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Lay Abstract

We study the geometry of 5D blackholes. These blackholes are idealized by
certain spatial symmetries and time invariance. They are solutions to the
vacuum Einstein equations. The unique characteristic of these blackholes is
the range of behaviour they may exhibit at the boundary of the domain of outer
communication. There could be a standard event horizon called a horizon rod
or an axis rod where a certain part of the spatial symmetry becomes trivial.
In this thesis we start by deriving the harmonic map equations which are
satisfied in the interior of the domain of communication. Then we show how
this boundary data affects the metric through the smoothness conditions. We
then analyze the soliton example in a paper by Khuri, Weinstein and Yamada
and show that it respects the smoothness conditions. We then provide a new
example which is interesting in the fact it has non-constant twist potentials.
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Abstract

We set out to analyze 5D stationary and bi-axisymmetric solutions to the vac-
uum Einstein equations. These are in the cohomogeneity 2 setting where the
orbit space is a right half plane. They can have a wide range of behaviour at the
boundary of the orbit space. The goal is to understand in detail the soliton ex-
ample in Khuri, Weinstein and Yamada’s paper “5-dimensional space-periodic
solutions of the static vacuum Einstein equations”. This example is periodic
and has alternating axis rods as its boundary data. We start by deriving the
harmonic equations which determines the behaviour of the metric in the inte-
rior of the orbit space. Then we analyze what conditions the boundary data
imposes on the metric. These are called the smoothness conditions which we
derive for solely the alternating axis rod case. We show that with an ellipticity
assumption they predict that the twist potentials are constant and that the
metric is of the form which appears in Khuri, Weinstein and Yamada’s paper.
We then analyze the Schwarzschild metric in its standard form which is coho-
mogeneity 1 and its Weyl form which is cohomogeneity 2. This Weyl form can
be made periodic and this serves as an inspiration for the examples in Khuri,
Weinstein and Yamada’s paper. Finally we analyze the soliton example in
detail and show that it satisfies the smoothness conditions. We then provide a
new example which has a single axis rod on the boundary with non-constant
twist potentials but that is missing a point on the boundary.
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Chapter 1

Introduction

In this thesis we aim to provide the necessary background to understand 5D
stationary, bi-axisymmetric solutions to the vacuum Einstein equations. This
allows us to further understand example 2 [18, p. 9-11], put forward by Khuri,
Weinstein, and Yamada in “5-dimensional space periodic solutions of the vac-
uum Einstein equation”, at a level of detail not included in the paper. This
is done by providing mathematical proof of the exhibited properties of exam-
ple 2 and confirming that it satisfies certain smoothness conditions although
these smoothness conditions are not mentioned in the paper. Such smoothness
conditions are obtained at the level of the manifold by imposing natural slice
representations. From these smoothness conditions we show that the form of
the metric they give in the solution in example 2 can’t be made more general.
At least if the metric is real analytic in the interior of the orbit space. Addi-
tionally we provide a new example with non-constant twist potentials but with
the shortcoming that it is missing a point on the boundary. This singularity
partly corresponds to a 1-point horizon rod.

With the background we are not only providing the necessary mathemati-
cal concepts but also illustrating previous models which led to the development
of the examples brought forward by Khuri et al.. For this purpose, it is crucial
to understand the distinction between cohomogeneity 1 and cohomogeneity
2. These refer to the codimension of the principal orbits [10, p. 111]. This is
equal to the dimension of the orbit space. With a 1-dimensional orbit space
of a connected manifold the boundary is made up of 1 or 2 points. But for
a 2-dimensional orbit space the boundary, in the case of the paper in ques-
tion, is a line [18, p. 2] and thus more can happen on the boundary. In this
paper, the group acting is T 2 × R [18, p. 2]. The group acts on the metric, g,
by isometries; where T 2 corresponds to the bi-axisymmetric requirement and
the R corresponds to the stationary requirement [18, p. 2]. The orbit space is
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the right half plane with coordinates (r, z). In the interior of the orbit space
the metric is well understood being given by the vacuum Einstein equations
[18, p. 3]. However when we move to the boundary that equation becomes
undefined. It is thus necessary to impose smoothness conditions that apply to
open sets around the boundary points. For this we need the boundary data.
We divide the boundary into a sequence of axis rods and horizon rods [18,
p. 2]. We take ∂ϕ1 and ∂ϕ2 to be vector fields tangent to the first circle and
the second circle respectively. We take ∂t to be vector field tangent to R. For
a (p, q) axis rod we have that g(p∂ϕ1 + q∂ϕ2 , p∂ϕ1 + q∂ϕ2) → 0 as you approach the
axis rod. Here p and q are relatively prime integers. It is simpler to consider
(1, 0) and (0, 1) axis rods. For a (1, 0) rod, the first circle, S1

1 , shrinks to a point
as you approach it. For a (0, 1) rod, the second circle, S1

2 , shrinks to a point
as you approach it. At the intersection of two rods there is a corner point.
The admissibility condition requires that for a corner point between a (p, q)

rod and a (k, l) rod that det

(
p q

k l

)
= ±1 [18, p. 2]. For a horizon rod we have

that g(∂t + Ω1∂ϕ1 + Ω2∂ϕ2 , ∂t + Ω1∂ϕ1 + Ω2∂ϕ2) goes to 0 as you approach the horizon
rod. Here Ω1 and Ω2 are constants called the angular velocities. We require
that a horizon rod and an axis rod cannot occur simultaneously. We call an
intersection between an axis rod and an horizon rod a pole. Moving back to
cohomogeneity 1 case, the quintessential example is the Schwarzschild metric.
The 4D Schwarzschild metric is static and spherically symmetric [30, p. 119].
The metric depends on a single parameter r and has a curvature singularity
at r = 0 [30, p. 124]. This metric can be converted to its Weyl form and from
that a new periodic Schwarzschild metric can be constructed. This is shown
in the paper “Periodic Analog of the Schwarzschild Metric”[21] by Korotkin
and Nicolai. This forms the inspiration for the periodic examples constructed
by Khuri et al..

The layout of this document is as follows. In chapter 1 we summarize basic
manifold theory, Lie groups and Lie algebras, concepts relating to group ac-
tions and representations. The notion of a principal fibre bundle is important
in understanding the metric in the interior of the orbit space and the notions
of slices and tubes are necessary for expressing the smoothness conditions.
Schur’s Lemma is used heavily in the section on the smoothness conditions.
In chapter 2, using the framework of Riemannian submersions outlined by
Besse [3], we derive the harmonic map equations from the Ricci flat condi-
tion, and the use of Killing fields which stem from alternate definitions of
the stationary and bi-axisymmetric requirements. In chapter 3 we state the
smoothness conditions and derive the conclusions about the behaviour of the

2
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metric near the axis rods and the corner points. This involves imposing sepa-
rate slice representations for the slice at a point on a (1, 0) rod, a (0, 1) road and
at a corner point. These slice representations are made up of two dimensional
rotations and the identity representation. The smoothness conditions are only
derived from the rod structure being a sequence of (1, 0) and (0, 1) rods alter-
nating. These smoothness conditions are stated in terms of a different set of
coordinates, (x1, y1, x2, y2), the radius r1 =

√
x2

1 + y2
1 is thought of as the radius of

S1
1 and the other radius r2 =

√
x2

2 + y2
2 is thought of as the radius of S1

2 . In chapter
4, we derive the Schwarzschild metric, convert to its Weyl form and derive the
periodic Schwarzschild metric. We leave out some of the calculations for the
derivation of the Schwarzschild metric out since they can be found in Wald’s
book [30]. In chapter 5 we analyze example 2. We show that it is periodic in
z and using a Fourier series in terms of z we obtain its asymptotic behaviour.
We also determine its behaviour near the axis rods and corner points as well as
its topology. In chapter 6 we state our new example where the rod structure is
a single (1, 0) rod. We check that it is a solution and satisfies the required prop-
erties. Additionally we provide a derivation and derive its topology. Again it
has the shortfall of missing a point on the boundary.

3



Chapter 2

Background

2.1 A Summary of Basic Manifold Theory

2.1.1 Manifolds

We will assume a familiarity with the basic concepts of manifold theory but
we provide a short summary. Roughly speaking a manifold is a space with
a topology which is locally Euclidean. That is there are homeomorphisms,
called charts which map open sets on the manifold to open sets in Rn, where
n is the dimension of the manifold [22, p. 52]. A manifold is thus a space with
meaningful local coordinates. Additionally a manifold can be thought of as
being C∞ when we impose that all charts in its atlas are C∞ related [22, p. 53].
We can construct C∞ maps between manifolds [22, p. 56]. When the map’s
inverse is a C∞ map it is called a diffeomorphism [22, p. 59]. Diffeomorphic
manifolds are thought of as being geometrically equivalent and two manifolds
being diffeomorphic is a stricter requirement than them being homeomorphic
as topological spaces.

2.1.2 Tangent Spaces

Moving on to tangent spaces, in the setting of say a surface in R3, we consider
the tangent space as being extrinsic to the surface and lying in R3. In the
case of a general manifold it is not natural to think of the manifold as being
embedded into Rn. We therefore want a definition of a tangent space at a point
that is intrinsic to the manifold but being a separate space and not lying in the
manifold. After all a manifold is not equipped with a vector space structure.

Elements of a tangent space can be defined either as equivalence classes of

4
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C∞ curves [22, p. 67-68] or as linear derivations which act on functions which
maps points on the manifold to R [22, p. 103-108]. Both view points are
useful. If we have a map f between manifolds M and N then it induces a linear
tangent map, (f∗)m between the tangent spaces TmM and Tf(m)N. This map can
also be written as df |m. Take X in TmM to be tangent to a curve γ at m, then we
can write X = γ′(0). Furthermore we have the useful identity: (f∗)mX = (f ◦ γ)′(0)

[22, p. 68]. The derivations view point gives us a way to describe X in terms
of a coordinate basis. That is, X = ΣiX(xi) ∂

∂xi

∣∣
m

[23, p. 45]. Of course when we
perform a change of basis X is preserved. With the tangent map in mind we
can further characterize maps between manifolds.

Definition 2.2. [22, p. 69] A C∞ map f between manifolds M and N is an
immersion if for all m, the tangent map (f∗)m : TmM 7→ Tf(m)N is injective.

Definition 2.3. [22, p. 69] A C∞ map f between manifolds M and N is a
submersion if for all m, the tangent map (f∗)m : TmM 7→ Tf(m)N is surjective.

2.3.1 Submanifolds

A subset N of an n-dimensional manifold M is a p-dimensional submanifold of
M [22, p. 69] if for every m ∈ N there exists an open neighbourhood of m, U in
M, an open neighbourhood of 0 ∈ Rn, V , and a diffeomorphism f from U to V

where we have the following.

f(U ∩N) = V ∩ (Rp × {0})

Consider the following subset, N, of R2.

m

Figure 2.1:

We can show that N can’t be a submanifold. Take an arbitrary subset U around
m and suppose we have a diffeomorphism, f , where f(U ∩N) = V ∩ (R× {0}) and
f(m) = 0. We can take a ball centered at 0 in which is contained in V . Call

5
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this ball B. If we delete the point (0, 0) from B ∩ (R × {0}) we obtain a set with
2 connected components. Take the preimage, f−1(B ∩ (R × {0})). We require
B to have a small radius to ensure that the preimage looks similar to the
one in the diagram. If we delete m = f−1(0) from the preimage we obtain a
set with at least 3 connected components. Since f is a diffeomorphism it is
also a homeomorphism and even a homeomorphism with a point removed. So
we have a contradiction since the number of connected components must be
conserved under a homeomorphism.

Definition 2.4. [22, p. 70] A C∞ map f from manifolds M to N is an em-
bedding if f(M) is a submanifold of N and if f is a diffeomorphism from M to
f(M).

2.4.1 Tangent Bundle

With the union of the tangent spaces at all points in the manifold we can
form the tangent bundle, TM [22, p. 113]. Elements of the tangent bundle are
vector fields. Strictly speaking vector fields assign each point in a subset of
the manifold to a vector in the tangent space at the point. Of course we can
let vector field X act on a function g by (Xg)(m) = X(m)g. Any diffeomorphism
f induces a linear vector field map f∗. Where f∗X(g) = X(g ◦ f) ◦ f−1 for functions
g acting on the codomain of f [23, p. 62].

2.4.2 Lie Derivatives

We think of a particle being pushed by a vector field X and thus tracing out a
curve. These curves are called the integral curves of X [22, p. 119]. The flow
is just a map that takes you along the integral curve by a fixed amount. The
flow is a local diffeomorphism and in addition we have that (ϕs)∗X = X where
ϕs is the flow of X [22, p. 123] (See proposition 3.37; this will be useful later).

Definition 2.5. [29, p. 150] Let X and Y be vector fields on M. Let ϕt be the
flow of Y . The Lie derivative of X is the vector field, LXY , obtained by the
following formula

LXY =
d

dt

∣∣∣∣
t=0

(
(ϕt)∗X

)
(2.5.1)

Of course one can show that LXY = XY − Y X = [X,Y ] [22, p. 124].

We can define 1-forms to be linear functionals which take a vector field as
their input. These are elements of the dual of the tangent bundle. For exam-
ple dx. We can further extend the notion of vector fields to tensor fields of

6
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type (r, s). These tensor fields are multilinear functional with r inputs which
take in 1-forms and s inputs which take in vector fields [4, p. 118-120] We can
define the Lie derivative of a tensor field in a similar way as vector fields. A
Lie derivative of (0, 2) tensor, T , has the following formula where X, Y and Z

are vector fields [4, p. 130].

LXT (Y,Z) = X(T (Y,Z))− T (Y,LXZ)− T (LXY,Z) (2.5.2)

2.5.1 Metric Tensor

We now introduce the metric which plays a fundamental geometric role; al-
lowing distances to be defined, acting as an inner product in the Riemannian
case, and allowing curvature to be defined. A Pseudo-Riemannian metric is a
symmetric (0, 2) tensor field defined on all of a manifold, M, whose associated
matrix has no 0 eigenvalues. The eigenvalues of the associated matrix are real
since this matrix is symmetric. Furthermore since the eigenvalues are never
0, this matrix has the same signature everywhere. If the matrix is positive
definite we say that the metric is Riemannian, if the signature is (+, . . . ,+,−)

or (−, . . . ,−,+) we say that the metric is Lorentz [4, p, 110].

When we have a pseudo-Riemannian metric, g, it uniquely determines a
Levi Civita connection D which satisfies the following two properties. Let X,
Y and Z be vector fields. [6, p. 53-55]:

i D is compatible with the metric: X(g(Y,Z)) = g(DXY,Z) + g(Y,DXZ)

ii D is torsion-free: DXY −DYX = [X,Y ]

2.5.2 Curvature Tensors

The Levi-Civita connection lets us define the curvature tensors. We begin with
a mapping R which takes vector fields X and Y to the operator R(X,Y ) which
maps vector fields to vector fields. Let Z be another vector field. We have that
R(X,Y )Z is given by the following [6, p. 89]:

R(X,Y )Z = DY (DXZ))−DX(DY Z) +D[X,Y ]Z

We can use this operator to define Riemann curvature tensor. This tensor is
type (0, 4) with vector field inputs X, Y , Z, W and the output is denoted by
R(X,Y, Z,W ). The formula is given by [6, p.91]:

R(X,Y, Z,W ) = g(R(X,Y )Z,W )

7
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In addition to the Riemann curvature tensor we have the Ricci curvature
tensor defined using an orthonormal basis of vector fields on the manifold M,
{ei}. Let X and Y be vector fields on M [12, p. 135].

Ric(X,Y ) = Σni=1R(X, ei, Y, ei)

The scalar curvature, R, is defined to be R = Σni=1Ric(ei, ei) [12, p. 136].

2.6 Lie Groups and Lie Algebras

Lie groups are an important concept as they will be used later in the cohomo-
geneity 2 setting. We start with their definition.

Definition 2.7. [31, p. 82] A Lie group G is a group which has the structure
of a manifold and such that its group operation and inverse operation are both
smooth. This can be summarized by checking that for g and h in G the function
f : G×G 7→ G, where f(g, h) = gh−1, is smooth in g and h.

An example of a Lie group would be the real line, R, with the group op-
eration being addition. Another example would be S1 thought of as lying
in the complex plane. The group operation in that case would be complex
multiplication. We now move on to the separate concept of a Lie algebra.

Definition 2.8. [31, p. 84] A Lie algebra is a real vector space, V , equipped
with a bilinear map, [·, ·] : V × V 7→ V , which satisfies the following properties for
all X, Y and Z in V .

i [X,X] = 0

ii [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

However Lie groups and Lie algebras are not unrelated. For every real Lie
group has a Lie algebra where the underlying vector space is the left invariant
vector fields of the Lie group.

Definition 2.9. [31, p. 85-86] Let G be a Lie group. Let g be in G and define
the left translation map Lg : G 7→ G by Lg(h) = gh. We say a vector field over G,
say X is left invariant if (Lg)∗X = X. The Lie algebra of G, Lie(G), is defined
to be the set of all left invariant vector fields over G. The bracket will be the
Lie bracket. One can check that this is well defined since if X and Y are left
invariant vector fields then so is [X,Y ].

We know that GL(R, n) is a Lie group and its Lie algebra is isomorphic with
gl(R, n). We can define maps between Lie groups.

8
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Definition 2.10. [31, p.89-90] Let G and H be Lie groups. A map ϕ : G → H

is a (Lie group) homomorphism if ϕ is C∞ and ϕ is a group homomorphism.
We say ϕ is a (Lie group) isomorphism if it is also a diffeomorphism. A
map ψ is a Lie algebra homomorphism between Lie algebras, g and h, if it
preserves the bracket and it is linear. That is to say for X and Y in g that
[ψ(X), ψ(Y )] = [X,Y ]. If you have a Lie group homomorphism between Lie groups
G and H, ϕ, then the derivative map dϕ is a Lie algebra homomorphism [31,
p. 90]. If H = Aut(V ) for some vector space V then a homomorphism ϕ : G→ H is
called a representation of the Lie group G. An example for H would be GL(R, n)

since matrices correspond to linear transformations.

We now introduce the exponential map. Let G be a Lie group with a Lie
algebra g. We take a homomorphism of the Lie algebra of R into g. Where X

is in g and λ is a real scalar.

λ∂r → λX

By Warner, there is a unique 1-parameter group which we will denote by
expX : R→ G such that the tangent map satisfies d(expX)(λ∂r) = λX [31, p. 102].
We define the exponential map exp : g→ G by exp(X) = expX(1). In the case where
G = GL(R, n), the exponential map is given by matrix exponentiation. Let A be
in gl(R, n), then [31, p. 105]:

exp(A) = eA = I +A+
A2

2!
+ . . .

Clearly eA is in GL(R, n), since its eigenvalues are given by eγi where γi are
the eigenvalues for A. The reason being that eγi 6= 0. We have the following
theorem:

Theorem 2.11. [31, p. 104] Let G and H be Lie groups. Let ϕ : G → H be a
homomorphism. Let g and h be the Lie algebras of G and H respectively. Then
the following diagram commutes:

G
ϕ

> H

g

exp

∧

dϕ
> h

exp

∧

We now introduce the adjoint representation. Let G be a Lie group with
Lie algebra g. Then we define a map a : G × G → G by a(σ, τ) = aσ(τ) = στσ−1.
The map, σ → daσ, sends a group element to automorphisms of g and is thus a
representation of G. We call this map Ad : G→ Aut(g). We define ad to be the
derivative map d(Ad). We denote Ad(σ) = Adσ and ad(X) = adX[31, p. 113-114].

9
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We have the following commutative diagrams from p.114 of Warren’s book.

G
Ad

> Aut(g)

g

exp

∧

ad
> End(g)

exp

∧

G
aσ

> G

g

exp

∧

Adσ
> g

exp

∧

We have the following simplification when G = GL(R, n). Let B be in G and C in
g = gl(R, n). We have that AdB(C) = daB(C). It is clear that C is the tangent for

the curve γ = eCt at t = 0. We now use the formula daB(C) = d
dt

∣∣∣∣
t=0

(aB ◦ γ). From

p. 114 of Warren’s book we have the following:

AdB(C) = daB(C) =
d

dt

∣∣∣∣
t=0

(B−1eCtB) =
d

dt

∣∣∣∣
t=0

(eB
−1CBt) = B−1CB

Lastly we have the following useful formula for ad [31, p. 115]. Let G be a Lie
group with Lie algebra g and let X and Y be in g.

adX(Y ) = [X,Y ] (2.11.1)

From this formula we can see that if the Lie group G is Abelian then Ad is
constant. Thus ad is 0 and we can conclude that the bracket in the Lie algebra
of the Lie group is 0.

2.12 Group Actions

In this section we introduce the concept of a group action which we will use
frequently later on.

Definition 2.13 (Topological Group). [5, p. 1] We say G is a topological group
if it is a Hausdorff space with a continuous multiplication G×G 7→ G which makes
G a group and such that the map g 7→ g−1 from G 7→ G is continuous.

Definition 2.14 (Topological Transformation Group). [5, p. 32] A topological
transformation group is a triple (G,M,Θ) where G is a topological group, M is
a Hausdorff topological space and Θ : G ×M 7→ M is a map that satisfies the

10
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following.

Θ(g,Θ(h, x)) = Θ(gh, x) For all x ∈M and g, h ∈ G

Θ(e, x) = x For all x ∈M, where e is the identity element of G

We call Θ the group action and M a G-space. We distinguish between right
and left G-spaces when the action is either written with the group element on
the right or on the left. That is Θ(g, x) = gx or Θ(g, x) = xg. When the type of
G-space is not stated it will be assumed to be a left G-space. There is a notion
of equivalence of topological transformation groups. To do so we need a map
between the two G-spaces which commutes with the group action.

Definition 2.15 (Equivariant Map). [5, p. 35] An equivariant map ϕ : M 7→ N

between G spaces M and N is a map which satisfies the following.

ϕ(gx) = gϕ(x) For all x ∈M and all g ∈ G.

When there is an equivariant map the actions on M and N are said to be
equivalent.

Note that the inverse of an equivariant map is also an equivariant map
when it’s a homeomorphism.

We now move on to the isotropy group, Gx, where x is a point in M. This
is the subgroup of G which fixes x defined by Gx = {g ∈ G | gx = x} [5, p. 35]. We
have that Ggx = gGxg

−1 [5, p. 35]. If Gx = {e} for all x in M then the group action
is said to be free [5, p. 36].

A mapping Φ between topological spaces U and V is said to be proper if Φ−1(K)

is compact in U whenever K is compact in V . A group action is said to be
proper if a mapping from G ×M to M ×M given by (g, x) → (gx, x) is a proper
mapping [9, p. 53]. We can further analyze how G acts on M by looking at
the subset of M that we get when we let the the whole group G act on a point
x. This subset is called an orbit and is defined by: G(x) = {g(x) ∈ M | g ∈ G} [5,
p. 37]. It is clear that the orbits are disjoint otherwise non-disjoint orbits
would combine together to form one orbit. Let M/G be the set of orbits of all
points in M. Let π : M 7→M/G map points to their orbit. We call M/G, endowed
with the quotient topology ( U is open in M/G iff π−1(U) is open in M), the orbit
space [5, p. 37]. We can now imagine taking an orbit and mapping it to one
of its points. We say that a cross section for π : M 7→M/G is a continuous map
σ : M/G 7→M such that π ◦ σ is the identity on M/G. More often we have a local
cross section which is defined for an open subset U ⊂M/G [5, p. 39].

11
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Theorem 2.16. [9, p. 94] Let x be in M. There is an equivariant bijection
between G/Gx and G(x) which we denote by Bx. It is given by Bx(gGx) = gx.

We can go further.

Theorem 2.17. [9, p. 53] Let G be a Lie group, let M be a Ck manifold for
k ≥ 1 and the group action is proper and free. Then the orbit space M/G has a
structure of a Ck manifold with dimension equal to the dimension of M minus
the dimension of G. The topology of G/M is the quotient topology.

We define the type of an orbit G(x), Type(G(x)), to be the equivalence class
of G(x) where equivalence between orbits occurs when there is equivariant bi-
jection mapping between them [9, p. 107]. Since Bx is an equivariant map
between G(x) and G/Gx we can use G/Gx as the representative of the equiva-
lence class Type(G(x)). Now we use the following theorem in order to give an
easier way of proving that two types are equivalent.

Theorem 2.18. [9, p. 107] Let G be a Lie group and H and K be closed
subgroups. Then there exists an equivariant map that maps G/H to G/K iff H is
conjugate to a subgroup of K. This in turn implies that Type(G/Gx) =Type(G/Gy)

iff Gx and Gy are conjugate.

In Kolk he defines various equivalence relations of orbits but they turn out
to all be the same as the definition of orbit types when we restrict ourselves
to our cohomogeneity 2 situation. We simply state them as properties of orbit
types to avoid confusion.

Theorem 2.19. [9, p. 109] Let x and y be in our manifold M. Let G(x) and
G(y) be the corresponding orbits. If Type(G(x)) = Type(G(y)) then there is a G-
equivariant diffeomorphism from a neighbourhood U of x to a neighbourhood V

of y.

We define Mx = {y ∈M |Type(G(x)) =Type(G(y))} [9, p. 109].

Definition 2.20. [9, p. 115-116] For a proper Ck action of a Lie group G on
a manifold M, the orbit G(x) at x in M is said to be a principal orbit if Mx is
open in M.

Theorem 2.21. [9, p. 116] Let x and y be in M. If Type(G(x)) = Type(G(y))

then there exists a g in our Lie group G such that Adg−1(gx) = gy. Where gx and
gy are the Lie algebras at x and y respectively.

Theorem 2.22. [9, p. 117] If an orbit G(x) at x in M is a principal orbit then
the type of the orbits going through points in a neighbourhood of x are the same.
This is equivalent to saying that the dimensions of the orbits near x are the
same.

12
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Let Mreg = {x ∈ M |G(x) is a principal orbit} [9, p. 117]. Now we introduce
the principal orbit theorem.

Theorem 2.23. [9, p. 118] Suppose that a Lie group G is acting properly in
a C1 way on a connected manifold M. Then M\Mreg is the union of all points
whose orbits are of codimension n, where n ≥ 2. The subset Mreg is connected,
open and dense. It follows that points in the orbit space which corresponds to
principal orbits form a connected, open and dense subset of the orbit space.
Furthermore, there is only 1 orbit type amongst the principal orbits

Given a group action Θ with a Lie group G acting on a manifold M, we can
define a tangent map at (g, x) which we will call T(g,x)Θ. Where g is in G and x

is in M. Here T(g,x)Θ : T(g,x)(G×M)→ TgxM. You can partly think of it has taking
a tangent at a point and moving it onto a different point via the group action.
However you also have to factor in the Lie algebra of G.

2.24 Principal Fibre Bundles

In this section we will define principal fibre bundles and connections over them.

Definition 2.25. [20, p. 50] A principal fibre bundle consists of a total space,
P , a base space M and a Lie group G which acts on P on the right. The principal
fibre bundle is denoted by P (M,G). The spaces M and P are smooth manifolds.
The group action of G on P satisfies the following three properties

i G acts freely on P.

ii M is the quotient space P/G. Therefore M consists of equivalence classes
of elements in P . We say that two elements in P , x and x′, are equivalent
if there exists an a in G such that x = x′a. Furthermore, we have that the
canonical projection, π : P →M, which maps x in P to its equivalence class
π(x) is differentiable.

iii We have that P is locally trivial. That is for all m in M there is a
neighbourhood U of m such that π−1(U) is isomorphic to U × G. It is
isomorphic in the sense that there exists a diffeomorphism ψ : π−1(U) →
U ×G such that ψ(x) = (π(x), ϕ(x)). Here ϕ is equivariant in the sense that
for all a in G and all x in P , we have that ϕ(xa) = ϕ(x)a.

We now present an example of a principal fibre bundle; the bundle of linear
frames [20, p. 55-56]. Let M be the base manifold of dimension n. We take
a set of all collections of n linearly independent tangent vectors at a point

13
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m for all points in M. This manifold, L(M), is the bundle of linear frames.
For our group we take GL(n,R) which acts on L(M) in the following way. It
keeps the point constant but changes the frame. Let u = ((X1, . . . , Xn),m) be a
linear frame at m. Then ua = ((Y1, . . . , Yn),m) where Yi = Σnj=1a

j
iXj. We take our

projection π to map a linear frame at a point m to the point itself. Clearly π

is differentiable. This group action is free, consider a such that ua = u. Then
we have that Xi = Σnj=1a

j
iXj. We can convert this into matrix form by setting

the components of the matrix X to be Xij = Xi
j, where Xi

j is the component of
Xj with respect to some local coordinates. Then we have X = aX. Since the
frame consists of linearly independent vectors we know that X is invertible so
we have that a = I. We now check local triviality. Let u = ((X1, . . . , Xn),m) be a
linear frame at m and ψ(u) = (π(u), ϕ(u)) where ψ is defined on all of L(M). We
let ϕ(u) = X ∈GL(n, (R)). We take ua = ((Y1, . . . , Yn),m) where Yi = Σnj=1a

j
iXj and let

the components of the matrix Y be Yik = Y ik = Σnj=1a
j
iXkj. It is clear by matrix

multiplication that ϕ(ua) = Y = Xa = ϕ(u)a.

We now construct a fibre bundle associated with a principal bundle [20, p. 54-
55]. Let P (M,G) be a principal fibre bundle and let F be a manifold on which G

acts on the left. We take the product manifold P × F and define a right group
action on it. Let (x, ξ) ∈ P × F and let a be in G. Then (x, ξ)a = (xa, a−1ξ). We
define E = P ×G F to be the quotient space under this group action. We can
define a projection, πE, of E onto M by πE([x, ξ]) = π(x). Clearly the output of
πE does not depend on the representative. Let m be a point in M and U be
an open neighbourhood in U containing m. There is an isomorphism between
π−1
E (U) and U × F . To see this let ψ([x, ξ]) = (πE([x, ξ]), ϕ([x, ξ])). Let σ be a local

cross section mapping U into P . Let ϕ([x, ξ]) = aξ where x = va where v is a value
of the cross section. We know that ϕ([x, ξ]) is well defined since if we take xb

and b−1ξwe have that xb = v(ab) which implies ϕ([xb, b−1ξ]) = abb−1ξ = aξ = ϕ([x, ξ]).
Furthermore ψ([x, ξ]) is injective since if ψ([x1, ξ1]) = ψ([x2, ξ2]) then π(x1) = π(x2).
So we have that x2 = x1b = vab. Therefore aξ1 = abξ2 which implies ξ2 = b−1ξ1. This
in turn implies that [x1, ξ1] = [x2.ξ2]. Next we will check that ψ[x, ξ] is surjective.
Let ψ[x, ξ] = (m, ζ). There clearly exists x such that π(x) = m. Furthermore there
exists ξ such that aξ = ζ. Namely ξ = a−1ζ. Therefore we can conclude that ψ

is an isomorphism. The fibre bundle associated with a principal bundle with
standard fibre F is denoted E(M,F,G, P ).

An example of such a fibre bundle is the tangent bundle of a manifold M,
TM [20, p. 56]. Here the principal bundle is L(M), the group is GL(n,R)) and the
standard fibre is Rn. Here L(M) provides a basis, Rn provides the components
and the group action takes care of equivalence under a change of basis. This
example provides a succinct way of thinking of the tangent bundle.

14
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We move on to connections on a principal fibre bundle. Let P (M,G) be a
principal fibre bundle. Let x be in P . We define Gx to be the tangent space
through the fibre at x. Thus there is a natural way to define a vertical space.
However, we must introduce the notion of a connection to assign a horizontal
space at all x.

Definition 2.26. [20, p. 63] We define a connection Γ on a principal bundle
P (M,G) to be an assignment to every x in P an horizontal space Qx which has
the following properties.

i We can uniquely decompose a tangent vector into horizontal part and a
vertical part. That is TxP = Gx ⊕Qx

ii We have that Qx respects right translation. Here Ra(x) = xa. We have
that for all a and x that Qxa = (Ra)∗Qx.

iii Lastly, Qx depend differentiably on x. That is if X is a differentiable
vector field then so are its horizontal and vertical parts.

For all A in g, the Lie algebra of G, we have that at = etA is in G and we

define the fundamental vector field of A to be given by A∗x = d
dt

(xat)

∣∣∣∣
t=0

[20, p. 42].

Clearly A∗ is vertical. For each X in TxP , we define the connection 1-form ω

by ω(X) = A. Here A is the unique element in g whose fundamental vector field
is the vertical part of X. Clearly ω(X) = 0 if and only if X is horizontal. For if
A = 0 then at is constant so A∗x = 0. We have that the connection 1-form satisfies
the following properties [20, p. 64]

i ω(A∗) = A , for all A in g.

ii ω((Ra)∗X) = ad(a−1)ω(X) for all X in TxP and all a in G.

As a consequence of i and ii, for every 1-form ω that satisfies i and ii there
is a unique connection with its connection 1-form being ω. This is done by
defining the vertical and horizontal parts of a vector X to be ω(X) and X−ω(X)

respectively.

2.27 Slices and Tubes

We now return to group actions. Suppose we have a left group action acting
on M via Lie group G. Denote Ax : G → M with Ax(g) = gx. Let g be the Lie
algebra of G. Let X be in g and the map αx : g→ TxM be given by αx(X) = dAx(X).
With this map α in mind we can define a slice at a point x0.

Definition 2.28. [9, p. 98] Let M be a manifold with a Lie group G acting on
it in a Ck manner. A Ck slice S, at a point x0 in M, is a Ck submanifold of M
that goes through x0 such that the following holds.
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i The tangent at x0 decomposes into a part tangent to G and to S; Tx0M =

αx0(g)⊕ Tx0S. And also for x in S, we have TxM = αx(g) + TxS, meaning the
part tangent to G may have grown in dimension.

ii We have that S is Gx0 invariant. That is Ax(Gx0) ⊂ S for all x ∈ S.

iii If x ∈ S , g ∈ G and gx ∈ S. Then g ∈ Gx0.

Let S be a slice through x0. Let x → x be the identity map from S to M.
Then it induces a homeomorphism Gx0 ·x→ G ·x mapping the orbit space S/Gx0

to the orbit space M/G. To see this we know that the map is well defined since
if y = gx where g is in Gx0 , then g is in G thus G · x = G · y. Also, we are using (ii)
implicitly to guarantee that S is Gx0 invariant. For injectivity, suppose that
G · y = G · x. Then there exists g in G such that y = gx. Now since y and x are
in S we have that by (iii) of the above definition that g is in Gx0 . Therefore
Gx0 · x = Gx0 · y. Surjectivity follows by restricting the codomain to the range.
The homeomorphic part follows from the definition of the quotient topology
which is the given topology on each of the orbit spaces and the fact that the
inclusion map is a homeomorphism.

To showcase the local nature of a slice through a point we consider the
real projective plane, RP2. The manifold RP2 is the quotient space of R3\{0}
under the following equivalence relation. Let p and q be in R3\{0}, then p ∼
q iff there exists a non-zero real number λ such that p = λq. We introduce
homogeneous coordinates for RP2 which are the equivalences classes, [x, y, z].
We call the quotient map, π. We can define 3 coordinate charts, ϕx, ϕy and ϕz

with respective domains Bx, By and Bz.

ϕx([x, y, z]) =
( y
x
,
z

x

)
Bx = {[x, y, z] |x 6= 0}

ϕy([x, y, z]) =

(
x

y
,
z

y

)
By = {[x, y, z] | y 6= 0}

ϕz([x, y, z]) =
(x
z
,
y

z

)
Bz = {[x, y, z] | z 6= 0}

To see that ϕx is injective we note that if y1
x1

=
y2
x2

and z1
x1

=
z2
x2

then [x1, y1, z1] =

[x2, y2, z2]. For surjectivity we simply take outputs of points in RP2 of the form
[1, y, z]. To check that is a homeomorphism, suppose that U is open in RP2.
Then by definition of the quotient topology we have that the π−1(U) is open.
We define that map Φx : R3\{0} → R2 by Φx(x, y, z) =

(
y
x
, z
x

)
. Clearly Φx is con-

tinuous on its domain. Therefore Φx(π−1(U)) = ϕx(U) is open. Therefore ϕx is
an open map. Now suppose V is open in R2. We have that ϕ−1

x (V ) is open
iff π−1(ϕ−1

x (V )) = W is open in R3\{0}. We have that W = {(x, y, z) ∈ R3\{0} | ∃λ 6=
0 & ∃(u, v) ∈ V s.t (x, y, z) = (λ, λu, λv)}. Clearly W is open in R3\{0}. The same rea-
soning applies to ϕy and ϕz. To check compatibility let (u, v) ∈ ϕx(Bx∩By). Then
ϕx ◦ ϕ−1

y (u, v) = ϕx([u, 1, v]) =
(

1
u
, v
u

)
. Clearly this transition function is C∞. It’s the

same story for the other compatibility checks.
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Now we are interested in the derivative of the quotient map, dπ : T(x,y,z)R
3\{0} →

T[x,y,z]RP2. This is so that later on we can map vectors back and forth from
the unit sphere to RP2. Suppose x 6= 0 and the coordinates for RP2 at [x, y, z] are
ϕx = (yx, zx). We can write that dπ(∂x) = ax∂yx+bx∂zx . We have that ax = ∂x(yx◦π) =

∂x
(
y
x

)
= − y

x2 . And bx = ∂x(zx ◦π) = ∂x( z
x

) = − z

x2 . So dπ(∂x) = − y

x2 ∂yx − z

x2 ∂zx . Further-
more we can state that dπ(∂y) = ay∂yx +by∂zx . So ay = ∂y

(
y
x

)
= 1

x
and by = ∂y

(
z
x

)
= 0.

Therefore dπ(∂y) = 1
x
∂yx . Finally we can state that dπ(∂z) = az∂yx + bz∂zx . Then

az = ∂z
(
y
x

)
= 0 and bz = ∂z

(
z
x

)
= 1

x
. Therefore dπ(∂z) = 1

x
∂zx .

We now introduce a group action on RP2. We spin about the x-axis. That is
that S1 is acting on RP2 by θ[x, y, z] = [x, y cos(θ)−z sin(θ), y sin(θ)+z cos(θ)]. This group
action is clearly well defined since rotation and scaling commute. Assume x 6= 0.
Let’s try to find the part of the tangent space that is tangent to the orbit. If
(y, z) = 0 then the orbit is 0-dimensional so the tangent space is just the 0
vector. Now if (y, z) 6= 0, then the orbit is 1-dimensional. Let p ∈ Bx. So then Xθ

tangent to the orbit is given by:

Xθ = ∂θ(yx ◦ θp)
∣∣∣∣
θ=0

∂yx + ∂θ(zx ◦ θp)
∣∣∣∣
θ=0

∂zx

= ∂θ

(
y cos(θ)− z sin(θ)

x

)∣∣∣∣
θ=0

∂yx + ∂θ

(
y sin(θ) + z cos(θ)

x

)∣∣∣∣
θ=0

∂zx

= − z
x
∂yx +

y

x
∂zx

We need to choose a metric on RP2. To do so we use the round metric on
S2. We take πS2 to be the quotient map restricted to S2. Let q ∈ S2. We need
the inverse of (dπS2)q thus we will show that the derivative map is (dπS2)q is
injective. To see this let X = a∂x + b∂y + c∂z be tangent to S2. Then X · r = 0,
where r = x∂x + y∂y + z∂z. That is a = − by+cz

x
. Let X and Y be tangent to S2

suppose the following:

(dπS2)q(X) = (dπS2)q(Y )

(dπS2)q(−
by + cz

x
∂x + b∂y + c∂z) = (dπS2)q(−

b′y + c′z

x
∂x + b′∂y + c′∂z)

− by + cz

x
(− y

x2
∂yx −

z

x2
∂zx) +

b

x
∂yx +

c

x
∂zx = − b

′y + c′z

x
(− y

x2
∂yx −

z

x2
∂zx) +

b′

x
∂yx +

c′

x
∂zx
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Comparing coefficients of ∂yx and ∂zx we obtain the following:

b(y2 + x2) + czy

x2
=
b′(y2 + x2) + c′zy

x2

c(z2 + x2) + bzy

x2
=
c′(y2 + x2) + b′zy

x2

Or equivalently:

(b− b′)(y2 + x2) + (c− c′)zy = 0

(c− c′)(z2 + x2) + (b− b′)zy = 0

We calculate the determinant for this linear system.∣∣∣∣∣y2 + x2 zy

zy x2 + z2

∣∣∣∣∣ = (y2 + x2)(z2 + x2)− z2y2 = (y2 + z2)x2 + x4 > 0

Therefore (dπS2)q has an inverse. Let q be in S2, g be the round metric on S2

and X, Y be in T[q]RP2. We will define a metric h on RP2.

h(X,Y )

∣∣∣∣
[q]

= g((dπ|q)−1X, (dπ|q)−1Y )

∣∣∣∣
q

To check that this is well defined the right hand side must be the same if we
choose −q. Let ρ : S2 → S2 be defined by ρ(q) = −q. Clearly, π = π ◦ ρ. So we have
that:

g((dπ|q)−1X, (dπ|q)−1Y )

∣∣∣∣
q

= g((d(π ◦ ρ)|q)−1X, (d(π ◦ ρ)|q)−1Y )

∣∣∣∣
q

= g((dρ|q)−1 ◦ (dπ|−q)−1X, (dρ|q)−1 ◦ (dπ|−q)−1Y )

∣∣∣∣
q

= g((dπ|−q)−1X, (dπ|−q)−1Y )

∣∣∣∣
−q

The last step follows since ρ is an isometry of the round metric. This enables
us to find a tangent space normal to the orbit in RP2. Let Yθ be in TqS

2 be given
by Yθ = −z∂y + y∂z. Clearly dπS2(Yθ) = Xθ and Yθ · r = 0. Clearly Nθ = y∂y + z∂z + a∂x

is orthogonal to Yθ using the Euclidean metric on R3. For Nθ to be in TqS
2 we

must have that a = − y
2+z2

x
. Let’s project it down to RP2.

(dπS2)q(Nθ) = (dπS2)q(y∂y + z∂z −
y2 + z2

x
∂x)

=
y

x
∂yx +

z

x
∂zx −

y2 + z2

x
(− y

x2
∂yx −

z

x2
∂zx)

=
x2 + y2 + z2

x3
(y∂yx + z∂zx)
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To construct a slice at p in Bx we use the normal geodesics. These geodesic have
the normal vector as their initial velocity. Because of our choice of metric on
RP2 there is a 1:1 correspondence between the geodesics on S2 and the geodesics
on RP2. The geodesics on S2 are the great circles. If we take a point whose
orbit is 1 dimensional, the slice would correspond to a great circle which is
orthogonal to the orbit. Note that the isotropy group at p is trivial. This
geodesic can be extended arbitrarily close to x = 0 but can’t be extended to
x = 0 due to the coordinate restrictions. Therefore not every orbit intersects
the slice. For instance the orbit whose points have 0 as their x coordinate. If
we take a point whose orbit is 0-dimensional than the slice corresponds to a
subset of RP2, call it S, where S = {[x, y, z] |x 6= 0}. We have that S is 2 dimensional
but again not every orbit intersects S. Using points By and Bz one can analyze
the other slices but I believe the local nature of a slice through a point is fully
illustrated.

Definition 2.29. [9, p. 98] A group action is said to be proper at x0 in M, if
for every sequence xj in M and gj in G such that lim

j→∞
xj = x0 and lim

j→∞
gjxj = x0,

there exists a subsequence j = j(k) such that gj(k) converges in G as k goes to ∞.

Here are some examples. Let M = R and G = R act by addition. Let the
sequence xj ∈M converge to x0 and let the sequence gj ∈ G satisfy lim

j→∞
(gj ·xj) = x0.

Clearly lim
j→∞

(gj · xj) = lim
j→∞

(gj + xj) = x0 which implies lim
j→∞

(gj) = 0. For a counter

example take G = R − {0} be a group which acts by multiplication on R. Let
xj = 1

j2
and gj = j where j ≥ 1. Clearly lim

j→∞
xj = 0 and lim

j→∞
(gj · xj) = 0. But there is

no convergent subsequence of gj. Therefore the group action is not proper at
x = 0. We have the following theorem.

Theorem 2.30. [9, p. 99] Existence of a Slice: Consider a Ck group action
of the Lie group G on a manifold M and suppose that the action is proper at
x0. Then there exists a Ck slice, S, at x0.

We now revisit associated fibre bundles. Let M be a manifold on which a
Lie group H acts on the right and N be a manifold in which H acts on the
left. Take M ×H N and we take another Lie group G acting on M from the left.
This action is required to commute with the H action. We can then define
a G-action on M ×H N. This action is defined by g[x, y] = [gx, y] where g is in
G, x in M and y in N [9, p. 101]. This is action is well-defined due to the
aforementioned commutativity. We now introduce the tube theorem.

Theorem 2.31. [9, p. 102-103] Tube Theorem: Let Θ be a Ck action of a Lie
group G on a manifold M which is proper at x0. Then there exists a G invariant
neighbourhood U of x0 in M such that the G-action on U is equivalent to the
G-action on G ×Gx0

B. Where B is an open set containing 0 in Tx0M/αx0(g) on
which Gx0 acts linearly via the tangent action modulo αx0(g). Here we refer to
G×Gx0

B as the tube.
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Proof. We provide a sketch of the proof. Let S be a slice at x0. Then by
definition the tangent space at x, where x in S, is αx(g) + TxS. In the special
case which is our focus, the metric is G invariant. This means that the tangent
space is of the above form on all points of the orbit G · x. Therefore if we
restrict our group action on M to domain G × S we will find that the tangent
map T(g,x)Θ is surjective. Therefore Θ is a submersion which means it must
be an open map. Therefore Θ(G × S) is an open G- invariant neighbourhood
containing x0. Next suppose x and y are in S and g and h are in G. Then
if gx = hy we have that y = h−1gx. So by the third property of the slice we
have that h−1g = k ∈ Gx0 . Then we have that (h, y) = (gk−1, kx) which means
that [h, y] = [g, x] ∈ G ×Gx0

S. Next suppose there exist a k in Gx0 such that
(h, y) = (gk−1, kx). This is well posed by the Gx0 invariant property of the slice.
It is clear that hy = hk−1kx = gx. Therefore we have a bijective equivariant map
Φ : G ×Gx0

S → U defined by Φ([g, x]) = gx. We have therefore established the
equivalence of the G-actions while leaving out some minor details. Note that
slice corresponds to an open set in the tangent space modulo αx0 since the slice
is constructed with the normal exponential map which gives a correspondence
between normal vectors and points along the corresponding geodesic. You can
see this in the RP2 example.

2.32 Irreducible Representations

A real representation of a group G onto a finite dimensional real vector space
V is a homomorphism ρ : G→ GL(V ) [11, p. .3] For instance if G = S1 and V = R2

then ρ would map an element of S1 to a rotation map which rotates a vector
in R2. This rotation map would be given by a matrix and it is useful to think
of elements of GL(V ) as 2x2 matrices. Let g be in G and v be in V . Then ρ(g)v

is denoted by gv. We often refer to representations by their vector space.

A map between representations V and W of G , ϕ, is a vector space map which
commutes with the group [11, p. 103].

A subrepresentation of V is a subspace W of V which is invariant under G.
This means that for all w in W and g in G, that gw is in W [11, p. 104]. A
representation is irreducible if its only subrepresentations are 0 and the entire
vector space [11, p. 104]. We can actually decompose any representation into
irreducible subrepresentations.

Proposition 2.33. [11, p. 6] Any representation of a compact Lie group is a
direct sum of irreducible representations. The proof is in Fulton and Harris.

This brings us to Schur’s Lemma which we will heavily use later.
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Lemma 2.34. [11, p. 7] If V and W are irreducible representations of G and
we have a G-equivariant map ϕ : V →W , then we have that:

i either ϕ is an isomorphism or ϕ = 0.

ii If V = W as G-representations, then ϕ = λI where λ is a complex number
and I is the identity map.

Let V be a finite dimensional vector space. We now present the correspon-
dence between representations on the m-degree symmetric tensors, Sm(V ), and
representations on m-degree symmetric homogeneous polynomials Pm(V ). To
begin we consider V = R2 and G = S1 acting on V by rotation. Let e1 and e2

be an orthonormal basis of V and a and b be the components. We have the
following for g in S1.

g

(
a

b

)
=

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)(
a

b

)

In particular e1 =

(
1

0

)
so g(e1) = cos(θ)e1 + sin(θ)e2. Also, we have that e2 =

(
0

1

)
,

so g(e2) = − sin(θ)e1 + cos(θ)e2. We now define a representation on the space of
functions.

Definition 2.35. Let V and W be G-spaces and f : V →W . Let p be in V . Then
the representation on functions is defined by the following [11, p. 4]

(g(f))(p) = f(g−1p) (2.35.1)

We now return to the above example and consider linear functionals x and
y being the duals of e1 and e2 respectively. We can express g(x) and g(y) in the
following way:

g(x) = Ax+By g(y) = Cx+Dy

For instance we can determine A by using as input, e1 into the first equation.

g(x)(e1) = x(g−1e1) = x(cos(θ)e1 + sin(−θ)e2) = cos(θ)

Repeating this for the other coefficient yields the following equations:

g(x) = cos(θ)x+ sin(θ)y g(y) = − sin(θ)x+ cos(θ)y

This formula is the same as the one for the orthonormal basis. This will be
exploited.
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Definition 2.36. Let V be a G-space and consider a tensor v = v1 ⊗ . . . ⊗ vk in
Sm(V ). Then G acts on v by [11, p. 4]

g(v) = g(v1)⊗ . . .⊗ g(vk)

This can be extended to arbitrary tensors in Sm(V ) through linearity.

Returning to our R2 example we can map symmetric tensors in Sm(V ) com-
prising of tensor products of e1 and e2 to homogeneous symmetric polynomials
involving x and y. This turns out to be an equivariant map. Here’s an example
using S2(V ):

a(e1 ⊗ e1) + b(e1 ⊗ e2 + e2 ⊗ e1) + c(e2 ⊗ e2)↔ ax2 + 2bxy + cy2

Now we wish to use this to find irreducible representations of S2(V ). Let T =

a(e1 ⊗ e1) + b(e1 ⊗ e2 + e2 ⊗ e1) + c(e2 ⊗ e2) and U = ax2 + 2bxy+ cy2. We can act on each
part of U individually to obtain the following:

g(x2) = (cos(θ)x+ sin(θ)y)2 = cos2(θ)x2 + sin2(θ)y2 + 2 cos(θ) sin(θ)xy

=
cos2(θ)− sin2(θ)

2
x2 +

cos2(θ) + sin2(θ)

2
x2 − cos2(θ)− sin2(θ)

2
y2 +

cos2(θ) + sin2(θ)

2
y2

. . .+ 2 cos(θ) sin(θ)xy

= cos(2θ)
x2 − y2

2
+
x2 + y2

2
+ sin(2θ)xy

g(y2) = (− sin(θ)x+ cos(θ)y)2 = sin2(θ)x2 + cos2(θ)y2 − 2 cos(θ) sin(θ)xy

= − cos(2θ)
x2 − y2

2
+
x2 + y2

2
− sin(2θ)xy

g(2xy) = 2(cos(θ)x+ sin(θ)y)(− sin(θ)x+ cos(θ)y) = 2(−(x2 − y2) cos(θ) sin(θ) + (cos2(θ)− sin2(θ))xy)

= −(x2 − y2) sin(2θ) + 2 cos(2θ)xy

We can now express g(U).

g(U) =

(
a− c

2
cos(2θ)− 2b sin(2θ)

)
x2 − y2

2
+ 2

(
a− c

2
sin(2θ) + 2b cos(2θ)

)
xy + (a+ c)

x2 + y2

2

(2.36.1)
Thus we have that g acts on Span(x2 − y2, 2xy) by rotation through twice the
angle θ and g acts on Span(x2+y2) by the identity map. Therefore the irreducible
representations are ρ2 and 1. Here ρ2(g) = ρ(gg) where g is in S1. We note that
an arbitrary element of Span(x2 − y2, 2xy) is of the form a−c

2
x2−y2

2
+ 2bxy.
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Chapter 3

Harmonic Map Equations

3.1 Reduction of the form of the Metric

For ease of reference we state the following equations which are the conclusions
of this chapter. First of all under certain assumptions we can state the metric
g on our manifold M in the following way [18, p. 3].

g = e2α(dr2 + dz2)− f−1r2dt2 + fij(dφ
i + vidt)(dφj + vjdt) (3.1.1)

The first equation below describes the vertical part of the Ricci flat condi-
tion. This is the harmonic map equation in matrix form. The second equation
is for the partial derivatives of the exponent α of the conformal factor of the
metric on the base. This equation follows from the horizontal part of the Ricci
flat condition. The third equation relates the twist potentials to the compo-
nents of the metric on the fibre. The next two equations are the harmonic
map equations in component form. The last two equations are for the partial
derivatives of α stated in component form. In the rest of the chapter will we
make clear all the terms in these equations.

0 =
∂

∂r

(
rH−1Hr

)
+

∂

∂z

(
rH−1Hz

)
(3.1.2)

αr =
r

8

(
Tr(H−1HrH

−1Hr)− Tr(H−1HzH
−1Hz)−

4

r2

)
αz =

r

4
Tr(H−1HrH

−1Hz)

(3.1.3)

ωz = fr−1vTr F ωr = −fr−1vTz F (3.1.4)

0 = ∆gfij − fkl∇nfik∇nflj + f−1∇nωi∇nωj (3.1.5)
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0 = ∆gωi − f jk∇nfjk∇nωi − f jk∇nfki∇nωj (3.1.6)

αr =
r

8

(
log f)2

r − log(f)2
z − 4

(log f)r
r

+ Tr(F−1FrF
−1Fr)− Tr(F−1FzF

−1Fz) . . .

. . .+
2

f
ωrF

−1ωTr −
2

f
ωzF

−1ωTz

)
(3.1.7)

αz =
r

4

(
(log f)r(log f)z − 2

(log f)z
r

+
2

r
ωzF

−1ωTr + Tr(F−1FrF
−1Fz)

)
(3.1.8)

We start off with a stationary bi-axisymmetric cohomogeneity 2 connected
manifold M with metric g. The group in question, G, is T2 × R. The co-
homogeneity 2 assumption means that the orbit space is 2-dimensional. Let
Mreg = {p ∈M |G(p) is a principal orbit }, by the principal orbit theorem we have
that it is dense, open and connected in M. We know by the principal orbit
theorem that π(Mreg) is open connected and dense in the orbit space. We will
assume the group action is proper it is free over Mreg. This implies that π(Mreg)

is a manifold. We also have that Mreg(π(Mreg), G) is a principal G-bundle.

Now we will assume the existence of a section, Σ which is a connected closed
regularly embedded smooth submanifold which intersects every orbit orthog-
onally [25, p. 771]. More specifically we are stating that G(Σ) = M, that is the
image of the section under the group covers M. And that for all p in Σ, we have
that the tangent space to the group, TpG, is orthogonal to the tangent space of
Σ, TpΣ [25, p. 777]. Note that the existence of the section Σ implies that if we
let a group element τ act on Σ then the result τΣ is still a section [25, p. 777].
Thus we have many sections. An example of such a section entails S1 acting
on S2 by rotation about the z-axis.
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z

Figure 3.1:

A typical orbit is shown in blue. The cross section here would be the red
meridian since it intersects each orbit orthogonally. Back to our manifold M,
we have the stronger result that for all p in Mreg there is a unique section,
Σp, which passes through p whose tangent space, TpΣp, is orthogonal to TpG

[25, p. 778]. Let E be a vector field, we can decompose E into a part tangent
to the fibre, v(E), and a part tangent to the section, h(E), which dynamically
depends on the point. Let E1 and E2 be vector fields, we can write the metric
as g(E1, E2) = g(v(E1), v(E2)) + g(h(E1), h(E2)).

Now enter the stationary and bi-axisymmetric assumptions, we have three
1-parameter groups which act by isometries. Associated to each of these 1-
parameter groups is a Killing vector field. We will assume that these Killing
fields commute in which case there is a global coordinate system where each
Killing vector field is a coordinate vector field [23, p. 337]. The one associated
to the stationary assumption is timelike and is denoted by ∂t . The two Killing
vector fields associated to the bi-axisymmetric assumptions are ∂ϕ1 and ∂ϕ2 .
These Killing vector fields generate the group action by G. The fact that the
Killing vectors commutes agrees with G being Abelian. Since Mreg is a principal
G bundle, it has local coordinates (t, ϕ1, ϕ2, ξ1, ξ2) where ξ1 and ξ2 are coordinates
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on the orbit space. Because of the the isometries we know that our metric g

is solely a function of ξ1 and ξ2. To see this let E1 and E2 be coordinate vector
fields.

∂t(g(E1, E2) = g(D∂tE1, E2) + g(D∂tE2, E1) = g(DE1∂t, E2) + g(DE2∂t, E1)

= −g(DE2∂t, E1) + g(DE2∂t, E1) = 0

The same holds true for ∂ϕ1 and ∂ϕ2 . Using our previously mentioned decom-
position of g we can rewrite it as g = gf + gb, where gf corresponds to the fibre
and gb corresponds to the orbit space. Let ∂ϕ0 = ∂t, then we define r2 = −detH

where Hij = gf (∂ϕi−1 , ∂ϕj−1). We want to show that r > 0 on Mreg and r = 0 on
M −Mreg. To do this we will assume that points on M −Mreg correspond to
points whose orbit is on a (1, 0) rod a (0, 1) rod or a corner. We will assume that
the lower right 2x2 block of H which we will call F is positive definite on Mreg.
In order to use the theorem in Chrusciel’s paper [7, p. 6] for our proof, we
need the domain of outer communication. In order to have a domain of outer
communication we need the existence of an Kaluza-Klein asymptotic end.

Definition 3.2. [7, p. 3] We say that Lext is an Kaluza Klein asymptotic end
when it is diffeomorphic to (Rn−B(R))×N. Where B(R) is a closed ball of radius
R [7, p. 3] and N is a compact subset. We take the Euclidean metric on Rn, δ,
and fix a Riemannian metric, ε, on N. We say that a Riemannian metric gL

on Lext is Kaluza Klein asymptotically flat if there exists an β > 0 and an j ≥ 1

such that the difference between gL and δ+ ε on Rn, δ, satisfies the following for
0 ≤ k ≤ j

∂xi1
. . . ∂xik

((gL)pq − (δpq + εpq)) = O(s−α−j)

Here xi are coordinates on Rn and s =
√
x2

1 + . . .+ x2
n. We are assuming gL and ε

are solely functions of xi.

Now we construct Lext in our case which is 4-dimensional. We need the set,
P = {p ∈Mreg | t(p) = 0}, and the set Q = {p ∈ (M −Mreg) | t(p) = 0}. Here we are using
the fact that the coordinate t is global. The metric on P , thinking of P as a
hypersurface, is gP +gb. Where gP is obtained by taking gf and setting t = 0. The
matrix corresponding to gP is F which is positive definite on Mreg. Therefore
gP is Riemannian on P . On can show that gb is Riemannian [17, p. 654]. Thus
gb + gP is Riemannian. For p in P we can construct a sequence of points, {pi}
which starts at p and then converges to q in Q via a geodesic. We define the
distance between p and q, d(p, q), to be the supremum of the geodesic distance
between p and pi over all i. We define Lext = {p ∈ P | d(p, q) > R for all q ∈ Q},
here R is some non-zero constant. We assume that Lext is diffeomorphic to
(R2 − B(R′)) × T 2. We fix the background metric on T 2 to be gP . Therefore for
the metric gP + gb to be Kaluza Klein asymptotically flat we simply need to
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assume that gb approaches the Euclidean metric in the sense of the definition
above. In chapter 6 we check that gb is asymptotically flat for the periodic
soliton solution. We assume ∂t has complete orbits and it approaches the
time-like unit normal to Lext as s goes to ∞. We transport the points in Lext

to everywhere where the flow of ∂t takes it and we take the union of all these
points to be Mext. It is clear that Mext = {(x1, y1, x2, y2, t) ∈M | (x1, y1, x2, y2, 0) ∈ Lext}.
We define the domain of outer communication, 〈〈Mext〉〉, as follows:

〈〈Mext〉〉 = I+(Mext) ∩ I−(Mext)

Here I+(p) is the chronological future of a point p and I−(p) is the chronological
past of a point p. When q is in I+(p), it means that there is a future directed
timelike curve from p to q, also written as p << q. Conversely, q in I−(p) means
there is a future directed timelike curve from q to p, q << p. When we take
I±(S) for some set S we are taking ∪p∈SI±(p). Now we show that Mreg ⊂ 〈〈Mext〉〉.
We can make use of the fact that Mext only contains complete orbits. We make
the following assumption: for all p1, p2 in Mreg, there exists q in G(p2) such that
p1 << q. We also assume that for all p1, p2 in Mreg, there exists q in G(p2) such
q << p1. In other words, we are assuming that each orbit has a point further
in the future (or the past) than a fixed point, and also that the points are
chronologically connected. Thus it is easy to see with this assumption that
Mreg ⊂ 〈〈Mext〉〉.

Earlier we assumed that we only have (1, 0) rods and (0, 1) rods on the set
M −Mreg. In the definition of a (1, 0) rod we have that g(∂ϕ1 , ∂ϕ1) approaches 0
as you approach the points on the corresponding singular orbit. In the def-
inition of a (0, 1) rod we have that g(∂ϕ2 , ∂ϕ2) approaches 0 as you approach
the points on the corresponding singular orbit. We will further assume that
g(∂ϕ1 , ∂ϕ2) approaches 0 as you approach points in both types of singular orbits.
This will later be shown to be true with the smoothness conditions. Therefore
f = f11f22 − f2

12 approaches 0 as you approach M −Mreg.

We define the null energy condition. Let Y be a null vector, then the null
energy condition states that Ric(Y, Y ) ≥ 0. This is trivially satisfied in our Ricci
flat case. Next we define the orthogonal integrability condition to be all for
i = 0, 1, 2 that the following holds:

d(∂[ϕi) ∧ ∂
[
ϕ0
∧ ∂[ϕ1

∧ ∂[ϕ2
= 0

Here ∂[ϕi =
∑2
j=0 gijdϕj. We lack dξ1 and dξ2 terms because we have a product
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metric. We can show that the orthogonal integrability condition is satisfied.

d(∂[ϕi) =

2∑
j=0

2∑
k=1

∂ξk (gij)dk ∧ dϕj

∂[ϕ0
∧ ∂[ϕ1

∧ ∂[ϕ2
= −r2dt ∧ dϕ1 ∧ dϕ2

d(∂[ϕi) ∧ ∂
[
ϕ0
∧ ∂[ϕ1

∧ ∂[ϕ2
= 0

This looks similar to a definition of the twist 1-forms but the ∂[ϕ0
term in the

wedge product makes it easier to evaluate. We are now in position to use use
a theorem by Chrusciel.

Theorem 3.3. Suppose we have a spacetime (M, g) satisfying the null energy
condition and containing a Kaluza-Klein asymptotically flat end Lext. Suppose
further that 〈〈Mext〉〉 is globally hyperbolic [26, p. 48]. Assume there is a group
action by isometries G which looks like our group. Furthermore assume that
(M, g) is I+ regular [7, p. 5] and that the orthogonal integrability condition
is satisfied. Let A be the subset of M such that f = 0. Then we have that on
〈〈Mext〉〉 −A that r > 0 and on ∂〈〈Mext〉〉 ∪A that r = 0.

Since f approaches 0 as you approach M −Mreg we have that r approaches
0 as you approach ∂〈〈Mext〉〉 ∪ (M −Mreg). Furthermore since f > 0 on Mreg we
have that r > 0 on Mreg. This is of course under the assumptions of the above
theorem.

3.4 Harmonicity of r

It clear that π is a pseudo-Riemannian submersion so we can use the equations
developed by Besse [3, p. 236]. We will define the horizontal and vertical
distributions. Our vertical distribution is made up of ∂

∂ϕi
, where 0 ≤ i ≤ 2.

The horizontal distribution is made up of ∂
∂ξ1

and ∂
∂ξ2

. We will show that
the vanishing of the vertical components of the Ricci curvature causes r to be
harmonic with respect to gb. For a vector field E we will denote its horizontal
part by hE and its vertical part by vE. We will define the tensors A and T [3,
p. 239]. Here E1 and E2 are arbitrary vector fields.

AE1E2 = hDhE1(vE2) + vDhE1(hE2) TE1E2 = hDvE1(vE2) + vDvE1(hE2) (3.4.1)

Theorem 3.5. Let Y and Z horizontal vector fields expressed as Y i∂ξi and Zj∂ξj

respectively. Then because A is linear we can write AY Z = Y iZjA∂ξi
∂ξj . Since

A∂ξi
∂ξj = v[∂ξi , ∂ξj ] = 0 [3, p. 240], we have that AY Z = 0.
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3.5.1 Purely Vertical Components of the Ricci Curva-
ture

We state the Ricci curvature where U and V are vertical vector fields [3, p. 244].

r(U, V ) = rf (U, V )− (N,TUV ) + (AU,AV ) + (δ̃T )(U, V ) (3.5.1)

Where rf is the Ricci curvature using the connection of the vertical distribu-

tion. We have that N is the mean curvature vector, N =
∑
ij

(
T ∂
∂φi

∂

∂φj
Hij

)
[3,

p. 243], where Hij are the components of the inverse of H. Here, (AU,AV ) =∑
ij(A∂ξi

U,A∂ξj
V )gijb [3, p. 243]. Where gijb are components of the inverse of the

metric on the base. And finally (δ̃T )(U, V ) =
∑
kl g

kl
b ((D∂ξk

T )UV, ∂ξl) [3, p. 243].
To check (A∂ϕk , A∂ϕl) = 0 we must check that A∂ξi

∂ϕk = 0. This amounts to
checking that (D∂ξi

∂ϕk , ∂ξj ) = 0.

(D∂ξi
∂ϕk , ∂ξj ) = ∂ξi(∂ϕk , ∂ξj )− (∂ϕk , D∂ξi

∂ξj ) = −(∂ϕk , D∂ξj
∂ξi)

(D∂ξi
∂ϕk , ∂ξj ) = −(D∂ξj

∂ϕk , ∂ξi) = (∂ϕk , D∂ξj
∂ξi)

(∂ϕk , D∂ξi
∂ξj ) = 0 =⇒ (D∂ξi

∂ϕk , ∂ξj ) = 0

Now for rf ( ∂

∂ϕi
, ∂

∂ϕj
) we are interested in the connection of the vertical dis-

tribution. This amounts to calculating the vertical components of covariant
derivatives which involves only vertical coordinate vector fields. We have the
following relation since ∂

∂ϕj
are Killing vectors [3, p. 183]:

2

(
D ∂
∂ϕi

∂

∂ϕj
,
∂

∂ϕk

)
=

([
∂

∂ϕi
,
∂

∂ϕj

]
,
∂

∂ϕk

)
+

([
∂

∂ϕi
,
∂

∂ϕk

]
,
∂

∂ϕj

)
+

(
∂

∂ϕi
,

[
∂

∂ϕj
,
∂

∂ϕk

])
= 0

(3.5.2)

So we know that there are only two terms that make up (3.5.1).

r

(
∂

∂ϕi
,
∂

∂ϕj

)
= −

(
N,T ∂

∂ϕi

∂

∂ϕj

)
+ (δ̃T )

(
∂

∂ϕi
,
∂

∂ϕj

)
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We will start with a useful relation involving T and the derivatives of Hij(
T ∂
∂ϕi

∂

∂ϕj
,
∂

∂ξk

)
=

(
D ∂
∂ϕi

∂

∂ϕj
,
∂

∂ξk

)
= −

(
D ∂
∂ξk

∂

∂ϕj
,
∂

∂ϕi

)
= − ∂

∂ξk

(
∂

∂ϕi
,
∂

∂ϕj

)
+

(
∂

∂ϕj
, D ∂

∂ξk

∂

∂ϕi

)
= − ∂

∂ξk

(
∂

∂ϕi
,
∂

∂ϕj

)
−
(

∂

∂ξk
, D ∂

∂ϕj

∂

∂ϕi

)
(
T ∂
∂ϕi

∂

∂ϕj
,
∂

∂ξk

)
= − ∂

∂ξk

(
∂

∂ϕi
,
∂

∂ϕj

)
−
(
T ∂
∂ϕi

∂

∂ϕj
,
∂

∂ξk

)
= −1

2

∂

∂ξk

(
∂

∂ϕi
,
∂

∂ϕj

)
= −1

2
∂ξk (Hij)

We start by breaking down (δ̃T )(∂ϕi , ∂ϕj ).

(D∂ξk
T )∂ϕi ∂ϕj = D∂ξk

(T∂ϕi ∂ϕj )− TD∂ξk
∂ϕi

∂ϕj − T∂ϕi (D∂ξk ∂ϕj )

We will start by analyzing T∂ϕi ∂ϕj

T∂ϕi ∂ϕj =
∑
nm

gmnb (T∂ϕi ∂ϕj , ∂ξm)∂ξn

= −1

2

∑
nm

gmnb ∂ξm(Hij)∂ξn

D∂ξk
(T∂ϕi ∂ϕj ) = −1

2

∑
nm

D∂ξk
(gmnb ∂ξn)∂ξm(Hij)−

1

2

∑
nm

gmnb ∂2
ξmξk

(Hij)∂ξn

We move on to TD∂ξk
∂ϕi

∂ϕj .

D∂ξk
∂ϕi =

∑
pq

Hpq(D∂ξk
∂ϕi , ∂ϕp)∂ϕq

=
1

2

∑
pq

Hpq∂ξk (Hip)∂ϕq

TD∂ξk
∂ϕi

∂ϕj =
1

2

∑
pq

Hpq∂ξk (Hip)T∂ϕq ∂ϕj

= −1

4

∑
nmpq

gmnb ∂ξm(Hjq)H
pq∂ξk (Hip)∂ξn

We can perform a similar calculation for T∂ϕi (D∂ξk
∂ϕj ).

D∂ξk
∂ϕj =

1

2

∑
pq

Hpq∂ξk (Hjp)∂ϕq

T∂ϕi (D∂ξk
∂ϕj ) = −1

4

∑
nmpq

gmnb ∂ξm(Hiq)H
pq∂ξk (Hjp)∂ξn
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We now move on to (N,T∂ϕi ∂ϕj ).

N =
∑
mnpq

gmnb Hpq(T∂ϕp ∂ϕq , ∂ξn)∂ξm

= −1

2

∑
mnpq

gmnb Hpq∂ξn(Hpq)∂ξm

= −1

2

∑
mn

gmnb Tr(H−1∂ξnH)∂ξm

= −1

2

∑
mn

gmnb ∂ξn(log
(
r2))∂ξm

= −
∑
mn

gmnb
∂ξn(r)

r
∂ξm

(N,T∂ϕi ∂ϕj ) =
1

2

∑
klmn

gmnb
∂ξn(r)

r
gklb ∂ξk (Hij)(∂ξm , ∂ξl)

=
1

2

∑
mn

gmnb
∂ξn(r)

r
∂ξm(Hij)

We now collect all terms and set the Ricci curvature to be 0.

0 = −1

2

∑
mn

gmnb
∂ξn(r)

r
∂ξm(Hij) +

1

2

∑
mpq

gmkb ∂ξm(Hiq)H
pq∂ξk (Hjp) . . .

. . .− 1

2

∑
nm

(D∂ξk
(gmnb ∂ξn), ∂ξl)g

kl
b ∂ξm(Hij)−

1

2

∑
nm

gmkb ∂2
ξmξk

(Hij)

=
∑
imk

(gmkb )(∂ξm(r)∂ξk (Hij)H
il − rHil∂ξm(Hiq)H

pq∂ξk (Hjp) + rHil∂2
ξmξk

(Hij)) . . .

. . .+
∑
imn

(D∂ξk
(gmnb ∂ξn), ∂ξp)gkpb rH

il∂ξm(Hij)

=
∑
lmn

gmkb ∂ξm(rH−1∂ξkH)lj +
∑
lmn

(D∂ξk
(gmnb ∂ξn), ∂ξp)gkpb r(H

−1∂ξkH)lj

3.5.2 The Global Nature of r and z

We now take the trace of the above equation and notice that the H terms
disapear.

0 =
∑
mn

gmkb ∂ξm(r∂ξk (log
(
r2)) +

∑
mn

(D∂ξk
(gmnb ∂ξn), ∂ξp)gkpb r∂ξk (log

(
r2))

0 =
∑
mn

gmkb ∂ξm∂ξk (r) +
∑
mn

(D∂ξk
(gmnb ∂ξn), ∂ξp)gkpb ∂ξk (r)

We define the Laplace-Beltrami operator below in a general setting.

Theorem 3.6. Let N be a manifold with metric h. Let c be a function on N.
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Let vi be a local frame and let X be a vector field. Then div(X) is defined to be:

div(X) =
∑
i

(DviX)(vi)

Let xi be local coordinates. We define the gradient of c, ∇c to be:

∇c = (dc)#

dc =
∑
i

(
∂c

∂xi
dxi

)
(dc)# =

∑
ij

hij
∂c

∂xi

∂

∂xj

Finally we define the Laplace-Beltrami operator by: ∆hc = div(∇c).

Now we calculate ∆gb
r.

dr# =
∑
ij

gijb
∂r

∂ξi

∂

∂ξj

D∂ξk
(dr#) =

∑
ij

D∂ξk

(
gijb

∂r

∂ξi

∂

∂ξj

)
=
∑
ij

∂ξk∂ξi(r)g
ij
b ∂ξj +

∑
ij

∂ξi(r)D∂ξk
(gijb ∂ξj )

D∂ξk
(dr#)(ξk) =

∑
ik

∂ξk∂ξi(r)g
ik
b +

∑
ijk

∂ξi(r)(D∂ξk
(gijb ∂ξj ), ∂ξl)g

lm
b ∂ξm(ξk)

∆gb
r =

∑
ik

∂ξk∂ξi(r)g
ik
b +

∑
ijk

∂ξi(r)(D∂ξk
(gijb ∂ξj ), ∂ξl)g

lk
b

Thus, comparing to the trace of the Ricci curvature, we have shown that r

is harmonic with respect to gb. Let z be its harmonic conjugate. In order to
define z we need to introduce the metric gb = 1√

det(gb)
gb. We denote components

of the inverse of gb by gijb . It is clear that det(gb) = 1 since gb is 2-dimensional
and also that they are conformal related since gb is Riemannian. We define z

as follows:

∑
i

g1i
b ∂ξiz = ∂ξ2r

∑
i

g2i
b ∂ξiz = −∂ξ1r

We let D be the connection for gb. Let’s compute the Laplace Beltrami operator
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acting on z.

∆gb
z =

∑
ki

(D∂ξk
(gi1b ∂ξi(z)∂ξ1)(ξk) +D∂ξk

(gi2b ∂ξi(z)∂ξ2)(ξk))

=
∑
k

(D∂ξk
(∂ξ2(r)∂ξ1)(ξk)−D∂ξk

(∂ξ1(r)∂ξ2)(ξk))

= ∂ξ1∂ξ2(r)− ∂ξ2∂ξ1(r) +
∑
k

(
∂ξ2(r)(D∂ξk

∂ξ1)(ξk)− ∂ξ1(r)(D∂ξk
∂ξ1)(ξk)

)
=
∑
k

(
∂ξ2(r)(Γ

k
k1)− ∂ξ1(r)(Γ

k
k2)

)
= ∂ξ2(r)∂ξ1

(
log
(√

det(gb)
))
− ∂ξ1(r)∂ξ2

(
log
(√

det(gb)
))

= 0

The formula used to justify the last step can be found in Sokolnikoff’s book
“Tensor Analysis Theory and Applications” [28, p. 81]. Therefore ∆gb

z = 0

since the metrics gb and gb are conformally related.

It can be shown that (r, z) form global coordinates due to harmonicity and
the fact that the orbit space π(M) is homeomorphic to the right half plane
[17, p. 655-656]. We further assume that gb expressed in these coordinates is
conformal to the flat metric.

gb = e2α(dr2 + dz2)

3.7 Metric on the Fibre

Armed with the coordinates r and z and the simplified form for gb, we can
derive the harmonic map equations; making some simplifications to the result
found in the last section. We set ξ1 = r and ξ2 = z.

(D∂ξk
(gmnb ∂ξn), ∂ξp)gkpb = (∂ξn , D∂ξk

∂ξp)gkpb g
mn
b

= e−4α

(
(∂r, D∂r∂r) + (∂r, D∂z∂z) + (∂z, D∂r∂r) + (∂z, D∂z∂z)

)
= e−4α

(
1

2
∂r(∂r, ∂r)−

1

2
∂r(∂z∂z) +

1

2
∂z(∂r, ∂r)−

1

2
∂z(∂z∂z)

)
= 0

0 =
∑
lmn

gmkb ∂ξm(rH−1∂ξkH)lj +
∑
lmn

(D∂ξk
(gmnb ∂ξn), ∂ξp)gkpb r(H

−1∂ξkH)lj

0 = e−2α(∂r(rH
−1Hr)lj + ∂z(rH

−1Hz)lj)

0 = ∂r(rH
−1Hr) + ∂z(rH

−1Hz)
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In the last step we went from component form to matrix form.

3.7.1 Derivation of the Block Matrix Form of the Har-
monic Map Equations

We now derive equation (3.1.5) and (3.1.6), which correspond to equation (2.2)
in the Khuri et al.’s paper [18]. To do this we utilize a block matrix form of H.
Here v is a 2 dimensional column vector. We write H in the following form so
we can easily takes its inverse and so we can explicitly see the twist potentials
and the components of F .

H =

(
−f−1r2 + vTFv (Fv)T

Fv F

)

We now determine H−1:

H−1 =

(
−fr−2 fr−2vT

fr−2v −fr−2vvT + F−1

)

We can now calculate the partial derivatives of H, Hr and Hz.

Hr =

(
f−2frr

2 − 2f−1r + vT (Fv)r + (vT )rFv (vTF )r

(Fv)r Fr

)

Hz =

(
f−2fzr

2 + vT (Fv)z + (vT )zFv (vTF )z

(Fv)z Fz

)

Take M to be a 3x3 matrix. The lower right 2x2 block will be denoted by M••

and the top left corner will be denoted by M11. The remainder of the first row
will be denoted by M1•, and the remainder of the first column will be denoted
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by M•1. We now find the corresponding parts of the matrix H−1Hr and H−1Hz.

(H−1Hr)11 = −f−1fr + 2r−1 − fr−2(vT (Fv)r + vTr Fv) + fr−2vT (Fv)r

= −f−1fr + 2r−1 − fr−2vTr Fv

(H−1Hr)1• = −fr−2(vTF )r + fr−2vTFr = −fr−2vTr F

(H−1Hr)•1 = f−1frv − 2r−1v + fr−2v((vTF )rv + vTFvr)− fr−2vvT (Fv)r + F−1(Fv)r

= (f−1fr − 2r−1)v + F−1(Fv)r + fr−2(vvTr Fv + vvTFrv + vvTFvr − vvTFrv − vvTFvr))

= (f−1fr − 2r−1)v + fr−2(vvTr Fv) + vr + F−1Frv

(H−1Hr)•• = fr−2v(vTF )r − fr−2vvTFr + F−1Fr = fr−2vvTr F + F−1Fr

(H−1Hz)11 = −f−1fz − fr−2(vT (Fv)z + vTz Fv) + fr−2vT (Fv)z

= −f−1fz − fr−2vTz Fv

(H−1Hz)1• = −fr−2(vTF )z + fr−2vTFz = −fr−2vTz F

(H−1Hz)•1 = f−1fzv + fr−2v((vTF )zv + vTFvz)− fr−2vvT (Fv)z + F−1(Fv)z

= (f−1fz)v + F−1(Fv)z + fr−2(vvTz Fv + vvTFzv + vvTFvz − vvTFzv − vvTFvz))

= (f−1fz)v + fr−2(vvTz Fv) + vz + F−1Fzv

(H−1Hz)•• = fr−2v(vTF )z − fr−2vvTFz + F−1Fz = fr−2vvTz F + F−1Fz (3.7.1)

We now compute the harmonic map equations for each part of the matrix,
∂
∂r

(
rH−1Hr

)
+ ∂

∂z

(
rH−1Hz

)
.(

∂

∂r

(
rH−1Hr

)
+

∂

∂z

(
rH−1Hz

))
1•

=
∂

∂r

(
−fr−1vTr F

)
+

∂

∂z

(
−fr−1vTz F

)
= 0

=
∂

∂r

(
fr−1vTr F

)
− ∂

∂z

(
−fr−1vTz F

)
= 0

Let a = fr−1vTr F and b = −fr−1vTz F . Let τ = adz + bdr, thus τ is a 2-dimensional
row vector with 1 form values. We have the following:

dτ = (∂r(a)− ∂z(b))dr ∧ dz = 0

Thus since the orbit space is simply connected we have that τ is exact, i.e
τ = dω. We have that the partial derivatives of ω are given by the following:

ωz = fr−1vTr F ωr = −fr−1vTz F

We can solve for v in terms of ω.

vTr = f−1rωzF
−1 vTz = −f−1rωrF

−1 (3.7.2)
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We can use the integrability of vT to find a PDE involving ω.

vTrz = r
(
−f−2fzωzF

−1 + f−1ωzzF
−1 − f−1ωzF

−1FzF
−1)

vTzr = −f−1ωrF
−1 − r

(
−f−2frωrF

−1 + f−1ωrrF
−1 − f−1ωrF

−1FrF
−1)

0 = vTrz − vTzr

0 = −f−1fzωz + ωzz − ωzF−1Fz +
ωr
r
− f−1frωr + ωrr − ωrF−1fr

(3.7.3)

0 = ∆ω − (ln f)rωr − (ln f)zωz − ωzF−1Fz − ωrF−1Fr (3.7.4)

Where ∆c is the laplacian of c = c(r, z) in 3 dimensions with cylindrical coordi-
nates, (r, z, θ). However it is also proportional to the laplacian with respect to
the metric of the entire space g. We use theorem 3.6 to do the calculations.
We start by computing (D∂r∇c)(r).

(D ∂
∂r
∇c)(r) = D ∂

∂r

(
e−2α ∂c

∂r

∂

∂r
+ e−2α ∂c

∂z

∂

∂z

)
(r)

=
∂

∂r

(
e−2α ∂c

∂r

)
+ e−2αe−2α ∂c

∂r

(
D ∂
∂r

∂

∂r
,
∂

∂r

)
+ e−2αe−2α ∂c

∂z

(
D ∂
∂r

∂

∂z
,
∂

∂r

)
=

(
−2αre

−2α ∂c

∂r
+ e−2α ∂

2c

∂r2
+ e−4α ∂c

∂r
e2ααr + e−2αe−2α ∂c

∂z
e2ααz

)
= e−2α

(
∂c

∂z
αz −

∂c

∂r
αr +

∂2c

∂r2

)

Let’s compute (D ∂
∂z
∇c)(z).

D ∂
∂z

(∇c)(z) = D ∂
∂z

(
e−2α ∂c

∂r

∂

∂r
+ e−2α ∂c

∂z

∂

∂z

)
(z)

=
∂

∂z

(
e−2α ∂c

∂z

)
+ e−2αe−2α ∂c

∂r

(
D ∂
∂r

∂

∂z
,
∂

∂z

)
+ e−2αe−2α ∂c

∂z

(
D ∂
∂z

∂

∂z
,
∂

∂z

)
=

(
−2αze

−2α ∂c

∂z
+ e−2α ∂

2c

∂z2
+ e−4α ∂c

∂r
e2ααr + e−2αe−2α ∂c

∂z
e2ααz

)
= e−2α

(
∂c

∂r
αr −

∂c

∂z
αz +

∂2c

∂z2

)

We now compute D ∂
∂φi

(∇c).

D ∂
∂φi

(∇c) = e−2α ∂c

∂r
D ∂
∂φi

∂

∂r
+ e−2α ∂c

∂z
D ∂
∂φi

∂

∂z

= e−2α

(
∂c

∂r

(
D ∂
∂φi

∂

∂r
,
∂

∂φj

)
Hij ∂

∂φi
+
∂c

∂z

(
D ∂
∂φi

∂

∂z
,
∂

∂φj

)
Hij ∂

∂φi

)
= e−2α

(
1

2
(Hij)rH

ij ∂c

∂r
+

1

2
(Hij)zH

ij ∂c

∂z

)
∂

∂φi
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We now collect all the terms with the summation.

∆gc = e−2α

(
∂c

∂z
αz −

∂c

∂r
αr +

∂2c

∂r2

)
+ e−2α

(
∂c

∂r
αr −

∂c

∂z
αz +

∂2c

∂z2

)
. . .

. . .+ Σie
−2α

(
1

2
(Hij)rH

ij ∂c

∂r
+

1

2
(Hij)zH

ij ∂c

∂z

)
= e−2α

(
∂2c

∂r2
+
∂2c

∂z2
+

1

2
Tr(H−1Hr)

∂c

∂r
+

1

2
Tr(H−1Hz)

∂c

∂z

)
= e−2α

(
∂2c

∂r2
+
∂2c

∂z2
+

1

2

∂

∂r
(ln
(
r2))∂c

∂r
+

1

2

∂

∂z
(ln
(
r2)) ∂c

∂z

)
= e−2α

(
∂2c

∂r2
+
∂2c

∂z2
+

1

r

∂c

∂r

)

We now compute the harmonic map for the 2x2 block of ∂
∂r

(
rH−1Hr

)
+ ∂
∂z

(
rH−1Hz

)
.(

∂

∂r

(
rH−1Hr

)
+

∂

∂z

(
rH−1Hz

))
••

=
∂

∂r

(
fr−1vvTr F + rF−1Fr

)
+

∂

∂z

(
fr−1vvTz F + rF−1Fz

)
=

∂

∂r

(
vωz + rF−1Fr

)
+

∂

∂z

(
−vωr + rF−1Fz

)
= vrωz + vωzr − vzωr − vωrz + F−1Fr − rF−1FrF

−1Fr . . .

. . .+ rF−1Frr − rF−1FzF
−1Fz + rF−1Fzz

= f−1rF−1ωTz ωz + f−1rF−1ωTr ωr + F−1Fr − rF−1FrF
−1Fr . . .

. . .+ rF−1Frr − rF−1FzF
−1Fz + rF−1Fzz

0 = f−1ωTz ωz + f−1ωTr ωr +
1

r
Fr + Frr + Fzz − FrF−1Fr − FzF−1Fz (3.7.5)

The remaining parts of the matrix, ∂
∂r

(
rH−1Hr

)
+ ∂

∂z

(
rH−1Hz

)
, will turn out

not to be independent of the previously computed parts. It’s easy to see why
the 11 part is not independent when we use the trace.

(H−1Hr)11 = Tr(H−1Hr)− Tr((H−1Hr)••) =
2

r
− Tr((H−1Hr)••)

(H−1Hz)11 = Tr(H−1Hz)− Tr((H−1Hz)••) = −Tr((H−1Hz)••)

∂

∂r

(
r(H−1Hr)11

)
+

∂

∂z

(
r(H−1Hz)11

)
= 0− Tr

(
∂

∂r

(
r(H−1Hr)••

)
+

∂

∂z

(
r(H−1Hz)••

))

It is trickier to see that •1 part is not independent. To do so we must use all
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the previously shown parts and use equations (3.1.4) and (3.7.2)

0 =
∂

∂r

(
r(H−1Hr)•1

)
+

∂

∂z

(
r(H−1Hz)•1

)
0 =

∂

∂r

(
r((f−1fr − 2r−1)v + fr−2(vvTr Fv) + vr + F−1Frv)

)
+

∂

∂z

(
r((f−1fz)v + fr−2(vvTz Fv) + vz + F−1Fzv)

)
0 = − ∂

∂r

(
r(−(f−1fr − 2r−1)− fr−2vTr Fv)

)
− ∂

∂z

(
r(−(f−1fz)− fr−2vTz Fv)

)
︸ ︷︷ ︸(

∂
∂r

(rG−1Gr)+ ∂
∂z

(rG−1Gz)

)
11

v . . .

. . .+
∂

∂r

(
rF−1Frv

)
+

∂

∂z

(
rF−1Fzv

)
. . .

. . .− r(−(f−1fr − 2r−1)− fr−2vTr Fv)vr − r((−f−1fz)− fr−2vTz Fv)vz +
∂

∂r
(rvr) +

∂

∂r
(rvz)

= r((f−1fr − 2r−1) + fr−2vTr Fv)vr + r(f−1fz + fr−2vTz Fv)vz + F−1Frv − rF−1FrF
−1Frv . . .

. . .+ rF−1Frrv + rF−1Frvr − rF−1FzF
−1Fzv + rF−1Fzzv + rF−1Fzvz + rvrr + vr + rvzz

vTr = f−1rωzF
−1

vTrr = −f−2frrωzF
−1 + f−1ωzF

−1 + f−1rωzrF
−1 − f−1rωzF

−1FrF
−1

= −frf−1vTr + vrr
−1 + f−1ωzrF

−1 − vTr FrF−1

vTz = −f−1rωrF
−1

vTzz = −f−2fzrωrF
−1 − f−1rωzrF

−1 + f−1rωrF
−1FzF

−1

= fzf
−1vTz − f−1ωzrF

−1 − vTz FzF−1

We plug these into the previous formula.

0 = r((f−1fr − 2r−1) + fr−2vTr Fv)vr + r(f−1fz + fr−2vTz Fv)vz . . .

. . .+ r(−frf−1vr + vrr
−1 + (f−1ωzrF

−1)T − F−1Frvr) + r(fzf
−1vz − (f−1ωzrF

−1)T − F−1Fzvz) + vr . . .

. . .+ F−1Frv − rF−1FrF
−1Frv + rF−1Frrv + rF−1Frvr − rF−1FzF

−1Fzv + rF−1Fzzv + rF−1Fzvz

= r(fr−2vTr Fv)vr + rfr−2vTz Fv)vz + F−1Frv − rF−1FrF
−1Frv + rF−1Frrv − rF−1FzF

−1Fzv + rF−1Fzzv

= (r(fr−2)vrv
T
r F + rfr−2vzv

T
z F + F−1Fr + F−1Frr + rF−1Fzz − rF−1FrF

−1Fr − rF−1FzF
−1Fz)v

0 = (∆F + fr−2(f−1rF−1ωTz )(f−1rωzF
−1F ) + fr−2(−f−1rF−1ωTz )(−f−1rωzF

−1)F . . .

. . .− F−1FrF
−1Fr − F−1FzF

−1Fz)v

= (∆F + f−1ωTz ωz + f−1ωTz ωz − FrF−1Fr − FzF−1Fz)
same as (3.7.5)

v
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3.7.2 Derivation of the Component Form of the Har-
monic Map Equations

We now convert (3.7.4) and (3.7.5) from their matrix form to equation 2.2

found in the paper by Khuri et al.[18, p. 3]. We do so for (3.7.4) by taking
the i’th component. And for (3.7.5) we take the ij’th component. We use the
notation ∇1 to be the r derivative and ∇2 to be the z derivative. We raise the
index of the derivative using the inverse of the metric on the base. Since the
inverse is diagonal with components e−2α, we get that ∇k = e−2α∇k.

0 = ∆fij − (FrF
−1Fr)ij − (FzF

−1Fz)ij + f−1(ωTr ωr)ij + f−1(ωTz ωz)ij

0 = ∆fij − (fik)rf
kl(flj)r − (fik)zf

kl(flj)z + f−1(ωi)r(ωj)r + f−1(ωi)z(ωj)z

0 = ∆gfij − fkl∇nfik∇nflj + f−1∇nωi∇nωj

We now convert equation (3.7.4) by taking its components. We use the fact
that (ln f)r = Tr

(
F−1Fr

)
= f jk(fjk)r and (ln f)z = Tr

(
F−1Fz

)
= f jk(fjk)z

0 = ∆ωi − f jk(fjk)z(ωi)z − f jk(fjk)r(ωi)r − (ωj)zf
jk(fki)z − (ωj)rf

jk(fki)r

0 = ∆gωi − f jk∇nfjk∇nωi − f jk∇nfki∇nωj

3.8 Metric on the Base

3.8.1 Solving for αr and αz

We now move on to derive the equations for the conformal factor α which
appears in gb. We start again with the Ricci flat conditions but this time using
its purely horizontal components. We have from Besse that [3, p. 244]:

r(X,Y ) = rb(X,Y )− 2(AX , AY )− (TX, TY ) +
1

2
((DXN,Y ) + (DYN,X)) (3.8.1)

Where rb is the Ricci curvature of gb. Let g0 = dr2 + dz2 be the flat metric. Then
gb = e2αg0. From Besse we have that rb = −(∆α)g0. So rb = −(αrr +αzz)(dr

2 + dz2) [3,
p. 59]. Looking at the next term we have that:

(AX , AY ) =
∑
i,j

Hij

(
AX

∂

∂ϕi
, AY

∂

∂ϕj

)

We know that AX
∂
∂ϕi

is horizontal so we only need to determine its horizon-
tal components. Let Z be a horizontal vector field, we have that (AX

∂
∂ϕi

, Z) =

(∂ϕi , AXZ), and by theorem 3.5 it is 0.

From the previous subsection we know that N = − e
−2α

r
∂
∂r

. We now calculate
the term which contains N in (3.8.1) using all relevant combinations of ∂

∂r
and
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∂
∂z

.

(
D ∂
∂r
N,

∂

∂r

)
=

(
D ∂
∂r

(
−e
−2α

r

∂

∂r

)
,
∂

∂r

)
= −e

−2α

2r

∂

∂r
(e2α) +

∂

∂r

(
−e
−2α

r

)
e2α

= −αr
r

+
1

r2
+

2αr
r

=
αr
r

+
1

r2(
D ∂
∂z
N,

∂

∂z

)
=

(
D ∂
∂z

(
−e
−2α

r

∂

∂r

)
,
∂

∂z

)
= −e

−2α

2r

∂

∂r
(e2α) = −αr

r(
D ∂
∂r
N,

∂

∂z

)
=

(
D ∂
∂r

(
−e
−2α

r

∂

∂r

)
,
∂

∂z

)
= −e

2α

r

(
−
(
∂

∂r
,D ∂

∂r

∂

∂z

))
=
e−2α

2r

∂

∂z
(e2α) =

αz
r(

D ∂
∂z
N,

∂

∂r

)
=

(
D ∂
∂z

(
−e
−2α

r

∂

∂r

)
,
∂

∂r

)
=

∂

∂z

(
−e
−2α

r

)
e2α − e−2α

2r

∂

∂z
(e2α)

= 2
αz
r
− αz

r
=
αz
r

We now examine the term (TX, TY ). We have that:

(TX, TY ) =
∑
i,j

Hij(T ∂
∂φi

X,T ∂
∂φj

Y )

We know that T ∂
∂φi

X is vertical so we can work out what it is from calculations

in the previous subsection. We’ll let X be ∂
∂r

and ∂
∂z

.(
T ∂
∂φi

∂

∂r
,
∂

∂φk

)
=

(
D ∂
∂φi

∂

∂r
,
∂

∂φk

)
=

(
D ∂
∂r

∂

∂φi
,
∂

∂φk

)
= −

(
D ∂
∂φk

∂

∂φi
,
∂

∂r

)
=

1

2
(Hik)r(

T ∂
∂φi

∂

∂z
,
∂

∂φk

)
=

(
D ∂
∂φi

∂

∂z
,
∂

∂φk

)
=

(
D ∂
∂z

∂

∂φi
,
∂

∂φk

)
= −

(
D ∂
∂φk

∂

∂φi
,
∂

∂z

)
=

1

2
(Hik)z

We now work out
(
T ∂
∂r
, T ∂

∂r

)
. Let K = H−1Hr and L = H−1Hz. We have the

following two PDEs involving K and L. This is using (3.1.2).

Kz = −H−1HzH
−1Hr +H−1Hrz

Lr = −H−1HrH
−1Hz +H−1Hrz

Kz − Lr = [K,L]

0 = Kr + Lz +
K

r
0 = Kz − Lr − [K,L] (3.8.2)
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(
T
∂

∂r
, T

∂

∂r

)
=
∑
i,j

Hij

∑
k,l

(
T ∂
∂φi

∂

∂r
,
∂

∂φk

)
Hkl ∂

∂φl
,
∑
m,n

(
T ∂
∂φj

∂

∂r
,
∂

∂φm

)
Hmn ∂

∂φn


=

1

4

∑
i,j,k,l,m,n

HijHkl(Hik)rH
mn(Hjm)r

(
∂

∂φl
,
∂

∂φn

)
=

1

4

∑
i,j,k,l,m,n

Hij(Hjm)rH
mnHnlH

kl(Hik)r =
1

4

∑
i,j,k,l,m,n

Hij(Hjm)rH
mk(Hki)r

=
1

4
Tr(H−1HrH

−1Hr) =
1

4
Tr(K2)

We now work out
(
T ∂
∂z
, T ∂

∂z

)
.

(
T
∂

∂z
, T

∂

∂z

)
=
∑
i,j

Hij

(
Σk,l

(
T ∂
∂φi

∂

∂z
,
∂

∂φk

)
Hkl ∂

∂φl
,
∑
m,n

(
T ∂
∂φj

∂

∂z
,
∂

∂φm

)
Hmn ∂

∂φn

)

=
1

4

∑
i,j,k,l,m,n

HijHkl(Hik)zH
mn(Hjm)z

(
∂

∂φl
,
∂

∂φn

)
=

1

4

∑
i,j,k,l,m,n

Hij(Hjm)zH
mnHnlH

kl(Hik)z =
1

4

∑
i,j,k,l,m,n

Hij(Hjm)zH
mk(Hki)z

=
1

4
Tr(H−1HzH

−1Hz) =
1

4
Tr(L2)

We now work out
(
T ∂
∂r
, T ∂

∂z

)
.

(
T
∂

∂r
, T

∂

∂z

)
=
∑
i,j

Hij

∑
k,l

(
T ∂
∂φi

∂

∂r
,
∂

∂φk

)
Hkl ∂

∂φl
,
∑
m,n

(
T ∂
∂φj

∂

∂z
,
∂

∂φm

)
Hmn ∂

∂φn


=

1

4

∑
i,j,k,l,m,n

HijHkl(Hik)rH
mn(Hjm)z

(
∂

∂φl
,
∂

∂φn

)
=

1

4

∑
i,j,k,l,m,n

Hij(Hjm)rH
mnHnlH

kl(Hik)z =
1

4

∑
i,j,k,l,m,n

Hij(Hjm)rH
mk(Hki)z

=
1

4
Tr(H−1HrH

−1Hz) =
1

4
Tr(KL)

Now we add together all the terms that make up r(X,Y ).

0 = r

(
∂

∂r
,
∂

∂r

)
= −(αrr + αzz)−

1

4
Tr(K2) +

αr
r

+
1

r2

0 = r

(
∂

∂z
,
∂

∂z

)
= −(αrr + αzz)−

1

4
Tr(L2)− αr

r

0 = −1

4
Tr(K2) +

1

4
Tr(L2) + 2

αr
r

+
1

r2

αr =
r

8

(
Tr(K2)− Tr(L2)− 4

r2

)
0 = r

(
∂

∂r
,
∂

∂z

)
=
αz
r
− 1

4
Tr(KL)

αz =
r

4
Tr(KL)
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3.8.2 Verifying the Consistency of the Purely Horizon-
tal Ricci Flat Equations

We now check that the equations for the Ricci curvature are consistent. This
is because αrr and αzz appear earlier and cancelled when we solved for αr. To
check we take derivatives of the partials of α and plug them into the equations
for the Ricci curvature. We use (3.8.2).

αrr =
1

8
(Tr(K2)− Tr(L2)) +

1

2r2
+
r

8
(Tr((K2)r)− Tr((L2)r))

=
1

8
(Tr(K2)− Tr(L2)) +

1

2r2
+
r

4
(Tr(KrK)− Tr(LrL))

αzz =
r

4
Tr(KzL+KLz)

r

(
∂

∂r
,
∂

∂r

)
= −1

8
(Tr(K2)− Tr(L2))− 1

2r2
− r

4
(Tr(KrK)− Tr(KzL) + Tr([K,L]L)) . . .

. . .− r

4
Tr(KzL+KLz)−

1

4
Tr(K2) +

1

8

(
Tr(K2)− Tr(L2)− 4

r2

)
+

1

r2

= −1

4
Tr(K2)− r

4
(Tr(KrK +KLz) = − r

4

(
Tr(K(

1

r
K +Kr + Lz))

)
= 0

r

(
∂

∂z
,
∂

∂z

)
= −1

8
(Tr(K2)− Tr(L2))− 1

2r2
− r

4
(Tr(KrK)− Tr(KzL)) . . .

. . .− r

4
Tr(KzL+KLz)−

1

4
Tr(K2)− 1

8

(
Tr(L2)− Tr(K2)− 4

r2

)
= − r

4

(
Tr(K(

1

r
K +Kr + Lz))

)
= 0

3.8.3 Deriving the Block Matrix Form for αr and αz

We now work on converting the equations for the partials of α to the form
presented in equation (2.5) in the Khuri et al.’s paper. We use the block matrix
form of H−1Hr and H−1Hz that we calculated in the previous subsection. Using
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the commutative property of the trace we have the following:

Tr(H−1HrH
−1Hr) = Tr((H−1Hr)

2
11 + (H−1Hr)1•(H

−1Hr)•1 + (H−1Hr)•1(H−1Hr)1• + (H−1Hr)
2
••)

= (H−1Hr)
2
11 + 2(H−1Hr)1•(H

−1Hr)•1 + Tr((H−1Hr)
2
••)

(H−1Hr)
2
11 = (−f−1fr + 2r−1 − fr−2(vTr Fv))2

= (f−1fr)
2 +

4

r2
+
f2

r4
(vTr Fv)2 − 4

r

f

fr
+ 2

fr
r2
vTr Fv − 4

f

r3
vTr Fv

2(H−1Hr)1•(H
−1Hr)•1 = 2(−fr−2vTr F )((f−1fr − 2r−1)v + fr−2(vvTr Fv) + vr + F−1Frv)

= −2
fr
r2
vTr Fv + 4

f

r3
vTr Fv − 2

f2

r4
(vTr Fv)2 − 2

f

r2
vTr Frv − 2

f

r2
vTr Fvr

Tr((H−1Hr)
2
••) = Tr((fr−2vvTr F + F−1Fr)

2)

=
f2

r4
Tr((vvTr F )2) + 2

f

r2
Tr(vvTr Fr) + Tr(F−1FrF

−1Fr)

=
f2

r4
(vTr Fv)2 + 2

f

r2
vTr Frv + Tr(F−1FrF

−1Fr)

Tr(H−1HrH
−1Hr) = (f−1fr)

2 +
4

r2
+
f2

r4
(vTr Fv)2 − 4

r

f

fr
+ 2

fr
r2
vTr Fv − 4

f

r3
vTr Fv . . .

. . .− 2
fr
r2
vTr Fv + 4

f

r3
vTr Fv − 2

f2

r4
(vTr Fv)2 − 2

f

r2
vTr Frv − 2

f

r2
vTr Fvr . . .

· · ·+ f2

r4
(vTr Fv)2 + 2

f

r2
vTr Frv + Tr((F−1Fr)

2)

= (log f)2
r +

4

r2
− 4

(log f)r
r

− 2
f

r2
vTr Fvr + Tr((F−1Fr)

2)

Using (3.1.4) and (3.7.2) we have that:

2
f

r2
vTr Fvr =

2

r
ωzvr =

2

r

r

f
ωzF

−1ωTz =
2

f
ωzF

−1ωTz

Tr(H−1HrH
−1Hr) = (log f)2

r +
4

r2
− 4

(log f)r
r

− 2

f
ωzF

−1ωTz + Tr((F−1Fr)
2)
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We now move on to Tr(H−1HzH
−1Hz).

Tr(H−1HzH
−1Hz) = (H−1Hz)

2
11 + 2(H−1Hz)1•(H

−1Hz)•1 + Tr((H−1Hz)
2
••)

(H−1Hz)
2
11 = (−f−1fz − fr−2vTz Fv)2 =

f2
z

f2
+ 2

fz
r2
vTz Fv +

f2

r4
(vTz Fv)2

2(H−1Hz)1•(H
−1Hz)•1 = 2(−fr−2vTz F )((f−1fz)v + fr−2(vvTz Fv) + vz + F−1Fzv)

= −2
fz
r2
vTz Fv − 2

f2

r4
(vTz Fv)2 − 2

f

r2
vTz Fvz − 2

f

r2
vTz Fzv

Tr((H−1Hz)
2
••) = Tr((fr−2vvTz F + F−1Fz)

2)

=
f2

r4
(vTz Fv)2 + 2

f

r2
vTz Fzv + Tr(F−1FzF

−1Fz)

Tr(H−1HzH
−1Hz) =

f2
z

f2
+ 2

fz
r2
vTz Fv +

f2

r4
(vTz Fv)2 . . .

. . .− 2
fz
r2
vTz Fv − 2

f2

r4
(vTz Fv)2 − 2

f

r2
vTz Fvz − 2

f

r2
vTz Fzv . . .

. . .+
f2

r4
(vTz Fv)2 + 2

f

r2
vTz Fzv + Tr(F−1FzF

−1Fz)

= (log f)2
z − 2

f

r2
vtzFvz + Tr(F−1FzF

−1Fz)

Again by (3.1.4) and (3.7.2) we have that:

2
f

r2
vtzFvz = −2

1

r
ωrvz = −2

1

r
ωr(−

r

f
F−1ωTr ) = 2

1

f
ωrF

−1ωTr

We can now work out αr.

αr =
r

8

(
Tr(H−1HrH

−1Hr)− Tr(H−1HzH
−1Hz)−

4

r2

)
=
r

8

(
(log f)2

r +
4

r2
− 4

(log f)r
r

− 2

f
ωzF

−1ωTz + Tr(F−1FrF
−1Fr) . . .

. . .− (log f)2
z − 2

1

f
ωrF

−1ωTr + Tr(F−1FzF
−1Fz))−

4

r2

)
=
r

8

(
(log f)2

r − (log f)2
z − 4

(log f)r
r

+ Tr(F−1FrF
−1Fr)− Tr(F−1FzF

−1Fz) . . .

. . .+
2

f
ωrF

−1ωTr −
2

f
ωzF

−1ωTz

)
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We now move on to Tr(H−1HrH
−1Hz).

Tr(H−1HrH
−1Hz) = Tr((H−1Hr)11(H−1Hz)11 + (H−1Hr)1•(H

−1Hz)•1 . . .

. . .+ (H−1Hr)•1(H−1Hz)1• + (H−1Hr)••(H
−1Hz)••)

= (H−1Hr)11(H−1Hz)11 + (H−1Hr)1•(H
−1Hz)•1 . . .

. . .+ (H−1Hz)1•(H
−1Hr)•1 + Tr((H−1Hr)••(H

−1Hz)••)

(H−1Hr)11(H−1Hz)11 = (−f−1fr + 2r−1 − fr−2(vTr Fv))(−f−1fz − fr−2vTz Fv)

=
fr
f

fz
f

+
fr
r2
vTz Fv − 2

fz
rf
− 2

f

r3
vTz Fv +

fz
r2
vTr Fv +

f2

r4
vTr Fvv

T
z Fv

(H−1Hr)1•(H
−1Hz)•1 = (−fr−2vTr F )((f−1fz)v + fr−2(vvTz Fv) + vz + F−1Fzv)

= −fz
r2
vTr Fv −

f2

r4
vTr Fvv

T
z Fv −

f

r2
vTr Fzv −

f

r2
vTr Fvz

(H−1Hz)1•(H
−1Hr)•1 = (−fr−2vTz F )((f−1fr − 2r−1)v + fr−2(vvTr Fv) + vr + F−1Frv)

= −fr
r2
vTz Fv + 2

f

r3
vTz Fv −

f2

r4
vTz Fvv

T
r Fv −

f

r2
vTz Frv −

f

r2
vTz Fvr

Tr((H−1Hr)••(H
−1Hz)••) = Tr((fr−2vvTr F + F−1Fr)(fr

−2vvTz F + F−1Fz))

=
f2

r4
vTr Fvv

T
z Fv +

f

r2
vTr Fzv +

f

r2
vTz Frv + Tr(F−1FrF

−1Fz)

Tr(H−1HrH
−1Hz) =

fr
f

fz
f

+
fr
r2
vTz Fv − 2

fz
rf
− 2

f

r3
vTz Fv +

fz
r2
vTr Fv +

f2

r4
vTr Fvv

T
z Fv . . .

. . .− fz
r2
vTr Fv −

f2

r4
vTr Fvv

T
z Fv −

f

r2
vTr Fzv −

f

r2
vTr Fvz . . .

. . .− fr
r2
vTz Fv + 2

f

r3
vTz Fv −

f2

r4
vTz Fvv

T
r Fv −

f

r2
vTz Frv −

f

r2
vTz Fvr . . .

. . .+
f2

r4
vTr Fvv

T
z Fv +

f

r2
vTr Fzv +

f

r2
vTz Frv + Tr(F−1FrF

−1Fz)

Tr(H−1HrH
−1Hz) = (log f)r(log f)z − 2

(log f)z
r

− f

r2
vTz Fvr −

f

r2
vTr Fvz + Tr(F−1FrF

−1Fz)

Using (3.1.4) and (3.7.2) again we have that:

f

r2
vTr Fvz +

f

r2
vTz Fvr = +

1

r
ωzvz −

1

r
ωrvr

=
1

r
ωz(−

r

f
F−1ωTr )− 1

r
ωr(

r

f
F−1ωTz )

= −1

r
(ωzF

−1ωTr )− 1

r
(ωzF

−1ωTr )T

= −2

r
ωzF

−1ωTr

Tr(H−1HrH
−1Hz) = (log f)r(log f)z − 2

(log f)z
r

+
2

r
ωzF

−1ωTr + Tr(F−1FrF
−1Fz)

αz =
r

4

(
(log f)r(log f)z − 2

(log f)z
r

+
2

r
ωzF

−1ωTr + Tr(F−1FrF
−1Fz)

)
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3.9 Mixed Components of the Ricci Tensor

For completeness we will check that the mixed components of the Ricci tensor
are 0. From Besse we have that [3, p. 244]:

r(X,U) = ((δ̂T )U,X) + (DUN,X)− ((δ̌A)X,U)− 2(AX , TU )

We will show that each term is 0. We have that δ̂T = −
∑
j(DUjT )Uj where Uj is

an orthonormal basis of the vertical distribution.

(DUjT )UjU = DUj (TUjU)− TDUjUjU − TUj (DUjU)

Let U be a vertical coordinate vector field. Then DUjU is a sum of horizontal
vector fields. Then TUj (DUjU) is vertical so it doesn’t contribute. We have that
Uj is a linear combination of vertical coordinate vector fields where the coeffi-
cients are functions of r and z. Therefore DUjUj is a sum of horizontal vector
fields. Thus TDUjUj

U = 0. Finally TUjU is horizontal. So DUj (TUjU) is vertical so

it doesn’t contribute. We have that N = − e
−2α

r
∂
∂r

. So, DUN = − e
−2α

r
DU∂r which

is vertical thus doesn’t contribute. We have that (δ̌A) =
∑
ij g

ij
b (D∂ξi

A)∂ξj
where

∂ξ1 is a coordinate basis of the horizontal distribution. Let X be a horizontal
vector field.

(D∂ξi
A)∂ξj

X = D∂ξi
(A∂ξj

X)−AD∂ξi ∂ξj
X −A∂ξi (D∂ξjX)

We know by theorem 3.5 that the above term is 0. Finally we have that for hor-
izontal vector field X and vertical vector field U that (AX,TU) =

∑
ij(A∂ξi

X,T∂ξj
U).

It is clearly 0 because of theorem 3.5.
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Chapter 4

The Smoothness Conditions

Currently our metric is well defined over the interior of the orbit space. At
points on the boundary we no longer have a principal bundle but we have
a tube with a non-trivial isotropy group. To judge smoothness, we start by
defining an appropriate slice representation for such a point on a boundary.
Afterwards we use Schur’s Lemma to generate the polynomials which arise in
the metric’s components.

We will express our group G as S1
1 × S1

2 × R and use (r, r) as the coordinates
on the orbit space. We build a local model around qc using the rod data. The
rod data in the orbit space is a (1, 0) rod above qc and a (0, 1) rod below qc. We
will take qa to be a point whose orbit is on the (1, 0) rod and qb to be a point
whose orbit is on the (0, 1) rod. With this pattern of alternating rod structure
carrying on across the r axis. We will call the orbit of a point q, π(q). Upstairs
in the manifold we can fit the slices at qa, qb and qc into a single 4-dimensional
diagram which serves only as a schematic.

z2

z1

R4

qc

qb

Sc

qa

Sa

Sb

R S1
2 × R

S1
1 × R

Figure 4.1:

Here Sa, Sb and Sc are the slices at qa, qb and qc respectively. All these slices
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live in a bounded set in R4 shown above. We think of R4 as C1 × C2 where z1

is the complex coordinate of C1 and z2 is the complex coordinate of C2. We
have that Sa has coordinates (x1, y1, r2) where z1 = x1 + iy1 and r2

2 = x2
2 + y2

2. We
think of r2 as being the radial part of z2 which varies in Sa. Furthermore since
S1

1 shrinks to a point we have that the isotropy group at qa is isomorphic to
S1

1 . Also, we have that the orbit is isomorphic to S1
2 × R. This is represented in

the vertical direction of the figure. Similarly we have that Sb has coordinates
(r1, x2, y2) where z2 = x2 + iy2 and r2

1 = x2
1 + y2

1. Since S1
2 shrinks to a point we have

that the isotropy group at qb is isomorphic to S1
2 . This implies that the orbit

is isomorphic to S1
1 ×R. Finally at Sc we have (x1, y1, x2, y2) as coordinates. Since

both circles shrink to a point at qc we have that the isotropy group at qc is
isomorphic to T 2. And we have that the orbit is isomorphic to R. These coor-
dinates (x1, y1, x2, y2) are only valid locally around qc and in this neighbourhood
there are only two rods a (1, 0) rod above π(qc) and a (0, 1) rod below π(qc)

Now our orbit space is homeomorphic to the right half plane with coordi-
nates (r, r). We have the following local formula about the corner point in the
orbit space.

r + i r = (r2 + i r1)2 =⇒ r = r1r2 r =
r2
2 − r2

1

2

r1 =

√√
r2 + r2 − r r2 =

√√
r2 + r2 + r

This transforms the quarter plane made up of (r1, r2) to the half plane made
up of (r, r). This transformation is valid everywhere except the origin. If you
want to consider a similar corner point somewhere else on the r-axis then you
simply perform a translation in r so that the corner point is at the origin of
your new coordinate system.

For coordinates on the (1, 0) rod at (0, a) we use the following equation.

r2 + a′ =

√√
r2 + (r + a)2 + r + a r2

1 =
√
r2 + (r + a)2 − (r + a) =

r2√
r2 + (r + a)2 + r + a

(4.0.1)
We now provide a summary of the conclusions of the smoothness conditions
before going into more detail.

For a point on a (1, 0) rod in the orbit space we have the following in an
open neighbourhood around π(qa). Disclaimer we have translated the r coor-
dinate so that it is 0 at π(qa). Also there is a normalization of the metric at
the point π(qa). Firstly g(X, ∂ϕ2) = g(X, ∂t) = 0 for X ∈ span(∂r, ∂r, ∂ϕ1). We have
that g(∂ϕ1 , ∂ϕ1) behaves as r2

2a
as you approach π(qa). Finally, we have that all
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components of the metric are smooth functions of r2 and r.

For a point on a (0, 1) rod in the orbit space we have the following in an
open neighbourhood around π(qb). Disclaimer we have translated the r coordi-
nate so that it is 0 at π(qb). Also there is a normalization of the metric at the
point π(qb). Firstly g(X, ∂ϕ1) = g(X, ∂t) = 0 for X ∈ span(∂r, ∂r, ∂ϕ2). We have that
g(∂ϕ2 , ∂ϕ2) behaves as r2

2b
as you approach π(qb). Finally all components of the

metric are smooth functions of r2 and r.

For the corner point qc we have the coordinates, (r, r, ϕ1, ϕ2), for our slice. We
let r = 0 at the corner point. We have the following in an open neighbourhood
around π(qc). Firstly, that all non-diagonal components of the metric on the
slice are 0 apart from g(∂ϕ1 , ∂ϕ2). We have that away from the corner point
that all components of the metric are smooth functions of r2 and r. We have
that g(∂ϕ2 , ∂ϕ2) and g(∂ϕ1 , ∂ϕ1) behave like r when r = 0 and r → 0. We have that
g(∂ϕ1 , ∂ϕ2) behaves as r2 when r = 0 and r → 0. We have that g(∂r, ∂r) behaves like
r−1 when r = 0 and r → 0.

4.1 Axis Rod

We let eiθ be in the isotropy group Gqa = S1
1×{1}×{1}. We consider the action on

the slice Sa. We set the name of the tangent space of Sa to be V . We have that
eiθ acts on (x1, y1) by rotation by an angle θ. It preserves r2. We also translate
r2 so (r1, r2)(qa) = (0, 0). We can write this group action as matrix multiplication.

(eiθ)∗


x1

y1

r2

 =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1



x1

y1

r2


Here we are using ∂x1 , ∂y1 and ∂r2 as a basis. Therefore the slice representation
is ρ⊕ 1 where ρ is the representation responsible for the rotation.

The isotropy representation at qa is trivial. To see this let σeiθ : M →M map
m to eiθm and let X be tangent to the orbit at qa, i.e in TqaG(qa). Then the
derivative map is the following: dσ(X) = (eiθδ(u))′(0). Where δ(u) is some curve
in M. We can use the tube theorem to rewrite this as [eiθγ(u), qa]′(0). Where γ(u)

is some curve in G. Note that the slice part is constant in terms of u. We can
make the following simplifications:
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[eiθγ(u), qa]′(0) = [γ(u)eiθ, qa]′(0) = [γ(u), eiθqa]′(0) = [γ(u), qa]′(0) = X

It is clear that the tangent space at qa uniquely decomposes into a part
tangent to the slice and a part tangent to the orbit. Note that the orbit asso-
ciated to qa is 2-dimensional and V is 3-dimensional. However at other points
in Sa, the part tangent to the orbit grows to being 3-dimensional. Also note
that the action of Gqa is obviously closed in Sa and the third part of the slice
definition is satisfied.

We take {∂x1 , ∂y1 , ∂r2} as a basis for V and {∂ϕ2 , ∂t} as a a basis to the the
orthogonal counterpart, V ⊥. For orthogonality we have used a background
Euclidean metric, dr2

1 + dr2
2 + r2

1dϕ
2
1 + r2

2dϕ
2
2 + dt2. Let D be an open ball in V

centered at the origin. In the following approach we wish to consider smooth
G invariant metrics on the tube G ×Gqa D. These metrics correspond to met-
rics on an open set in the manifold M due to the tube theorem. There is
another correspondence between the G invariant metrics on the tube and Gqa

equivariant maps F where F : D → S2(V ⊕ V ⊥). The correspondence will be
demonstrated later on. The maps which use the mth order polynomials are
given by HomH(SmV, S2(V ⊕ V ⊥)). The reason for using HomH(SmV, S2(V ⊕ V ⊥))

is that the H-equivariance allows for a smooth extension of the polynomials
on a 2-dimensional section of D to the entirety of D [10, p. 113]. We can un-
derstand the S2(V ⊕ V ⊥) as corresponding to components of a metric. We have
from the section on representations that S2(ρ) = ρ2 ⊕ 1, thereby reducing S2(ρ)

to two irreducible representations. Here ρn(eiθ) = ρ(eniθ). We can now work out
S2(V ⊕ V ⊥) using the trivial representation on V ⊥.

S2(V ⊕ V ⊥) = S2(V )⊕ S2(V ⊥)⊕ (V ⊗ V ⊥) = S2(ρ⊕ 1)⊕ 31⊕ (21⊕ 2ρ)

= (ρ2 ⊕ 1⊕ ρ⊕ 1)⊕ 31⊕ (21⊕ 2ρ)

Let us consider the constant polynomials S0(V ) which is isomorphic to R. This
means there is a constant for each component of S2(V ⊕ V ⊥). Before we be-
gin we will translate r2 so that it is 0 at π(qa). We can normalize the metric
on the V part so that at the point in question, qa, the metric is of the form
(dx2

1 + dy2
1) + dr2

2. This is done by fixing an orthonormal basis at the qa and then
parallel translating the part of the orthonormal basis perpendicular to the
group along the normal geodesics. Thus we create geodesic coordinates which
are the coordinates of the slice x1, y1 and r2. Therefore the metric is Euclidean
at the origin.

We now consider the first order polynomials, HomGqa
(S1(V ), S2(V⊕V ⊥)) = HomGqa

(ρ⊕

50



M.Sc. Thesis – S. Zwarich McMaster University – Mathematics

1, (ρ2 ⊕ 1 ⊕ ρ ⊕ 1) ⊕ 31 ⊕ (21 ⊕ 2ρ). Note that in the codomain the generators of ρ2

are dx2
1 − dy2

1 and dx1dy1. The generators of the first ρ are dx1dr2 and dy1dr2. The
second ρ has generators dx1dt and dy1dt. The third ρ has generators dx1dϕ2 and
dy1dϕ2. The first 1 has as its generator (dx2

1 + dy2
1) . The generator of second,

third, fourth, and fifth copies of 1 are dr2
2, dϕ2

2, dt2 and dϕ2dt respectively. By
Schur’s lemma, we have that the only isomorphisms are the ones which map
its domain to itself. For ρ the arbitrary element in the domain is a∂x1 + b∂y1 .
The homomorphism maps this element to ε1(adx1dr2 + bdy1dr2) choosing the ρ

that is comprised of dx1dr2 and dy1dr2. However what we need is not the output
but the homomorphism itself. We can think of the homomorphism as being
ε1(∂x1)∗dx1dr2 + (∂y1)∗dy1dr2. Where (∂x1)∗ is the dual of ∂x1 and (∂y1)∗ is the dual
of ∂y1 . Because of the equivalence of S1(ρ) and P1(ρ) as representations we can
use ax1 + by1 when applying the group action but then convert back to vector
form before inputting back into the homomorphism. However this viewpoint
of homomorphism is well and good but there is a second viewpoint that of
the metric itself. To get the metric we take the sum of all the homomorphism
and input x1∂x1 + y1∂y1 + r2∂r2 where x1, y1 and r2 are now the coordinates. Both
viewpoints are stated below where g1 is the part of the metric which has order
1 homogeneous polynomials.

1→ 1, α1(∂r2)∗(dx2
1 + dy2

1)

1→ 1, β1(∂r2)∗dr2
2

1→ 1, γ1
1(∂r2)∗dϕ2

2

1→ 1, γ1
2(∂r2)∗dt22

1→ 1, γ1
3(∂r2)∗dϕ2dt

1→ 1, δ1(∂r2)∗(dr2dt+ dr2dϕ2)

ρ→ ρ, ε1((∂x1)∗dx1dr2 + (∂y1)∗dy1dr2)

ρ→ ρ, η1
1((∂x1)∗dx1dt+ (∂y1)∗dy1dt)

ρ→ ρ, η1
2((∂x1)∗dx1dϕ2 + (∂y1)∗dy1dϕ2)

g1 = α1r2(dx2
1 + dy2

1) + β1r2dr
2
2 + γ1

1r2dϕ
2
2 + γ1

2r2dt
2
2 + γ1

3r2dϕ2dt . . .

. . .+ ε1(x1dx1dr2 + y1dy1dr2) + η1
1(x1dx1dt+ y1dy1dt) + η1

2(x1dx1dϕ2 + y1dy1dϕ2)

Where δ1, η1
1, η1

2 are 0 if the orbit space is a section. We will show a
correspondence between Gqa invariance of the metric and Gqa equivariance of
the homomorphisms. Let fε1 be the homomorphism which takes ax1 + by1 and
sends it to ε1(x1dx1dr2 + y1dy1dr2) and let σ map m to eiθm. We will show that
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f(σ∗(a∂x1 + b∂y1)) = σ∗f(a∂x1 + b∂y1).

σ∗(ax1 + by1 + cr2) = (a cos(θ)− b sin(θ))x1 + (a sin(θ) + b cos(θ))y1 + cr2

fε1(σ∗(a∂x1 + b∂y1 + c∂r2)) = ε1((a cos(θ)− b sin(θ))dx1dr2 + (a sin(θ) + b cos(θ))dy1dr2)

= ε1((a(cos(θ)dx1 + b sin(θ)dy1)dr2 + b(− sin(θ)dx1 + cos(θ)dy1)dr2

= σ∗(fε1(a∂x1 + b∂y1) + c∂r2))

The last step follows since σ∗dr2 = dr2. Let fα1 be the homomorphism which
takes a∂x1 + b∂y1 + c∂r2 and sends it to α1(c(dx2

1 + dy2
1)). We will show that it is Gqa

invariant.

fα1(σ∗(a∂x1 + b∂y1 + c∂r2)) = α1c(dx2
1 + dy2

1)

α1cσ∗(dx2
1 + dy2

1) = α1c((cos(θ)dx1 + sin(θ)dy1)2 + (− sin(θ)dx1 + cos(θ)dy1)2) = cα1(dx2
1 + dy2

1)

fα1(σ∗(a∂x1 + b∂y1 + c∂r2)) = σ∗(fα1(a∂x1 + b∂y1 + c∂r2))

We now demonstrate equivariant maps like the ones shown above correspond
to a G invariant metric on the tube G ×Gqa D. The invariance should be true
under the stationary and bi-axisymmetric assumptions. So let’s demonstrate
it in action. The invariance due to the group elements corresponding to the S1

2

and R are trivial. But the invariance due to action from Gqa is not trivial. Let
σ map m to eiθm and note that σ∗g1(∂x1 , ∂r2) = (g1(σ∗∂x1 , σ∗∂r2)) ◦ σ. We have that:

σ∗∂x1 = cos(θ)∂x1 + sin(θ)∂y1

x1 ◦ σ = x1 cos(θ)− y1 sin(θ) y1 ◦ σ = x1 sin(θ) + y1 cos(θ) r2 ◦ σ = r2

g1(σ∗∂x1 , σ∗∂r2) ◦ σ = g1(cos(θ)∂x1 + sin(θ)∂y1 , ∂r2) ◦ σ

= ε1(cos(θ)x1 + sin(θ)y1) ◦ σ

= ε1(cos(θ)(x1 cos(θ)− y1 sin(θ)) + sin(θ)(x1 sin(θ) + y1 cos(θ)))

= ε1(x1) = g1(∂x1 , ∂r2)

This G invariance holds true for the other components of the metric thus you
can start to see the equivalence between Gqa equivariance of the homomor-
phisms and G invariance of the metric. We can express the metric in terms of
polar coordinates where x1 = r1 cos(ϕ1), and y1 = r1 sin(ϕ1) .

α1r1(dx2
1 + dy2

1) + β1r2dr
2
2 + ε1(x1dx1dr2 + y1dy1dr2) = α1r2dr

2
1 + ε1r1dr1dr2 + β1r2dr

2
2 + α1r2r

2
1dϕ

2
1

We now look at the m = 2 case. We are interested in HomGqa
(S2V, S2(V⊕V ⊥)) =

HomGqa
(ρ2⊕1⊕ρ⊕1, (ρ2⊕1⊕ρ⊕1)⊕31⊕(21⊕2ρ)). We now state both viewpoints and
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we take g2 to be the part of the metric with order 2 homogeneous polynomials.

1→ 1, α2(∂r2)∗ ⊗ (∂r2)∗(dx2
1 + dy2

1)

1→ 1, β2(∂r2)∗ ⊗ (∂r2)∗dr2
2

1→ 1, γ2
1(∂r2)∗ ⊗ (∂r2)∗dϕ2

2

1→ 1, γ2
2(∂r2)∗ ⊗ (∂r2)∗dt22

1→ 1, γ2
3(∂r2)∗ ⊗ (∂r2)∗dϕ2dt

1→ 1, γ2
4(∂r2)∗ ⊗ (∂r2)∗dϕ2

2

1→ 1, δ2(∂r2)∗ ⊗ (∂r2)∗(dr2dt+ dr2dϕ2)

1→ 1, ν2((∂x1)∗ ⊗ (∂x1)∗ + (∂y1)∗ ⊗ (∂y1)∗)dr2
2

1→ 1, µ2((∂x1)∗ ⊗ (∂x1)∗ + (∂y1)∗ ⊗ (∂y1)∗)(dx2
1 + dy2

1)

1→ 1, τ2
1 ((∂x1)∗ ⊗ (∂x1)∗ + (∂y1)∗ ⊗ (∂y1)∗)dϕ2

2

1→ 1, τ2
2 ((∂x1)∗ ⊗ (∂x1)∗ + (∂y1)∗ ⊗ (∂y1)∗)dt22

1→ 1, τ2
3 ((∂x1)∗ ⊗ (∂x1)∗ + (∂y1)∗ ⊗ (∂y1)∗)dϕ2dt

1→ 1, τ2
4 ((∂x1)∗ ⊗ (∂x1)∗ + (∂y1)∗ ⊗ (∂y1)∗)dϕ2

2

ρ⊗ 1→ ρ, ε2(∂r2)∗ ⊗ ((∂x1)∗dx1dr2 + (∂y1)∗dy1dr2)

ρ⊗ 1→ ρ, η2
1(∂r2)∗ ⊗ ((∂x1)∗dx1dt+ (∂y1)∗dy1dt)

ρ⊗ 1→ ρ, η2
2(∂r2)∗ ⊗ ((∂x1)∗dx1dϕ2 + (∂y1)∗dy1dϕ2)

ρ2 → ρ2, ι2(((∂x1)∗ ⊗ (∂x1)∗ − (∂y1)∗ ⊗ (∂y1)∗)(dx2
1 − dy2

1) + 4((∂x1)∗(∂y1)∗))dx1dy1

g2 = α2r2
2(dx2

1 + dy2
1) + β2r2

2dr
2
2 + γ2

1r
2
2dϕ

2
2 + γ2

2r
2
2dt

2
2 + γ2

3r
2
2dϕ2dt+ γ2

4r
2
2dϕ

2
2 + δ2r2

2(dr2dt+ dr2dϕ2) . . .

. . .+ ν2(x2
1 + y2

1)dr2
2 + µ2(x2

1 + y2
1)(dx2

1 + dy2
1) + τ2

1 (x2
1 + y2

1)dϕ2
2 + τ2

2 (x2
1 + y2

1)dt22 + τ2
3 (x2

1 + y2
1)dϕ2dt . . .

. . .+ τ2
4 (x2

1 + y2
1)dϕ2

2 + ε2r2(x1dx1dr2 + y1dy1dr2) + η2
1r2(x1dx1dt+ y1dy1dt) + η2

2r2(x1dx1dϕ2 + y1dy1dϕ2) . . .

. . .+ ι2((x2
1 − y2

1)dx2
1 + 4x1y1dx1dy1 − (x2

1 − y2
1)dy2

1)

Let fι2 be the last homomorphism above. We will show that it is Gqa invariant
where σ maps m to eiθm.

= fι2(σ∗(a∂x1 + b∂y1 + c∂r2))

= ι2((a cos(θ)− b sin(θ))2 − (a sin(θ) + cos(θ)b)2)(dx2
1 − dy2

1) + 4(a cos(θ)− b sin(θ))(a sin(θ) + cos(θ)b)dx1dy1

= ι2((a2 − b2) cos(2θ)− 2ab sin(2θ))(dx2
1 − dy2

1) + (2(a−b2) sin(2θ) + 4ab cos(2θ))dx1dy1)

= ι2((a2 − b2)(cos(2θ)(dx2
1 − dy2

1) + sin(2θ)2dx1dy1) + 2ab(− sin(2θ)(dx2
1 − dy2

1) + cos(2θ)2dx1dy1))

= ι2((a2 − b2)((cos(θ)dx1 + sin(θ)dy1)2 − (− sin(θ)dx1 + cos(θ)dy1)2) + 4ab((cos(θ)dx1 + sin(θ)dy1)(− sin(θ)dx1 + cos(θ)dy1))))

= σ∗fι2(a∂x1 + b∂y1 + c∂r2)
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We can convert the part of the metric tangent to the slice to polar form.

(α2r2
2 + µ2(x2

1 + y2
1) + ι2(x2

1 − y2
1))dx2

1 + (α2r2
2 + µ2(x2

1 + y2
1)− ι2(x2

1 − y2
1))dy2

1 + 2ι2(x1y1dx1dy1) . . .

. . .+ (β2r2
2 + ν2(x2

1 + y2
1))dr2

2 + ε2r2(x1dx1dr2 + y1dy1dr2) = (β2r2
2 + ν2r2

1)dr2
2 + ε2r1r2dr1dr2 . . .

. . .+ (α2r2
2 + (µ2 + ι2)r2

1)dr2
1 + (α2r2

2 + (µ2 − ι2)r2
1)r2

1dϕ
2
1

Now let’s consider an m degree homogeneous polynomial. Where m ≥ 3.

Sm(V ) = Sm(ρ⊕ 1) = (Sm(ρ)⊕ (Sm−1(ρ)⊗ 1)⊕ . . .⊕ (ρ⊗ 1)⊕ 1

The tensor product of 1 can be thought of as multiplying the contents of SN (ρ)

with an appropriate power of r2. It is therefore crucial to understand S2d+1(ρ)

and S2d(ρ) for d ≥ 1. Their decomposition into irreducible representations is
well understood. We have that they both decompose into rotations; more
specifically:

S2d+1(ρ) = ρ2d+1 ⊕ ρ2d−1 ⊕ . . .⊕ ρ S2d(ρ) = ρ2d ⊕ ρ2d−2 ⊕ . . .⊕ 1

However, we need to know the domain on which each rotation acts. Because
of Schur’s Lemma we really only need to know this for ρ2, ρ and 1 when they
appear in Sn(ρ). Let’s consider 1 when it appears in S2d(ρ). It is useful to
consider the eigenvectors of the rotation matrix associated to ρ. We associate
these eigenvectors to polynomials u and v which have eigenvalues eiθ and e−iθ

respectively.

u = ix1 + y1 v = −ix1 + y1

Consider the homogeneous polynomials of degree 2d. Consider them expressed
in terms of u and v. We have that ρ acts on each u by multiplying the u by
eiθ and each v by multiplying it by e−iθ. Therefore the 1-dimensional subspace
which is associated to 1 is given by multiples of the term udvd. We have that
udvd = (x2

1 + y2
1)d. Thus using the metric viewpoint we get the following where

we will call this part of the metric g1.

g1 =
∑
d,k

(
αk,drk2r

2d
1 (dx2

1 + dy2
1) + βk,drk2r

2d
1 dr2

2 + γk,d2 rk2r
2d
1 dt22 + γk,d3 rk2r

2d
1 dϕ2dt+ δk,drk2r

2d
1 (dr2dt+ dr2dϕ2)

)

Next consider the homogeneous polynomials of degree 2d + 1. Again ex-
pressed in terms of u and v. The two dimensional subspace associated with
ρ is given by multiples of udvd+1 and ud+1vd since these terms have eigenvalues
of e−iθ and eiθ respectively. This is of course over C since u and v are com-
plex; but we can reframe this over R. This is because x1u

dvd = x1(x2
1 + y2

1)d and
y1u

dvd = y1(x2
1 + y2

1)d is also a basis. This is due to the formulae: x1 = 1
2i

(u− v) and
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y1 = 1
2
(u+ v). Using the metric viewpoint we will call this part of the metric gρ.

gρ =
∑
d,k

(
εk,drk2r

2d
1 (x1dx1dr2 + y1dy1dr2) + ηk,d1 rk2r

2d
1 (x1dx1dt+ y1dy1dt) + ηk,d2 rk2r

2d
1 (x1dx1dϕ2 + y1dy1dϕ2)

)

Finally we revisit the homogeneous polynomials of degreed 2d but we analyze
the terms udvd+2 and ud+2vd which correspond to the eigenvalues e−2iθ and e2iθ

respectively. These form a basis for the ρ2 vector space. Consider u2 = (ix1 +

y1)2 = −(x2
1− y2

1) + 2ix1y1 and v2 = −(x2
1− y2

1)− 2ix1y1. Thus we have that udvd(x2
1− y2

1)

and udvd(2x1y1) is also a basis of the ρ2 vector space. We use the metric viewpoint
and name this part of the metric gρ2 .

gρ2 =
∑
k,d

ιk,d
(
rk2r

2d
1 ((x2

1 − y2
1)dx2

1 + 4x1y1dx1dy1 − (x2
1 − y2

1)dy2
1)

)

Thus you can see that the behaviour of Sm(V ) is similar to the m = 0, 1, 2 cases
just with different factors.

Since we used the background Euclidean metric on V we have to implement
the consequence of the Gauss Lemma. Let R =

√
x2

1 + y2
1 + r2

2, ω, and ϕ be
spherical coordinates. Then as R approaches 0 the metric on V , g|V minus
the background metric, g|Euc, is O(R2). Note that the constant term of g|V is
dx2

1 + dy2
1 + dr2

2 = dR2 +R2(dϕ2 + sin2(ϕ))dθ2 = g|Euc. The equation for x1, y1 and r2 in
terms of R, ϕ and ω is the following.

x1 = R sin(ω) cos(ϕ) y1 = R sin(ω) sin(ϕ) r2 = R cos(ω)

We now state the 1-forms dx1, dy1 and dr2 in terms of their spherical coordinate
counterparts.

dx1 = sin(ω) cos(ϕ)dR+R(cos(ω) cos(ϕ))dω −R(sin(ω) sin(ϕ1))dϕ

dy1 = sin(ω) sin(ϕ)dR+R(sin(ω) cos(ϕ))dϕ+R(cos(ω) sin(ϕ))dω

dr2 = cos(ω)dR−R sin(ω)dω

Now we don’t have to consider the m = 2 terms since they have R2 as their
minimum power of R. We now proceed with the m = 1 terms. These are stated
below:

= α1r2(dx2
1 + dy2

1) + β1r2dr
2
2 + ε1(x1dx1dr2 + y1dy1dr2)

Let’s calculate the terms with R degree 1 of the above expression and ignore
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all other terms.

= α1R cos(ω)(sin2(ω) cos2(ϕ)dR2 + sin2(ω) sin2(ϕ)dR2) + β1 cos(ω)R(cos2(ω)dR2) . . .

. . .+ ε1(R sin(ω) cos(ϕ) sin(ω) cos(ϕ) cos(ω)dR2 +R sin(ω) sin(ϕ) sin(ω) sin(ϕ) cos(ω)dR2)

= cos(ω)RdR2((α1 + ε1) sin2(ω) + β1 cos2(ω))

Thus the Gauss Lemma requires that α1 + ε1 = 0 and β1 = 0.

We now begin to state the conclusions. We wish to state that all compo-
nents are smooth functions of r2

1 and r2. We know that g(∂ϕ1 , ∂ϕ1) = r2
1 sin2(ϕ1)g(∂x1 , ∂x1)+

r2
1 cos2(ϕ1)g(∂y1 , ∂y1) − 2r2

1(sin(ϕ1) cos(ϕ1)g(∂x1 , ∂y1) The 1 terms correspond to func-
tions of r2

1 and r2. The ρ terms are absent from the above coefficients of the
metric. The ρ2 terms correspond to a sum. Each term in the summation
is a smooth function of r2

1 and r2 multiplying (x2
1 − y2

1)(r2
1 sin2(ϕ1) − r2

1 cos2(ϕ1))) +

4x1y1(−r2
1(sin(ϕ1) cos(ϕ1)) = r4

1. Therefore g(∂ϕ1 , ∂ϕ1) is a smooth function of r2
1 and

r2. We have that the constant term in g(∂x1 , ∂x1) and g(∂y1 , ∂y1) produces r2
1 as

a factor out front in g(∂ϕ1 , ∂ϕ1). We have that g(∂t, ∂t), g(∂t, ∂ϕ2) and g(∂ϕ2 , ∂ϕ2)

are smooth functions of r2
1 and r2. We have that g(∂r1 , ∂r1) = cos2(ϕ1)g(∂x1 , ∂x1) +

sin2(ϕ1)g(∂y1 , ∂y1) + 2 sin(ϕ1) cos(ϕ1)g(∂x1 , ∂y1). The 1 terms are smooth functions of
r2
1 and r2. Again the ρ terms are absent. The ρ2 terms correspond to a sum.

Each term in the summation is a smooth function of r2
1 and r2 multiplying

(x2
1 − y2

1)(cos2(ϕ1) − sin2(ϕ1)) + 4x1y1(sin(ϕ1) cos(ϕ1))) = r2
1. Thus g(∂r1 , ∂r1) is a smooth

function of r2
1 and r2. Next consider g(∂r1 , ∂ϕ1) = −r1 cos(ϕ1) sin(ϕ1)g(∂x1 , ∂x1) +

r1 cos(ϕ1) sin(ϕ1)g(∂y1 , ∂y1) + r1(cos2(ϕ1)− sin2(ϕ1))g(∂x1 , ∂y1). We have that the 1 terms
occur identically in g(∂x1 , ∂x1) and g(∂y1 , ∂y1) thus they cancel. The ρ terms
are absent. The ρ2 terms correspond to a sum. Each term in the summa-
tion is a smooth function of r2

1 and r2 multiplying r1 cos(ϕ1) sin(ϕ1)(−2(x2
1 − y2

1)) +

r1(cos2(ϕ1) − sin2(ϕ1))2x1y1 = 0. Therefore g(∂r1 , ∂ϕ1) = 0. We have that g(∂ϕ1 , ∂ϕ2) =

−r1 sin(ϕ1)g(∂x1 , ∂ϕ2) + r1 cos(ϕ1)g(∂y1 , ∂ϕ2). The only terms present are the ρ terms.
We see that we get a cancellation thus g(∂ϕ1 , ∂ϕ2) = 0. We have by the same
reasoning that g(∂ϕ1 , ∂t) = 0. Assuming the metric on the base is conformal to
the flat metric we have that g(∂r1 , ∂r2) = 0 and g(∂r2 , ∂r2) = g(∂r1 , ∂r1). Also note
that g(∂r2 , ∂ϕ1) = 0. Since we have a section we have that g(X, ∂r1) = g(X, ∂r2) = 0

for X tangent to the full group G.

Now we convert the metric into r and r form. We use the coordinate transfor-
mation in (4.0.1). We also have to factor in how this coordinate transformation
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affects the metric components.

g(∂r, ∂r) =

((
∂r1

∂r

)2

+

(
∂r2

∂r

)2)
g(∂r1 , ∂r1)

=
1

4

(
1√

r2 + (r + a)2 − r

(
r√

r2 + (r + a)2

)2

+
1√

r2 + (r + a)2 + r

(
r√

r2 + (r + a)2

)2)
g(∂r1 , ∂r1)

=
r2

4(r2 + (r + a)2)

2
√
r2 + (r + a)2

r2
g(∂r1 , ∂r1) =

1

2
√
r2 + (r + a)2

g(∂r1 , ∂r1)

Thus in a neighbourhood around the point π(qa) we have that the metric com-
ponents are smooth functions of r2 and r. This is because in the expression for
r1, r + a is positive thus the expression in the square root is non zero. For the
g(∂ϕ1 , ∂ϕ1) term we have a factor of r2

2a
out front.

r2
1 =

√
r2 + (r + a)2 − (r + a) =

r2√
r2 + (r + a)2 + r + a

∼ r2

2a

4.2 Corner Point

We now consider the action on the slice at the corner qc. We will call the
tangent space of Sc to be W . There are two rotations at play on Sc. This is
because the isotropy group is S1

1 × S1
2 × {1}. Take an arbitrary element of Sc,

(x1, y1, x2, y2). The slice representation is described below.


cos(θ1) − sin(θ1) 0 0

sin(θ1) cos(θ1) 0 0

0 0 cos(θ2) − sin(θ2)

0 0 sin(θ2) cos(θ2)



x1

y1

x2

y2


We take a basis {∂x1 , ∂y1 , ∂x2 , ∂y2} of W and a basis of the orthogonal counter-

part to be W⊥ = {∂t}. We have used the Euclidean metric as the background
metric when we made this orthogonal decomposition. Let E be an open ball
inside W centered on the origin. We consider smooth G-invariant metrics on
the tube G ×Gqc E. These again correspond to metrics on an open set in M

due to the tube theorem. There is a correspondence between the G invariant
metrics on the tube and Gqc equivariant maps F where F : E → S2(W ⊕W⊥). The
maps which use mth order polynomials with values in S2(W ⊕W⊥) are given by
HomH(SmW,S2(W ⊕W⊥)). We can understand the S2(W ⊕W⊥) as corresponding
to components of a symmetric metric.
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To proceed with the smoothness conditions we compute S2(W ⊕W⊥).

S2((ρ1 ⊕ ρ2)⊕ 1) = S2(ρ1 ⊕ ρ2)⊕ ((ρ1 ⊕ ρ2)⊗ 1)⊕ 1

= ((ρ2
1 ⊕ 1)⊕ (ρ2

2 ⊕ 1)⊕ (ρ1 ⊗ ρ2))⊕ ((ρ1 ⊕ ρ2)⊗ 1)⊕ 1

Note that ρ1 ⊗ ρ2 is not an irreducible representation of S1
1 × S1

2 × {1}, but ρ2
1 is

an irreducible representation of S1
1 × S1

2 × {1} . To see this we let u1 and v1 be
eigenvectors of the S1

1 part with eigenvalues eiθ1 and e−iθ1 respectively. Let u2

and v2 be eigenvectors of the S1
2 part with eigenvalues eiθ2 and e−iθ2 respectively.

We see that ρ1 ⊗ ρ2 splits into 2 irreducible representations.

ρ1 ⊗ ρ2(u1u2) = ei(θ1+θ2)u1u2 ρ1 ⊗ ρ2(v1v2) = e−i(θ1+θ2)v1v2

ρ1 ⊗ ρ2(u1v2) = ei(θ1−θ2)u1v2 ρ1 ⊗ ρ2(u2v1) = e−i(θ1−θ2)u2v1

We write ρ1 ⊗ ρ2 = ρ1+2 ⊕ ρ1−2 to denote this decomposition into irreducible
representations. We can express the domain of ρ1+2 as span(x1x2 − y1y2, x1y2 +

y1x2). Similarly we can express the domain of ρ1−2 as span(x1x2 +y1y2, x1y2−y1x2).
However ρ2

1 is irreducible.

ρ2
1(u1u2) = e2iθ1u1u2 ρ2

1(v1v2) = e−2iθ1v1v2

ρ2
1(u1v2) = e2iθ1u1v2 ρ2

1(u2v1) = e−2iθ1u2v1

We now consider the constant polynomials S0(W ) which is isomorphic to R.
As in the previous section we can normalize the W part of the metric to be
(dx2

1 + dy2
1) + (dx2

2 + dy2
2).

Moving on to m = 1 we have that S1(W ) = ρ1⊕ ρ2. We have two homomorphisms
given below:

ρ1 → ρ1, ξ1
1((∂x1)∗dx1dt+ (∂y1)∗dy1dt)

ρ2 → ρ2, ξ1
2((∂x2)∗dx2dt+ (∂y2)∗dy2dt)

It is easy to see these homomorphisms are Gqc equivariant since this case
is analogous to what was shown in the m = 1 case for qa.

We now consider the m = 2 case. We have that S2(W ) = ((ρ2
1 ⊕ 1) ⊕ (ρ2

2 ⊕ 1) ⊕
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(ρ1 ⊗ ρ2))⊕ ((ρ1 ⊕ ρ2)⊗ 1). The homomorphisms are given below.

1→ 1, σ2
1((∂x1)∗ ⊗ (∂x1)∗ + (∂y1)∗ ⊗ (∂y1)∗)dt2

1→ 1, σ2
2((∂x2)∗ ⊗ (∂x2)∗ + (∂y2)∗ ⊗ (∂y2)∗)dt2

1→ 1, ζ2
11((∂x1)∗ ⊗ (∂x1)∗ + (∂y1)∗ ⊗ (∂y1)∗)(dx2

1 + dy2
1)

1→ 1, ζ2
12((∂x1)∗ ⊗ (∂x1)∗ + (∂y1)∗ ⊗ (∂y1)∗)(dx2

2 + dy2
2)

1→ 1, ζ2
21((∂x2)∗ ⊗ (∂x2)∗ + (∂y2)∗ ⊗ (∂y2)∗)(dx2

1 + dy2
1)

1→ 1, ζ2
22((∂x2)∗ ⊗ (∂x2)∗ + (∂y2)∗ ⊗ (∂y2)∗)(dx2

2 + dy2
2)

ρ2
1 → ρ2

1, χ2
1(((∂x1)∗ ⊗ (∂x1)∗ − (∂y1)∗ ⊗ (∂y1)∗)(dx2

1 − dy2
1) + 4(∂x1)∗ ⊗ (∂y1)∗dx1dy1)

ρ2
2 → ρ2

2, χ2
2(((∂x2)∗ ⊗ (∂x2)∗ − (∂y2)∗ ⊗ (∂y2)∗)(dx2

2 − dy2
2) + 4∂x2)∗ ⊗ (∂y2)∗dx2dy2)

ρ1+2 → ρ1+2, υ2
1

(
((∂x1)∗ ⊗ (∂x2)∗ − (∂y1)∗ ⊗ (∂y2)∗)(dx1dx2 − dy1dy2) . . .

. . .+ ((∂x1)∗ ⊗ (∂y2)∗ + (∂y1)∗ ⊗ (∂x2)∗)(dx1dy2 + dy1dx2)

)
ρ1−2 → ρ1−2, υ2

2

(
((∂x1)∗ ⊗ (∂x2)∗ + (∂y1)∗ ⊗ (∂y2)∗)(dx1dx2 + dy1dy2) . . .

. . .+ ((∂x1)∗ ⊗ (∂y2)∗ − (∂y1)∗ ⊗ (∂x2)∗)(dx1dy2 − dy1dx2)

)

The part of the metric with order 2 homogeneous polynomials is called g2. We
state it below.

g2 = σ2
1(x2

1 + y2
1)dt2 + σ2

2(x2
2 + y2

2)dt2 + ζ2
11(x2

1 + y2
1)(dx2

1 + dy2
1) + ζ2

12(x2
1 + y2

1)(dx2
2 + dy2

2) . . .

. . .+ ζ2
21(x2

2 + y2
2)(dx2

1 + dy2
1) + ζ2

22(x2
2 + y2

2)(dx2
2 + dy2

2) + χ2
1((x2

1 − y2
1)(dx2

1 − dy2
1) + 4x1y1dx1dy1) . . .

. . .+ χ2
2((x2

2 − y2
2)(dx2

2 − dy2
2) + 4x2y2dx2dy2) . . .

. . .+ υ2
1((x1x2 − y1y2)(dx1dx2 − dy1dy2) + (x1y2 + y1x2)(dx1dy2 + dy1dx2)) . . .

. . .+ υ2
2((x1x2 + y1y2)(dx1dx2 + dy1dy2) + (x1y2 − y1x2)(dx1dy2 − dy1dx2))

The Gqc equivariance for the χ2
1 and χ2

2 terms is analogous to what was shown
in the m = 2 case for qa. The only real different case is the υ2

1 and υ2
2 terms. Let

fυ2
1

be the homomorphism corresponding to υ2
1. We let σ map m in M to its

image under the group action, i.e (eθ1 , eiθ2)m. Before computing we can simplify
the calculation by factorizing.

fυ2
1
(a1∂x1 + b1∂y1 + a2∂x2 + b2∂y2) = (a1a2 − b1b2)(dx1dx2 − dy1dy2) + (a1b2 + a2b1)(dx1dy2 + dy1dx2)

= (a1dx1 + b1dy1)(a2dx2 + b2dy2)− (b1dx1 − a1dy1)(b2dx2 − a2dy2)
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We really only need to check one of the factors in the second term.

= (sin(θ1)a1 + cos(θ1)b1)dx1 − (cos(θ1)a1 − sin(θ1)b1)dy1

= a1(sin(θ1)dx1 − cos(θ1)dy1) + b1(cos(θ1)dx1 + sin(θ1)dy1)

= −a1σ
∗dy1 + b1σ

∗dx1

The same Gqc equivariance above holds for second factor of the second term.

Next we consider Sm(W ) for general m. We have that Sm(W ) = (Sm(ρ1)⊗ 1)⊕
(Sm−1(ρ1)⊗S1(ρ2))⊕ . . .⊕((Sm−1(ρ2)⊗S1(ρ1))⊕((Sm(ρ1)⊗1)). Consider Sk(ρ1)⊗Sm−k(ρ2).
We have 4 cases.

Case I, if k is even and m − k is also even. With Schur’s Lemma in mind,
ignoring terms which are more than double rotations we have the follow-
ing. (ρ2

1 ⊕ 1) ⊗ (ρ2
2 ⊕ 1). The only resulting representations that survive Schur’s

Lemma are 1 ⊗ 1, ρ2
1 ⊗ 1 and ρ2

2 ⊗ 1. For 1 ⊗ 1 the corresponding polyno-
mial is (x2

1 + y2
1)
k
2 (x2

2 + y2
2)
m−k

2 . For the corresponding part of the metric we
obtain a multiple of (x2

1 + y2
1)
k
2 (x2

2 + y2
2)
m−k

2 ω. Where ω is either dt2, dx2
1 + dy2

1

or dx2
2 + dy2

2. For ρ2
1 ⊗ 1 our polynomials are (x2

2 + y2
2)
m−k

2 ((x2
1 − y2

1))(x2
1 + y2

1)
k−2

2

and (x2
2 + y2

2)
m−k

2 2(x1y1)(x2
1 + y2

1)
k−2

2 . The corresponding part of the metric is
given by a multiple of (x2

2 + y2
2)
m−k

2 ((x2
1 − y2

1)(dx2
1 − dy2

1) + 4x1y1dx1dy1)(x2
1 + y2

1)
k−2

2 .
For ρ2

2 ⊗ 1, our polynomials are given by (x2
1 + y2

1)
k
2 (x2

2 − y2
2)(x2

2 + y2
2)
m−k−2

2 and
2(x2y2)(x2

1 + y2
1)
k
2 (x2

2 + y2
2)
m−k−2

2 . Thus our corresponding part of the metric is a
multiple of (x2

1 + y2
1)
k
2 ((x2

2 − y2
2)(dx2

2 − dy2
2) + 4x2y2dx2dy2)(x2

2 + y2
2)
m−k−2

2

For Case II, if k is odd and m−k is even. Then we have ρ1⊗(ρ2
2⊕1). The only rep-

resentation that survives is ρ1⊗1. Our polynomials are (x2
1 + y2

1)
k−1

2 x1(x2
2 + y2

2)
m−k

2

+(x2
1 + y2

1)
k−1

2 y1(x2
2 + y2

2)
m−k

2 . Thus the corresponding part of the metric is a mul-
tiple of : (x2

1 + y2
1)
k−1

2 (x2
2 + y2

2)
m−k

2 (x1dx1dt+ y1dy1dt).

Case III, if k is even and m−k is odd. Then we have (ρ2
1⊕1)⊗ (ρ2). The only rep-

resentation that survives is ρ2⊗1. Our polynomials are (x2
1 + y1)

k
2 (x2

2 + y2)
m−k−1

2 x2

and (x2
1 + y1)

k
2 (x2

2 + y2)
m−k−1

2 y2. Thus our corresponding part of the metric is a
multiple of: (x2

1 + y1)
k
2 (x2

2 + y2
2)
m−k−1

2 (x2dx2dt+ y2dy2dt).

Case IV, k is odd and m−k is odd. Then the only representation that survives is
ρ1⊗ρ2 = ρ1+2⊕ρ1−2. Our polynomials for ρ1+2 are (x2

1+y2
1)
k−1

2 (x1x2−y1y2)(x2
2+y2

2)
m−k−1

2

and (x2
1 + y2

1)
k−1

2 (x1y2 + x2y1)(x2
2 + y2

2)
m−k−1

2 . Thus our part of the metric is a mul-
tiple of (x2

1 + y2
1)
k−1

2 (x2
2 + y2

2)
m−k−1

2 ((x1x2 − y1y2)(dx1dx2 − dy1dy2) + (x1y2 + x2y1)(dx1dy2 +

dy1dx2). Our polynomials for ρ1−2 are (x2
1 + y2

1)
k−1

2 (x1x2 + y1y2)(x2
2 + y2

2)
m−k−1

2 and
(x2

1 +y2
1)
k−1

2 (x1y2−x2y1)(x2
2 +y2

2)
m−k−1

2 . Thus our part of the metric is a multiple of
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(x2
1 + y2

1)
k−1

2 (x2
2 + y2

2)
m−k−1

2 ((x1x2 + y1y2)(dx1dx2 + dy1dy2) + (x1y2 − x2y1)(dx1dy2 − dy1dx2).

We now calculate the essential part of the ρ1+2 term of the metric using ri

and ϕi (i=1,2).

= (x1x2 − y1y2)(dx1dx2 − dy1dy2) + (x1y2 + x2y1)(dx1dy2 + dy1dx2)

= (x1dx1 + y1dy1)(x2dx2 + y2dy2)− (y1dx1 − x1dy1)(y2dx2 − x2dy2)

= r1r2dr1dr2 − r2
1r

2
2dϕ1dϕ2

We now perform a similar calculation for the essential part of the ρ1−2 term of
the metric using ri and ϕi (i=1,2).

= (x1x2 + y1y2)(dx1dx2 + dy1dy2) + (x1y2 − x2y1)(dx1dy2 − dy1dx2)

= (x1dx1 + y1dy1)(x2dx2 + y2dy2) + (y1dx1 − x1dy1)(y2dx2 − x2dy2)

= r1r2dr1dr2 + r2
1r

2
2dϕ1dϕ2

We now implement the consequences of the Gauss Lemma. Here the Euclidean
metric is g|Euc = dx2

1 + dx2
2 + dy2

1 + dy2
2. We have that R′ =

√
r2
1 + r2

2. We have that
our metric on the slice, g|W differs from g|Euc by O((R′)2). We have the following
coordinate transformation:

x1 = R′ cos(ω) cos(ϕ1) y1 = R′ cos(ω) sin(ϕ1)

x2 = R′ sin(ω) cos(ϕ2) y2 = R′ sin(ω) sin(ϕ2)

We are in the clear since the lowest non constant terms are the quadratic terms
made up of x2

i and y2
i . We have that x2

i ∝ (R′)2 and y2
i ∝ (R′)2. The lowest power

of R′ in the dxi and dyi terms is a constant. Multiplying them together we get
a lowest power of (R′)2. Therefore the Gauss Lemma is satisfied.

Now we collect together all this information into a conclusion. We have
that g(∂t, ∂t) is a smooth function of r2

1 and r2
2. Since we are assuming the

metric on the base is conformal to the flat metric we have that g(∂r1 , ∂r1) =

g(∂r2 , ∂r2) and g(∂r1 , ∂r2) = 0. We have that g(∂r1 , ∂r1) is a smooth function of
r2
1 and r2

2. We have that g(∂ϕ1 , ∂ϕ1) is a smooth function of r2
1 and r2

2 with

∂r1r1

(
g(∂ϕ1 , ∂ϕ1)

)∣∣∣∣
(0,0)

= 2 and all lower order derivatives vanish. We have that

g(∂ϕ2 , ∂ϕ2) is a smooth function of r2
1 and r2

2 with ∂r2r2

(
g(∂ϕ1 , ∂ϕ1)

)∣∣∣∣
(0,0)

= 2 and all

lower order derivatives vanish. Interestingly we see a non zero g(∂ϕ1 , ∂ϕ2) term
appearing which is also a smooth function of r2

1 and r2
2. Furthermore it satisfies

∂r2r2

(
g(∂ϕ1 , ∂ϕ2)

)∣∣∣∣
(0,0)

= ∂r1r1

(
g(∂ϕ1 , ∂ϕ2)

)∣∣∣∣
(0,0)

= 2 where all lower order derivatives
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vanish. We have that g(∂t, ∂ϕ1) = 0 and g(∂t, ∂ϕ2) = 0 due to cancellations in the
ρ1 terms and the ρ2 terms respectively. Again since we have a section, we have
that g(∂r1 , X) = g(∂r2 , X) = 0 when X is tangent to the full group G.

This is well good but we must convert the metric to r and r. If we examine
the g(∂ϕ1 , ∂ϕ1) term we have that when r = 0 and r → 0 it behaves like r. This is
because r2

1(r, 0) =
√
r2 + 02 − 0 = r. Similarly we have that g(∂ϕ2 , ∂ϕ2) term behaves

like r when r = 0 and r → 0. This is because r2
2(r, 0) =

√
r2 + 02 + 0 = r. We

also have that r2 = r2
1r

2
2 implies that g(∂ϕ1 , ∂ϕ2) behaves like r2. We can use

the smoothness conditions at points in the interior of the axis rod to rule
out non-zero g(∂ϕ1 , ∂ϕ2) everywhere near the r axis except possibly for a line
segment extending orthogonally from the corner point. In the next subsection
we discuss real analyticity under a certain ellipticity assumption which would
rule this out. However this may not matter so much since the examples we
are studying satisfy g(∂ϕ1 , ∂ϕ2) = 0. What about g(∂r, ∂r)?

g(∂r, ∂r) =
1√

r2 + r2
g(∂r1 , ∂r1)

Therefore we have the somewhat paradoxical result that g(∂r1 , ∂r1) behaves like
r−1 when r = 0 and r → 0. However this is necessary for smoothness on the level
of the manifold itself although the metric is not smooth everywhere in the orbit
space. Actually as you can see this is only really a coordinate phenomenon.
We will see that the metric in example 2 of the 5D static paper shows this
behaviour. Note that when r 6= 0 we have that the metric is a smooth function
of r2 and r.

4.3 Consequences of the Smoothness Condi-

tion for the Twist Potentials

Here we break from the chapter’s convention and use z over r. We will now
prove that under a certain ellipticity assumption, the case where the z-axis
consists of (1, 0) and (0, 1) rods yields constant twist potentials and furthermore
the metric reduces to the ansatz in Khuri et al.’s paper[18, p. 6] which implies
that the metric on the fibre is diagonal. We have that K and L from chapter
2 satisfy the equations:

0 = Kr + Lz +
K

r
0 = Kz − Lr − [K,L]
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By [8, p. 505] we have that this system of PDEs is elliptic. It is worth reading
the examples they work out. Our characteristic determinant is:∣∣∣∣∣ ξ∂Kr (Kr + Lz + K

r
) η∂Lz ((Kr + Lz + K

r
)

η∂Kz (Kz − Lr − [K,L]) ξ∂Lr (Kz − Lr − [K,L])

∣∣∣∣∣ =

∣∣∣∣∣ξ η

η −ξ

∣∣∣∣∣ = −(η2 + ξ2)

Since the determinant is 0 iff η = ξ = 0 we know it is elliptic. Then, according to
[24, p. 198] the system (3.8.2) is real analytic in the interior of the orbit space.
That means that H−1Hr = K is real analytic and H−1Hz = L is real analytic.
Thus we can start to piece together real analyticity of H. We use (3.7.1)

K11 = −f−1fr + 2r−1 − fr−2vTr Fv

K1• = −fr−2vTr F

K•1 = (f−1fr − 2r−1)v + fr−2(vvTr Fv) + vr + F−1Frv

K•• = fr−2vvTr F + F−1Fr

L11 = −f−1fz − fr−2vTz Fv

L1• = −fr−2vTz F

L•1 = (f−1fz)v + fr−2(vvTz v) + vr + F−1Fzv

L•• = fr−2vvTz F + F−1Fz

We can use these to relations to fit v into a system of two PDEs which are real
analytic in their arguments.

K•1 −K••v =

(
fr
f
− 2

r

)
v + vr

K11 −K1•v = −
(
fr
f
− 2

r

)
K•1 −K••v = −(K11 −K1•v)v + vr

We now break these down into their explicit form in terms of v1 and v2.

K21 −K22v
1 −K23v

2 = −(K11 −K12v
1 −K13v

2)v1 + v1
r

0 = K23v
2 −K21 + (K22 −K11)v1 +K12(v1)2 +K13v

2v1 + v1
r

= φ1

K31 −K32v
1 −K33v

2 = −(K11 −K12v
1 −K13v

2)v2 + v2
r

0 = −K31 +K32v
1 + (K33 −K11)v2 +K13(v2)2 +K12v

2v1 + v2
r

= φ2
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We now compute the determinant of the system.∣∣∣∣∣ξ(φ1)v1
r

(φ1)v2

(φ2)v1 ξ(φ2)v2
r

∣∣∣∣∣ =

∣∣∣∣∣ ξ K23 +K13v
1

K32 +K12v
2 ξ

∣∣∣∣∣ = ξ2 − (K23 +K13v
1)(K32 +K12v

2)

Clearly for this system to be elliptic by [8, p. 505] we need to assume that
(K23 + K13v

1)(K32 + K12v
2) ≤ 0. We can widdle down this expression by using

(3.7.1).

0 ≥ 1

f
(f22(f12)r − f12(f22)r)

1

f
(f11(f12)r − f12(f11)r)

0 ≥ f2
22f

2
11

f2

(
f12

f22

)
r

(
f12

f11

)
r

0 ≥
(
f12

f22

)
r

(
f12

f11

)
r

The last step follows since F is positive definite in the interior. Working under
this assumption, by [24, p. 198] we know that v1 and v2 must be real analytic
in the interior of the half plane. By the equation for K1• we have that −r−2fvTr F

is real analytic. Then by the equation for K•• we know that F−1Fr must be real
analytic. We also know by the equations for L1• and L•• that F−1FZ must be
real analytic. So we have that fr

f
= tr(F−1Fr) is real analytic and fz

f
= tr(F−1Fz)

is also real analytic. Therefore log(f) is real analytic and thus so is f . Now let’s
prove that F is real analytic. Let f12 = uf22. We can work out f11 in terms of
f22, u and f .

f = f11f22 − f2
12

f11 =
f

f22
+

(uf22)2

f22
=

f

f22
+ u2f22

Note that f22 is never 0 in the interior since F is positive definite in the interior.
We can now calculate Fr and F−1.

F−1 =
1

f

(
f22 −uf22

−uf22
f
f22

+ u2f22

)

Fr =

 fr
f22
− (f22)rf

f2
22

+ 2uruf22 + u2(f22)r urf22 + (f22)ru

urf22 + (f22)ru (f22)r


We now calculate F−1Fr.

(F−1Fr)11 =
1

f

(
fr −

f(f22)r
f22

+ 2uruf
2
22 + u2(f22)rf22 − uurf2

22 − f22(f22)ru
2

)
=
fr
f
− (f22)r

f22
+ uru

f2
22

f
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(F−1Fr)12 =
1

f

(
f2

22ur + f22(f22)ru− uf22(f22)r

)
=
f2

22ur
f

(F−1Fr)21 =
1

f

(
− ufr +

uf(f22)r
f22

− 2uru
2f2

22 − u3(f22)rf22 + fur +
f(f22)ru

f22
+ u3(f22)rf22 + u2urf22

)
= −ufr

f
+
u(f22)r
f22

+
u(f22)r
f22

− uru
2f2

22

f
+ ur

(F−1Fr)22 =
1

f

(
− uurf2

22 − u2f22(f22)r +
f(f22)r
f22

+ u2f22(f22)r

)
= −uurf

2
22

f
+

(f22)r
f22

We now calculate F−1Fz.

Fz =

 fz
f22
− (f22)zf

f2
22

+ 2uzuf22 + u2(f22)z uzf22 + (f22)zu

uzf22 + (f22)zu (f22)z



(F−1Fz)11 =
1

f

(
fz −

f(f22)z
f22

+ 2uzuf
2
22 + u2(f22)zf22 − uuzf2

22 − f22(f22)zu
2

)
=
fz
f
− (f22)z

f22
+ uzu

f2
22

f

(F−1Fz)12 =
1

f

(
f2

22uz + f22(f22)zu− uf22(f22)z

)
=
f2

22uz
f

(F−1Fz)21 =
1

f

(
− ufr +

uf(f22)z
f22

− 2uzu
2f2

22 − u3(f22)zf22 + fuz +
f(f22)zu

f22
+ u3(f22)zf22 + u2uzf22

)
= −ufz

f
+
u(f22)z
f22

+
u(f22)z
f22

− uzu
2f2

22

f
+ uz

(F−1Fz)22 =
1

f

(
− uuzf2

22 − u2f22(f22)z +
f(f22)z
f22

+ u2f22(f22)z

)
= −uuzf

2
22

f
+

(f22)z
f22

As with v we can derive a PDE in terms of u with real analytic arguments.

(F−1Fr)21 − u(F−1Fr)22 = −u(F−1Fr)11 − u(F−1Fr)12) + ur

This PDE is trivially elliptic. Which means u is real analytic in the inte-
rior. This implies (f22)r

f22
and (f22)z

f22
are real analytic by looking at (F−1Fr)22 and

(F−1Fz)22. This in turn implies f22 is real analytic in the interior. Since f12 = uf22,
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f12 must be real analytic in the interior. And, since f11 = f
f22

+ u2f22, f11 is real
analytic in the interior. This implies gf , the metric on the fibre, is real analytic
in the interior.

Now enter the smoothness conditions. We have that f12 is 0 in an open
neighbourhood of the point on the axis rod. Since f12 is real analytic in the
interior it must be 0 everywhere. We also have that g12 = 0 and g13 = 0 in an open
neighbourhood of the corner point. Since g12 = f11v

1 + f12v
2 and g13 = f12v

1 + f22v
2

we have that since F is positive definite in the interior that v1 and v2 must
be 0 in the open neighbourhood. By the relation between the vi and the
twist potentials derived in chapter 2 we have that the twist potentials must
be constant in the open neighbourhood. By the real analyticity of the twist
potentials they must be constant in the interior. We thus force the metric to
be diagonal everywhere in the interior. In addition α is real analytic without
the elliptical assumption. This is because of (3.1.3).
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Chapter 5

Various Forms of the
Schwarschild Solution

5.1 Derivation of the Schwarzschild Solution

Finding and interpreting solutions to the Einstein equations is of fundamental
importance. Solutions to the Einstein equations in a vacuum, in 4-D spacetime,
can be found by imposing that the metric be Ricci flat. The Schwarzschild
solution is an exact Ricci-flat solution which will be used later on in this
chapter to construct periodic exact solutions. In this section we show in detail
how the Schwarzschild solution is constructed, omitting the consequences of it
being Ricci flat from the calculations. In order to construct the Schwarzschild
solution we will need to understand what stationary, static and spherically
symmetric manifolds are. The Schwarzschild solution is assumed to be static
and spherically symmetric.

Definition 5.2. [30, p. 119] A stationary manifold is a Lorentz manifold
which admits a local 1-parameter group of isometries whose orbits are time-
like curves.

Theorem 5.3. [30, p. 119] The previous definition of a stationary manifold is
equivalent to one which possesses a timelike Killing vector field. We will call
this vector field ξ and members of the 1-parameter group will be denoted by ϕt.

Proof. Suppose our manifold, M, is stationary using the previous definition.
Let m be a point in M and we will define the curve γm by γm(t) = ϕtm. This
curve gives the orbit of m under the 1-parameter group. We define the vector
field ξ to be one whose flow is ϕt. By our hypothesis, we know that γm are
timelike curves. By the definition of an integral curve we can conclude that ξ

is timelike. To check that ξ is a Killing vector field we will see what happens
when we take the Lie derivative of the metric, g, in the direction of ξ. Let X
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and Y be two arbitrary vector fields over M. The below expression we use the
formula for the Lie derivative of a (0, 2) tensor which is stated in the tensor
field section.

(Lξg)(X,Y ) = ξ(g(X,Y ))− g(LξX,Y )− g(X,LξY )

g(LξX,Y ) = g

(
−
(
d

dt
(ϕt)∗X

) ∣∣∣∣
t=0

, Y

)
= − d

dt
(g((ϕt)∗X,Y ))

∣∣∣∣
t=0

= − d

dt
(g(X, (ϕ−t)∗Y ) ◦ ϕ−t)

∣∣∣∣
t=0

We now use the fact that we’re taking the derivative of a function of the
form, f(t, g(t)), so we have to use the chain rule accordingly. Let (x1, . . . , xn) be
coordinates at m.

− d

dt
(g(X, (ϕ−t)∗Y ) ◦ ϕ−t)

∣∣∣∣
t=0

(m) = −
(
d

dt
(g(X, (ϕ−t)∗Y ))

∣∣∣∣
t=0

◦ ϕ0

)
(m) . . .

. . .−
(

∂

∂xi
(g(X, (ϕ0)∗Y ))

d(xi ◦ ϕ−t)
dt

∣∣∣∣
t=0

)
(m)

= g

(
X,

(
d

dt
(ϕt)∗ Y

) ∣∣∣∣
t=0

)
(m) + ξ(g(X,Y ))(m)

− d

dt
(g(X, (ϕ−t)∗Y ) ◦ ϕ−t)

∣∣∣∣
t=0

= −g (X,LξY ) + ξ(g(X,Y ))

So we see that all terms cancel so Lξg = 0

Now suppose our manifold, M, has a timelike Killing vector field ξ. Let ϕt

be the local flow of ξ. We will show that it is an isometry. let s be an arbitrary
real number.

d

dt

∣∣∣∣
t=s

(ϕt)
∗g =

d

dt

∣∣∣∣
t=0

(ϕt+s)
∗g = (ϕs)

∗
(
d

dt

∣∣∣∣
t=0

(ϕt)
∗g)

)
= (ϕs)

∗(Lξg) = 0

The last line follows since ξ is a Killing vector. So the derivative is 0 which
implies that ϕ∗t g = ϕ∗0g = g.

5.3.1 Consequences of the Static Condition

Definition 5.4. [30, p. 119] A static manifold is one which is a stationary
and that contains a spacelike hypersurface, Σ which is orthogonal to the orbits
of the isometries.

We now set M to be a 4D spacetime for our Schwarzschild solution. We
wish to know useful expressions of the metric tensor when M is static. To be
begin we’ll take arbitrary coordinates (x1, x2, x3) for Σ. If we assume that none
of the orbits of the isometries terminate on Σ (or equivalently that ξ doesn’t
vanish on Σ) then, we can find a neighbourhood around Σ in which each point
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p each lie on one and only one orbit of the isometries. We assign to each p

the coordinates on Σ of the point in which the orbit emerges from and the
parameter t which defines the location of p on the orbit. We now remark that
the image of Σ under ϕt, which we will call Σt, is orthogonal to ξ. If we take
an arbitrary vector field, XΣt on Σt then we get the following:

g(XΣt , ξ) = g((ϕ−t)∗XΣt , (ϕ−t)∗ξ) ◦ ϕ−t = g((ϕ−t)∗XΣt , ξ) ◦ ϕ−t = 0

This is because (ϕ−t)∗ maps vector fields on Σt to vector fields on Σ which are
all orthogonal to ξ. We also use the fact that ϕt is the flow of ξ. Expressing
the metric in terms of (x1, x2, x3, t) we find that because of this orthogonality
the components of the dxidt terms must vanish. We also can use the fact that
ξ is a Killing vector and that ξ is proportional to ∂

∂t
by construction. Let X

and Y be coordinate vector fields.

∂

∂t
g(X,Y ) = C (g(DξX,Y ) + g(DξY,X))

= C(g(DXξ, Y ) + g(DY ξ,X) = C(g(DXξ, Y )− g(DXξ, Y )) = 0

So we see that the metric components are independent of t. Of course this
argument only makes sense when ξ 6= 0. The metric can be expressed as the
following:

g = −V 2(x1, x2, x3)dt2 +

3∑
n=1,m=1

hnm(x1, x2, x3)dxmdxn

5.4.1 Consequences of the Spherically Symmetric Con-
dition

We also make the assumption that the spacetime is spherically symmetric.
That is that metric’s isometry group contains a subgroup which is isomorphic
to the group SO3, and the orbit of this subgroup on any point is a 2-dimensional
sphere [30, p. 120]. Suppose ξ has a non-zero projection onto the 2-spheres.
Then it can not be invariant under all rotations (up to a sign), since that
would imply its projection onto the 2-spheres has to be the zero vector field.
Therefore the 2-spheres must each completely lie in a spacelike hypersurface
Σt. We now show that the metrics on these 2-spheres must be multiples of the
standard metric of the sphere.

Let Uz = S2 − (0, 0,±1) and let φz and θz be spherical coordinates defined on
Uz. If we rotate about the z-axis then ∂φz and ∂θz are preserved. We can re-
peat this for Ux = S2− (±1, 0, 0) and let φx and θx being the spherical coordinates
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defined on Ux. Thus if we rotate about the x-axis ∂φx and ∂θx are preserved.
Let σ signify an arbitrary rotation which can be broken down in terms of a
rotation about the z-axis and a rotation about the x-axis either in that order
or the reverse. Let us assume that σ = σx ◦ σz. Consider the sectional curva-
ture K. Then it is easy to see that K(∂φz , ∂θz ) = K(∂φz , ∂θz ) ◦ σz where we define
K(X,Y )(p) to be K(X(p), Y (p)) for vector fields X and Y . But one property of
the sectional curvature is that K(∂φz , ∂θz )(p) = K(∂φx , ∂θx)(p). Thus we see that
K(∂φz , ∂θz ) = K(∂φz , ∂θz ) ◦ σ at points in Ux ∩ Uz. By continuity we can extend this
to all of S2. This means that the sectional curvature is constant over S2. Thus
the metric induced on S2 is a constant, λ, times the standard metric on S2.

We want to understand the effect of rotational isometries on ξ. To see this
we’ll show that for an arbitrary rotation, σ, σ∗ξ is a timelike Killing vector field.
The flow of ξ is ϕt. So by Lafontaine [22, p. 123], the flow of σ∗ξ is ψt = σ◦ϕt◦σ−1.
We have the following since σ and ϕt are isometries.

ψ∗t g = (σ ◦ ϕt ◦ σ−1)∗g

= (σ−1)∗ ◦ ϕ∗t ◦ σ∗g = (σ−1)∗ ◦ ϕ∗t g = (σ−1)∗g = g

Therefore ψt is an isometry which implies that σ∗ξ is a killing vector field. Since
ξ is timelike we know that σ∗ξ is timelike.

0 > g(ξ, ξ) = (σ∗g)(ξ, ξ) = g(σ∗ξ, σ∗ξ) ◦ σ

0 > g(σ∗ξ, σ∗ξ)

If we assume that ξ is unique, in the sense of its Killing and timelike charac-
teristics, it must be invariant under rotations up to scaling. However we can
calculate this scaling factor since every rotation B has a fixed point.

g(ξ, ξ)(p) = g(σ∗ξ, σ∗ξ) ◦ σ(p) = a2g(ξ, ξ)(p)

a2 = 1

Let’s restrict our attention to a single sphere in a single hypersurface Σt. Let
(θ, φ) be its spherical coordinates. We can construct space-like geodesics which
intersect all the spheres in Σt but are orthogonal to the spheres. We can
take s to be a parameter along a given geodesic. We have that (θ, φ, s) form
coordinates for Σt. And that (θ, φ, s, t) form coordinates for the spacetime. We
know that g( ∂

∂t
, ∂
∂t

) must solely be a function of s since ξ being invariant under
rotations (up to a sign) implies: g(ξ, ξ) = a2g(ξ, ξ) ◦ σ = g(ξ, ξ) ◦ σ where σ is an
arbitrary rotation. This means that g(ξ, ξ) is constant across any given sphere
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and thus so is g( ∂
∂t
, ∂
∂t

). If we request that the geodesics are unit length we get
that g( ∂

∂s
, ∂
∂s

) = 1. We thus have the following form of the metric g:

g = −C(s)dt2 + ds2 +D(s)(dθ2 + sin2(θ)dφ2)

Set D(s) = r2. Then by assuming that D(s) is injective we can use r as a new
coordinate. We have that:

d(D(s)) = d(r2)

∂

∂s
Dds = 2rdr

ds =
2r

( ∂
∂s
D)(s)

dr =
2r

( ∂
∂s
D)(D−1(r2))

dr =
√
E(r)dr

We also get that C(s) = C(D−1(r2)) = F (r). We can write the metric in the
following form:

g = −F (r)dt2 + E(r)dr2 + r2((dθ2 + sin2(θ)dφ2)

5.4.2 Final Form of the Schwarzschild Solution

We can now apply the Ricci flat condition to further pin down the compo-
nents of the metric. We’ll omit these calculations since we’ve included similar
calculations in the 5D case. Nevertheless the final form of the Schwarzschild
metric is stated below [30, p. 124]. Where M is a positive constant.

g = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2(θ)dφ2)

There are 2 singularities present, one at r = 2M and the other at r = 0. We
have r = 2M corresponds to a sphere of points and the singularity here is due
to choice of coordinates. However the singularity at r = 0 is real.

5.5 Weyl Form of the Schwarzschild Metric

5.5.1 Conversion to Weyl Form

We now wish to transform the Schwarzschild metric in the form we derived
to its Weyl form. The new coordinates will be (ρ, z, t, φ) where t and φ are car-
ried over from the previous coordinates. In the previous section we studied the
Schwarzschild metric in the cohomogeneity 1 setting where the manifold looked
like R

t
× R+

r
× S2. The group in that setting was R× SO(3); with the metric being
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invariant under that group. The principal orbit was R × SO(3)/SO(2) ≈ R × S2.
We have the SO(2) appearing due to each element of SO(3) acting on S2 having
a 1-dimensional space of companion elements in SO(3) which produce the same
image. The singular orbit corresponds to r = 2M and it is isomorphic to S2

where R
t

has degenerated. The orbit space is 1-dimensional and is simply R+.

We introduce the functions l+, l− and L [15, p. 178].

l+ =
√
ρ2 + (z +M)2 l− =

√
ρ2 + (z −M)2 L =

l+ + l−
2

We link the 2 coordinate systems together by setting r = L+M and 2M cos(θ) =

l+ − l−. This allows us to give a fuller description of the Schwarzschild metric
in the Weyl setting. It is cohomogeneity 2 with the group being R

t
× S1. The

principal orbit is R
t
× S1. The orbit space is R× [0, π]. Where the coordinates for

the orbit space are (R, β). They are related to ρ and z by iR+β = sin−1( 1
M

(iρ+ z)).
The orbit space has two axis rods and a horizon rod. Note that ρ = 0 and
|z| > M corresponds to two axis rods. Also ρ = 0 and |z| < M corresponds to
a horizon rod. The first case results in axis rods since L − M > 0 and ρ2 is
0 implying the component g(∂φ, ∂φ) (it is calculated later one in this section)
goes to 0. This means that S1 shrinks to a point and the orbit becomes
homeomorphic to R. The second case is a horizon rod since ρ = 0 and |z| < M

implies that L −M = 0 thus g(∂t, ∂t) goes to 0 (it is calculated later on). Thus
R shrinks to a point. It can be seen in the limit for the horizon rod case
that g(∂φ, ∂φ) doesn’t go to 0. Thus the orbit is homeomorphic to S1. Since

sin−1( 1
M

(iρ+ z)) = −i log

(
i 1
M

(iρ+ z) +
√

1− (iρ+z))2

M2

)
. We have that:

′ sin−1(
1

M
(0 + z)) = −i(log

(
||i 1

M
z +

√
1− z2

M2
||

)
+ iArg(z + i0)

iR+ β = −i(log

(
||i 1

M
z +

√
1− z2

M2
||

)
+Arg(z)

Thus if |z| < M then R = 0. However if |z| > M then R > 0. If z > 0 then β = 0, if
z < 0 then β = π and if z = 0 then β takes on every value between 0 and π. Thus
we can plot the orbit space in terms of R and β.
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R

β = 0

β = π

Horizon Rod

Axis Rod

Axis Rod

Figure 5.1:

We now derive some useful relations.

l2+ − l2− = ρ2 + z2 + 2Mz +M2 − ρ2 − z2 + 2Mz −M2

(l+ + l−)(l+ − l−) = 4Mz

L(2M cos(θ)) = 2Mz

z = L cos(θ)

(L2 −M2) sin2(θ) = L2 − L2 cos2(θ)−M2 +M2 cos2(θ)

=
(l+ + l−)2

4
− z2 −M2 +

(l+ − l−)2

4

=
l2+ + l2−

2
− z2 −M2

= ρ2 + z2 +M2 − z2 −M2

ρ =
√
L2 −M2 sin(θ)

l+l− =
(l+ + l−)2

4
− (l+ − l−)2

4

= L2 −M2 cos2(θ)

We now derive formulae for dr and dθ.

∂r

∂ρ
=

∂

∂ρ

(√
ρ2 + (z +M)2

2
+

√
ρ2 + (z −M)2

2

)

=
1

2

(
ρ√

ρ2 + (z +M)2
+

ρ√
ρ2 + (z −M)2

)

=
ρ

2

(√
ρ2 + (z −M)2 +

√
ρ2 + (z +M)2√

ρ2 + (z +M)2
√
ρ2 + (z −M)2

)

=
L
√
L2 −M2 sin(θ)

l+l−
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∂r

∂z
=

∂

∂z

(√
ρ2 + (z +M)2

2
+

√
ρ2 + (z −M)2

2

)

=
1

2

(
z +M√

ρ2 + (z +M)2
+

z −M√
ρ2 + (z −M)2

)

=
z

2

(√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2√

ρ2 + (z −M)2
√
ρ2 + (z +M)2

)
− M

2

(√
ρ2 + (z +M)2 −

√
ρ2 + (z −M)2√

ρ2 + (z −M)2
√
ρ2 + (z +M)2

)

=
L2 cos(θ)

l+l−
− M2 cos(θ)

l+l−
=

(L2 −M2) cos(θ)

l+l−

Moving on to dθ.

∂

∂ρ
(2M cos(θ)) =

∂

∂ρ

(√
ρ2 + (z +M)2 −

√
ρ2 + (z −M)2

)
−2M sin(θ)

∂θ

∂ρ
=

ρ√
ρ2 + (z +M)2

− ρ√
ρ2 + (z −M)2

−M sin(θ)
∂θ

∂ρ
= −ρ

2

(√
ρ2 + (z +M)2 −

√
ρ2 + (z −M)2√

ρ2 + (z −M)2
√
ρ2 + (z +M)2

)

= −
√
L2 −M2 sin(θ)M cos(θ)

l+l−

∂θ

∂ρ
=

√
L2 −M2 cos(θ)

l+l−

∂

∂z
(2M cos(θ)) =

∂

∂z

(√
ρ2 + (z +M)2 −

√
ρ2 + (z −M)2

)
−2M sin(θ)

∂θ

∂z
=

z +M√
ρ2 + (z +M)2

− z −M√
ρ2 + (z −M)2

−M sin(θ)
∂θ

∂z
= −z

2

(√
ρ2 + (z +M)2 −

√
ρ2 + (z −M)2√

ρ2 + (z −M)2
√
ρ2 + (z +M)2

)
+
M

2

(√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2√

ρ2 + (z −M)2
√
ρ2 + (z +M)2

)

= −L cos(θ)M cos(θ)

l+l−
+
ML

l+l−

−M sin(θ)
∂θ

∂z
=
LM sin2(θ)

l+l−

∂θ

∂z
= −L sin(θ)

l+l−

We now insert the expression for dθ and dr into the Schwarzschild metric. We
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now calculate the coefficient on the dρ2 term, which we’ll call gρρ.

1− 2M

r
= 1− 2M

L+M
=
L−M
L+M

gρρ =

(
1− 2M

r

)−1
L2(L2 −M2) sin2(θ)

(l+l−)2︸ ︷︷ ︸(
∂r
∂ρ

)2

+r2 (L2 −M2) cos2(θ)

(l+l−)2︸ ︷︷ ︸(
∂θ
∂ρ

)2

=
(L+M)2

(l+l−)2

(
L2 sin2(θ) + (L2 −M2) cos2(θ)

)
=

(L+M)2

(l+l−)2

(
L2 −M2 cos2(θ)

)
=

(L+M)2

(l+l−)2
(l+l−) =

(L+M)2

l+l−

We now calculate the coefficient on the dz2 term which we will call gzz.

gzz =

(
1− 2M

r

)−1
(L2 −M2)2 cos2(θ)

(l+l−)2︸ ︷︷ ︸(
∂r
∂z

)2

+r2 L
2 sin2(θ)

(l+l−)2︸ ︷︷ ︸(
∂θ
∂z

)2

=
(L+M)2

(l+l−)2

(
(L2 −M2) cos2(θ) + L2 sin2(θ)

)
=

(L+M)2

(l+l−)2

(
L2 −M2 cos2(θ)

)
=

(L+M)2

l+l−

We now move on to the dρdz term which we will call gzρ.

gzρ =

(
1− 2M

r

)−1
L
√
L2 −M2 sin(θ)

l+l−

(L2 −M2) cos(θ)

l+l−︸ ︷︷ ︸
∂r
∂ρ

∂r
∂z

−r2

√
L2 −M2 cos(θ)

l+l−

L sin(θ)

l+l−︸ ︷︷ ︸
∂θ
∂ρ

∂θ
∂z

=

√
L2 −M2L sin(θ) cos(θ)(L+M)

l+l−
((L+M)− (L+M)) = 0

The coefficient of the dt2, gtt is simply given by gtt = −L−M
L+M

. The coefficient of
dφ2, gφφ is given by the following:

gφφ = r2 sin2(θ) = (L+M)2 ρ2

L2 −M2

=
L+M

L−M ρ2

This allows us to write down the Schwarzschild metric in its Weyl form.

g = −L−M
L+M

dt2 +
(L+M)2

l+l−

(
dz2 + dρ2)+

L+M

L−M ρ2dφ2
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5.5.2 Harmonicity of ω

Thus the metric is characterized by two potentials ω and k. Where:

ω = − ln

(
L+M

L−M

)
k =

1

2
ln

(
L2 −M2

l+l−

)
g = −eωdt2 + e−ω(e2k(dρ2 + dz2) + ρ2dφ2)

We know that ω is well defined away from the z-axis. To see this we know that
if ρ is non zero then:

2(L−M) =
√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 − 2M > |z +M |+ |M − z| − 2M ≥ 2M − 2M = 0

Furthermore ω is harmonic; i.e ωzz + ωρρ + 1
ρ
ωρ = 0. To see this we will break it

down into a function of ρ and z and take the necessary derivatives.‘

ω = − log

(√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 + 2M√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 − 2M

)

ωρ = −
√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 − 2M√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 + 2M

∂ρ

( √
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 + 2M√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 − 2M︸ ︷︷ ︸

F1

)

∂ρF1 =
1

(
√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 − 2M)2

(
(

ρ√
ρ2 + (z +M)2

+
ρ√

ρ2 + (z −M)2

)(√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 − 2M

)
. . .

. . .−
(

ρ√
ρ2 + (z +M)2

+
ρ√

ρ2 + (z −M)2

)(√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 + 2M

))
ωρ = −ρ

(
1√

ρ2 + (z +M)2
+

1√
ρ2 + (z −M)2︸ ︷︷ ︸

F2

)(
1√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 − 2M︸ ︷︷ ︸

F3

. . .

. . .− 1√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 + 2M︸ ︷︷ ︸

F4

)
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We now work out the ρ derivative of F2, F3 and F4. We will set F5 = F3 − F4.

(F2)ρ = − ρ

(ρ2 + (z +M)2)
3
2

− ρ

(ρ2 + (z −M)2)
3
2

(F3)ρ = −
ρ√

ρ2+(z+M)2
+ ρ√

ρ+(z−M)2

(
√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 − 2M)2

(F4)ρ = −
ρ√

ρ2+(z+M)2
+ ρ√

ρ+(z−M)2

(
√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 + 2M)2

(F5)ρ = ρ

(
1√

ρ2 + (z +M)2
+

1√
ρ2 + (z −M)2

)(
1√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 + 2M

. . .

. . .+
1√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 − 2M

)(
1√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 + 2M

. . .

. . .− 1√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 − 2M

)

We can relate these to ωρρ:

ωρρ = −(F2F5 + ρ((F2)ρF5 + F2(F5)ρ))

We now move on to ωz.

ωz = −
√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 − 2M√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 + 2M

∂z

( √
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 + 2M√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 − 2M︸ ︷︷ ︸

F6

)

(F6)z =
1

(
√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 − 2M)2

(
(

z +M√
ρ2 + (z +M)2

+
z −M√

ρ2 + (z −M)2

)(√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 − 2M

)
. . .

. . .−
(

z +M√
ρ2 + (z +M)2

+
z −M√

ρ2 + (z −M)2

)(√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 + 2M

))
ωz = −

(
z +M√

ρ2 + (z +M)2
+

z −M√
ρ2 + (z −M)2︸ ︷︷ ︸

F7

)(
1√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 − 2M︸ ︷︷ ︸

F3

. . .

. . .− 1√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 + 2M︸ ︷︷ ︸

F4

)
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We now work out the z derivatives of F3, F5 and F7.

(F7)z =
1√

ρ2 + (z +M)2
+

1√
ρ2 + (z −M)2

− (z +M)2

(ρ2 + (z +M)2)
3
2

− (z −M)2

(ρ2 + (z −M)2)
3
2

(F3)z = −
z+M√

ρ2+(z+M)2
+ z−M√

ρ2+(z−M)2

(
√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 − 2M)2

(F5)z =

(
z +M√

ρ2 + (z +M)2
+

z −M√
ρ2 + (z −M)2

)(
1√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 + 2M

. . .

. . .+
1√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 − 2M

)(
1√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 + 2M

. . .

. . .− 1√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 − 2M

)

We know that ωzz = −(F7(F5)z + (F7)zF5). We define ∆ω = ωρρ + ωzz + 1
ρ
ωρ. We

eliminate common factors as we go to aid the calculation. Be careful, there is
a sign change.

∆ω ∝ 2√
ρ2 + (z +M)2

+
2√

ρ2 + (z −M)2
− ρ2

(ρ2 + (z +M)2)
3
2

− ρ2

(ρ2 + (z −M)2)
3
2

. . .

. . .− ρ2

(
1√

ρ2 + (z +M)2
+

1√
ρ2 + (z −M)2

)2(
1√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 + 2M

. . .

. . .+
1√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 − 2M

)
. . .

. . .+
1√

ρ2 + (z +M)2
+

1√
ρ2 + (z −M)2

− (z +M)2

(ρ2 + (z +M)2)
3
2

− (z −M)2

(ρ2 + (z −M)2)
3
2

. . .

. . .−
(

z +M√
ρ2 + (z +M)2

+
z −M√

ρ2 + (z −M)2

)2(
1√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 + 2M

. . .

. . .+
1√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 − 2M

)
∝ 2√

ρ2 + (z +M)2
+

2√
ρ2 + (z −M)2

. . .

. . .−
(

2 +
2ρ2 + 2z2 − 2M2√

ρ2 + (z +M)2
√
ρ2 + (z −M)2

)(
1√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 + 2M

. . .

. . .+
1√

ρ2 + (z +M)2 +
√
ρ2 + (z −M)2 − 2M

)

78



M.Sc. Thesis – S. Zwarich McMaster University – Mathematics

We now eliminate the resulting factor out front we have the following

∆ω ∝ 2(
√
ρ2 + (z −M)2 +

√
ρ2 + (z +M)2)(

√
ρ2 + (z −M)2 +

√
ρ2 + (z +M)2 . . .

. . .+ 2M)(
√
ρ2 + (z −M)2 +

√
ρ2 + (z +M)2 − 2M) . . .

− (2
√
ρ2 + (z −M)2

√
ρ2 + (z +M)2 + 2ρ2 + 2z2 − 2M2)(

√
ρ2 + (z −M)2 . . .

. . .+
√
ρ2 + (z +M)2 + 2M +

√
ρ2 + (z −M)2 +

√
ρ2 + (z +M)2 − 2M)

∝ (
√
ρ2 + (z −M)2 +

√
ρ2 + (z +M)2)(4ρ2 + 2(z −M)2 + 2(z +M)2 − 8M2 . . .

. . .+ 4
√
ρ2 + (z −M)2

√
ρ2 + (z +M)2 − 4

√
ρ2 + (z −M)2

√
ρ2 + (z +M)2 − 4ρ2 − 4z2 + 4M2)

= 0

5.5.3 Relation between k and ω

There is a relation between the partial derivatives of k and the partial deriva-
tives of ω.

ωρ = −L−M
L+M

∂

∂ρ

(
L+M

L−M

)
= −L−M

L+M

rρ(L−M)− (L+M)rρ
(L−M)2

= − −2Mrρ
(L+M)(L−M)

= − −2M

(L+M)(L−M)

L
√
L2 −M2 sin(θ)

l+l−

=
2ML sin(θ)√
L2 −M2l+l−

ωz = −L−M
L+M

∂

∂z

(
L+M

L−M

)
= − −2Mrz

(L+M)(L−M)

=
−2M

(L+M)(L−M)

(L2 −M2) cos(θ)

l+l−

=
2M cos(θ)

l+l−
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Moving on to the partials of k.

kρ =
l+l−

2(L2 −M2)

∂

∂ρ

(
L2 −M2

l+l−

)
=

l+l−
2(L2 −M2)

2Lrρl+l− − (L2 −M2)(l+l−)ρ
(l+l−)2

=
l+l−

2(L2 −M2)

2Lrρl+l− − (L2 −M2)(2Lrρ − 2M2 cos(θ) sin(θ)θρ)

(l+l−)2

=
l+l−

L2 −M2

Lrρ(l−l+ − L2 +M2)− (L2 −M2)M2 cos(θ) sin(θ)θρ
(l+l−)2

=
(M2l+l−)

L2 −M2

Lrρ sin2(θ)− (L2 −M2) cos(θ) sin(θ)θρ
(l+l−)2

=
M2

L2 −M2

L2ρ sin2(θ)− (L2 −M2)
√
L2 −M2 cos2(θ) sin(θ)

(l+l−)2

=
M2

L2 −M2

L2
√
L2 −M2 sin3(θ)− (L2 −M2)

√
L2 −M2 cos2(θ) sin(θ)

(l+l−)2

=
M2 sin(θ)√
L2 −M2

L2 sin2(θ)− (L2 −M2) cos2(θ)

(l+l−)2

=
M2 sin(θ)√
L2 −M2

L2(sin2(θ)− cos2(θ)) +M2 cos2(θ)

(l+l−)2

kz =
l+l−

2(L2 −M2)

∂

∂ρ

(
L2 −M2

l+l−

)
=

(M2l+l−)

L2 −M2

Lrz sin2(θ)− (L2 −M2) cos(θ) sin(θ)θz
(l+l−)2

=
M2

L2 −M2

L(L2 −M2) cos(θ) sin2(θ)− (L2 −M2)(−L) cos(θ) sin2(θ)

(l+l−)2

=
2LM2 sin2(θ) cos(θ)

(l+l−)2

We now derive formulas for the partials of k in terms of the partials of ω.

ρ

4
(ω2
ρ − ω2

z) =
ρ

4

(
4M2L2 sin2(θ)

(L2 −M2)(l−l+)2
− 4M2 cos2(θ)

(l−l+)2

)
=

√
L2 −M2 sin(θ)M2

(L2 −M2)(l−l+)2

(
L2 sin2(θ)− (L2 −M2) cos2(θ)

)
=

M2 sin(θ)√
L2 −M2

L2(sin2(θ)− cos2(θ)) +M2 cos2(θ)

(l+l−)2
= kρ

ρ

2
ωρωz =

ρ

2

2ML sin(θ)√
L2 −M2l−l+

2M cos(θ)

l+l−

=
2LM2 sin2(θ) cos(θ)

(l+l−)2
= kz

These relationships between k and ω can be used to generalize the Schwarzschild
metric to one with the same form but ω is now arbitrary and k is integrated
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by these following formulae:

kz =
ρ

2
ωρωz kρ =

ρ

4
(ω2
ρ − ω2

z)

5.6 Periodic Schwarzschild Solution

This brings us to the paper “Periodic Analog of the Schwarzschild Solution”
where Nikolai and Korotkin construct the following solution [21, p. 3] . Con-

sider ρ and z from the previous section and let ξ0 =

√
(z−M)2+ρ2+

√
(z+M)2+ρ2−2M√

(z−M)2+ρ2+
√

(z+M)2+ρ2+2M
.

Where we have constants l and M. We now build the periodic function
ξ = ξ0(z, ρ)

∏∞
n=1 ξ0(z + nl, ρ)ξ0(z − nl, ρ)e

4M
nl . To see periodicity we pass to a summa-

tion via the logarithm.

log(ξ(z, ρ)) = log(ξ0(z, ρ)) +

∞∑
n=1

(log(ξ0(z + nl, ρ)) + log(ξ0(z − nl, ρ)) +
4M

nl
)

log(ξ(z, ρ)) = lim
m→∞

(log(ξ0(z, ρ)) +

m∑
n=1

(log(ξ0(z + nl, ρ)) + log(ξ0(z − nl, ρ)) +
4M

nl
))

log(ξ(z + l, ρ)) = lim
m→∞

(log(ξ0(z + l, ρ)) +

m∑
n=1

(log(ξ0(z + (n+ 1)l, ρ)) + log(ξ0(z − (n− 1)l, ρ)) +
4M

nl
))

= lim
m→∞

(log(ξ0(z + l, ρ)) +

m+1∑
n=2

log(ξ0(z + nl, ρ)) +

m−1∑
n=0

log(ξ0(z − nl, ρ)) +

m∑
n=1

4M

nl
)

= lim
m→∞

(log(ξ0(z, ρ)) +

m∑
n=1

(log(ξ0(z + nl, ρ)) + log(ξ0(z − nl, ρ)) +
4M

nl
) + log(ξ0(z + (m+ 1)l, ρ))

− log(ξ0(z −ml, ρ)))

= log(ξ(z, ρ)) + lim
m→∞

(log(ξ0(z + (m+ 1)l, ρ))− log(ξ0(z −ml, ρ)))

By inspection we see that the remaining limit is 0. Therefore we have period-
icity.

We have that from the previous section that ω0 = log(ξ0) is a harmonic
function. Thus ω = log(ξ) being a sum of harmonic functions makes it harmonic
as well. In the paper they prove that ξ is in fact convergent [21, p. 4]. They
also prove that k being given by integrating the following two equations is
periodic as well [21, p. 4]. This makes the metric periodic.

kz =
ρ

2
ωρωz kρ =

ρ

4
(ω2
ρ − ω2

z)

Of course in the cohomogeneity 2 setting this is a simpler case than the solu-
tions in “5-dimensional space-periodic solutions of the static vacuum Einstein
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equations.” The laplacian ∆c = cρρ+czz + 1
ρ
cρ, where c is some function, is promi-

nent in both contexts.
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Chapter 6

Analysis of Example 2 in
“5-Dimensional Space-Periodic
Solutions of the Static Vacuum
Einstein Equations”

6.1 Analysis of the U potential

In their paper “5-dimensional space-periodic solutions of the static vacuum
Einstein equations”; Khuri, Weinstein and Yamada construct numerous solu-
tions to the harmonic map equations in the 5D case. These solutions are a
special case of the harmonic map equations where the matrix F is diagonal, i.e
f12 = 0, and the twist potentials also vanish. The metric on the fibre, H thus
has the following form where u and v are harmonic [18, p. 6].

H =


−r2e−u−v 0 0

0 eu 0

0 0 ev


Therefore the matrices K = H−1Hr and L = H−1Hz can be calculated

K =


−ur − vr + 2

r
0 0

0 ur 0

0 0 vr

 L =


−uz − vz 0 0

0 uz 0

0 0 vz


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We can now calculate αr and αz.

αr =
r

8

(
tr(K2)− tr(L2)− 4

r2

)
=
r

8

((
−ur − vr +

2

r

)2

+ u2
r + v2

r − ((uz + vz)
2 + u2

z + v2
z)− 4

r2

)

=
r

4

(
u2
r + v2

r + urvr −
2

r
(ur + vr)− u2

z − v2
z − uzvz

)
(6.1.1)

αz =
r

4
tr(KL)

=
r

4

(
(−ur − vr +

2

r
)(−uz − vz) + uruz + vrvz

)
=
r

4

(
2uruz + 2vrvz + urvz + vruz −

2

r
(uz + vz)

)
(6.1.2)

Important to analyzing the solutions in the above paper is the harmonic func-
tion UI. Where I is the interval [a, b].

UI = log
(√

r2 + (z − a)2 − (z − a)
)
− log

(√
r2 + (z − b)2 − (z − b)

)
Lemma 6.2. i We have that UI has domain {r ≥ 0} − {(0, z) | a ≤ z ≤ b}.

ii We have that UI is harmonic with respect to the laplacian on R3.

iii We have that it satisfies UI < 0.

Proof. For proof of (i) we can see if z < a < b then
√
r2 + (z − a)2 − (z − a) > 0

and
√
r2 + (z − b)2 − (z − b) > 0 for all r. If we have that z > a > b then we can

manipulate UI by rationalizing the numerators inside the log terms.

UI = 2 log(r)− log
(√

r2 + (z − a)2 + (z − a)
)

+ log
(√

r2 + (z − b)2 + (z − b)
)
− 2 log(r)

UI = − log
(√

r2 + (z − a)2 + (z − a)
)

+ log
(√

r2 + (z − b)2 + (z − b)
)

We have that
√
r2 + (z − a)2 + (z − a)) > 0

√
r2 + (z − b)2 + (z − b) > 0. Thus UI is well

defined. Now if a ≤ z ≤ b then UI is undefined for r = 0. This is because we only
rationalize one of the numerators.

UI = − log
(√

r2 + (z − a)2 + (z − a)
)
− log

(√
r2 + (z − b)2 − (z − b)

)
+ 2 log(r)

Thus we can see that UI ≈ 2 log(r) for small r on a < z < b and UI = −O(1) for z > b

and z < a.
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For (ii) it suffices to check that the function U = log
(√
r2 + z2 − z

)
is harmonic.

Ur =
r(r2 + z2)−

1
2

√
r2 + z2 − z

Urr =
((r2 + z2)−

1
2 − r2(r2 + z2)−

3
2 )(
√
r2 + z2 − z)− r(r2 + z2)−

1
2 r(r2 + z2)−

1
2

(
√
r2 + z2 − z)2

Uz =
z(r2 + z2)−

1
2 − 1√

r2 + z2 − z
= − 1√

r2 + z2

Uzz =
z

(r2 + z2)
3
2

Ur
1

r
+ Uzz + Urr =

1

(r2 + z2)
3
2 (
√
r2 + z2 − z)2

(
(r2 + z2)−

1
2 (
√
r2 + z2 − z)(r2 + z2)

3
2 + . . .

. . . z(
√
r2 + z2 − z)2 + ((r2 + z2)−

1
2 − r2(r2 + z2)−

3
2 )(
√
r2 + z2 − z)(r2 + z2)

3
2 − . . .

. . . r(r2 + z2)−
1
2 r(r2 + z2)−

1
2 (r2 + z2)

3
2

)
=

1

(r2 + z2)
3
2 (
√
r2 + z2 − z)2

(
(r2 + z2)

3
2 + z(r2 + z2)− 2z2(r2 + z2)

1
2 + z3 . . .

. . .+ (r2 + z2)
3
2 − z(r2 + z2)− r2(r2 + z2)

1
2 + r2z − r2(r2 + z2)

1
2

)
=

1

(r2 + z2)
3
2 (
√
r2 + z2 − z)2

(
(2r2 + 2z2 − 2r2 − z2 − z2)(r2 + z2)

1
2 + (z3 − z3 + r2z − r2z)

)
= 0

For the proof of (iii), we will define the function f(c) and show its c-derivative
is greater than 0.

f(c) =
√
r2 + (z − c)2 − (z − c)

f ′(c) = − 2(z − c)
2
√
r2 + (z − c)2

+ 1

=
−(z − c) +

√
r2 + (z − c)2√

r2 + (z − c)2
> 0

Therefore f(b) > f(a) for all r and z. So since log is an increasing function it
follows that UI is less than zero for all z and r.

6.3 Analysis of Example 2

We will focus on analyzing example 2 from the paper : ”5-dimensional space-
periodic solutions of the static vacuum Einstein equations.” Define intervals
Γ2j = [2jL.(2j + 1)L] and Γ2j+1 = [(2j + 1)L, (2j + 2)L] where L > 0. Two harmonic
functions u and v are defined as follows:

u = lim
n→∞

(
Σnj=−nUΓ2j + logn

)
v = lim

n→∞

(
Σnj=−nUΓ2j+1 + logn

)
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Lemma 6.4. The following are true.

i We have that u and v are convergent for r > 0.

ii We have that u and v are periodic with period 2L.

iii We have that u and v are symmetric in z about L
2
.

Proof. For (i) e will show that u and v are convergent for r > 0. We will first
assume −L

2
≤ z ≤ L

2
.

u = lim
n→∞

( n∑
j=1

(
log
(√

r2 + (z − 2jL)2 − (z − 2jL)
)
− log

(√
r2 + (z − (2j + 1)L)2 − (z − (2j + 1)L)

))
. . .

. . .+

−1∑
j=−n

(
log
(√

r2 + (z − 2jL)2 − (z − 2jL)
)
− log

(√
r2 + (z − (2j + 1)L)2 − (z − (2j + 1)L)

))
. . .

. . .+ log
(√

r2 + z2 − z
)
− log

(√
r2 + (z − L)2 − (z − L)

)
+ log(n)

)
= lim
n→∞

( n∑
j=1

(
log
(√

r2 + (z − 2jL)2 − (z − 2jL)
)
− log

(√
r2 + (z − (2j + 1)L)2 − (z − (2j + 1)L)

))
. . .

. . .+

n∑
j=1

(
log
(√

r2 + (z + 2jL)2 − (z + 2jL)
)
− log

(√
r2 + (z + (2j − 1)L)2 − (z − (−2j + 1)L)

))
. . .

. . .+ log
(√

r2 + z2 − z
)
− log

(√
r2 + (z − L)2 − (z − L)

)
+ log(n)

)
= lim
n→∞

( n∑
j=1

(
log
(√

r2 + (z − 2jL)2 − (z − 2jL)
)
− log

(√
r2 + (z − (2j + 1)L)2 − (z − (2j + 1)L)

))
. . .

. . .+

n∑
j=1

(
− log

(√
r2 + (z + 2jL)2 + (z + 2jL)

)
+ log

(√
r2 + (z + (2j − 1)L)2 + (z + (2j − 1)L)

))
. . .

. . .+ log
(√

r2 + z2 − z
)
− log

(√
r2 + (z − L)2 − (z − L)

)
+ log(n)

)
= lim
n→∞

( n∑
j=1

(
log(2jL)− log((2j + 1)L)− log(2jL) + log(2j − 1)L

)
. . .

. . .+

n∑
j=1

(
log

(√
r2 + z2

(2jL)2
− z

jL
+ 1 + 1− z

2jL

)
− log

(√
r2 + z2

((2j + 1)L)2
− 2z

(2j + 1)L
+ 1 + 1− z

(2j + 1)L

)
︸ ︷︷ ︸

Aj−Bj

. . .

. . .− log

(√
r2 + z2

(2jL)2
+

z

jL
+ 1 + 1 +

z

2jL

)
+ log

(√
r2 + z2

((2j − 1)L)2
+

2z

(2j − 1)L
+ 1 + 1 +

z

(2j − 1)L

)
︸ ︷︷ ︸

−Cj+Dj

)
. . .

. . .+ log
(√

r2 + z2 − z
)
− log

(√
r2 + (z − L)2 − (z − L)

)
+ log(n)

)
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= lim
n→∞

(
− log(2n+ 1)L)− log(2L) + log(n) . . .

. . .+

n∑
j=1

(
log

(√
r2 + z2

(2jL)2
− z

jL
+ 1 + 1− z

2jL

)
− log

(√
r2 + z2

((2j + 1)L)2
− 2z

(2j + 1)L
+ 1 + 1− z

(2j + 1)L

)
. . .

. . .− log

(√
r2 + z2

(2jL)2
+

z

jL
+ 1 + 1 +

z

2jL

)
+ log

(√
r2 + z2

((2j − 1)L)2
+

2z

(2j − 1)L
+ 1 + 1 +

z

(2j − 1)L

))
. . .

. . .+ log
(√

r2 + z2 − z
)
− log

(√
r2 + (z − L)2 − (z − L)

))
=

∞∑
j=1

(
log

(√
r2 + z2

(2jL)2
− z

jL
+ 1 + 1− z

2jL

)
− log

(√
r2 + z2

((2j + 1)L)2
− 2z

(2j + 1)L
+ 1 + 1− z

(2j + 1)L

)
. . .

. . .− log

(√
r2 + z2

(2jL)2
+

z

jL
+ 1 + 1 +

z

2jL

)
+ log

(√
r2 + z2

((2j − 1)L)2
+

2z

(2j − 1)L
+ 1 + 1 +

z

(2j − 1)L

))
. . .

. . .+ log
(√

r2 + z2 − z
)
− log

(√
r2 + (z − L)2 − (z − L)

))

In the steps above we have eliminated the limit. We want to compare Aj − Bj
to 1

j2
in a limit comparison test to show that the sum of Aj −Bj converges.

M = lim
j→∞

((
log

(√
r2 + z2

(2jL)2
− z

jL
+ 1 + 1− z

2jL

)
− log

(√
r2 + z2

((2j + 1)L)2
− 2z

(2j + 1)L
+ 1 + 1− z

(2j + 1)L

))
j2

)

= lim
k→0

((
log

(√
(r2 + z2)k2

(2L)2
− kz

L
+ 1 + 1− kz

2L

)
− log

(√
(r2 + z2)k2

((2 + k)L)2
− 2zk

(2 + k)L
+ 1 + 1− zk

(2 + k)L

))
1

k2

We can use L’Hopital’s rule to simplify.

M = lim
k→0

1

2k

(
2k(r2+z2)

(2L)2
− z
L

2

√
k2(r2+z2)

(2L)2
− kz
L

+1

− z
2L

√
k2(r2+z2)

(2L)2
− kz

L
+ 1 + 1− kz

2L

−

2k(r2+z2)

((2+k)L)2
− 2k2(r2+z2)

(2+k)3L2 −
2z

(2+k)L
+ 2kz

(2+k)2L

2

√
k2(r2+z2)

((2+k)L)2
− 2kz

(2+k)L
+1

− z
(2+k)L

+ kz

(2+k)2L

2
√

k2(r2+z2)

((2+k)L)2
− 2kz

(2+k)L
+ 1 + 1− kz

(2+k)L

)

= lim
k→0

1

4k

(
k(r2 + z2)

(2L)2
− k(r2 + z2)

((2 + k)L)2
− z

L
+

2z

(2 + k)L
+
k2(r2 + z2)

(2 + k)3L2
− 2kz

(2 + k)2L

)
= lim
k→0

1

4k

(
k(r2 + z2)

(2L)2
− k(r2 + z2)

((2 + k)L)2
− kz

(2 + k)L
+
k2(r2 + z2)

(2 + k)3L2
− 2kz

(2 + k)2L

)
= lim
k→0

1

4

(
r2 + z2

(2L)2
− r2 + z2

((2 + k)L)2
− z

(2 + k)L
+
k(r2 + z2)

(2 + k)3L2
− 2z

(2 + k)2L

)
= − z

4L
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Therefore the sum of Aj −Bj converges. We now perform the same for Cj −Dj.

N = lim
j→∞

((
log

(√
r2 + z2

(2jL)2
+

z

jL
+ 1 + 1 +

z

2jL

)
− log

(√
r2 + z2

((2j − 1)L)2
+

2z

(2j − 1)L
+ 1 + 1 +

z

(2j − 1)L

))
j2

)

= lim
k→0

((
log

(√
(r2 + z2)k2

(2L)2
+
kz

L
+ 1 + 1 +

kz

2L

)
− log

(√
(r2 + z2)k2

((2− k)L)2
+

2zk

(2− k)L
+ 1 + 1 +

zk

(2− k)L

))
1

k2

= lim
k→0

1

2k

(
2k(r2+z2)

(2L)2
+ z
L

2

√
k2(r2+z2)

(2L)2
+ kz
L

+1

+ z
2L

√
k2(r2+z2)

(2L)2
+ kz

L
+ 1 + 1 + kz

2L

−

2k(r2+z2)

((2−k)L)2
− 2k2(r2+z2)

(2−k)3L2 + 2z
(2−k)L

+ 2kz
(2−k)2L

2

√
k2(r2+z2)

((2−k)L)2
+ 2kz

(2−k)L
+1

+ z
(2−k)L

+ kz

(2−k)2L

2
√

k2(r2+z2)

((2−k)L)2
+ 2kz

(2−k)L
+ 1 + 1 + kz

(2−k)L

)

= lim
k→0

1

4k

(
k(r2 + z2)

(2L)2
+
z

L
− k(r2 + z2)

((2− k)L)2
+
k2(r2 + z2)

(2− k)3L2
− 2z

(2− k)L
− 2kz

(2− k)2L

)
= lim
k→0

1

4k

(
− kz

(2− k)L
− 2kz

(2− k)2L

)
= − z

4L

Therefore Cj −Dj converges which implies u converges when −L
2
≤ z ≤ L

2
. If

we take a look at v we can quickly see that v(r, z + L) = u(r, z).

v(r, z) = lim
n→∞

( n∑
j=1

(
log
(√

r2 + (z − (2j + 1)L)2 − (z − (2j + 1)L)
)
. . .

. . .− log
(√

r2 + (z − (2j + 2)L)2 − (z − (2j + 2)L)
))

. . .

v(r, z + L) = lim
n→∞

( n∑
j=1

(
log
(√

r2 + (z − 2jL)2 − (z − 2jL)
)
− log

(√
r2 + (z − (2j + 1)L)2 − (z − (2j + 1)L)

))
= u(r, z)

Moving onto (ii) we will show that u and in turn v are periodic in z with
period 2L. Consider UΓ2j (r, z + 2L).

UΓ2j (r, z + 2L) = log
(√

r2 + (z + 2L− 2jL)2 − (z + 2L− 2jL)
)
. . .

. . .− log
(√

r2 + (z + 2L− (2j + 1)L)2 − (z + 2L− (2j + 1)L)
)

= log
(√

r2 + (z − 2(j − 1)L)2 − (z − (2j − 1)L)
)
. . .

. . .− log
(√

r2 + (z − (2(j − 1) + 1)L)2 − (z + (2(j − 1) + 1)L)
)

= UΓ2(j−1)
(r, z)
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We can leverage this equation in the expression for u to get periodicity.

u(r, z + 2L) = lim
n→∞

(
Σnj=−nUΓ2j (r, z + 2L) + logn

)
= lim
n→∞

(
Σnj=−nUΓ2(j−1)

(r, z) + logn
)

= lim
n→∞

(
Σn−1
j=−n−1UΓ2j (r, z) + logn

)
= lim
n→∞

(
Σnj=−nUΓ2j + UΓ2(−n−1)

− UΓ2n + logn
)

= u+ lim
n→∞

(UΓ−2(n+1)
− UΓ2n)

lim
n→∞

(UΓ−2(n+1)
− UΓ2n) = lim

n→∞

(
log

(√
r2 + (z + 2(n+ 1)L)2 − (z + 2(n+ 1)L)√
r2 + (z + (2n− 1)L)2 − (z + (2n− 1)L)

)
. . .

. . .− log

( √
r2 + (z − 2nL)2 − (z − 2nL)√

r2 + (z − (2n+ 1))L)2 − (z − (2n+ 1)L)

))

= lim
n→∞

(
log

(
r2

r2

√
r2 + (z + (2n− 1)L)2 + (z + (2n− 1)L)√
r2 + (z + 2(n+ 1)L)2 + (z + 2(n+ 1)L)

)
. . .

. . .− log

( √
r2 + (z − 2nL)2 − (z − 2nL)√

r2 + (z − (2n+ 1))L)2 − (z − (2n+ 1)L)

))

Of course r and z pale in comparison to n so we can simplify to get the following:

lim
n→∞

(UΓ−2(n+1)
− UΓ2n) = lim

n→∞

(
log

(
2(2n− 1)L

4(n+ 1)L

)
− log

(
4nL

2(2n+ 1)L

))
= 0

Therefore u and v are periodic. Moving on to (iii) we will show that u(r, L
2

+z) =

u(r, L
2
− z).

UΓ2j

(
r,
L

2
− z
)

= log

√r2 +

(
L

2
− z − 2jL

)2

−
(
L

2
− z − 2jL

) . . .

. . .− log

√r2 +

(
L

2
− z − (2j + 1)L

)2

−
(
L

2
− z − (2j + 1)L

)
= log

√r2 +

(
z +

(
2j − 1

2

)
L

)2

+

(
z +

(
2j − 1

2

)
L

) . . .

· · · − log

√r2 +

(
z +

(
2j +

1

2

)
L

)2

+

(
z +

(
2j +

1

2

)
L

)
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UΓ−2j

(
r,
L

2
− z
)

= log

√r2 +

(
L

2
+ z + 2jL

)2

−
(
L

2
+ z + 2jL

) . . .

. . .− log

√r2 +

(
L

2
+ z − (−2j + 1)L

)2

−
(
L

2
+ z − (−2j + 1)L

)
= log

√r2 +

(
z +

(
2j +

1

2

)
L

)2

−
(
z +

(
2j +

1

2

)
L

) . . .

· · · − log

√r2 +

(
z +

(
2j − 1

2

)
L

)2

−
(
z +

(
2j − 1

2

)
L

)

UΓ2j

(
r,
L

2
− z
)
− UΓ−2j

(
r,
L

2
− z
)

= 2 log r − 2 log r = 0

By the j symmetry in the summation in u we can identify positive j from
u(r, L

2
− z) with negative j from u(r, L

2
+ z) and vice versa to get the desired

cancellation. Therefore u is symmetric about L
2

in z. We can show that v is
symmetric about L

2
as well.

v(r,
L

2
+ z) = u(r,

L

2
+ z − L) = u(r,

L

2
− z + L) = v(r,

L

2
− z + 2L) = v(r,

L

2
− z)

Therefore we can conclude that u(r, z) and v(r, z) are convergent for all z when
r > 0.

Corollary 6.5. From the previous theorem we can deduce that α is 2L periodic
in z and that α(r, L

2
+ z) = α(r, L

2
− z).

Proof. We can now deduce that α is 2L periodic in z. Note that ur,u, z, vr and
vz must be periodic in z. Therefore αz and αr must be periodic in z. Next note
that:

u(r,
L

2
+ z) = u(r,

L

2
− z) v(r,

L

2
+ z) = v(r,

L

2
− z)

uz(r,
L

2
+ z) = −uz(r.

L

2
− z) vz(r,

L

2
+ z) = −vz(r.

L

2
− z)

ur(r,
L

2
+ z) = ur(r,

L

2
− z) vr(r,

L

2
+ z) = vr(r,

L

2
− z)

αz =
r

4

(
2uruz + 2vrvz + urvz + vruz −

2

r
(uz + vz)

)
αz(r,

L

2
+ z) = −αz(r,

L

2
− z)

Therefore
∫ 3L

2

−L2
αz = 0. It follows that α is 2L periodic in z. Also note that

α(r, L
2

+ z) = α(r, L
2
− z) by integration.
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6.5.1 Asymptotic Behaviour of u, v and α

Proposition 6.6. In this section we will prove the following asymptotic be-
haviour of u, v and α as r approaches ∞.

u = log(r)− log(4L)±O(e−
r
L ) ur =

1

r
±O(e−

r
L ) uz = ±O(e

−r
L ) (6.6.1)

v = log(r)− log(4L)±O(e−
r
L ) vr =

1

r
±O(e−

r
L ) vz = ±O(e

−r
L ) (6.6.2)

α = − log(r)

4
±O(e−

r
L ) αr = − 1

4r
+±O(e−

r
L ) αz = ±O(e−

r
L ) (6.6.3)

We have that since u is periodic and symmetric about L
2

it has a Fourier
series of the following form:

u(r, z) = u(r, 0) +

∞∑
n=1

cos

(
nπ

L

(
z − L

2

))
an(r)

We can work out an(r) up to constants by using the harmonicity of u.

0 =
1

r
ur + urr + uzz

0 =

∞∑
n=1

(
∂2an(r)

∂r2
cos

(
nπ

L

(
z − L

2

))
+

1

r

∂an(r)

∂r
cos

(
nπ

L

(
z − L

2

))
− an(r)

n2π2

L2
cos

(
nπ

L

(
z − L

2

)))

By the independence of the cosine terms we have the following.

0 =
∂2an(r)

∂r2
− an(r)

n2π2

L2
+

1

r

∂an(r)

∂r

Lets set s = nπ
L
r. Then we have that:

∂s = A∂r =⇒ 1 = A
nπ

L
=⇒ ∂s =

L

nπ
∂r

Plugging this back in to the ODE above we have that:

0 =
∂2an(s)

∂s2
− an(s) +

1

s

∂an(s)

∂s

0 = s2 ∂
2an(s)

∂s2
+ s

∂an(s)

∂s
− s2an(s)

Thus an(s) = AnI0(s) +BnK0(s) where I0 is a modified Bessel function of the first
kind of order 0 and K0 is a modified Bessel function of the second kind of order
0 [1, p. 374]. Also An and Bn are constants. Thus an(r) = AnI0(nπ

L
r) +BnK0(nπ

L
r).

Now we derive a bound on the absolute value of u to determine a bound
for the Fourier coefficients an(r).
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We start our calculations with u(r, 0).

u(r, z) = lim
n→∞

(
Σnj=−nUΓ2j + log(n)

)
u(r, 0) = lim

n→∞

(
Σnj=−n log

(√
r2 + (2jL)2 + (2jL)

)
− log

(√
r2 + ((2j + 1)L)2 + ((2j + 1)L)

)
+ log(n)

)
= lim
n→∞

(
Σnj=1

(
log
(√

r2 + (2jL)2 + (2jL)
)

+ log
(√

r2 + (2jL)2 − (2jL)
))

+ log(r) . . .

. . .− Σnj=1

(
log
(√

r2 + ((2j + 1)L)2 + ((2j + 1)L)
)

+ log
(√

r2 + ((2j − 1)L)2 − (2j − 1)L
))

. . .

. . .− log
(√

r2 + L2 + L
)

+ log(n) + log(r)

)
= lim
n→∞

(
Σnj=1 log

(
r2)− Σnj=1 log

(√
r2 + ((2j + 1)L)2 + ((2j + 1)L)

)
. . .

. . .− Σn−1
j=0 log

(√
r2 + ((2j + 1)L)2 − (2j + 1)L

)
− log

(√
r2 + L2 + L

)
+ log(n) + log(r)

)
= lim
n→∞

(
Σnj=1 log

(
r2)− Σn−1

j=1 log
(
r2)− log

(√
r2 + L2 + L

)
− log

(√
r2 + L2 − L

)
. . .

. . .− log
(√

r2 + ((2n+ 1)L)2 + (2n+ 1)L
)

+ log(n) + log(r)

)
= log(r)− log(4L)

We are interested in a Taylor estimate for u(r, z) in terms of the variable z. To
do this we will use the first order Taylor estimate for the function Ωn(r, z) =

.Σnj=−nUΓ2j and plug into the limit definition for u. Here ξ is in between 0 and z.

u(r, z) = lim
n→∞

(
Ωn(r, z) + log(n)

)
= lim
n→∞

(
Ωn(r, 0) + z(Ωn)z(r, ξ) + log(n)

)
= u(r, 0) + z(Ω∞)z(r, ξ)

Where (Ω∞)z(r, z) = Σ∞j=−∞

(
− 1√

r2 + (z − 2jL)2
+

1√
r2 + (z − (2j + 1)L)2

)

Lemma 6.7. We have that (Ω∞)z(r, z) is from bounded from above and below;
|(Ω∞)z(r, z)| < M(r) = O(1).

Proof. We wish to find a bound of (Ω∞)z in terms of r. First consider the
infinite product representation of the sine function [19, p. 268].

sin(z)

z
=

∞∏
j=1

(
1− z

jπ

)(
1 +

z

jπ

)

We construct a summation similar to (Ω∞)z(r, z) by playing around with the
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argument of the sine function and taking a derivative.

sin

(
(ir − z)π

2L

)
sin

(
(ir + z)π

2L

)
= − (r2 + z2)π2

4L2

∞∏
j=1

(
(ir − z)

2Lj
+ 1

)(
(ir − z)

2Lj
− 1

)(
(ir + z)

2Lj
+ 1

)(
(ir + z)

2Lj
− 1

)

= − (r2 + z2)π2

4L2

∞∏
j=1

(
−r2

(2Lj)2
−
(

z

2Lj
− 1

)2)( −r2

(2Lj)2
−
(

z

2Lj
+ 1

)2)

= − (r2 + z2)π2

4L2

∞∏
j=1

1

(2Lj)4
(r2 + (z − 2jL)2)(r2 + (z + 2jL)2)

sin

(
(ir − z)π

2L

)
sin

(
(ir + z)π

2L

)
= −1

4

(
ei

(ir−z)π
2L − e−i

(ir−z)π
2L

)(
ei

(ir+z)π
2L − e−i

(ir+z)π
2L

)
= −1

4

(
e−

rπ
L + e

rπ
L − e

izπ
L − e

−izπ
L

)
=

1

2

(
− cosh

(rπ
L

)
+ cos

(zπ
L

))

We now take the z derivative of both sides.

∂z

(
1

2

(
− cosh

(rπ
L

)
+ cos

(zπ
L

))
) = − π

2L
sin
(zπ
L

)
− π

2L
sin
(zπ
L

)
= ∂z

(
− (r2 + z2)π2

4L2

∞∏
j=1

1

(2Lj)4
(r2 + (z − 2jL)2)(r2 + (z + 2jL)2)

)

= −2zπ2

4L2

∞∏
j=1

1

(2Lj)4
(r2 + (z − 2jL)2)(r2 + (z + 2jL)2) + . . .

. . .

∞∑
k=1

− (r2 + z2)π2

4L2
(2(z − 2kL)(r2 + (z + 2kL)2) + 2(z + 2kL)(r2 + (z − 2kL)2)) . . .

. . . ·
∞∏
j 6=k

1

(2Lj)4
(r2 + (z − 2jL)2)(r2 + (z + 2jL)2)

− π
2L

sin
(
zπ
L

)
1
2

(
− cosh

(
rπ
L

)
+ cos

(
zπ
L

)) =
2z

r2 + z2
+

∞∑
k=1

(
2(z − 2kL)

r2 + (z − 2kL)2
+

2(z + 2kL)

r2 + (z + 2kL)2

)

− π

L

sin
(
zπ
L

)
− cosh

(
rπ
L

)
+ cos

(
zπ
L

) =
2z

r2 + z2
+

∞∑
k=1

(
2(z − 2kL)

r2 + (z − 2kL)2
+

2(z + 2kL)

r2 + (z + 2kL)2

)
π

L

sin
(
zπ
L

)
− cosh

(
rπ
L

)
− cos

(
zπ
L

) =
2(z − L)

r2 + (z − L)2
+

∞∑
k=1

(
2(z − (2k + 1)L)

r2 + (z − (2k + 1)L)2
+

2(z + (2k − 1)L)

r2 + (z + (2k − 1)L)2

)
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We now take the r derivative of both sides.

∂r

(
1

2

(
− cosh

(rπ
L

)
+ cos

(zπ
L

)))
= − π

2L
sinh

(rπ
L

)
− π

2L
sinh

(rπ
L

)
= ∂r

(
− (r2 + z2)π2

4L2

∞∏
j=1

1

(2Lj)4
(r2 + (z − 2jL)2)(r2 + (z + 2jL)2)

)

= −2rπ2

4L2

∞∏
j=1

1

(2Lj)4
(r2 + (z − 2jL)2)(r2 + (z + 2jL)2) + . . .

. . .

∞∑
k=1

− (r2 + z2)π2

4L2
(2r(r2 + (z + 2kL)2) + 2r(r2 + (z − 2kL)2)) . . .

. . . ·
∞∏
j 6=k

1

(2Lj)4
(r2 + (z − 2jL)2)(r2 + (z + 2jL)2)

− π

L

sinh
(
rπ
L

)
− cosh

(
rπ
L

)
+ cos

(
zπ
L

) =
2r

r2 + z2
+

∞∑
k=1

(
2r

r2 + (z − 2kL)2
+

2r

r2 + (z + 2kL)2

)
π

L

sinh
(
rπ
L

)
cosh

(
rπ
L

)
+ cos

(
zπ
L

) =
2r

r2 + (z − L)2
+

∞∑
k=1

(
2r

r2 + (z − (2k + 1)L)2
+

2r

r2 + (z + (2k − 1)L)2

)

Now we let the inequalities do the magic. Let us assume −L
2
≤ z ≤ L

2
.

Σ∞j=1
1√

r2 + (z + 2jL)2
< Σ∞j=1

z + 2jL+ r√
r2 + (z + 2jL)2

1√
r2 + (z + 2jL)2

< Σ∞j=1
z + 2jL

r2 + (z + 2jL)2
+ Σ∞j=1

r

r2 + (z + 2jL)2

Σ∞j=1
1√

r2 + (z − 2jL)2
< Σ∞j=1

−(z − (2j − 1)L) + r√
r2 + (z − (2j − 1)L)2

1√
r2 + (z − 2jL)2

< Σ∞j=1
−(z − (2j − 1)L) + r

r2 + (z − (2j − 1)L)2

< Σ∞j=1
(2j − 1)L− z

r2 + (z − (2j − 1)L)2
+ Σ∞j=1

r

r2 + (z − (2j − 1)L)2

−Σ∞j=1
1√

r2 + (z − (2j − 1)L)2
< Σ∞j=1

z − 2jL√
r2 + (z − 2jL)2

1√
r2 + (z − (2j − 1)L)2

= Σ∞j=1
z − 2jL

r2 + (z − 2jL)2

−Σ∞j=1
1√

r2 + (z + (2j + 1)L)2
< −Σ∞j=1

z + (2j + 1)L√
r2 + (z + (2j + 1)L)2

1√
r2 + (z + (2j + 1)L)2

< −Σ∞j=1
z + (2j + 1)L

r2 + (z + (2j + 1)L)2
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−(Ω∞)z(r, ξ) =
1√

r2 + z2
− 1√

r2 + (z + L)2
+ Σ∞j=1

(
1√

r2 + (z + 2jL)2
+

1√
r2 + (z − 2jL)2

)
. . .

. . .− Σ∞j=1

(
1√

r2 + (z + (2j − 1)L)2
+

1√
r2 + (z − (2j + 1)L)2

)
< Σ∞j=1

z + 2jL

r2 + (z + 2jL)2
+ Σ∞j=1

r

r2 + (z + 2jL)2
+ Σ∞j=1

−(z − (2j − 1)L) + r

r2 + (z − (2j − 1)L)2
. . .

. . .+ Σ∞j=1
r

r2 + (z − (2j − 1)L)2
+ Σ∞j=1

z − 2jL

r2 + (z − 2jL)2
− Σ∞j=1

z + (2j + 1)L

r2 + (z + (2j + 1)L)2
. . .

. . .+
1√

r2 + z2
− 1√

r2 + (z + L)2

< − 1√
r2 + (z + L)2

+
π

2L

sinh
(
rπ
L

)
cosh

(
rπ
L

)
− cos

(
zπ
L

) +
π

2L

sinh
(
rπ
L

)
cosh

(
rπ
L

)
+ cos

(
zπ
L

) . . .
− r

r2 + (z + L)2
+

π

2L

sin
(
zπ
L

)
cosh

(
rπ
L

)
− cos

(
zπ
L

) − π

2L

sin
(
zπ
L

)
cosh

(
rπ
L

)
+ cos

(
zπ
L

) +
(z + L)

r2 + (z + L)2
. . .

. . .+
1√

r2 + z2
− r

r2 + z2
− z

r2 + z2

Now we provide inequalities going in the other direction

Σ∞j=1
1√

r2 + (z + 2jL)2
> Σ∞j=1

z + 2jL√
r2 + (z + 2jL)2

1√
r2 + (z + 2jL)2

> Σ∞j=1
z + 2jL

r2 + (z + 2jL)2

Σ∞j=1
1√

r2 + (z − 2jL)2
> Σ∞j=1

−(z − (2j + 1)L)√
r2 + (z − (2j + 1)L)2

1√
r2 + (z − 2jL)2

> Σ∞j=1
−(z − (2j + 1)L)

r2 + (z − (2j + 1)L)2

−Σ∞j=1
1√

r2 + (z − (2j + 1)L)2
> Σ∞j=1

z − 2jL− r√
r2 + (z − 2jL)2

1√
r2 + (z − (2j + 1)L)2

> Σ∞j=1
z − 2jL

r2 + (z − 2jL)2
− Σ∞j=1

r

r2 + (z − 2jL)2

−Σ∞j=1
1√

r2 + (z + (2j − 1)L)2
> −Σ∞j=1

z + (2j − 1)L+ r√
r2 + (z + (2j − 1)L)2

1√
r2 + (z + (2j − 1)L)2

> −Σ∞j=1
z + (2j − 1)L

r2 + (z + (2j − 1)L)2
− Σ∞j=1

r

r2 + (z + (2j − 1)L)2
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−(Ω∞)z(r, ξ) =
1√

r2 + z2
− 1√

r2 + (z − L)2
+ Σ∞j=1

(
1√

r2 + (z + 2jL)2
+

1√
r2 + (z − 2jL)2

)
. . .

. . .− Σ∞j=1

(
1√

r2 + (z + (2j − 1)L)2
+

1√
r2 + (z − (2j + 1)L)2

)
> − 1√

r2 + (z − L)2
+ Σ∞j=1

z + 2jL

r2 + (z + 2jL)2
+ Σ∞j=1

−(z − (2j + 1)L)

r2 + (z − (2j + 1)L)2
. . .

. . . + Σ∞j=1
z − 2jL

r2 + (z − 2jL)2
− Σ∞j=1

r

r2 + (z − 2jL)2
. . .

. . .− Σ∞j=1
z + (2j − 1)L

r2 + (z + (2j − 1)L)2
− Σ∞j=1

r

r2 + (z + (2j − 1)L)2
+

1√
r2 + z2

> − 1√
r2 + (z − L)2

− π

2L

sinh
(
rπ
L

)
cosh

(
rπ
L

)
− cos

(
zπ
L

) − π

2L

sinh
(
rπ
L

)
cosh

(
rπ
L

)
+ cos

(
zπ
L

) . . .
. . .+

π

L

sin
(
zπ
L

)
cosh

(
rπ
L

)
− cos

(
zπ
L

) − π

L

sin
(
zπ
L

)
cosh

(
rπ
L

)
+ cos

(
zπ
L

) +
1√

r2 + z2
. . .

+
r

r2 + z2
+

r

r2 + (z − L)2
− z

r2 + z2
+

z − L
r2 + (z − L)2

Therefore we can conclude that |(Ω∞)z(r, z)| < M(r) = O(1). We use the skew-
symmetry about L

2
and the periodicity of (Ω∞)z to extend this bound to all z.

Now we calculate the bound on |an(r)|

|an(r)| =
∣∣∣∣ ∫ 5L

2

L
2

cos

(
πn

L

(
z − L

2

))
u(r, z)dz

∣∣∣∣∫ 5L
2

L
2

cos

(
πn

L

(
z − L

2

))
dz =

L

πn
sin

(
πn

L

(
z − L

2

))∣∣∣∣ 5L2
L
2

= 0

Therefore we can add − log(r) + log(4L) to u in the inequality for |an(r)| without
changing anything. Below we use lemma (6.7).

|an(r)| =
∣∣∣∣ ∫ 5L

2

L
2

cos

(
πn

L

(
z − L

2

))
(u(r, z)− log(r) + log(4L))dz

∣∣∣∣
|an(r)| ≤

∫ 5L
2

L
2

| cos

(
πn

L

(
z − L

2

))
||(u(r, z)− log(r) + log(4L))|dz

|an(r)| ≤M(r)

∫ 5L
2

L
2

| cos

(
πn

L

(
z − L

2

))
|zdz

|an(r)| ≤M(r)

∫ 5L
2

L
2

zdz = M(r)

(
z2

2

)∣∣∣∣ 5L2
L
2

|an(r)| ≤ M(r)

2

(
52L2

22
− L2

22

)
= 3M(r)L2 =: N(r)

We have that an(r) is expressed in terms of a linear combination of zero order
modified Bessel function of the first kind and the second kind: an(r) = AnI0(nr

L
)+
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BnK0(nr
L

) for n > 0. Since for large r, I0 has exponential growth and K0 has
exponential decay we can use the above inequality to conclude that An = 0. We
can go further to produce an upper bound on the absolute value of Bn.

|an(r0)| = |BnK0

(
nr0

L

)
| ≤ N(r0)

|Bn| ≤ N(r0)
1

K0

(
nr0
L

)

Where r0 is a constant that is suitably large. We now use the Fourier series to
derive (6.6.1). Let M1 be the limit of Fourier series minus (log(r) − log(4L)) as r

goes to ∞.

M1 = Σ∞n=1

(
cos

(
nπ

L

(
z − L

2

))
BnK0

(
nr

L

))
|M1| ≤ Σ∞n=1N(r0)

(
1

K0

(
nr0
L

)K0

(
nr

L

))

We have an upper bound Kν(x) for large x and a lower bound for K0(x) [14,
p. 1]. This upper bound is a consequence of the asymptotic form; Kν ∼

√
π
2x
e−x

[2, p. 618].

Kν(x) ≤
√
π

2
e−x K0(x) ≥

√
π

2

Γ(x+ 1
2
)

Γ(x+ 1)
e−x (6.7.1)

We have Gautschi’s inequality for the gamma function at our disposal [27,
p. 14].

Γ(x+ 1)

Γ(x+ s)
< (x+ 1)1−s =⇒ 1

K0(x)
<

√
2

π

√
x+ 1

Plugging this into limit and noting that r going to ∞ implies it is larger than
r0 gives us the following:

|M1| ≤ Σ∞n=1N(r0)

∞∑
n=1

√
nr0

L
+ 1e

nr0
L
−nr
L

|M1| ≤ −N(r0)
√

2r0L

∞∑
n=1

−n
L
e−

n
L

(r−r0)

|M1| ≤ −N(r0)
√

2Lr0∂r

(
e−

1
L

(r−r0)

1− e−
1
L

(r−r0)

)

Of course we need to take derivatives of the geometric sum formula. Thus we
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have the following.

∂r

(
e−

1
L

(r−r0)

1− e−
1
L

(r−r0)

)
= ∂r

(
− 1 +

1

1− e−
1
L

(r−r0)

)

= − 1

L

e−
1
L

(r−r0)

(1− e−
1
L

(r−r0))2

∂rr

(
e−

1
L

(r−r0)

1− e−
1
L

(r−r0)

)
= − 1

L

(
− 1

L

e−
1
L

(r−r0)

(1− e−
1
L

(r−r0))2
+ e−

1
L

(r−r0) (−2)(−1)( 1
L

)e−
1
L

(r−r0)

(1− e−
1
L

(r−r0))3

)

=
1

L2

e−
1
L

(r−r0)(1− e−
1
L

(r−r0)) + 2e−
2
L

(r−r0)

(1− e−
1
L

(r−r0))3

=
1

L2
e−

1
L

(r−r0)

(
1 + e−

1
L

(r−r0)

(1− e−
1
L

(r−r0))3

)

We can input this into |M1|.

|M1| ≤ N(r0)

√
2r0

L

e−
1
L

(r−r0)

(1− e−
1
L

(r−r0))2

We have that u(r, z) = log(r) − log(4L) ± O
(

e
− r
L

(1−e−
r
L )2

)
= log(r) − log(4L) ± O(e−

r
L ). We

can ignore the r0 since the function in question is decreasing. We will now
compute the asymptotics for the derivatives of u.

ur =
1

r
+ Σ∞n=1 cos

(
πn

L

(
z − L

2

))
Bn

(
Ko

(
nr

L

))
r

We have the following recursive formulae for Kν(x) [13, p. 13].

Kν−1(x) +Kν+1(x) = −2(Kν(x))x Kν−1(x)−Kν+1(x) = −2ν

x
Kν(x)

When ν is an integer n we have that Kn(x) = K−n(x) [2, p. 614]. Now we plug
this into ur to obtain the following:

ur =
1

r
+ Σ∞n=1 cos

(
πn

L

(
z − L

2

))
Bn

(
− n

L

K−1

(
nr
L

)
+K1

(
nr
L

)
2

)
ur =

1

r
− Σ∞n=1 cos

(
πn

L

(
z − L

2

))
Bn

n

L
K1

(
nr

L

)
|M2| = Σ∞n=1 cos

(
πn

L

(
z − L

2

))
Bn

n

L
K1

(
nr

L

)
|M2| ≤ Σ∞n=1N(r0)

1

K0

(
nr0
L

) n

L
K1

(
nr

L

)
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Plugging in (6.7.1) we obtain the following.

|M2| ≤ Σ∞n=1N(r0)
n

L

√
π

2
e−

nr
L

√
2

π

Γ(
nr0
L

+ 1)

Γ(
nr0
L

+ 1
2
)
e
nr0
L

|M2| ≤ Σ∞n=1N(r0)
n

L

Γ(
nr0
L

+ 1)

Γ(
nr0
L

+ 1
2
)
e−

n
L

(r−r0)

|M2| ≤ Σ∞n=1N(r0)
n

L

(
nr0

L
+ 1

) 1
2

e−
n
L

(r−r0)

≤ Σ∞n=1N(r0)
n

L

(
2
nr0

L

) 1
2

e−
n
L

(r−r0)

≤ N(r0)

√
2r0

L
3
2

Σ∞n=1n
3
2 e−

n
L

(r−r0)

≤ N(r0)
√

2r0LΣ∞n=1
n2

L2
e−

n
L

(r−r0)

≤ N(r0)
√

2r0L∂rr

(
e−

1
L

(r−r0)

1− e−
1
L

(r−r0)

)

We now plug in the second derivative calculated above into the limit.

|M2| ≤ N(r0)

√
2r0

L
3
2

e−
1
L

(r−r0)

(
1 + e−

1
L

(r−r0)

(1− e−
1
L

(r−r0))3

)

Therefore we have that ur = 1
r
±O

(
e−

r
L

(
1+e
− r
L

(1−e−
r
L )3

))
= 1

r
±O(e−

r
L ). We now move

on to uz.

uz = −π
L

∞∑
n=1

n sin

(
πn

L

(
z − L

2

))
BnK0

(
nr

L

)

|uz| ≤ N(r0)Σ∞n=1n

K0

(
nr
L

)
K0

(
nr0
L

)
≤ π

L
N(r0)(L2)Σ∞n=1

√
1 +

nr0

L

n

L2
e−

n
L

(r−r0)

≤ π

L
N(r0)(L2)

√
2r0

L
Σ∞n=1

n2

L2
e−

n
L

(r−r0)

≤ π

L
N(r0)

√
2r0L

3
2 ∂rr

(
e
r−r0
L

1− e
r−r0
L

)

≤ π

L
N(r0)

√
2r0

L
e−

1
L

(r−r0)

(
1 + e−

1
L

(r−r0)

(1− e−
1
L

(r−r0))3

)

It follows that uz = ±O
(

e
−r
L

(1−e
−r
L )2

)
= ±O(e

−r
L ). We now wish to obtain similar
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asymptotics for v. First we have to calculate v(r, 0).

v(r, 0) = u(r,−L) = u(r,
L

2
− 3L

2
) = u(r, 2L) = u(r, 0)

Since v(r, z) = u(r, z − L) they share the same asymptotics.

v = log(r)− log(4L)±O(e−
r
L ) vr =

1

r
±O(e−

r
L ) vz = ±O(e−

r
L )

This allows us to calculate the asymptotics for the conformal exponent α.

αr =
r

4

(
u2
r + v2

r + urvr −
2

r
(ur + vr)− u2

z − v2
z − uzvz

)
=
r

4

(
1

r2
±O

(
e−

r
L

r

)
+

1

r2
+

1

r2
− 4

r2

)

= − 1

4r
±O(e−

r
L )

Since the big O notation respects integration we have that:

α = − log(r)

4
±O(e−

r
L )

αz =
r

4

(
2uruz + 2vrvz + urvz + vruz −

2

r
(uz + vz)

)
= ± r

4

(
O

(
e−

r
L

r

))
= ±O(e−

r
L )

Thus we have proved the original proposition.

6.7.1 Verification of Asymptotic Flatness of the Metric
on the Base

Theorem 6.8. We have that gb is asymptotically flat up to first derivatives.
That is there is asymptotic end, constants C and β, and coordinates ζ1 and ζ2

such that

(gb)ij − Cδij = O(
√
ζ2
1 + ζ2

2

−β
) ∂ζ1(gb)ij = O(

√
ζ2
1 + ζ2

2

−β−1

) ∂ζ2(gb)ij = O(
√
ζ2
1 + ζ2

2

−β−1

)

Proof. In chapter 3 we made the assumption that the metric on the base is
asymptotically flat when we constructed our Kaluza Klein asymptotically flat
end. We will verify that it holds for example 2 using the asymptotic behaviour
for α we derived in the previous subsection. Since the Euclidean metric and
metric on the base are periodic we only need to check asymptotic flatness for
|z| ≤ L. We start off with the complex coordinate transformation ζ = µ

3
4 where
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µ := r + iz and ζ := ζ1 + iζ2. There are 3 potential values that we can choose
for ζ we will choose the one where if θ is the angle of µ then the angle of ζ

is 3
4
θ. We can now find the domain in which ζ lives in. Take the domain

D = {(r, z) | r > L, |z| ≤ L}. We find the corresponding domain for the coordinates
ζ1 and ζ2.

z

r

D

−L

L

L
π
4

Figure 6.1:

We have the following inequalities for ζ1 and ζ2. Note that the angle, tan−1( z
r
)

satisfies | tan−1( z
r
)| ≤ π

4
.

ζ1 = (r2 + z2)
3
8 cos

(
3

4
tan−1(

z

r
)

)
|ζ1| < (r2 + z2)

3
8

|ζ1| > (r2 + z2)
3
8 | cos

(
tan−1(

z

r
)
)
| > 1√

2
(r2 + z2)

3
8

ζ2 = (r2 + z2)
3
8 sin

(
3

4
tan−1(

z

r
)

)
|ζ2| < (r2 + z2)

3
8 | sin

(
tan−1(

z

r
)
)
| = (r2 + z2)

3
8

|z|√
r2 + z2

< (r2 + z2)−
1
8L

The domain for ζ1 and ζ2 is given roughly by the following diagram. .
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ζ2

ζ1

Figure 6.2:

This domain is diffeomorphic to R2 − B2 so we have no problems using it as
an asymptotic end.

Next we consider the metric dz2 + dr2. This can be written as dµdµ. We can
calculate this in terms of ζ.

dµ = d(ζ
4
3 ) =

4

3
ζ

1
3 dζ dµ = d(ζ

4
3 ) =

4

3
ζ

1
3 dζ

dµdµ =
16

9
||ζ||

2
3 dζ =

16

9
||ζ||

2
3 (dζ2

1 + dζ2
2 )

Now to check asymptotic flatness we need to find β > 0 and a constant C such
that

i 16
9
e2α||ζ||

2
3 − C = O(||ζ||−β)

ii ∂ζ1(e2α||ζ||
2
3 ) = O(||ζ||−β−1)

iii ∂ζ2(e2α||ζ||
2
3 ) = O(||ζ||−β−1)

We begin with (i). We have that e2α = e−
1
2 log(r)+O(e

− r
L ) = 1√

r
(1 + O(e−

r
L )). Since z

is bounded ||µ|| → ∞ implies that r → ∞. We also have that as ||ζ|| goes to ∞
that r = O(||ζ||

4
3 ).

16

9
e2α||ζ||

2
3 =

16

9

1√
r

(1 +O(e−
r
L ))||ζ||

2
3 =

16

9
(||ζ||

2
3−

2
3 + ||ζ||

2
3O(e−

||ζ||
4
3

L ))

=
16

9
+O(||ζ||

2
3 e−

||ζ||
4
3

L )
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Clearly C = 16
9

and we have many choices of β. Let the calculations for the (ii)
and (iii) inform our choice of β. Let us move on to (ii).

∂ζ1e
2α = 2(

∂r

∂ζ1
αr +

∂z

∂ζ1
αz)e

2α

∂r

∂ζ1
=

4

3
Re(ζ

1
3 ) =

4

3
(r2 + z2)

1
8 cos

(
1

3
tan−1(

z

r
)

)
∂z

∂ζ1
=

4

3
Im(ζ

1
3 ) =

4

3
(r2 + z2)

1
8 sin

(
1

3
tan−1(

z

r
)

)
∂ζ1 ||ζ||

2
3 =

2

3
||ζ||−

1
3
ζ1
||ζ||

2(
∂r

∂ζ1
αr) +

2

3
||ζ||−

1
3
ζ1
||ζ|| = 2

4

3
(r2 + z2)

1
8 cos

(
1

3
tan−1(

z

r
)

)
(− 1

4r
+O(e−

r
L ))(r2 + z2)

1
4 +

2

3
(r2 + z2)−

1
8 cos

(
4

3
tan−1(

z

r
)

)
cos

(
1

3
tan−1(

z

r
)

)
= cos

(
4

3
tan−1(

z

r
)

)
cos
(
− tan−1(

z

r
)
)

+ sin

(
4

3
tan−1(

z

r
)

)
sin
(

tan−1(
z

r
)
)

= cos

(
4

3
tan−1(

z

r
)

)
r√

r2 + z2
+ sin

(
4

3
tan−1(

z

r
)

)
z√

r2 + z2

2(
∂r

∂ζ1
αr) +

2

3
||ζ||−

1
3
ζ1
||ζ|| = −2

3
(r2 + z2)−

1
8 cos

(
4

3
tan−1(

z

r
)

)
+

2

3
(r2 + z2)−

1
8 cos

(
4

3
tan−1(

z

r
)

)
− 2

3
(r2 + z2)−

1
8 cos

(
4

3
tan−1(

z

r
)

)
rO(e−

r
L )− 2

3
z(r2 + z2)−

1
8 sin

(
4

3
tan−1(

z

r
)

)
(− 1

4r
+O(e−

r
L ))

2(
∂r

∂ζ1
αr +

∂z

∂ζ1
αz) + ∂ζ1 ||ζ||

2
3 = O((r2 + z2)−

9
8 )

(2(
∂r

∂ζ1
αr +

∂z

∂ζ1
αz) + ∂ζ1 ||ζ||

2
3 )e2α = O((r2 + z2)−

11
8 ) = O(||ζ||−

11
6 )

So if we choose β to be 2
3

then (ii) is satisfied. We now move on to (iii)

∂ζ2e
2α = 2(

∂r

∂ζ2
αr +

∂z

∂ζ2
αz)e

2α

∂r

∂ζ2
=

4

3
Re(iζ

1
3 ) = −4

3
(r2 + z2)

1
8 sin

(
1

3
tan−1(

z

r
)

)
∂z

∂ζ1
=

4

3
Im(iζ

1
3 ) =

4

3
(r2 + z2)

1
8 cos

(
1

3
tan−1(

z

r
)

)
∂ζ2 ||ζ||

2
3 =

2

3
||ζ||−

1
3
ζ2
||ζ|| =

2

3
||ζ||−

1
3 sin

(
4

3
tan−1(

z

r
)

)

The approach is slightly different; we have the following two inequalities.

| sin
(

1

3
tan−1(

z

r
)

)
| < | sin

(
tan−1(

z

r
)
)
| = |z|√

r2 + z2

| sin
(

4

3
tan−1(

z

r
)

)
| < | sin

(
2 tan−1(

z

r
)
)
| < 2

|z|√
r2 + z2
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We plug these into the original equations and consider the biggest terms.

2(
∂r

∂ζ2
αr +

∂z

∂ζ2
αz) + ∂ζ2 ||ζ||

2
3 = O((r2 + z2)−

9
8 )

(2(
∂r

∂ζ2
αr +

∂z

∂ζ2
αz) + ∂ζ2 ||ζ||

2
3 )e2α = O((r2 + z2)−

11
8 ) = O(||ζ||−

11
6 )

Therefore we have achieved asymptotic flatness for the metric on the base.

6.8.1 Behaviour of u, v and α near the z-axis

In this section we show that u, v and α have the following behaviour as r goes
to 0.

Proposition 6.9. Starting with case I, 0 < z < L
2
.

u = 2 log(r)±O(1) ur =
2

r
±O(r) uz = ±O(1)

v = ±O(1) vr = ±O(r) vz = ±O(1)

For Case II, −L
2
< z < 0, simply interchange u and v. For both cases αz = ±O(r)

and αr = ±O(r). Now consider case III the corner point z = 0.

u = log(r)±O(1) ur =
1

r
±O(1) uz = −1

r
±O(1)

v = log(r)±O(1) vr =
1

r
±O(1) vz =

1

r
∓O(1)

α = −1

2
log(r)±O(r) αr = − 1

2r
±O(1) αz = ±O(1)

Proof. Let us start the proof of I. Consider the r dependence of u as we ap-
proach a point on the z-axis that is not a corner point. To start off lets pick
our point a to be inbetween 0 and L

2
.

u = lim
n→∞

(
Σnj=−nUΓ2j + logn

)
v = lim

n→∞

(
Σnj=−nUΓ2j+1 + logn

)
Using the behaviour of UΓ2j near the z-axis and the fact that Γ2j = [2jL, (2j+

1)L], we can conclude that UΓ0 dominates in terms of r. The dominating term
is 2 log(r). Therefore u behaves as 2 log(r) approaching from z = a. If we take
another point b to be inbetween −L

2
and 0 then there is no term that domi-

nates and we have that u approaches a constant as r approaches 0. Conversely
v behaves as a constant approaching the z-axis at z = a and behaves as 2 log(r)

when we approach the z-axis at z = b. Therefore u and v satisfy the smoothness
conditions at a and b. There is more direct calculation in the next section.
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Now let’s consider the corner point z = 0. From the symmetry and peri-
odicity of u and v this is just as good as an arbitrary corner point. From the
previous section we have that u(r, 0) = log(r) + C, where C a constant. There-
fore u behaves as log(r) when approaching the z-axis at z = 0. Additionally,
v(r, 0) = u(r, 0) so v has the same behaviour.

We now check the behaviour of α near the z-axis at a and b. Where 0 < a < L

and −L < b < 0. We start with uz(r, a). Here a ≤ ξ ≤ a+ h.

uz(r, a) = lim
h→0

(
u(r, h+ a)− u(r, a)

h

)
= lim
h→0

(
u(r, a) + h(Ω∞)z(r, ξ)− u(r, a)

h

)
= (Ω∞)z(r, a)

=

∞∑
j=−∞

(
1√

r2 + (a− (2j + 1)L)2
− 1√

r2 + (a− 2jL)2

)
= ±O(1)

We have that vz(r, a) is similar.

vz(r, a) = −uz(r, a)

However ur(r, a) has different behaviour. Note that −(a− 2jL) > 0 when j ≥ 1 and
is less than 0 otherwise. Also −(a − (2j + 1)L) > 0 when j ≥ 0 and less than 0
otherwise.

ur(r, a) = lim
h→0

(
u(r, h)− u(r, a)

h

)
= lim
h→0

(
u(r, a) + h(Ω∞)r(r, ξ)− u(r, a)

h

)
= (Ω∞)r(r, a)

=

∞∑
j=−∞

(
1√

r2 + (a− 2jL)2 − (a− 2jL)

r√
r2 + (a− 2jL)2

. . .

. . .− 1√
r2 + (a− (2j + 1)L)2 − (a− 2jL)

r√
r2 + (a− (2j + 1)L)2

)
=

∞∑
j=1

(
r

2(a− 2jL)2
− r

2(a− (2j + 1)L)2

)
+

∞∑
j=1

(
1

r

2|a− 2jL|
|a− 2jL| −

1

r

2|a− (2j + 1)L|
|a− (2j + 1)L|

)
. . .

. . .+
1√

r2 + a2 − a
r√

r2 + a2
− r

2(a− L)2

=
2

r
±O(r)

Now we examine vr(r, a). Note that −(a− (2j− 1)L) > 0 when j ≥ 1 and is negative
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otherwise.

vr(r, a) = lim
h→0

(
v(r, h)− v(r, a)

h

)
= lim
h→0

(
v(r, a) + h(Λ∞)r(r, ζ)− v(r, a)

h

)
= (Λ∞)r(r, a)

=

∞∑
j=−∞

(
1√

r2 + (a− (2j − 1)L)2 − (a− (2j − 1)L)

r√
r2 + (a− (2j − 1)L)2

. . .

. . .− 1√
r2 + (a− 2jL)2 − (a− 2jL)

r√
r2 + (a− 2jL)2

)
=

∞∑
j=1

(
r

2(a− (2j − 1)L)2
− r

2(a− 2jL)2

)
+

∞∑
j=0

(
1

r

2|a− (2j − 1)L|
|a− (2j − 1)L| −

1

r

2|a− 2jL|
|a− 2jL|

)
= ±O(r)

Therefore we can plug these into the formulae for αr and αz using (6.1.1).

αr(r, a) =
r

4

(
4

r2
− 4

r2

)
±O(r) = ±O(r)

αz(r, a) =
r

4

(
4

r
uz(r, a)− 4

r
uz(r, a)

)
±O(r) = ±O(r)

So we have nothing unusual in the behaviour of α(r, a) near (0, a). Now we
perform the same calculations but for b. The calculations for uz(r, b) and vz(r, b)

are the same as for a. We have that −(b − 2jL) > 0 when j ≥ 0 and negative
otherwise. We have that−(b − (2j + 1)L) > 0 when j ≥ 0 and negative otherwise.
And finally that −(b − (2j − 1)L) > 0 when j ≥ 1. Armed with these inequalities
we can tackle ur(r, b). Here b ≤ ξ ≤ h+ b

ur(r, b) = lim
h→0

(
u(r, h)− u(r, b)

h

)
= lim
h→0

(
u(r, b) + h(Ω∞)r(r, ξ)− u(r, b)

h

)
= (Ω∞)r(r, b)

=

∞∑
j=−∞

(
1√

r2 + (b− 2jL)2 − (b− 2jL)

r√
r2 + (b− 2jL)2

. . .

. . .− 1√
r2 + (b− (2j + 1)L)2 − (b− (2j + 1)L)

r√
r2 + (b− (2j + 1)L)2

)
=

∞∑
j=0

(
r

2(b− 2jL)2
− r

2(b− (2j + 1)L)2

)
+

∞∑
j=1

(
1

r

2|b+ 2jL|
|b+ 2jL| −

1

r

2|b+ (2j − 1)L|
|b+ (2j − 1)L|

)
= ±O(r)
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Next we tackle vr(r, b). Here b ≤ ζ ≤ h+ b.

vr(r, b) = lim
h→0

(
v(r, h)− v(r, b)

h

)
= lim
h→0

(
v(r, b) + h(Λ∞)r(r, ζ)− v(r, b)

h

)
= (Λ∞)r(r, b)

=

∞∑
j=−∞

(
1√

r2 + (b− (2j − 1)L)2 − (b− (2j − 1)L)

r√
r2 + (b− (2j − 1)L)2

. . .

. . .− 1√
r2 + (b− 2jL)2 − (b− 2jL)

r√
r2 + (b− 2jL)2

)
=

∞∑
j=1

(
r

2(b− (2j − 1)L)2
− r

2(b− 2jL)2

)
+

∞∑
j=1

(
1

r

2|b− (2j − 1)L|
|b− (2j − 1)L| −

1

r

2|b+ 2jL|
|b+ 2jL|

)
. . .

. . .+
r√

r2 + (b+ L)2 − (b+ L)

r√
r2 + (b+ L)2

− 1√
r2 + b2 − b

r√
r2 + b2

=
2

r
±O(r)

We can now plug these into αr(r, b) and αz(r, b) using (6.1.1).

αr(r, b) =
r

4

(
4

r2
− 4

r2

)
±O(r) = ±O(r)

αz(r, b) =
r

4

(
4

r
uz(r, a)− 4

r
uz(r, a)

)
±O(r) = ±O(r)

Moving on to case III, we wish to determine the behaviour of the first deriva-
tives of u and v when z = 0 and r → 0. To do so we need to be sneaky with
the expression for u and v. We can think about uz(r, 0). Here we borrowed an
expression for u from the previous section where 0 ≤ ξ ≤ h

uz(r, 0) = lim
h→0

(
u(r, h)− u(r, 0)

h

)
= lim
h→0

(
u(r, 0) + h(Ω∞)z(r, ξ)− u(r, 0)

h

)
= (Ω∞)z(r, 0)

=

∞∑
j=−∞

(
1√

r2 + ((2j + 1)L)2
− 1√

r2 + 2jL2

)

= −1

r
+

1

L
+

∞∑
j=1

(
1

(2j + 1)L
− 1

2jL

)
+

∞∑
j=1

(
1

(2j − 1)L
− 1

2jL

)

= −1

r
+

1

L
−
∞∑
j=1

1

2j(2j + 1)L
+

∞∑
j=1

1

2j(2j − 1)L

uz(r, 0) = −1

r
+O(1)

We can to the same procedure for v. Here 0 ≤ ζ ≤ h.

vz(r, 0) = uz(r,−L) = −uz(r, 2L) = −uz(r, 0)

We are comparing the above sums in the expressions for uz and vz to the zeta
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function to establish convergence. Next we move on ur.

ur(r, 0) = lim
h→0

(
u(r, h)− u(r, 0)

h

)
= lim
h→0

(
u(r, 0) + h(Ω∞)r(r, ξ)− u(r, 0)

h

)
= (Ω∞)r(r, 0)

=

∞∑
j=−∞

(
r√

r2 + (2jL)2

1√
r2 + (2jL)2 + 2jL

− r√
r2 + ((2j + 1)L)2

1√
r2 + ((2j + 1)L)2 + (2j + 1)L

)

=
1

r
+

1√
r2 + L2 + L

r

L
+

∞∑
j=1

(
r

(4jL)2jL
− r

2(2j + 1)2L2

)
+

∞∑
j=1

(
2(2jL)

r2

r

2jL
− 2(2j + 1)L

r2

r

(2j + 1)L

)
ur(r, 0) =

1

r
+O(r)

Now we move on to vr.

vr(r, 0) = ur(r,−L) = ur(r, 2L) = ur(r, 0)

From these we can determine the behaviour of αr and αz near the corner point.

αr =
r

4

(
u2
r + v2

r + urvr −
2

r
(ur + vr)− u2

z − v2
z − uzvz

)
αr(r, 0) =

r

4

(
1

r2
+

1

r2
+

1

r2
− 2

r
(
2

r
)− 1

r2
− 1

r2
+

1

r2

)
±O(1)

= − 1

2r
±O(1)

αz =
r

4

(
2uruz + 2vrvz + urvz + vruz −

2

r
(uz + vz)

)
=
r

4

(
−2

1

r2
+

2

r2
+

1

r2
− 1

r2
− 2

r
(
1

r
− 1

r
)

)
±O(1) = ±O(1)

Now let’s find what happens to the conformal factor e2α.

α = −1

2
log(r)±O(r) e2α = O

(
1

r

)

Note that if we consider the corner point at z = L by symmetry uz → −uz and
vz → −vz and ur and vr stay the same. However upon inspection of the formulae
for the partials of α nothing changes. Therefore we get the same behaviour for
α. Thus the behaviour for α is exactly what was predicted by the smoothness
conditions. Therefore by periodicity α has no unusual behaviour when you
approach the z-axis at anywhere but the corner points.

6.9.1 Regularity

To rule out conical singularities when approaching the z-axis we must make
sure the angle deficit on both the (1, 0) and (0, 1) rods are 0. These are the
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constants b1 and b2 which correspond to the (1, 0) rod and to the (0, 1) rod
respectively. They are given by the following.

b1 = lim
r→0

(
log(r) + α− 1

2
u

)
b2 = lim

r→0

(
log(r) + α− 1

2
v

)

Let 0 < a < L
2
. It will be shown that we can add a constant to both u and

v to achieve b1 = b2 = 0. To aid with this calculation we want to know if
u = u(r, z)− 2 log(r) is bounded when 0 ≤ r ≤ r1, where r1 is a small constant. We
know that it is convergent for 0 < r since both u and log(r) are convergent for
those r. Thus we only need to check convergence for r = 0.

u(r, z) =

∞∑
j=1

(
log

(√
r2 + z2

(2jL)2
− z

jL
+ 1 + 1− z

2jL

)
− log

(√
r2 + z2

((2j + 1)L)2
− 2z

(2j + 1)L
+ 1 + 1− z

(2j + 1)L

)
. . .

. . .− log

(√
r2 + z2

(2jL)2
+

z

jL
+ 1 + 1 +

z

2jL

)
+ log

(√
r2 + z2

((2j − 1)L)2
+

2z

(2j − 1)L
+ 1 + 1 +

z

(2j − 1)L

))
. . .

. . .+ log
(√

r2 + z2 − z
)
− log

(√
r2 + (z − L)2 − (z − L)

))
lim
r→0

u(r, a) =

∞∑
j=1

(
log

(
2(1− a

2jL
)

)
− log

(
2(1− a

(2j + 1)L
)

)
− log

(
2(1 +

a

2jL
)

)
+ log

(
2(1 +

a

(2j − 1)L
)

))
. . .

. . .+ lim
r→0

(2 log(r)) + log(2a)− log(2(L− a))

lim
r→0

(u(r, a)− 2 log(r)) =

∞∑
j=1

(
log

(
1− a

2jL

)
− log

(
1− a

(2j + 1)L

)
− log

(
1 +

a

2jL

)
+ log

(
1 +

a

(2j − 1)L

))
. . .

. . .+ log(a)− log(L− a)

As before we do a limit comparison test; comparing the infinite sum above to
ζ(2).

N1 = lim
j→∞

(
log

(
1− a

2jL

)
− log

(
1− a

(2j + 1)L

))
j2

= lim
k→0

(
log

(
1− ak

2L

)
− log

(
1− ak

(2 + k)L

))
1

k2

= lim
k→0

((
−

a
2L

1− ka
2L

−
( a

(2+k)L
+ aj

(2+k)2L

1− ka
2L

)
1

2k

)
= lim
k→0

((
− a

2L
+

a

(2 + k)L

)
1

2k

)
= − a

4L

109



M.Sc. Thesis – S. Zwarich McMaster University – Mathematics

N2 = lim
j→∞

(
log

(
1 +

a

2jL

)
− log

(
1 +

a

(2j − 1)L

))
j2

= lim
k→0

(
log

(
1 +

ak

2L

)
− log

(
1 +

ak

(2− k)L

))
1

k2

= lim
k→0

(( a
2L

1 + ka
2L

−
( a

(2−k)L
+ aj

(2−k)2L

1− ka
2L

)
1

2k

)
= lim
k→0

((
+

a

2L
− a

(2− k)L

)
1

2k

)
= − a

4L

We plug u = 2 log(r) + u into αr and αz.

αr =
r

4

((
2

r
+ ur

)2

+ v2
r +

(
2

r
+ ur

)
vr −

2

r

(
2

r
+ ur + vr

)
− u2

z − v2
z − uzvz

)

=
r

4
u2
r +

r

4
v2
r +

2

4
ur −

r

4
(u2
z + v2

z + uzvz)

αz =
r

4

(
2

(
2

r
+ ur

)
uz + 2vrvz +

(
2

r
+ ur

)
vz + vruz −

2

r
(uz + vz)

)
=

1

2
uz +

r

4
(2uruz + 2vrvz + urvz + vruz)

Using the behaviour of u and v near the z-axis we make the following deduction.

αr =
1

2
ur +O(r)

αz =
1

2
uz +O(r)

Thus it follows that α = 1
2
u+ C + O(r2). Therefore if we add 2C to u we achieve

the vanishing of b1.

b1 = lim
r→0

(
log(r) +

1

2
u+ C +O(r2)− 1

2
(u+ 2 log(r) + 2C)

)
= 0

For b2 let 0 > b > −L
2
. We know that v(r, b) = u(r, b − L)= u(r, b− L) + 2 log(r). It is

clear that there is an a which corresponds to b. Since 0 < b − L + 2L < L
2
. Also

α(r, L
2
− b− L

2
) = α(r, b+L) = α(r, b−L). Therefore the b2 is satisfied if we add 2C to

v since the limit expression for b2 is equal to the limit expression of b1 for some
a. Therefore regularity is established.

6.9.2 Topology of the Solution

There are two relevant topologies for example 2. We are interested in the
topology on the time slice of the 5-dimensional manifold which has a coor-
dinate system inolving (x1, y1, x2, y2) coordinates from the smoothness chapter.
The first topology is the slice topology which exists in a strip along the z-axis.
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Here periodicity in z of the spacetime is introduced under an equivalence rela-
tion where different fundamental domains are used to create different topolo-
gies. We are only concerned about a strip since the slice at point is local in
nature. The second topology is the topology for the entire Domain of Outer
Communication (DOC) and encompasses the entire orbit space.

The fundamental domain of the slice topology is shown below where the
horizontal axis is the z-axis and the rectangle goes from −L

2
to 3L

2
.

0 L−L

(1, 0)(0, 1)(1, 0) (0, 1)

Fundamental Domain

Figure 6.3:

Consider the following equivalence relation in z where z ∼ z + 2L. Then we
identify points at either end of the fundamental domain. We have two rod
structures present and we can draw a picture of what this looks like in terms
of the (r1, r2) coordinates.

A Br1

r2

Figure 6.4:

Here A and B correspond to the corner points. Note that moving along
the r1 axis corresponds to moving along the (0, 1) rod since r2 = 0. Simi-
larly, moving along the r2 axis corresponds to moving along the (0, 1) rod since
r1 = 0. If we think about what’s happening upstairs in (x1, y1, x2, y2) we have that
x2

1 + y2
1 + x2

2 + y2
2 = 0 at the corners. We can characterize these coordinates by

x2
1+y2

1+x2
2+y2

2 = 1−t2 where t = 1 at A, t = −1 at B. We consider t varying across the
diagram. Thus the enclosed region is homeomorphic to S4. However because
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we only considered a strip along the z-axis we are missing a 2-dimensional ball
in the (r1, r2) diagram. Since neither r1 nor r2 is 0 in this ball, we have that up-
stairs we can use the coordinates (r1, r2, ϕ1, ϕ2). Thus upstairs the ball becomes
B2 × T 2, where B2 is the 2-dimensional ball. Therefore the fundamental region
is really homeomorphic to S4 − (B2 × T 2).

Now the question becomes what happens when we use a different equivalence
relation in z, say z ∼ z+ 2kL where k is an integer greater than 1. How does the
slice topology change? Well every time we increase k we add 2 more corners.
It useful to understand the diagram with 4 corners.

r2

r1A B

CD

Figure 6.5:

Here A, B, C and D are corner points and r1 = r2 = 0 at these corner points.
We characterize the coordinates upstairs by x2

1 + y2
1 + t2 = 1 and x2

2 + y2
2 + u2 = 1,

where u = t = 1 at A, u = −t = 1 at B, −u = t = 1 at C and u = t = −1 at D. We
consider t and u varying across the diagram. Therefore the entire diagram is
homeomorphic to S2 × S2. Now we excise the A corner by deleting the region
inside the red arc. This arc has equation r2

1 + r2
2 = Λ2 where Λ is a constant. At

the level of the slice this arc corresponds to x2
1 + y2

1 + x2
2 + y2

2 = Λ2. Thus the arc
corresponds to S3. If we took out a similar region from the diagram with two
corners we would again have a boundary that is S3. Therefore we can glue the
two diagrams together along their S3 cuts obtaining a connected sum with 4
corners. The resulting space is S4#S2 × S2 − (B2 × T 2). This corresponds to the
slice topology where k = 2. Note that the connected sum with Sn results in the
identity thus we have that (S4#S2 × S2)− (B2 × T 2) = (S2 × S2)− (B2 × T 2). For the
slice topology for arbitrary k, we keep taking connected sum with S2×S2. Thus
we can write the time slice under the equivalence relation, M4/ ∼, for arbitrary
k as:
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M4/ ∼ =

{
S4 − (B2 × T 2), k = 1

(#k−1S2 × S2)− (B2 × T 2) k ≥ 2

}
] (6.9.1)

Next we examine the topology of the entire DOC. To do so we divide the
rz half plane in to regions Ai.

0 L−L

(1, 0)(0, 1)(1, 0) (0, 1) (1, 0)(0, 1)

A1

A2

Figure 6.6:

We can picture A1 in terms of (r1, r2) coordinates. It has 3 corners and thus can
be drawn in terms of the S2 × S2 diagram but with a corner excised breaking
the periodicity.

r2

r1 B

CD

A1

Figure 6.7:

The excised part of the diagram corresponds to a part of a ball centered at the
origin in (r1, r2) coordinates. Upstairs this corresponds to a 4-dimensional ball,
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B4
1 centered, around the origin with coordinates (x1, y1, x2, y2). The boundary of

B4
1 is homemorphic to S3. We have that A1 is homeomorphic to S2 × S2 − B4

1.
We can picture Ai where i ≥ 2 by a similar diagram this time with two excised
regions resulting in only two corners.

B

D

A2

Figure 6.8:

Thus Ai has two balls removed, this means it has two S3 boundaries. Thus
if we connect sum A1 and A2 along the S3 boundary of A1 and one of the S3

boundaries of A2 we end with (S2 × S2)#(S2 × S2) − B4
2. Where B4

2 is a different
4-ball. If we continue this process of infinite connected sums we obtain ( with
the convention that when we reach infinity there is no missing ball) that the
whole orbit space under quotient of the T 2 action is homeomorphic to #∞S2×S2.
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Chapter 7

A Singular Solution with
Non-Constant Twist Potentials

7.1 The Solution

Proposition 7.2. We have a solution whose metric on the fibre is given by
Hij = g(∂ϕi−1 , ∂ϕj−1) which has non-constant twist potentials, which satisfies the
smoothness conditions for a (1, 0) rod spanning the z-axis, whose lower right
2x2 block matrix is positive definite away from the z-axis but is missing a point
on the z-axis. The non-zero components of the metric on the fibre are stated
below where h satisfies hrr + 1

r
hr + hzz = 0.

H11 = −e
(σ+τ)h

2

(
cosh

((
(τ − σ)

√
1− η2

2

)
h

)
+

1√
1− η2

sinh

((
(τ − σ)

√
1− η2

2

)
h

))

H33 = e
(σ+τ)h

2

(
cosh

(
(τ − σ)

√
1− η2

2
h

)
− 1√

1− η2
sinh

(
(τ − σ)

√
1− η2

2
h

))

H13 =
η√

1− η2
e
σ+τ

2 h sinh

(
(τ − σ)

√
1− η2

2
h

)
H22 = r2e−(σ+τ)h

Proof. In the equation above σ, τ and η are constants. An appropriate example
of h would be − 1√

r2+z2
. This solution is not defined at (0, 0). This solution obeys

the smoothness condition when there is only a single (1, 0) rod that stretches
across the z-axis. To see this with the example function we know that it is a
smooth function of r2 and z away from the singular point. We have that H22

behaves as O(r2) as r goes to 0 away from the singular point . The fact that
H23 = H12 = 0 agrees with the smoothness conditions. We have the following
behaviour at the singularity for the components of H. We will assume τ −σ > 0,
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σ > 0 and τ > 0. We have that h→ −∞. So in the exponentials you either get ∞
or 0 depending on the sign of the exponent.

(σ + τ)

2
+

(τ − σ)
√

1− η2

2
> 0

(σ + τ)

2
−

(τ − σ)
√

1− η2

2
> 0

−(σ + τ) < 0

Therefore H11, H13, and H33 all go to zero as you approach the singularity. For
H22 the exponent term overpowers the r2 term so it blows up at the singularity.

Furthermore we require that f = H22H33 > 0 away from the z-axis. For this
we must check that H33 > 0. We can achieve by assuming that τ − σ > 0 and
requiring that h < 0.

H33 = cosh

(
(τ − σ)

√
1− η2

2
h

)
− 1√

1− η2
sinh

(
(τ − σ)

√
1− η2

2
h

)

=
1

2

(
e

(τ−σ)
√

1−η2

2 h + e−
(τ−σ)

√
1−η2

2 h − 1√
1− η2

(
e

(τ−σ)
√

1−η2

2 h − e−
(τ−σ)

√
1−η2

2 h

))

=
1

2

(
e−

(τ−σ)
√

1−η2

2 h

(
1 +

1√
1− η2

)
− e

(τ−σ)
√

1−η2

2 h

(
1√

1− η2
− 1

)

Since we know that
∣∣∣∣1 + 1√

1−η2

∣∣∣∣ < ∣∣∣∣ 1√
1−η2

− 1

∣∣∣∣ and e−
(τ−σ)

√
1−η2

2 h > e
(τ−σ)

√
1−η2

2 h we

have that H33 > 0.

We can verify that this is indeed a solution to the harmonic map equations.
We will start off by finding the determinant of H. We will use the shorthand

θ =

(
(τ−σ)

√
1−η2

2

)
.

detH = H22(H11H33 −H2
13)

= r2e−(σ+τ)he
σ+τ

2 he
σ+τ

2 h

(
−

(
cosh(θh) +

1√
1− η2

sinh(θh)

)(
cosh(θh)− 1√

1− η2
sinh(θh)

)
. . .

. . .− η2

1− η2
sinh2(θh))

)
= r2

(
− cosh2(θh) +

1

1− η2
sinh2(θh)− η2

1− η2
sinh2(θh))

)
= r2(sinh2(θh)− cosh2(θh)) = −r2
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We can now work out the components of H−1 using the adjoint of H.

H−1 =
1

detH


H22H33 0 −H22H13

0 H11H33 −H2
13 0

−H22H13 0 H11H22



H−1 = e−(σ+τ)h


−H33 0 H13

0 e2(σ+τ)hr−2 0

H13 0 −H11


We now calculate the r and z derivatives of the components of H.

(H11)r = −hre
(σ+τ)h

2

((
σ + τ

2
+
τ − σ

2

√
1− η2√
1− η2

)
cosh(θh) +

(
σ + τ

2

1√
1− η2

+
τ − σ

2

√
1− η2 sinh(θh)

))
= −hre

(σ+τ)h
2

(
τ cosh(θh) +

1√
1− η2

(
τ − τ − σ

2
η2

)
sinh(θh)

)
(H33)r = hre

(σ+τ)h
2

((
σ + τ

2
− τ − σ

2

√
1− η2√
1− η2

)
cosh(θh) +

(
− σ + τ

2

1√
1− η2

+
τ − σ

2

√
1− η2

)
sinh(θh)

)
= hre

(σ+τ)h
2

(
σ cosh(θh)− 1√

1− η2

(
σ +

(
τ − σ

2

)
η2

)
sinh(θh)

)
(H13)r = hre

(σ+τ)h
2

η√
1− η2

((
σ + τ

2

)
sinh(θh) +

((
τ − σ

2

√
1− η2

)
cosh(θh)

)
= hre

(σ+τ)h
2

(
(τ − σ)η

2
cosh(θh) +

η√
1− η2

(
σ + τ

2

)
sinh(θh)

)

(H22)r =

(
2r + r2(−(σ + τ)hr)

)
e−(σ+τ)h = 2re−(σ+τ)h − (σ + τ)r2hre

−(σ+τ)h

(H11)z = −hze
(σ+τ)h

2

(
τ cosh(θh) +

1√
1− η2

(
τ − τ − σ

2
η2

)
sinh(θh)

)
(H33)z = hze

(σ+τ)h
2

(
σ cosh(θh)− 1√

1− η2

(
σ +

(
τ − σ

2

)
η2

)
sinh(θh)

)
(H13)z = hze

(σ+τ)h
2

(
(τ − σ)η

2
cosh(θh) +

η√
1− η2

(
σ + τ

2

)
sinh(θh)

)
(H22)z = −(σ + τ)r2hze

−(σ+τ)h

We now calculate the components of H−1Hr and H−1Hz.

H−1Hr = e−(σ+τ)h


−H33 0 H13

0 e2(σ+τ)hr−2 0

H13 0 −H11




(H11)r 0 (H13)r

0 (H22)r 0

(H13)r 0 (H33)r


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We’ll start with the 11 component.

(H−1Hr)11 = e−(σ+τ)h(−H33(H11)r +H13(H13)r)

−e−(σ+τ)hH33(H11)r = e
(σ+τ)h

2 e
(σ+τ)h

2 e−(σ+τ)hhr

(
cosh(θh)− 1√

1− η2
sinh(θh)

)
. . .

. . .

(
τ cosh(θh) +

1√
1− η2

(
τ − τ − σ

2
η2

)
sinh(θh)

)
= hr

(
τ cosh2(θh) +

(
τ√

1− η2
− τ√

1− η2
. . .

. . .−
(
τ − σ

2

)
η2√

1− η2

)
sinh(θh) cosh(θh)− 1

1− η2

(
τ − (τ − σ)η2

2

)
sinh2(θh)

)
e−(σ+τ)hH13(H13)r = hr

(
η√

1− η2
sinh(θh)

)(
(τ − σ)η

2
cosh(θh) +

η√
1− η2

(
σ + τ

2

)
sinh(θh)

)
= hr

(
η2√

1− η2

(
τ − σ

2

)
sinh(θh) cosh(θh) +

η2

1− η2

(
σ + τ

2

)
sinh2(θh)

)
(H−1Hr)11 = hr

(
τ(1 + sinh2(θh))− 1

1− η2

(
τ − (τ − σ)η2

2
− η2

(
σ + τ

2

))
sinh2(θh)

)
= τhr

Moving on to the 13 component.

(H−1Hr)13 = e−(σ+τ)h(−H33(H13)r +H13(H33)r)

e−(σ+τ)hH33(H13)r = hr

(
cosh(θh)− 1√

1− η2
sinh(θh)

)(
(τ − σ)η

2
cosh(θh) +

η√
1− η2

(
σ + τ

2

)
sinh(θh)

)
= hr

(
(τ − σ)η

2
cosh2(θh) +

(
− (τ − σ)η

2
√

1− η2
+

η√
1− η2

(
σ + τ

2

))
sinh(θh) cosh(θh) . . .

. . .− η

1− η2

(
σ + τ

2

)
sinh2(θh)

)
e−(σ+τ)hH13(H33)r = hr

η√
1− η2

(
sinh(θh)

)(
σ cosh(θh)− 1√

1− η2

(
σ +

(τ − σ)η2

2

)
sinh(θh)

)
(H−1Hr)13 = hr

(
− (τ − σ)η

2
+

η

2
√

1− η2

(
σ − σ

)
sinh(θh) cosh(θh) . . .

. . .+ η

(
− (τ − σ)

2
+

τ − σ
2(1− η2)

− (τ − σ)η2

2(1− η2)

)
sinh2(θh)

)
(H−1Hr)13 = − (τ − σ)

2
hr
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Moving on to the 31 component.

(H−1Hr)31 = e−(σ+τ)h(H13(H11)r −H11(H13)r)

e−(σ+τ)hH13(H11)r = −hr
η√

1− η2
sinh(θh)

(
τ cosh(θh) +

1√
1− η2

(
τ −

(
τ − σ

2

)
η2

)
sinh(θh)

)
e−(σ+τ)hH11(H13)r = −hr

(
cosh(θh) +

1√
1− η2

sinh(θh)

)(
(τ − σ)η

2
cosh(θh) . . .

. . .+
η√

1− η2

(
σ + τ

2

)
sinh(θh)

)
= −hrη

((
τ − σ

2

)
cosh2(θh) +

(
τ − σ

2

1√
1− η2

+
σ + τ

2

1√
1− η2

)
cosh(θh) sinh(θh) . . .

. . .+
(τ + σ)

2

1

1− η2
sinh2(θh)

)
(H−1Hr)31 = hr

(
(τ − σ)η

2
+ η

(
τ√

1− η2
− τ√

1− η2

)
sinh(θh) cosh(θh) . . .

. . .+ η

(
− 1

1− η2

(
τ − (τ − σ)η2

2

)
+
τ − σ

2
+
τ + σ

2

(
1

1− η2

))
sinh2(θh)

)
= hr

(
(τ − σ)η

2
+ η

τ − σ
2

(
+

η2

1− η2
− 1

1− η2
+ 1

)
sinh2(θh)

)
=

(τ − σ)η

2
hr

Now we move on to the 33 component but utilize the previous calculations.
When calculating k we use the calculations for the determinant of H.

(H−1Hr)33 = e−(σ+τ)h(H13(H13)r −H11(H33)r)

k := e−(σ+τ)h ∂

∂r
(H2

13 −H11H33) = (σ + τ)hr

= e−(σ+τ)h(2H13(H13)r − (H11)rH33 − (H33)rH11)

(σ + τ)hr = (H−1Hr)33 + (H−1Hr)11

(H−1Hr)33 = σhr

Now we move on to the 22 component.

(H−1Hr)22 = r−2e(σ+τ)h

(
2re−(σ+τ)h − (σ + τ)r2hre

−(σ+τ)h

)
= 2r−1 − (σ + τ)(hr)

The calculations for the components H−1Hz are identical to the calculations for
H−1Hr except that hr becomes hz and the 22 component is slightly different.
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The results are stated below.

(H−1Hz)11 = σhz

(H−1Hz)33 = τhz

(H−1Hz)13 = − (τ − σ)η

2
hz

(H−1Hz)31 =
(τ − σ)η

2
hz

(H−1Hz)22 = −(σ + τ)hz

We have that these components together satisfy the harmonic map equations
since h is harmonic and ∂

∂r
(rr−1) + ∂

∂z
(rr−1) = 0.

7.3 The Derivation

7.3.1 Reconciling the Matrix Exponential

We now show how this solution was derived. Let P be a matrix whose compo-
nents are harmonic which takes the following form:

P =


A 0 D

0 B 0

E 0 C

 Let J =


−1 0 0

0 1 0

0 0 1


Essentially we are constructing H from P using the exponential function for
matrices. We have from the background chapter that adXY = [X,Y ] where [X,Y ]

is the commutator of the matrices X and Y . This is because the Lie group is
the set of all invertible 3x3 matrices thus the Lie algebra is simply the set of
3x3 matrices. We consider the following two matrices:

Λ = −P
T
r

2
+
JPrJ

2
+

∞∑
j=1

(−1)j

(j + 1)!
adj
P−PT2 +JPJ

2

(
Pr −

PTr
2

+
JPrJ

2

)

= −P
T
r

2
+
JPrJ

2
− 1

2!

[
P − PT

2
+
JPJ

2
, Pr −

PTr
2

+
JPrJ

2

]
+

1

3!

[
P − PT

2
+
JPJ

2
,

[
P − PT

2
+
JPJ

2
, Pr −

PTr
2

+
JPrJ

2

]]
+ h.o.t

Γ = −P
T
z

2
+
JPzJ

2
+

∞∑
j=1

(−1)j

(j + 1)!
adj
P−PT2 +JPJ

2

(
Pz −

PTz
2

+
JPzJ

2

)

= −P
T
z

2
+
JPzJ

2
− 1

2!

[
P − PT

2
+
JPJ

2
, Pz −

PTz
2

+
JPzJ

2

+
1

3!

[
P − PT

2
+
JPJ

2
,

[
P − PT

2
+
JPJ

2
, Pz −

PTz
2

+
JPzJ

2

]]
+ h.o.t
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We are interested in knowing how many non-zero components Λ and Γ actually
have. We start by calculating −P

T

2
+ JPJ

2
and P − PT

2
+ JPJ

2
.

−P
T

2
+
JPJ

2
=


−A

2
0 −D

2

0 B
2

0

−E
2

0 C
2

+


A
2

0 −D
2

0 B
2

0

−E
2

0 C
2

 =


0 0 −D+E

2

0 0 0

−D+E
2

0 0



−P
T

2
+
JPJ

2
+ P =


0 0 −D+E

2

0 0 0

−D+E
2

0 0

+


A 0 D

0 B 0

E 0 C

 =


A 0 D−E

2

0 B 0

−D−E
2

0 C



We now consider the matrix Q =

[
P − PT

2
+ JPJ

2
, Pr − PTr

2
+ JPrJ

2

]
.

Q11 = AAr −
(D − E)(Dr − Er)

4
−AAr +

(D − E)(Dr − Er)
4

= 0

Q22 = BBr −BrB = 0

Q13 =
A(Dr − Er)

2
+

(D − E)Cr
2

− Ar(D − E)

2
− C(Dr − Er)

2

=
(A− C)(Dr − Er)

2
− (Ar − Cr)(D − E)

2

Q31 = −Ar(D − E)

2
− C(Dr − Er)

2
+
A(Dr − Er)

2
+
Cr(D − E)

2

=
(A− C)(Dr − Er)

2
− (Ar − Cr)(D − E)

2
= Q13

Q33 = − (D − E)(Dr − Er)
4

+ CCr +
(D − E)(Dr − Er)

4
− CrC = 0

Q12 = Q21 = Q23 = Q32 = 0

We now consider the matrix R =

[
P − PT

2
+ JPJ

2
, Pz − PTz

2
+ JPzJ

2

]
.

R11 = AAz −
(D − E)(Dz − Ez)

4
−AAz +

(D − E)(Dz − Ez)
4

= 0

R22 = BBz −BzB = 0

R13 =
A(Dz − Ez)

2
+

(D − E)Cz
2

− Az(D − E)

2
− C(Dz − Ez)

2

=
(A− C)(Dz − Ez)

2
− (Az − Cz)(D − E)

2

R31 = −Az(D − E)

2
− C(Dz − Ez)

2
+
A(Dz − Ez)

2
+
Cz(D − E)

2

=
(A− C)(Dz − Ez)

2
− (Az − Cz)(D − E)

2
= R13

R33 = − (D − E)(Dz − Ez)
4

+ CCz +
(D − E)(Dz − Ez)

4
− CzC = 0

R12 = R21 = R23 = R32 = 0
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If we set Q13 = R13 = 0 then Q = R = 0. We then kill the higher order terms in Ω

and Γ which allows us to construct solutions to the harmonic map equations.
To see this we define P and construct H from it using the matrix exponential.

P = P − PT

2
+
JPJ

2
H = JeP eX = Σ∞i=0

Xn

n!

We see that P is related to its transpose.

P
T

=


A 0 −D−E

2

0 B 0
D−E

2
0 C

 JPJ =


A 0 −D−E

2

0 B 0
D−E

2
0 C


From this relation and the fact that J2 = I we can show that H is symmetric.

HT = eP
T
J = eJPJJ = JePJJ = JeP = H

Since H is symmetric its eigenvalues are real. We want to make further deduc-
tions about the eigenvalues of H. To do this we need to more closely examine
the structure of H. Let X be a square matrix. We can express the components
of Xn, n ≥ 2 as follows.

(Xn)ij = Σi1,...,in∈{1,...,n}Xii1Xi1i2 ...Xin−1inXinj

Next we consider P
n
22. Since P 23 = P 21 = 0 we are forced to conclude that every

term in the above expression must be P 22.

P
n
22 = (P 22)n H22 = eP22

Next we consider Pn23. The only non zero that contains a 2 in the index is P 22.
But all the proceeding terms in the product must be P 22. Therefore the 3 in
the last index is never realized. Therefore P

n
23 = 0. By the same logic, Pn21 = 0.

Therefore H21 = H23 = 0. And by symmetry, H12 = H32 = 0. We can express the
characteristic polynomial for H as follows.

0 = det


H11 − λ 0 H13

0 H22 − λ 0

H13 0 H33 − λ

 = (H22 − λ)((H11 − λ)(H33 − λ)−H2
13)

Therefore H22 is an eigenvalue and it is also positive where H22 is defined since
H22 = eP22 . Next we impose the condition on P that Tr(P ) = 2 log(r). This allows
to calculate the determinant of H.

det(H) = det
(
JeP

)
= det(J) det

(
eP
)

= −eTr(P ) = −eTr(P ) = −elog(r2) = −r2

122



M.Sc. Thesis – S. Zwarich McMaster University – Mathematics

From this we deduce that H is Lorentz away from the z axis (r > 0). Since
the determinant is negative there must be either 1 or 3 negative eigenvalues.
Since we know there is at least 1 positive eigenvalue we deduce that H has 1
negative eigenvalue and 2 positive eigenvalues meaning it is Lorentz. Next we
show that H obeys the harmonic map equations in the case when Q13 = R13 = 0.
We use the formula for the derivative of the exponential matrix found in Hall’s
book “Lie Groups, Lie Algebras, and Representations” [16, p. 71].

H−1Hr = e−PJJ
∂

∂r
eP = e−P

∂

∂r
eP

= Pr −
1

2
[P , Pr] +

1

3!
[P , [P , Pr]].+ h.o.t

= Pr

H−1Hr =


Ar 0 Dr−Er

2

0 Br 0

−Dr−Er
2

0 Cr


H−1Hz = e−PJJ

∂

∂z
eP = e−P

∂

∂z
eP

= Pz −
1

2
[P , Pz] +

1

3!
[P , [P , Pz]] + h.o.t

= Pz

H−1Hz =


Az 0 Dz−Ez

2

0 Bz 0

−Dz−Ez
2

0 Cz


The components of H−1Hr and H−1Hz are linear combinations of the cor-

responding partial derivatives of P . Since Prr + Pzz + Pr
r

= 0, it follows that
∂
∂r

(
rH−1Hr

)
+ ∂

∂z

(
rH−1Hz

)
= 0.
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7.3.2 Restriction on the Components of P

We now construct the example.
First, we note that Q13 = R13 = 0 restricts our choice of components for H.

Q13 =
(A− C)(Dr − Er)

2
− (Ar − Cr)(D − E)

2
= 0

(A− C)(Dr − Er) = (Ar − Cr)(D − E)

Dr − Er
D − E =

Ar − Cr
A− C

log(D − E) = log(A− C) + log(η(z))

R13 =
(A− C)(Dz − Ez)

2
− (Az − Cz)(D − E)

2
= 0

(A− C)(Dz − Ez) = (Az − Cz)(D − E)

Dz − Ez
D − E =

Az − Cz
A− C

log(D − E) = log(A− C) + log(η(r))

Here η and η are arbitrary functions of z and r respectively. It follows that
log(A− C) and log(D − E) differ by a constant which is log(η) = log(η).

log(D − E) = log(A− C) + log(η)

D − E = η(A− C)

Let h be a harmonic function, we will use it repeatedly in the components of
H. Note that we’re assuming that τ − σ 6= 0 since we want non constant twist
potentials.

A = τh C = σh

B = 2 log(r)− (σ + τ)h
D − E

2
=
η

2
(τ − σ)h

In terms of calculating the components of H, the component H22 is straight-
forward but the other 3 non-zero components require closer examination of eP .
The components of (P

n
)ij, where i, j ∈ {1, 3}, are made up of P 11, P 13, P 31 and

P 33. To see this we go back to the formula for the components of powers of
P . The leading factor has a 1 or a 3 in the first index so for the term to be
non zero the second index must have a 1 or a 3. This argument carries to the
subsequent factors since the second index of the kth factor is the first index of
(k + 1)th factor. Since P 11, P 13, P 31 and P 33 are all made up of multiples of h,
we know that (P

n
)ij, where i, j ∈ {1, 3}, is factor of hn. We denote this factor by

P
(n)
ij . We have the following recurrence relations where n ≥ 1.
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P
(n)
11 = P

(1)
11 P

(n−1)
11 + P

(1)
13 P

(n−1)
31

P
(n)
31 = P

(1)
33 P

(n−1)
31 + P

(1)
31 P

(n−1)
11

P
(n)
13 = P

(1)
11 P

(n−1)
13 + P

(1)
13 P

(n−1)
33

P
(n)
33 = P

(1)
33 P

(n−1)
33 + P

(1)
31 P

(n−1)
13

Where P
(0)
11 = 1, P

(0)
33 = 1, and P

(0)
13 = P

(0)
31 = 0. And where P

(1)
11 = τ , P

(1)
33 = σ,

and P
(1)
13 = −P (1)

31 = (τ−σ)η
2

. Here P
(1)
ij is obtained from the matrix P and the P

(0)
ij is

solved for using the recursive equations.

7.3.3 Solving the Recurrence Relations

We can divide these 4 recursive equations into 2 subsystems and then analyze
each subsystem. By repeatedly subbing in the equation for P (n)

31 into the equa-
tion for P

(n)
11 we obtain an equation solely in terms of P (m)

11 where 0 ≤ m ≤ n− 1.

P
(n)
11 = τP

(n−1)
11 − (τ − σ)2η2

4

(
Σn−2
i=0 σ

iP
(n−(i+2))
11

)
We can compare P

(n)
11 to P

(n−1)
11 to obtain a simplification.

P
(n−1)
11 = τP

(n−2)
11 − (τ − σ)2η2

4

(
Σn−3
i=0 σ

iP
(n−1−(i+2))
11

)
= τP

(n−2)
11 − (τ − σ)2η2

4

(
Σn−2
i=1 σ

i−1P
(n−(i+2))
11

)
= τP

(n−2)
11 − (τ − σ)2η2

4σ

(
Σn−2
i=1 σ

iP
(n−(i+2))
11

)
P

(n)
11 − σP

(n−1)
11 = τP

(n−1)
11 − στP (n−2)

11 − (τ − σ)2η2

4
P

(n−2)
11

P
(n)
11 = (σ + τ)P

(n−1)
11 −

(
στ +

(τ − σ)2η2

4

)
P

(n−2)
11

Now we have a second order recursive sequence so the roots of the correspond-
ing quadratic equation are essential for finding a formula for the sequence.

0 = s2 − (σ + τ)s+

(
στ +

(τ − σ)2η2

4

)
s =

σ + τ ±
√

(σ + τ)2 − (4στ + (τ − σ)2η2)

2

s =
σ + τ ± (τ − σ)

√
1− η2

2
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We’ll only consider the case where the roots are non-repeating. We obtain the
following expression for P

(n)
11 . Where A and B are constants.

P
(n)
11 = A

(
σ + τ + (τ − σ)

√
1− η2

2

)n
+B

(
σ + τ − (τ − σ)

√
1− η2

2

)n
P

(0)
11 = 1 = A+B

P
(1)
11 = τ = A

(
σ + τ + (τ − σ)

√
1− η2

2

)
+B

(
σ + τ − (τ − σ)

√
1− η2

2

)

τ = A

(
σ + τ + (τ − σ)

√
1− η2

2
−
σ + τ − (τ − σ)

√
1− η2

2

)
+
σ + τ − (τ − σ)

√
1− η2

2

τ − σ + (τ − σ)
√

1− η2

2
= A(τ − σ)

√
1− η2

A =
1

2
+

1

2
√

1− η2
B =

1

2
− 1

2
√

1− η2

P
(n)
11 =

1

2

((
1 +

1√
1− η2

)(
σ + τ + (τ − σ)

√
1− η2

2

)n

+

(
1− 1√

1− η2

)(
σ + τ − (τ − σ)

√
1− η2

2

)n)

We can now work out P
(n)
31 from the original recursive equations.

P
(1)
13 P

(n)
31 = P

(n+1)
11 − P (n)

11 P
(1)
11

η(τ − σ)

2
P

(n)
31 =

1

2

((
1 +

1√
1− η2

)(
σ + τ + (τ − σ)

√
1− η2

2

)n+1

. . .

. . .+

(
1− 1√

1− η2

)(
σ + τ − (τ − σ)

√
1− η2

2

)n+1)
. . .

. . .− τ

2

((
1 +

1√
1− η2

)(
σ + τ + (τ − σ)

√
1− η2

2

)n
. . .

. . .+

(
1− 1√

1− η2

)(
σ + τ − (τ − σ)

√
1− η2

2

)n)

=
1

2

((
1 +

1√
1− η2

)(
σ + τ + (τ − σ)

√
1− η2

2
− τ

)(
σ + τ + (τ − σ)

√
1− η2

2

)n
. . .

. . .+

(
1− 1√

1− η2

)(
σ + τ − (τ − σ)

√
1− η2

2
− τ

)(
σ + τ − (τ − σ)

√
1− η2

2

)n)

ηP
(n)
31 =

(
1 +

1√
1− η2

)(
−1 +

√
1− η2

2

)(
σ + τ + (τ − σ)

√
1− η2

2

)n
. . .

. . .−

(
1− 1√

1− η2

)(
1 +

√
1− η2

2

)(
σ + τ − (τ − σ)

√
1− η2

2

)n

P
(n)
31 =

η

2
√

1− η2

((
σ + τ + (τ − σ)

√
1− η2

2

)n
−

(
σ + τ − (τ − σ)

√
1− η2

2

)n)
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Now the recursive equation for P
(n)
33 is identical to that of P (n)

11 except that the
initial values are different. Let C and D be constants.

P
(n)
33 = C

(
σ + τ + (τ − σ)

√
1− η2

2

)n
+D

(
σ + τ − (τ − σ)

√
1− η2

2

)n
P

(0)
33 = 1 = C +D

P
(1)
33 = σ = C

(
σ + τ + (τ − σ)

√
1− η2

2

)
+D

(
σ + τ − (τ − σ)

√
1− η2

2

)

σ = C

(
σ + τ + (τ − σ)

√
1− η2

2
−
σ + τ − (τ − σ)

√
1− η2

2

)
+

(
σ + τ − (τ − σ)

√
1− η2

2

)

C(τ − σ)
√

1− η2 =
−(τ − σ) + (τ − σ)

√
1− η2

2

C =
1

2
− 1

2
√

1− η2
D =

1

2
+

1

2
√

1− η2

P
(n)
33 =

1

2

((
1− 1√

1− η2

)(
σ + τ + (τ − σ)

√
1− η2

2

)n
. . .

. . .+

(
1 +

1√
1− η2

)(
σ + τ − (τ − σ)

√
1− η2

2

)n)

Now because we know H is symmetric we know that (JH)13 = −(JH)31. It
follows that each coefficient of a power of h in each term of (JH)13 must be the
negative of the coefficient of the corresponding power of h in (JG)31. Therefore
P

(n)
13 = −P (n)

31 .

P
(n)
13 = − η

2
√

1− η2

((
σ + τ + (τ − σ)

√
1− η2

2

)n
−

(
σ + τ − (τ − σ)

√
1− η2

2

)n)
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7.3.4 Computing the Components of H

Now we are in position to compute the components of H. The simplest is H22.

H22 = e2 log r−(σ+τ)h = r2e−(σ+τ)h

H11 = −Σ∞n=0H
(n)
11

hn

n!

= −Σ∞n=0
1

2

((
1 +

1√
1− η2

)(
σ + τ + (τ − σ)

√
1− η2

2

)n
. . .

. . .+

(
1− 1√

1− η2

)(
σ + τ − (τ − σ)

√
1− η2

2

)n)
hn

n!

= −1

2

(
1 +

1√
1− η2

)
Σ∞n=0

((
σ+τ+(τ−σ)

√
1−η2

2

)
h

)n
n!

. . .

. . .− 1

2

(
1− 1√

1− η2

)
Σ∞n=0

((
σ+τ−(τ−σ)

√
1−η2

2

)
h

)n
n!

= −1

2

(
1 +

1√
1− η2

)
e

(
σ+τ+(τ−σ)

√
1−η2

2

)
h

− 1

2

(
1− 1√

1− η2

)
e

(
σ+τ−(τ−σ)

√
1−η2

2

)
h

= −1

2
e

(σ+τ)h
2

e
(

(τ−σ)
√

1−η2

2

)
h

+ e
−
(

(τ−σ)
√

1−η2

2

)
h

+
1√

1− η2

e
(

(τ−σ)
√

1−η2

2

)
h

− e
−
(

(τ−σ)
√

1−η2

2

)
h


= −e

(σ+τ)h
2

(
cosh

((
(τ − σ)

√
1− η2

2

)
h

)
+

1√
1− η2

sinh

((
(τ − σ)

√
1− η2

2

)
h

))

H33 = Σ∞n=0H
(n)
33

hn

n!

= Σ∞n=0
1

2

((
1− 1√

1− η2

)(
σ + τ + (τ − σ)

√
1− η2

2

)n
. . .

. . .+

(
1 +

1√
1− η2

)(
σ + τ − (τ − σ)

√
1− η2

2

)n)
hn

n!

=
1

2

(
1− 1√

1− η2

)
e
σ+τ+(τ−σ)

√
1−η2

2 h +
1

2

(
1 +

1√
1− η2

)
e

(
σ+τ−(τ−σ)

√
1−η2

2

)
h

= e
(σ+τ)h

2

(
cosh

(
(τ − σ)

√
1− η2

2
h

)
− 1√

1− η2
sinh

(
(τ − σ)

√
1− η2

2
h

))

H13 = −Σ∞n=0H
(n)
13

hn

n!

= Σ∞n=0
η

2
√

1− η2

((
σ + τ + (τ − σ)

√
1− η2

2

)n
−

(
σ + τ − (τ − σ)

√
1− η2

2

)n)
hn

n!

=
η√

1− η2
e
σ+τ

2 h sinh

(
(τ − σ)

√
1− η2

2
h

)
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There are principally two cases, η < 1 and η > 1. In the first case the equations
are as is but in the second case the hyperbolic functions change to trigono-
metric functions.

H11 = −e
σ+τ

2 h

(
cos

(
(τ − σ)

√
η2 − 1

2
h

)
+

1√
η2 − 1

sin

(
(τ − σ)

√
η2 − 1

2
h

))

H33 = e
(σ+τ)h

2

(
cos

(
(τ − σ)

√
η2 − 1

2
h

)
− 1√

η2 − 1
sin

(
(τ − σ)

√
η2 − 1

2
h

))

H13 =
η√
η2 − 1

e
σ+τ

2 h sin

(
(τ − σ)

√
η2 − 1

2
h

)

However in our solution we require that the lower right minor be positive
definite away from the z-axis. This requires that H33 be positive. So with
that in mind we can disregard the η > 1 case since we would need a harmonic
function bounded from above and below in order for H33 to be positive.

7.3.5 Calculation of α

We proceed by calculating α in the case where h = − 1√
r2+z2

. We use the formulae

from chapter 2 for the partial derivatives of α and the formula for P .

αr =
r

8

(
Tr(P

2
r)−Tr(P

2
z)−

4

r2

)
hr =

r

(r2 + z2)
3
2

hz =
z

(r2 + z2)
3
2

P r =


τr

(r2+z2)
3
2

0 η(τ−σ)
2

r

(r2+z2)
3
2

0 2
r
− (τ+σ)r

(r2+z2)
3
2

0

− η(τ−σ)
2

r

(r2+z2)
3
2

0 σr

(r2+z2)
3
2



P z =


τz

(r2+z2)
3
2

0 η(τ−σ)
2

z

(r2+z2)
3
2

0 − (τ+σ)z

(r2+z2)
3
2

0

− η(τ−σ)
2

z

(r2+z2)
3
2

0 σz

(r2+z2)
3
2


αr =

r

8

(
(τ2 − η2

2
(τ − σ)2 + σ2 + (σ + τ)2)(

r2

(r2 + z2)3
− z2

(r2 + z2)3
)− 4

(σ + τ)

(r2 + z2)
3
2

)
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Let γ = τ2 − η2

2
(τ − σ)2 + σ2 + (σ + τ)2. We now integrate αr with respect to r.

αr =
r

8

(
γ(

r2 + z2

(r2 + z2)3
− 2

z2

(r2 + z2)3
)− 4

(σ + τ)

(r2 + z2)
3
2

)
α =

γ

8

∫
r

(r2 + z2)2
dr − z2γ

4

∫
r

(r2 + z2)3
dr − (σ + τ)

2

∫
r

(r2 + z2)
3
2

dr

α = − γ

16

1

r2 + z2
+

γ

16

z2

(r2 + z2)2
+
σ + τ

2

1√
r2 + z2

+ V (z)

α = − γ

16

r2

(r2 + z2)2
+
σ + τ

2

1√
r2 + z2

+ V (z)

We now solve for V (z) by differentiating with respect to z and comparing to
the formula for αz.

αz =
γ

4

r2z

(r2 + z2)3
− (σ + τ)

2

z

(r2 + z2)
3
2

+ ∂zV (z)

αz =
r

4
Tr(HrHz)

=
r

4

(
γ

rz

(r2 + z2)3
− 2(σ + τ)

r(r2 + z2)
3
2

)

Therefore V (z) is a constant.

7.4 Topology of the Solution

The topology is found by noting that in the interior of the orbit space we have
{(r, z) ∈ R2 | r > 0}×T 2 as the topology upstairs and on the boundary of the orbit
space we have {(r, z) ∈ R2 | r = 0, z 6= 0} × S1

2 as the topology upstairs. We can
combine these into 1 set M4 = {(ϕ2, x1, y1, r, z) | (r, z) 6= 0, x2

1 + y2
1 = r2, r ≥ 0}. We have

that M4 ≈ S1 × ((R × R2) − {0}) ≈ S1 × (R3 − {0}) ≈ S1 × S2 × (0,∞). Where we have
identified the cone with R2.
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Chapter 8

Conclusion

In our analysis of 5-Dimensional stationary bi-axisymmetric solutions to the
vacuum Einstein equations we have come to the conclusion that the solution
found in example 2 of Khuri et al.’s paper [18] is general in that its metric
is diagonal. This is of course derived from the smoothness condition for an
alternating (1, 0) and (0, 1) rod structure. Thus their ansatz is sharp at least for
example 2. In our new solution we showcased in the last section the metric is
non-diagonal and but is missing a point on the boundary of the orbit space. It
is likely not possible to hide this missing point where a corner point would be
by extending this solution to a rod structure with a horizon rods and (0, 1) rods.
This is because multiple parts of the metric blow up. Such a rod structure
would be similar to example 1 in Khuri et al.’s paper. The fact that there
is an instantaneous horizon rod at the singularity suggests a relation to zero
temperature extremal blackhole solutions. However there might be a way of
obtaining an even more general form of the metric using exponentials of cubic
roots of unity multiplying harmonic functions. Of course the rod data would
somehow have to be relaxed further.

We demonstrated in chapter 5, that example 2 respects the smoothness
conditions derived in chapter 3 in analyzing its behaviour near the z-axis. The
asymptotics for example 2 were found in a concrete way; shedding some light
on a Fourier series that was not mentioned in Khuri et al.’s paper (however
they alluded to it by mentioning the modified Bessel functions). At a more
basic level we showed how to obtain the harmonic map equations from the
Ricci flat conditions and the symmetries. We also showed how the Myer’s
and Nicola’s periodic analog to the Schwarzschild solution was found starting
from converting Schwarzschild solution to its Weyl form and then performing
a generalization. New research goals could be to understand the smoothness
condition for a horizon rod and check whether the other examples which occur
in Khuri et al’s paper obey the smoothness conditions. Also there is potentially
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a chance of a non-analytic metric which has an alternating pattern of (1, 0) and
(0, 1) rods that could have non constant twist potentials or at least be non-
diagonal.
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