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Lay Abstract

We study the geometry of 5D blackholes. These blackholes are idealized by
certain spatial symmetries and time invariance. They are solutions to the
vacuum Einstein equations. The unique characteristic of these blackholes is
the range of behaviour they may exhibit at the boundary of the domain of outer
communication. There could be a standard event horizon called a horizon rod
or an axis rod where a certain part of the spatial symmetry becomes trivial.
In this thesis we start by deriving the harmonic map equations which are
satisfied in the interior of the domain of communication. Then we show how
this boundary data affects the metric through the smoothness conditions. We
then analyze the soliton example in a paper by Khuri, Weinstein and Yamada
and show that it respects the smoothness conditions. We then provide a new
example which is interesting in the fact it has non-constant twist potentials.
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Abstract

We set out to analyze 5D stationary and bi-axisymmetric solutions to the vac-
uum FEinstein equations. These are in the cohomogeneity 2 setting where the
orbit space is a right half plane. They can have a wide range of behaviour at the
boundary of the orbit space. The goal is to understand in detail the soliton ex-
ample in Khuri, Weinstein and Yamada’s paper “5-dimensional space-periodic
solutions of the static vacuum Einstein equations”. This example is periodic
and has alternating axis rods as its boundary data. We start by deriving the
harmonic equations which determines the behaviour of the metric in the inte-
rior of the orbit space. Then we analyze what conditions the boundary data
imposes on the metric. These are called the smoothness conditions which we
derive for solely the alternating axis rod case. We show that with an ellipticity
assumption they predict that the twist potentials are constant and that the
metric is of the form which appears in Khuri, Weinstein and Yamada’s paper.
We then analyze the Schwarzschild metric in its standard form which is coho-
mogeneity 1 and its Weyl form which is cohomogeneity 2. This Weyl form can
be made periodic and this serves as an inspiration for the examples in Khuri,
Weinstein and Yamada’s paper. Finally we analyze the soliton example in
detail and show that it satisfies the smoothness conditions. We then provide a
new example which has a single axis rod on the boundary with non-constant
twist potentials but that is missing a point on the boundary.
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Chapter 1

Introduction

In this thesis we aim to provide the necessary background to understand 5D
stationary, bi-axisymmetric solutions to the vacuum Einstein equations. This
allows us to further understand example 2 [18, p. 9-11], put forward by Khuri,
Weinstein, and Yamada in “5-dimensional space periodic solutions of the vac-
uum Einstein equation”, at a level of detail not included in the paper. This
is done by providing mathematical proof of the exhibited properties of exam-
ple 2 and confirming that it satisfies certain smoothness conditions although
these smoothness conditions are not mentioned in the paper. Such smoothness
conditions are obtained at the level of the manifold by imposing natural slice
representations. From these smoothness conditions we show that the form of
the metric they give in the solution in example 2 can’t be made more general.
At least if the metric is real analytic in the interior of the orbit space. Addi-
tionally we provide a new example with non-constant twist potentials but with
the shortcoming that it is missing a point on the boundary. This singularity
partly corresponds to a 1-point horizon rod.

With the background we are not only providing the necessary mathemati-
cal concepts but also illustrating previous models which led to the development
of the examples brought forward by Khuri et al.. For this purpose, it is crucial
to understand the distinction between cohomogeneity 1 and cohomogeneity
2. These refer to the codimension of the principal orbits [10, p. 111]. This is
equal to the dimension of the orbit space. With a 1-dimensional orbit space
of a connected manifold the boundary is made up of 1 or 2 points. But for
a 2-dimensional orbit space the boundary, in the case of the paper in ques-
tion, is a line [18, p. 2] and thus more can happen on the boundary. In this
paper, the group acting is 72 x R [18, p. 2]. The group acts on the metric, g,
by isometries; where 7% corresponds to the bi-axisymmetric requirement and
the R corresponds to the stationary requirement [18, p. 2]. The orbit space is
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the right half plane with coordinates (r,z). In the interior of the orbit space
the metric is well understood being given by the vacuum Einstein equations
[18, p. 3]. However when we move to the boundary that equation becomes
undefined. It is thus necessary to impose smoothness conditions that apply to
open sets around the boundary points. For this we need the boundary data.
We divide the boundary into a sequence of axis rods and horizon rods [18,
p. 2]. We take a,, and 8,, to be vector fields tangent to the first circle and
the second circle respectively. We take 8, to be vector field tangent to rR. For
a (p,q) axis rod we have that g(pdy, + ¢d,,,pds, + ¢ds,) — 0 as you approach the
axis rod. Here p and ¢ are relatively prime integers. It is simpler to consider
(1,0) and (0,1) axis rods. For a (1,0) rod, the first circle, s}, shrinks to a point
as you approach it. For a (0,1) rod, the second circle, s3, shrinks to a point
as you approach it. At the intersection of two rods there is a corner point.
The admissibility condition requires that for a corner point between a (p,q)

rod and a (k1) rod that det <Z ;1) = +1 [18, p. 2]. For a horizon rod we have

that g(9: + 10y, + Q20,0 + 20y, +Q20,,) goes to 0 as you approach the horizon
rod. Here 0, and Q. are constants called the angular velocities. We require
that a horizon rod and an axis rod cannot occur simultaneously. We call an
intersection between an axis rod and an horizon rod a pole. Moving back to
cohomogeneity 1 case, the quintessential example is the Schwarzschild metric.
The 4D Schwarzschild metric is static and spherically symmetric [30, p. 119].
The metric depends on a single parameter » and has a curvature singularity
at » =0 [30, p. 124]. This metric can be converted to its Weyl form and from
that a new periodic Schwarzschild metric can be constructed. This is shown
in the paper “Periodic Analog of the Schwarzschild Metric”[21] by Korotkin
and Nicolai. This forms the inspiration for the periodic examples constructed
by Khuri et al..

The layout of this document is as follows. In chapter 1 we summarize basic
manifold theory, Lie groups and Lie algebras, concepts relating to group ac-
tions and representations. The notion of a principal fibre bundle is important
in understanding the metric in the interior of the orbit space and the notions
of slices and tubes are necessary for expressing the smoothness conditions.
Schur’s Lemma is used heavily in the section on the smoothness conditions.
In chapter 2, using the framework of Riemannian submersions outlined by
Besse [3], we derive the harmonic map equations from the Ricci flat condi-
tion, and the use of Killing fields which stem from alternate definitions of
the stationary and bi-axisymmetric requirements. In chapter 3 we state the
smoothness conditions and derive the conclusions about the behaviour of the
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metric near the axis rods and the corner points. This involves imposing sepa-
rate slice representations for the slice at a point on a (1,0) rod, a (0,1) road and
at a corner point. These slice representations are made up of two dimensional
rotations and the identity representation. The smoothness conditions are only
derived from the rod structure being a sequence of (1,0) and (0,1) rods alter-
nating. These smoothness conditions are stated in terms of a different set of
coordinates, (zi,y1,2,12), the radius r = /22 + 42 is thought of as the radius of
st and the other radius r, = /22 + 42 is thought of as the radius of s3. In chapter
4, we derive the Schwarzschild metric, convert to its Weyl form and derive the
periodic Schwarzschild metric. We leave out some of the calculations for the
derivation of the Schwarzschild metric out since they can be found in Wald’s
book [30]. In chapter 5 we analyze example 2. We show that it is periodic in
z and using a Fourier series in terms of » we obtain its asymptotic behaviour.
We also determine its behaviour near the axis rods and corner points as well as
its topology. In chapter 6 we state our new example where the rod structure is
a single (1,0) rod. We check that it is a solution and satisfies the required prop-
erties. Additionally we provide a derivation and derive its topology. Again it
has the shortfall of missing a point on the boundary.



Chapter 2

Background

2.1 A Summary of Basic Manifold Theory

2.1.1 Manifolds

We will assume a familiarity with the basic concepts of manifold theory but
we provide a short summary. Roughly speaking a manifold is a space with
a topology which is locally Euclidean. That is there are homeomorphisms,
called charts which map open sets on the manifold to open sets in R", where
n is the dimension of the manifold [22, p. 52]. A manifold is thus a space with
meaningful local coordinates. Additionally a manifold can be thought of as
being ¢>= when we impose that all charts in its atlas are ¢ related [22, p. 53].
We can construct ¢ maps between manifolds [22, p. 56]. When the map’s
inverse is a ¢* map it is called a diffeomorphism [22, p. 59]. Diffeomorphic
manifolds are thought of as being geometrically equivalent and two manifolds
being diffeomorphic is a stricter requirement than them being homeomorphic
as topological spaces.

2.1.2 Tangent Spaces

Moving on to tangent spaces, in the setting of say a surface in R®, we consider
the tangent space as being extrinsic to the surface and lying in R®. In the
case of a general manifold it is not natural to think of the manifold as being
embedded into R". We therefore want a definition of a tangent space at a point
that is intrinsic to the manifold but being a separate space and not lying in the
manifold. After all a manifold is not equipped with a vector space structure.

Elements of a tangent space can be defined either as equivalence classes of
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Cc*= curves [22, p. 67-68] or as linear derivations which act on functions which
maps points on the manifold to R [22, p. 103-108]. Both view points are
useful. If we have a map s between manifolds M and N then it induces a linear
tangent map, (f.)» between the tangent spaces 7,,M and Ty, N. This map can
also be written as df|... Take X in 7,,M to be tangent to a curve y at m, then we
can write X = +/(0). Furthermore we have the useful identity: (f.)mX = (fo7)(0)
[22, p. 68]. The derivations view point gives us a way to describe x in terms
of a coordinate basis. That is, X = 5;X(2") ;2| [23, p. 45]. Of course when we
perform a change of basis X is preserved. With the tangent map in mind we
can further characterize maps between manifolds.

Definition 2.2. /22, p. 69] A ¢= map f between manifolds M and N is an
immerston if for all m, the tangent map (f.)m : TnM = TiemyN 1S injective.

Definition 2.3. [22, p. 69] A ¢= map f between manifolds M and N is a

submersion if for all m, the tangent map (f)m : TnM +— TyomN @S surjective.

2.3.1 Submanifolds

A subset N of an n-dimensional manifold A is a p-dimensional submanifold of
M [22, p. 69] if for every m e N there exists an open neighbourhood of m, U in
M, an open neighbourhood of 0 € R, v, and a diffeomorphism f from U to v
where we have the following.

FUNN)=VN (R x {0})

Consider the following subset, N, of R%.

Figure 2.1:

We can show that ¥ can’t be a submanifold. Take an arbitrary subset v around
m and suppose we have a diffeomorphism, f, where f(UNnN) =V n (R x {0}) and
f(m) =0. We can take a ball centered at 0 in which is contained in v. Call
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this ball B. If we delete the point (0,0) from Bn (R x {0}) we obtain a set with
2 connected components. Take the preimage, f~*(Bn (R x {0})). We require
B to have a small radius to ensure that the preimage looks similar to the
one in the diagram. If we delete m = f~'(0) from the preimage we obtain a
set with at least 3 connected components. Since f is a diffeomorphism it is
also a homeomorphism and even a homeomorphism with a point removed. So
we have a contradiction since the number of connected components must be
conserved under a homeomorphism.

Definition 2.4. [22, p. 70] A ¢= map f from manifolds M to N is an em-
bedding if f(M) is a submanifold of N and if f is a diffeomorphism from M to

f(M).

2.4.1 Tangent Bundle

With the union of the tangent spaces at all points in the manifold we can
form the tangent bundle, Tm [22, p. 113]. Elements of the tangent bundle are
vector fields. Strictly speaking vector fields assign each point in a subset of
the manifold to a vector in the tangent space at the point. Of course we can
let vector field X act on a function g by (Xg)(m) = X(m)g. Any diffeomorphism
f induces a linear vector field map f.. Where f.X(g) = X(go f)o f* for functions
g acting on the codomain of f [23, p. 62].

2.4.2 Lie Derivatives

We think of a particle being pushed by a vector field x and thus tracing out a
curve. These curves are called the integral curves of x [22, p. 119]. The flow
is just a map that takes you along the integral curve by a fixed amount. The
flow is a local diffeomorphism and in addition we have that (¢,).X = X where
s is the flow of x [22, p. 123] (See proposition 3.37; this will be useful later).

Definition 2.5. [29, p. 150] Let X and Y be vector fields on M. Let ¢, be the
flow of Y. The Lie derivative of X is the vector field, LxY, obtained by the
following formula

d
LxY = %
X dt

tzo((%)J) (2.5.1)

Of course one can show that LxY = Xy - YX = [X,Y] [22, p. 124].

We can define 1-forms to be linear functionals which take a vector field as
their input. These are elements of the dual of the tangent bundle. For exam-
ple dz. We can further extend the notion of vector fields to tensor fields of
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type (r,s). These tensor fields are multilinear functional with » inputs which
take in 1-forms and s inputs which take in vector fields [4, p. 118-120] We can
define the Lie derivative of a tensor field in a similar way as vector fields. A
Lie derivative of (0,2) tensor, T, has the following formula where X, v and z
are vector fields [4, p. 130].

LxT(Y,Z) = X(T(Y,2)) - T(Y,LxZ) — T(LxY, Z) (2.5.2)

2.5.1 Metric Tensor

We now introduce the metric which plays a fundamental geometric role; al-
lowing distances to be defined, acting as an inner product in the Riemannian
case, and allowing curvature to be defined. A Pseudo-Riemannian metric is a
symmetric (0,2) tensor field defined on all of a manifold, M, whose associated
matrix has no 0 eigenvalues. The eigenvalues of the associated matrix are real
since this matrix is symmetric. Furthermore since the eigenvalues are never
0, this matrix has the same signature everywhere. If the matrix is positive
definite we say that the metric is Riemannian, if the signature is (+,...,+,-)
or (—,...,—+) we say that the metric is Lorentz [4, p, 110].

When we have a pseudo-Riemannian metric, g, it uniquely determines a
Levi Clivita connection D which satisfies the following two properties. Let x,
v and Z be vector fields. [6, p. 53-55]:

i D is compatible with the metric: X(g(Y, 2)) = g(DxY, Z) + g(Y, Dx Z)

ii D is torsion-free: DxY — Dy X = [X,Y]

2.5.2 Curvature Tensors

The Levi-Civita connection lets us define the curvature tensors. We begin with
a mapping R which takes vector fields x and v to the operator R(X,Y) which
maps vector fields to vector fields. Let z be another vector field. We have that
R(X,Y)Z is given by the following [6, p. 89]:

R(X,Y)Z = Dy(DXz)) — Dx(Dyz) 4+ D[ny]Z

We can use this operator to define Riemann curvature tensor. This tensor is
type (0,4) with vector field inputs X, v, z, w and the output is denoted by
R(X,Y,z,w). The formula is given by [6, p.91]:

R(X,Y,Z, W) =g(R(X,Y)Z,W)
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In addition to the Riemann curvature tensor we have the Ricci curvature
tensor defined using an orthonormal basis of vector fields on the manifold Az,
{e;}. Let x and v be vector fields on M [12, p. 135].

Ric(X,v) =2 R(X, e;,Y, e;)

The scalar curvature, R, is defined to be R =7, Ric(e;,e;) [12, p. 136].

2.6 Lie Groups and Lie Algebras

Lie groups are an important concept as they will be used later in the cohomo-
geneity 2 setting. We start with their definition.

Definition 2.7. [31, p. 82] A Lie group G is a group which has the structure
of a manifold and such that its group operation and inverse operation are both
smooth. This can be summarized by checking that for g and h in G the function
f:GxGw— G, where f(g,h) =gh™*, s smooth in g and h.

An example of a Lie group would be the real line, R, with the group op-
eration being addition. Another example would be s!' thought of as lying
in the complex plane. The group operation in that case would be complex
multiplication. We now move on to the separate concept of a Lie algebra.

Definition 2.8. [31, p. 84] A Lie algebra is a real vector space, V, equipped
with a bilinear map, [-,-]: V xV — V, which satisfies the following properties for
all X, v and z i V.

1 [X,X]=0
w XY, Z)+ Y, [Z, X]] + [Z,[X,Y]] =0

However Lie groups and Lie algebras are not unrelated. For every real Lie
group has a Lie algebra where the underlying vector space is the left invariant
vector fields of the Lie group.

Definition 2.9. [31, p. 85-86] Let G be a Lie group. Let g be in G and define
the left translation map L, : G — G by Ly(h) = gh. We say a vector field over G,
say X 1s left invariant if (Ly).X = X. The Lie algebra of G, Lie(@), 1s defined
to be the set of all left invariant vector fields over G. The bracket will be the
Lie bracket. One can check that this is well defined since if X and v are left
invariant vector fields then so is [X,Y].

We know that GL(R,») is a Lie group and its Lie algebra is isomorphic with
gl(R,n). We can define maps between Lie groups.
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Definition 2.10. /31, p.89-90] Let G and H be Lie groups. A map ¢:G — H
is a (Lie group) homomorphism if ¢ is ¢* and ¢ is a group homomorphism.
We say ¢ is a (Lie group) isomorphism if it is also a diffeomorphism. A
map  1s a Lie algebra homomorphism between Lie algebras, ¢ and by, if it
preserves the bracket and it is linear. That is to say for X and v in g that
[W(X),»(Y)] = [X,Y]. If you have a Lie group homomorphism between Lie groups
G and H, ¢, then the derivative map de is a Lie algebra homomorphism [31,
p. 90]. If H = Aut(v) for some vector space V then a homomorphism ¢ : G — H is
called a representation of the Lie group G. An example for H would be GL(R,n)
since matrices correspond to linear transformations.

We now introduce the exponential map. Let G be a Lie group with a Lie
algebra g. We take a homomorphism of the Lie algebra of R into g. Where X
is in g and X is a real scalar.

A0, = AX

By Warner, there is a unique 1-parameter group which we will denote by
expy : R — G such that the tangent map satisfies d(expy)(\0:) = AX [31, p. 102].
We define the exponential map exp : g — G by exp(X) = expy(1). In the case where
& = GL(R,n), the exponential map is given by matrix exponentiation. Let A be
in gi(R,n), then [31, p. 105]:
A2
exp(A) = e :I+A—|—§—|—...
Clearly e* is in GL(R,n), since its eigenvalues are given by e where ~; are

the eigenvalues for A. The reason being that e # 0. We have the following
theorem:

Theorem 2.11. [31, p. 104] Let ¢ and H be Lie groups. Let ¢ : G — H be a
homomorphism. Let g and v be the Lie algebras of G and H respectively. Then
the following diagram commutes:

®
_—

G H
exp ‘ ‘ exp
de
g b

_

We now introduce the adjoint representation. Let G be a Lie group with
Lie algebra g. Then we define a map a: G x G = G by a(o,7) = as(1) = o0~ ".
The map, o — da,, sends a group element to automorphisms of g and is thus a
representation of ¢. We call this map Ad: G — Aut(g). We define ad to be the
derivative map d(Ad). We denote Ad(s) = Ad, and ad(x) = adx[31, p. 113-114].
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We have the following commutative diagrams from p.114 of Warren’s book.

Ad
G ——=> Aut(g)

g——4¢
We have the following simplification when ¢ = GL(R,n). Let B be in G and ¢ in
g = gl(R,n). We have that Adz(C) = dagp(C). It is clear that ¢ is the tangent for

the curve v = ¢ at t =0. We now use the formula das(C) = 4| (apo~). From
t=0

p. 114 of Warren’s book we have the following:

Adp(C) = das(C) = L| (B 'eCtB) = L| (BB~ p-icB

t=0 dt t=0

Lastly we have the following useful formula for ad [31, p. 115]. Let ¢ be a Lie
group with Lie algebra g and let X and v be in g.

adx(Y) = [X,Y] (2.11.1)

From this formula we can see that if the Lie group ¢ is Abelian then Ad is
constant. Thus ad is 0 and we can conclude that the bracket in the Lie algebra
of the Lie group is o.

2.12 Group Actions

In this section we introduce the concept of a group action which we will use
frequently later on.

Definition 2.13 (Topological Group). [5, p. 1] We say G is a topological group
if it is a Hausdorff space with a continuous multiplication GxG — G which makes
G a group and such that the map g— g=* from G — G is continuous.

Definition 2.14 (Topological Transformation Group). /5, p. 32] A topological
transformation group is a triple (G, M,0) where G is a topological group, M is
a Hausdorff topological space and © : G x M — M is a map that satisfies the

10
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following.

O(g,O(h,z)) = O(gh,z) For all z e M and g,h e G
Oe,x) == For all x € M, where e 1s the identity element of G

We call 6 the group action and M a G-space. We distinguish between right
and left G-spaces when the action is either written with the group element on
the right or on the left. That is ©(g,2) = gz or ©(g,z) = zg. When the type of
G-space is not stated it will be assumed to be a left G-space. There is a notion
of equivalence of topological transformation groups. To do so we need a map
between the two G-spaces which commutes with the group action.

Definition 2.15 (Equivariant Map). /5, p. 35] An equivariant map ¢: M — N
between G spaces M and N is a map which satisfies the following.

o(gz) = gp(z) For all z e M and all g € G.

When there is an equivariant map the actions on M and N are said to be
equivalent.

Note that the inverse of an equivariant map is also an equivariant map
when it’s a homeomorphism.

We now move on to the isotropy group, G., where = is a point in M. This
is the subgroup of ¢ which fixes = defined by G, = {g € G| gz =z} [5, p. 35]. We
have that Gy. = ¢G.g7" [5, p. 35]. If G, = {e} for all z in M then the group action
is said to be free [5, p. 36].

A mapping @ between topological spaces U and Vv is said to be proper if &1(K)
is compact in U whenever K is compact in V. A group action is said to be
proper if a mapping from G x M to M x M given by (g,z) — (g9z,z) iS a proper
mapping [9, p. 53]. We can further analyze how G acts on M by looking at
the subset of M that we get when we let the the whole group ¢ act on a point
z. This subset is called an orbit and is defined by: G(z) = {9(z) € M|g € G} [5,
p. 37]. It is clear that the orbits are disjoint otherwise non-disjoint orbits
would combine together to form one orbit. Let M/G be the set of orbits of all
points in M. Let = : M — M/G map points to their orbit. We call m/G, endowed
with the quotient topology ( U is open in M/G iff ==*(U) is open in M), the orbit
space [5, p. 37]. We can now imagine taking an orbit and mapping it to one
of its points. We say that a cross section for =: M — M/G is a continuous map
o: M/G — M such that oo is the identity on M/G. More often we have a local
cross section which is defined for an open subset U c M/G [5, p. 39].

11
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Theorem 2.16. [9, p. 94] Let « be in M. There is an equivariant bijection
between G/G. and G(x) which we denote by B,. It is given by B.(9G.) = gz.

We can go further.

Theorem 2.17. [9, p. 53] Let & be a Lie group, let M be a C* manifold for
k>1 and the group action is proper and free. Then the orbit space M/G has a
structure of a ¢* manifold with dimension equal to the dimension of M minus
the dimension of G. The topology of G/M is the quotient topology.

We define the type of an orbit G(z), Type(G(z)), to be the equivalence class
of G(z) where equivalence between orbits occurs when there is equivariant bi-
jection mapping between them [9, p. 107]. Since B, is an equivariant map
between G(z) and G/G. we can use G/G, as the representative of the equiva-
lence class Type(G(z)). Now we use the following theorem in order to give an
easier way of proving that two types are equivalent.

Theorem 2.18. [9, p. 107] Let G be a Lie group and H and K be closed
subgroups. Then there exists an equivariant map that maps G/H to G/K iff H is
conjugate to a subgroup of K. This in turn implies that Type(G/G.) =Type(G/G,)
iff G. and G, are conjugate.

In Kolk he defines various equivalence relations of orbits but they turn out
to all be the same as the definition of orbit types when we restrict ourselves
to our cohomogeneity 2 situation. We simply state them as properties of orbit
types to avoid confusion.

Theorem 2.19. [9, p. 109] Let = and y be in our manifold M. Let G(z) and
G(y) be the corresponding orbits. If Type(G(z)) = Type(G(y)) then there is a G-
equivariant diffeomorphism from a neighbourhood U of © to a neighbourhood v

Of Y.
We define M, = {y € M| Type(G(x)) =Type(Gy))} [9, p. 109].

Definition 2.20. [9, p. 115-116] For a proper ¢* action of a Lie group G on
a manifold M, the orbit G(z) at = in M s said to be a principal orbit if M, is
open in M.

Theorem 2.21. [9, p. 116] Let = and y be in M. If Type(G(z)) = Type(G(y))
then there exists a g in our Lie group G such that Ad,(g.) =g,. Where g. and
g, are the Lie algebras at = and y respectively.

Theorem 2.22. [9, p. 117] If an orbit G(z) at = in M is a principal orbit then
the type of the orbits going through points in a neighbourhood of = are the same.
This is equivalent to saying that the dimensions of the orbits near = are the
same.

12
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Let M,y = {x € M|G(z) is a principal orbit} [9, p. 117]. Now we introduce
the principal orbit theorem.

Theorem 2.23. [9, p. 118] Suppose that a Lie group G is acting properly in
a ¢t way on a connected manifold M. Then M\M,., is the union of all points
whose orbits are of codimension n, where n >2. The subset M,., is connected,
open and dense. It follows that points in the orbit space which corresponds to
principal orbits form a connected, open and dense subset of the orbit space.
Furthermore, there is only 1 orbit type amongst the principal orbits

Given a group action © with a Lie group ¢ acting on a manifold M, we can
define a tangent map at (g,2) which we will call 7, ,,6. Where g is in G and =
is in M. Here T(;.)0 : Ty..)(G x M) — Ty M. You can partly think of it has taking
a tangent at a point and moving it onto a different point via the group action.
However you also have to factor in the Lie algebra of G.

2.24 Principal Fibre Bundles

In this section we will define principal fibre bundles and connections over them.

Definition 2.25. /20, p. 50] A principal fibre bundle consists of a total space,
P, a base space M and a Lie group G which acts on P on the right. The principal
fibre bundle is denoted by P(M,G). The spaces M and P are smooth manifolds.
The group action of G on P satisfies the following three properties

i G acts freely on P.

11 M s the quotient space P/G. Therefore M consists of equivalence classes
of elements in P. We say that two elements in P, = and «', are equivalent
if there exists an a in G such that « = «'a. Furthermore, we have that the
canonical projection, = : P — M, which maps = in P to its equivalence class
n(z) is differentiable.

11 We have that P s locally trivial. That is for all m in M there is a
netghbourhood U of m such that ==*(U) is isomorphic to U x G. 1t 1is
isomorphic in the sense that there exists a diffeomorphism ¢ : ==Y(U) —
U x G such that ¢(z) = (n(z),¢(x)). Here ¢ is equivariant in the sense that
for all a in G and all =z in P, we have that ¢(za) = p(x)a.

We now present an example of a principal fibre bundle; the bundle of linear
frames [20, p. 55-56]. Let M be the base manifold of dimension n. We take
a set of all collections of » linearly independent tangent vectors at a point

13
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m for all points in M. This manifold, L(Mm), is the bundle of linear frames.
For our group we take GL(n,R) which acts on L(M) in the following way. It
keeps the point constant but changes the frame. Let u = ((X1,...,X,),m) be a
linear frame at m. Then wa = ((v1,...,Ys),m) where v; = ¥7_,a/X;. We take our
projection = to map a linear frame at a point m to the point itself. Clearly =
is differentiable. This group action is free, consider « such that wa = «. Then
we have that x; = 7,4/ X;. We can convert this into matrix form by setting
the components of the matrix X to be X;; = X}, where X! is the component of
X; with respect to some local coordinates. Then we have X = aX. Since the
frame consists of linearly independent vectors we know that X is invertible so
we have that « = 1. We now check local triviality. Let u = ((X1,...,X.),m) be a
linear frame at m and ¢(u) = (7(u), ¢(u)) Where ¢ is defined on all of L(ar). We
let o(u) = X € GL(n, (R)). We take ua = ((v1,...,Y,),m) where v; = 7,4/ X; and let
the components of the matrix Y be Yi, = Vi = ¥7_,a! Xi;. It is clear by matrix
multiplication that ¢(ua) =Y = Xa = ¢(u)a.

We now construct a fibre bundle associated with a principal bundle [20, p. 54-
55]. Let P(M,G) be a principal fibre bundle and let F be a manifold on which @
acts on the left. We take the product manifold P x F and define a right group
action on it. Let (z,¢) € Px F and let « be in G. Then (z,6)a = (za,a7'¢). We
define E = P x¢ F to be the quotient space under this group action. We can
define a projection, =z, of E onto M by 7g([z,€)) = n(z). Clearly the output of
nr does not depend on the representative. Let m be a point in M and U be
an open neighbourhood in U containing m. There is an isomorphism between
75 (U) and U x F. To see this let ¢([z,¢]) = (zu([z,£]), ¢(z,£])). Let o be a local
cross section mapping U into P. Let ¢([z,€]) = a¢ Where z = va where v is a value
of the cross section. We know that o([z,¢]) is well defined since if we take b
and b~'¢we have that zb = v(ab) which implies o([zb,b71€]) = abb™'¢ = a& = ¢([z,€)).
Furthermore v ([z,¢]) is injective since if ¢([z1,€1]) = ¥([z2,&]) then x(z1) = 7(x2).
So we have that =z, = 216 = vab. Therefore a¢; = abt, which implies ¢ = b7'¢,. This
in turn implies that [z:,&] = [z2.62]. Next we will check that [z, ¢] is surjective.
Let o[z, €] = (m,¢). There clearly exists = such that =(z) = m. Furthermore there
exists ¢ such that a¢ = ¢. Namely ¢ = a7*¢. Therefore we can conclude that
is an isomorphism. The fibre bundle associated with a principal bundle with
standard fibre F is denoted E(M, F,G, P).

An example of such a fibre bundle is the tangent bundle of a manifold M,
TM [20, p. 56]. Here the principal bundle is L(M), the group is GL(n,R)) and the
standard fibre is R*. Here L(M) provides a basis, R" provides the components
and the group action takes care of equivalence under a change of basis. This
example provides a succinct way of thinking of the tangent bundle.

14
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We move on to connections on a principal fibre bundle. Let pP(M,G) be a
principal fibre bundle. Let z be in P. We define G, to be the tangent space
through the fibre at . Thus there is a natural way to define a vertical space.
However, we must introduce the notion of a connection to assign a horizontal
space at all z.

Definition 2.26. /20, p. 63] We define a connection T on a principal bundle
P(M,G) to be an assignment to every = in P an horizontal space Q. which has
the following properties.

1 We can uniquely decompose a tangent vector into horizontal part and a
vertical part. That is T,P = G, ® Q.

1. We have that Q. respects right translation. Here R.(z) = za. We have
that for all a and z that Q.o = (R.).Q..

it Lastly, Q. depend differentiably on =. That is if X is a differentiable
vector field then so are its horizontal and vertical parts.

For all A in g, the Lie algebra of G, we have that a, = ¢! is in ¢ and we
define the fundamental vector field of A to be given by A% = 4(za,)|  [20, p. 42].

Clearly A* is vertical. For each X in 7,P, we define the connection 1-form w
by w(X) = A. Here A is the unique element in g whose fundamental vector field
is the vertical part of x. Clearly w(x) =0 if and only if x is horizontal. For if
A =0 then a, is constant so A =0. We have that the connection 1-form satisfies
the following properties [20, p. 64]

iwA)=4,forall A4in g.
il W((Ra)+X) = ad(a™Hw(X) for all X in 7,P and all « in G.

As a consequence of i and ii, for every 1-form w that satisfies i and ii there
is a unique connection with its connection 1-form being w. This is done by
defining the vertical and horizontal parts of a vector x to be w(Xx) and X —w(X)
respectively.

2.27 Slices and Tubes

We now return to group actions. Suppose we have a left group action acting
on M via Lie group G. Denote 4, : G — M with A.(g) = gz. Let g be the Lie
algebra of G. Let X be in g and the map a. : g = 7. M be given by a.(X) = dA.(X).
With this map « in mind we can define a slice at a point .

Definition 2.28. /9, p. 98] Let M be a manifold with a Lie group G acting on
it in a ¢* manner. A C* slice S, at a point xo in M, is a C* submanifold of M
that goes through =, such that the following holds.

15
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v The tangent at zo decomposes into a part tangent to G and to S; T.,M =
g (8) @ Ty S. And also for z in S, we have T.M = a.(g) + TS, meaning the
part tangent to G may have grown in dimension.

it We have that S is G, tnvariant. That is A.(G.,) C S for all z € S.

i If x€S, geG and gz S. Then g€ Gy, .

Let s be a slice through z,. Let = — z be the identity map from S to M.
Then it induces a homeomorphism G, -z — G-z mapping the orbit space S/G.,
to the orbit space m/G. To see this we know that the map is well defined since
if y = gz where ¢ is in G,,, then ¢ is in G thus G-z =G -y. Also, we are using (ii)
implicitly to guarantee that S is G,, invariant. For injectivity, suppose that
G-y =G-z. Then there exists ¢ in G such that y = gz. Now since y and z are
in s we have that by (iii) of the above definition that g is in G.,. Therefore
Gap - = Gap - y. Surjectivity follows by restricting the codomain to the range.
The homeomorphic part follows from the definition of the quotient topology
which is the given topology on each of the orbit spaces and the fact that the
inclusion map is a homeomorphism.

To showcase the local nature of a slice through a point we consider the
real projective plane, RP>. The manifold RP? is the quotient space of R*\{0}
under the following equivalence relation. Let p and ¢ be in R*\{0}, then p ~
¢ i there exists a non-zero real number X such that p = \q. We introduce
homogeneous coordinates for RP? which are the equivalences classes, [z,y,z].
We call the quotient map, =. We can define 3 coordinate charts, ¢., ¢, and ¢.
with respective domains B,, B, and B..

ooy = (L2)  Bo={ley2l|a#0)
el = (52)  B={lwlly20)
e(ley )= (5.Y)  B={lxy2|z#0)

To see that ¢, is injective we note that if “d=2 and 1=2 then [z1,y1,21] =
[z, 12, 20]. For surjectivity we simply take outputs of points in RP? of the form
[1,49,2]. To check that is a homeomorphism, suppose that U is open in RP2.
Then by definition of the quotient topology we have that the ==*(U) is open.
We define that map @, : R®\{0} — R? by &.(z,y,2z) = (%, 2). Clearly @, is con-
tinuous on its domain. Therefore &,(z71(U)) = ¢.(U) is open. Therefore ¢, is
an open map. Now suppose V is open in R®. We have that ¢;!(V) is open
iff 7= (o;'(V)) = W is open in R®\{0}. We have that W = {(z,y,2) € R®\{0} |3\ #
0& 3I(u,v) € Vs.t(z,y,2) = (A u, )}, Clearly w is open in R*\{0}. The same rea-
soning applies to ¢, and ¢.. To check compatibility let (u,v) € p.(B.NB,). Then
Yo 0 0yt (u,v) = pa([u, 1,0]) = (£, 2). Clearly this transition function is ¢>. It’s the

same story for the other compatibility checks.
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Now we are interested in the derivative of the quotient map, dr : 7, ,,.,R*\{0} —
T, RP?. This is so that later on we can map vectors back and forth from
the unit sphere to RP?. Suppose z # 0 and the coordinates for RP? at [z,y, 2] are
2 = (Ys, 2). We can write that dr(8,) = a.8,, +b.9.,. We have that a, = 8, (y.on) =
9 (4) =-2%. And b, = 0,(z0m) = 02(2) = = 5. SO dn(d,) = —%0,, — 50.,. Further-
more we can state that dr(d,) = a,8,, +b,0:,. S0 a, =9, (¥£) =1 and b, =9, (2) =0.
Therefore dr(9,) = 19,,. Finally we can state that dn(d.) = a.9,, +b.9.,. Then
a- =0, (%) =0 and b. = 0. (2) = L. Therefore dr(d.) = 20.,.

E2
x x

We now introduce a group action on RP2. We spin about the z-axis. That is
that s* is acting on RP? by 6z, v, 2] = [,y cos() —zsin(6), y sin(d) +z cos(9)]. This group
action is clearly well defined since rotation and scaling commute. Assume z # 0.
Let’s try to find the part of the tangent space that is tangent to the orbit. If
(y,z) = 0 then the orbit is 0-dimensional so the tangent space is just the 0
vector. Now if (y,z) # 0, then the orbit is 1-dimensional. Let p € B,. So then X,
tangent to the orbit is given by:

Xo = 0o (yw 0 0p)

Oy + 9o (22 © Op)

6=0

- ag(w)

T

6=0

0.,

6=0

5y + <ysm(e) + zcos(e))

X

6=0

T xT

We need to choose a metric on RP2. To do so we use the round metric on
52, We take 74 to be the quotient map restricted to s2. Let ¢ € 5. We need
the inverse of (drg2), thus we will show that the derivative map is (drg2), iS
injective. To see this let X = ad, + b9, + cd. be tangent to s*. Then X -r =0,
where r = 20, + yo, + 20.. That is a = ~%t<=. Let X and Y be tangent to S?
suppose the following:

(dmg2)q(X) = (dmg2)q(Y)

b b/ /
(drge)a(=LE0, + b0, + cd.) = (dmge)a(- L0, + 10, + 0.
by+cz, y z b c _ by+dz, oy z v c
_T(_? o — ﬁazI) + ;ayz + Eam = _T(_? ye — ?621) + ;8&11 + ;3%
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Comparing coefficients of 9,, and 4., we obtain the following:

b(y? +a%) +ezy _ V(yP +a?) + 2y
2 - 2

x z
c(2® + %) +bzy  (yP+2°) + b2y
x? N x?

Or equivalently:

We calculate the determinant for this linear system.

2 2
+CE’ z
Y Y = (y2 + :pQ)(z2 + m2) — 22y2 = (y2 + 22)332 + z* >0

2Y 2 + 22
Therefore (dry2), has an inverse. Let ¢ be in 52, ¢ be the round metric on 52
and x, Y be in 7,,RP?. We will define a metric » on RP.

h(X,Y)| = g((dnly) "' X, (dnly)"'Y)

ld]

q

To check that this is well defined the right hand side must be the same if we
choose —¢. Let p: 5% — 52 be defined by p(q) = —¢. Clearly, = =70 p. So we have
that:

9((dmlg) "' X, (dnlg) T'Y)| = g((d(m o p)lq) T X, (d(m o p)lg)'Y)

q

q

= 9((dply) ™" o (dr|-q) 7' X, (dplg) " o (dr|-)"'Y)

q

= g((dn|-q) 7' X, (dm|—g) 'Y

—q

The last step follows since p is an isometry of the round metric. This enables
us to find a tangent space normal to the orbit in RP%. Let v, be in 7,5 be given
by Yy = —28, + yd.. Clearly drg(Yy) = Xo and Yy -r = 0. Clearly Ny = yd, + 28. + ad.
is orthogonal to v, using the Euclidean metric on R®*. For Ny to be in 7,5% we
must have that o = -2, Let’s project it down to RP2.

2 2
(dr2)a(Na) = (drg2)a (0, + 20 — *0,)
2 2
_ Y Zog, Y TE _Yge _E
= xayx + xazw T ( 272 Yx 152 821)

.'L'2 +y2 +22
= TR (g, + 20.,)
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To construct a slice at p in B, we use the normal geodesics. These geodesic have
the normal vector as their initial velocity. Because of our choice of metric on
RP? there is a 1:1 correspondence between the geodesics on s? and the geodesics
on RP2. The geodesics on §* are the great circles. If we take a point whose
orbit is 1 dimensional, the slice would correspond to a great circle which is
orthogonal to the orbit. Note that the isotropy group at p is trivial. This
geodesic can be extended arbitrarily close to =z = 0 but can’t be extended to
z =0 due to the coordinate restrictions. Therefore not every orbit intersects
the slice. For instance the orbit whose points have 0 as their z coordinate. If
we take a point whose orbit is O-dimensional than the slice corresponds to a
subset of RP?, call it 5, where S = {[z,y,2] |z # 0}. We have that s is 2 dimensional
but again not every orbit intersects S. Using points B, and B. one can analyze
the other slices but I believe the local nature of a slice through a point is fully
illustrated.

Definition 2.29. [9, p. 98] A group action is said to be proper at zo in M, if

for every sequence z; in M and g; in G such that limz; = zo and lim gjz; = xo,
Jj—o0 Jj—o0

there exists a subsequence j = j(k) such that g;, converges in G as k goes to cc.

Here are some examples. Let M = R and G = R act by addition. Let the
sequence z; € M converge to z, and let the sequence g; € G satisfy lim (g;-z;) = zo.
J—00

Clearly lim (g; - 25) = lim (g; + ;) = o which implies lim (g;) = 0. For a counter
examplej take ¢ =R . {0} be a group which acts byj multiplication on R. Let
z; = % and g; = j where j > 1. Clearly Jim z; =0 and Jim (g - 25) = 0. But there is
no convergent subsequence of g;. Therefore the group action is not proper at
z=0. We have the following theorem.

Theorem 2.30. [9, p. 99] Existence of a Slice: Consider a ¢* group action
of the Lie group G on a manifold M and suppose that the action is proper at
zo. Then there exists a C* slice, S, at xo.

We now revisit associated fibre bundles. Let M be a manifold on which a
Lie group H acts on the right and N be a manifold in which # acts on the
left. Take M xx N and we take another Lie group G acting on M from the left.
This action is required to commute with the H action. We can then define
a G-action on M xy N. This action is defined by g[z,y] = [gz,y] Where ¢ is in
G, zin M and y in N [9, p. 101]. This is action is well-defined due to the
aforementioned commutativity. We now introduce the tube theorem.

Theorem 2.31. [9, p. 102-103] Tube Theorem: Let © be a C* action of a Lie
group G on a manifold M which is proper at xo. Then there exists a G invariant
neighbourhood U of xo in M such that the G-action on U is equivalent to the
G-action on G xg,, B. Where B is an open set containing 0 in T.,M/o.,(g) On
which G., acts linearly via the tangent action modulo a.,(g). Here we refer to
G xa,, B as the tube.
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Proof. We provide a sketch of the proof. Let s be a slice at z,. Then by
definition the tangent space at z, where z in S, is a.(g) + 7.5. In the special
case which is our focus, the metric is ¢ invariant. This means that the tangent
space is of the above form on all points of the orbit G -z. Therefore if we
restrict our group action on M to domain G x S we will find that the tangent
map 7T,.© is surjective. Therefore © is a submersion which means it must
be an open map. Therefore (G x ) is an open G- invariant neighbourhood
containing z,. Next suppose z and y are in S and g and h are in G. Then
if gz = hy we have that y = h='gz. So by the third property of the slice we
have that n'g = k € G, Then we have that (h,y) = (¢k*, k=) which means
that [n,y] = [g,2] € G xa,, S. Next suppose there exist a k in G., such that
(h,y) = (gk~*, kz). This is well posed by the G,, invariant property of the slice.
It is clear that hy = hk~'kz = go. Therefore we have a bijective equivariant map
®: G xg,, S — U defined by &([g,z]) = gz. We have therefore established the
equivalence of the G-actions while leaving out some minor details. Note that
slice corresponds to an open set in the tangent space modulo a., since the slice
is constructed with the normal exponential map which gives a correspondence
between normal vectors and points along the corresponding geodesic. You can
see this in the RP? example. O]

2.32 Irreducible Representations

A real representation of a group G onto a finite dimensional real vector space
v is a homomorphism p: G — GL(V) [11, p. .3] For instance if ¢ = s* and v =R?
then p would map an element of s* to a rotation map which rotates a vector
in R2. This rotation map would be given by a matrix and it is useful to think
of elements of GL(V) as 2x2 matrices. Let ¢ be in ¢ and v be in v. Then p(g)v
is denoted by gv. We often refer to representations by their vector space.

A map between representations v and W of G , ¢, is a vector space map which
commutes with the group [11, p. 103].

A subrepresentation of v is a subspace W of v which is invariant under G.
This means that for all w in w and ¢ in G, that gw is in w [11, p. 104]. A
representation is irreducible if its only subrepresentations are 0 and the entire
vector space [11, p. 104]. We can actually decompose any representation into
irreducible subrepresentations.

Proposition 2.33. [11, p. 6] Any representation of a compact Lie group is a
direct sum of irreducible representations. The proof is in Fulton and Harris.

This brings us to Schur’s Lemma which we will heavily use later.
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Lemma 2.34. [11, p. 7] If v and w are irreducible representations of G and
we have a G-equivariant map ¢ :V — W, then we have that:

i either ¢ is an isomorphism or ¢ = 0.

1 If Vv =W as G-representations, then o = XI where X is a complex number
and I is the identity map.

Let v be a finite dimensional vector space. We now present the correspon-
dence between representations on the m-degree symmetric tensors, s™(v), and
representations on m-degree symmetric homogeneous polynomials pP™(v). To
begin we consider v = R? and G = S* acting on vV by rotation. Let e; and e,
be an orthonormal basis of v and « and » be the components. We have the

following for ¢ in S*.
a\  (cos(9) —sin(0)) (a
g Y sin(d)  cos(0) b

In particular e, = <;> SO g(e1) = cos(@)er + sin(@)es. Also, we have that e, = (1) ,

SO g(es) = —sin(A)er + cos(f)e2. We now define a representation on the space of
functions.

Definition 2.35. Let v and W be G-spaces and f:V — W. Letp be in v. Then
the representation on functions is defined by the following [11, p. 4]

MNP = flg~ ") (2.35.1)

We now return to the above example and consider linear functionals = and
y being the duals of ¢, and e, respectively. We can express g(z) and ¢(y) in the
following way:

g(z) = Az + By 9(y) = Cz + Dy
For instance we can determine A by using as input, e; into the first equation.

g(z)(e1) = x(g9 e1) = z(cos(f)er + sin(—0)ez2) = cos(9)
Repeating this for the other coefficient yields the following equations:
g(x) = cos(f)x + sin(9)y g(y) = —sin(f)x + cos(0)y

This formula is the same as the one for the orthonormal basis. This will be
exploited.
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Definition 2.36. Let v be a G-space and consider a tensor v=v1 ®...®@ vy in
s™(v). Then G acts onv by [11, p. 4]

g(w) =g(v1) ® ... ® g(vk)
This can be extended to arbitrary tensors in S™(V) through linearity.

Returning to our R? example we can map symmetric tensors in $™(V) com-
prising of tensor products of e; and e, to homogeneous symmetric polynomials
involving = and y. This turns out to be an equivariant map. Here’s an example
using S*(V):

aler1 ®e1) +bler ®ex+e2®e1) + clez ®e2) ax? + 2bxy + cy2

Now we wish to use this to find irreducible representations of s?(v). Let T =
aler®er) +bler ®ex+ea®er) + clez ®ez) and U = az®+ 2bzy + cy?. We can act on each
part of U individually to obtain the following:

g(x?) = (cos(0)z + sin(0)y)* = cos®(0)z* + sin®(0)y® + 2 cos(0) sin(0)zy

cos?(6) — sin?(6) 24 cos?(0) + sin?(0) 22 cos?(6) — sin?(9) S+ cos?(6) + sin?() i
2 2 2 2
...+ 2cos(0) sin(0)xy

2 _ 2 2,2
:cos(?@)x 2y +Z ;—y

g(y2) = (—sin(0)x + cos(@)y)2 = sin® (9)x2 + cos? (t9)y2 — 2cos(0) sin(0)xy

+ sin(20)zy

2.2 2 2
= —cos(29)x 5 y 42 —;—y — sin(20)zy

g(2zy) = 2(cos(0)z + sin(8)y)(— sin(8)z + cos(8)y) = 2(— (x> — y*) cos(#) sin() + (cos”(0) — sin*(#))zy)
= —(2® — y?) sin(20) + 2 cos(20)zy

We can now express g(U).

2 2

2 _ 2
2y —&—2<a2Csin(2(9)—i—2bcos(20)>xy—i—(a—i—c)iIC —;y

(2.36.1)
Thus we have that g acts on Span(z? — 42, 2zy) by rotation through twice the
angle o and g acts on Span(z2+y?) by the identity map. Therefore the irreducible
representations are p? and 1. Here p%(g) = p(g99) Where ¢ is in s*. We note that
an arbitrary element of Span(a? — y?,2xy) is of the form aze==v> 4 9pyy.

g(U) = <“ 5 € cos(20) — 2bsin(29)) “‘"
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Chapter 3

Harmonic Map Equations

3.1 Reduction of the form of the Metric

For ease of reference we state the following equations which are the conclusions
of this chapter. First of all under certain assumptions we can state the metric
g on our manifold M in the following way [18, p. 3].

g = e (dr* 4+ dz%) — f 2 dt? + fij(do’ + v'dt)(dd’ + v’ dt) (3.1.1)

The first equation below describes the vertical part of the Ricci flat condi-
tion. This is the harmonic map equation in matrix form. The second equation
is for the partial derivatives of the exponent a of the conformal factor of the
metric on the base. This equation follows from the horizontal part of the Ricci
flat condition. The third equation relates the twist potentials to the compo-
nents of the metric on the fibre. The next two equations are the harmonic
map equations in component form. The last two equations are for the partial
derivatives of « stated in component form. In the rest of the chapter will we
make clear all the terms in these equations.

o, . o,
0= (rH™"H) + 5~ (rH ' Hz) (3.1.2)
ar = g (TT(H_IHTH_IH,«) — Tr(H 'H.H “H.) - %) a. = ETT(H_IH,«H_lHZ)
(3.1.3)
w: = fr ol F wp=—fr WlF (3.1.4)
0=Agfij — f*'V" fuVafij + f V" 0iVaw; (315)
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0= Agwi — fjkV"fjkVnwi — fjkV"f;ﬂ-Vnwj (316)

ar = g (log )i —log(f)? — 4@ +Tr(F'F.F ') —Tr(F 'F,F'F.)...
Lt %wTFfle“ — %wzFflc/g“) (317)
a:=7 ((1ogf)T(log s 27(105 )z 4 §wzr1wf +Tr(F*1FTF*1Fz)) (3.1.8)

We start off with a stationary bi-axisymmetric cohomogeneity 2 connected
manifold M with metric g. The group in question, @, is T> x R. The co-
homogeneity 2 assumption means that the orbit space is 2-dimensional. Let
M,., = {p € M|G(p) is a principal orbit }, by the principal orbit theorem we have
that it is dense, open and connected in M. We know by the principal orbit
theorem that =(M,.,) is open connected and dense in the orbit space. We will
assume the group action is proper it is free over M,.,. This implies that =(M,.,)
is a manifold. We also have that M,.,(r(M..,),G) is a principal G-bundle.

Now we will assume the existence of a section, ¥ which is a connected closed
regularly embedded smooth submanifold which intersects every orbit orthog-
onally [25, p. 771]. More specifically we are stating that G(z) = M, that is the
image of the section under the group covers M. And that for all p in &, we have
that the tangent space to the group, 7,G, is orthogonal to the tangent space of
s, T,% [25, p. 777]. Note that the existence of the section s implies that if we
let a group element 7 act on ¥ then the result += is still a section [25, p. 777].
Thus we have many sections. An example of such a section entails s' acting
on S? by rotation about the »-axis.
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Figure 3.1:

A typical orbit is shown in blue. The cross section here would be the red
meridian since it intersects each orbit orthogonally. Back to our manifold M,
we have the stronger result that for all p in M,., there is a unique section,
¥,, which passes through p whose tangent space, 7,%,, is orthogonal to 7,G
25, p. 778]. Let E be a vector field, we can decompose E into a part tangent
to the fibre, »(E), and a part tangent to the section, h(E), which dynamically
depends on the point. Let E, and E, be vector fields, we can write the metric
as g(Ev, Ez) = g(v(E1), v(E2)) + g(h(Ev), h(E2)).

Now enter the stationary and bi-axisymmetric assumptions, we have three
1-parameter groups which act by isometries. Associated to each of these 1-
parameter groups is a Killing vector field. We will assume that these Killing
fields commute in which case there is a global coordinate system where each
Killing vector field is a coordinate vector field [23, p. 337]. The one associated
to the stationary assumption is timelike and is denoted by 9, . The two Killing
vector fields associated to the bi-axisymmetric assumptions are 9,1 and 9,..
These Killing vector fields generate the group action by G. The fact that the
Killing vectors commutes agrees with G being Abelian. Since M,., is a principal
G bundle, it has local coordinates (¢, o1, 2, 1,&) where ¢ and ¢ are coordinates
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on the orbit space. Because of the the isometries we know that our metric ¢

is solely a function of ¢, and ¢. To see this let E, and E, be coordinate vector
fields.

0c(9(Er, E2) = g(Da, Er, E2) + g(Do, E2, E1) = g(DE, 0t, E2) + g(DEy 0y, F1)
= —g(DE, 04, E1) + g(DEy 01, E1) =0

The same holds true for 9, and 9,,. Using our previously mentioned decom-
position of ¢ we can rewrite it as g = g5 + g», where g; corresponds to the fibre
and g, corresponds to the orbit space. Let d,, = 9;, then we define > = —det H
where Hy; = g7(9p;_,,0,,_,). We want to show that » >0 on M,., and r =0 on
M — M,.,. To do this we will assume that points on M — M,., correspond to
points whose orbit is on a (1,0) rod a (0,1) rod or a corner. We will assume that
the lower right 2x2 block of # which we will call F is positive definite on M,.,.
In order to use the theorem in Chrusciel’s paper [7, p. 6] for our proof, we
need the domain of outer communication. In order to have a domain of outer
communication we need the existence of an Kaluza-Klein asymptotic end.

Definition 3.2. [7, p. 3] We say that Le.. is an Kaluza Klein asymptotic end
when it is diffeomorphic to (R™—B(R))x N. Where B(R) is a closed ball of radius
R [7, p. 3] and N is a compact subset. We take the Euclidean metric on R", ¢,
and fix a Riemannian metric, ¢, on N. We say that a Riemannian metric g
ON Lese 18 Kaluza Klein asymptotically flat if there exists an >0 and an j > 1
such that the difference between g. and é+e on R", &, satisfies the following for
0<k<j

8:51'1 ‘e azlk ((gL)pq — (6pq + qu)) — O(Siaij)

Here z; are coordinates on R™ and s = /23 + ... +22. We are assuming gr and «
are solely functions of ;.

Now we construct L... in our case which is 4-dimensional. We need the set,
P ={p € M, |t(p) =0}, and the set Q = {p € (M — M,.,) |t(p) = 0}. Here we are using
the fact that the coordinate ¢ is global. The metric on P, thinking of P as a
hypersurface, is gr+g,. Where gp is obtained by taking ¢; and setting ¢t =0. The
matrix corresponding to gr is F which is positive definite on M,.,. Therefore
gr is Riemannian on P. On can show that g, is Riemannian [17, p. 654]. Thus
o + gp is Riemannian. For p in P we can construct a sequence of points, {p;}
which starts at p and then converges to ¢ in @ via a geodesic. We define the
distance between p and ¢, d(p,q), to be the supremum of the geodesic distance
between p and p; over all i. We define L... = {p € P|d(p,q) > R for all ¢ € Q},
here R is some non-zero constant. We assume that L... is diffeomorphic to
(R? = B(R")) x T*. We fix the background metric on 72 to be gp. Therefore for
the metric gr + g, to be Kaluza Klein asymptotically flat we simply need to
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assume that g, approaches the Euclidean metric in the sense of the definition
above. In chapter 6 we check that g, is asymptotically flat for the periodic
soliton solution. We assume 9, has complete orbits and it approaches the
time-like unit normal to L... as s goes to co. We transport the points in L,
to everywhere where the flow of 9, takes it and we take the union of all these
points to be M.,.. It is clear that M... = {(z1, 1, 22,92,t) € M | (x1,y1,2,y2,0) € Lewt}
We define the domain of outer communication, ((M...)), as follows:

<<Meact>> = I+(Meact) N I_(Me:ct)

Here 17 (p) is the chronological future of a point p and 1~ (p) is the chronological
past of a point p. When ¢ is in 1*(p), it means that there is a future directed
timelike curve from p to ¢, also written as p << ¢. Conversely, ¢ in I~ (p) means
there is a future directed timelike curve from ¢ to p, ¢ << p. When we take
1%(S) for some set s we are taking U,csI*(p). Now we show that M,., C (M..:)).
We can make use of the fact that M... only contains complete orbits. We make
the following assumption: for all pi, p» in M,.,, there exists ¢ in G(pz) such that
p1 << q. We also assume that for all p;, p. in M,.,, there exists ¢ in G(p2) such
q << pi. In other words, we are assuming that each orbit has a point further
in the future (or the past) than a fixed point, and also that the points are
chronologically connected. Thus it is easy to see with this assumption that
Mireg C ((Meat))-

Earlier we assumed that we only have (1,0) rods and (0,1) rods on the set
M — M,¢y. In the definition of a (1,0) rod we have that ¢(d,,,0,,) approaches 0
as you approach the points on the corresponding singular orbit. In the def-
inition of a (0,1) rod we have that ¢(d,,,9,,) approaches 0 as you approach
the points on the corresponding singular orbit. We will further assume that
9(d,,,9,,) approaches 0 as you approach points in both types of singular orbits.
This will later be shown to be true with the smoothness conditions. Therefore
f = firf2o — f& approaches 0 as you approach M — M,.,.

We define the null energy condition. Let Y be a null vector, then the null
energy condition states that Ric(v,Y) > 0. This is trivially satisfied in our Ricci
flat case. Next we define the orthogonal integrability condition to be all for
i=0,1,2 that the following holds:

d(8,,) Ny N, NO, =0

Here o, = 3°3_, gisdp;. We lack d¢ and dg. terms because we have a product
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metric. We can show that the orthogonal integrability condition is satisfied.

2 2
:ZZ% (9i5)di A dip;
7=0 k=1

o b b 2

o0 /\Q@1 /\8% = —r“dt Ndp1 A dps

d(0,) Ny Ny N,y =

This looks similar to a definition of the twist 1-forms but the o, term in the
wedge product makes it easier to evaluate. We are now in position to use use
a theorem by Chrusciel.

Theorem 3.3. Suppose we have a spacetime (M,g) satisfying the null energy
condition and containing a Kaluza-Klein asymptotically flat end Le... Suppose
further that ((M...)) is globally hyperbolic [26, p. 48]. Assume there is a group
action by isometries G which looks like our group. Furthermore assume that
(M,g) is I regular [7, p. 5] and that the orthogonal integrability condition
1s satisfied. Let A be the subset of M such that f =0. Then we have that on
((Mezt)) — A that r >0 and on 9((M...)) U A that r = 0.

Since f approaches 0 as you approach M — M,., we have that r approaches
0 as you approach a((M..;)) U(M — M,.,). Furthermore since f > 0 on M,., we
have that » > 0 on M,.,. This is of course under the assumptions of the above
theorem.

3.4 Harmonicity of r

It clear that = is a pseudo-Riemannian submersion so we can use the equations
developed by Besse [3, p. 236]. We will define the horizontal and vertical
distributions. Our vertical distribution is made up of sz, where 0 <i < 2.
The horizontal distribution is made up of 2 and 2. We will show that
the vanishing of the vertical components of the Ricci curvature causes r to be
harmonic with respect to g,. For a vector field E we will denote its horizontal
part by nE and its vertical part by v£. We will define the tensors 4 and T [3,
p. 239]. Here E, and E, are arbitrary vector fields.

Ap, By = hDyp, (vE2) + Dy, (hE2) Te, B2 = hDyp, (vE2) + vDop, (hE2)  (3.4.1)

Theorem 3.5. Lety and z horizontal vector fields expressed as yY*o,, and Z70,
respectively. Then because A is linear we can write AyZ = Y'Z’ Ay, d¢;. Since
Ao, Oe; =v(0e;,0¢,] =0 [3, p. 240], we have that AyZ = 0.
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3.5.1 Purely Vertical Components of the Ricci Curva-
ture

We state the Ricci curvature where U and v are vertical vector fields [3, p. 244].

r(U,V) =r;(U, V) — (N, TuV) + (AU, AV) + (6T) (U, V) (3.5.1)

Where r; is the Ricci curvature using the connection of the vertical distribu-

tion. We have that ~ is the mean curvature vector, N =y (Ti a%H”) 3,
foloxe

p. 243], where H” are the components of the inverse of H. Here, (AU, AV) =
325(Aog, U, Ao Vgl [3, p. 243]. Where g7 are components of the inverse of the
metric on the base. And finally (57)(U,Vv)=3,, 9" (Do, T)uV, ¢, (3, p. 243].

To check (40,,,40,,) = 0 we must check that Ao, By, = 0. This amounts to
checking that (Da, d,,,0;) = 0.

(Dagiawkwa&j) = aéi(awkvaﬁj) - (awkaagiafj) = _(akaDagj 851)
(Dagiatﬂk:afj) = _(Dagj akaaﬁi) = (8¥3k7D95j 851)

(8¢k,D35i85].) =0 = (Dagiapk,agj) =0

Now for r( our 50y) We are interested in the connection of the vertical dis-
tribution. This amounts to calculating the vertical components of covariant
derivatives which involves only vertical coordinate vector fields. We have the

following relation since ;2; are Killing vectors [3, p. 183]:

of(p, 2 O \_ (|02 9| 9\ (|9 90| 90\ (0 |9 901\_,
507 0917 0gF ) — \ | 9gi 9pT | " BpF pi’ Ok |7 I e’ |01 0k | )
3

So we know that there are only two terms that make up (3.5.1).

0 0 0 < 0 0
" (% a?a-) = (N’T@%a*w) +(0T) (% a?)
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We will start with a useful relation involving 7 and the derivatives of H,;

0 0 0 0 0 0
T A | = D a =—|D ) i
( 525 D aﬁk) ( 527 gl c%k) ( 5%, D7 Bw)
0

(2 ) (L, )
&k, \ Ot DI Bl o8 9
0 ( 0 0 ) ( 0 0 )
= T35 =— | — 5D o y
9k \Op'’ g O’ Bp7 04
(T ii)_,i(a i),(T ii)
Bil Apd " Oy, O \ Ot Opi aiz Opi’ Oy,
10 0 0 1
T 206 (3@1"87@) = *Qafk(Hw)

We start by breaking down (67)(0,,,0,,).
(Daﬁk T)B‘Pz‘ 3*".7’ = Daﬁk (TO‘P«L 8“’]') - TDaﬁk 9y 8%‘ —Ta,, (Daﬁk 8"’3')
We will start by analyzing Ts,,0,,

Ts 8ij = ggnn(TaLpi 8¢j76§m)8§n

Pq
nm

Zgl:nnafm ij aSn

Dag (T&pl AP] Y ZDag 8§n e (H. Zggnnaimik Hi;)0¢,
We move on to Ty, 0p,0%;-

Dagk D, = Z H”q(Dagk Og; > 0pp) 00y

rq

1
3 > H0g, (H.
rq

1
TDask 9,00, = 5 Z H™0g, (Hip)To,, 05

pq

1 mn
=1 > 98" ey (Hjg) HP g, (Hip) O,

nmpq

We can perform a similar calculation for 7, (Dag, By)-

1
Dagk &pj = § Z Hpqaﬁk (ij)&Pq

rq

Tagai (Dagk atﬂj) Z gl:nnaém 7,q H aék( jp)afn

nanq
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We now move on to (N, Ty, d,,)-

N = Z ggnanq(Tacppaﬂaq7agn)a§m

mnpq

1 mn
_5 Z 9 Hpqaﬁn (HPQ)agm

mnpq
1 mn _

1 mn
= - 5 Z 9b aﬁn (log (TQ) )afm

- %“agm
mnan
(N, Toy,,00;) Z Seil klaék(Hij)(aémvaéz)
klmn

1 mn a n
=3 > gy r(r) Oty (Hij)
We now collect all terms and set the Ricci curvature to be 0.

1 mn Oy, (T 1 m
3 > g %()asm (Hij) + 5 > 95" Oy (Hig) H™ g, (H,p) - .

mn mpq
1 mn 1 m
T3 Z(Dagk (95" O ), O, ) 9ty ey (Hij) — 3 > g0 e, (Hij)
= Z a&m aik (Hw) TH”aém( m)H 8§k( Hjp) + THllaémék( )) cee

imk

4 Y (Do, (057" e,), D, )i r H D, (Hig)

imn

= 95" Oep (rH ™0, H)ij + Y (Do, (95" Ocy), e )9y "r(H ™ 0, H) 15

lmn Imn

3.5.2 The Global Nature of » and 2z

We now take the trace of the above equation and notice that the H terms
disapear.

0= Zgb 65m (Taﬁk 1Og + Z Dag naﬁn)7 65p)gllpr6§k (IOg(T2))

mn

0= 90" 0, 0, (r) + > _( (Do, (gv" "¢, De ) 95" Dy, (1)

We define the Laplace-Beltrami operator below in a general setting.

Theorem 3.6. Let N be a manifold with metric h. Let ¢ be a function on N.
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Let v be a local frame and let X be a vector field. Then div(X) is defined to be:

div(X) = " (Du, X)(v:)

Let z; be local coordinates. We define the gradient of ¢, Ve to be:
Ve = (de)*
Jdc
de = Z ((9;181 d:vz)

dc 0
#o_ ij
(de)™ = Z h 81’1 axj

ij

Finally we define the Laplace-Beltrami operator by: Ayc= div(Ve).

Now we calculate A, r.
;j Or 0
# ©j v
- ;"b 0&; ¢
i or 0
Do, (47) = 2 Pog, (g o, 85;)

= Zaa,ﬁ&z r)gy Oe; + Z% (r)Dog, (9, 0¢;)

Da, ( (dr® Zafkaéz )% +28§z (Dog, (93¢, e,) 95" O (€1)

ijk

Agyr = ¢, 0¢,(1)gs" + Y _ 0e, (1) (Do, (97 0, ), Oe, ) g
ik ijk

Thus, comparing to the trace of the Ricci curvature, we have shown that r

is harmonic with respect to g,. Let 2 be its harmonic conjugate. In order to
: o

define » we need to introduce the metric g, = Ty We denote components

of the inverse of g, by g7. It is clear that det(g,) = 1 since g, is 2-dimensional
and also that they are conformal related since g, is Riemannian. We define »
as follows:

> G0,z = Oeyr D G50,z = =0 v

We let D be the connection for g,. Let’s compute the Laplace Beltrami operator
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acting on z.
Ag,z = Z(Da5 (70, (2)0€,) (&) + Do, (@ 0, ()06, ) (&)
; Do, (9ey (r)de; ) (é) — Do, (9, (r)dey ) (6x))
= 0¢, ey (1) — Dey e, (r +Z (a§2 (Do, 9e,)(Ex) — agl(r)(ﬁaékagl)(gk))
—Z <a§2 (Tr1) agl(r)(fm))

= Og, (1)0¢, (log( det(gb))) — O¢; (1) O, (log( det(gb))>
=0
The formula used to justify the last step can be found in Sokolnikoff’s book

“Tensor Analysis Theory and Applications” [28, p. 81]. Therefore A,z =0
since the metrics g, and g, are conformally related.

It can be shown that (r,z) form global coordinates due to harmonicity and
the fact that the orbit space =(M) is homeomorphic to the right half plane
[17, p. 655-656]. We further assume that g, expressed in these coordinates is
conformal to the flat metric.

gp = €2 (dr® + dz*)

3.7 Metric on the Fibre

Armed with the coordinates » and = and the simplified form for g,, we can
derive the harmonic map equations; making some simplifications to the result
found in the last section. We set ¢ =r and & = =.

(Dag, (95" Oen ), Oy )gb" = (s Dog, e, ) g™

— e 4o ((BT, Dy, 0r) 4 (0r, Do, 0:) + (0=, Da,.0r) + (0, Daz(?z)>
ol _1 1 _1 -
e (Qar(a,«,a) L0:(0:0.) + 20-(9r,0,) Qaz(azaz)) _

0=2 95" 0ep (rH "0, H)ij + ) (Do, (95" cy), e )9y (H " e, H)ij

lmn Imn
0=e**0-(rH "Hy)ij + 0:(rH "H.);)
0=0,(rH 'H,)+ d.(rH 'H.)
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In the last step we went from component form to matrix form.

3.7.1 Derivation of the Block Matrix Form of the Har-
monic Map Equations

We now derive equation (3.1.5) and (3.1.6), which correspond to equation (2.2)
in the Khuri et al.’s paper [18]. To do this we utilize a block matrix form of H.
Here v is a 2 dimensional column vector. We write # in the following form so
we can easily takes its inverse and so we can explicitly see the twist potentials
and the components of F.

- — 20T Fy  (Fu)T
Fv F

We now determine H*:
gl — —fr? Jro2T
fr2v  —fr 2pT + F7!
We can now calculate the partial derivatives of #, H, and H..

0o 2 fer? = 2f e £ 0T (F0) + (W) Fo (0T F),
T (Fv), Fr

H. — (f_sz'r2 + 0T (Fv). + (v7).Fv (UTF)Z>
(FU)Z F,

Take M to be a 3x3 matrix. The lower right 2x2 block will be denoted by M..
and the top left corner will be denoted by M;;. The remainder of the first row
will be denoted by M., and the remainder of the first column will be denoted
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by M... We now find the corresponding parts of the matrix #—*H, and H'H..

(H'H)=—f o+ 20 = fr 27 (Fo)r + 0l Fo) + fr 20" (Fo),
=—f 22— fr 2l Fo
(H_lHr)l. = —fr_Q(vTF)r + fr_szFr = —fr_Qva
(H'H)er = f oo —2r "0+ fr20((0" F)po + 0" Fu) — fr 200" (Fo), + F 1 (Fo),
= =2 Yo+ FTHFO) + fr2 (ool Fo+ oo Fro + 00" Fo, —ov” Foo — ov” Fu,))
= =2 Do+ fr3 (vl Fo) + v, + F ' Fo
(H'H.)eo = fr 20" F)p — fr 200" Fp + F'F, = fr 2w  F+ F'F,
(H'H.)1 = —f ' fo — fr 2 (0" (Fu). + vl Fo) + fr 20" (Fu).
=—f o= fr 2l Fo
(Hlez)l. = ffr72(vTF)z + friQUTFZ = ffr72vaF
(H'H))e1 = [ fov+ fr2o((0" F)o + 0" Fu) — fr 200" (Fu), + F 1 (Fo).,
= (T v+ FHE). 4 fr2(ovl Fo + ool Fov + 00" Fo, —oo” Foo —oo” Foy))
= (ST o+ fri (ol Fo) 4 os + F~ Fo
(Hlez).. = frizv(vTF)z - friQUUTFZ +F'F, = f’l“iQUUZF +F'F, (371)

We now compute the harmonic map equations for each part of the matrix,
2 (rH'Hy) + Z (rH™'H.).

(2 ( HleT) + 9 (erle)) = (ffrflvrTF) + % (ffrfluzﬂF) =0

or 0z le

o Flo

(fr_lvrTF) - % (—fT_IUZF) =0

Let a = fr=%!F and b = —fr~ ! F. Let 7 = adz + bdr, thus 7 is a 2-dimensional
row vector with 1 form values. We have the following:

dr = (0r(a) — 9:(b))dr Ndz =10

Thus since the orbit space is simply connected we have that r is exact, i.e
r =dw. We have that the partial derivatives of w are given by the following:

Wy = fr_lvTTF Wy = —fr_leF
We can solve for » in terms of w.

ol = flrw. Pt ol = —f rwe P (372)
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We can use the integrability of +* to find a PDE involving w.

'UZ; =T (_f_2fzwzF_1 + f_lezF_l — f_lwzF_leF_l)
’UZ’I‘ = _.filwrFil - (_f72f'rwrF71 + fﬁlerFil - fﬁlwrFilFrFil)

T T
0= Urz = Uzpr

0= 7f71fzwz Twse — wZF?le + & - fﬁlfr‘wr + Wrr — w'rFilfr
T
(3.7.3)

0=Aw—(Inf)rwr — (In f),w, — W F'F, —w,F'F, (374)

Where Ac is the laplacian of ¢ = ¢(r, 2) in 3 dimensions with cylindrical coordi-
nates, (r,z6). However it is also proportional to the laplacian with respect to
the metric of the entire space g. We use theorem 3.6 to do the calculations.
We start by computing (Do, Ve)(r).

(Do Veo)(r) =D (e”“@2 7204@&) (r)

or or te 0z 0z
_ 2 —2(1& —2a —204% 2 g —2a —2(1@ 2 g
~or (e 61“) te ey, (D% or’ 87’) te e Ty (D% 9z’ 8r>

2
— (—20(7«6_2&%+6_2a%+6_4a%€2aar+€_2a€_2a%62a(¥z>

— o 20 % _% +8726
= f)zaz ara" Or2

Let’s compute (D g Ve)(2)-

D%(Vc)(z) - D% (e or or te 9z 0z

_ g 7204@ —2a 7204% 2 3 —2a 7204@ g 2
0z (6 (9z> te e gy (D% 0z’ 8z) te e g (D% 9z’ 8,2)

2
—92 oc —2 0“c —4 Oc 2 —2a —2 dc 2
= (—2aze Y e e e Y, F e e e Y,

7204&2 —2« Jc g) (Z)

0z 0z2 or Oz
— o 2a @ — @ + &
- ¢ or o 0z o 022

We now compute D _» (Ve).

lslox
R R S
Do (V=5 Do 5te "5l a
(e 0 0Ny D e(p 0 00
= <8r (Da%ar’aqu)H o6 T 0: \Psoz 000 ) 1 o
2o (Lo pOe 1 0c 9
= (Q(H“)TH ar T Hu)H" 50 | 55
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We now collect all the terms with the summation.

Npem e (Lq 0o L0 | aa (O0, e, e
o 0z = or " or? or " 0z~ 9z2)

_oa (1 ;0c 1 i; Oc
o+ e 2 <§(Hij)rH]E+§(Hij)zH]82>
_ 9%c 9% _ de 1 _ Oc
_ 2a 1 _ - _ 1 —__
=e (7&”2 + Fyl + (H Hr)ar + 2T7‘(H HZ)@Z)

amrton™

1
2
_ 2 9% 9% 1
N 2
2a (820 e 1
—=e —

Tr

0 2 oy, Oc
E(ln(T‘ ))&-i-i&(ln(r ))$>
Oc

w*%*@)

We now compute the harmonic map for the 2x2 block of 2 (rE='H,)+Z (rH™'H.).

0 —1 0 -1 0 1T -1 0 1T -1
(5(7’1{ Hy) + 5 (rH Hz)> = (fr ol P4 rF R ) o (fr vl F+rF 'R

0 —1 0 -1
= ar (vwz +rF FT) + P (—vwr +rF Fz)
= VrWs + VWap — VaWy — VWrs + FﬁlFr — rFlerFleT ..

4P E —r PR FTIF, 4y PR,

= F ol + T F W + FTYF, —rF IR FYE,

i+ rF F —rF R PR 40 PR,

1
0 = fﬁlwzﬂwz + fﬁlwz—‘wr + ;F’V + F1'7' + Fzz - F7'F71F7- - FzFile (375)

The remaining parts of the matrix, 2 (rH~'H,) + 2 (rH'H.), will turn out

not to be independent of the previously computed parts. It’s easy to see why
the 11 part is not independent when we use the trace.
(B Hy) = Tr(H T ) = Tr((H T He)s) = 2 = Tr((H Hy)aw)
(H'H)1 =Tr(H "H,) = Tr((H "H.)ee) = —Tr((H "H.)ss)
0 1o}

5 (T‘(HilHr)ll) + % (T(Hile)ll) =0—-Tr (% (T(Hler)..) + % (T'(Hile)O.))

It is trickier to see that e1 part is not independent. To do so we must use all
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the previously shown parts and use equations (3.1.4) and (3.7.2)

0= % (’I”(HilHT)ol) + % (T(Hﬁle).l)
0= % (T((filfr - 27"71)” + fTiQ(UUrTFU) + v + FﬁlFrv)) + % (r((fflfz)v + frfz(vvaFv) +u, + Fﬁlev))
0= —% (T(_(filfr — 27“71) _ frizszv)) _ % (T(_(fflfz) - f?“izvszv)) v

(%(ra—lcy-wg(rc—lcz))
11

1o} _ o} _
...+§(TF 1Fw)+£(rF 1sz)...

e — r(f(fflfT - 27‘71) - friQUfFv)vT - r((ffflfz) - fr72vaFv)vz + % (rovr) + % (rv:)
= r((fflf,« — 27"71) + frin,TFv)vT + r(fflfz + friszFv)vz L+ F Ry —rF'EF 'Fu...

i+ rF 'R+ rF  Ew, —rF YR F o+ r P v+ 7 F  Fov, + roee + v + 1022

v? = f717wZF71

v = —f 2 forw P 4 T w0 P T rwe, B = f T rw PR
= —fof ol d e 4 T F = ol BT

UZT = —f_lrw,«F_1

vl = —f 2 forw P = T rw FT 4 f T o, PR FTY
= fof 0l = o P ol LR

We plug these into the previous formula.

0=r((f"fr=2r""+ fr 2o  Fo)v, +r(f ' fo + fr 20l Fo)u, ...
v r(=frf oo+ (T FY T = P R 4 (fof e — (F rwen PN — FT R0 4o
i+ F'Fo—rF 'EF '"Foo+rF 'Frpv+rF 'Fou, —rF ' FLF 'Foo+rF ' Foo4+rF ' Foo,
= r(fr_QvaU)Ur + rfr_QvZFU)vz +FFy—rF 'EF ' Fv+rF  'Fv—rF 'F.F 'Foo+rF ' Fo v
= (r(fr ) weor F4rfr vl FE FTUR 4+ F P +rF ' Fo, — v P R PR, — UL F T F )0
0=(AF+ fr2(f 'rF W) (f rw. F R + fr 2 (—f e F ol ) (= f o FTYHF L
.= F 'R F'F. - F 'F.F 'F. )
=(AF + f'wlw. + f'wlw, — F.F'F, — F.F 'E.)v

same as (3.7.5)

38



M.Sc. Thesis — S. Zwarich McMaster University — Mathematics

3.7.2 Derivation of the Component Form of the Har-
monic Map Equations

We now convert (3.7.4) and (3.7.5) from their matrix form to equation 2.2
found in the paper by Khuri et al.[18, p. 3]. We do so for (3.7.4) by taking
the i'th component. And for (3.7.5) we take the ij'th component. We use the
notation v, to be the » derivative and v, to be the » derivative. We raise the
index of the derivative using the inverse of the metric on the base. Since the
inverse is diagonal with components ¢=2*, we get that v = e 22v,.

0=Afi; — (B F ')y — (FoF ')y + f (Wl wn)ig + fH (wh ws)ij
0= Afij — (Fie)r ™ (fig)r — (Fir)=F* (fig)= + £ @) (w5)r + M (wi)= (w))-
0= Agfij - fklvnfikvnflj + f_lvnwivnwj

We now convert equation (3.7.4) by taking its components. We use the fact
that (Inf), = Te(F7'F.) = f7%(fie)r and (Inf). = Te(F'FL) = f7%(fir)-

0= Aw; — I (fir)= (i) — 75 (fi)r(wi)r — (W) F25 (i) e — (@5)r 75 (fri)r
0= Agwi — FI"V" fjuVawi — V" foi Viw;

3.8 Metric on the Base

3.8.1 Solving for o, and a,

We now move on to derive the equations for the conformal factor o which
appears in g,. We start again with the Ricci flat conditions but this time using
its purely horizontal components. We have from Besse that [3, p. 244]:

r(X,Y) =m(X,Y) —2(Ax, Ay) — (TX,TY) + %((DXN, Y) 4 (Dy N, X)) (3.8.1)

Where r, is the Ricci curvature of ¢,. Let go = dr? + d2? be the flat metric. Then
g» = e**go. From Besse we have that r, = —(Aa)go. SO r, = — (s + az2)(dr? + dz?) [3,
p. 59]. Looking at the next term we have that:

— E ©]
(Ax,Ay) = ~ H (AX atp,"Ay atpj)

We know that Ax g% is horizontal so we only need to determine its horizon-
tal components. Let Z be a horizontal vector field, we have that (Ax52-.2) =

(8;, Ax Z), and by theorem 3.5 it is 0.

From the previous subsection we know that N = —<**2. We now calculate
the term which contains N in (3.8.1) using all relevant combinations of 2 and
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RS
)
%P
=
SIS
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RS
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%o
/N
®
<)
Q
3lo
——
Pl
~—

1o}
672(1 a 2c 6 67204 2a
=T ”a(* )
(678

r
__&+i+201r - i
oo r2 roor 72
e7%* 9 0
DygN,— |=(D — — ), =
( &= ’az) ( %( r 8r>’82>
e 9 2a Qr
TR U

RS
)
%o
=
&l
Q
~—
|
/N
)
Fo
/T\
@
<)
Q
3lo
~—
¥l
~—
|
(o]
ﬁ\ s
/?
/~
|
3
)
S
¥l
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/N
)
Yo
=
SIS
N—
I
/N
)
Yo
/T\
@
<[ L
)
$lo
~—
$lo
——

_ g 767206 62a 67206 3( 2(1)
T 0z r 2r 0z
L0 _

T r T

We now examine the term (7x,7y). We have that:

(TX,TY) =Y HY(T o X,T 5 Y)
i At EXyi

We know that 7, X is vertical so we can work out what it is from calculations
ool
in the previous subsection. We'll let X be 2 and 2.

o 0 o 0 0 0 o 0 1
(T g a) = (P age) = (Pa s o) =~ (Poae g o) = 380
o 0 o 0 0 0 1

(T 5 5) = (P oo ) = (P =~ (P :

We now work out (72,72). Let K = H'H, and L = H'H.. We have the

following two PDEs involving K and r. This is using (3.1.2).

Q Q
< |Q < |
Ea by

K.=-H 'H.H'H.+ H 'H,.
L,=-H 'H.H'H, + H 'H,,
Kz - L’V‘ == [Ka L]

O:KT+LZ+§ 0=K.— L, —[K, L] (3.8.2)
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1 o
I Hz]Hkl sz ern H < , )
o, A ) g g
=3 > HY(Hjm) H™ HuH" (Hi), = 1 > HY(Hjm) H™ (Hi),
i,7,k,l,m,n i,7,k,l,m,n
= iTr(H_lHTH_lHT) = iTr(KQ)

We now work out (172,72).

9 19\ _ i 9 0 \yw 9 9 0 mn_0
(Taz’Taz)_;H <Ek’l<Ta‘;az’a¢k>H aqsl’;(Taijaz’aqsm)H aw)

Z HJHkl(Hik)zH (Hjm)z (@78¢">

0,4,k l,m,n

- 1 -
> HY(Hp)H"HuH"(Hy): =7 Y7 HY(Hym)-H™ (Hyi)-
i,7,k,l,m,n i,j,k,l,m,n

Tr(H 'H.H 'H,) = iTT(LQ)

L N N

We now work out (72,72).

9 19\ _ i 9 9 \pyu 0 9 9 mn_0
(Tar’Taz);H (Z(Tj;ar a¢k)H a¢l’;(Taijaz’a¢m)H 8(15")

k,l

17 mn 8 8
> HYH"(Hi), H™ (Hjm)- (37);’@)

0,4,k ,m,n

> HY(Hym) H™ HyHY (Hix)e = 5 Y HY (Hym)o H™ (His)-

0,4,k L,m,n 4,4,k lL,m,n

»MH »M»A »M)—‘

Tr(H 'H.H'H.) = ZTr(KL)

Now we add together all the terms that make up »(x,v).

g 0 1 ar 1
O—T<E,a)—_(arr‘f'azz)—zT’r‘(K) r —‘rer
— 9 9\ _ _ _ } 2y Qo
O=r <£7 @) == (ar'r + Olzz) 4T7"(L ) -
0= —rrrre?)y 4 trer?y 429 4 L
T4 4 r r2
T 2 2 4
ar =g (Tr(K )—Tr(L") — 7”72)
g 0 a, 1
O—T<6T,$)—7—ZTT(KL)
as = %TT(KL)
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3.8.2 Verifying the Consistency of the Purely Horizon-
tal Ricci Flat Equations

We now check that the equations for the Ricci curvature are consistent. This
is because «.,, and a.. appear earlier and cancelled when we solved for «,. To
check we take derivatives of the partials of a and plug them into the equations
for the Ricci curvature. We use (3.8.2).

e = S (Tr(K?) = Tr(L) + 515+ S(Tr((K),) = Tr(E),)
= é(Tr(KQ) —Tr(L?) + % + Z(TT(KTK) —Tr(L.L))
a.. = gTr(KzL +KL.)
. (% %) - —é(Tr(KQ) —Tr(L?) - % — 2(Tr(KK) = Tr(K.L) + Tr([K, L]L))....
= ST+ L) - iTr(Kz) + % Tr(K?) — Tr(L?) — %) + %2
- —iTr(Kz) - Z(Tr(KrK +KL.) = —Z (TT(K(%K + K + Lz))) =0
(52 85) = g T ~TH(E) gy = UG K) < T

r2

r 1 2y 1 2 2 4
oo g Tr(KL+ K L) = S Tr(K?) — ¢ (TT(L ) = Tr(K7) - *)

r

=7 (TT(K(%K + K, + Lz))> =0

3.8.3 Deriving the Block Matrix Form for «, and «,

We now work on converting the equations for the partials of o to the form
presented in equation (2.5) in the Khuri et al.’s paper. We use the block matrix
form of H~'H, and H~'H. that we calculated in the previous subsection. Using
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the commutative property of the trace we have the following:

Tr(H 'H,H 'H,)=Tr(H 'H.)}, + (H "H.)1e(H "H,)e1 + (H "H,)e1(H 'H, )10 + (H "H,)2,)
= (H™'H:)!y +2(H "Hy)1e(H " Hy)or + Tr((H ™ Hy)2W)
(H'Ho)h = (—f et 2r™ " = fr2(0f Fu))®

1 4 2 .
=(f fr)2+§+f—4(v?Fv)2—;%+2f Fv—4ri3vTTFv
20H "Hy)1e(H "Hy)er = 2(—fr2vof FY((f " fr — 2r Do+ fr 3 (vo] Fov) + v, + F ' Fv)
fr f T f T f

= Fu+4—vTFv—2f (v?Fv)2—2—2vTFTU—2—2szUT
r r

Tr((H™'H.)3.) = Tr((fr‘ v, F+ F'F,)?)
= ;Tr((vva) )+ 2 /

2
f L (vy Fv)? +2i2v7. Fow+Tr(F'F.FT'F,)
T

- - - 4 f 4 b
Tr(H 'H,H 1H,«):(f f,«)2+r—2+£—4(vrTFv)2—fi+2f—v Fv—4ri3vTTFv...

T fr
2
fr FU+4ivT FU—2f (v, FU)2 —QTLQUfFrU—QTi?U?FUT...

Tr(vaF Y+ Tr(F'F.F'F,)

f2 fr —1101\2
"+T7(UTFU) +2T7UTFTU+TT((F FT) )

= (log f)2 + % - 4@ - 21%@?1% +Tr((F'F.)?)

Using (3.1.4) and (3.7.2) we have that:

2 2 2
Z%UTTFUT = —WLUp = fthF ! T = —w, I~ 1sz
r r

rf !
Tr(H 'H.H 'H,) = (log f)> + % - 4(1°grf) - %w F'wl + Tr((F7'E)?)
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We now move on to Tr(H 'H.H 'H.).

Tr(H 'H.H 'H,) = (H "H.)}, + 2(H "H.)1e(H "H.)e1 + Tr((H 'H.)2,)

—1 2 -1 -2 T 27f3 fz T f2 T 2
(H™ Ho)i = (=f" " fz = fr™ 7 v. Fv) +2 5vs Fo+ -~ (v Fo)

ey 2’02

=5 =
2H H.)1e(H "H.)e1 = 2(—fr 20l F)Y(f f2)v + fr 2 (wvl Fv) 4+ v, + F~ 1 F.0)
Iz f? f f
= 72T—QUZTFU — 2T—4(1;ZTFU)2 — 2T—2UZF1)Z — QT—QUZTFZD

Tr((H 1 H,)2) = Tr((fr vl F + F'FE,)?%)

2
= 771(vaFv)2 + 2£UZTFZU +Tr(F'F.F'F,)

2 2
Tr(H 'H.H 'H.) = i +27in Tpy 4L (vl Fv)?. ..

Iz 2 V= e
f- /? f f
o= 2T—20ZTFU - 2771(UZTF1))2 — 2T—2vZsz - 2T—2vasz -
2
o+ %(UZFW + 2i2vasz +Tr(F'F.F'F,)
T T
= (log f)2 — 2%1;;1%2 +Tr(F'F.F'F,)
T
Again by (3.1.4) and (3.7.2) we have that:
f t 1 1 T -1 T 1 -1 T
2—v Fv, = —2—w,v, = —2—w,(—=F ) =2—w. F -
2V E S wrv Tw( 7 wy ) fw w.
We can now work out «..
T _ _ _ _ 4
ar =g (Tr(H 'H.H 'H,)—Tr(H 'H.H 'H,) — T2)
_r 2, 4 (logf)r 2 -7 —1 -1
=3 ((log Hr+ - 4 . fwzF w, +Tr(F F.F " F)...
. —(log )2 — 2%%«1?*1“;? +Tr(F'F.F'F,)) — %)
r
- %((log 12 = (log )2 — 418 g g R (P R R
T

2 17 2 —1 T)
o+ W Fwy — —w BT Wy
! f
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We now move on to Tr(H 'H,H 'H.).

Tr(H 'H.H 'H.,)=Tr((H "H,)11(H "H.)11 + (H "H,)1e(H "H.)e:
+ (H 'Hy)or(H "H.) 10+ (H 'Hy)oo(H ' H.)ea)
=(H '"H)u(H "H)u + (H "Hy)we(H " Hy)er ...

+ (H ' Ho)ro(H 'Hy)or + Tr((H "Hy)eo(H "H-)eo)

(HleT)n(Hlez)n = (—fflfr +2r 1 — friQ(UTTFv))(—fflfz — frizvaFv)

%%—i—ﬁ Fo —Qf}—Qf [ +£vTFv+f—vTFvszv
(H™'Hy)ro(H ' Hz ot = (—fr 20, F)((f 7' fo)v + fr2(vvl Fo) + v + F7' Foo)

f f

fz 2o T T T
= —T—UT Fov— —UT Fov, Fv — r—zvr F.v— ﬁvr Fu,

(—friZUZTF)((fflfr — 27"71)'0 + fr72(vv7nTFv) + v + FﬁlFrv)

2
= fr TFo + QL’UZFU — %UZFUU?FU - %szrU — %UZFUT
r r r

Tr((H "H)ee(H 'H.)ee) = Tr((fr_ wlF + F'E)(fr 2wl F+ F7'E,))

(H'H.)1e(H "H,)e1

2
= f—vrTFvaFv + iU?FZU + %vfﬂv +Tr(F'F,F'FE,)
7” 7” T

Tr(H_lHTH_lH)f%%+£ Fu —2f; 2f [ +£erv—|—f—ervszv...
r3
2
QU?FU—%U?F’U’U?F’U—éU?sz—izU?sz...
r r r
2
QUZTFU—FQLUZ Fv— f—vz Fva Fv— izvaFrv — évaFuT -
r r r

+f—vTFvszv—i—iUTFU—&—inFv—i—Tr(F ‘PR 1F)

Tr(H 'H.H 'H.) = (log f),(log f)~ — 2% - iner - TLQUTTFUZ +Tr(F'F.F'F,)

r2

Using (3.1.4) and (3.7.2) again we have that:
%v';roz + TLQUZTFW = +%wzv2 - %wrvr

- %wz(—gF‘leT) - %wr(*F_lsz)
f%(wzFfler) - ;(WZF

2 -1 T
=——w. F w,
T

Tr(H 'H,H 'H.) = (log f)(log f). — (logf) + Sw Pl 4 Tr(F T RFTUR)

a- = ¢ (g ). trog ) -2 “"gf) S s Ly 8)
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3.9 Mixed Components of the Ricci Tensor

For completeness we will check that the mixed components of the Ricci tensor
are 0. From Besse we have that [3, p. 244]:

r(X,U) = (0T)U, X) + (DuN, X) — ((6A)X,U) — 2(Ax, Tv)

We will show that each term is 0. We have that 67 = — . (Dv, T)v; Where U; is
an orthonormal basis of the vertical distribution.

(DUj T)Uj U= DUj (TU]. U) — TDUj Uj U - TUj (DUj U)

Let U be a vertical coordinate vector field. Then Dy, U is a sum of horizontal
vector fields. Then 7y, (Dy,U) is vertical so it doesn’t contribute. We have that
U, is a linear combination of vertical coordinate vector fields where the coeffi-
cients are functions of » and ». Therefore Dy,U; is a sum of horizontal vector
fields. Thus Tpy,v;U =0. Finally 7y,U is horizontal. So Dy, (Ty,;U) is vertical so
it doesn’t contribute. We have that N = —<>*2. So, DyN = —<>2py9, which
is vertical thus doesn’t contribute. We have that (54) = 3,; g/’ (Dog, Ao, where
¢, 1s a coordinate basis of the horizontal distribution. Let X be a horizontal
vector field.

e—2a

r

(Do, A)st X = Do, (Aagj X) - AD% o, X — Ag, (Dagj X)
We know by theorem 3.5 that the above term is 0. Finally we have that for hor-

izontal vector field X and vertical vector field U that (AX,TU) = 32, ;(4s,, X, Ty, U).
i J
It is clearly 0 because of theorem 3.5.
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Chapter 4

The Smoothness Conditions

Currently our metric is well defined over the interior of the orbit space. At
points on the boundary we no longer have a principal bundle but we have
a tube with a non-trivial isotropy group. To judge smoothness, we start by
defining an appropriate slice representation for such a point on a boundary.
Afterwards we use Schur’s Lemma to generate the polynomials which arise in
the metric’s components.

We will express our group G as S x S3 xR and use (r,7) as the coordinates
on the orbit space. We build a local model around ¢. using the rod data. The
rod data in the orbit space is a (1,0) rod above ¢. and a (0,1) rod below ¢.. We
will take ¢, to be a point whose orbit is on the (1,0) rod and ¢, to be a point
whose orbit is on the (0,1) rod. With this pattern of alternating rod structure
carrying on across the 7 axis. We will call the orbit of a point ¢, n(¢). Upstairs
in the manifold we can fit the slices at ¢., ¢, and ¢. into a single 4-dimensional
diagram which serves only as a schematic.

R St xR
Sl xR A A )
R
S, /
Sc N PR
< q’C ,’\ q 4 #2
qb T
Z1
Figure 4.1:

Here S., S, and S. are the slices at ¢., ¢, and ¢. respectively. All these slices
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live in a bounded set in R* shown above. We think of R* as C, x C, where 2z,
is the complex coordinate of ¢, and 2. is the complex coordinate of c,. We
have that S, has coordinates (zi,y:,7.) where z = z; + iy and 3 = 22 +y3. We
think of r, as being the radial part of z, which varies in s,. Furthermore since
st shrinks to a point we have that the isotropy group at ¢, is isomorphic to
si. Also, we have that the orbit is isomorphic to s3 x R. This is represented in
the vertical direction of the figure. Similarly we have that s, has coordinates
(r1,22,y2) Where zy = zo +iy, and r? = 2?2 +43. Since S} shrinks to a point we have
that the isotropy group at ¢, is isomorphic to s3. This implies that the orbit
is isomorphic to st xR. Finally at s. we have (z1,y1,z2,92) as coordinates. Since
both circles shrink to a point at ¢. we have that the isotropy group at ¢. is
isomorphic to 72. And we have that the orbit is isomorphic to R. These coor-
dinates (z1,y1,22,32) are only valid locally around ¢. and in this neighbourhood
there are only two rods a (1,0) rod above =(¢.) and a (0,1) rod below =(q.)

Now our orbit space is homeomorphic to the right half plane with coordi-
nates (r,7). We have the following local formula about the corner point in the
orbit space.

r3 —ri

2

r+iT=(ro+ir)” = r=rire T =

ri=\Vr2+7 T re=\Vr2+7+T

This transforms the quarter plane made up of (r,r) to the half plane made
up of (r,7). This transformation is valid everywhere except the origin. If you
want to consider a similar corner point somewhere else on the 7-axis then you
simply perform a translation in 7 so that the corner point is at the origin of
your new coordinate system.

For coordinates on the (1,0) rod at (0,a) we use the following equation.

7,2

2+ (F+a)?+T+a

(4.0.1)
We now provide a summary of the conclusions of the smoothness conditions
before going into more detail.

r2+a’:\/ 24+ (F+a)?+T+a =2+ F+a)? - (F+a)=

For a point on a (1,0) rod in the orbit space we have the following in an
open neighbourhood around =(g,). Disclaimer we have translated the 7 coor-
dinate so that it is 0 at =(¢.). Also there is a normalization of the metric at
the point n(g.). Firstly ¢(X,8,,) = 9(X,d:) = 0 for X € span(d,,d-,9,,). We have

that ¢(d,,,0,,) behaves as Z as you approach (g.). Finally, we have that all
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components of the metric are smooth functions of »? and 7.

For a point on a (0,1) rod in the orbit space we have the following in an
open neighbourhood around =(g). Disclaimer we have translated the 7 coordi-
nate so that it is 0 at =(g). Also there is a normalization of the metric at the
point n(g). Firstly ¢(X,d,,) = ¢(X,9,) = 0 for X ¢ span(d,,d-,d,,). We have that
9(9,,d,,) behaves as Z- as you approach r(g). Finally all components of the
metric are smooth functions of »? and 7.

For the corner point ¢. we have the coordinates, (r,7, 1, ¢2), for our slice. We
let 7 =0 at the corner point. We have the following in an open neighbourhood
around =(q.). Firstly, that all non-diagonal components of the metric on the
slice are 0 apart from ¢(d,,,9,,). We have that away from the corner point
that all components of the metric are smooth functions of > and 7. We have
that ¢(d,,,8,,) and g¢(d,,,d,,) behave like » when 7 =0 and » — 0. We have that
9(9,,,0,,) behaves as r> when 7 =0 and » — 0. We have that ¢(a.,8,) behaves like
r~! when 7 =0 and r — 0.

4.1 Axis Rod

We let ¢ be in the isotropy group G,, = Si x {1} x{1}. We consider the action on
the slice 5,. We set the name of the tangent space of s, to be v. We have that
e’ acts on (z1,41) by rotation by an angle 6. It preserves r,. We also translate
r2 SO (r1,72)(ga) = (0,0). We can write this group action as matrix multiplication.

x1 cos(d) —sin(d) O 1
€l | = [ sin@®) cos(@ of |wm
T2 0 0 1 T2

Here we are using d.,, 9,, and 9,, as a basis. Therefore the slice representation
is p@ 1 where p is the representation responsible for the rotation.

The isotropy representation at ¢, is trivial. To see this let o : M — M map
m to ¢“m and let x be tangent to the orbit at ¢., i.e in 7,,G(¢.). Then the
derivative map is the following: do(X) = (e?6(u))’(0). Where §(u) is some curve
in M. We can use the tube theorem to rewrite this as [e?~(u), ¢.]’(0). Where ~(u)
is some curve in G. Note that the slice part is constant in terms of «. We can
make the following simplifications:
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[ev(u), qa]' (0) = [v(u)e”, qa) (0) = [7(w), € qa) (0) = [¥(u), qa) (0) = X

It is clear that the tangent space at ¢, uniquely decomposes into a part
tangent to the slice and a part tangent to the orbit. Note that the orbit asso-
ciated to ¢, is 2-dimensional and v is 3-dimensional. However at other points
in S,, the part tangent to the orbit grows to being 3-dimensional. Also note
that the action of G, is obviously closed in s, and the third part of the slice
definition is satisfied.

We take {d.,,d,,,0.,} as a basis for v and {8,,,8;} as a a basis to the the
orthogonal counterpart, v+. For orthogonality we have used a background
Euclidean metric, dr? + dr? + ride? + r3de3 + dt*>. Let D be an open ball in v
centered at the origin. In the following approach we wish to consider smooth
G invariant metrics on the tube G x¢,, D. These metrics correspond to met-
rics on an open set in the manifold M due to the tube theorem. There is
another correspondence between the G invariant metrics on the tube and a,,
equivariant maps F where F: D — S*(V @ v*). The correspondence will be
demonstrated later on. The maps which use the m' order polynomials are
given by Homy(s™Vv,5?(V @ v*)). The reason for using Homy(s™Vv,S*(V @ V1))
is that the H-equivariance allows for a smooth extension of the polynomials
on a 2-dimensional section of D to the entirety of D [10, p. 113]. We can un-
derstand the s*(v @ v*) as corresponding to components of a metric. We have
from the section on representations that s%(p) = p* @ 1, thereby reducing 52(p)
to two irreducible representations. Here p" (") = p(e"?). We can now work out
S?(v @ v*) using the trivial representation on v+.

SPVevhH=S2WV)esSf(VvHe(VeVvh) =52 (pel) @31 (21 @ 2p)
=(p'elepel)e3le (2le2))

Let us consider the constant polynomials s°(v) which is isomorphic to R. This
means there is a constant for each component of s?(v @ v*). Before we be-
gin we will translate . so that it is 0 at =(q.). We can normalize the metric
on the v part so that at the point in question, ¢., the metric is of the form
(dz? 4 dy?) + dr3. This is done by fixing an orthonormal basis at the ¢, and then
parallel translating the part of the orthonormal basis perpendicular to the
group along the normal geodesics. Thus we create geodesic coordinates which
are the coordinates of the slice z:, y» and r,. Therefore the metric is Euclidean
at the origin.

We now consider the first order polynomials, Homg,, (S*(v), S>(Vev+*)) = Home,, (0@
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1L,(pPP®eleopal) ®@31a (21 ®2p). Note that in the codomain the generators of p?
are duz? —dy? and dz.dy;. The generators of the first p are dzidro and dy,dr.. The
second p has generators dz,dt and dy:dt. The third p has generators dzidp. and
dyrdgs. The first 1 has as its generator (dz? +dy?) . The generator of second,
third, fourth, and fifth copies of 1 are dr?, dy3, dt*> and dp.dt respectively. By
Schur’s lemma, we have that the only isomorphisms are the ones which map
its domain to itself. For p the arbitrary element in the domain is ad., + b9y, .
The homomorphism maps this element to ¢'(adzidrs + bdy:dr.) choosing the p
that is comprised of dz,dr, and dydr.. However what we need is not the output
but the homomorphism itself. We can think of the homomorphism as being
" (0zy)*dxrdrs + (8y,)*dyrdr.. Where (8,,)* is the dual of 9,, and (9,,)* is the dual
of a,,. Because of the equivalence of Si(p) and Pi(p) as representations we can
use az; + by: when applying the group action but then convert back to vector
form before inputting back into the homomorphism. However this viewpoint
of homomorphism is well and good but there is a second viewpoint that of
the metric itself. To get the metric we take the sum of all the homomorphism
and input z19., + 419y, +r20,, where z1, y; and r, are now the coordinates. Both
viewpoints are stated below where ¢! is the part of the metric which has order
1 homogeneous polynomials.

11, ot (8ry) " (dai + dy?)

11, B (0ry)*dr3

1-1, 7 (0ry) "

11, V4 (Dpy) dt3

11, 7§(8r2)*d¢2dt

11, 8 (Ory)* (dr2dt + dradeps)

p— p, €' ((Dy)*dxrdrs + (9y, ) dy1dra)
p—p, M ((9zy) dxrdt + (9y,)" dyrdt)
p—p, 12((0y)*dz1dipz + (Byy ) dyrdeps)

g1 =a'ry dm% + dy%) + ﬁlrzdrg + ’yllrzdcpg + ’yzlrzdt% + ’Y;’f’zd@zdt ...

(
oo+ € (mrdardra + yrdyrdre) + 1 (w1dzydt + yrdyrdt) + na (crdzydes + yidyides)

Where 6, ni, ns are 0 if the orbit space is a section. We will show a
correspondence between @G,, invariance of the metric and G,, equivariance of
the homomorphisms. Let f.. be the homomorphism which takes az: + by: and
sends it to e!(zidzidrs + yidyidr:) and let ¢ map m to ¢“m. We will show that
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F(0* (aDay +bDy,)) = 0 f(ada, + by, ).

0" (az1 4 byr + cr2) = (acos(f) — bsin(0))x1 + (asin(0) 4 bcos(0))y1 + cra
fa(0x(ads, 4 by, + cdry)) = €' ((acos(8) — bsin(h))dz1drs + (asin(8) + bcos(8))dyi drs)
= €' ((a(cos(@)dz1 + bsin(@)dy: )drs + b(—sin(@)dz1 + cos(0)dy: )drs
= 0" (fa(ads, + bdy,) + cOry))

The last step follows since o*dr, = dr». Let f,1 be the homomorphism which
takes ad., +bd,, + o, and sends it to o' (c(da? +dyi)). We will show that it is G,
invariant.

for(0(adsy + b8y, + cdry)) = a'c(dai + dyi)
a'eo™(dz? + dyi) = ate((cos(B)dzy + sin(0)dy1)? + (— sin(0)dzy + cos(0)dy1)?) = ca' (dz? + dyi)
fa1(04(a0zy + b0y, + €Ory)) = 0" (f1(a0z; + b0y, + cOry))

We now demonstrate equivariant maps like the ones shown above correspond
to a G invariant metric on the tube G x¢,, D. The invariance should be true
under the stationary and bi-axisymmetric assumptions. So let’s demonstrate
it in action. The invariance due to the group elements corresponding to the s}
and R are trivial. But the invariance due to action from G,, is not trivial. Let
o map m to em and note that ¢*¢'(9z,,8:,) = (9" (0402, ,040r,)) 0 o. We have that:

040z, = c08(6)0z, + sin(6)0y,
z1 00 = x1 cos(0) — y1 sin() y1 0 o = z1 sin(0) + y1 cos(6) 200 =T

9" (cos(0)0z, +sin(0)dy,,dry) 0 0

gl(o*az1 ,0:0ry) 00
1

€ (COS

(cos(@)x1 + sin(@)y1) oo
€' (cos(0)(z1 cos(0) — y1 sin(6)) + sin(0)(x1 sin(0) + y1 cos(6)))
el(xl) =g (811 :Ory)

This ¢ invariance holds true for the other components of the metric thus you
can start to see the equivalence between G,, equivariance of the homomor-
phisms and ¢ invariance of the metric. We can express the metric in terms of
polar coordinates where z; = i cos(¢1), and y; = r1sin(e1) .

alr (d;c% + dyf) + ﬂlrgdrg s (z1dz1drs + yidyidrs) = alrzdrf +elridridry + ﬂlrgdrg + alrgr%dgaf

We now look at the m = 2 case. We are interested in Home,, (S*V, S*(VeVv™)) =
Home,, (p*@lepal, (p*@1epdl)@316(2102p)). We now state both viewpoints and
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we take ¢*> to be the part of the metric with order 2 homogeneous polynomials.

11, A®(Ory)* @ (Ory)*(dz? + dy?)

11, B2 (0ry)" @ (8ry)*drs

11, Vi (0ry)" ® (Ory)"diph

11, 75 (0ry)" © (Ory) " dt3

151, VZ(Ory)* @ (Dry) " dpadt

11, Vi (Bry)* @ (Bry) "3

11, 6% (Dry)* @ (Bry)* (dradt + dradips)

1-1, V2 ((021)" @ (0ay)" + (9yy)™ @ (Byy)")dr3

1-1, 12 ((021)" @ (01)" + (8yy)™ @ () ™) (dat + dy?)

11, 77 ((021)" @ (0ay)" + ()" ® (9yy)")dep3

1-1, 73((00,)" ® (02y)" + (9yy)™ @ (8y,)")dlt3

11, 73((021)" @ (0ay)" + (Byy)" ® (9y,) " )dipadt

11, 73 ((021)" @ (0ay)" + ()" ® (9yy)")dep3
pR1—p, € (0ry)* @ ((Dny)*dx1drs + (dy, ) dy1dra)
pR1—p, 1 (0ry)" @ ((92y)"dardt + (Dy, )" dyrdt)
p®1—p, 13 (0ry)" ® ((02y)"dardps + (Dyy )" dy1dipa)

p° =’ P(((021)" @ (82))" = (Byy)" @ (8yy)") (Y — dyi) + 4((Day )" (Dy,)"))dw1dy

@ =a r2(dx1 + dyl) + B%r2drs + 'ylrgdapg + 'yQTthQ + 'ygrgdapgdt —+ 'y4r2dap2 + 62r2(dr2dt + dradps) . ..
(@ y)drs + pP (et 4+ yi)(dad + dyi) + (2T 4 yi)des + 75 (@] + 7 )dts + 73 (2] + o7 )depadt .
RS 742(1’% + yf)dtpg + 627’2(3;’1d1’1d7‘2 + yidyrdrs) + nirs (z1dz1dt + y1dy:dt) + n5r2 (z1dz1dp2 + y1dyides) . . .
2@ — R dat + dziyidadyy — (aF — of)dyl)

Let 7. be the last homomorphism above. We will show that it is G,, invariant
where o maps m to e?m.

= fﬂ (O* (aaﬁ + bay1 + CaTQ))

= 1*((acos(f) — bsin(0))* — (asin(8) 4 cos(0)b)?)(dz; — dy?) + 4(a cos(h) — bsin())(asin(0) + cos(0)b)dz1dy

=2((a® — b®) cos(20) — 2absin(20))(dzs — dy3) + (2(a”b%) sin(20) + 4ab cos(20))dz1dy:)

=12 ((a® — b*)(cos(20)(dz} — dy}) + sin(20)2dz1dy,) + 2ab(— sin(20)(dz; — dy}) + cos(20)2dz1dy))

= 12((a® — b°)((cos(8)dz1 + sin(8)dy1)? — (— sin(8)dz1 + cos(8)dy1)?) + 4ab((cos(0)dzy + sin(8)dy: )(— sin(@)dz + cos(8)dy:)

= 0" f,2(adz, + b0y, + cOr,)
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We can convert the part of the metric tangent to the slice to polar form.

(@15 + pP (@7 + 1) + (@] — 7)) dal + (@25 + pP (2] + 7)) — P (2] — o)) dy? + 25 (zryadandyn) .
e+ (B2r§ + 12 (w% + y%))dr% + e2r2(x1dx1dr2 + y1dyrdrs) = (ﬂQTS + 1/2r%)dr§ + Erirodridrs . . .
o (@ + (0 P del + (0FrF + (0 = P)rd)ridet

Now let’s consider an m degree homogeneous polynomial. Where m > 3.
S"(V)=8"(pal) = (S"(p)e(S" T (pel)@.. e(pel)el

The tensor product of 1 can be thought of as multiplying the contents of $¥(p)
with an appropriate power of r,. It is therefore crucial to understand s2¢+1(p)
and $%(p) for ¢ > 1. Their decomposition into irreducible representations is
well understood. We have that they both decompose into rotations; more
specifically:

52d+1(p) _ p2d+1 EBp2c1—1 S...0p SQd(p) _ p2d @de—Q ®... @1

However, we need to know the domain on which each rotation acts. Because
of Schur’s Lemma we really only need to know this for »*, p and 1 when they
appear in S"(p). Let’s consider 1 when it appears in 5%!(p). It is useful to
consider the eigenvectors of the rotation matrix associated to p. We associate
these eigenvectors to polynomials » and » which have eigenvalues ¢ and e~
respectively.

U =1T1 + Y% v = —1x1 + Y1

Consider the homogeneous polynomials of degree 24. Consider them expressed
in terms of » and ». We have that p acts on each « by multiplying the « by
¢’ and each v by multiplying it by e~*. Therefore the 1-dimensional subspace
which is associated to 1 is given by multiples of the term w?v?. We have that
uv? = (2% + ¢3)?. Thus using the metric viewpoint we get the following where
we will call this part of the metric g;.

g1 = Z (ak’dr;“r%d(dm% + dyf) + ,Bk‘drgr%ddrg + 'yg‘dr';r%ddtg + vg’dr’;rfddgmdt + 6k’dr§r§d(dr2dt + d?"gdtpg))
d,k

Next consider the homogeneous polynomials of degree 24 + 1. Again ex-
pressed in terms of » and ». The two dimensional subspace associated with
p is given by multiples of «?v®! and w?*'v? since these terms have eigenvalues
of ¢7* and ¢ respectively. This is of course over C since « and v are com-
plex; but we can reframe this over R. This is because zufv? = z1(2? +43)¢ and

yiutv? = y1 (23 +43)? is also a basis. This is due to the formulae: z; = L (u—v) and
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y1 = 2(u+v). Using the metric viewpoint we will call this part of the metric g,.

k,d k_2d

gp = Z (ek,drgrf'i(mdmdm + yndyidra) + nP kit (@ day dt + yrdydt) + 0 trE et (2 dedes + yldyldg;Q))
dk

Finally we revisit the homogeneous polynomials of degreed 24 but we analyze
the terms »%9? and w?*?v? which correspond to the eigenvalues ¢=2* and ¢*?
respectively. These form a basis for the p? vector space. Consider w? = (iz; +
)% = — (22 —y?) 4+ 2izy and v? = —(2? —y?) — 2iz1y1. Thus we have that w?v?(2? —4?)
and u?v?(2z1y1) is also a basis of the p? vector space. We use the metric viewpoint
and name this part of the metric g ..

g =M (rf;r%d((x% —y)de? + daryrderdys — (2 — y%)dy%))
k,d

Thus you can see that the behaviour of s™ (V) is similar to the m =0,1,2 cases
just with different factors.

Since we used the background Euclidean metric on v we have to implement
the consequence of the Gauss Lemma. Let R = /22 +32+ 2, w, and ¢ be
spherical coordinates. Then as R approaches 0 the metric on v, g|y minus
the background metric, g|p.., is O(R?). Note that the constant term of g|y is
dz? + dy? 4 dr} = dR* 4+ R*(d¢® + sin*(¢))d6? = g|pu.. The equation for z;, v and r, in
terms of R, ¢ and w is the following.

z1 = Rsin(w) cos(¢) y1 = Rsin(w) sin(yp) rg = Rcos(w)

We now state the 1-forms dz:, dy, and dr. in terms of their spherical coordinate
counterparts.

dz1 = sin(w) cos(p)dR + R(cos(w) cos(p))dw — R(sin(w) sin(p1))de
dy, = sin(w) sin(¢)dR + R(sin(w) cos(p))dy + R(cos(w) sin(y))dw
dry = cos(w)dR — Rsin(w)dw

Now we don’t have to consider the m =2 terms since they have r? as their
minimum power of R. We now proceed with the m =1 terms. These are stated
below:

= alrQ(dﬁ + dyf) + Blrzdrg + 61(.’1}1d.’171d7"2 + y1dyrdra)

Let’s calculate the terms with R degree 1 of the above expression and ignore
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all other terms.

= o' R cos(w)(sin” (w) cos® (p)dR® + sin’(w) sin” (¢)dR>) + 8" cos(w)R(cos” (w)dR?) . ..
...+ €' (Rsin(w) cos(p) sin(w) cos(¢) cos(w)dR® + Rsin(w) sin(y) sin(w) sin(¢) cos(w)dR?)
= cos(w)RAR*((a + €')sin’(w) + B' cos®(w))

Thus the Gauss Lemma requires that o' + ¢ =0 and g' =o.

We now begin to state the conclusions. We wish to state that all compo-
nents are smooth functions of »? and r,. We know that ¢(d,,,9,,) = r? sin®(¢1)g(9z; , 9zy )+
72 cos?(91)g(yy , By, ) — 23 (sin(e1) cos(1)g(dzy,8y,) The 1 terms correspond to func-
tions of r? and r,. The p terms are absent from the above coefficients of the
metric. The p? terms correspond to a sum. Each term in the summation
is a smooth function of » and r. multiplying (22 — 4?)(r?sin®(¢1) — 7} cos?(1))) +
4x1y1 (—r2 (sin(p1) cos(p1)) = ri. Therefore 9(0p,,0,,) 15 @ smooth function of »? and
r2. We have that the constant term in ¢(d.,,0.,) and ¢(9,,,9,,) produces ri as
a factor out front in ¢(8,,,9,,). We have that g(8:,8:), g(d:,8,,) and g(d,,,ds,)
are smooth functions of 7 and r.. We have that ¢(8.,,9,,) = cos®(¢1)9(8z,,8s,) +
sin? (¢1)g(Dyy , Byy ) + 25in(p1) cos(1)g(dzy, 0y, ). The 1 terms are smooth functions of
r? and r,. Again the p terms are absent. The p* terms correspond to a sum.
Each term in the summation is a smooth function of » and r, multiplying
(23 — y?)(cos®(¢1) — sin? (1)) + 4z1y: (sin(p1) cos(¢r))) = . Thus ¢(d,,,0-,) is & smooth
function of r? and r,. Next consider 9(0ry,0p,) = —r1c08(p1)sin(p1)g(0zy, 0y ) +
71 cos(1) sin(p1)g(By, , By, ) + 71 (cos?(p1) — sin®(91))g(0zy, 8y, ). We have that the 1 terms
occur identically in ¢(0.,,0.,) and g¢(dy,,9,,) thus they cancel. The p terms
are absent. The p? terms correspond to a sum. Each term in the summa-
tion is a smooth function of »} and r, multiplying ri cos(¢1) sin(e1)(—2(z3 — 43)) +
r1(cos?(p1) — sin?(¢1))2z191 = 0. Therefore g(dry,0,,) = 0. We have that ¢(9,,,0,,) =
—11510(01)g (8, , Dy ) + 71 c08(01)g(Dyy , By ). The only terms present are the p terms.
We see that we get a cancellation thus g(d,,,9,,) = 0. We have by the same
reasoning that ¢(d,,,8;) = 0. Assuming the metric on the base is conformal to
the flat metric we have that ¢(a.,,9.,) = 0 and ¢(8,,,0.,) = 9(8-,,9»,). Also note
that ¢(d,,,d,,) = 0. Since we have a section we have that ¢(X,8,,) = ¢(X,9,,) =0
for x tangent to the full group G.

Now we convert the metric into » and 7 form. We use the coordinate transfor-
mation in (4.0.1). We also have to factor in how this coordinate transformation
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affects the metric components.

9(0:,0,) = ((%’;})2 - (887:)2)9(8“,8”)

_i(mr( r2+7gr+a)2)2+ 7‘2+(?1+a)2+?( T2+?r+a)2)2)g(8rl,&l)

r? 2/r2 + (T + a)? 1

= Ory,0r)) = —F——e—e
g( 1 1) QWQ

4(r2 4+ (F+a)?) r2
Thus in a neighbourhood around the point 7(q.) we have that the metric com-
ponents are smooth functions of »> and 7. This is because in the expression for
i, 7+ a is positive thus the expression in the square root is non zero. For the

9(d,,,9,,) term we have a factor of % out front.

(Ory,0ry)

P =r2+(F+a)?—(F+a)= ~—

4.2 Corner Point

We now consider the action on the slice at the corner ¢.. We will call the
tangent space of S. to be w. There are two rotations at play on S.. This is
because the isotropy group is S{ x S3 x {1}. Take an arbitrary element of s.,
(z1,y1,72,92). The slice representation is described below.

cos(61) —sin(61) 0 0 z1
sin(f1)  cos(:1) 0 0 Y1
0 0 cos(2) —sin(h2) To
0 0 sin(f2)  cos(f2) Y2

We take a basis {8.,,8y,,0.,,9,,} of W and a basis of the orthogonal counter-
part to be w* = {8,}. We have used the Euclidean metric as the background
metric when we made this orthogonal decomposition. Let E be an open ball
inside W centered on the origin. We consider smooth G-invariant metrics on
the tube G x¢,, E. These again correspond to metrics on an open set in M
due to the tube theorem. There is a correspondence between the G invariant
metrics on the tube and G,, equivariant maps F where F: £ - s?(Waew™). The
maps which use m*" order polynomials with values in s*(W @ w+) are given by
Homy (s™w, s2(w @ w+)). We can understand the s?(w @ w+) as corresponding
to components of a symmetric metric.
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To proceed with the smoothness conditions we compute s*(W @ w+).

S*(pr@p2) ®1) = S*(p1 @B p2) @ ((p1 D p2) ®1) B 1
=((pial)@(pal)@(m®p) @ (pn@p)el) el

Note that p; ® p» is not an irreducible representation of s x S3 x {1}, but p? is
an irreducible representation of si x Si x {1} . To see this we let «; and v, be
eigenvectors of the s part with eigenvalues 1 and et respectively. Let u,
and v, be eigenvectors of the s} part with eigenvalues %2 and e~*%2 respectively.
We see that p1 @ p. splits into 2 irreducible representations.

1 ® p2(uruz) = 6i(61+62)ulu2 01 ® pa(vive) = S_i(01+82)vlv2

i(01—02) e 1(01-02)

p1 ® p2(urve) = e u1v2 p1 ® pa(uzv1) = U2V1

We write p1 ® pa = pri2 @ pr_o to denote this decomposition into irreducible
representations. We can express the domain of pi» as span(zizs — yiye, z1ys +
yiz2). Similarly we can express the domain of pi_» as span(zizs +y1y2, z1y2 — y122).
However p? is irreducible.

p%(uluz) = 20 us p% (v1v2) = e 201y 0y

p%(ulvg) = 2019 0y p?(uwl) = e 2100,

We now consider the constant polynomials s°(w) which is isomorphic to R.
As in the previous section we can normalize the W part of the metric to be
(da? + dyi) + (dz3 + dy3).

Moving on to m =1 we have that s*(W) = p, ® p.. We have two homomorphisms
given below:

p1 = p1, €1 ((8y ) dardt + (Dyy )" dyrdt)
p2 = p2, f;((aw2)*dm2dt + (Oyo )" dy2dt)

It is easy to see these homomorphisms are G,, equivariant since this case
is analogous to what was shown in the m =1 case for ¢,.

We now consider the m =2 case. We have that s?(W) = (piel) e (piael) o
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(p1 @ p2)) ® ((p1 @ p2) ®1). The homomorphisms are given below.

11, 01 ((02y)" @ (Bay)* 4 (8yy)" @ (8yy ) *)dt?

11, 05((02g)" @ (Bay)* + (Byy)™ @ (9yy)*)dt?

11, (1((021)" ® (82))" + (Dyy)" @ (9yy)")(dat + dy)

1-1, (2((0a1)" @ (92))" + (9y,)™ @ (9yy) ") (da3 + dy3)

1-1, (31((P2g)" @ (92y)" + (Byp)™ ® (By) ") (da? + dyi)

11, (52((825)" ® (8y)" + (Dyy)" @ (Byy)")(dal + dy3)
pi = pi, XE((02)" @ (921)" = (Byy)" @ (9yy) ") (dat — dy?) +4(0z,)" @ (y,) " dwrdyn)
p3 = P3, X3(((9y)" @ (82y)" = (9yy)" @ (Byy) ")l — dy3) + 402,)" @ (Dy, )" dwadys)

p1+2 = P12, V7 | ((021)" @ (02y)" — (0yy)" ® (Byy)*)(dardws — dyndys) ...

”H@m®@ﬁ+@m®@ywmm+mmﬂ
pra o pria O <<<811>* © (9rg)” + (9))" @ (By)" ) (drrds + dyadye) ..

nﬂ@m®@y—@m®@ywwm—@wﬂ

The part of the metric with order 2 homogeneous polynomials is called ¢*>. We
state it below.

g* = of(al +y)dt” + 03 (23 + y3)dt* + (ha (e + yi)(daf + dyi) + (a(a + yi)(dad + dy3) . ..
co+ Gr(ad + y3) (del + dyi) + Ga (a3 + y3)(dah + dy3) + X3 (21 — yi)(dal — dyi) + deryidady) ...
4+ X5 ((a3 — y3)(dal — dy3) + dwzyadaadys) ...
ot Ul((.’L‘1$2 —y1y2)(dzrdzs — dyi1dy2) + (z1y2 + yize)(dz1dy2 + dyidz?)) . ..
A+ i (z1z2 + yrye) (dzrdes + dyrdys) + (z1y2 — y122) (dz1dys — dyrdas))

The @,. equivariance for the x? and x% terms is analogous to what was shown
in the m =2 case for ¢,. The only real different case is the v? and v3 terms. Let
f.2 be the homomorphism corresponding to v?. We let ¢ map m in M to its
image under the group action, i.e (1, ¢2)m. Before computing we can simplify
the calculation by factorizing.

fv% (@102, + b10y; + 420z, + b20y,) = (ara2 — bib2)(dr1das — dy1dy2) + (a1be + azbi)(dz1dys + dyidxz)

= (ald:vl =+ bldyl)(azdxg =+ bgdy2) — (bldxl — aldyl)(bgdmg — agdyg)

29



M.Sc. Thesis — S. Zwarich McMaster University — Mathematics

We really only need to check one of the factors in the second term.

= (sin(01)a1 + cos(01)b1)dz1 — (cos(01)ar — sin(61)b1)dys
= a1 (sin(61)dx1 — cos(61)dy1) + b1(cos(01)dz1 + sin(01)dy1)

= —ayo0"dys + bio"dx;

The same G, equivariance above holds for second factor of the second term.

Next we consider s™(w) for general m. We have that s™(Ww) = (s"(p1)® 1)@
(™ M (p1) @S (p2)@. .. @ ((S™ (p2) @S (1)) @ ((S™ (pr)®1)). Consider S*(p1) @ 5™ *(p2).
We have 4 cases.

Case I, if & is even and m — k is also even. With Schur’s Lemma in mind,
ignoring terms which are more than double rotations we have the follow-
ing. (02 ®1)® (p3®1). The only resulting representations that survive Schur’s
Lemma are 1®1, p} ®1 and p? ® 1. For 1® 1 the corresponding polyno-
mial is (z} + y1)k(552 + yg)mT_k For the corresponding part of the metric we
obtain a multiple of (22 + y?)5 (22 + 42) "% . Where w is either dt?, da? + dy?
or du? + dy?. For p? ® 1 our polynomials are (z3 + y%)mT_k((:c% — ) (2? + y%)%
and (22 + 42)" 7 2(xip)(2? + y2)7>. The corresponding part of the metric is
given by a multiple of (s +43)™7" (¢} — y?)(do? — dy?) + dwryrdardyr)(@? + y}) T
For p3 @1, our polynomials are given by (z% + yf)g(a,% — y3) (23 + y%)m*fkf2 and
2z2y2) (@2 + y2) 3 (a2 +y2)m_2k_2. Thus our corresponding part of the metric is a

m—k—2
multiple of (27 +42)% (23 — v3)(da} — dy3) + Awaysduadys) (23 + y3) ™2

For Case II, if k is odd and m—k is even. Then we have p1®(pz€Bl) The only rep-
resentatlon that survwes is p1®1. Our polynomials are (3 +y1)Tx1(x2 +yz)Tk
(@2 +y2) "7y (a3 +y2) . Thus the corresponding part of the metric is a mul-
tiple of : (22 +¢?) = (23 4 93) mzk (z1dx1dt + y1dy1dt).

Case 111, if & is even and m—k is odd. Then we have (p? ®1)® (p2). The only rep-
resentation that survives is p, 1. Our polynomials are (z2 +41)% (22 +42) ™2 a2
and (22 +y1)5 (@2 +y ) “==y,. Thus our corresponding part of the metric is a
multiple of: (22 + yl) (23 4 93) mep=t (z2dzodt + y2dy2dt).

Case IV, kis odd and m—k is odd. Then the only representation that survives is

—1 m—k—1
PL®P2 = pria®pi-a. Our polynomials for 2 are (@2 +92) T (wrma—yiye) (@3 +43) "2
and (22 +42) 7 (2192 + z291) (22 + 42) "2 . Thus our part of the metric is a mul-

k—1 m—k—1
tiple of (z?+42) 7 (22 +43)” 2 ((z1z2 — y1ye)(dzrdes — dyrdys) + (@12 + z2y1) (dz1dys +
: 2 o\ k=1 2 o\ m=k=1

dyrdzz). Our polynomials for pi_» are (2% +y}) 2 (w122 + yiy2) (23 +43)” 2 and

(@2 +y2) T (212 — 22y1) (22 +42) ™2 . Thus our part of the metric is a multiple of
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m—k

k—1 —1
(z¥+9yi) Z (23 +v3) 2 ((w122 + yiye)(derdas + dyrdyz) + (2192 — 2291)(derdys — dyids).

We now calculate the essential part of the pi;» term of the metric using
and ¢; (i=1,2).

= (z122 — y1y2) (dz1dze — dy1dy2) + (z1y2 + 22y1)(dz1dy2 + dy1dxs)
= (z1dz1 + yrdyr) (wedz2 + yody2) — (y1dz1 — z1dy1) (y2dze — T2dy?2)

= r1rodridrs — r%r%dgpldgoz

We now perform a similar calculation for the essential part of the pi_» term of
the metric using r and ¢; (i=1,2).

= (z122 + y1y2)(dz1idze + dyi1dy2) + (z1y2 — z2y1)(dz1dy2 — dy1dz2)
= (z1dz1 + y1dyr) (x2dze + y2dy2) + (y1dz1 — z1dy1) (y2dxs — z2dy2)
= rirodridrs + r%r%dgﬁldnpg

We now implement the consequences of the Gauss Lemma. Here the Euclidean
metric iS g|puec = do? + dod + dy? + dy3. We have that r' = /r? +r3. We have that
our metric on the slice, glw differs from g|g.. by O((R’)?). We have the following
coordinate transformation:

x1 = R cos(w) cos(p1) y1 = R’ cos(w) sin(y1)
22 = R sin(w) cos(y2) y2 = R'sin(w) sin(¢2)

We are in the clear since the lowest non constant terms are the quadratic terms
made up of 2? and y2. We have that z? « (R)? and 4? « (R")?. The lowest power
of R in the dz; and dy; terms is a constant. Multiplying them together we get
a lowest power of (r')2. Therefore the Gauss Lemma is satisfied.

Now we collect together all this information into a conclusion. We have
that ¢(a:,0:) is a smooth function of »} and 3. Since we are assuming the
metric on the base is conformal to the flat metric we have that g¢(d,,,8,,) =
9(8ry,0r,) and ¢(d,,,0-,) = 0. We have that ¢(8,,,9,,) is a smooth function of
r? and r3. We have that ¢(d,,,8,,) is a smooth function of r} and r3 with

Oryry (g(@m 1 Opq ))

9(8py,0py) 1s a smooth function of ¢ and »3 with ,,,, (g(amﬁm))

=2 and all lower order derivatives vanish. We have that

(0,0

=2 and all
(0,0)
lower order derivatives vanish. Interestingly we see a non zero ¢(9,,,9,,) term

appearing which is also a smooth function of » and 3. Furthermore it satisfies

87"27“2 (g(acﬂ ) 8wz)> = 87"17"1 (g(am ) 8<P2 ))

=2 where all lower order derivatives
(0,0)

(0,0)
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vanish. We have that ¢(0:,9,,) = 0 and ¢(8:,9,,) = 0 due to cancellations in the
pm terms and the p, terms respectively. Again since we have a section, we have
that ¢(8,,, X) = g(8,,, X) =0 when X is tangent to the full group G.

This is well good but we must convert the metric to » and 7. If we examine
the ¢(d,,,d,,) term we have that when 7= 0 and » — 0 it behaves like ». This is
because r3(r,0) = vr2+ 02 — 0 = r. Similarly we have that ¢(d,,,9,,) term behaves
like » when 7 = 0 and » — 0. This is because r2(r,0) = Vi2+02+0 = r. We
also have that »* = r4 implies that ¢(d,,,9,,) behaves like 2. We can use
the smoothness conditions at points in the interior of the axis rod to rule
out non-zero ¢(d,,,d,,) everywhere near the 7 axis except possibly for a line
segment extending orthogonally from the corner point. In the next subsection
we discuss real analyticity under a certain ellipticity assumption which would
rule this out. However this may not matter so much since the examples we
are studying satisfy ¢(d,,,8,,) =0. What about ¢(d,,9,)?

1

Wm0 = Jage

9(9ry, 0ry)

Therefore we have the somewhat paradoxical result that ¢(a,,,0.,) behaves like
r~! when 7 =0 and » — 0. However this is necessary for smoothness on the level
of the manifold itself although the metric is not smooth everywhere in the orbit
space. Actually as you can see this is only really a coordinate phenomenon.
We will see that the metric in example 2 of the 5D static paper shows this
behaviour. Note that when 7 # 0 we have that the metric is a smooth function
of 2 and 7.

4.3 Consequences of the Smoothness Condi-
tion for the Twist Potentials

Here we break from the chapter’s convention and use z over 7. We will now
prove that under a certain ellipticity assumption, the case where the z-axis
consists of (1,0) and (0,1) rods yields constant twist potentials and furthermore
the metric reduces to the ansatz in Khuri et al.’s paper[18, p. 6] which implies
that the metric on the fibre is diagonal. We have that kK and L from chapter
2 satisfy the equations:

K
0= K+ L.+ 0=K.— L, — [K, L]
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By [8, p. 505] we have that this system of PDEs is elliptic. It is worth reading
the examples they work out. Our characteristic determinant is:

E0x, (Kr + L. + &) L. (K + L. + %)
n0x, (K. — Ly — [K,L])  €dr, (K. — L, — [K, L])

§

__ 2_’_52
— (" +¢&)

Since the determinant is 0 iff » = ¢ = 0 we know it is elliptic. Then, according to
24, p. 198] the system (3.8.2) is real analytic in the interior of the orbit space.
That means that A='H, = K is real analytic and H~'H, = L is real analytic.
Thus we can start to piece together real analyticity of #. We use (3.7.1)

K= —f_lfr +ort = fr_QUTTFU

Kie = —fr_zv?F

Ka=""fr—2r Yo+ fr 2w Fv)+v.+ F 'Fo
Koo = fT_2UUIF + F_lF,«

Liy=—f""f. — fr vl Fo

Lie = —fr72vaF

Le1 = (f_lfz)v + fr_Q(vvav) +v,+ F ' Fo

Lee = fr 2wl F+ F7'F,

We can use these to relations to fit v into a system of two PDEs which are real
analytic in their arguments.

K.l KQQU = <% - 7)’0"_’07‘
K1 — Kiev = (%*%)

Ke1 — Keov = _(Kll - Kl.'l))’U + v
We now break these down into their explicit form in terms of +' and +2.

Koy — Kogv' — Ko3v® = —(K11 — Kiov' — K130%)v" 4 0f
0 = Ka3v® — Ko1 + (Ka2 — Ki1)v' + K12(v')” + K130*0" + v}
=@
K31 — K3ov! — K3302 = — (K11 — K0t — K13’l)2)'l)2 + vf
0= —Ks1 + Ksov' + (K33 — K11)v* + K13(v%)? + K120"0' + 0}
= ¢2
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We now compute the determinant of the system.

13 Koz + K30

2 1 2
=& — (Koz + Ki13v7) (K32 + K120
Kas 4 Kua0? ¢ & —( 13v°)( 1207)

‘f(@h)v; (61),2
(f2)1 &(d2),2

Clearly for this system to be elliptic by [8, p. 505] we need to assume that
(K23 + Ki13v")(Ks2 + K12v%) < 0. We can widdle down this expression by using
(3.7.1).

0> %(f22(f12)r — Fia(fa2)y)

0> f3afh <@) (@)
—fr NS \fu/,
fi2 fi2

o= (7). (7)),
The last step follows since F is positive definite in the interior. Working under
this assumption, by [24, p. 198] we know that +! and +*> must be real analytic
in the interior of the half plane. By the equation for kK,. we have that —r—2fvI'F
is real analytic. Then by the equation for K.. we know that F~'F. must be real
analytic. We also know by the equations for L., and L.. that F~'F, must be
real analytic. So we have that f = ¢(F~'F,) is real analytic and & = tr(F~'F.)
is also real analytic. Therefore log(f) is real analytic and thus so is f. Now let’s

prove that F is real analytic. Let fio = uf.o. We can work out fi; in terms of
f22, u and f

(fur(fi2)r — fi2(fi1)r)

=

f=firfor— fi

2
fo=Lo Pl Lo,

Note that f.» is never 0 in the interior since F is positive definite in the interior.
We can now calculate F. and F=.

el l fa2 —ufa2
I\ ~ufa é + u? fos

P (fr — Uagrt 2urufor + u(fa2)r  Urfoo + (f22)7‘u)

fa2 13

Ur fo2 + (fo2)ru (fo2)r

We now calculate F'F,.

(FﬁlFr)u = %(fr - f(j:;z)r + 2urufzy + u2(f22)'rf22 — uty f3y — f22(f22)ru2>
_ ﬁ _ (f22)'r fiQQ
TF T e MMy
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(F_lFf")IQ = (f222ur + foo(f22)ru — Ufgg(fQQ)r> = fazur

f

[

f(fa2)ru
fa2

(FﬁlFr)m = %( —ufr + ufS;ZQ)r — 2u,u’ f3y — u3(f22)7‘f22 + fur +

_ & u(fo2)r | u(fo2)r . uru2f222
= —Uu f + fgg + f22 f + Uur

+ u3(f22)rf22 + u2urf22)

(F7'Fr)os = % ( — wtr f3y — u” foo(fa2)r + % + u2f22(f22)r>

_ _uurf222 (f22)r

f Sz

We now calculate F'F.,.

Fo— 1{2722 — % + 2uzufar + u2(f22)z Uz foo + (f22)2u
Uz foo + (f22)2u (f22)-

(F_le)ll = 1 (fz — f(f22) + 2usufd, + UQ(f22)zf22 — uus fay — f22(f22)zu2>

f Sz
_f ), B
T f Fa2 +uzu 7
2
(F7' Fa)ie = %(f222uz + f22(f22)-u — Ufzz(fm)z) = fijuz
(File)2l = l ( - uf"' + m - 2uzuzf222 - u3(f22)zf22 + fuz + f(fQZ)zU + Us(fgg)zfgg + u2uzf22)
/ faz fas
e ulfer): | u(fa2)s  usutfd
=—u 7 + o + s 7 + U,
(F_IFZ)QQ = % ( - Uuzf222 - u2f22(f22)z + @ + U2f22(f22)z>
22
__wufE | (f2)e
f S22

As with v we can derive a PDE in terms of » with real analytic arguments.
(F'Fr)o1 —u(F ' Fo)az = —w(F ' Fo)i — u(F 7 Fo)12) + ur
This PDE is trivially elliptic. Which means « is real analytic in the inte-

rior. This implies Y22 and 22 are real analytic by looking at (F~'F.)22 and
(F7'F,)s2. This in turn implies f., is real analytic in the interior. Since fi» = ufoo,
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f12 must be real analytic in the interior. And, since fi; = é +u?fae, f11 1S real
analytic in the interior. This implies ¢;, the metric on the fibre, is real analytic
in the interior.

Now enter the smoothness conditions. We have that f» is 0 in an open
neighbourhood of the point on the axis rod. Since f, is real analytic in the
interior it must be 0 everywhere. We also have that gi» = 0 and g3 = 0 in an open
neighbourhood of the corner point. Since giz = fi1v' + fi2v? and giz = fizv! + fo20?
we have that since F is positive definite in the interior that »' and »? must
be 0 in the open neighbourhood. By the relation between the +' and the
twist potentials derived in chapter 2 we have that the twist potentials must
be constant in the open neighbourhood. By the real analyticity of the twist
potentials they must be constant in the interior. We thus force the metric to
be diagonal everywhere in the interior. In addition « is real analytic without
the elliptical assumption. This is because of (3.1.3).
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Chapter 5

Various Forms of the
Schwarschild Solution

5.1 Derivation of the Schwarzschild Solution

Finding and interpreting solutions to the Einstein equations is of fundamental
importance. Solutions to the Einstein equations in a vacuum, in 4-D spacetime,
can be found by imposing that the metric be Ricci flat. The Schwarzschild
solution is an exact Ricci-flat solution which will be used later on in this
chapter to construct periodic exact solutions. In this section we show in detail
how the Schwarzschild solution is constructed, omitting the consequences of it
being Ricci flat from the calculations. In order to construct the Schwarzschild
solution we will need to understand what stationary, static and spherically
symmetric manifolds are. The Schwarzschild solution is assumed to be static
and spherically symmetric.

Definition 5.2. [30, p. 119] A stationary manifold is a Lorentz manifold
which admits a local 1-parameter group of isometries whose orbits are time-
like curves.

Theorem 5.3. [30, p. 119] The previous definition of a stationary manifold is
equivalent to one which possesses a timelike Killing vector field. We will call
this vector field ¢ and members of the 1-parameter group will be denoted by ..

Proof. Suppose our manifold, M, is stationary using the previous definition.
Let m be a point in M and we will define the curve ~,, by yn(t) = ¢sm. This
curve gives the orbit of m under the 1-parameter group. We define the vector
field ¢ to be one whose flow is ¢,. By our hypothesis, we know that ~,, are
timelike curves. By the definition of an integral curve we can conclude that ¢
is timelike. To check that ¢ is a Killing vector field we will see what happens
when we take the Lie derivative of the metric, ¢, in the direction of ¢. Let X
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and v be two arbitrary vector fields over M. The below expression we use the
formula for the Lie derivative of a (0,2) tensor which is stated in the tensor
field section.

(Leg)(X,Y) = €(g(X,Y)) — g(Le X, Y) — g(X, LeY)

9(LeX,Y) =g (— (%(cpt)*x)

) = (e X))

t=0

d

= — 2 (90X, (p—4)-Y) 0 o)

t=0

We now use the fact that we're taking the derivative of a function of the
form, f(t,9(t)), so we have to use the chain rule accordingly. Let (z!,...,2") be
coordinates at m.

d

“dt (9(X, (p=t)+Y) 0 p¢) L

(m) = (5 00X, (e).¥)

o¢0>(m)...

7) (m)

) (m) + £(9(X, Y))(m)

t=0 t=0

= (g a6 () A5 220

=g (X, (% (1), Y) .

= —g(X,LeY) + £(9(X,Y))
t=0

(X, (p-0) V) o)

So we see that all terms cancel so Leg =0

Now suppose our manifold, m, has a timelike Killing vector field ¢. Let ¢,
be the local flow of ¢. We will show that it is an isometry. let s be an arbitrary
real number.

dt

(r1s)"g = (@s)" (%

()9 =2 (sot)*9)> — (p2) (Leg) = 0

dt

t=s t=0 t=0

The last line follows since ¢ is a Killing vector. So the derivative is 0 which
implies that ¢ig =59 =g. ]

5.3.1 Consequences of the Static Condition

Definition 5.4. [30, p. 119] A static manifold is one which is a stationary
and that contains a spacelike hypersurface, > which is orthogonal to the orbits
of the isometries.

We now set M to be a 4D spacetime for our Schwarzschild solution. We
wish to know useful expressions of the metric tensor when M is static. To be
begin we’ll take arbitrary coordinates (z',z2,2%) for ©. If we assume that none
of the orbits of the isometries terminate on % (or equivalently that ¢ doesn’t
vanish on ¥) then, we can find a neighbourhood around = in which each point
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p each lie on one and only one orbit of the isometries. We assign to each p
the coordinates on % of the point in which the orbit emerges from and the
parameter ¢+ which defines the location of p on the orbit. We now remark that
the image of ¥ under ¢,, which we will call ¥, is orthogonal to ¢. If we take
an arbitrary vector field, Xz, on %, then we get the following:

9(X5;,8) = g((p-1)+ X5y, (0—1)x8) 0 ot = g((p—1)« X5, §) 0ot =0

This is because (¢_:). maps vector fields on ¥, to vector fields on © which are
all orthogonal to ¢. We also use the fact that ¢, is the flow of ¢. Expressing
the metric in terms of (z!,2%,2%t) we find that because of this orthogonality
the components of the dz'dt terms must vanish. We also can use the fact that
¢ is a Killing vector and that ¢ is proportional to & by construction. Let X
and Y be coordinate vector fields.

0

9K Y) =C(g(DeX,Y) + g(DeY, X))

= C(g(Dx&,Y) +g(Dy€, X) = C(g(Dx&,Y) —g(Dx€,Y)) =0

So we see that the metric components are independent of ¢. Of course this
argument only makes sense when ¢ # 0. The metric can be expressed as the
following:

3
g= V3" a? z*)dt> + Z B (2, 22, 2)da ™ da™

n=1,m=1

5.4.1 Consequences of the Spherically Symmetric Con-
dition

We also make the assumption that the spacetime is spherically symmetric.
That is that metric’s isometry group contains a subgroup which is isomorphic
to the group S0, and the orbit of this subgroup on any point is a 2-dimensional
sphere [30, p. 120]. Suppose ¢ has a non-zero projection onto the 2-spheres.
Then it can not be invariant under all rotations (up to a sign), since that
would imply its projection onto the 2-spheres has to be the zero vector field.
Therefore the 2-spheres must each completely lie in a spacelike hypersurface
»:.. We now show that the metrics on these 2-spheres must be multiples of the
standard metric of the sphere.

Let U, = $* - (0,0,41) and let ¢. and 6. be spherical coordinates defined on
U.. If we rotate about the z-axis then 8,, and 9,, are preserved. We can re-
peat this for U, = §? — (+£1,0,0) and let ¢, and ¢, being the spherical coordinates
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defined on vU,. Thus if we rotate about the z-axis d,, and 8y, are preserved.
Let o signify an arbitrary rotation which can be broken down in terms of a
rotation about the »-axis and a rotation about the z-axis either in that order
or the reverse. Let us assume that ¢ = 0, 00.. Consider the sectional curva-
ture K. Then it is easy to see that K(ds,,8s,) = K(ds,,8,) 0 0. Where we define
K(X,Y)(p) to be K(X(p),Y(p)) for vector fields X and y. But one property of
the sectional curvature is that K(9,,,s.)(») = K(y,,0.,)(p). Thus we see that
K(84,,00,) = K(d4,,0s,) 0o at points in U, nU.. By continuity we can extend this
to all of s2. This means that the sectional curvature is constant over 2. Thus
the metric induced on §? is a constant, A, times the standard metric on 2.

We want to understand the effect of rotational isometries on ¢. To see this
we’ll show that for an arbitrary rotation, ¢, o.¢ is a timelike Killing vector field.
The flow of ¢ is ;. So by Lafontaine [22, p. 123], the flow of ¢.¢ is ¥ = gop,007".
We have the following since ¢ and ¢, are isometries.

*

Yrg=(copioa ')y

= N opiootg=(c"")opig=(c"")g=g

Therefore v, is an isometry which implies that ¢.¢ is a killing vector field. Since
¢ is timelike we know that o.¢ is timelike.

0> g(£,&) = (079)(&,€) = g(ox&,0.8) 00
0> 9(0*570*5)

If we assume that ¢ is unique, in the sense of its Killing and timelike charac-
teristics, it must be invariant under rotations up to scaling. However we can
calculate this scaling factor since every rotation B has a fixed point.

9(6,6)(p) = g(0.&,0.€) 0 a(p) = a’g(£,€)(p)

a=1

Let’s restrict our attention to a single sphere in a single hypersurface ;. Let
(0,4) be its spherical coordinates. We can construct space-like geodesics which
intersect all the spheres in », but are orthogonal to the spheres. We can
take s to be a parameter along a given geodesic. We have that (6, ¢,s) form
coordinates for x,. And that (9,¢,s,t) form coordinates for the spacetime. We
know that ¢(Z, &) must solely be a function of s since ¢ being invariant under
rotations (up to a sign) implies: g(¢,€) = a®g(£,€) o0 = g(£,£) o 0 Where ¢ is an

arbitrary rotation. This means that g(¢,¢) is constant across any given sphere
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and thus so is g(Z, 2). If we request that the geodesics are unit length we get

that ¢(Z,2)=1. We thus have the following form of the metric g:
g = —C(s)dt® + ds® + D(s)(d6* + sin®(0)d¢?)

Set D(s) = r2. Then by assuming that D(s) is injective we can use r as a new
coordinate. We have that:

d(D(s)) = d(r?)

o
%Dds = 2rdr
2r 2r
ds = dr = dr =/ E(r)dr
Zo) " = @y = VED

We also get that C(s) = ¢(D~'(+?) = F(r). We can write the metric in the
following form:

g = —F(r)dt* + E(r)dr® + r*((d6* + sin®(0)d¢?)

5.4.2 Final Form of the Schwarzschild Solution

We can now apply the Ricci flat condition to further pin down the compo-
nents of the metric. We’ll omit these calculations since we’ve included similar
calculations in the 5D case. Nevertheless the final form of the Schwarzschild
metric is stated below [30, p. 124]. Where M is a positive constant.

1
g—— (1 _ %) dt® + <1 - %) dr® + r*(d6® + sin®(0)dg?)

There are 2 singularities present, one at r = 2 and the other at » = 0. We
have r = 2M corresponds to a sphere of points and the singularity here is due
to choice of coordinates. However the singularity at » = 0 is real.

5.5 Weyl Form of the Schwarzschild Metric

5.5.1 Conversion to Weyl Form

We now wish to transform the Schwarzschild metric in the form we derived
to its Weyl form. The new coordinates will be (p, z,t,4) where ¢ and ¢ are car-
ried over from the previous coordinates. In the previous section we studied the
Schwarzschild metric in the cohomogeneity 1 setting where the manifold looked
like R x R¥ x 52. The group in that setting was R x SO(3); with the metric being
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invariant under that group. The principal orbit was R x SO(3)/SO(2) ~ R x S2.
We have the so(2) appearing due to each element of SO(3) acting on $? having
a 1-dimensional space of companion elements in SO(3) which produce the same
image. The singular orbit corresponds to » = 2 and it is isomorphic to 52
where R has degenerated. The orbit space is 1-dimensional and is simply R™.

We introduce the functions i, i and L [15, p. 178].

L=VATGIME L= MpE  L="tE

We link the 2 coordinate systems together by setting » = L + M and 2M cos(9) =
I+ — 1. This allows us to give a fuller description of the Schwarzschild metric
in the Weyl setting. It is cohomogeneity 2 with the group being Rx S The
principal orbit is R x s'. The orbit space is R x [0,7]. Where the coordinates for
the orbit space are (R, 8). They are related to p and z by iR+ 8 =sin™' (& (ip+2)).
The orbit space has two axis rods and a horizon rod. Note that p = 0 and
|z| > M corresponds to two axis rods. Also p =0 and |z| < M corresponds to
a horizon rod. The first case results in axis rods since L — M > 0 and p? is
0 implying the component ¢(d,,8,) (it is calculated later one in this section)
goes to 0. This means that s' shrinks to a point and the orbit becomes
homeomorphic to R. The second case is a horizon rod since p =0 and |z| < M
implies that L — M =0 thus ¢(a,8;) goes to 0 (it is calculated later on). Thus
R shrinks to a point. It can be seen in the limit for the horizon rod case
that g(a,,0,) doesn’t go to 0. Thus the orbit is homeomorphic to s'. Since

sin™' (3 (ip+2)) = —i log(iﬁ(ip+ z)+4/1— %) We have that:

| . .1 z2 . .
"sin (M(O+ z)) = —z(log(”zMz +14/1— W') + tArg(z + i0)
, — _in .1 z? A

iR+ 8 = —i(log ||ZMZ V- e | | +Arg(2)

Thus if |z| < M then R =0. However if |z| > M then R>0. If 2 >0 then g =0, if
z <0 then == and if 2 =0 then g takes on every value between 0 and =. Thus
we can plot the orbit space in terms of R and 3.
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Axis Rod .

B=m g
Horizon Rod

B=0 g

Axis Rod .

Figure 5.1:

We now derive some useful relations.

li -2 :p2+z2+2Mz+M2—p2—z2+2Mz—M2
I+ +1)(ly=12)=4M=
L(2M cos(9)) = 2M =z
z = Lcos(0)

(L* — M?)sin®(0) = L* — L? cos®(0) — M* + M? cos*(0)

(e +1-)° o o (4 —1)
=" = M+
4 4
_ B+
2

— P2 MR MR

2 2
25— M

p=+L?— M?sin(0)

We now derive formulae for ¢r and do.

6r_8<¢w+w+MP+¢w+wMﬁ>

dp p 2 2

(et i)
2\VP+GE+M? /p?+ (2 - M)?
:p<¢w+@—MV+¢w+@+MV>
2\ VP G+ M2+ (2 - M)

_ LVL? — M?sin(0)
- Il
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81"8<\/p+z+M \/p-i-z— )
T 0z

0z 2
1 z+ M
2\ p?+ z—i—M2
VP? + (z+ M)? +\/p+zf M \/p+z+M — VP2t (z— M)?
\/p—l—z— \/p+z+M 2 \/p (z + M)?
_ L?cos(0) B M?cos(0)  (L* — M?)cos(0)
Tyl Iyl Il
Moving on to dé.
9 (9M cos(9)) = (\/p FG+M2—\/p2+(z—-M )
op
. 00 p p
—2M sin(0) = = -
05 Vo2 (z+ M2 \/p?+ (2~ M)?
—Msin(e)@: VPR (e M) — /P + (2 - M2
ap Ver+ (2= M)%\/p? + (z + M)?
_ VL? — M?sin(6) M cos(9)
N 1ol
90 _ VL* — M?cos(0)
Bp_ l+l_
2 (2Mcos(0) = o (V2 + (= 4 M ~ /7 + (-~ ?)
o0 z+ M z—M
oM _
Sln( )82’ \/p2+(Z+M)2 \/PQ‘F Z— )2
., 00 2 (VPP +(z+M)2—\/p2+ M)? M (/P2 + (z+ M)2+ \/p? + (z — M)?
—Msin(f)— = —= + —
9% I\ VPP +(z-M ¢p+z+M> 2\ VP FGE-MPp + (z+ M)

L cos(0)M cos(0) ML
- +
Iyl I4l-
00 LM sin®(0)

—M sin(0) —

82 l+l,
90 _ Lsin(0)
0z o l+l,

We now insert the expression for d¢ and dr into the Schwarzschild metric. We
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now calculate the coefficient on the dp? term, which we’ll call g,,.

2M _ | 2M _L-M

r L+M L+M

_ (Z*li]‘@ (L?sin(6) + (L? — M?) cos(9))
e
_ LA M) g % cos®
=y (M)
(L+ M)?

“ ey =

(L + M)?
Iyl

We now calculate the coefficient on the dz? term which we will call g...

-1 r2 2\2 2 2 . 92

P 1_% (L® = M*)” cos®(0) +T2L sin“(0)
(l+l—)2 (l+l_)2

N——

(&) (2)
(L+M)?

T2 ((L* = M?)cos®(0) + L*sin(0))

(L + M)?
Il

We now move on to the dpd> term which we will call g.,.

_(,_2M ' LVLZ = MZ2sin(0) (L? — M?)cos(0) 5 VL — M2 cos(6) Lsin(6)
9z = T Il Il Il Il

Q)‘Q)
IS
QJ‘Q)
S

Y
VL% — M?Lsin(6) cos(0)(L + M)
N Il

The coefficient of the dt*, g, is simply given by g, = —#47. The coefficient of
d¢?, gse 1s given by the following:

2
- p
9o = 7" sin’(0) = (L+M)2L2 Ve
L+ M,
“L-Mm’

This allows us to write down the Schwarzschild metric in its Weyl form.

_ 2
L Mdt2+(L+M)

L+M 5. .
- d
L+M Il prde

2 2
(dz +dp)+L_M

g:

I6)
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5.5.2 Harmonicity of w

Thus the metric is characterized by two potentials w and k. Where:

_ (M p=lp (LM
w= L—M =2 Il

g= _ewdtQ + e—w(er(dPQ + dZQ) + p2d¢2)

We know that w is well defined away from the 2-axis. To see this we know that
if p is non zero then:

~M)=VpPP+(z+M2+\/p2+(z— M)2—=2M > |z+ M|+ |M — 2| —2M > 2M —2M =0

Furthermore w is harmonic; i.€ w.. +w,, + 1w, = 0. To see this we will break it
down into a function of p and » and take the necessary derivatives.*

_ log VP24 (z+ M)+ \/p? + (z — M)? + 2M
VR + (E+ M2+ /p2+ (z— M)2 —2M

VPP G+ M2+ 0P+ (2 - M)? —2M (\/p 2+\/p M2+2M)
p

VPR +E+M)?2+/p?+(z—M)?2+2M "\ /p? M)2+\/p®>+ (z — M)? —2M
oot = (VP + (z + M)? +\/1p+zM)22M)2(
(\/p +’JZ+M NG +Z_ )(\/p+z+M +\/p+sz)272M)...
(et =) (VG G o))
w”__p<\/p2 1z+M N 1 )(\/p+z+]\/[ +\}p+sz)272M”'

1
- \/p2+(z+M)2+\/p2+(z—M)2+2M)

Fy
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We now work out the p derivative of F, i3 and F,. We will set 5 = F3 — Fu.

(FQ)p:_ p 3 P 7
(P + (z+ M)?)2 (p2 + (2 — M)?)2

(Fs), = — Vo2 +(z+M)? \/p+(z M)?2

) (VP + (z+ M)? +\/p (z — M)2 — 2M)?
(Fy), = - V2 ¢p+<z M>z

" WP G M )2 + 2M)2

1 1 1

e (\/” FEE VAT )2)<\/p2+(Z+M)2+\/p2+(Z—M)2+2M“'

1 1

\/p—|—z—|—M +/p2+ (z — M)? —QM)(\/p (z+ M2+ \/p?+ (z— M)24+2M
1

PR+ G M+ PP+ (- M )—QM)

We can relate these to w,,:
Wpp = —(FoF5 + p((F2)p F5 + F2(F5),))

We now move on to w..

o, = VPTG ME+ VP —M)Q—ZM (\/ﬂ + ( +\/P2+(Z—M)2+2M>
o VPRt (z+M)2+/p?+ (z— M)2+2M 0- VPP + GE+M?2+\/p?+ (z— M) —2M
Fe
1
o) = \/P (z+ M)? +\/p +(z— M)? _QM)z(
(\/p it«]‘iM Ve j—_z]‘{ )<\/P2+(Z+M)2+\/p2+(z—M)2—2M)...
z+ M z—M T

<\/p T G R )(%p +M)? +\/p? + )+2M)>
w. — ( z+ M z—M )(
RN e A R ] VPP + (z+ M)? +\/p (z—M)32—2M "~

1
VpE+ (2 + M)? +\/p+z—M)2+2M)

Fy
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We now work out the = derivatives of F3, F5 and F.

(Fr). = . ! (z+M? (z-M)
VAT GHM? | P - M) (P + (z+ M)2)3 (2 + (2 — M)2)3
(Fs). = — \/”2i+(z+M>2 \/p2z+(z M)2

(VPP T (2 + M) + /72 + (z — M)? — 2M)?

. z+ M z—M 1
SRS (\/02+ 2+ M)? PP+ (- M )2)(\/p2+(z+M)2+\/p2+(z—M)2+2Mm

1 1
+\/p2+(z+M)2+\/p2+(z—M —2M)<\/p (z+ M2+ \/p2+ (z— M)2+2M

1
) ¢p2+<z+M>2+¢p2+<zM>22M>

We know that w.. = —(Fr(Fs). + (F7).F5). We define Aw = w,, +w.. + 1w,. We
eliminate common factors as we go to aid the calculation. Be careful, there is
a sign change.

Aw x 2 2 r — ’
VATGIM? PTG MNP (2 (ot M) <p2+(z—M>2>%'
) 1 1 2
-7 (\/p2 (z+ M)? \/p2+(zM)2> <\/p2 (z+ M)? +\/p M2 +2M

1
\/p +(z+M)2+/p2+( z—M)?-QM)"'

1 1 B (z 4+ M)? B (z — M)? '
TVARGRIE VAT G- MR (gt M) <p2+<sz>2)%
7( z+ M n z—M )2(
\/p2 (z + M)? \/p M)? \/p2 (z+ M)? —|—\/p )2—|—2M”.
1
+¢p2+(z+M)2+¢p2+(z—M)2—2M)
2 2

\/p+z+M \/p+zf M)z

7(2 2p? 4 22% — 2M? )(
B VP +GE+M?2\/p?+(z-M?)\\/p?+ (z+ M)? —|—\/p M)?+2M

1
+¢p2+(z+M)2+¢p2+(z—M)2—2M>
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We now eliminate the resulting factor out front we have the following

Aw o2/ +(z—=M2+ 22+ (z+ M2 (V2 +(z—M2+/p>+(z+M)2...
A 2M) (VPP (2= M2+ 2+ (2 4+ M)2 - 2M)...
— 2V + (2= M)22\/p? + (z+ M)2 + 20> + 222 —2M?)(\/p? + (z — M)? . ..
e VPP (A M)2 4 2M + P2+ (2 = M)2 4+ \/p2 + (2 + M)2 — 2M)
o« (V24 (z= M2 +/p2+ (z+ M)2)(4p> +2(z — M)* + 2(z + M)> —8M> ...
A AP H (= M2 P+ (2 + M)? — 4y p? + (2 — M)2/p? + (2 + M)? — 4p” — 42% + 4AM?)
=0

5.5.3 Relation between k£ and w

There is a relation between the partial derivatives of k and the partial deriva-
tives of w.

" _7L—ME(L+M)
P L+MOop\L-M
L—Mr,(L—M)—(L+M)r,
L+M (L — M)?2

—2Mr,
(L+ M)(L—- M)

—2M L\/L? — MZ2sin(6)
(L+ M)(L— M) Il
_ 2MLsin(f)
VL2 - M2l

L—-—M 0 <L—|—M>

Wy =

L+Mdz\L-M
_ —2Mr,
(L+M)(L - M)
B —2M (L? — M?) cos(9)
T (L+ M)(L - M) Il
_ 2M cos(0)

Il
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Moving on to the partials of &.

o Il Q(L2—M2)
P 202 — M2) 0p Iyl
Ll 2Lrplyl — (L2 — MP)(1410),
T 2(L2 — M?) (I141-)2
gl 2Lrplylo — (P — M?)(2Lr, — 2M? cos(0) sin(6)6,)
T 2(L2 — M?) (141-)2
Iylo Lr,(i-1y — L* + M?) — (L* — M?)M? cos(9) sin(6)6,
L2 M2 (141-)2
~ (M?141-) Lr,sin?(0) — (L? — M?) cos(6) sin(0)0,
L2 - M2 (141-)2
_ M?  L?psin®(0) — (L® — M*)V/L2 — M2 cos®() sin(6)
T L2 - M2 (141-)2
 M? LPVLI? — M?sin®(0) — (L? — M?)v/L2 — M2 cos®(0) sin(6)
T L2 - M2 (I141-)2
_ MZ?sin(9) L?sin®(0) — (L? — M?) cos®(0)
VIZ—M? (141-)2
_ M?Z?sin(0) L*(sin®(0) — cos®(0)) + M? cos®(6)
- VIZ-M? (1+1-)?
b Il 3<L2—M2)
T 2(L2 - M?) 9p Iyl
(M?141_) Lr,sin*(0) — (L* — M?) cos(0) sin(0)0.,
RS VE (I41-)?
_ M?  L(L® - M?)cos(0) sin®(0) — (L*> — M?)(—L) cos(0) sin*(0)
T L2 - M2 (141-)2
~ 2LM?sin’*(0) cos()

(141-)?

We now derive formulas for the partials of & in terms of the partials of w.

4
VL2 — MZsin(0)M?
(12— M2)(L-1)?
_ M?sin(0) L?(sin?(6) — cos®(6)) + M? cos?(6)

2 — M? (141-)?

2_ 2 _ P ( AMPL?sin*(9)  4M? c052(0))
z (LQ _ Mz)(l_l+)2 (l_l+)2

(L2 sin?(0) — (L* — M?) cos® (9))

:k;p

P = P 2M Lsin(f) 2M cos(6)
277 T2 LT MR, L4l

_ 2LM?sin®(0) cos(0) &

a (I41-)? -

These relationships between & and w can be used to generalize the Schwarzschild
metric to one with the same form but w is now arbitrary and & is integrated

30



M.Sc. Thesis — S. Zwarich McMaster University — Mathematics

by these following formulae:

5.6 Periodic Schwarzschild Solution

This brings us to the paper “Periodic Analog of the Schwarzschild Solution”

where Nikolai and Korotkin construct the following solution [21, p. 3] . Con-
VGE=M)24p2 41/ (z+M)2 1 p2 —2M
V(E=M)24+p2 4/ (z+M)2+p2+2M
Where we have constants i and M We now build the periodic function
€ =¢(2p) T122, €o(2 +nl, p)éo(z — nl, p)e %7 . To see periodicity we pass to a summa-

tion via the logarithm.

sider p and z from the previous section and let ¢ =

log(&(z, p)) = log(&o(z, p)) Z log(&o(z + nl, p)) + log(&o(z — nl, p)) + %)
- - aM
log(é(z, p)) = mhm (log(&o(z, p)) Z log(&o(z + nl, p)) + log(éo(z — nl, p)) + ﬁ))
i - aM
log(&(z+1,p)) = n}gnoo(log@o(z +1,p)) + Z(IOg(fo(Z + (n+ 1), p)) +1log(éo(z — (n— 1), p)) + ﬁ))
n=1
m—+1 m AM
= l1m (10g(§0(z+l 0)) +Zlog (&o(z +nl, p)) + Zlog (&o(2 nlw)).ﬁ.zﬁ)
n=2 n=0 n=1

= lim_(log(6o(=p)) + > (loa(6o(= + i, p)) + log(6o(z — nl p)) + o) +log(6o(= + (m + 1), )

—log(é(z — m, p)))
= log(&(2,p)) + lim (log(éo(z + (m + 1)1, p)) — log(&o(z — ml, p)))

By inspection we see that the remaining limit is 0. Therefore we have period-
icity.

We have that from the previous section that w, = log(¢) is a harmonic
function. Thus w = log(¢) being a sum of harmonic functions makes it harmonic
as well. In the paper they prove that ¢ is in fact convergent [21, p. 4]. They
also prove that k being given by integrating the following two equations is
periodic as well [21, p. 4]. This makes the metric periodic.

P P, 2 2
k. = Ewpwz ko = Z(wp —w3)

Of course in the cohomogeneity 2 setting this is a simpler case than the solu-
tions in “5-dimensional space-periodic solutions of the static vacuum Einstein
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equations.” The laplacian Ac = c,,+c..+2¢,, where c is some function, is promi-
nent in both contexts.
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Chapter 6

Analysis of Example 2 in
“5-Dimensional Space-Periodic
Solutions of the Static Vacuum
Einstein Equations”

6.1 Analysis of the U potential

In their paper “5-dimensional space-periodic solutions of the static vacuum
Einstein equations”; Khuri, Weinstein and Yamada construct numerous solu-
tions to the harmonic map equations in the 5D case. These solutions are a
special case of the harmonic map equations where the matrix F is diagonal, i.e
fi2 =0, and the twist potentials also vanish. The metric on the fibre, # thus
has the following form where « and » are harmonic [18, p. 6].

Therefore the matrices K = H 'H, and L = H 'H, can be calculated

—ur—vr—l—% 0 0 —u, —v, O 0
K= 0 ur 0 L= 0 u, 0
0 0 o 0 0 v

33



M.Sc. Thesis — S. Zwarich McMaster University — Mathematics

We can now calculate «, and «..

=1t (tr(K2) ~te(r?) - 2 )

r2

2\° 4

:T((—UT—UT+> +Uz+vz_((uz+vz)2+u§+vg)_2>

8 r T
_r 2 2 2 2 2
=1 Uy + vy + urvy — =(ur + vp) — Uz — V; — ULV, (6.1.1)

r
a. = Ztr(KL)
=I (—ur —w +2)(—u —v2) + uruz + vrv
- 4 T T r z z r&z rvz
2

= 2 (Quruz 4+ 20,0, 4+ Upv, + Ve, — ;(uz + vz)) (612)

Important to analyzing the solutions in the above paper is the harmonic func-
tion U;. Where 7 is the interval [a,b].

Uleog( r2+(27a)27(z7a))710g( r2+(27b)27(z7b))

Lemma 6.2. 1 We have that U; has domain {r >0} — {(0,2)]a < z < b}.
1 We have that U; 1s harmonic with respect to the laplacian on R3.
i1t We have that it satisfies Ur < 0.

Proof. For proof of (i) we can see if » < a < b then /2 +(z-a)2 -~ (2 —a) >0
and /72 + (z—b)2 — (z —b) > 0 for all ». If we have that z > a > b then we can

manipulate U; by rationalizing the numerators inside the log terms.

Ur = 2log(r) — log( r24+(z—a)?+ (2 — a)) + 10g<\/r2 +(z—=0)24 (2 — b)) — 2log(r)
Ur=-— log(m—i- (2 — a)) + 1og(\/m+ (2 — b))
We have that /72 + (z —a)2 + (2 —a)) >0 /r2+ (z = b)2 + (z — b) > 0. Thus U; is well
defined. Now if « <z <b then U; is undefined for » = 0. This is because we only
rationalize one of the numerators.

Ur = flog( r2+(zfa)2+(zfa)) flog< r2+ (z —b)? — (sz)) + 2log(r)

Thus we can see that U; ~ 2log(r) for small » on a < z < b and U; = -0(1) for z > b
and z < a.
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For (ii) it suffices to check that the function U = log(vr2 + 22 — ) is harmonic.

U. — r(r? +z2)7%
VT2
Un — ((r* + z2)7% —r3(r? 4 z2)7%)(\/r2 + 22— 2) —r(r? + 22)7%7“(1"2 + z2)7%
" (VrZ 4 22 — 2)?
U_Z(T2+Z2)_%—1__ 1
T Vrxa-z | Vitia2
U., = %
(2 + )}
U4 U, 1 U, = - ((r2+z2)7%(\/7'2+22fz)(r2+22)%+...
g (2 + (T~ 22

c2(Wrr+ 22— 22+ (P + z2)_% —r?(r? + ZQ)_%)(\/m— 2)(r® —I—zQ)% -
(r® + zz)%)

=

1
(PP 22T 2r(r? 4 2P

1 3 L
IR IV <(’”2+22)§ 207+ 27) = 22207 72 27
T z T 24 — 2z
"'+(T2+22)%—Z(T2+22)—T2(7"2—|—22)%+r22—r2(r2+22)%>
) 3 \/17 <(2T2+2Z2—27“2—22—,22)(7“2—#22)% +(z3—z3+r22—r22)>
(r2+22)2(Vr2 + 22 — 2)?
=0

For the proof of (iii), we will define the function f(c) and show its c-derivative
is greater than 0.

JQ) = VTP - (z—0)

oy 2(z —c¢)
o= 2/r2 4+ (z —c)?

_ —(z—c)+/r2+ (2 —0)? 50

r2+(z —¢)?

Therefore f(b) > f(a) for all » and 2. So since log is an increasing function it
follows that U; is less than zero for all = and r. O

6.3 Analysis of Example 2

We will focus on analyzing example 2 from the paper : ”5-dimensional space-
periodic solutions of the static vacuum Einstein equations.” Define intervals
T = [25L.(25 + 1)L] and Ta;0 = [(2j + 1)L, (25 + 2)L] where L > 0. Two harmonic
functions v and v are defined as follows:

u = lim (Z?:_nUrzj + log n) v = lim (E?:_nUpsz + log n)

n— o0 n— oo
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Lemma 6.4. The following are true.

it We have that w and v are convergent for r > o.
1. We have that uw and v are periodic with period 2L.

it We have that v and v are symmetric in = about %.

Proof. For (i)
z

will show that «» and v are convergent for » > 0. We will first
assume —Z << L

u= lim ( S (log( r2+(z—2jL)2—(z—2jL)) —log(\/r2+(z—(2j+1)L)2—(z—(2j+1)L)))

n—r o0

n

Y 1og( r2+(z+2jL)2—(z+2jL))—log(\/r2+(z+(2j—l)L)Q—(z—(—Qj—l—l)L)))...

Jj=1

n

> (- 1og(\/1m+ (2 + 2jL)) +10g<\/7'2 Tt 2 —DL)2+ (2 + (2) — 1)L)))

Jj=1

..+log(\/r2 + 22 fz) 710g< 2+ (z—L)?2— (22— L)) +log(n))

= lim ( (log(?jL) —log((2j + 1)L) — log(25L) + log(2j — l)L) e

~ r2 4 22 z z 2 4 22 2z z
.. 1 — — — 4+ 14+1—— | -1 — 1+1——]...
*Z(Og< @2 L 2jL> g(\/ (@i + DD @GruL (2j+1>L>

Aj-B;

“tog( (o2 L 2 114 2 | 4o L S Y S -
t\\ @rLe2 "L 2jL S\ (@ -0 " @i-1L 2i-1L))

—Cj+D;

..+log(\/m— z) —log( 2+ (z—L)?—(2— L)) +log(n))

o
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= lim ( —log(2n + 1)L) — log(2L) + log(n) ...

n—oo

a r2 + 22 z z 72+ 22 2z z
.. 1 — = — 4+ 14+1—— | =1 — 1+1—— ...
+Z<°g( @L? iL 2jL> g(\/ (@i +DLP @+ DL <2j+1>L>

Jj=1

g (R 2 iy 2 ) 1 LSl S S P
5\ @32 "L 2iL ) T\ (@i-DL)? T @i - 1L @-nL))

..+log(\/r2+22—z) —log( r2+(z—L)2—(z—L))>
- r24+22 2 z r2 4 22 2z z
:g< ( @Dz L+1+12jL>lOg<\/((2j+l)L)2(2j—|—1)L+1+1(2j+1)L>"'

7'2+z2 r2 4 22 94 .

,.+log(\/r2+22—z) —log( r2+(z— L)% — (z—L)))

In the steps above we have eliminated the limit. We want to compare A; — B;
to - in a limit comparison test to show that the sum of 4; - B; converges.

. r2 4 22 z z r2 4 22 2z z 2
M= 1 log( (| IoE 2 _ 2 pp1- ) ) _ 41— — 2
jﬂilo(( °g< 20z Gttt 2jL> °g<\/((2j TDL? @D T Ty 1)L>)J )

. (r2+22)k? k2 kz (r2 + 22)k2 22k zk 1
= %ﬂ?)((bg(\/ @re L i tlo 2L> _1Og<\/((2+k)L)2 “eymp TP (2+k)L)>k2

We can use L’Hopital’s rule to simplify.

2k(7‘2+22) _z 2k(7‘2+z2) _ 2k2(r2+22) _ 22 + 2k~
(2L0)2 L oz (2+k)D)2  (2+k)3L2 ~ (C+K)L " 2+K)2L + k=
k2(r2+22) ks 2L K2(r2+422) ok, CHRL T (2+k)%L
2 —kz 4 2 41
M 1 L \/ ep? L (@+0L)? ~ZHAL
" 02k VECED — k11— - 2] e 11—
(2L)2 2L ((2+k)L (2+kK)L (2+k>L
_ limi k(r? + 2%) B k:(r +2%) oz n 2z n k2 (r? + 2?) 2k
T k—04k (2L)? (2+k)L)2 L (2+kL (2+ k:)3L2 (2+k)2L
limi k(r? + 2%) _ k(r? + 2%) ke + E2(r? + 2?)  2kz
T ko0dk (2L)2 (2+k)L)? (2+kL (2+k)3L> (24 k)2L
—liml r? 4 22 B % 4 22 B z k(r? + 2%) B 2z
k—04 \ (2L)2 ((2+Kk)L)? (24kL (24+k)3L%> (24 k)L
z
AL
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Therefore the sum of 4; — B; converges. We now perform the same for ¢; — D,.
. 72 4 22 72 4 22 2z z 2
N fﬂ?o«k’g( S AR L) lOg<\/<<2j—1>L>2 BT A <2j—1>L>)] )

. (r2 +22)k?  kz kz (r2 + 22)k? 22k zk 1
;15%((105<\/ Qre T PiTLT 2L> _log<\/((2—k)L)2 Te—mpr TITLT (2—k)L>>k2

2k(7‘2+22) z 2k(r2+z2) 2k2(r +z2)+ + 2%z
(2L0)2 L + 2 (e=RL)2 (2-k3LZ "2 k>L (2—k)2L 4oz 4 ke

k2 (r2422) 2L k2 (r2422) (2—k)L (2—k)2L
. ( (2L)2 +hE+1 ((2— k)L)?+(2 k)L+1
o k—>02 kQ('r2+z2) k= ke \/k2(72+z2) 2kz

\/ (2L)2 +tT i+ o7 2 2k)L)2+(2 k)L+1+1+(2 k)L

*limi E(r? +z)+£_ k(r? + 2?) +/<:2(7'2+z)_ 22 2kz
T k>04k (2L)? L ((2—k)L)? (2—k)3L2 2-k)L (2—k)?2L

_ limi B kz B 2kz __z
T k—04k (2—-kL (2—k2L) 4L

Therefore ¢; — D; converges which implies v converges when —% <. < £, If
we take a look at v we can quickly see that v(r,z 4+ L) = u(r, 2).

v(r,z) = nan;(i (10g(\/7“2 +(z— (2] +1)L)2 — (2 — (25 + 1)L)) .
- log(\/r2 F(z— 25+ 2)L)2 — (= — (25 + 2)L))> .
v(r,z+ L) :nan;o<i (log( r2+ (z—2jL)% — (z — 2jL) ) log(\/r2 (z—(2j+1)L)% — (= — (2j+1)L))>

j=1

= u(r, z)

Moving onto (i) we will show that « and in turn » are periodic in » with
period 2r. Consider Ur,, (r,z + 2L).

Ury, (r,z +2L) = log(\/r2 Y (2t 2L —2jL)2 — (2 4+ 2L — 2jL)) .
- log(\/rz Y (zt2L— (2j+ DL — (2 +2L — (2 + 1)L))
log(\/r2 (z—2(j —1)L)? (zf(2j71)L))...

= log(ViZ (2= @G = D+ DL = (2 + (20 = 1) + VL)) = Uny,_, (112)
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We can leverage this equation in the expression for « to get periodicity.

u(r,z + 2L) = lim (E?:,nUpzj (r,z+2L) + log n)

n—>00

n—oo

= lim (Z;L:,nUFQ(jil) (r,z) + log n)

= lim (Z" —n1Ury, (7, z)+logn)

n— o0
= 1im (Sj=nUny; + Ury_, ;) = Ury, +logn)
=u lim (Ur_yp0) ~ Urap)
2 2(n + 1)L 2(n + 1)L
lim (Ur_,,, ) = Ury,) = lim (10g V2t (z+2n+1)0)2 - (2 +2(n +1)L)
n—oo (nt1) Ve T (2n —1)L)2 — (2 + (2n — 1)L)

r2+(z—2nL) — (2 —2nL) )
\/7"2 (z—=(@2n+1))L)? = (2= (2n+1)L
= lim (log \/7'2+(Z+(2n—1)L)2+( (Qn— )L)
2 VrE+ (z+2n+1D)L)2 + (2 +2(n+1)L)

n—oo

7"2+(Z—27ZL) (Z—QnL
_log<\/r2 (z—(C2n+1)L)2—(z—(2n+1)L ))

Of course r and = pale in comparison to » so we can simplify to get the following:

2(2n — 1)L anL B
0 (Ur g1y = Uray) = 15&(101%( An+ DL ) - 1Og(2(2n+ 1)L>) =0

Therefore « and v are periodic. Moving on to (iii) we will show that u(r, £ +z) =

ey () W (Lo (;HJ-L)>
log(wu(gzwwf(gzwm))
W (s (- 2)e) (o (- 2) L)>
W (s (0 2) ) o (e () L)>
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e (5 ) W (Lrvan) (;HHJ-L))
...log(wu(gﬂ(gﬁlwf(gﬂ(mm))
W (o (24 2) 1) = (o (25+2) L))
..._log(w(Z+(2j_;)L)2_(z+(2j_;)L))

L L
UFQJ. (T’E fz) — Up_zj <T,5 fz) =2logr —2logr =0

By the j symmetry in the summation in » we can identify positive j from
u(r, £ — 2) with negative j from wu(r,% + 2) and vice versa to get the desired
cancellation. Therefore « is symmetric about £ in .. We can show that o is
symmetric about £ as well.

’U(’f‘,§+2)ZU(T,§+27L)ZU(T,§72+L)ZU(T,§72+2L)=U(T‘,§7Z)

Therefore we can conclude that u(r,z) and v(r, z) are convergent for all = when
r > 0.

]

Corollary 6.5. From the previous theorem we can deduce that o is 2L periodic
in z and that a(r, % +z)=a(r, £ - 2).

Proof. We can now deduce that « is 2L periodic in z. Note that w,,u,z, v, and
v, must be periodic in 2. Therefore a. and o, must be periodic in 2. Next note
that:

L L L L
u(r,§+z)—u(r,§—z) v(r,§+z)—v(r,§— )
L L
uz(r,§+z)f—uz(r.§—z) UZ(T,S—&—z)f—vz(r.i—z)
L L
U’T(Tvi—’_z) _uT(raE Z) UT(T7§+Z)_UT(T7§ _Z)

2
Qy = 2 (2U7‘uz + 2vrvz + Urvy + VrU — 7(”2 + Uz))
T

ax(r, g +z) = —a(r, 3~ z)

Therefore [ % a. = 0. It follows that a is 2L periodic in 2. Also note that
-2
a(r, £ +2) = a(r, £ — z) by integration. O
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6.5.1 Asymptotic Behaviour of u, v and «

Proposition 6.6. In this section we will prove the following asymptotic be-
haviour of u, v and o as r approaches co.

u = log(r) — log(4L) + O(ef%) Ur = % + O(ef%) U, = :i:O(e—TT) (661)

v = log(r) —log(4L) + O(ef%) Vp = 1 + O(ef%) v, = :tO(e_TT) (6.6.2)

T

o= 710;_1(1‘) + O(ef%) o = 74—17’ + :I:O(ef%) oy = :tO(ef%) (663)

We have that since w is periodic and symmetric about £ it has a Fourier
series of the following form:

wlr, 2) = u(r, 0) + ni_o:lcos(T (z _ g))an(r)

We can work out a,(r) up to constants by using the harmonicity of w.

1
0= ;Ur+urr+uzz

By the independence of the cosine terms we have the following.

_ 0%an(r) n’n% 1 0an(r)
T Or2 — an(r) L2 r or

Lets set s = 2=r. Then we have that:
nmw L
0s=A0, = 1=A— = 05 = —0"
L nmw

Plugging this back in to the ODE above we have that:

_ 0%an(s) 1 dan(s)
0= sz an(s) + s Os
20%an(s) + S@an(s) 2

0=s 557 s s%an(s)

Thus a.(s) = A.Io(s) + B.Ko(s) where I, is a modified Bessel function of the first
kind of order 0 and K, is a modified Bessel function of the second kind of order
0 [1, p. 374]. Also A, and B, are constants. Thus a,(r) = Aulo(%r) + BuKo(r).

Now we derive a bound on the absolute value of v to determine a bound
for the Fourier coefficients a.(r).
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We start our calculations with w(r,0).

n— oo

u(r, z) = 11m< " Uryj +10g(n)>
u(r,0) = lim (27:% tog((v/r + (L) + (24L) ) — log(V/r2 + (27 + DL)? + (2 + VL)) + log<n>)
Jim ( " 1(log(m+ 2]L) ( 2+ (2jL)2 — (2jL))) +log(r). ..
o= 2 (g (VI (@ F DD + (25 + 1)) +log(Vi+ (@7~ DEF - (24 - L) ) .
— log(\/m + L) +log(n) + log(r))
lim. (23 Llog(r?) — X, log( r2+((2j+1)L)2+((2j+1)L))...

- s o (Vi (@ F DL - (24 + 1)E) ~log (VAT T2 + L) + logln) + log(r) )
lim <Z?:1 10g(r2) - E;le 10g(r2) — log(\/ r2+ L2+ L) — log(\/ r2 4+ L2 — L) .

n— oo

- log( r2+(2n+1)L)2 + (2n+ 1)L) + log(n) + 10g(r)>
= log(r) — log(4L)

We are interested in a Taylor estimate for u(r, z) in terms of the variable . To
do this we will use the first order Taylor estimate for the function Q. (r,z) =
S}-_,Ur,; and plug into the limit definition for u. Here ¢ is in between 0 and -.

u(r,z) = lim <Qn(r, 2) + 10g(n)>

n—roo

= lim (Qn(r, 0) + 2(Qn)=(r, &) + 10g(n))

2(Q )(6)

+
N 1
Where (Qu == ( N Z_QJL \/7"2 (z— (2 +1)L)? )

= u(r,0)

Lemma 6.7. We have that (Qw).(r,2) is from bounded from above and below;
[(Qc0)=(r, 2)| < M(r) =0O(1).

Proof. We wish to find a bound of (Q.). in terms of . First consider the
infinite product representation of the sine function [19, p. 268|.

We construct a summation similar to (Q.).(r,z) by playing around with the

92



M.Sc. Thesis — S. Zwarich McMaster University — Mathematics

argument of the sine function and taking a derivative.

Sin<(ir 2—L2)7r> Sin<(i7’ 2+Lz)7r> _ (r? ZLZ;)W ﬁ ((igL—jz) N 1) ((i;L—jz) 3 1) ((z‘gzjz) N 1) ((igz—jz) B 1)

S Mt () ) ()

= (2L1) (2 + (2 = 2L)*)(” + (2 + 2/L)°)

r — 1 (ir—2z)m (ir—2z)m . (ir+2)w (irt+z2)m
sin((zr 2LZ)7r> sin(“r ;LZ)W> =— (el 2L —e ' 2L ) (eZ 2L —¢ ' 2L )
' =7

We now take the » derivative of both sides.

az(%msh(%)m@)):%m@

_Lsin(ﬁ): ( (r* +2%) ﬁ (r* + (2 — 2jL) )(r2+(z+2jL)2)>

4L2

J:1

= BT g (P 4 (2= D)0 + (2 4+ 25L)) + ...

. i —M(Z(z — 2kL)(r? + (2 + 2kL)%) + 2(2 + 2kL) (r* + (2 — 2kL)%)) ...

412
k=1
- 1 2 N2y 2 N2
i - 25L
IT e + (2 = 2007 + (= +21))
J#k
— 7 sin(2F) _ +i zf2kL) L 2=+ 2kD)
1 ) 24 z2 r2 4+ (z—2kL)?  r24 (z+2kL)?
51— cosh( ) + cos(f) =1
T sin(=F) _ +i 2(2—2kL) | 2(z+2kL) )
L —cosh(ZE) + cos(2E) 12 +z2 — \r?+ (2 —2kL)> 2+ (2 + 2kL)?
™ sin (ZF) - 2(2— +i< (z— (2k+1)L) 2(z + (2k — 1)L) )
L — cosh(%) - cos(%) T orz 4 )? — 2+ (z—2k+1)L)2 r2+(z+(2k—-1)L)?
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We now take the r derivative of both sides.

(o) e elD)) o)

— gzsinh (1) =0, ( _ + z 1;[ (1 + (2 = 2 L)) (r* + (= + 2jL)2))
= 247“; 2L] +(z = 2jL)*)(r* + (2 +2jL)*) + ...

4 ) 2(27"(7" + (24 2kL)?) 4 2r(r® + (z — 2kL)?)) ...

2
it

(r? + (2= 25L)*)(r* + (2 + 25 L)?)
;ék

<.

o 51nh( ) 2 n ( 2r n 2r >
L —cosh(%E) +cos(3) 12 +22 & \r?+ (2 —2kL)? 72+ (2 + 2kL)?

T . .
fcosh( =) + cos(F) T 24 (2 - L)2 + kz: (r2 +(z—(2k+1)L)? + r2+ (z+ (2k — 1)L)2>

Now we let the inequalities do the magic. Let us assume —£ <> < L.

120 1 o z+2jL+r 1

= r2 4+ (z+25L)? = 1\/7“2 + (2 +25L)2 /2 + (2 + 25L)2

o z+25L I T
ne, - e 4 n®
S SIS rogL? R o (2 4 2jL)°

oo 1 (27(2371)L)+7' 1

Dl —

<X
"2 + (z — 2jL)? = P+ (2= (2) — )L /2 + (z — 2jL)2
—(z—(2j —1L) +

SENEL G- - 0P
Pl 352
S R -2 DL)? TN (r— (2j — )I)?
1 z—2jL 1
i 1\/7"2 (z— (2 —1)L)? B 1\/7“2 + (2 —2jL)2 \/r2 4+ (2 — (2§ — 1)L)?
_ yoo z—2jL
=2 4 (2 — 25L)2
1 o z+4 (25 + )L 1
= 1\/7‘2 (z+ (25 +1)L)? B 1\/1“2 (z+ (25 + DL)2 /2 + (2 + (2§ + 1)L)?
- _n® 2+(2]+1)L

T4 (24 (25 + 1)L)?
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1 1 1 1
—(Qoo)z(r,&) = + 32
(Qc)+(r ) Vit 22 2+ (z+ L)? ! 1<\/r2 + (24 25L)? \/1"2 z—2jL)2>

1 1
Y= 1(\/7"2 (z+ (25— 1)L \/7"2 (z—(254+1)L)? >

0o z+25L oo r w —(z—(2j—1)L)+r
Yo =ty = 4+ 3
SR Gt gD? T R a2 T P (- (25— VD)
0o r oo z—2jL . z+(25+ 1)L
R Yy Yol o — 2=
P e T 2 DL T Rt =2 ' 4 (24 (2 + DL)?
1 1
_|_
V2 4+ 22 \/r2 (z+ L)?
1 L smh(%) T sinh(ﬂ)
r2+(z+L0)2 2L Cosh(%) —Cos(%) 2Lcosh( ) —|—cos(%)
r Lo sin(F) _om_ sin(F) L (+D)
r2+(2+L)? 2L cosh(’F) —cos(4F)  2Lcosh(ZF) +cos(3F)  r2+(z2+1L1)2 "
" 1 _ T B z
VT4 22 izt i P
Now we provide inequalities going in the other direction
i~ 1 z+25L 1
=t r2 4+ (z + 25L)? =i 1\/r2 + (2 +25L)2 /2 + (2 + 25L)2
o z+25L
S e
- T=Nr2 4 (2 + 25L)2
500 1 —(z—(2j+1)L) 1
=t r2+ (z —2j5L)? By 1\/7“2 (z— (27 + 1)L)2 \/r2 + (2 — 2jL)2
w _—(2=(2j+1)L)
ppad
TS (2 L)
1 S e z—2jL—r 1
Jl\/TQ (z—(27+1)L ]1\/1"2 +(z—2jL)2 \/r2+ (2 — (2] + 1)L)2
o z—2jL o T
weo o 7AY _yeo T
- =12 4 (2 — 24L)? =2 4 (2 — 24L)2
1 o0 z4+(2j—1)L+r 1
\/7" (z+ (2§ —1)L)? TV (25 - DL)?2 2+ (24 (25 — 1)L)?
5 5> z+ (25 —1)L oo r

e — 2
U (2 - DLE TNt (a4 (2 - DL
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1 1 . 1 1
_(Qoo)z(r7£) - \/7‘2+22 - \/T2—|—(Z—L)2 +2j_1(\/’r’2 z+2jL \/7'2 Z-Q]L)2)

_ g ( 1 1 )
a =t V24 (z+ (25 - 1L \/7”2 (z—(2j+1)L)?
1 o z+2]L o —(z—(2j+1)L)
Y/ = GC_1)7 =g + (2 +2jL)2 +Ej:1r2+(z— (25 +1)L)2 "
e L S A
24 (z—2j0)2 Tt (z—-2j0)2
oy z4+ (2 — 1)L oy r n 1
T+ -DL)? T e+ (2 - DL V222
1 T s1nh( L ) T sinh(%)
r2 + (z — L)? 2L cosh(Z ) — cos (%) ﬁcosh(%) +cos(ZF)
T sm( ) sin(%) n 1
Lcosh(f”) cos(f”) cosh(rL) +cos(%r) Vre 2
r n r .z + z—L
2422 r24(z—L)2 12422 r2+4(z—L)?

]

/\

SIE

+

Therefore we can conclude that [(Qu).(r,2)| < M(r) = 0(1). We use the skew-
symmetry about £ and the periodicity of (2). to extend this bound to all .

Now we calculate the bound on |a,(r)| O

5L 5L
/Tcos m z—£ dz—isin m Z—£
% L 2 o L 2

Therefore we can add —log(r) + log(4L) to u in the inequality for |a.(r)] without
changing anything. Below we use lemma (6.7).

lan ()] = '/f cos(% (z - g)) (u(r, 2) — log(r) + log(4L))d=

an(r)] < /; jeos (7 (= §) )1t 2) = () + log(a)) =

lan(r)] < M(r) /T wdz =) (%) B

lan ()] < MQ(T) (525 - %) =3M(r)L* = N(r)

We have that a,(r) is expressed in terms of a linear combination of zero order
modified Bessel function of the first kind and the second kind: a,.(r) = A.lo (%) +
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B.Ko(%) for n > 0. Since for large r, I, has exponential growth and K, has
exponential decay we can use the above inequality to conclude that 4, =0. We
can go further to produce an upper bound on the absolute value of B,.

nro

(o)l = Buko ("2 ) < N ()
1

o)

Where r, is a constant that is suitably large. We now use the Fourier series to
derive (6.6.1). Let M be the limit of Fourier series minus (log(r) — log(4L)) as r

goes to oco.
s (e () ()

1

|Mi| < E321N(ro) <KO(nZO)KO<TZ>)

|Bn| < N(ro)

We have an upper bound K,(z) for large = and a lower bound for Ko(z) [14,
p. 1]. This upper bound is a consequence of the asymptotic form; K, ~ /Ze™®

[2, p- 618].
K,(z) < \/gefz Ko(z) > \/gll:((ij——?)) e " (671)

We have Gautschi’s inequality for the gamma function at our disposal [27,
p. 14].

I(z+1) - 1 2
Tats ~CH) " = w5 <\/;”C+1

Plugging this into limit and noting that » going to oo implies it is larger than
ro gives us the following:

nr
L

|M1| < Z?:1N(To)

4
~|3
+
o
.

|

n _n(_
| M| S—N(To)mZ—fe L(r=ro)

n=1

1
-1 (r=7g)
M| < fN(ro)\/2Lr08T(L>

1— e*%(rfro)

Of course we need to take derivatives of the geometric sum formula. Thus we
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have the following.

1
— 3 (r—rg)
e L 1
1—e"T—r0) 1—e T(r70)

1

8w< e_%(:_m) > _ 11 e T(r=T0) 410 (_2)(_1)(£)ei(rm)>
1—e L L (1- e—%(r—m))z (1—e T(r=r0))3

P T D L P Ty

L2 (1- e—%(r—ro)p

_ iei%(rfro)< 1+ 67%<T7T0) )
(1— e*%(r*ro)p

We can input this into |M;].

1
2r e~ T(r=ro)
|Mi| < N(ro) 0—1
(1-— 6_f(7‘_TO))2

T

We have that u(r,z) = log(r) — log(4L) + O<57Lr> = log(r) —log(4L) £ 0(67%). We

(1—e” )2
can ignore the r, since the function in question is decreasing. We will now
compute the asymptotics for the derivatives of w.

w= b (T (s 2) ) (1))

We have the following recursive formulae for k,(z) [13, p. 13].
Kya(z) + Ky (z) = —2(Ky(2))e Ky-1(z) = Kuyai(z) = —%Ky(x)

When v is an integer n we have that K,(z) = K_.(z) [2, p. 614]. Now we plug
this into «, to obtain the following:

(F(--3))m(

o= Lo (2 (o= ) 2 (1)

M| == lcos<”( 52) w(%)
KO( a

|Ma| < 52, N(ro) ——
’VLTO
2"

1
Ur = — + Xo2 cos
r

3
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Plugging in (6.7.1) we obtain the following.

nro
/ _ar /2 +1 m
|M2| <En lN TO nro + L

nT m0+1)
M| < 552 N(rg)— —k— L~ 2.(r=70)
| 2| n=1 ( )L ( %)

r
%

1
2@) ? e~ T (r=r0)

|Ms| < Eio:lN(TO)L
< E;?:lzv(ro)% T

< N(ro) EOO nie Lo

) n® _n r—r
N(ro)\/ngLanlﬁe L(r=ro)
e—%(T—To)

Nt (2 )

1— e*%(T*T0>

We now plug in the second derivative calculated above into the limit.

1
o —1(r—rp)
M| < N(ro) Y2r0 =10 To)( l+e T )
(

3 1 _e*%<T*T0))3

Therefore we have that u, = 1 + O(e*% (%)) =1+ 0(e ). We now move
(1

on to u..

< NGO (L) 1+ T2

™ 21”0 —(r—rg)
< ZN(TO)(L )\/ I Il 1L2€ LYo

r—rQ
: )

*N('r'())\/ 2TOL%arr (677‘—70

1—e™T
—L—r
EN(TO),/ZQg%wo)( L+ 20770 )
L L (1— e*%(T*To))s

It follows that u. = iO(%) = +0(eT). We now wish to obtain similar

(1—e T )2

IN

IN
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asymptotics for ». First we have to calculate v(r,0).

v(r,0) = u(r, —L) = u(r, g - %) = u(r,2L) = u(r,0)

Since v(r, z) = u(r, z — L) they share the same asymptotics.
v=log(r) —log4L) £ O(e"E) v = % 10 F)  w.=+0(e )
This allows us to calculate the asymptotics for the conformal exponent a.

r 2 2 2 2 2
ar = (ur + vy +urvy — = (Ur +vr) — Uz — U — ULV
T

4
rf1 e T 1 1 4
=-|=£0 e
4<r2 (r )+r2+r2 r2>
1

S I
e +£0(e" T)

Since the big O notation respects integration we have that:

_log(r) -3
a=-— +0(e I)

Thus we have proved the original proposition.

6.7.1 Verification of Asymptotic Flatness of the Metric
on the Base

Theorem 6.8. We have that g, is asymptotically flat up to first derivatives.
That s there is asymptotic end, constants ¢ and g, and coordinates ¢ and ¢
such that

-8 —B-1 —B-1
(gv)ij — Coij = O(\/GE+ G ) dey(gn)iz = O/ T + ¢G5 ) Dey(g)iz = O/ (T + ¢G5 )

Proof. In chapter 3 we made the assumption that the metric on the base is
asymptotically flat when we constructed our Kaluza Klein asymptotically flat
end. We will verify that it holds for example 2 using the asymptotic behaviour
for a we derived in the previous subsection. Since the Euclidean metric and
metric on the base are periodic we only need to check asymptotic flatness for
|2| < L. We start off with the complex coordinate transformation ¢ = u1 where
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p=r+iz and ¢ := & +i¢. There are 3 potential values that we can choose
for ¢ we will choose the one where if ¢ is the angle of x then the angle of ¢
is 29. We can now find the domain in which ¢ lives in. Take the domain
D={(r,2)|r > L, |2| < L}. We find the corresponding domain for the coordinates
¢ and ¢.

A

L

S

Figure 6.1:

We have the following inequalities for ¢; and ¢. Note that the angle, tan='(%)
satisfies [tan=!(2)| < .

T

z

Go=(0+ 22)% cos(%tanfl(;))

odw

Gl < (4 2%)

Gl > (% + zz)%|cos(tan*1(§))\ > %(ﬁ 4203
Co=(r" + z2)% sin(% tan71(§)>
|2]

2 2\— &
W<(T +Z) 8L

Gal < (% + 2%) 3| sin (tan ™ ()| = (¢ + 22)¥

The domain for ¢; and ¢, is given roughly by the following diagram. .
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CzA

Figure 6.2:

This domain is diffeomorphic to R? — B* so we have no problems using it as
an asymptotic end.

Next we consider the metric dz2 + dr?. This can be written as dudz. We can
calculate this in terms of ¢.

4
3

ap = d(ch) = Schac —ach =30
dudp —||<||3d —|\<\|2d<1+d<2>

Now to check asymptotic flatness we need to find g >0 and a constant ¢ such
that

i 8e2 )¢5 — 0 = o([¢] )
i e, (e2]1¢1I3) = Oo(I¢l~#)
iii o, (e*(I¢11%) = o(I¢|I=*Y)

We begin with (i). We have that e2o = ¢~z les(+0(c" i _ = 2 (1+0(e"1)). Since z

is bounded [|u]] = oo implies that » — co. We also have that as [|¢|| goes to ~
that r = 0(||¢||3).

4

Sl = 2=+ o EylcE = P =3+ jadoe 4
4
l¢l3
=1 oqiente )
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Clearly ¢ =

and (iii) inform our choice of 8. Let us move on to (ii).

N
Q

00, = 25z ar + 5o as)e

o = Aretch) = 30+ b eos (e (D)

2, llcl? =2 ”4””W

((%r ot fHCH“@ 2;1(742+22)%Cos<%tan_1(§))(—%—|—O(€ £))(r? + 2%)
B O N VARRIES SO ETRIED P
:ms(%tan’%%))\/T2T+722+sin<§tanfl(§)) -

2(%04 )+ HgH**m ,%(ﬁ +22)7% cos(%tan 1(;)) + %(7‘2 +27)7°8 COS(% tan ™ (
— %(r2 + z2)_§ cos(% tan_1(§)>7’0(e_%) - ;Z(TQ + 22)_% sin(%tan_1(§)> 41r
2 ar + oo ag as) + 0 ICI1E = O(( + 22)7F)
‘ " "
(g + ) + 9 K1) = 062 + 2 %) = (el ~¥)

16 and we have many choices of 5. Let the calculations for the (ii)

i (r —|—22)_%cos(§ tan_1(§)>

)

Z
7"

So if we choose 8 to be 2 then (ii) is satisfied. We now move on to (iii)

D, €’ = 2(%ar +
5E = gRetich =
Se = gImlich) =
25, )IclI = 2l

0

87(:20% e

2 -1 4
=2 — gHCH Ssin<§tan Y

1S

z

z

=)

2)

The approach is slightly different; we have the following two inequalities.

|sin<%tan_l(§))\ < |sin(tan ()| =

. [4 _1,%2 . 1,2
|sm<§ tan (;))\ < |51n(2tan (;))| <2

2
El
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We plug these into the original equations and consider the biggest terms.

or 0z 2 _ 2 29y~
(%ar+@az)+842|\C\|3 =0((r"+27)78)
or 11

(Gar + g0 + g lII$)e = 0% + 23 F) = o(lig %)

Therefore we have achieved asymptotic flatness for the metric on the base. [

6.8.1 Behaviour of u, v and a near the z-axis

In this section we show that u, v and a have the following behaviour as r goes
to 0.

Proposition 6.9. Starting with case I, 0< 2 < L.

w=2log(r) £ 0(1)  u, — % +0(r)  w —+0(1)

v =+0(1) v, = +0(r) v, = +0(1)

For Case 1I, -% <z <0, simply interchange w and v. For both cases a. = £O(r)
and o, = +0(r). Now consider case III the corner point == 0.

1 1

u = log(r) £ O(1) Ur = +0(1) us == +0(1)
v=logr) £ O(1) v = % LO(1) v = % +0(1)

1 1
a=-—7 log(r) £ O(r) ar = =g +0(1) o, =£0(1)
Proof. Let us start the proof of I. Consider the » dependence of v as we ap-
proach a point on the z-axis that is not a corner point. To start off lets pick
our point a to be inbetween 0 and %.

U= nh_)rrolo (Z?Z_,LUFQJ, + log n) v = nh_}rgo (E}L:_nUF2j+1 + log n)

Using the behaviour of tr,, near the z-axis and the fact that s, = [2;L, (25 +
1)L], we can conclude that Ur, dominates in terms of r. The dominating term
is 2log(r). Therefore v behaves as 2log(r) approaching from = = a. If we take
another point b to be inbetween —% and 0 then there is no term that domi-
nates and we have that « approaches a constant as » approaches 0. Conversely
v behaves as a constant approaching the z-axis at »z = « and behaves as 2log(r)
when we approach the z-axis at z = b. Therefore « and v satisfy the smoothness

conditions at « and b. There is more direct calculation in the next section.
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Now let’s consider the corner point » = 0. From the symmetry and peri-
odicity of » and v this is just as good as an arbitrary corner point. From the
previous section we have that wu(r,0) = log(r) + C, where ¢ a constant. There-
fore » behaves as log(r) when approaching the z-axis at » = 0. Additionally,
v(r,0) = u(r,0) SO v has the same behaviour.

We now check the behaviour of « near the z-axis at « and 5. Where0<a <L
and —L < b < 0. We start with u.(r,a). Here a <¢ <a+h.

Mr,a):nm(u(nhm}iw(r,a)):}ILL(]( u(r,a) + h(2 })l(rs) u(r,a ))

h—0

= (Qo0)=(r,a)

> (\/r2 “@ 0 Pt o)

j=—o0

=40(1)
We have that v.(r,a) is similar.
Uz (Ta a) = —Uz (Tv a)

However ., (r,a) has different behaviour. Note that —(a—2jL) > 0 when j > 1 and
is less than 0 otherwise. Also —(a — (2 +1)L) > 0 when j > 0 and less than 0
otherwise.

w(r,a) = lim (%) ~ lim (u(r, @) + h(Qo)r(r, €) — ur, a))

h—0 h—0 h

= (Qoc)r(ra)

ad 1 T
_Z< "2+ (a—2jL)% — (a—25L) /2 + (a — 2jL)2

1 r
/Pt (a— (2j + DL)? — (a—2jL) /2 + (a— (2] + 1)L)2>
| r B 12ja—25L] 12]a—(2j+1)L|
72(2@—2]1)2 2(0—(21+1 >+Z< la — 25 L] |a—(2j+1)L|)m

1 T T
J’_ —
2

Vitt a2 —avirt+a?  2(a—L)?

Now we examine v,(r,a). Note that —(a—(2j—1)L) >0 when j > 1 and is negative
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otherwise.
(vl h) —v(ra)) _ . (v(ra) + h(Aso)r(r, () —v(r,a)
o) = i (AR (¢ ; )
= (A)r(r, )

1 T
B Z <\/r2 -2 -DL2 - (a— (25 —1)L) /72 + (a — (2j —1L)?

j=—o0

1 T
a "2+ (a — 2jL)% — (a — 2jL) r2+(a72jL)2)
i 3 r +§: 12la—(2j— 1)L 12Ja—25L]
= (a— 2j —1)L)? 2(a—2jL)? AN la — (25 — 1)L| r la—2j5L|

==£0(r)

Therefore we can plug these into the formulae for o, and «. using (6.1.1).

an(rya) = = (i - i) +0(r) = +0(r)

4\r?2 r?

a.(r,a) = %(%w(r, a) — %uz(r, a)) +O(r) = £0(r)

So we have nothing unusual in the behaviour of a(r,a) near (0,a). Now we
perform the same calculations but for . The calculations for w.(r,b) and v.(r,b)
are the same as for «. We have that —(b —25L) > 0 when ; > 0 and negative
otherwise. We have that—(b — (25 + 1)L) > 0 when j > 0 and negative otherwise.
And finally that —(b — (25 —1)L) > 0 when j > 1. Armed with these inequalities
we can tackle u,.(r,b). Here b<e¢<h+b

ur(r,b) = lim <M) = lim (“(7’7 b) + A(Qeo ) (r, €) — u(r, b))

h—0 h—0 h
= (Qw)r(r,b)

o o]

1 r
B j;oo ( 72+ (b—2jL)2 — (b—2jL) \/7®> + (b—2jL)%

1 r
\/7"2 (b—(25+1)L)2 - (b— (2 L) /24 (b— (25 + 1)L)? )
_ r 12(b+2jL]  12[b+ (25 — 1)L|
= ( 2(b—2jL)? (b—(29+1 ) g(r lb+25L| r \b+(2j—1)L|>
==+0(r)
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Next we tackle v,.(r,b). Here b <¢ < h+b.

v (r,b) = lim (M) ~ lim << b) + h(Aoo)r(r,¢) — v(r, b))

h—0 h h—0 h

= (Aoo)r(r,b)

(oo}

1 T
7.2 (\/r2+ (b— (2 — L2 —(b— (25 —1)L) /72 + (b — (2j — )L)2

j=—00

1 r
V2t (b—25L)2 — (b— 2jL) r2+(b—2jL)2>

N r B r X (12b— (25— DL 12b+2jL]
-2 (2<b— @~ L) 2<b—2jL>2> t2 ( b= (2~ DLl b+ 2L )

T T 1 T
P+ L2—(b+L) P+ b+ D)7 VIEH 0 —byrZ b

:%iom

L

We can now plug these into a.(r,b) and a.(r,b) using (6.1.1).

a(r,b) = g(éuz(r, a) — %uz(r, a)) +O(r) =x0(r)

Moving on to case III, we wish to determine the behaviour of the first deriva-
tives of v and v when » =0 and » — 0. To do so we need to be sneaky with
the expression for « and ». We can think about w.(r,0). Here we borrowed an
expression for « from the previous section where 0 <¢ <h

ws(r,0) = lim (M;MO)) - i (u(n 0) + h(Qeo) (1, ) — u(r, o>)

h—0 h

= (Qe0)=(r,0)

o 1 1 )

VPP (DL /242512

11 & 1 1 > 1 1
_T’LZ’LZ (2;+1)L_2j7>+_2<(2j—1)L_2TL)

11 & 1 1
__¥+Z_Zzg(2g+ L Zzgzgq)L

—

We can to the same procedure for ». Here 0 < ¢ < h.
v2(r,0) = u.(r,—L) = —u,(r,2L) = —u(r,0)

We are comparing the above sums in the expressions for ». and v, to the zeta

107



M.Sc. Thesis — S. Zwarich McMaster University — Mathematics

function to establish convergence. Next we move on w..

uy(r,0) = lim (M) i (u(r, 0) + h(Qoc)r (1, €) — ulr, 0))

h—0 h—0 h

= (Qe0)r(r,0)

r 1 r 1
Z (\/7"2 +(25L)2 \/r? + (2jL)2 + 25L \/7"2 25 +1)L)2 \/r2 + ((2j + 1)L)2 +(2j+1)L)

]—700
1 1 T r - 2]L r (25 +1)L r

Jj=1

wn (r, 0) = % +0(r)
Now we move on to v,.
vp(r,0) = ur(r, —L) = u,(r,2L) = u,(r,0)

From these we can determine the behaviour of o, and «. near the corner point.

ar:£<ur+vr+urvr— (ur+vr)—u§—vf—uzvz>
r (1 1 1 2,2 1 1 1
()=o)~ - <+~ )+on
o (r,0) 4<r2+r2+r2 7"(7") r2 r2+r2) o)
1
=—-——30(1
2r (1)
ay = <2’l,l,7 Uz + 2U'r Vz + UrVz + Uplly — (uz + vz))

Now let’s find what happens to the conformal factor e*-.

r

a= *% log(r) £ O(r) = O(l)

Note that if we consider the corner point at » = L by symmetry v, - —u. and
v, — —v, and u, and v, stay the same. However upon inspection of the formulae
for the partials of « nothing changes. Therefore we get the same behaviour for
a. Thus the behaviour for « is exactly what was predicted by the smoothness
conditions. Therefore by periodicity « has no unusual behaviour when you
approach the z-axis at anywhere but the corner points. O

6.9.1 Regularity

To rule out conical singularities when approaching the --axis we must make
sure the angle deficit on both the (1,0) and (0,1) rods are 0. These are the
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constants b and b, which correspond to the (1,0) rod and to the (0,1) rod
respectively. They are given by the following.

blzllm(log( )+a—%u) b2—11m<log( )+a—%v>

Let 0 < a < £. It will be shown that we can add a constant to both v and
v to achieve b = b, = 0. To aid with this calculation we want to know if
T = u(r, z) — 2log(r) is bounded when 0 < r < r;, where r, is a small constant. We
know that it is convergent for 0 < r since both « and log(r) are convergent for

those r. Thus we only need to check convergence for » = o.

o r2 4 22 z z r? 422 2z z
“(’“’Z)‘z;(log< @jL)sz““sz> 1Og(\/<(2j+1)L)2 ) (2j+1>L+1+1<2j+1>L>”'

J=
r2 4 22 z z r2 + 22 2z z
—log X + —=+14+14+ — —|—log 3 + - +1+14 — >
( 2 ) < (27 -0 (2 -1L (2J—1)L>

o+ log(ViE =) —log (VT - D - (- 1)
limu(r, a) i (log( (1-— 2%)) —10g<2(1 - mo —10g<2(1+ 2%)) +log<2(1+ ﬁ)))

=1

St }E%(Q log(r)) + log(2a) — log(2(L — a))

lim (u(r, @) — 2log(r i(log( jL> —log(l—ﬁ) log(l—&—ﬁ)—klog(l—kﬁ))...

j=1

..+ log(a) — log(L — a)

As before we do a limit comparison test; comparing the infinite sum above to

¢(2).
lejlggo<1og(1—2j%) log( L))]

= lim(log(l—a—k) —log( ))i
k—0 2L 2+k: L k2
:;113%((_1%@ ((2+k)ijg—m)%>
2L
(- )
k—0 2L (2+ k)L )2k
_a
4L
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We plug u=2log(r)+u into o, and a..

(G wote (rm) =3 (mr) oot one)
oy = — —tur | tor+ | =-FU o ——| -+ U O | U -V — UV
4 r r r\r

O O T

= Jur+ o+ U 4(uz+vz+uzvz)
r 2\ _ 2 _ _ 2 _

a, =— (2 =+ |u, + 200, + | = +Ur Uz+vruz_7(uz+'vz)
4 r r r
1

- iﬂz + %(QETEZ + Zvrvz + Urvz + U'rﬂz)

Using the behaviour of « and » near the z-axis we make the following deduction.

Q= %ﬂr + O(r)

o, = %ﬂz + O(r)

Thus it follows that a = iz + ¢+ O(r?). Therefore it we add 2¢ to v we achieve
the vanishing of b,.

by = lir%(log(r) + %EJF C+0(r?) — %(ﬂJr 2log(r) + 20)) =0

For by let 0> > -L. We know that v(r,b) = u(r,b— L)= u(r,b— L) + 2log(r). It is
clear that there is an « which corresponds to 5. Since 0 <b—-L+2L < £. Also
a(r, 2 —b— L) =a(r,b+ L) = a(r,b— L). Therefore the b, is satisfied if we add 2¢ to
v since the limit expression for b, is equal to the limit expression of b, for some
a. Therefore regularity is established.

6.9.2 Topology of the Solution

There are two relevant topologies for example 2. We are interested in the
topology on the time slice of the 5-dimensional manifold which has a coor-
dinate system inolving (zi,y:,zs,y2) coordinates from the smoothness chapter.
The first topology is the slice topology which exists in a strip along the z-axis.
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Here periodicity in = of the spacetime is introduced under an equivalence rela-
tion where different fundamental domains are used to create different topolo-
gies. We are only concerned about a strip since the slice at point is local in
nature. The second topology is the topology for the entire Domain of Outer
Communication (DOC) and encompasses the entire orbit space.

The fundamental domain of the slice topology is shown below where the
horizontal axis is the z-axis and the rectangle goes from —L to 2L.

i Fundamental Domain i
—L I O L I

(1,0) (0,1) (1,0) (0,1)

Figure 6.3:

Consider the following equivalence relation in » where z ~ 2 +2L. Then we
identify points at either end of the fundamental domain. We have two rod
structures present and we can draw a picture of what this looks like in terms
of the (r1,r,) coordinates.

T2

Figure 6.4:

Here A and B correspond to the corner points. Note that moving along
the r axis corresponds to moving along the (0,1) rod since r = 0. Simi-
larly, moving along the r, axis corresponds to moving along the (0,1) rod since
r1 = 0. If we think about what’s happening upstairs in (z1,y1,z2,y.) we have that
z? +y? + 23 +93 =0 at the corners. We can characterize these coordinates by
w3 +yi+ad+yl =1-t> wheret =1 at A, t = —1 at B. We consider ¢ varying across the
diagram. Thus the enclosed region is homeomorphic to s*. However because
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we only considered a strip along the z-axis we are missing a 2-dimensional ball
in the (r,r.) diagram. Since neither r; nor r, is 0 in this ball, we have that up-
stairs we can use the coordinates (ri,rs,¢1,92). Thus upstairs the ball becomes
B? x T?, where B? is the 2-dimensional ball. Therefore the fundamental region
is really homeomorphic to s* — (B% x 7?).

Now the question becomes what happens when we use a different equivalence
relation in z, say z ~ z +2kL where k is an integer greater than 1. How does the
slice topology change? Well every time we increase k¥ we add 2 more corners.
It useful to understand the diagram with 4 corners.

Figure 6.5:

Here A, B, ¢ and D are corner points and r, = r, = 0 at these corner points.
We characterize the coordinates upstairs by z? + ¢ +t*> =1 and 23 + »3 +v® =1,
where u=t=1at A, u=—-t=1at B, -u=t=1at ¢ and u =t = -1 at D. We
consider ¢+ and « varying across the diagram. Therefore the entire diagram is
homeomorphic to $? x s2. Now we excise the A corner by deleting the region
inside the red arc. This arc has equation r? + % = A2 where A is a constant. At
the level of the slice this arc corresponds to z? + y? + 23 + 43 = A%2. Thus the arc
corresponds to $°. If we took out a similar region from the diagram with two
corners we would again have a boundary that is s%. Therefore we can glue the
two diagrams together along their $° cuts obtaining a connected sum with 4
corners. The resulting space is $*#52 x 2 — (B? x T?). This corresponds to the
slice topology where k = 2. Note that the connected sum with s» results in the
identity thus we have that (s#5? x §%) — (B? x T?) = (5% x §%) — (B* x T?). For the
slice topology for arbitrary k, we keep taking connected sum with 52 x s2. Thus
we can write the time slice under the equivalence relation, s,/ ~, for arbitrary
k as:
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(6.9.1)

Next we examine the topology of the entire DOC. To do so we divide the
rz half plane in to regions A;.

- Az Tl
// /////’ A1 \\\\\\ \\
// /// \\\ \\
/ , N \
/ ’ \ \
/ / \ \
i / \ \
! / \ \
I ! \ \
! ! \ \
I ! \ |
[ : —L O L 1 |
1 1 1
(0,1) (1,0) (0,1) (1,0) (0,1) (1,0)
Figure 6.6:

We can picture 4, in terms of (r1,r) coordinates. It has 3 corners and thus can

be drawn in terms of the 52 x % diagram but with a corner excised breaking
the periodicity.

Ay

T2 ~
\
\
\
L

71 B

Figure 6.7:

The excised part of the diagram corresponds to a part of a ball centered at the
origin in (r1,7,) coordinates. Upstairs this corresponds to a 4-dimensional ball,
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Bt centered, around the origin with coordinates (z1,y:,z2,42). The boundary of
Bt is homemorphic to 5. We have that 4, is homeomorphic to $* x s% — Bf.
We can picture A; where i > 2 by a similar diagram this time with two excised
regions resulting in only two corners.

Az

Figure 6.8:

Thus A, has two balls removed, this means it has two $° boundaries. Thus
if we connect sum A4, and 4, along the s* boundary of A; and one of the s3
boundaries of 4, we end with (52 x §?)#(5% x $?) — Bi. Where Bj is a different
4-ball. If we continue this process of infinite connected sums we obtain ( with
the convention that when we reach infinity there is no missing ball) that the
whole orbit space under quotient of the 72 action is homeomorphic to #>52x s2.
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Chapter 7

A Singular Solution with
Non-Constant Twist Potentials

7.1 The Solution

Proposition 7.2. We have a solution whose metric on the fibre is given by
Hy = g(Dp;_,,04;_,) which has non-constant twist potentials, which satisfies the
smoothness conditions for a (1,0) rod spanning the z-axis, whose lower right
2x2 block matrix is positive definite away from the z-axis but is missing a point
on the z-axis. The non-zero components of the metric on the fibre are stated
below where h satisfies hyr + Lhy + h.. = 0.

_ (einh cos (t—0)/1=—1n? 1 sin (r—0)y/1—n?
e (o (o)) (1))

2 2
(o47)h - 1—n? —0)y/1—n?
Hs3s =e 2 cosh (r—2) n h| — ! sinh (r—0) N h
2 1— 7]2 2
Hiz = n e%ﬂhsinh<(7—a)l—n2h>
1—n? 2
Hooy = r267(0'+7')h

Proof. In the equation above o,  and 5 are constants. An appropriate example
of » would be — \/ﬂlﬁ This solution is not defined at (0,0). This solution obeys
the smoothness condition when there is only a single (1,0) rod that stretches
across the z-axis. To see this with the example function we know that it is a
smooth function of »* and > away from the singular point. We have that H..
behaves as O(r?) as r goes to 0 away from the singular point . The fact that
Hss = Hi» = 0 agrees with the smoothness conditions. We have the following

behaviour at the singularity for the components of H. We will assume 7—o > 0,
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o>0and 7> 0. We have that » -+ —cc. So in the exponentials you either get ~
or 0 depending on the sign of the exponent.

(c+71) L (t—0)/1=—1n? 20
2

2
(U;—T) B (T—U)W >0
—(o+71)<0

Therefore Hi1, His, and Hsz all go to zero as you approach the singularity. For
Hs» the exponent term overpowers the »? term so it blows up at the singularity.

Furthermore we require that f = HsHss > 0 away from the z-axis. For this
we must check that Hs; > 0. We can achieve by assuming that r — ¢ > 0 and
requiring that » <o.

— (r—o)y1-7 1 . (t—0)/1—1n?
Hss = cosh h|— sinh h
2 \/1— 772 2
1 (T—o)\/l—th _(T—U)\/1—7]2h 1 (7—0)\/1—7}2h
e 2 +e 2 - e 2 -

e

_(r—o)/1-n2 h) )
3

2 /1 —n?

1/ _G-oy1-n2, 1 (r=a)y/1-n2 1
=—(e 2 M1+ —e T —1

2 1 —n? 1— 72

7(7’*0‘)\/17172,1 (Tfo')\/lanh
2 > e 2 Wi

e

Since we know that ‘1 + =
Vi-n2

1 —
< ‘\/177# 1‘ and e
have that Hs; > 0.

]

We can verify that this is indeed a solution to the harmonic map equations.
We will start off by finding the determinant of H. We will use the shorthand
9 = ((7'70)\2/ 177]2) )

det H = Hao(H11H3s — His)

= p2em (DR TETR "Th( — ( cosh(6h) + ———si S S
=re e e cos sinh(6h cosh(6h sinh(6h) | ...
(0h) T2 po (0h) (0h) T2 po (0h)

2

__n
R

sth(ah))>

2

= 7”2 ( — COSh2(0h) + 1 L 2 Slnh2(0h) - 1 ! 2 Slnh2(0h))>

= r?(sinh®(0h) — cosh®(0h)) = —r?
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We can now work out the components of #~! using the adjoint of .

1 H22H33 0 *H22H13
H'= o h 0 Hy1Hss — HE 0
—H22H13 O H11H22
—Hss 0 Hy3
H ! = g (otDh 0 e2(o+T)h ) —2 0
His 0 —Hi

We now calculate the » and > derivatives of the components of H.

(Hu1)r = B =

V1 —n?
7 cosh(0h) + —— <T S "n?) sinh(eh))
1-— n 2

(
(Has)r = hye 2" ((" T_T-o \/\/g) cosh(0h) + (— 7T 11_ 5+ - U\/1_7> smh(eh))
— e T ((r cosh(0h) — ﬁ (cr n <%)n2) sinh(&h))
(His), = hye 2" 1 _ (<" * T> sinh(6h) + ((T = \/W) cosh(@h))

1—n 2
(c+1)h —
=hre 2 (w cosh(6h) + S — (U + T) sinh(9h)>

V1—n? 2

(oc+1)h
ez

(H22)r = (2r + 72 (=(0 + T)h¢)> e TN — 9pe= (N _ (6 4 1Yp2hem(OTTIR

(c+7)h —
(H11):; = —hze 2 (7‘ cosh(6h) + = <7‘ . 3 0772> sinh(@h))

Vi-n?
(0 cosh(6h) — \/11_7”2 (cr + (T 5 ”)nz) sinh(eh))

(oc+7)h —
(H13). = h.e™ 2 (w cosh(6h) + S (U —2|— T) sinh(@h))

i

(c+1)h

(Hss). = hze

(Ha2). = —(0 4 7)r?h.e "T0

We now calculate the components of #='H, and H'H,.

—Hss 0 Hys (Hi1)r 0 (Hi3)r
H 'H, = (otmh 0 e2(etm)hy =2 0 0 (H22)r 0
H13 0 *Hll (H13)7‘ 0 (H33)r
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We’ll start with the 11 component.

(H_lHr)u = 6_(J+T)h(—H33(H11)r + Hi3(Hi3)r)

(c+71)h (c+7)h
767(U+T)hH33(H11)7- —e 2 e 2 e*(”JrT)hhT(cosh(Gh) —

1 .
i smh(@h)) e

5 <T cosh(0h) + ﬁ (T - ‘Uﬁ) sinh(Qh))
= h, (7’ cosh?(6h) + (

()

= \/17_772
) sinh(0h) cosh(0h) — 1772 (T _ b _2")’72) sinhz(eh))

eI L (H hr< s h@h)(mco*h oh) + ——1 (U+T>sinh 0h>
13(H13) \/7111 B sh(0h) T2 2 (6h)
2
= hr ( m( ) sinh(6h) cosh(0h) + : ﬁ . <U —;— T) sinh? (Gh))
_ 2
hr(T(1+Slnh2 (6h)) 1_1 (77 (r 2‘7)’7 77]2(U;T)>sinh2(9h))

Moving on to the 13 component.

(H'H,)13 = 6_(U+T)h(—H33(H13)r + Hi3(Hss)r)

e~ o (Hys)r = hy ( cosh(6h) — \/11_7772 sinh(eh)) (@ cosh(6h) + 177_ - <” ;r T) sinh(Gh)>
—h, (@ cosh?(0h) + < - ;\T/If):; + \/1"_ = (" ‘; T)) sinh(6h) cosh(0h) . ..

— 1 _777}2 (U;T> sinh%@h))

e TN (Has)r = hy \/177_7172 (sinh(eh)) (0 cosh(6h) — \/11_7772 (0 G _2‘7)’72) sinh(eh))

(H ' H,)13 = hy ( _lrmomy m <a - a) sinh(6h) cosh(6h) . ..

2 2y/1 —n?
_(t1—0) T—o  (r—o)n sinh?
(-5 g - S ) son)

(H " H)g = -7 - 9y
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Moving on to the 31 component.

(H_lHr):n = 6_(U+T>h(H13(H11)r - H11(H13)r)

ety (H)r = —ho 177 = sinh(0h) (T cosh(6h) + L (T - (T ; 0)772> sinh(@h))
-1

6_(U+T)hH11(H13)r = —hr(cosh(Qh) +

ﬁ sinh(&h)) ( _2”
A+ \/L (" ;“ T) smh(eh))

(( )cosh2 Oh) + (T;” 11 yorr 1 )cosh(eh)sinh(eh)...
_|_

_772 2 /1_772
1
2 1—77
(HﬁlHr)31 :hr((T—U)U +

< T B T

2 \Vie Ve
1 (r—o)n? T—0 T+4+o0 1 . 2

..+77( 1—712(T 3 + 3 + 3 = sinh”(0h)

_ (7—70—)77 T—0 772 _ 1 .12
,hr< 5 +7n 2 —i—1_772 1_772—|—1 sinh”(0h)

. +

51nh2(0h)>

) sinh(0h) cosh(6h) . ..

Now we move on to the 33 component but utilize the previous calculations.
When calculating & we use the calculations for the determinant of H.

(HilHr)33 = 67(U+T)h(H13(H13)r — Hy1(Hss)r)
—(o+7)h 0
k= ( +)’8 (H13—H11H33)—(0'+T)h
= 67(U+T)}L(2H13(H13)7‘ — (H11)rHszz — (Hsz3)rH11)

(0 +7)he = (H 'Hy)ss + (H 'Hy)na
(H'H,)s3 = oh,

Now we move on to the 22 component.

(HﬁlHr)gz = p2elotn)h (2rei<a+7>h — (o + T)TQhr€7<J+T>h>

T (o + 7)(hr)

The calculations for the components H~'H, are identical to the calculations for
H~'H, except that n. becomes n. and the 22 component is slightly different.
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The results are stated below.

(H 'H.)1, = ch.
(H 'H.)33 = 7h.

(Hﬁle)w _ _(7' - U)th

(H ™ Ho)or = 7=,

(H 'H.)2s = —(0 + 7)h.

We have that these components together satisfy the harmonic map equations

. . . A A
since h is harmonic and Z(rr=') + Z(rr™") = 0.

7.3 The Derivation

7.3.1 Reconciling the Matrix Exponential

We now show how this solution was derived. Let P be a matrix whose compo-
nents are harmonic which takes the following form:

-1 0 O
Let =10 1 0
0 1

<
Il
oo

0
B
0

Qe U

Essentially we are constructing # from P using the exponential function for
matrices. We have from the background chapter that adxy = [X,Y] where [X,Y]
is the commutator of the matrices x and v. This is because the Lie group is
the set of all invertible 3x3 matrices thus the Lie algebra is simply the set of
3x3 matrices. We consider the following two matrices:

pT J - Pl JPJ
A=-— P PT+JPJ(Pr_ 2 + 2 )
_Pf JPTJ_i{P_PiT_'_JPJP_i }
2 2 2! 2 2
1 Pt JPJ pPT JPJ PT
— - 42 |\ p-_ 4t
M [P 2 T2 { ;s t T f ”
F__PZT+JPZJ+i G _PE+JZJ
) 2 — (j+ 1) p-BL LB 2
P JPJ 1, PT . JPJ P Pl JP.J
2 2 2! 2 2 2 2
T T T
+%[P_P7+JPJ {P_i+JPJ P, _PZZ JJ;ZJ”M.OJ&
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We are interested in knowing how many non-zero components A and T actually

have. We start by calculating —Z- + 22 and P — & 4 27,

A A
pr gpy [72° -3 3 0 -3 0 0 B3
_TJFT =lo £ o |+l0 £ o0 |= 0 0 0

C C

-5 0 5 -5 0 g -2 00
Py 0 0o —2tE A 0 D A 0o £5E
5t tP= 0 0 0 +10 B o0f= 0 B 0
—LEE o 0 E 0 C e

2

. . T T
We now consider the matrix Q = |P— £~ + 222 p, — B 4 JPed )

(D — E)(Dr — Ey) (D - E)(Dr — Ey)

Q1 = AA, — 1 — AA, + , =0
Q22 = BB, — B,B=0
Qs — A(D, — E,) N (D-E)C. A(D-E) C(D,—E,)
18 2 2 2 2
A-C)(Dr—-E;) (A —=C)(D-E)
- 2 - 2
_ _A(D-E) CD.-E)  AD,—E) C.(D-E)
Q31 = 5 3 + 3 + 3
(A-C)(Dr—-E;,) (A —-C.)(D-E)
- 2 B 2 = Qus
Qs =~ L= )y o PRI B) 0
Q12 =Q21 = Q23 =0Q32=0
We now consider the matrix r= |P— £° + 24 p, _ % + L4
Ru— AA. (D—E)(ZLDZ—EZ) s (D—E)(4DZ—E2) o
Rss = BB, — B.B=0
AD. -~ E.) (D-E)C. A.(D—E) C(D.—-E.)
Risz = + - —
2 2 2 2
_(A-0)D.-E;) (A:-C.)(D-E)
- 2 - 2
Ry _A:D—E) C(D:—B.) AD.-E.)  C(D-E)
2 2 2 2
(A-C)D:.-E.) (A:-C.)(D-E)
- 2 - 2 = R
RSSZ_(D—E)(LIDZ—EZ) oot (D—E)(4DZ—EZ) oo

R12 =R21 :R23 :R32 =0
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If we set Qi3 = Ri3 =0 then @ = R=0. We then kill the higher order terms in Q

and T which allows us to construct solutions to the harmonic map equations.

To see this we define P and construct # from it using the matrix exponential.
= PT JgPJ va x X"

— Il — P —_— > =
P=P— 5 + 5 H=Je e _Elzon!

i A 0 —B5E A 0 -—B5E
P = 0 B 0 JPJ = 0 B 0
D—F 0 C D—FE 0 C

2

From this relation and the fact that J? =1 we can show that H is symmetric.

. _ _ _
H' =" J=e'"7g=gefJi=Je" = H

Since H is symmetric its eigenvalues are real. We want to make further deduc-
tions about the eigenvalues of #. To do this we need to more closely examine

the structure of H. Let X be a square matrix. We can express the components
of X", n>2 as follows.

(X™)ig = Big,ineft,n) Xiig Xiqig - Xip _yin Xing

Next we consider Pj,. Since P23 = P2y =0 we are forced to conclude that every
term in the above expression must be Pa,.

Py, = (Pa2)" Hyy = €22

Next we consider Py;. The only non zero that contains a 2 in the index is Pa..
But all the proceeding terms in the product must be P,,. Therefore the 3 in
the last index is never realized. Therefore P5; = 0. By the same logic, P3, = 0.
Therefore Hi = Ha; = 0. And by symmetry, Hi» = Hsz» = 0. We can express the
characteristic polynomial for # as follows.

Hip— A 0 His
0 = det 0 Has — A 0 = (Ha2 — A\)((Hu — A)(Hss — \) — His)
His 0 H3z — A

Therefore Hs, is an eigenvalue and it is also positive where Hs, is defined since
Hy, = eP22. Next we impose the condition on P that Tr(P) = 21og(r). This allows
to calculate the determinant of .

det(H) = det (Jeﬁ) = det(J) det (eﬁ) = _TrP) = Tr(P) — _los(r?) = 2
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From this we deduce that # is Lorentz away from the - axis (r > 0). Since
the determinant is negative there must be either 1 or 3 negative eigenvalues.
Since we know there is at least 1 positive eigenvalue we deduce that # has 1
negative eigenvalue and 2 positive eigenvalues meaning it is Lorentz. Next we
show that H obeys the harmonic map equations in the case when Q.3 = Ri3 = 0.
We use the formula for the derivative of the exponential matrix found in Hall’s
book “Lie Groups, Lie Algebras, and Representations” [16, p. 71].

14 _ P00 F_ PO F
H "H, = JJae =e ar
1 1 —
= T7§[P7PT]+§[P7[P7PTH+h0t

-1 —-P
H, = —e = —_—
H JJaze e 826
1 1 — .
= Z_§[P7PZ]+§[P7[P7PZH+hOt
=P.

The components of H~'H, and H~'H, are linear combinations of the cor-
responding partial derivatives of pP. Since P, + P.. + &= = 0, it follows that
2 (rH'H,) + Z (rH 'H.) = 0.

123



M.Sc. Thesis — S. Zwarich McMaster University — Mathematics

7.3.2 Restriction on the Components of P

We now construct the example.
First, we note that Q.5 = Ri3 = 0 restricts our choice of components for H.
O = (A— C)(QDT -E) (A — Cr2)(D —F) —0
(A= C)(D, — E,) = (A, — C,)(D — E)
D,—E A -G,
D—-FE A-C
log(D — E) = log(A — C) + log(n(z))
(A-C)(D. - E.) (A.-C.)(D—E)
2 2
(A-C)(D:—E.) = (A: = C:)(D - E)
D.—E. A.-C.
D-FE A-C
log(D — E) = log(A — C) + log(7n(r))

Ri3 = =0

Here  and 7 are arbitrary functions of = and r respectively. It follows that
log(A — C) and log(D — E) differ by a constant which is log(n) = log(7).

log(D — E) =log(A — C) + log(n)
D-FE=nA-0C)

Let » be a harmonic function, we will use it repeatedly in the components of
H. Note that we're assuming that r — o # 0 since we want non constant twist
potentials.

A=rT1h C=oh

B =2log(r) — (0 +1)h =

In terms of calculating the components of A, the component H., is straight-
forward but the other 3 non-zero components require closer examination of e”.
The components of (P");;, where i,j € {1,3}, are made up of P,;, Pi3, Ps; and
Ps3. To see this we go back to the formula for the components of powers of
P. The leading factor has a 1 or a 3 in the first index so for the term to be
non zero the second index must have a 1 or a 3. This argument carries to the
subsequent factors since the second index of the kth factor is the first index of
(k 4+ 1)th factor. Since Pi;, P13, Ps; and Ps3 are all made up of multiples of &,
we know that (P");;, where i,j € {1,3}, is factor of h*. We denote this factor by
Pﬁ?). We have the following recurrence relations where n > 1.
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(n—1)

P =PUPL Y 4+ PPy
P _ pUOpnn | ppn-n
ﬁ(ln) _ ﬁ(l)ﬁ(n—l) +f(1>ﬁ(n_l)

n—1)

P — PP L pLpn

Where PY =1, P§y =1, and P = = 0. And where P} =, Py = o,
and Py = Py = o 21 Here P, is obtalned from the matrix 7 and the P is
solved for using the recursive equations.

7.3.3 Solving the Recurrence Relations

We can divide these 4 recursive equations into 2 subsystems and then analyze
each subsystem. By repeatedly subbing in the equation for 7§} into the equa-
tion for P{7 we obtain an equation solely in terms of P{7” where 0 <m <n—1.

2.2 .
P pnn (T :) n (Z?:_Ozozﬁgrlz—(wm))

We can compare Pt} to P\~ " to obtain a simplification.

2

2
n—1 n—2 T —0 _ i—=(n—1—(i42
Pgl ) = P51 ) 7( 4) d (E?:(?U Pgl ( )))
S(n-2) (r —0)*n?

TP 4 u (E?:_fgi_l?gr;_(”z)))

2
— P (r—0)n (zf -2, 1P<n—<z+2>>)
4o
2, 2
n n—1 n—1 —(n—2 T—0 —(n—2
B _ B _ B ) ( 4)77p<11 )
2, 2
PY{) = (U+7')P11 - <UT+ 7(7- Z) U )ﬁ(ﬁ_Q)
Now we have a second order recursive sequence so the roots of the correspond-
ing quadratic equation are essential for finding a formula for the sequence.

(r —Z)QUQ)

o+T1+ \/(0—1—7')2 — (4ot + (1 — 0)?n?)

0=s"—(o0+7)s+ (0’7‘+

o4 TE(T—0)\/1 -7

2
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We’ll only consider the case where the roots are non-repeating. We obtain the
following expression for P\;. Where 4 and B are constants.

) _A<G+T+(TU)\/1772>"+B<U+T(TU)W>n

2 2

We can now work out PS; from the original recursive equations.
SD)50) s+l wn)w1)
P13P31 :Pll _P11P11

n(r—o)5m _ 1 1 ctrt(r—o)I-m\"
i (1) ()

1 c+T7—(T—0)y/1—7n2 e
o) (o)
T 1 o+ T4+ (T —0)\/1—n? "
Ry

1 o+7—(T—0)y/1—n? "
..+<1 1—772>< 2 ))

(<1+ 1 ><U+T+(7’_U)M_T) <U+T+(T—U)m>n.”

2 2

1 oc+1—(T—0)y/1—n? o+1—(r—0)y/1—7n? "
o) () ()

nP(n)_<1+ 1 ><—1+m><a+r+(r—0)m>n
31 — 2

1—n2 2
(- 1 14+4/1-n? o+T—(1—0)y/1-n? !
“ 1—12 2 2
S _ ( ctr+(r—o)/I-7\ [(otr—(r—a)/I-7? ")
N 5 5
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Now the recursive equation for Py is identical to that of P} except that the
initial values are different. Let ¢ and D be constants.

<n>_(ww@—@ﬂ)"w<a+r-<r—a>m>"

Py =
330 9 9

PO =1=C+D

P:(;;)ZUZC(O"FT*F(TO’) 1772> +D<O’+T(T2J) 1772)

2

U_C<O'+T+(T—O') 1—n? U+T—(T—U)m>+(U+T—(T—U)M>

- 2 a 2 2
Clr—o)/1—n? —(T—0)+(T2—U) 1-n

— 1 1 — 1 1

C=:--— D=~

2 2y/1—n2 2+2 1—n2

ﬁ(n)_l 1 1 o+ 74+ (1 —0)/1—n? "

33 D) M B

...+<1+ 1 ><0+T—(T—U)\/1—n2>>

1—n? 2

Now because we know H is symmetric we know that (JH)i3 = —(JH)s:. It

follows that each coefficient of a power of » in each term of (JH),; must be the
negative of the coefficient of the corresponding power of » in (JG)s:. Therefore
S _ 5
P13 = 7P31 .

5(n)
Py’ =—

2y/1 —n?
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7.3.4 Computing the Components of H

Now we are in position to compute the components of H. The simplest is Hss.

21 — 2 —
Hos = e ogr—(o+7)h = rle (o+71)h

o F(n)h"
Hy = 72”:0]—[51)7'
n:

__E;L"’_ol<<1+ ! ) (U+T+(70)W>n

2 V1-—n2 2
(- 1 c+7—(1—0)y/1—n? " h"
0+T+(Tfo')m h "
1 1 . 2
=—— 1|1+ Yim—o e
o4+7—(1—0)\/1-n2 h "
1 1 . 2
—s(1- = | =
2 1— 772 n!
1 1 <a+7’+(7'72¢7)\/17n2>h 1 1 <o+7'7(7'720')\/177]2>h
= (1+ e S (S I S
2 1—n2 2 1—72
1 (o+7)h <( <(T—0')\2/ 1—772>h _((T—O‘)\Q/ 1—7]2>h> 1 ( ((T—o‘)\z/l—n2>h _((T—o’)\2/1—n2>h))
=—-e 2z e +e + e —e
2 1— 2
(o) o)1= 1? o)1= 1?
— e (cosn( (TZIVEIZT) ) L (T VA,
2 1— 772 2
-~ AL
Hss = Zn:OH:(ﬁ)*,
n:

_z:fol(<1_ ! > <U+T+(T—U)\/1—n2>n
1—n?

2 2
(it o+T—(T—0)/T—12 n)h”
1—n? 2 n!
O+T—(T—0O 7'72
1 1 otrH(r—o)y/1-n2, 1 1 (%; Vl')n
= (1-—— e 2 o1 — e
2 1—n2 2 1—n2
(o47)h - —2 — o) /1—12
=e 2 (oh((T o)Vl nh) sinh<(T o)Vl nh))
2 — 2
o =(n A
His = _En:OH(13>7'
n!
0o n c+7+(T—0)/1—n? o+17—(1—0)y/1—n? A"
"=0q 11— 2 2 n!
o+T — 1—n?
= L — ) " sinh (r=o) ",
1—n? 2
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There are principally two cases, n <1 and 5 > 1. In the first case the equations
are as is but in the second case the hyperbolic functions change to trigono-
metric functions.

Hy = 7ed;Th (COS<(TO)\/77271}L> n 1 Sin<(TU)2 n21h>>

2 vn2 -1
(o+7)h — o) /2 —1 - 2]
Hszs =e 2 cos (r—a)vn h|— ! sin (r=a)vn h
2 V2 -1 2
o4T — 2 1
Hio - ne;hsm<<70> \/nh>
2 —1 2

However in our solution we require that the lower right minor be positive
definite away from the z-axis. This requires that Hs; be positive. So with
that in mind we can disregard the n > 1 case since we would need a harmonic
function bounded from above and below in order for Hs; to be positive.

7.3.5 Calculation of «

We proceed by calculating « in the case where h = — 21+ . We use the formulae

from chapter 2 for the partial derivatives of o and the formula for P.

o = §<Tr(ﬁf) ~Te(P) - i)

T2
R A S
(2 +22)8 (r2+22)8
Tr 0 n(r—o) r
(24223 (24223
P — 0 2 _ _(rto)r 0
" (r24:2)2
_”I("'*U) T 0 or
(r2+22)2 (r2+422)2
Tz 0 n(r—o) z
(124223 (24223
?z _ 0 (t40)z 0
(r2+22)2
7”]("’*0) z 0 oz
(r2+22)% (r2+z2)%
2 2 2
r 2_ 7 2 2 2 T z (0 +71)
= S - 4 :
(e 8((7’ D) (T 0') +o +(0’+T) )((7’2 +22)3 (7“2 +Z2)3) (r2—|—z2)%
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Let v =72 - é(f —0)?4 0%+ (0 +7)2. We now integrate o, with respect to r.

T r? 4 22 B 22 _ (oc+71)
=5y ) 4<,«2+z2>%>

2
e B e
(

8 ) (r2+22)2 4 (r2 + 22)3 2 2 22)3
2
¥ 1 ¥ z o+T 1
=—=z — |4
16r2+22+16(r2+z2)2+ 2 \/m+ (=)
0 2 o+T 1

+V(z)

o =

62 T 2 i

We now solve for v(z) by differentiating with respect to » and comparing to
the formula for a..

2
az:z 7z (oc+71) z

4 (r2 + 22)3 - B) N 22)% + 0.V (z)

o = %Tr(HTHZ)

~i(mrar )

Therefore v(z) is a constant.

7.4 'Topology of the Solution

The topology is found by noting that in the interior of the orbit space we have
{(r,2z) € R*|r > 0} x T* as the topology upstairs and on the boundary of the orbit
space we have {(r,z) € R®|r = 0,z # 0} x S3 as the topology upstairs. We can
combine these into 1 set My = {(p2, z1,y1,7,2) | (r,2) # 0,23+ y? =%, r > 0}. We have
that My ~ ' x (Rx R?) —{0}) = S* x (R®* — {0}) =~ §' x §% x (0,00). Where we have
identified the cone with R
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Chapter 8

Conclusion

In our analysis of 5-Dimensional stationary bi-axisymmetric solutions to the
vacuum FEinstein equations we have come to the conclusion that the solution
found in example 2 of Khuri et al.’s paper [18] is general in that its metric
is diagonal. This is of course derived from the smoothness condition for an
alternating (1,0) and (0,1) rod structure. Thus their ansatz is sharp at least for
example 2. In our new solution we showcased in the last section the metric is
non-diagonal and but is missing a point on the boundary of the orbit space. It
is likely not possible to hide this missing point where a corner point would be
by extending this solution to a rod structure with a horizon rods and (0, 1) rods.
This is because multiple parts of the metric blow up. Such a rod structure
would be similar to example 1 in Khuri et al.’s paper. The fact that there
is an instantaneous horizon rod at the singularity suggests a relation to zero
temperature extremal blackhole solutions. However there might be a way of
obtaining an even more general form of the metric using exponentials of cubic
roots of unity multiplying harmonic functions. Of course the rod data would
somehow have to be relaxed further.

We demonstrated in chapter 5, that example 2 respects the smoothness
conditions derived in chapter 3 in analyzing its behaviour near the z-axis. The
asymptotics for example 2 were found in a concrete way; shedding some light
on a Fourier series that was not mentioned in Khuri et al.’s paper (however
they alluded to it by mentioning the modified Bessel functions). At a more
basic level we showed how to obtain the harmonic map equations from the
Ricci flat conditions and the symmetries. We also showed how the Myer’s
and Nicola’s periodic analog to the Schwarzschild solution was found starting
from converting Schwarzschild solution to its Weyl form and then performing
a generalization. New research goals could be to understand the smoothness
condition for a horizon rod and check whether the other examples which occur
in Khuri et al’s paper obey the smoothness conditions. Also there is potentially
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a chance of a non-analytic metric which has an alternating pattern of (1,0) and
(0,1) rods that could have non constant twist potentials or at least be non-
diagonal.
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