannot
distinguish what message a ciphertext is encrypting. Whereas with KEMs IND [10] security is
that the adversary cannot distinguish the key produced from the encapsulation algorithm and a
binary string chosen uniformly at random from the same space as the key.

In terms of attacks the two most common attacks that PKEs and KEMs are designed to
be resistant against are chosen plaintext attack and adaptive chosen ciphertext attack. Chosen
plaintext attack, or CPA, is an attack in which the adversary only has access to the public key of
the PKE [1], or KEM [10], and is able to encrypt any message they choose as many times as they
choose, or run the encapsulation algorithm as many times as they choose in the case of KEMs).
The adaptive chosen ciphertext attack, or CCA [20] is similar to CPA: the adversary can encrypt
any message they choose as many times as they choose for PKEs [1], or encapsulate as many
times as they choose in the case of KEMs [10]. The difference is that the adversary is also given
access to a black box oracle that is programmed with the secret and will decrypt, or decapsulate
in the case of KEMs, ciphertexts the adversary queries to it.

We provide a formal definition of the IND-CPA and IND-CCA security experiments for KEMs
as the main result of this thesis is on KEMs.

8

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

Definition 9 (IND-CPA and IND-CCA Security for KEMs [10]). Both the IND-CPA and

IND-CCA experiments for KEMs K = (KeyGen,Encaps,Decaps) against the adversary A consists

of three phases:

1. Setup: The experiment, or challenger, runs KeyGen to generate a public-secret key pair. A

ciphertext-key pair is encapsulated on the public key as well as another key selected uniformly

at random from the key space for K. Lastly, a bit b is chosen uniformly at random from

{0, 1}.

2. Challenge: The adversary receives the public key, and ciphertext generated in setup. They

also receive a key depending on the bit chosen. If the bit b was 0 then the adversary receives

the key encapsulated by the ciphertext, otherwise they receive the key selected at random.

In the IND-CCA experiment the adversary is also given access to a decapsulation oracle,

whereas in the IND-CPA the adversary does not receive access to such an oracle. The stage

ends when the adversary outputs a guess bit b′.

3. Check: Finally, b′ is checked against b. If equal then the adversary has won the security

experiment.

ExptIND-CPA
K (A):

1. (pk, sk)←$K.KeyGen(1n)

2. (c∗, k0)← K.Encaps(pk)

3. k1←$ KSK

4. b←$ {0, 1}
5. b′ ← A(pk, c∗, kb)

6. return (b = b′)

ExptIND-CCA
K (A):

1. qC ← 0

2. (sk, pk)←$K.KeyGen(1n)

3. (c∗, k0)← K.Encaps(pk)

4. k1←$ KSK

5. b←$ {0, 1}
6. b′ ← AOD(sk,c∗,·)(pk, c∗, kb)

7. return [b = b′]

OD(sk, c∗, c):

1. qC ← qC + 1

2. if c = c∗: return ⊥
3. else: return K.Dec(c, sk)

Figure 2.3.1: IND-CPA and IND-CCA security experiments for KEMs.

It is clear that a simple adversary can win either IND experiment with probability 1
2 by simply

selecting the bit b′ uniformly at random themselves and submitting it as their guess. It is for this
reason that the advantage expression is modified to

Advgoal-attackΠ (A) =

∣∣∣∣Pr
[
Exptgoal-attackΠ (A)

]
− 1

2

∣∣∣∣,
9

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

to check security against more meaningful adversaries and attacks by measuring the advantage
as the distance from 1

2 .

We also note that in both the IND-CPA and IND-CCA security experiments the adversary is
attempting to distinguish which of the two messages it provided to the challenger. This is done
to give the adversary a weaker, more limited version of indistinguishability, where the adversary
may or may not know the message being encrypted. Furthermore, in the CCA version of the
experiment the adversary is barred from querying the challenge ciphertext to the decapsulation
oracle as it would allow for trivial victory for the adversary.

Another goal that both PKEs and KEMs share is that of one-wayness, denoted as OW [17].
The desired property that one-wayness security provides for both PKEs and KEMs is that an
adversary cannot recover the message, or key in the case of KEMs, from the ciphertext. Similar
to IND, the primary attacks against OW security are CPA and CCA.

We provide a formal definition of the the OW-CPA security experiment for PKEs as a Propo-
sition 3 utilizes this notion of security of PKEs:

Definition 10 (OW-CPA Security for PKEs [1] [17]). The OW-CPA experiment for PKE

Π = (KeyGen,Enc,Dec) against the adversary A consists of three phases:

1. Setup: The experiment, or challenger, runs KeyGen to generate a public-secret key pair.

A message, m∗ is selected uniformly at random from the message space, MΠ, and then is

encrypted.

2. Challenge: The adversary receives the public key, and the ciphertext, c∗ as in Setup. The

stage ends when the adversary outputs a guess message m.

3. Check: Finally, m is checked against m∗. If equal then the adversary has won the security

experiment.

ExptOW-CPA
Π (A):

1. (pk, sk)←$ Π.KeyGen(1n)

2. m∗←$ MΠ

3. c∗ ← Π.Enc(pk,m∗)

4. m← A(pk, st, c∗)

5. return [m = m∗]

Figure 2.3.2: OW-CPA security experiment for PKEs.

10

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

For MACs, the primary security goal that we will consider is that of one time strongly unforge-
able, denoted OTS. This means that an adversary cannot create another valid message-tag pair
after being given a valid pair. The primary attack considered is the multiple verification attack,
denoted as MVA, where the adversary is able to make multiple queries to black box verification
oracle on any message-tag pairs they wish, and to verify if those pairs are valid.

Formally, we describe OTS-MVA security as follows:

Definition 11 (OTS-MVA Security for MACs). The OTS-MVA security experiment for MAC

M = (KeyGen,MAC,Verify) against the adversary A consists of three phases:

1. Setup: The experiment, or challenger, runs KeyGen to generate a uniform MAC key k.

The adversary, A, performs any pre-computation they wish and outputs a message, m and

a state vector st. Finally the message is then signed with the MAC key to produce a tag,

τ∗.

2. Challenge: The adversary receives as input τ∗ and st. Furthermore, A is given access to

a verification oracle that takes as input a message-tag pair, and returns 1 if it is a valid

message-tag pair and 0 otherwise. This stage ends when A outputs a message-tag pair

(m′, τ ′).

3. Check: Finally, (m′, τ ′) is checked if it is a valid message-pair and not equal to (m, τ∗).

The adversary wins the security experiment if (m′, τ ′) satisfies the above.

ExptOTS-MVA
M (A):

1. k←$M.KeyGen()

2. (m∗, st)← A()

3. τ∗ ←M.MACk(m∗)

4. (m′, τ)← AOV (k,·,·)(τ∗, st)

5. if [Verifyk(m′, τ ′) = 1] ∧ [(m′, τ ′) 6= (m∗, τ∗)]:

6. return 1

7. else 0

OV (k, ·, ·):

1. return M.Verifyk(m, τ)

Figure 2.3.3: Security experiment for one-time strong existential unforgeability (with multiple
verifications) of a MAC M = (KeyGen,MAC,Verify).

Note, that the adversary is able to choose any message they wish to receive a MAC tag on
and can wins by forging any new message-tag pair, even on the initial message.

11

Chapter 3

Two Stage Adversary & Combiners

In this chapter we introduce the notions of a two stage adversary, and combiners. With the
notion of the two stage adversary we also define the two stage adversary version of IND-CPA
and IND-CCA security experiments for KEMs, as well as the OTS-MVA security experiment for
MACs. Finally, we introduce the definition of a (k, n)-robust combiner which form the basis for
the main result of this thesis.

3.1 Two Stage Adversary

Originally introduced by Bindel et al. [7], the notion of a two stage adversary was a method to
model security during the transition from known classically secure to post quantum secure digital
signatures. We adapt this notion of a two stage adversary from digital signature to KEMs as
a way to model the same transition from known classically secure to post quantum security for
KEMs. In this model, the challenge phase of the security experiment is split into two separate
phases and correspondingly we model the adversary as being split into two algorithms, A1 and A2.
While the adversary is interacting with the experiment A1 is ran, having access to any relevant
oracles and choice of inputs the experiment requires, before terminating and passing some state
information to A2, which does not have access to the attack oracle and then returns the final
value for the experiment to check against. For each stage the model specifies the computational
power of both adversary algorithms, as well as the type of oracle access of each. Let X,Z ∈ {C,Q}
and y ∈ {c, q}, then the two-stage model the adversary’s computational abilities can be described
using the notation XyZ. In XyZ notation X denotes whether A1 is classical (C) or quantum
(Q), y denotes whether A1 has classical (C) or quantum (Q) access to the decapsulation oracle,
and lastly Z whether A2 is classical (C) or quantum (Q). It is important to note that not all
combinations of XyZ are meaningful, such as CqZ, thus this thesis is focused on four types of XyZ
adversaries that will reflect the real world transition adopting the names previously suggested
by [7].

1. CcC : Fully classical adversary. The adversary has classical computational powers at all
times and can classically interact with a decapsulation oracle. This is equivalent to the
traditional adversary in the IND-CCA security experiment.

12

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

2. CcQ : Future quantum adversary. The adversary has classical computational powers during
their time interacting with decapsulation oracle. They are able to perform classical queries
to the decapsulation oracle. At a later time the adversary gains quantum computational
powers but loses access to the decapsulation oracle. This models the scenario of a KEM
that is being used to establish a shared ephemeral key between senders and receivers today,
but eventually is no longer used to establish shared ephemeral keys; however, those keys
need to remain secure even after quantum computer become available.

3. QcQ : Quantum adversary with classical queries. The adversary has quantum compu-
tational powers at all times. However non-malicious, or honest, users of the KEM only
ever decapsulate ciphertexts on classical computers, thus the decapsulation oracle is always
classical.

4. QqQ : Fully quantum adversary. The adversary has quantum computational powers at all
times and can quantumly interact with a decapsulation oracle.

When working with two stage XyZ adversaries in the goal-attack model the notation XyZ-goal
will be used. This notation is chosen as for KEMs the primary attacks are CPA or CCA, and by
definition the CPA attack the adversary does not have any decapsulation oracle access. Thus for
CPA security, a CcC two stage adversary becomes equivalent to a single classical, or C , adversary,
and both QcQ, QqQ types of two stage adversaries each become equivalent to a single quantum,
or Q, adversary. Lastly, a CcQ two stage adversary is also equivalent to a single Q adversary as
anything the first stage classical adversary algorithm can compute so too can the second stage
quantum adversary algorithm, but being quantum provides more computational power as such
there would be no reason to remain in the first stage.

3.2 XyZ Security Experiments

We now define the two stage adversary security experiments for KEMs and MACs.

First, we define the XyZ-IND-CCA, which we shorten to XyZ-IND because of the discussion at
the end of section 3.1, security experiment for KEMs.

Definition 12 (XyZ-IND Security Experiment). The XyZ-IND experiment for KEM K =

(KeyGen,Encaps,Decaps) against the adversary A = (A1,A2), consists of four phases:

1. Setup: The experiment, or challenger, runs KeyGen to generate a public-secret key pair. A

ciphertext-key pair is encapsulated on the public key as well as another key selected uniformly

at random from the key space for K. Lastly, a bit b is chosen uniformly from {0, 1}.

2. Query: The adversary, A1, receives the public key, and ciphertext generated in setup.

They also receive a key depending on the bit chosen. If the bit was 0 then the adversary

receives the key encapsulated by the ciphertext, otherwise they receive the key selected at

13

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

random. During this stage the adversary has computational powers denoted by X. The

adversary also has y type access to the decapsulation oracle. This stage once the adversary

outputs a state vector st containing any information they choose.

3. Challenge: The adversary, A2, receives as input the state vector st produced by A1. A2

has computational power denoted by Z as well as having matching random oracle access.

This stage ends when the adversary, A2, outputs a guess bit b′.

4. Check: Finally, b′ is checked against b. If equal then the adversary has won the security

experiment.

ExptXyZ-IND
K (A = (A1,A2)):

1. qD ← 0

2. (pk, sk)←$K.KeyGen(1n)

3. (c∗, κ∗0)← K.Encaps(pk)

4. κ∗1←$ KSK

5. b←$ {0, 1}

6. st← AO
y
D

(sk,c∗·)
1 (pk, c∗, κ∗b)

7. b′ ← A2(st)

8. return [b = b′]

Oc
D(sk, c∗, c)

1. qD ← qD + 1

2. if c = c∗: return ⊥

3. else: return K.Decaps(sk, c)

Oq
D(sk, c∗,

∑
c,t,z ψc,t,z |c, t, z〉):

1. qD ← qD + 1

2. Return state∑
c,t ψc,t |c, t⊕O

c
D(sk, c, c∗), z〉

Figure 3.2.1: Security experiment for indistinguishable under chosen message attack of a KEM
K = (KeyGen,Encaps,Decaps) against an XyZ adversary A = (A1,A2).

Next we define the XyZ-OTS-MVA, which we will shorten to XyZ-OTS, security experiment
for MACs.

Definition 13 (XyZ-OTS Security Experiment). The XyZ-OTS security experiment for MAC

M = (KeyGen,MAC,Verify) against the adversary A = (A1,A2) consists of four phases:

1. Setup: The experiment, or challenger, runs KeyGen to generate a uniform MAC key k.

The adversary, A, performs any pre-computation they wish and outputs a message m and

a state vector st. Finally message is then signed with the MAC key to produce a tag, τ∗.

2. Query: The adversary, A1, receives as input τ∗ and st. During this stage the adversary has

computational powers denoted by X. Furthermore, A1 is given y type access to a verification

14

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

oracle that takes as input a message-tag pair, and returns 1 if it is a valid message-tag pair

and 0 otherwise. This stage ends when A1 outputs a state vector st′.

3. Challenge: The adversary, A2, receives as input st′. During this stage the adversary has

computational powers denoted by Z and no access to the verification oracle. This stage ends

when A2 outputs a message-tag pair (m′, τ ′).

4. Check: Finally, (m′, τ ′) is checked if it is a valid message-pair and not equal to (m, τ∗).

The adversary wins the security experiment if (m′, τ ′) satisfies the above.

ExptXyZ-OTS
M (A):

1. k←$M.KeyGen()

2. (m∗, st)← A1()

3. τ∗ ←M.MACk(m∗)

4. st′ ← AO
y
V

(k,·,·)
1 (τ∗, st)

5. (m′, τ ′)← A2(st′)

6. if [Verifyk(m′, τ ′) = 1] ∧ [(m′, τ ′) 6=

(m∗, τ∗)]:

7. return 1

8. else: return 0

OcV (k,m, τ):

1. return M.Verifyk(m, τ)

OqV (k,
∑
m,τ,t,z ψm,τ,t,z |m, τ, t, z〉):

1. return
∑
m,τ,t,z ψm,τ,t,z |m, τ, t⊕M.Verifyk(m, τ), z〉

Figure 3.2.2: Security experiment for one-time strong existential unforgeability (with multiple
verifications) of a MAC M = (KeyGen,MAC,Verify) against an XyZ adversary A = (A1,A2).

3.3 Robust Combiners

We now define the main constructive tool used in this thesis, a (k, n)-robust combiner intro-
duced by Harnik et al. [15] as well as discuss some previous work done with them. Informally, a
(k, n)-robust combiner is an algorithm that accepts as input n of the same type of cryptographic
schemes, such as KEMs, to produce a new cryptographic scheme of the same type, and so long
as at least k of the input satisfies the same security notion the output also equally secure.

Definition 14. (k, n)-Robust Combiner [15] Let P be a set of cryptographic primitives. A

(k, n)-robust combiner is an algorithm that gets n candidate schemes from P as inputs, and whose

output is a single algorithm that is secure to some security specification s if the following hold:

1. If at least k candidates securely implement the security specification s then the result of the

combiner also securely implements s.

15

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

2. The running time of the result of the combiner is polynomial in the security parameter m,

in n and in the lengths of the inputs to P.

We now discuss some of the previous work done with robust combiners, specifically for KEMs
and PKEs, as they can easily be turned into KEMs.

First, we discuss Zhang et al.’s [26] results on combiners for PKEs. Their initial attempt to
construct an IND-CCA (1, 2)-robust combiner is described in Figure 3.3.1. Unfortunately, such a
combiner does not preserve IND-CCA security regardless of which scheme is IND-CCA secure, but
rather achieves a weaker security notion called “detectable IND-CCA”. Zhang et al. do construct
an IND-CCA combiner for PKEs but their construction requires 3 input PKEs, each of which
is required to have a minimum security assumption on them to ensure IND-CCA security of the
resulting PKE, Figure 3.3.2. However, this construction has an important drawback: if any of the
PKEs are insecure the resulting PKE will not be IND-CCA secure, and thus not XyZ-IND secure.
Thus, this combiner is not well suited for use with schemes based on computational difficulty
assumptions that are not fully trusted.

Π.KeyGen(1n):

1. (pk1, sk1)←$ KeyGen1(1n)

2. (pk2, sk2)←$ KeyGen2(1n)

3. pk ← (pk1, pk2)

4. sk ← (sk1, sk2)

5. return (pk, sk)

Π.Enc(pk,m):

1. r←$ MΠ2

2. c1 ← Enc1(pk1, r)

3. c2 ← Enc2(pk2, r ⊕m)

4. c← (c1, c2)

5. return c

Π.Dec(sk, (c1, c2)):

1. return m ← Dec1(sk1c1) ⊕
Dec2(sk2, c2)

Figure 3.3.1: Zhang et al.’s first combiner that preserves “detectable IND-CCA” security on input
PKEs Π1 and Π2.

Π.KeyGen(1n):

1. (pkd, skd)←$ KeyGend(1
n)

2. (pkq, skq)←$ KeyGenq(1
n)

3. (pkc, skc)←$ KeyGenc(1
n)

4. pk ← (pkd, pkq, pkc)

5. sk ← (skd, skq, skc)

6. return (pk, sk)

Π.Enc(pk,m):

1. rd, rq, rc←$ 0, 1n

2. cd ← Encapsd(pkd, rc‖rq‖m; rd)

3. cq ← Encapsq(pkq, cd; rq)

4. cc ← Encapsc(pkc, cd; rc)

5. c← (cq, cc)

6. return c

Π.Dec((skd, skq, skc), (cq, cc)):

1. c′d ← Decq(skq, cq)

2. r′c‖r′q‖m′ ← Decd(skd, c
′
d)

3. If: cq = Encq(pkq, c
′
d; rq) ∧ cc = Encc(pkc, c

′
d; rc) return m’

4. else: ⊥

Figure 3.3.2: Zhang et al.’s second combiner that preserves IND-CCA security on inputs Πd, the
detectable IND-CCA PKE, Πq, the 1-bounded PKE, and Πc, a IND-CPA PKE.

Next we discuss the results of Herzberg on the nested, or cascade, combiner for PKEs [16] as
defined in Figure 3.3.3. In particular Herzberg proved that cascade encryption is not a robust
combiner for IND-CCA security of PKEs, but rather the cascade combiner only retains weaker

16

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

security notions such as IND-CPA security for so called length-uniform PKEs. The cascade com-
biner not preserving IND-CCA means that this combiner is not secure to use against any XyZ-IND
adversary as all XyZ adversaries are at least CcC adversaries and thus equivalent to an IND-CCA
adversary. This means that this combiner is also not well suited for the purposes of this thesis
as we model against adaptive adversaries in the two stage XyZ model.

Π.KeyGen(1n):

1. (pk1, sk1)←$ KeyGen1(1n; r1)

2. (pk2, sk2)←$ KeyGen2(1n; r2)

3. pk ← (pk1, pk2)

4. sk ← (sk1, sk2)

5. return (pk, sk)

Π.Enc(pk1, pk2,m):

1. c1 ← Enc1(pk1,m; r1)

2. c← Enc2(pk2, c1; r2)

3. return c

Π.Dec((sk1, sk2), c):

1. c′1 ← Dec2(sk2, c)

2. m′ ← Dec1(sk1, c
′
1)

3. return m′

Figure 3.3.3: Herzberg’s cascade combiner on PKEs Π1 and Π2.

Lastly, we discuss Giacon et al. work on robust KEM combiners [13]. Giacon et al. first
prove that two specific combiners do not preserve IND-CCA, specifically that the simple combiner
that XORs all the keys, Figure 3.3.4, and the combiner which XORs all the keys then applies a
pseudorandom function on the XOR and all ciphertexts, Figure 3.2.5, are only IND-CPA secure.
To achieve full IND-CCA security Giacon et al. define a special variant of a pseudorandom
function called a split key pseudorandom function. However, to construct and prove security
with the so called split key pseudorandom functions Giacon et al. model them as a truly random
function, or random oracle. The requirement that the pseudorandom function used is a split key
pseudorandom function places a restriction that limits the potential choices that can be used,
whereas the main result of this thesis uses a more general and more easily realized universal hash
function. The use of universal hash functions means that the combiner presented in this thesis
uses weaker assumptions than previous work. Furthermore, Giacon et al. exclusively look at
classical IND-CCA which does not ensure security against a quantum adversary, meaning that
quantum version of their results would require new proofs. Thus the results of Giacon et al. may
not hold against quantum adversaries and as such their combiner may be insecure against the
majority of XyZ-IND adversaries considered in this thesis.

K.KeyGen(1n):

1. (pk1, sk1)←$ KeyGen1(1n)

2. (pk2, sk2)←$ KeyGen2(1n)

3. pk ← (pk1, pk2)

4. sk ← (sk1, sk2)

5. return (pk, sk)

K.Encaps(pk1, pk2):

1. (c1, k1)← Encaps1(pk1)

2. (c2, k2)← Encaps2(pk2)

3. c← (c1, c2)

4. k ← k1 ⊕ k2
5. return (c, k)

K.Decaps((sk1, sk2), ((c1, c2)):

1. k′1 ← Decaps1(sk1, c1)

2. k′2 ← Decaps2(sk2, c2)

3. k′ ← k′1 ⊕ k′2
4. return k′

Figure 3.3.4: The XOR combiner for KEMs on input K1 and K2.

In the main result of this thesis we construct a combiner which does not have the drawbacks
that previous works have. The combiner constructed in Chapter 5 of this thesis preserves the
strong security notions of XyZ-IND and only requires that at least one input scheme is secure,
avoiding the requirements of multiple security assumptions. Moreover, it utilizes less crypto-
graphic assumptions by using a universal hash function. Furthermore, by working in the two
stage model it accounts for quantum adversaries and proves security against such adversaries.

17

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

K.KeyGen(1n):

1. (pk1, sk1)←$ KeyGen1(1n)

2. (pk2, sk2)←$ KeyGen2(1n)

3. pk ← (pk1, pk2)

4. sk ← (sk1, sk2)

5. return (pk, sk)

K.Encaps(pk1, pk2):

1. (c1, k1)← Encaps1(pk1)

2. (c2, k2)← Encaps2(pk2)

3. k ← F (k1, k2, c1‖c2)

4. c← (c1, c2)

5. return (c, k)

XtM.Decaps((sk1, sk2), (c1, c2)):

1. k′1 ← Decaps1(sk1, c1)

2. k′2 ← Decaps2(sk2, c2)

3. return k ← F (k1, k2, c1‖c2)

Figure 3.3.5: The split key pseudorandom function combiner on input KEMs K1 and K2 and split
key pseudorandom function F .

18

Chapter 4

Separations and Implications

Bindel et al. [7] showed that there exists a hierarchy of security against two stage adversaries
for digital signatures. Likewise,the four XyZ-IND KEM security notions defined in the previous
chapter form a hierarchy between them. Furthermore, it shows that there exists separations
between these notions and construct examples of KEMs that separate the attacks. In this chapter
we prove these separations between definitions as well as the implications between them.

CcC-IND CcQ-IND QcQ-IND QqQ-IND
Prop 1 Prop.1 Prop. 1

Prop. 2 Prop.3 Prop. 4

Figure 4.0.1: Implications (→) and separations (6→) between indistinguishability-based security
notions for KEMs wrt. two-stage adversaries.

4.1 Implications

We begin by proving the implications between the notions. That is if a KEM is QqQ-IND
secure, it is also QcQ-IND secure. Likewise if a KEM is QcQ-IND secure, it is also CcQ-IND secure,
and ik a KEM is CcQ-IND it is also CcC-IND secure.

Proposition 1. (Implications) Let K be a KEM. If K is QqQ-IND secure, then K is also

QcQ-IND secure. If K is QcQ-IND secure, then K is also CcQ-IND secure. If K is CcQ-IND

secure, then K is also CcC-IND secure. Formally, we have

AdvQqQ-IND
K (A1,A2) ≥ AdvQcQ-IND

K (A1,A2) ≥ AdvCcQ-IND
K (A1,A2) ≥ AdvCcC-IND

K (A1,A2).

Proof. This is straightforward as every classical algorithm can also be implemented on a quantum

19

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

computer that does not utilizes its additional quantum power. Furthermore, classical queries can

also be simulated by superposition queries where all values are identical.

4.2 Separations

We now prove that this hierarchy of security is strict by constructing the separating KEMs
in the following propositions. We first begin with the fully classical- future quantum separation
which follows from Shor’s algorithm.

Proposition 2. (CcC-IND 6=⇒ CcQ-IND) In the classical model, assuming RSA is a one-way

function for classical algorithms, then there exists a CcC-IND KEM that is not CcQ-IND.

Proof. Bellare and Rogaway construct a KEM based on RSA-OAEP which is IND-CCA secure and

thus equivalent to CcC-IND secure [4]. However, a CcQ adversary has local quantum computing

power in their second stage and can run Shor’s algorithm on the RSA modulus to factor it and

recover the decapsulation key and win the CcQ-IND experiment and win with probability 1.

Next, we separate future quantum and quantum with classical queries.

Proposition 3. (CcQ-IND 6=⇒ QcQ-IND) Assume K is a CcQ-IND secure KEM and Π is a

OW-CPA secure PKE that is not OW-qCPA. Then there exits a KEM K′ that is CcQ-IND secure

but not QcQ-IND secure.

Proof. First we note that an RSA based PKE may be used for Π as it is OW-CPA, but not

OW-qCPA. To prove this proposition a backdoor is built into K′ so that a quantum adversary

with access to the decapsulation oracle is able to recover the secret key so that they may compute

decapsulation queries themselves, including on the challenge ciphertext and thus win the QcQ-IND

experiment with probability 1. K′ is shown in Figure 4.2.1.

20

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

K′.KeyGen():

1. (pkK, skK)←$K.KeyGen()

2. (pkΠ, skΠ)←$ Π.KeyGen()

3. δ∗ ← ${0, 1}256

4. bd← Π.Enc(δ∗, pkΠ)

5. return ((pkK, pkΠ, bd), (skK, δ
∗) =

(pk′, sk′)

K′.Encaps(pk′):

1. (c, k)← K.Encaps(pkK)

2. return ((c, k)

K′.Decaps((sk′, c):

1. If c = δ∗ return skK

2. Else: K.Decaps(skK, c)

Figure 4.2.1: A KEM K′ that is CcQ-IND secure but not QcQ-IND secure

Clearly K′ cannot be QcQ-IND secure: in stage 1 the adversary is locally quantum and as Π is

not secure against a passive quantum adversary, the secret value δ∗ can be recovered and queried

to the decapsulation oracle to obtain the secret decapsulation key. Thus K′ is not QcQ-IND-secure.

To show K′ is CcQ-IND suppose that it is not, that there exists an efficient adversary, A,

that can break the CcQ-IND security of K′. Then there exists an adversary B that can break the

CcQ-IND security of K. In the CcQ-IND experiment against B, once B is given (pk∗K, c
∗, κ∗b), B

then runs its own instance of Π generating a pair of keys (pkΠ, skΠ), selects δ∗ at uniform and

encrypts it, and sends ((pk∗K, pkΠ, bd), c∗, κ∗b) to A. Now whenever A, in its first stage, queries the

decapsulation oracle of K′on a ciphertext c 6= δ∗, B forwards that query to its own decapsulation

oracle for K and returns the answer to A. If A queries the decapsulation oracle on δ∗, B returns

⊥. However this only happens with probability q
2256

, where q is the number of queries A makes.

Now since Π is OW-CPA and both A and B are in their first stage, which are classical, any query

about δ∗ would contradict the assumption of OW-CPA security. Thus making the first stage of A,

A1, an oracle algorithm which contradicts the OW-CPA security assumption of Π. Finally once

an adversary transitions to its second stage K′ and K′ become identical as being able to recover

δ∗ provides no advantage in the second stage. Thus K′ is CcQ-IND-secure.

Lastly, we separate quantum with classical queries and fully quantum. We do this is a manner
mirroring Bindel et al ’s [7] separation of QcQ and QqQ for existential unforgeability of digital
signature schemes, using a quantum-secure family of pseudorandom permutations, and the hidden
linear structure problem to take advantage of the ability to perform decapsulation queries in
superposition.

Proposition 4. (QcQ-IND 6=⇒ QqQ-IND) Assume that there exists a quantum-secure family

21

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

of pseudorandom permutations. Furthermore, assume there exists a QcQ secure KEM K whose

ciphertext are at least 3λ bits longs, where 2−λ is considered intractable. Then there exists a KEM

K′ that is QcQ-IND secure but not QqQ-IND secure.

As in the previous proof, the key is to construct a KEM with a backdoor that is exploitable
to adversaries with quantum access to the decapsulation oracle but unexploitable to adversaries
with classical access to the oracle. To do this the quantum safe hidden linear structure problem is
used as it has constant query complexity with quantum oracle access, but has exponential query
complexity with only classical oracle access. The requirement that the ciphertext be at least 3λ
bits long is due to parsing bits of the ciphertext into three parts each of length at least λ to hide
the key to the backdoor.

Definition 15 ([11]). Let Perm(S) denote the set of all permutations on a set S. Given oracle

access to Bs,π(x, y) = (x, π(y ⊕ sx)), where x, y, s ∈ GF (2n) and π ∈ Perm({0, 1}n) with s and

π chosen uniformly at random. The hidden linear structure problem is to determine s.

The hidden linear structure problem has constant query complexity with quantum oracle
access for a QqQ adversary but it is hard for a QcQ adversary as it is required for our proof.

Theorem 1 ([11], [7]). The hidden linear structure problem has query complexity Ω(2n/2) for

classical queries, and 1 for quantum queries. More specifically, there exists a quantum algorithm

which solves the hidden linear structure problem with 1 query and probability 1, while any algo-

rithm which queries the oracle classically and uses 2b queries with 2b ≤ n− 2 outputs the correct

s with probability at most 22b−n+1.

Following the idea of [7], we use a restricted version of the hidden linear structure problem
which replaces π with a pseudorandom permutation: the quantum-safe hidden linear structure
problem. It is indistinguishable from the hidden linear structure problem in time d with advantage
greater than δ if there exists a (d, δ)-quantum indistinguishable family of secure pseudorandom
permutations as defined next [7]. Let P = {πt : t ∈ {0, 1}k} be a family of pseudorandom
permutations on {0, 1}l. We say that P is of pseudorandom permutations on the set {0, 1}l is
(cP , pP)-quantum-indistinguishable if no quantum algorithm with running time less than cP can
win the following indistinguishability game with advantage more than pP when using cP quantum
oracle queries:

1. a←$ {0, 1}

2. If a = 0, then π←$ P. Else π←$ Perm({0, 1}l).

3. a′←$Aπ(·)

4. A wins if a′ = a

Definition 16 ([7]). The quantum-safe hidden linear structure problem is a hidden linear struc-

ture problem where π is drawn from a set P of quantum-indistinguishable pseudorandom permu-

tations.

22

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

Finally, we can prove the separation of QqQ and QcQ.

Proof of Proposition 4(QcQ 6=⇒ QqQ). Suppose that there exists a quantum-secure pseudoran-

dom family of permutations. Furthermore, assume there exists a QcQ-IND secure KEM K =

(KeyGen,Encaps,Decaps) whose ciphertexts are at least 3λ bits long, where 2−λ is considered

intractable. We define c.x to be the first λ bits, c.y to be the second λ bits, and c.z to be the

remaining bits of c’s bit representation.

Let Bs,t be a classical oracle for the quantum-safe hidden linear structure problem that is trying

to guess s. Let Bs,t : GF (2k)×GF (2k)→ GF (2k)×GF (2k) be a family of functions such that,

given oracle access to Bs,t, at least cB classical queries are required to determine s with probability

greater than pB, whereas a single query suffices when given access to Bs,t via a quantum oracle.

In our construction, s will be a secret which will unlock access to the decapsulation key sk′. The

second parameter, t, needs to be secret but is otherwise not important for our application. The

KEM K′ = (KeyGen′,Encaps′,Decaps′) that is QcQ-IND secure but not QqQ-IND secure is defined

in Figure 4.2.2.

K′.KeyGen():

1. (pk, sk)←$K.KeyGen()

2. s←$ {0, 1}λ

3. t←$ {0, 1}λ

4. pk′ ← pk

5. sk′ ← (sk, s, t)

6. return (pk′, sk′)

K′.Encaps(pk):

1. (c, k)← K.Encaps(pk)

2. return (c, k)

K′.Decapsc(sk, s, t, c):

1. k ← K.Decaps(sk, c)

2. (u, v)← Bs,t(c.x, c.y)

3. w ← sk · δs,c.z

4. return (k, (u, v), w)

K′.Decapsq(sk, s, t, |c, α, β, γ, ε, z〉):

1. return |c, α⊕ k, β ⊕ u, γ ⊕ v, ε⊕ w, z〉

Figure 4.2.2: Description of separating KEM K′ that is QcQ -secure, but not QqQ -secure and
the quantum oracle for Bs,t(·).

Oracle Bs,t(|c, 0, 0, 0, 0, θ, η, z〉):

1. |c, k, u, v, w, z〉 ← K′.Decapsq(sk, s, t, |c, 0, 0, 0, 0, z〉)

2. return |c, 0, 0, 0, 0, θ ⊕ u, η ⊕ v, z〉

Figure 4.2.3: The description of the conversion of the quantum decapsulation algorithm of K′ to
a quantum Bs,t.

23

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

We note that δs,c.z represents the Kronecker delta function on input s and c.z. We now show

the QcQ-IND security of K′. Suppose that it takes at least qB queries to Bs,t to determine s

with probability pB, and that it take at least tK time for an adversary A to break the QcQ-IND

security of K with probability pK . Note that K and s are unrelated. Hence, knowledge of the

public key pk and access to the classical decapsulation algorithm does not reduce the complexity

of guessing s. Likewise, access to a classical oracle for Bs,t does not increase the advantage of an

adversary during the QcQ-IND experiment of K as we explain next. Assume the contrary, i.e.,

the advantage of an adversary A against K would increase when having access to an oracle for

Bs,t. Then A could choose s, t uniformly at random and simulate Bs,t.

So the only relation between them is the element w = sk ·δs,c.z in the decapsulation algorithm

of K′. A only learns information from w, if w 6= 0 and thus w = sk. By definition of δs,c.z this

happens if and only if the input c to the classical decapsulation algorithm is such that c.z = s.

But this only possible if A solves the quantum safe hidden linear structure problem or guesses s

directly. Thus by the following lemma below, we know that K′ is QcQ-IND secure.

Lemma 1. ([11], [7])

Suppose that it takes at least qB queries to Bs,t to determine s with probability pB, and that it

takes at least tK time for an adversary A to break the QcQ-IND security of K with probability pK.

If A has access to a classical oracle Oc
D′, knows pk′, and runs for time t < min{qB, tK}, then A

breaks the QcQ-IND security of K′ with probability at most p ≤ pB + pK + 2−λt.

Proof. Since t < qB, A has to have made fewer than qB queries. Hence, A learns s with probability

at most pB by assumption. The probability of learning s by guessing is at most 2−λt. So the

decapsulation oracle the classical decapsulation algorithm returns an answer of the form (·, ·, ·, sk)

(and hence A breaks K) with probability no more than pB + 2−λt.

Since t < tK , the probability that A distinguishes between a real and random key to win the

QcQ-IND game for K is at most pK, unless one of the above cases applies. Distinguishing a real

or random key for K′ implies distinguishing a real or random key for K. Thus the probability

that A wins the QcQ-IND game for K′ is at most p ≤ pB + pK + 2−λt.

Next we show that K′ is not QqQ-IND secure. By the theorem, the quantum safe hidden linear

structure problem is in fact solvable in one quantum query to a Bs,t oracle. We construct the

24

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

quantum oracle for Bs,t as given in Figure 4.2.3. The quantum Bs,t oracle runs on input of the

form c′ = |c, 0, 0, 0, 0, θ, η〉 and returns |c, 0, 0, 0, 0, θ ⊕ u, η ⊕ v〉. By construction of the quantum

decapsulation algorithm, it holds that (u, v) = Bs,t(c.x, c.y).

Hence, the quantum decapsulation algorithm can be turned into a quantum Bs,t oracle. Thus,

an adversary with quantum access can determine the secret s by solving the quantum safe hidden

linear structure problem. Afterward the adversary can recover the decapsulation key sk, and win

the QcQ-IND game with probability 1. Thus, K′ is not QqQ-IND secure.

Thus, the XyZ-IND security notions for KEMs are nontrivial and separated. We can now order
the four XyZ-IND notions based on the separations and implications as such:

CcC-IND < CcQ-IND < QcQ-IND < QqQ-IND.

In Chapter 5 we construct a combiner that takes as input two KEMs and a MAC, and say that
it preserves the max XyZ-IND security of the two KEMs if the MAC is equally XyZ-OTS secure,
we use this order to determine the max security of the two input KEMs.

25

Chapter 5

XtM Combiner & XyZ Security

In this chapter we construct a secure hybrid KEM combiner the using robust combiners, then
prove the security of the resulting KEM in the two stage adversary model, and discuss how to
construct the MAC.

It was shown by Giacon et al. [13] that the simplest KEM combiner, concatenation of
the ciphertexts and XOR of the keys, does not preserve security past IND-CPA in general.
This is easy to see: by isolating a single ciphertext component, c∗i in the challenge ciphertext,
c∗ = c∗1‖...‖c∗i ‖...‖c∗n, and replacing all other components with ciphertexts with known keys, the
adversary can query the modified ciphertext to the decapsulation oracle, and piecewise recover
each key to compute the XOR themselves. The KEM combiner we build is a XOR-then-MAC
combiner, denoted by XtM, prevents such attacks. It is built using an exclusive-or of the two
keys k1, k2 of the two input KEMs, but then computes a MAC over the ciphertexts, whose key is
derived from the XOR of the keys. The use of the MAC over the ciphertexts prevents the attack
described as the adversary must forge a new tag for each of the queries to the decapsulation
oracle. Note that in this construction the only additional assumption needed is that the MAC is
OTS secure against the same type of adversary as the secure KEM.

5.1 XtM Combiner

We now prove the main result of this thesis, that the XOR-then-MAC combiner, described
in Figure 5.1.1, is a robust combiner for KEMs that are up to QcQ-IND secure. That is to say
the resulting KEM is as secure as the strongest KEM input, provided the MAC is also equally
secure.

Theorem 2. Let K1 be a XcZ-secure KEM, K2 a UcW-secure KEM, and M a RcT-OTS-secure

MAC, where RcT = max{XcZ,UcW}. Then XtM[K1,K2,M] is a (1, 2)- robust combiner for

RcT-IND-security. More precisely, for any efficient adversary A that breaks the RcT-IND security

26

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

of XtM[K1,K2,M], then there exists efficient adversaries B1,B2 and B3 such that

AdvRcT-IND
XtM[K1,K2,M] ≤ 2 ·min{AdvRcT-IND

K1
(B1),AdvRcT-IND

K2
(B2)}+ AdvRcT-OTS

M (B3),

where the run times of all Bi are approximately equal to that of A, and B3 makes at most as many

queries to the verification oracle as A does to the decapsulation oracle.

XtM.KeyGen(1n):

1. (pk1, sk1)←$ KeyGen1(1n)

2. (pk2, sk2)←$ KeyGen2(1n)

3. pk ← (pk1, pk2)

4. sk ← (sk1, sk2)

5. return (pk, sk)

XtM.Encaps(pk1, pk2):

1. (c1, k1)← Encaps1(pk1)

2. (c2, k2)← Encaps2(pk2)

3. kkem‖kmac ← k1 ⊕ k2

4. c← (c1, c2)

5. τ ← MACkmac (c)

6. return ((c, τ), kkem)

XtM.Decaps((sk1, sk2), ((c1, c2), τ)):

1. k′1 ← Decaps1(sk1, c1)

2. k′2 ← Decaps2(sk2, c2)

3. k′kem‖k′mac ← k′1 ⊕ k′2

4. if Verifyk′mac
((c1, c2), τ) = 0:

return ⊥

5. else: return k′kem

Figure 5.1.1: KEM constructed by the XOR-then-MAC combiner XtM[K1,K2,M] with MAC
M = (KeyGen,MAC,Verify).

Proof. Assume there exists an adversary, A, that does break RcT-IND security of XtM, then it

is possible to construct further adversaries that breaks the RcT-IND security of either K1,K2,

and the RcT-OTS security of M. Furthermore, assume K1 is RcT-IND secure. By symmetry of

the combiner it suffices to consider only the case of constructing an adversary that breaks the

RcT-IND security of K1 as the proof for K2 would be similar.

27

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

G0

1. ((pk1, pk2), (sk1, sk2))← XtM.KeyGen()

2. ((c∗1, c
∗
2, τ
∗), kkem)← XtM.Encaps(pk1, pk2)

3. kkem‖kmac ← k∗1 ⊕ k∗2

4. τ∗ ← MACkmac (c
∗
1, c
∗
2)

5. κ∗0 ← kkem

6. κ∗1←$ KSXtM

7. b←$ ∈ {0, 1}

8. st← AO
c
D(·)

1 (pk1, pk2, (c
∗
1, c
∗
2, τ), κ∗b)

9. b′ ← A2(st)

10. return [b′ = b]

Figure 5.1.2: Game 0 for the proof of Theorem 2.

G0: Game 0 in Figure 5.1.2 is the RcT-IND security experiment for XtM so

AdvRcT-IND
XtM[K1,K2,M] =

∣∣∣∣Pr[G0 → 1]− 1

2

∣∣∣∣ .
G1: The next game is Game 1, G1, in Figure 5.1.3 is made by replacing the key, k1, correspond-

ing to K1’s component of the challenge ciphertext, c1 with a uniformly random and independent

value r∗1 from the same keyspace as K1. This means that the experiment first encapsulates (c1, k1)

from the K1 part of the XtM encapsulation algorithm, and then uses (c1, r
∗
1) from then onward for

the rest of the encapsulation algorithm, including in generating both the challenge key and the

MAC key used to compute the tag, that is k∗kem‖k∗mac ← r∗1 ⊕ k∗2. Furthermore, this replacement

is done consistently with all decapsulation queries involving the ciphertext c1. This means the

decapsulation oracle is modified so that the step ‘k1←$ Decaps1(sk1, c1)” is replaced with the

step “if c1 = c∗1 then k1 ← r∗1←$K else k1 ← Decaps1(sk1, c1)” We call this new decapsulation

oracle Oc∗D .

28

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

G1

1. ((pk1, pk2), (sk1, sk2))← XtM.KeyGen()

2. ((c∗1, c
∗
2, τ
∗), kkem)← XtM.Encaps(pk1, pk2)

3. kkem‖kmac ← r∗1 ⊕ k∗2 with r1←$ KSK1 // Replacement of the XcZ-IND secure key k1

4. τ∗ ← MACkmac (c
∗
1, c
∗
2)

5. κ∗0 ← kkem

6. κ∗1←$ KSXtM

7. b←$ ∈ {0, 1}

8. st← AO
c∗
D (·)

1 (pk1, pk2, (c
∗
1, c
∗
2, τ), κ∗b) // Modification on Decap queries

9. b′ ← A2(st)

10. return [b′ = b]

Figure 5.1.3: Game 1 for the proof of Theorem 2.

Claim 1.

|Pr[G0 → 1]− Pr[G1 → 1]| ≤ 2 · AdvRcT-IND
K1

(B1).

Proof Of Claim 1. Suppose that A can efficiently distinguish between Games 0 and 1, then A

can be used as an oracle algorithm for another adversary, B1, to break RcT-IND security of K1

as follows: B1 is given as input the tuple of public key, challenge ciphertext, and challenge key,

(pk1, c
∗
1, k
∗
1), where k1 is either real or uniformly random. B then simulates A by first generating

the key pair (pk2, sk2) for K2, then runs the encapsulation algorithm of K2 to generate the second

challenge ciphertext portion c∗2 and key share k∗2 itself. It then computes k∗kem‖k∗mac ← k∗1 ⊕ k∗2
and assembles the challenge ciphertext (c∗1, c

∗
2, τ
∗) where τ∗ ← MACk∗mac

((c∗1, c
∗
2)). Finally B then

runs A on input ((pk1, pk2), (c∗1, c
∗
2, τ
∗), k∗kem).

While simulating A, any decapsulation queries of ciphertexts c = (c1, c2, τ) with c1 6= c1,

are answered as follows: c1 is decapsulated by using B1’s decapsulation oracle for K1, c2 is

decapsulated by B1 using sk2, and response, kkem, is computed as the appropriately from the

above decapsulations after the verification of the MAC tag by B1. If A queries c = (c∗1, c2, τ)

then B1 uses k∗1 as the decapsulation of c∗1 and then continues as described above. Eventually,

the distinguisher A terminates and outputs a guess bit b′, and B1 outputs the same bit b′.

Clearly, B1 perfectly simulates A in Game 0 if the k∗1 used was the key encapsulated in c∗1 in

the RcT-IND experiment of K1, and it perfectly simulates Game 1 if k∗1 is random. Furthermore,

29

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

in Game 1 the adversary A always receives a challenge key that is uniformly random as it was

either computed by and XOR with a random string r∗1 and k∗2 or selected uniformly at random,

whereas, in Game 0 the adversary receives either the real key or a uniform key. This means

that we must transition from the prediction based RcT-IND attack, which distinguishes between

a real or random key, with a random challenge bit b to an indistinguishability-based comparison

between fixed games. Thus, we have

|Pr[G0 → 1]− Pr[G1 → 1]| ≤ 2 · AdvRcT-IND
K1

(B1).

G2: In Game 2, Figure 5.1.5, r∗1 ⊕ k∗2 is replaced by r∗ an independent and uniformly random

value, where k∗2 is the key encapsulated by the K2 challenge ciphertext. This is done consistently

with the challenge key and MAC key. This means that challenge key k∗kem the adversary receives

is always random and independent of the bit b chosen during the experiment, as well as the MAC

tag being computed over a random key. Since r∗, and r∗1 were each chosen independently and

uniformly random this means that r∗1 ⊕ k∗2 and r∗ have identical distributions, as r∗1 ⊕ k∗2 is a one

time pad, and so the adversary’s advantage does not change. Thus,

Pr[G1 → 1] = Pr[G2 → 1].

30

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

G2

1. ((pk1, pk2), (sk1, sk2))← XtM.KeyGen()

2. ((c∗1, c
∗
2, τ
∗), kkem)← XtM.Encaps(pk1, pk2)

3. kkem‖kmac ← r∗ with r∗←$ KSXtM //Replacement of the XOR, r∗1 ⊕ k2

4. τ∗ ← MACkmac (c
∗
1, c
∗
2)

5. κ∗0 ← kkem

6. κ∗1←$ KSXtM

7. b←$ ∈ {0, 1}

8. st← AO
c∗
D (·,·,·)

1 (pk1, pk2, (c
∗
1, c
∗
2, τ), κ∗b)

9. b′ ← A2(st)

10. return [b′ = b]

Figure 5.1.4: Game 2 for the proof of Theorem 2.

G3

1. ((pk1, pk2), (sk1, sk2))← XtM.KeyGen()

2. ((c∗1, c
∗
2, τ
∗), kkem)← XtM.Encaps(pk1, pk2)

3. kkem‖kmac ← r∗ with r∗←$ KSXtM

4. τ∗ ← MACkmac (c
∗
1, c
∗
2)

5. κ∗0 ← kkem

6. κ∗1←$ KSXtM

7. b←$ ∈ {0, 1}

8. st← AO
c∗∗
D (·,·,·)

1 (pk1, pk2, (c
∗
1, c
∗
2, τ), κ∗b) //Replacement of Decaps oracle with a modified version

9. b′ ← A2(st)

10. return [b′ = b]

Decaps oracle Oc
∗∗
D (sk, c1, c2, τ):

1. if c1 = c∗1 then return ⊥
2. else return OcD(sk, c1, c2, τ)

Figure 5.1.5: Game 3 for the proof of Theorem 2.

G3: In Game 3, Figure 5.1.5, the decapsulation oracle is modified so that it immediately

rejects queries of the form (c∗1, ∗, ∗) with output ⊥, where c∗1 is the K1 component of the challenge

ciphertext. The adversary, A, is only able to notice the difference between Game 2 and Game

3 if they query the decapsulation oracle on a ciphertext (c∗1, c2, τ) 6= (c∗1, c
∗
2, τ
∗) where c2 is a

K2 ciphertext of the adversary’s choice and τ is a valid MAC tag. If τ is not a valid tag or the

adversary queries the challenge ciphertext, then the decapsulation oracle in Game 2 would also

31

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

return ⊥. We then show that Claim 2 if an adversary is able to distinguish between Game 2 and

Game 3 then they can be used as an oracle to break the RcT-OTS security of M.

Claim 2.

|Pr[G2 → 1]− Pr[G3 → 1]| ≤ AdvRcT-OTS
M (B3).

Proof Of Claim 2. Suppose that there exists a RcT adversary, A, that can distinguish between

Game 2 and Game 3. Now suppose that B3 is a RcT-OTS adversary of M. Then B3 can use

A to break RcT-OTS security of M as follows: B3 runs A according to Game 2, generating all

components (pk1, sk1) and (pk2, sk2) and c∗1, c
∗
2 of K1 and K2 respectively itself. To create the

MAC tag of the challenge ciphertext, B3 makes its one-time MAC request on the message (c∗1, c
∗
2)

and receives τ∗. It then runs A on (c∗1, c
∗
2, τ
∗) and uniformly random string k∗kem. If A makes

a decapsulation query on (c1, c2, τ) where c1 6= c∗1 then B3 is able to use its knowledge of the

decapsulation keys to compute the answer itself and return an answer. For queries that contain

c∗1 B3 calls its verification oracle on (c1, c2, τ) and returns ⊥ to A to continue the simulation.

As in Game 2 the challenge key is either a independent random string r∗ if the bit b is 0, or a

uniformly random sample key, if the bit is 1. In both cases k∗kem is a uniform key independent

of b, as is B3’s choice of k∗kem in the simulation of A, and the MAC key part is also independent

and uniform. The latter holds in B3 simulation as well as the OTS-MVA security experiment

chooses a random MAC key. Thus the simulation is identical up until A makes a query on a

fresh ciphertext with a valid MAC tag which would yield a response different from ⊥. But then

B3 would find a forgery against the MAC, M, in one of its multiple verification attempts. Thus

Claim 2 holds true and so

|Pr[G2 → 1]− Pr[G3 → 1]| ≤ AdvRcT-OTS
M (B3).

Finally in Game 3 the challenge key, k∗kem, is an independent string regardless of the secret

bit b’s value, and decapsulation queries are also independent of b, since the change in the oracles

answer only depend on c∗1. Hence A’s output is independent of the secret bit, and thus

Pr[G3 → 1] =
1

2
.

32

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

Thus the conclusion of the theorem is obtained by combining the above equalities, that is

AdvRcT-IND
XtM[K1,K2,M] ≤ 2 ·min{AdvRcT-IND

K1
(B1),AdvRcT-IND

K2
(B2)}+ AdvRcT-OTS

M (B3).

Proving the XOR-then-MAC XtM[K1,K2,M] combiner is robust in preserving RcT-IND security.

5.2 Constructing the MAC

We now discuss a type of QcQ-OTS MAC which can be used for the XOR-then-MAC com-
biner in the QcQ-IND setting which does not rely on further cryptographic assumptions. These
MACs can be built with universal hash functions using the Carter-Wegman paradigm [25]. This
construction requires that the input ciphertexts be larger than the keys, such that the domain of
the universal hash function must be extended. For a universal hash function which collides with
probability at most ε, it is clear that an adversary cannot win after a single verification query after
seeing one MAC tag, except with probability at most ε. And as verification is deterministic and
consists of re-computing the MAC tag, it follows that the adversary cannot win with probability
more than qε, where q is the number of verification queries [2].

5.3 QqQ-IND Security of XtM Combiner

We note that Theorem 2 proves that the XtM combiner preserves security of the input KEMs,
if the MAC is equally secure, against attacks in which the adversary has classical access to the
decapsulation oracle. However, a proof that the XOR-then-MAC combiner is a QqQ-IND robust
combiner was proved in a joint paper with Fischlin et al. [6] on using hybridly secure KEM
combiners to design a hybrid authenticated key exchange. We include the outline of the proof
they provide in this section. Notably, the MAC need not be QqQ-OTS secure, but rather only
needs QcQ-OTS security for the proof. This is because the MAC in the challenge is still computed
classically, and in the reduction a potential forgery is measured from a decapsulation query in
superposition and outputs a classical MAC forgery.

The outline of the proof is as follows: it is very similar to the main theorem with one difference.
In Game 3 the QcQ-OTS MAC adversary, B3, can no longer read off a potential MAC forgery
from the decapsulation query, from A, in the form of (c∗1, ∗, ∗) for the value c∗1 in the challenge
because the query is in superposition. But the “measure-and-modify” approach of Boneh et
al. [8] for proving quantum resistance of certain styles of encryptions can be adapted to overcome
this issue. Specifically, if the amplitudes of entries (c∗1, c2, τ) with a valid MAC tag and fresh
(c2, τ) 6= (c∗2, τ

∗) in the quantum decapsulation queries would be non-negligible, then we could
measure for a randomly chosen query among the polynomial many decapsulation queries to get
a classical MAC forgery with non-negligible probability. This contradicts the QcQ-OTS security
of M. If the amplitudes of such queries are negligible, then we can perform the change to the
decapsulation oracle so that it returns ⊥ on queries of the form (c∗1, ∗, ∗). Then following the
reasoning by Boneh et al. [8], based on Bennett et al. [5], this cannot change the adversary’s

33

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

output behaviour significantly. And since the MAC can be constructed for classical queries
information-theoretically, the XtM is a secure KEM combiner in the fully quantum case, without
any additional assumptions beyond full quantum resistance of one of the KEMs.

Thus we have that the XtM combiner is a robust combiner for all XyZ-IND adversaries.

34

Chapter 6

Summary, Application, &

Conclusions

In this chapter we provide a brief summary of key points of the previous chapter, and the
discuss an application of the XOR-then-MAC combiner.

6.1 Summary

We first summarize Chapter 2. We defined both key encapsulation mechanisms (KEMs) and
message authentication codes (MACs) as tuples of algorithms with specific characteristics, as well
as their purposes. A KEM as a tuple of algorithms used to encapsulate an ephemeral key within
a ciphertext for parties to use when sending a message, while a MAC is a tuple of algorithms
used to provide a tag on a message intended to authenticate the sender of the message.

We then gave a description of how security is formalized. The goal-attack model is used to
specify what form of security a cryptographic primitive is attempting to achieve and against
which attack powers from an adversary. To define security an experiment is created where the
adversary is trying to win by achieving some security break condition, which implies they are
able to break the security goal of the the primitive, with access to the powers specified by
the attack the primitive is trying to be resistant against. We then express the probability of
an adversary winning the experiment as an advantage, which represents the probability of the
adversary winning the security experiment. For indistinguishability based security experiments
the advantage is measured as a distance from probability 1

2 .

Next we defined the relevant security notions for KEMs and MACs. For KEMs the pri-
mary goal-attack is indistinguishability under chosen ciphertext attack, denoted as IND-CCA: the
adversary must distinguish a key generated using the encapsulation algorithm on a public key
from a key selected uniformly at random; the attacker is given the public key, the ciphertext in
which the generated key is encapsulated, and access to a decapsulation oracle programmed with
the related secret key which they can query with any ciphertext and receive the decapsulation,

35

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

with the exception of the ciphertext the adversary receives. For MACs we consider the one time
strongly unforgeable under multiple verification attack, denoted by OTS-MVA, goal-attack, where
the adversary is attempting to produce a new valid message-tag pair after receiving a valid tag
on a message of their choice; the attacker is given access to a verification oracle that determines
if a message-tag is valid.

In Chapter 3 we defined the two stage XyZ adversary model, and introduced the XyZ-IND and
XyZ-OTS security experiments for KEMs and MACs respectively. We use the XyZ two stage model
as a way to model the transition from classical security to quantum security. More specifically,
it models an adversary and their interaction with an experiment over time by considering two
stages. The first stage is when the adversary has access to the oracles of the experiment and the
second stage when they no longer have this access. Furthermore, the XyZ two stage model specifies
whether the adversary is classical or quantum while they have access to the experiment oracle, X,
whether they have classical or quantum to the experiment oracles, y, and finally whether they are
classical or quantum after losing oracle access, Z. This leads to four notions: CcC-IND, CcQ-IND,
QcQ-IND, and QqQ-IND. We then define the XyZ-IND and XyZ-OTS security experiments for
KEMs and MACs by relabeling the challenge phase to the query phase in each experiment and
modified it so that the first stage adversary outputs a state value, st, which is then passed on to
the second stage adversary, and then added a challenge phase in which the second stage adversary
outputs the guess.

Furthermore, we defined what a robust combiner is and discuss some previous work done with
combiners on PKEs and KEMs and the drawbacks of those works. A combiner is an algorithm that
accepts as input n of the type of cryptographic schemes to produce a new scheme type, with the
property that the combiner preserves some specified goal-attack security if at least k of the input
are satisfy that security notion. Both Zhang et al. [26] and Herzberg [16] constructed combiner for
PKEs but neither were able to retain IND-CCA security of PKEs, except in a special case of length
preserving PKEs. Giacon et al. [13] constructed a KEM combiner that did preserve IND-CCA
security, and thus CcC-IND security, but required a special type of pseudorandom functions called
split key pseudorandom and lacked a quantum version of their security proof. Our goal was to
resolved these gaps while also extending results to the new security notion of XyZ-IND security.

In Chapter 4 we proved the hierarchy of two stage XyZ-IND adversaries for KEMs by proving
the implications and separations between them. The implications of the hierarchy follow from the
fact all classical algorithms and queries can be performed on a quantum computer as well. To show
the separations, we constructed KEMs with backdoors that are exploitable to the next adversary
in the hierarchy. The separation of CcC-IND and CcQ-IND follows from a concrete example of a
CcC-IND KEM that is RSA based and thus any quantum adversary can factor the modulus and
recover the decapsulation key. To see the separation of CcQ-IND and QcQ-IND we constructed
a KEM with a decapsulation algorithm that returns the decapsulation key when queried on a
secret value encrypted by a PKE that is OW-CPA but not OW-qCPA so that a quantum first stage
adversary can exploit this, while a classical first stage adversary cannot. Lastly, for the separation
between QcQ-IND and QqQ-IND, we constructed a KEM with an exploitable backdoor, based on
the quantum-safe hidden linear structure problem, so that an adversary that can decapsulate in
superposition could recover the decapsulation key in a single query.

Lastly, in Chapter 5 we constructed the XOR-then-MAC combiner, XtM, for KEMs and
proved that it is a robust combiner for all XyZ-IND adversaries. We describe the XOR-then-MAC
again in Figure 6.1.1 on input KEMs K1 and K2, and MAC M.

36

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

XtM.KeyGen(1n):

1. (pk1, sk1)←$ KeyGen1(1n)

2. (pk2, sk2)←$ KeyGen2(1n)

3. pk ← (pk1, pk2)

4. sk ← (sk1, sk2)

5. return (pk, sk)

XtM.Encaps(pk1, pk2):

1. (c1, k1)← Encaps1(pk1)

2. (c2, k2)← Encaps2(pk2)

3. kkem‖kmac ← k1 ⊕ k2
4. c← (c1, c2)

5. τ ← MACkmac (c)

6. return ((c, τ), kkem)

XtM.Decaps((sk1, sk2), ((c1, c2), τ)):

1. k′1 ← Decaps1(sk1, c1)

2. k′2 ← Decaps2(sk2, c2)

3. k′kem‖k′mac ← k′1 ⊕ k′2
4. if Verifyk′mac

((c1, c2), τ) = 0: re-
turn ⊥

5. else: return k′kem

Figure 6.1.1: KEM constructed by the XOR-then-MAC combiner XtM[K1,K2,M] with MAC
M = (KeyGen,MAC,Verify).

6.2 Applications

We now discuss an application of the XOR-then-MAC, done jointly with Fischlin, Bindel, and
Brendel to construct a hybrid authenticated key exchange protocol. The work in this section was
primarily done by my coauthors in [6] but is included here as an example of how the work in
this thesis has been applied.

6.2.1 Authenticated Key Exchange

We begin with a description of what an authenticated key exchange (AKE) protocol is and the
security definition for AKEs against active attackers. Informally an authenticated key exchange
protocol is a method for a set of users to establish a shared session key, while also authenticating
one another. Security is modeled against active attackers by granting the adversary a series of
oracles which allow them to control all communications and compromise certain secret values,
with the goal of distinguishing a session key of an uncompromised session of its choice from
random. We will now formally define authenticated key exchange against active attackers using
the model of Bellare and Rogaway [3].

Definition 17. (Parties and sessions) Let KE be a key exchange protocol. We denote the set of

all participants in the protocol by U . Each participant U ∈ U is associated with a long-term key

pair (pkU , skU), created in advance; we assume every participant receives an authentic copy of

every other party’s public key through some trusted out-of-band mechanism. In a single run of the

protocol (referred to as a session), U may act as either initiator or responder. Any participant U

may execute multiple sessions in parallel or sequentially.

We denote by πjU,V the jth session of user U ∈ U (called the session owner) with intended

communication partner V . Associated to each session are the following per-session variables; we

often write πjU,V .var to refer to the variable var of session πjU,V .

• role ∈ {initiator, responder} is the role of the session owner in this session.

37

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

• stexec ∈ {running, accepted, rejected} reflects the current status of execution. The initial

value at session creation is running.

• sid ∈ {0, 1}∗ ∪ {⊥} denotes the session identifier. The initial value is ⊥.

• stkey ∈ {fresh, revealed} indicates the status of the session key K. The initial value is fresh.

• K ∈ D ∪ {⊥} denotes the established session key. The initial value is ⊥.

• tested ∈ {true, false} marks whether the session key K has been tested or not. The initial

value is false.

To identify related sessions which might compute the same session key, we rely on the notion

of partnering using session identifiers. Two sessions πiS,T and πjU,V are said to be partnered if

πiS,T .sid = πjU,V .sid 6= ⊥.

We assume that if the adversary has not interfered, sessions in a protocol run between two
honest participants are partnered.

The following queries model the adversary’s control over normal operations by honest parties:

NewSession(U, V, role): Creates a new session πjU,V for U (with j being the next unused counter
value for sessions between U and intended communication partner V ∈ U ∪ {?}) and sets
πjU,V .role← role.

Send(πjU,V ,m): Sends the message m to the session πjU,V . If no session πjU,V exists or does not

have πjU,V .stexec = running, return ⊥. Otherwise, the party U executes the next step of the

key agreement protocol based on its local state, updates the execution status πjU,V .stexec,
and returns any outgoing messages. If stexec changes to accepted and the intended partner V
has previously been corrupted, we mark the session key as revealed: πjU,V .stkey ← revealed.

The next queries model the adversary’s ability to compromise secret values:

Reveal(πjU,V): If πjU,V .stexec = accepted, Reveal(πjU,V) returns the session key πjU,V .K and marks

the session key as revealed: πjU,V .stkey ← revealed. Otherwise, it returns ⊥.

Corrupt(U): Returns the long-term secret key skU of U .

Set πjV,W .stkey ← revealed in all sessions where V = U or W = U . (If the security definition
is meant to capture forward secrecy, this last operation is omitted.)

The final query is used to define the indistinguishability property of session keys:

Test(πjU,V): At the start of the experiment, a test bit btest is chosen uniformly and random and

fixed through the experiment. If πjU,V .stexec 6= accepted, the query returns ⊥. Otherwise,

it sets πjU,V .tested ← true and proceeds as follows. If btest = 0, a key K∗←$D is sampled
uniformly at random from the session key distribution D. If btest = 1, K∗ is set to the real
session key πjU,V .K. Return K∗. The Test query may be asked only once.

38

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

6.2.2 Authenticated Key Exchange Security

We now will give a description of the three security notions for AKEs used by Fischlin et
al. [6] by describing the adversaries win condition in the respective security experiment.

First we discuss two stage BR key secrecy. The adversary is said to have broken BR key
secrecy if the adversary is able to distinguish a real session key from a uniformly random key in
a session of their choice such that: the adversary has not tested and revealed the session key in
a single session or in two partnered sessions. The notion corresponds to the the situation of the
adversary successfully obtaining the session key from either one or both parties in a session.

Next we describe the idea of BR match security. The adversary breaks BR match security if
they achieve any one of the following:

1. There exist two distinct sessions with the same valid session identifier that have partnered
with each other but do not have the same session key.

2. There exist two sessions with the same valid session identifier but do not share the same
initiator and responder. That is there exists two sessions with different intended partners.

3. There exist at least three sessions that are pairwise distinct but all three sessions have the
same valid session identifier.

BR match security captures the notion that the adversary can not exploit the protocol to match
users with someone other than the person they intended.

Lastly, we define the main security definition consider in [6], two stage BR security.

Definition 18 (Two-Stage BR Security). We call a key exchange protocol KE XcZ-BR secure

(with/without forward secrecy) if KE provides BR-Match security and XcZ-BR key secrecy (with/without

forward secrecy).

6.2.3 Hybrid Authenticated Key Exchange

We will now provide a high-level overview the construction of the hybrid AKE, the main
theorem statement from [6], and the role of the XtM combiner.

First we describe the AKE, CSigMA, which takes as input a KEM K, signature scheme S, a
MACM and a key derivation function, (KDF) KDF. CSigMA works as follows between two parties
“Alice” and “Bob” each with long-term public and secret key pairs (pkA, skA) and (pkB, skB) for
each signature scheme.

1. Alice initially runs K.KeyGen() to obtain an encapsulation-decapsulation key pair (ekA, dkA)
and send ekA to Bob.

2. Bob receives ekA and runs K.Encaps(ekA) to obtain (c, k) then sends Alice c.

3. Alice receives c and decapsulates it to obtain k. Then both Alice and Bob compute the
MAC key kmac ← KDF(k, ekA, c).

39

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

4. Alice then sends Bob a random value rA.

5. Bob receives rA, and selects their own random value rB. Then Bob computes a signature
using his long-term key, σB ← Sig(skB, rA‖rB), as well as a MAC on his identity τB ←
MAC(kmac,Bob). Finally, Bob sends (Bob, rB, σB, τB)

6. Alice then verifies the signature and MAC tag using the random values rA, rB, Bob’s long-
term public key pkB, and the MAC key kmac. Once Alice has validated the message,
Alice computes her own signature σA ← Sig(skA, rA‖rB) and MAC tag on her identity
τA ← MAC(kmac, Alice). Then finally sends sends (Alice, σA, τA).

7. Bob then verifies the signature and MAC tag using the random values rA, rB, Alice’s long-
term public key pkA, and the MAC key kmac. Once verified Bob computes the session key
K ← KDF(k, rA‖rB‖Alice‖Bob).

We note that the protocol uses the initial KEM interact to establish a MAC key which is later
used to authenticate Alice and Bob to one another. Thus ensuring that the KEM is secure is
important since if a vulnerable KEM was used a malicious party could obtain the MAC key and
forge tags successfully.

We now state the main theorem about the security of the CSigMA protocol from [6].

Theorem 3. Let K be an IND-CPA or IND-qCPA key encapsulation mechanism, S be an RcT-

unforgeable signature scheme,M be a UcW-unforgeable message authentication scheme, and KDF

be a LcN-secure key derivation function. Then the compiled protocol CSigMA is XcZ-BR secure with

forward secrecy, where

• XcZ = CcC, if either the key encapsulation mechanism K or the key derivation function

KDF are only classically secure, i.e., if either K is IND-CPA or LcN = CcC.

• XcZ = QcQ, if all components are resistant against fully quantum adversaries, i.e, RcT =

UcW = LcN = QcQ (and K is IND-qCPA).

• XcZ = CcQ, if the employed signature and MAC scheme are at most future-quantum secure,

i.e., if RcT,UcW ∈ {CcC,CcQ} (and K is IND-qCPA, LcN ≥ QcQ).

We note that Theorem 3 only requires the KEM to be either IND-CPA or IND-qCPA secure
and not XyZ-IND secure. Fischlin et al. note that to obtain a hybrid AKE, the KEM K may be
instantiated with any hybrid KEM, this includes the XtM combiner. Moreover, the XtM combiner
also allows for a simpler choice in KEMs. The resulting security of CSigMA varies depending on the
security of each of its inputs including the KEM, with the result being strong should the KEM be
IND-qCPA, however the XtM can result in a CcQ which is both IND-CPA and IND-qCPA secure.
This means that such KEMs are ideal choices for this AKE and can be constructed efficiently
with the XtM combiner.

We also note that results such as Theorem 3 are important as early designs often become
templates for future work, and designing a provably sound method for hybrid key exchange is
vital for the transition to post-quantum cryptography.

40

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

6.3 Conclusion

In this thesis we have established a series of security notions that consider adversaries with
varying levels of quantum power over time, to represent the transition from classical to quantum
computers. We have also introduced the XOR-then-MAC combiner, which was built with minimal
assumptions and is the first hybrid KEM construct which is secure against a fully quantum
adversary.

There is still open questions on this subject, specifically what other KEM combiners are there,
what is the XyZ-IND security of other combiners, and how efficient are they compared to the XtM
combiner.

41

Bibliography

[1] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions of Security
for Public-Key Encryption Schemes. In H. Krawczyk, editor, Advances in Cryptology —
CRYPTO ’98, pages 26–45, 1998.

[2] M. Bellare, O. Goldreich, and A. Mityagin. The Power of Verification Queries in Message
Authentication and Authenticated Encryption. Cryptology ePrint Archive, Report 2004/309,
2004.

[3] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In Proceedings of
the 13th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO
’93, pages 232–249, 1994.

[4] M. Bellare and P. Rogaway. Optimal Asymmetric Encryption. In A. De Santis, editor,
Advances in Cryptology — EUROCRYPT’94, pages 92–111, 1995.

[5] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and Weaknesses of
Quantum Computing. SIAM Journal on Computing, 26(5):1510–1523, October 1997.

[6] N. Bindel, J. Brendel, M. Fischlin, B. Goncalves, and D. Stebila. Hybrid Key Encapsulation
Mechanisms and Authenticated Key Exchange. Under review, 2018.

[7] N. Bindel, U. Herath, M. McKague, and D. Stebila. Transitioning to a Quantum-Resistant
Public Key Infrastructure. PQCrypto, 2017.

[8] D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry. Random
Oracles in a Quantum World. In D. H. Lee and X. Wang, editors, Advances in Cryptology
– ASIACRYPT 2011, pages 41–69, 2011.

[9] J.L. Carter and M. N. Wegman. Universal Classes of Hash Functions. Journal of Computer
and System Sciences, 18(2):143 – 154, 1979.

[10] R. Cramer and V. Shoup. Design and Analysis of Practical Public-Key Encryption Schemes
Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal on Computing, 33(1):167–
226, 2003.

[11] N. de Beaudrap, R. Cleve, and J. Watrous. Sharp Quantum versus Classical Query Com-
plexity Separations. Algorithmica, 34(4):449–461, 2002.

[12] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions on Infor-
mation Theory, 22(6):644–654, 1976.

42

Master’s Thesis - B. Goncalves McMaster University - Mathematics and Statistics

[13] F. Giacon, F. Heuer, and B. Poettering. KEM Combiners. PKC, 2018.

[14] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System
Sciences, 28(2):270 – 299, 1984.

[15] D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen. On Robust Combiners for
Oblivious Transfer and Other Primitives. In R. Cramer, editor, Advances in Cryptology –
EUROCRYPT 2005, pages 96–113, 2005.

[16] A. Herzberg. Folklore, Practice and Theory of Robust Combiners. Cryptology ePrint Archive,
Report 2002/135, 2002.

[17] H. Jiang, Z. Zhang, L. Chen, H. Wang, and Z. Ma. IND-CCA-Secure Key Encapsulation
Mechanism in the Quantum Random Oracle Model, Revisited. Cryptology ePrint Archive,
Report 2017/1096, 2017.

[18] J. Katz and Y. Lindell. Introduction to Modern Cryptography (Chapman & Hall/Crc Cryp-
tography and Network Security Series). Chapman & Hall/CRC, 2007.

[19] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information: 10th
Anniversary Edition. Cambridge University Press, 10th edition, 2011.

[20] C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and
Chosen Ciphertext Attack. In J. Feigenbaum, editor, Advances in Cryptology — CRYPTO
’91, pages 433–444, 1992.

[21] O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In
Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, STOC
’05, pages 84–93. ACM, 2005.

[22] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. CACM, 26(1):96–99, 1983.

[23] P. W. Shor. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In
Proceedings of the 35th Annual Symposium on Foundations of Computer Science, FOCS ’94,
pages 124–134, 1994.

[24] V. Shoup. Sequences of Games: A Tool for Taming Complexity in Security Proofs. Cryp-
tology ePrint Archive, Report 2004/332, 2004.

[25] M. N. Wegman and J.L. Carter. New Hash Functions and Their Use in Authentication and
Set Equality. Journal of Computer and System Sciences, 22(3):265 – 279, 1981.

[26] C. Zhang, D. Cash, X. Wang, X. Yu, and S. S. M. Chow. Combiners for Chosen-Ciphertext
Security. In T. N. Dinh and M. T. Thai, editors, Computing and Combinatorics, pages
257–268. Springer International Publishing, 2016.

43

	List of Abbreviations and Symbols
	List of Figures
	Introduction
	Preliminaries
	Basic Cryptographic Notation & Definition
	Quantum Computing
	Proofs & Experiments

	Two Stage Adversary & Combiners
	Two Stage Adversary
	XyZ Security Experiments
	Robust Combiners

	Separations and Implications
	Implications
	Separations

	XtM Combiner & XyZ Security
	XtM Combiner
	Constructing the MAC
	QqQ-IND Security of XtM Combiner

	Summary, Application, & Conclusions
	Summary
	Applications
	Authenticated Key Exchange
	Authenticated Key Exchange Security
	 Hybrid Authenticated Key Exchange

	Conclusion

	Bibliography

