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Abstract

This thesis consists of three parts, each part addressing a challenging question as regards mathematical

and computational modeling in electrochemistry, with particular applications to Lithium-ion batteries.

The first problem concerns the mean-clustering approach to modeling the evolution of lattice dynamics,

which finds application in describing the lattice structure of Lithium-ion cathodes. Instead of tracking the

state of individual lattice sites, this approach describes the time evolution of the concentrations of different

cluster types. It leads to an infinite hierarchy of ordinary differential equations which must be closed by

truncation using a so-called closure condition. The pair approximation is the most common form of such

closure. Here, we consider its generalization, termed the “optimal approximation”, which we calibrate

using a robust data-driven strategy. The form of the obtained optimal approximation allows us to deduce

a simple sparse closure model. In addition to being more accurate than the classical pair approximation,

this “sparse approximation” is also physically interpretable, which allows us to a posteriori refine the

hypotheses underlying construction of this class of closure models. On the other hand, parametrization

of the mean-cluster model closed with the pair approximation is shown to lead to an ill-posed inverse

problem.

In the second problem we investigate the question of the state-of-charge estimation in cells operating

under dynamic loading conditions. We use a hybrid data-driven strategy, referred to as “sparse identifi-

cation of nonlinear dynamics”, in order to obtain a sparse representation of the dynamics of the system

based on a provided library of candidates terms in the evolution equation. This strategy leverages the

measurement data acquired using Electrochemical Impedance Spectroscopy and the sparse regression

techniques. The dynamical system identified in this way is then used in combination with a suitable

Kalman-type filter in order to enhance the estimates of the state of the system based on the measurement

data while in operation.

In the third problem we construct a data-driven model describing Lithium plating in a battery cell,
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which is a key process contributing to degradation of such cells. Starting from the fundamental Doyle-

Fuller-Newman (DFN) model, we use asymptotic reduction and spatial averaging techniques to derive a

simplified representation to track the temporal evolution of two key concentrations in the system, namely,

the total intercalated Lithium on the negative electrode particles and total plated Lithium. This model

depends on an a priori unknown constitutive relation representing the plating dynamics of the cell in

function of the state variables. An optimal form of this constitutive relation is then deduced from experi-

mental measurements of the time-dependent concentrations of different Lithium phases acquired through

Nuclear Magnetic Resonance spectroscopy. This is done by solving an inverse problem in which this

constitutive relation is found subject to minimum assumptions as a minimizer of a suitable constrained

optimization problem where the discrepancy between the model predictions and experimental data is min-

imized. This optimization problem is solved using a state-of-the-art adjoint-based technique. In contrast

to some of the earlier approaches to modeling Lithium plating, the proposed model is also able to predict

non-trivial evolution of the concentrations in the relaxation regime when no current is applied to the cell.

When equipped with an optimal constitutive relation, the model provides accurate predictions of the time

evolution of both intercalated and plated Lithium across a wide range of charging/discharging rates. It

can therefore serve as a useful tool for prediction and control of degradation mechanism in battery cells.
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Chapter 1

Introduction

In recent decades, there has been a growing demand for green energy solutions, driving the prominence of

electrochemical systems in shaping a sustainable future. Lithium (Li) batteries, renowned for their high

energy density and extended cycle life, have emerged as pivotal electrochemical energy storage solutions.

They are extensively employed across various industries, including portable electronic devices [2], grid

storage [3], and electric vehicles [4]. Given the increasing demand for green technologies, addressing

challenges related to the reliability and performance of these systems becomes vital. Substantial research

efforts are dedicated to understanding the physical and electrochemical mechanisms governing Li-ion

cell operations. A complete understanding of these dynamics is essential for enhancing the efficiency,

lifetime, and reliability of such systems. This study focuses on improving our ways of describing the

dynamics of various processes within the cell using computational and mathematical tools.

An electrochemical cell consists of several components: a porous positive electrode, a porous negative

electrode, a separator, and an electrolyte. These components play crucial roles during the operation of the

Li-ion cell through cycling. The positive and negative electrodes are separated by a porous separator and

immersed in a liquid electrolyte. Two current collectors are attached to the electrodes at the two opposite

ends, providing electrical connections to an external circuit. Lithium, the main constituent of the cell,

exists in both the electrolyte and the cathode material. During the cell cycling, Li ions migrate from one

electrode to another, on the surface of which the intercalation/deintercalation processes occur. Intercala-

tion involves the electrochemical reaction of Li ions with the anode or cathode material, bonding with the

material. During charging, Li ions deintercalate from the positive electrode, releasing an electron. These
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electrons travel through the current collectors and the external circuit to the negative electrode’s solid

phase, while Li ions dissolve into the electrolyte, diffuse toward the negative electrode, and intercalate

into its solid phase. Charging continues until the negative electrode reaches maximum capacity to accept

Li ions (all free sites are occupied). During discharge, the reverse occurs. The positive electrode typically

consists of a Lithium-rich substrate like Lithium-Nickel-Manganese-Cobalt Oxide (NMC cathode) [5],

while common choices for the negative electrode are graphite or silicon, capable of absorbing Li during

intercalation [6]. Intercalation and deintercalation of Li ions at the electrodes are crucial mechanisms in

cell operation. These desired processes are accompanied by certain undesired mechanisms, leading to

degradation or inefficiencies affecting cell operations [7, 8]. Degradation mechanisms involve complex

physical and chemical processes that can degrade the cell over time, reduce its performance efficiency,

and limit cycle life. To understand, analyze, mitigate, and control the impact of these mechanisms, re-

searchers use experimental [9, 10] and modeling techniques [11, 12]. One contribution of the present

research is to enhance our understanding of cell processes by leveraging experimental methodologies and

computational and mathematical techniques. Specifically, our work focuses on understanding the lattice

structure of the cathode material, modeling cell operation inefficiencies in harsh operating conditions, and

identifying a quantitative model describing a primary degradation mechanism in the negative electrode

known as Lithium plating [13].

To comprehend and characterize the operation of Li-ion cells, researchers have developed mathe-

matical models that represent the processes within these cells. These models are crucial for analyzing

and optimizing cell performance. Various modeling frameworks are found in the literature, including

equivalent circuit modeling [14, 15], physics-based modeling [16], and machine-learning based model-

ing [17,18]. Equivalent circuit modeling involves assigning an equivalent circuit element to each physical

phenomenon in the cell. This method models the aggregate behavior of different processes within the

cell as a circuit, which mimics the overall dynamics of the cell without spatial resolution. In contrast,

physics-based models utilize partial differential equations to simulate cell behavior in both space and

time. They usually have the form expressing certain conservation principles (such as the conservation

of mass or charge) combined with suitable constitutive relations describing the dependence of thermody-

namic fluxes on state variables. While computationally intensive, these models effectively capture cell

dynamics while maintaining model interpretability. On the other hand, machine-learning based models

are typically purely predictive and lack direct connections to the physical principles governing the cell

operation. Consequently, these models sacrifice interpretability as they usually do not incorporate the

underlying physics of the cell. Hybrid machine-learning based models [19, 20] address this limitation

by integrating physical information into their predictive structures. Each modeling technique has distinct
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advantages and drawbacks. Throughout this thesis, we select modeling approaches based on the specific

requirements of each application. Generally, for comprehending the intricate dynamics of cells across

scales, physics-based models and hybrid data-driven based models are preferred.

One significant focus of this research is inverse modeling and data assimilation, representing the pro-

cess of integrating observational data, which can be distributed across time and space, with mathematical

models to enhance the prediction accuracy. The primary objective of data assimilation is to minimize

prediction errors generated by mathematical models and reduce uncertainties, thereby improving the ac-

curacy of forecasts regarding the system’s future states or behaviors. Various computational techniques

are employed for this purpose, including deterministic methods based on variational approaches, proba-

bilistic methods grounded in Bayesian inference, and filtering techniques [21]. Deterministic techniques,

such as variational methods, aim to minimize discrepancies between observational data and model out-

puts with respect to unknown parameters. However, these methods usually do not explicitly quantify

uncertainties in their estimations. In contrast, Bayesian inference and filtering techniques minimize the

mismatch between model output and observations and at the same time quantify the uncertainties as-

sociated with model predictions, making them more robust for handling real-world data assimilation

challenges.

Variational techniques in inverse modeling are used to develop accurate predictive models for var-

ious applications and derive insights from them. Inverse modeling techniques find application across

different scientific and engineering domains such as atmosphere modeling studies [22], reservoir charac-

terization in petroleum engineering [23], fluid dynamics [24, 25], and medical imaging tomography [26].

Researchers have also explored inverse modeling in electrochemical systems both in deterministic frame-

works [27–32] and probabilistic frameworks [33, 34]. Inverse modeling utilizes experimental data to

calibrate mathematical models, ensuring optimal alignment between model outputs and empirical mea-

surements by adjusting unknown parameters or functions. This approach is instrumental in the electro-

chemistry field for optimizing material properties and constitutive relations, such as constant diffusion

coefficients in the solid phase of electrodes [28], constant reaction rates for intercalation/deintercalation

processes at solid-electrolyte interface [28], space-dependent diffusion coefficients in the solid phase of

electrodes [35], space-dependent conductivities of electrodes [36], state-dependent diffusion coefficient

in solid phase and the transference number in electrolyte phase [27], and state-dependent ion intercala-

tion parameters [31]. In this study, the inverse modeling technique is leveraged in Chapters 2, 3 and 4 for

calibrating mathematical models.

In this study, we encounter various types of inverse problems across different contexts. The sim-
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plest type, encountered in Chapter 2, involves inverse models with constant control parameters. Standard

optimization approaches in finite dimension will be employed to solve such problems, supplemented

by regularization techniques to enhance the robustness, stability and the smoothness of the solution.

Chapter 3 utilizes a similar optimization approach but integrates sparse regularization techniques in its

framework. This method aims to achieve a sparse representation of parameter vectors, enhancing model

interpretability, reducing its complexity, and striking a balance between model accuracy and complexity.

The second type of inverse problems are obtained when model parameters vary spatially, a well-explored

area involving optimization constrained by partial differential equations (PDEs). The adjoint analysis

method is commonly applied here to solve PDE-constrained optimization problems. In Chapter 4, the

focus shifts to a different type of inverse problem where model parameters vary as functions of state

variables (dependent variables) rather than independent variables. This approach, distinct from previous

chapters, involves state-dependent constitutive relations to be calibrated through data-driven techniques.

Bukshtynov et al. [37,38] investigated similar problems using adjoint analysis to derive gradient informa-

tion. Subsequently, gradient-based optimization techniques were employed to optimize a cost functional,

with minimal prior assumptions about the functional forms of constitutive relations. Examples of optimal

reconstruction of constitutive relations in the electrochemistry research can be found in [27, 31], where

material properties are assumed to be a function of state variables, and the dependence is determined

through data-driven approach. This computational technique is used in Chapter 4 for optimal reconstruc-

tion of constitutive relations describing the plating process in the cell.

Inverse problems encountered across various scientific and engineering domains are typically ill-

posed, implying that their solutions are highly sensitive to noise in measurement data, thereby introducing

uncertainty. Even small variations in measurement data can lead to substantial changes in the identified

optimal solutions. To quantify this uncertainty and assess the degree of ill-posedness, techniques in un-

certainty quantification are employed [21]. Bayesian inference, a probabilistic method, addresses this

question by using measurement data to assign relative probabilities to different possible solutions of

an inverse problem [39]. This approach has found application in different fields such as ecology [40],

physics [41], and electrochemistry [33,34]. In the Bayesian framework, unknown parameters and consti-

tutive relations are treated as random variables, and the accuracy of their reconstruction depends on the

quality of measurements and the inherent ill-posed nature of the inverse problem. Sampling techniques,

particularly Markov-chain Monte Carlo (MCMC) methods, are commonly employed to effectively ex-

plore the posterior space and construct probability distributions. This iterative process involves repeated

solution of the forward model to sample the posterior space of random variables, navigating toward more

favorable regions while intermittently also exploring less promising areas. Rather than yielding a sin-
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gle point estimate as in deterministic approaches to solving inverse problems, the Bayesian framework

provides a posterior probability distribution for random variables representing the solution of the inverse

problem, thereby, capturing its uncertainty in a probabilistic manner. This methodology will be employed

in Chapter 2 to quantify uncertainty in mean-cluster models.

Variational methods and Bayesian inference techniques for solving inverse problems typically involve

using observational data in an offline manner. In this context, "offline" means that observational data is

extracted and then utilized collectively for model calibration. Conversely, filtering techniques, such as

Kalman filters [21], operate in real-time to minimize discrepancies between model outputs and current

observations as data becomes available. These techniques leverage past data iteratively to recursively

update and optimize estimates of the system’s state, while also quantifying uncertainties at each time

step. Kalman filters are mathematical algorithms specifically designed for recursive optimal estimation

of a dynamical system state from noisy observations over time. While variational methods and Bayesian

inference techniques are suitable for offline model calibration using historical data, filtering techniques

excel in real-time applications where continuous updates and uncertainty quantification are crucial. In

Chapter 3 of this thesis, Kalman filters are utilized for online estimation of the state-of-charge of cells.

Key aspects of this research related to inverse modeling techniques include:

• Development of an inverse modeling framework utilizing regularization techniques to estimate

constant reaction rates in mean-field clustering models. Chapter 2 focuses on parameter estimation

and uncertainty quantification of these parameters.

• Establishment of an inverse modeling framework employing sparse regularization techniques to

identify cell dynamics from a predefined library of candidate terms. This investigation is detailed

in Chapter 3.

• Development of an inverse modeling framework to estimate constant parameters and state-dependent

constitutive relations for identifying and predicting intercalation and plating mechanisms in cells.

This is accomplished in Chapter 4.

The thesis is structured as follows. In Chapter 2, a mathematical model is developed for predicting

the lattice structure of the NMC layer in cathodes. Both deterministic and probabilistic solutions to

the inverse problem are explored. Chapter 3 investigates the state-of-charge estimation of cells under

dynamic loading conditions. A hybrid data-driven model is implemented to enhance the accuracy of state

estimations. Chapter 4 focuses on developing a mathematical model to describe Lithium plating in the

negative electrode of cells where suitable. Constitutive relations are reconstructed using measurement
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data. Chapter 5 summarizes the key conclusions drawn from the thesis and some more technical material

is collected in several appendices.
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Chapter 2

Data-Driven Optimal Closures for Mean-Cluster

Models: Beyond the Classical Pair

Approximation

2.1. Introduction

Evolution of particles on a structured lattice is typically described by discrete lattice models rather than

continuous space models. These models are usually not solvable exactly and have to be studied through

computer simulations. One approach to describing the evolution of particles on a structured lattice is to

keep track of all interacting particles as is done in various Monte-Carlo techniques such as simulated an-

nealing. However, these methods are costly as they determine the lattice structure which is unnecessary in

many applications. What is often sufficient is knowledge of the type and the number of different clusters

in the lattice, which can then be used for model fitting purposes along with experimental measurements

such as, e.g., Nuclear Magnetic Resonance (NMR) data [1]. Hence, as an alternative to Monte-Carlo

methods, one can develop a simplified description of particle interactions in terms of evolving probabili-

ties of particle clusters of different types in the form of a dynamical system which is sufficient for many

applications. These approaches are referred to as “mean-field clustering methods” and find applications

in many areas of science and engineering. The Ising model, as a canonical application of mean-field

methods, is a model of ferromagnetism describing the evolution of magnetic moments in a lattice. Both
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Monte-Carlo methods [42] and mean-field methods [43] have been employed to study this problem. An-

other example of the application of such models is the contact process which is a stochastic process

describing the growth of a population on a structured or unstructured lattice. Cluster approximations

are used to find mean-field properties of such systems. Population dynamics in ecology [44, 45] is one

example of such processes. Another example is the disease spread in epidemiology that has been widely

studied on structured networks [46–52] and complex networks [53, 54]. Failure propagation [55] and

emergence of marriage networks [56] are some other examples of contact processes.

The focus of the present study is on cluster-based modeling of systems of interacting particles on two-

dimensional (2D) structured lattices. The specific application which motivates the present study is related

to prediction of the structure of materials used in Lithium-ion batteries [1]. Using a cluster approximation

method, one can construct a hierarchical dynamical system describing the evolution of concentrations of

different clusters in the lattice during a real annealing process. In other words, the evolution of concen-

trations of clusters of size n involves concentrations of clusters of size (n + 1). To solve this system of

equations one is required to close it by prescribing the evolution of concentrations of (n + 1) clusters,

which in turn will be determined by probabilities of clusters of a still higher order. This process therefore

gives rise to an infinite hierarchy of equations which is exact but is intractable both analytically and com-

putationally. Thus, one needs to truncate and close this infinite hierarchy of equations. Various moment

closure approximations have been used for this purpose. Ben-Avraham et al. [57] proposed a class of

approximations for 1D lattices with extensions developed in higher dimensions, namely, the mean-field

and pair approximations. These techniques take into account local interactions between neighbouring

elements only and completely neglect interactions between non-nearest neighbours on a lattice. While

the pair approximations have been used to model many physical systems defined on triangular lattices, it

is known that this approach is not very effective when the lattice suffers from “frustration” effects occur-

ring when the interactions between the degrees of freedom on the lattice are incompatible with the lattice

geometry [58]. Such effects usually arise in the presence of magnetic interactions where minimization of

the classical lattice energy of the system is not possible. As a result, the energy of the system converges

to degenerate ground states with some pair interactions remaining at higher energy levels. For simplicity,

we will not consider such situations in the present study.

A lot of research on cluster models has been carried out in the field of equilibrium statistical mechan-

ics focusing primarily on improving the mean-field approximation models, e.g., via the Bethe-Peierls

approximation [59] or the cluster variation method [60]. These models aim to find a mean-field solution

by making some additional assumptions about the particular system under study. Applications of mean-
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field and pair approximation methods to various problems in science and engineering can also be found

in [49, 53, 61, 62] and in [46, 47, 49, 53, 54, 61–63], respectively. Some extensions of the pair approxima-

tion technique are also introduced in [64] where interactions between different elements are considered

to be generic functions of distance. In the present study our goal is to develop and validate a general data-

driven methodology that will allow us to optimally close (in a mathematically precise sense) the infinite

hierarchy of equations. We will refer to this approach as the “optimal approximation”. This approach

leads to a general, simple and mathematically interpretable closure model.

As an emerging application of lattice dynamics, Harris et al. [1] used a simulated annealing approach

to investigate the crystalline structure of cathode materials used in state-of-the-art Lithium-ion batter-

ies. More precisely, they focused on layers of NMC (Nickel-Manganese-Cobalt) used in most modern

commercial Li-ion batteries. These cathodes are described by the chemical formula Li(NMC)O2, where

2D layers of Lithium, Oxygen and NMC are stacked on top of each other. The capacity enhancement

observed in such materials is attributed to changes in the local microscopic structure of the cathode lay-

ers [65,66], however, important aspects of this structure are not yet completely understood. Hence, further

refinement of this battery technology requires more information about the arrangement of elements inside

these layers. In [1] simulated annealing was used to generate statistical information about arrangements

of different species on the lattice in the NMC layer of a cathode, which was very costly and did not scale

up to large lattice sizes. The model developed in the present study aims to address this limitation. While

the proposed approach is general and can be applied to many lattice systems, to fix attention, we will

develop it here for the problem from [1] as an example. Other applications of approaches based on lat-

tice dynamics in physics and chemistry include organic synthesis reactions in the fields of heterogeneous

catalysis and materials engineering [67], adsorption models of binary mixtures [68] and microstructure

mapping of perovskite materials [69].

In this work, we use the mean-clustering approach to build a hierarchical system of equations for the

evolution of concentrations of different clusters inside a structured lattice of the NMC cathode layer. We

assume a triangular lattice compatible with the structure of the NMC layer [1]. This spatial structure is

important in detecting the rotational symmetries of the system. A dynamical system is constructed to

describe reactions between different species which are limited to swaps between nearest-neighbour ele-

ments. The underlying principle is that as the “temperature” decreases the lattice converges to a certain

equilibrium state through a series of element swaps, controlled by specific rate constants. Our new ap-

proach consists of two distinct steps: first, the truncated hierarchical dynamical system is closed using an

optimal approximation whose parameters are inferred from simulated annealing data; it is demonstrated

9



Ph.D. Thesis - A. Ahmadi McMaster University - CSE

that such an optimal closure is in fact both simpler and more accurate than the nearest-neighbour approx-

imation proposed in [57]. Additionally, robustness of the predictive performance of the obtained model is

demonstrated based on problems with different stoichiometries. Second, the reaction rates parameterizing

the dynamical system with the three types of closure, i.e., pair approximation, optimal approximation and

sparse approximation, are inferred from the simulated annealing data using a Bayesian approach which

also allows us to estimate the uncertainty of these reconstructions; this will show that the model with

the optimal closure is also less prone to calibration uncertainty than the model closed with the nearest-

neighbour approximation.

The paper is organized as follows: further details about our model problem are presented in Section

2.2; then, in Section 2.3 we introduce a dynamical system governing the evolution of the concentrations

of different clusters and in Section 2.4 we describe and analyze the closure models we consider, which are

the pair approximation and the optimal closure, the latter of which leads to the new sparse approximation;

reactions rates in the resulting dynamical systems are then inferred using a Bayesian approach in Section

2.5; finally, summary and conclusions are deferred to Section 2.6 and some technical material is collected

in Appendix A.

2.2. Model Problem

In this section we provide some details about a lattice evolution problem that will serve as our test case.

In [1] Harris et al. used a simulated annealing method to identify an evolving arrangement of particles

on the lattice and keep track of their interactions. One material similar to the materials actually used in

Li-ion batteries is Li[Li1/3Mn2/3]O2, where 2D sheets of an Oxygen layer, transition metal layer and

Lithium layer are stacked on top of each other, as shown in Figure 2.1. Transition metal layer consists of

Manganese and Lithium.

In the simulated annealing method, the energy of the system is calculated by considering the local

charge neutrality at oxygen sites. Each oxygen element is surrounded by six nearest neighbours, cf. Figure

2.1. The energy of each oxygen site is then determined by considering the charge contributions of the

neighbouring sites to its charge balance with the goal of achieving neutrality. The simulated annealing

approach attempts to find a 2D lattice configuration minimizing the total energy of the systemE =
∑
iEi

corresponding to a specific “temperature”, where Ei is the energy over each oxygen site. This is a

probabilistic approach to finding global optima in a discrete space described by the Boltzmann distribution

and mimics the annealing process applied to actual materials. These materials are annealed at a high
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(a) (b)

Figure 2.1: The Li[Li1/3Mn2/3]O2 lattice considered in [1] and shown here in (a) a 3D view
and (b) a 2D view. The red, green and blue elements represent the Oxygen, Lithium and the
transition metal (either Lithium or Manganese), respectively.

temperature, followed by quenching to the desired temperature. The choice of how the temperature

is decreased is in principle arbitrary, however, the equilibrium state must be reached at the end of the

annealing process for every arbitrarily chosen temperature profile (we note that here “temperature” does

not refer to the thermodynamic temperature of the system). The details of this approach we consider can

be found in [1].

In the crystal structure of the annealed metal layer of Li[Li1/3Mn2/3]O2 each triangle consists of two

Mn elements and one Li element. In this structure, the energy Ei over each oxygen site becomes zero

and the total energy of the system will be zero accordingly, as shown in Figure 2.2b. In the simulated

annealing study of this structure the temperature was reduced in a stepwise manner and enough time

was allowed for the structure to stabilize at an equilibrium at each intermediate temperature. The results

obtained for the system with Li1/3Mn2/3 are shown in the form of the final lattice structure in Figure

2.2. Annealing experiments with the same protocol were also performed for systems with different ratios

of Li and Mn in LixMn1−x where x ∈ {0.25, 0.30, 0.33, 0.36, 0.42, 0.50, 0.58, 0.64, 0.70, 0.75}, but

these results are not shown here for brevity. Our goal is to build a model that will accurately predict

the evolution of concentrations of different particle clusters present in the lattice without having to solve

the entire annealing problem. We note that the elements Mn and Li have charges, respectively, of (+4)

and (+1). However, the cluster approximation model, cf. Section 2.3, makes no assumptions about the

charges of the elements and hence for simplicity the symbols (+) and (−) will hereafter represent the

elements Mn and Li, respectively. The concentrations ‹Ci, i ∈ {(++), (+−), (−−)} of 2-clusters as

functions of time (or temperature) will be used as data to construct the optimal closure approximation

and to infer the reaction rates in the model. The lattice evolution in this method does not have a natural

time scale and for concreteness we will assume that the unit of time is set by an individual iteration of the
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simulated annealing experiment. Notably, in this model all concentrations are independent of location on

the lattice due to spatial homogeneity.

(a) (b)

Figure 2.2: (a) Initial random state and (b) the final ordered state of the lattice for the Li1/3Mn2/3

system obtained via simulated annealing [1]. Black and green dots represent Li ions (more
generally, negative elements) and Mn ions (more generally, positive elements), respectively.

2.3. Cluster Approximation

In this section we develop a system of evolution equations for concentrations of clusters in a two-element

system with elements denoted (+) (or +©) and (−) (or –©). In this study, a cluster of size n is referred

to as a n-cluster and elements inside the cluster form a closed or an open chain. The concentration of a

cluster is defined as the probability of finding that particular cluster among all clusters of the same shape

but with different compositions. As an example, the concentration of the 3-cluster shown in Figure 2.3 is

denoted Cijk, where i, j, k ∈ {+,−}.

Remark. The normalization condition requires that the sum of the concentrations of all possible

n-clusters with the same geometry must be equal to one [57]:

∑
S1,S2,...,Sn

CS1S2···Sn = 1, (2.1)

i j k

Figure 2.3: An example of a linear chain 3-cluster on a 2D lattice.
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where the indices 1, 2, 3, . . . , n enumerate different sites within a cluster with two consecutive

ones corresponding to nearest neighbours and Si ∈ {+,−} denotes the state of that specific site.

Applying this to 1-clusters and 2-clusters in our model, the following equations are derived from

the normalization condition:

C+ + C− = 1 (2.2a)

C++ + C−− + C+− + C−+ = 1. (2.2b)

The concentrations of the (+−) and (−+) clusters are the same due to the rotational symmetry

of the system, as stated in Theorem A.1.1 in the Appendix, such that C+− = C−+. Hence, the

normalization condition becomes

C++ + C−− + 2C+− = 1. (2.3)

The aim is to deduce a dynamical system describing the evolution of the probabilities of 2-clusters.

There are three different types of 2-clusters found on the lattice, namely, +© +©, –© –© and +© –©.

2.3.1 Production and Destruction of 2-Clusters

The rate of change of the concentration of specific clusters is determined by the rate at which they are

produced and destroyed. Production or destruction of a certain cluster occurs through swaps among

nearest-neighbour elements on the lattice. Each swap of nearest-neighbour elements is called here a

reaction. The rate equations can then be derived using the window method [57]. In this approach we

consider all possible reactions that change the composition of a particular 2-cluster in a certain window

containing this cluster, via a swap between one of the elements inside the window and one of its nearest-

neighbour elements outside the window. For example, in order to derive the rate equation for the ( +© +©)

cluster, in Figure 2.4 we show all possible reactions that will produce or destroy this cluster via nearest-

neighbour element swaps. We note that all of these reactions occur in a 2D sheet rather than on a 3D

lattice, which is compatible with our model problem introduced in Section 2.2. In each of the reactions,

the neighbour element (highlighted in red) will swap with one of the elements of the window (highlighted

in blue) to produce a ( +© +©) cluster in the forward reaction. Conversely, reverse reactions destroy the

( +© +©) cluster and produce a ( +© –©) cluster. The rotational symmetry of the lattice allows us to reduce

the number of possible reactions to those shown in Figure 2.4. Moreover, reactions taking place inside a

triangular-shaped 3-cluster do not change the total count of 2-clusters inside the triangle and are therefore

13
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+ –
+ k1

k3

+ +
–

+ – +
k2

k4

+ + –

Figure 2.4: All unique (up to rotational and translational symmetries) reversible reactions to
destroy or produce clusters (+○+○) and (+○ –○).

– +
– k5

k7

– –
+

– + –
k6

k8

– – +

Figure 2.5: All unique (up to rotational and translational symmetries) reversible reactions to
destroy or produce clusters ( –○ –○) and (+○ –○).

disregarded. This observation eliminates the number of possible reactions and hence simplifies the model.

Each reaction has a unique rate constant denoted k1, k2, . . . , k8. Note that these rate constants are required

to be non-negative.

As can be observed in Figure 2.4, 3-clusters with three types of bonds are involved in the derivation of

rate equations. The first type is the linear 3-cluster in which the two bonds are colinear. The second type

is the cluster in which there is an obtuse angle of 120 degrees between the bonds due to the triangular

shape of the lattice. The third type is the triangular cluster in which the elements form a triangle with 60

degrees between the bonds. We will refer to these as the linear, angled and triangular clusters, respec-

tively. For simplicity, linear clusters will be represented as a combination of elements with a straight line

[(• • •)], angled clusters as a combination of elements with a hat sign [÷(• • •)] and triangular clusters

as a combination of elements with a triangle [Ì(• • •)], where • is either + or −. The set of all 3-cluster

types will be denoted

Θ =
{

+ + +,−−−,+ +−,−−+,+−+,−+−,÷+ + +,÷−−−,÷+−+,÷−+−,÷+ +−,÷−−+,Ì+ + +,Ì−−−,Ì+ +−,Ì−−+
}
.

(2.4)

The rate equations for the ( –© –©) and ( +© –©) clusters can be derived in a similar way, by considering all

possible reactions that produce or destroy these two clusters as shown in Figure 2.5. We thus obtain the

following system of rate equations for the concentrations C++, C−− and C+−

d

dt
C++ = 4k1C÷+−+

+ 2k2C+−+ − 4k3C÷++− − 2k4C++−, (2.5a)

d

dt
C−− = 4k5C÷−+− + 2k6C−+− − 4k7C÷−−+

− 2k8C−−+, (2.5b)
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d

dt
C+− = 2k3C÷++− + 2k7C÷−−+

+ k4C++− + k8C−−+

−2k1C÷+−+
− 2k5C÷−+− − k2C+−+ − k6C−+− .

(2.5c)

We note that in deriving the rate equations for the (++) and (−−) clusters, cf. (2.5a)–(2.5b), each

reaction is accounted for in proportion to the number of its rotational symmetries on the lattice. For

example, destruction of the (÷+−+) cluster shown in Figure 2.4 can also occur in 3 other configurations

of the cluster obtained by rotating the original cluster. Hence, a coefficient of 4 appears in equations

(2.5a)–(2.5b) to account for these symmetries. We note that, on the other hand, the linear clusters have

only 2 possible symmetries, hence a coefficient of 2 appears in front of the relevant terms. Moreover, as

regards the rate equation for the (+−) cluster, the number of rotational symmetries for each 3-cluster is

half of those considered for the other two cases such that in equation (2.5c) the corresponding coefficients

are 2 and 1. The reason is that the (+−) and (−+) clusters are distinguished in the model and to clarify

this, consider a (++) cluster inside a (+ +−) cluster. A swap between elements (+) and (−) will

result in the production of a (+−) cluster. However, if we rotate this 3-cluster, we get a (−+ +) cluster

and a swap between the elements (+) and (−) will result in the production of a (−+) cluster. Hence,

the rate equations for the evolution of the (+−) and (−+) clusters have to be derived individually. In

system (2.5), the rate equation for the (−+) cluster is not included, as it will be accounted for via the

normalization condition (2.2b). Again, due to the rotational symmetry, the concentrations of the (+−)

and (−+) clusters are equal, hence the normalization condition simplifies to (2.3).

An important aspect of system (2.5) is its hierarchical structure in the sense that the rates of change

of concentrations of 2-clusters are given in terms of the concentrations of 3-clusters and if one were to

write down equations for their rates of change they would involve concentrations of 4-clusters, etc. Thus,

system (2.5) is not closed and needs to be truncated which we will do so here at the level of 2-clusters.

Two strategies for closing the truncated system are discussed in Section 2.4.

In addition, the normalization condition (2.3) can be modified to a dynamic form by taking the deriva-

tive with respect to time
d

dt
C++ +

d

dt
C−− + 2

d

dt
C+− = 0. (2.6)

As can be verified, this equation is satisfied automatically by system (2.5a)–(2.5c). Moreover, the rate of

the forward reaction will be equal to the rate of corresponding reverse reaction in the chemical equilib-

rium. As we are interested in the equilibrium state of reactions, the following relations can be written for
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each pair of forward and reverse reactions in equilibrium

k1C÷+−+
= k3C÷++− =⇒ Q1 =

k1

k3
=
C÷++−
C÷+−+

, (2.7a)

k2C+−+ = k4C++− =⇒ Q2 =
k2

k4
=
C++−
C+−+

, (2.7b)

k5C÷−+− = k7C÷−−+
=⇒ Q3 =

k5

k7
=
C÷−−+

C÷−+−
, (2.7c)

k6C−+− = k8C−−+ =⇒ Q4 =
k6

k8
=
C−−+

C−+−
, (2.7d)

where Qi, i = 1, . . . , 4, denote the equilibrium constants for each reversible reaction.

2.4. Closure Approximations

In this section we discuss two strategies for closing system (2.5), by which we mean expressing the

concentration of 3-clusters on the right-hand side (RHS) of this system in terms of a suitable function of

the concentrations of 2-clusters. In other words, the goal is to replace each of the triplet concentrations

Ci, i ∈ Θ, in (2.5) with suitably chosen functions gi(c), where c = [C+, C−, C++, C−−, C+−], such

that the closed system will have the form

d

dt
C++ = 4k1g÷+−+

(c) + 2k2g+−+(c)− 4k3g÷++−(c)− 2k4g++−(c), (2.8a)

d

dt
C−− = 4k5g÷−+−(c) + 2k6g−+−(c)− 4k7g÷−−+

(c)− 2k8g−−+(c), (2.8b)

d

dt
C+− = 2k3g÷++−(c) + 2k7g÷−−+

(c) + k4g++−(c) + k8g−−+(c)

−2k1g÷+−+
(c)− 2k5g÷−+−(c)− k2g+−+(c)− k6g−+−(c) .

(2.8c)

The first approach to finding these functions is the pair approximation based on the classical method

introduced in [57] and the second is a new optimal closure approximation. The problem of finding the

rate constants k1, . . . , k8 in (2.5) will be addressed in Section 2.5.
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2.4.1 Pair Approximation

The pair approximation is a classical approach to closing truncated hierarchical dynamical systems. It

was first used by Dickman [70] in a surface-reaction model and later by Matsuda et al. [44] for a struc-

tured lattice appearing in a population dynamics problem. In our model, we use the pair approximation

approach in order to close the dynamical system (2.5) at the level of 2-clusters. The state of a site is

denoted i, j, k ∈ {+,−} for a two-element system. Global concentrations are denoted Ci giving the

probability that a randomly chosen site in the lattice is in state i ∈ {+,−}. Similarly, Cij is the global

concentration of 2-clusters in state ij. In addition, local concentrations are denoted Pj|i and give the con-

ditional probability that a randomly chosen nearest neighbour of a site in state i is in state j. These local

concentrations can be expressed in terms of global concentrations using the rules governing conditional

probabilities as [44, 71]

Cij = Cji = CiPj|i = CjPi|j , (2.9a)∑
i∈{+,−}

Ci = 1, (2.9b)

∑
i∈{+,−}

Pi|j = 1 for any j ∈ {+,−}. (2.9c)

Equation (2.9a) is invariant with respect to the rotational symmetries of the lattice, cf. Appendix A.1.

Also, the global concentration of a triplet in state (ijk) can be derived in a similar approach as Equation

(2.9a),

Cijk = CiPj|iPk|ij = CijPk|ij . (2.10)

The Pk|ij term in this equation involves 3 elements in a triplet. In order to break down the triplet con-

centration in terms of pair and singlet concentrations, one is required to find an equivalent expression for

the Pk|ij term. The underlying assumption of the pair approximation method is to neglect the interaction

between the non-nearest neighbour elements, i and k in this case, according to Figure 2.3 [44, 45, 71].

This results in an approximation at the level of 3-clusters expressed in terms of quantities defined at the

level of 2-clusters as

Pk|ij ≈ Pk|j . (2.11)

A different approach could also be adopted to derive the pair approximation formulation resulting in the

same closure model. In this approach, assuming a triplet in state (ijk) on a random lattice (in which all
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i j k

i j

k i j

k

i j

k i j

k

Figure 2.6: Schematic of a 2D triangular lattice with chains of 3-clusters, namely, linear, angled
and triangular clusters. The clumping intensity of this lattice is equal to the proportion of the
triangles over all triplets types, which is equal to 2

5 .

non-nearest-neighbour elements are decoupled), the global concentration of this triplet can be written as

Cijk = CiCjCkQijQjkTijk, (2.12a)

Qij =
Cij
CiCj

, (2.12b)

where Ci, Cj and Ck denote the global concentrations of singlets, Qij and Qik are the pair correlations

of nearest neighbours and Tijk is the triple correlation of the chain. Note that element i and element k

on a random lattice are considered not to be nearest-neighbours. Also, there is no factor Qik in equation

(2.12a) as the correlation of non-nearest-neighbours is represented by Tijk. According to the underlying

assumption of pair approximation, the non-nearest-neighbour elements are decoupled. There is no de-

terministic way of calculating correlations of non-nearest neighbour elements [72] and some additional

assumptions have to be made in order to close (2.5). The standard pair approximation method neglects

all triple correlations such that Tijk = 1. This is an equivalent approximation to Equation (2.11).

Each regular lattice can be described by two parameters: the number of neighbours per site (m)

and the proportion of triangles to triplets (θ), which determines the clumping intensity of the lattice. A

triangular lattice has m = 6 neighbours per site and θ = 2
5 , as shown in Figure 2.6. Similarly, chain-like

triplets in a triangular lattice can be categorized into two groups: linear triplets with 180-degree bonds,

and angled triplets with 120-degree bonds. As is evident from Figure 2.6, the probability of finding a

triplet in a closed form, angled form and linear form is equal to 2
5 , 2

5 , and 1
5 , respectively. As the shape of

triplets is important in our model, these probabilities have to be taken into account as coefficients when

calculating the corresponding concentrations. Morris [73] and Keeling [51] have proposed formulas for

approximating the fraction of closed and open chains in a certain state (ijk) on a regular lattice by taking
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into account the clumping effect of triangles in the lattice. Following these studies, the concentrations of

each type of triplet are approximated as

Cijk ≈ gijk = (1− θ)1

3

CijCjk
Cj

, (2.13a)

C
îjk
≈ g

îjk
= (1− θ)2

3

CijCjk
Cj

, (2.13b)

CÍijk ≈ gÍijk = θ
CijCjkCki
CiCjCk

, (2.13c)

where ijk, ”ijk, and Èijk denote a linear, angled and triangular triplet, respectively. The specific forms

taken by expressions (2.13a)–(2.13b) for different i, j, k ∈ {+,−} are collected in Table 2.1. Using

this model in relations (2.8a)–(2.8c) produces a closed system of equations providing an approximate

description of the problem.

2.4.2 Optimal Approximation

As will be shown in Section 2.4.3, the closure based on the pair approximation introduced above is not

very accurate. In order to improve the accuracy of the closure, here we propose a new approach based on

nonlinear regression analysis of simulated annealing data. This is a data-driven strategy where an optimal

form of the closure is obtained by fitting an expression in an assumed well-justified form to the data. The

pair approximation scheme attempts to predict the concentrations of the higher-order clusters in terms

of concentrations of lower-order ones using expressions with the functional forms given in (2.13). In

the new approach, we close system (2.5) using relations generalizing the expressions in (2.13) which

depend on a number of adjustable parameters. These parameters, representing the exponents of different

concentrations, are then calibrated against the simulated annealing data by solving a suitable constrained

optimization problem. Information about the new more general closure relations and how they compare to

the pair approximation for different 3-clusters is collected in Table 2.1 where we also group the parameters

to be determined in the vector Vi, with i ∈ Θ representing different cluster types.

Notably, the new functional forms are generalizations of the expressions used in the pair approxima-

tion obtained by allowing for more freedom in how the new expressions for closures depend on the cluster

concentrations. The numerators of the new expressions involve concentrations of all nearest-neighbour

2-clusters such that the effect of non-nearest-neighbour clusters is still neglected. The denominators, on

the other hand, involve the concentrations of singlets present in the triplet which makes the functional

form of the new closure different from the pair approximation in some cases. The parameters (exponents)

defining the proposed optimal closures in Table 2.1 are subject to the following constraints ensuring
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Triplet Type Pair Approximation Optimal Approximation Parameters (exponents)

i gi(C+, . . . , C+−) gi(C+, . . . , C+−; Vi) Vi

+ + + 1
5

C2
++

C+

1
5

C
γ1
++

C
ξ1
+

V+++ = [γ1 ξ1]

−−− 1
5

C2
−−
C−

1
5

C
γ1
−−

C
ξ1
−

V−−− = [γ1 ξ1]

+−+ 1
5

C2
+−
C−

1
5

C
γ1
+−

C
ξ1
+ C

ξ2
−

V+−+ = [γ1 ξ1 ξ2]

−+− 1
5

C2
+−
C+

1
5

C
γ1
+−

C
ξ1
+ C

ξ2
−

V−+− = [γ1 ξ1 ξ2]

+ +− 1
5
C++C+−

C+

1
5

C
γ1
++C

γ2
+−

C
ξ1
+ C

ξ2
−

V++− = [γ1 γ2 ξ1 ξ2]

−−+ 1
5
C−−C+−

C−
1
5

C
γ1
−−C

γ2
+−

C
ξ1
+ C

ξ2
−

V−−+ = [γ1 γ2 ξ1 ξ2]÷+ + + 2
5

C2
++

C+

2
5

C
γ1
++

C
ξ1
+

V÷+++
= [γ1 ξ1]÷−−− 2

5

C2
−−
C−

2
5

C
γ1
−−

C
ξ1
−

V÷−−− = [γ1 ξ1]÷+−+ 2
5

C2
+−
C−

2
5

C
γ1
+−

C
ξ1
+ C

ξ2
−

V÷+−+
= [γ1 ξ1 ξ2]÷−+− 2

5

C2
+−
C+

2
5

C
γ1
+−

C
ξ1
+ C

ξ2
−

V÷−+− = [γ1 ξ1 ξ2]÷+ +− 2
5
C++C+−

C+

2
5

C
γ1
++C

γ2
+−

C
ξ1
+ C

ξ2
−

V÷++− = [γ1 γ2 ξ1 ξ2]÷−−+ 2
5
C−−C+−

C−
2
5

C
γ1
−−C

γ2
+−

C
ξ1
+ C

ξ2
−

V÷−−+
= [γ1 γ2 ξ1 ξ2]Ì+ + + 2

5

C3
++

C3
+

2
5

C
γ1
++

C
ξ1
+

VÌ+++
= [γ1 ξ1]Ì−−− 2

5

C3
−−
C3
−

2
5

C
γ1
−−

C
ξ1
−

VÌ−−− = [γ1 ξ1]Ì+ +− 2
5

C++C
2
+−

C2
+C−

2
5

C
γ1
++C

γ2
+−

C
ξ1
+ C

ξ2
−

VÌ++− = [γ1 γ2 ξ1 ξ2]Ì−−+ 2
5

C−−C
2
+−

C+C2
−

2
5

C
γ1
−−C

γ2
+−

C
ξ1
+ C

ξ2
−

VÌ−−+
= [γ1 γ2 ξ1 ξ2]

Table 2.1: The functional forms of the closures based on the pair approximation and on the
proposed optimal closures for each triplet type. Unknown parameters (exponents) are indicated
in the last column.

well-posedness of the resulting system (2.8)

1. the difference of the sums of the exponents in the numerators and in the denominators is equal to

one, i.e.,
∑
j γj −

∑
j ξj = 1, ensuring that the terms representing the closure have the units of

concentration,

2. the exponents in the numerators need to be non-negative, i.e., γj ≥ 0, since otherwise the cor-

responding terms representing the closure model may become unbounded as the concentration

approaches zero, causing solutions of the ODE system (2.8) to blow up,

3. the exponents in the numerators need to be bounded γ1, γ2 ≤ δ, where δ is the upper bound on

the exponent which needs to be specified, as otherwise the corresponding terms representing the
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closure model may also become large causing solutions of the ODE system (2.8) to blow up,

4. while denominators involve concentrations of singlets only, which are time independent, in some

cases it is necessary to restrict the corresponding exponents as otherwise the terms representing the

closure model will have large prefactors which may also cause the solutions of the ODE system

(2.8) to blow up; hence, we impose β1 ≤ ξ1, ξ2 ≤ β2, where β1 and β2 are the lower and upper

bounds on the exponents to be specified;

Optimal parameters Vi of the closure model are obtained separately for each cluster type i by mini-

mizing the mean-square error between the experimental concentration data ‹Ci(t) obtained from simulated

annealing experiments, and the predictions of the corresponding ansatz function

gi(‹C+, ‹C−, ‹C++(t), ‹C−−(t), ‹C+−(t); Vi), cf. Table 2.1, obtained with the parameter vector Vi over the

time window [0, T ], where T corresponds to the end of the simulated annealing process. Then, for each

i ∈ Θ, error functional is defined as

Ji(Vi) =
1

2

∫ T

0

î
gi(‹C+, ‹C−, ‹C++(t), ‹C−−(t), ‹C+−(t); Vi)− ‹Ci(t)ó2 dt (2.14)

which leads to the following family of constrained optimization problems

min
Vi

Ji(Vi),

subject to:


0 ≤ γj ≤ δ, 1 ≤ j ≤ Γi

β1 ≤ ξj ≤ β2, 1 ≤ j ≤ Ξi∑
j γj −

∑
j ξj = 1

,

(2.15)

for each i ∈ Θ, where Γi,Ξi ∈ {1, 2} are the numbers of the exponents appearing in the numerator and

the denominator for a given cluster type, cf. Table 2.1.

We note that choosing different values of the adjustable parameters δ, β1 and β2, which determine

how stringent the constraints in the optimization problem (2.15) are, has the effect of regularizing the

solutions of this problem. We will consider the following two cases (when the lower/upper bound is

equal to −∞/∞, this means that effectively there is no bound)

• “soft” regularization with β1 = −∞, β2 =∞, δ = 6, and

• “hard” regularization with β1 = 0 and β2 = δ = 2.
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In each case optimization problem (2.15) is solved numerically in MATLAB using the nonlinear pro-

gramming routine fmincon. The optimal closures determined in these two ways are compared to the

pair approximation in Section 2.4.3.

2.4.3 Results for Optimal Approximation

In this section we determine the optimal structure of the closure models given in Table 2.1 by solving

optimization problem (2.15) for each type of 3-cluster in the set Θ, cf. (2.4), as described in Section

2.4.2. Parameters of the closure relations given in Table 2.1 are determined separately for each cluster

type by solving problem (2.15) and the obtained results are collected in the form of the values of the

exponents in Table 2.2, where, for comparison we also show the exponents corresponding to the pair

approximation, cf. Section 2.4.1. We recall that for each 3-cluster type problem (2.15) is solved with both

soft and hard regularization. In Table 2.2, the optimal results are presented for solving problem (2.15)

subject to hard regularization (β1 = 0, δ = β2 = 2) by separately fitting the closure models to the data

obtained for two systems with Li1/2Mn1/2 and Li1/3Mn2/3. The first system is interesting since, as we

shall see below, due to the symmetry in the concentrations of Li and Mn, closure models calibrated based

on the data from this system are particularly robust with respect to different stoichiometries. The second

system is considered in our analysis due to its interesting behaviour at low temperatures where physically

relevant crystalline microstructure are obtained, as discussed in Section 2.2. This system is also used as a

benchmark in [1]. In Table 2.2 we note that most of the exponents in the optimal closure approximation

tend to be different from the corresponding exponents in the pair approximation. Interestingly, we observe

that many exponents obtained for the optimal closure by fitting to the data for the system Li1/2Mn1/2 are

equal to zero or one, opening the possibility of finding a simpler closure model to be investigated in

Section 2.4.4.

The mean-square error (2.14) for each 3-cluster type for the pair approximation and the optimal

closure fitted to Li1/2Mn1/2 and Li1/3Mn2/3 systems is shown in Figure 2.7. For both systems and for

almost all 3-cluster types the optimal closure leads to a more accurate description with errors (2.14)

smaller by a few orders of magnitude than when the pair approximation is used. In the next section we

will simplify the obtained optimal closure and will propose an interpretation of the resulting structure.

2.4.4 Sparse Approximation and its Interpretation

In this section we investigate the exponents characterizing the optimal closure presented in Table 2.2.

As can be observed, many exponents in the optimal closure relations are equal or close to zero and this

trend is more pronounced in the optimal closure obtained by fitting the data for the symmetric system
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Triplet Type PA OA-1/3 OA-1/2 PA OA-1/3 OA-1/2 PA OA-1/3 OA-1/2 PA OA-1/3 OA-1/2
γ1 ξ1

+ + + 2 1.12 1.00 1 0.12 0.00 - - - - - -
−−− 2 1.19 1.00 1 0.19 0.00 - - - - - -÷+ + + 2 1.00 1.00 1 0.00 0.00 - - - - - -÷−−− 2 1.39 1.00 1 0.39 0.00 - - - - - -Ì+ + + 3 2.00 2.00 3 0.99 0.99 - - - - - -Ì−−− 3 1.76 1.18 3 0.76 0.18 - - - - - -

γ1 ξ1 ξ2

+−+ 2 1.00 0.99 1 0.00 0.00 0 0.00 0.00 - - -
−+− 2 2.00 0.99 1 0.99 0.00 0 0.00 0.00 - - -÷+−+ 2 1.00 1.00 1 0.00 0.00 0 0.00 0.00 - - -÷−+− 2 0.99 1.00 1 0.00 0.00 0 0.00 0.00 - - -

γ1 γ2 ξ1 ξ2

+ +− 1 2.00 0.00 1 0.00 1.00 1 0.00 0.00 0 1.00 0.00
−−+ 1 0.38 0.00 1 0.62 1.00 1 0.00 0.00 0 0.00 0.00÷+ +− 1 2.00 0.72 1 0.52 0.28 1 1.52 0.00 0 0.00 0.00÷−−+ 1 0.66 0.15 1 0.34 0.85 1 0.00 0.00 0 0.00 0.00Ì+ +− 1 2.00 0.00 2 0.00 1.00 2 0.00 0.00 1 0.99 0.00Ì−−+ 1 0.60 0.00 2 0.40 1.00 1 0.00 0.00 2 0.00 0.00

Table 2.2: Exponents defining the optimal closure models, cf. Table 2.1, found by solving problem
(2.15) with hard regularization (β1 = 0, β2 = δ = 2) based on the data for the system Li1/3Mn2/3

(OA-1/3) and the system Li1/2Mn1/2 (OA-1/2) for each 3-cluster type indicated in the first
column. For comparison, the exponents characterizing the pair approximation (PA) are also
shown. The results are rounded to two decimal places.

Triplet Type

M
S

E

PA
OA-1/2

(a)

Triplet Type

M
S

E

PA
OA-1/3

(b)

Figure 2.7: The mean-square errors (2.14) for the pair approximation (PA) and optimal approx-
imation subject to hard regularization for (a) the system Li1/2Mn1/2 (OA-1/2) and (b) for the
system Li1/3Mn2/3 (OA-1/3).

Li1/2Mn1/2 (when an exponent is zero, then the closure relation does not depend on the corresponding

2-cluster concentration). Thus, as is evident from Table 2.3, the resulting structure of the closure is

much simpler (“sparser”) for the optimal approximation than for the closure obtained based on the pair
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approximation. More specifically, note that for all triplet types, except for (÷+ +−), (÷−−+), (Ì+ + +)

and (Ì−−−), the optimal closure depends on the concentration of one 2-cluster only. In order to make

the structure of the closure model more uniform which will facilitate its interpretation, we adjust the

expressions which do not follow the pattern. More specifically, in the optimal closure relations for the

clusters (÷−−+) and (Ì−−−) the exponents are rounded up and down to the nearest integer, whereas for

(÷+ +−) and (Ì+ + +) the change is more significant and involves adjusting the structure of the closure

relation. We refer to this simplified closure model as the Sparse Approximation (SA) and its functional

form is presented in Table 2.3.

Triplet Type Pair Approximation Optimal Approximation Sparse Approximation
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−− C

0.85
+−
]

2
5C+−Ì+ + + 2

5

C3
++

C3
+

[
2
5

C2
++

C+

]
2
5C++Ì−−− 2

5

C3
−−
C3
−

[
2
5

C1.18
−−

C0.18
−

]
2
5C−−Ì+ +− 2

5

C++C
2
+−

C2
+C−

2
5C+−

2
5C+−Ì−−+ 2

5

C−−C
2
+−

C+C2
−

2
5C+−

2
5C+−

Table 2.3: Closure relations for 3-clusters of different types derived based on the pair approxi-
mation, the optimal approximation using the data for the system Li1/2Mn1/2, cf. Table 2.2, and
the sparse approximation discussed in Section 2.4.4.

We now comment on how to interpret the structure of the sparse approximation. As discussed in

Section 2.4.1, the pair approximation model neglects the correlation between non-nearest neighbour ele-

ments. This is due to the lack of information about the triple correlation term Tijk in (2.12a). Considering

relations (2.12) for the sparse approximation, the triplet correlation term is Tijk =
Cj
Cij

for the linear and

angled triplets, and Tijk =
CiCjCk
CijCjk

for the triangular triplets. This is contrary to the assumption that

Tijk = 1 which is central to the pair approximation. With the data in Table 2.3 we are now in the position
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Triplet Type

M
S

E
 Pair Approximation (PA)

 Optimal Approximation (OA-1/2)

 Sparse Approximation (SA)

Figure 2.8: The mean-square reconstructions errors (2.14) for the pair approximation, the optimal
approximation constructed subject to hard regularization based on the data for the system
Li1/2Mn1/2 and for the corresponding sparse approximation for different cluster types, cf. Table
2.3. Note that the results for the last two closures differ only for the clusters marked with (∗∗).

to refine the assumptions underlying these approximations. Referring to relations (2.12), the concen-

tration of the triplet (Cijk) can be written as the global pair concentration (Cij) times the conditional

probability of finding a nearest-neighbour element to the pair in a certain state (Pk|ij). Considering the

linear and angled triplets in the sparse approximation formulation, we obtain

Cijk = CiCjCkQijQjkTijk = CiCjCk
Cij
CiCj

Cjk
CjCk

Cj
Cij

= Cij
Cjk/Cj
Cij/Cj

= Cij
Pk|j

Pi|j
. (2.16)

In a similar way one can consider the triangular triplets where

Cijk = CiCjCkQijQjkQikTijk = Cij
Cik/Ci
Cij/Ci

= Cij
Pk|i

Pj|i
. (2.17)
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We thus deduce

Pk|ij =
Pk|j

Pi|j
, for linear and angled clusters, (2.18a)

Pk|ij =
Pk|i

Pj|i
, for triangular clusters. (2.18b)

These relations break down the probability of a 3-cluster in terms of probabilities of two 2-clusters. They

can be regarded as generalizations of the pair approximation model, cf. relation (2.11), with the inclusion

of a term in the denominator. To understand the meaning of this extension of the pair approximation, we

refer to relation (2.11). It is clear that closure is achieved using the pair approximation by assuming

that the conditional probability of an element k being a nearest-neighbour of j is equal to the conditional

probability of k being a nearest-neighbour of an ij pair. In other words, the pair approximation model

assumes that an element j is always a nearest-neighbour of i, and we cannot find an element j which

is not a nearest-neighbour of i. However, we know that this simplifying assumption is not correct in

general and there is always a possibility of finding an element j which is not a nearest-neighbour of i. By

re-arranging relation (2.18a) in the form Pk|j = Pi|jPk|ij , it is evident that the SA model assumes that

j might not always be a nearest-neighbour of i and accounts for this possibility through the term Pi|j . A

similar interpretation can be adopted for triangular clusters.

The accuracy of the optimal approximation is certainly affected when the exponents in the closure

relations for the four triplet types are adjusted as discussed above, cf. Table 2.3. Figure 2.8 shows the

reconstruction errors for triplet concentrations obtained using different closure models for the system

Li1/2Mn1/2. As can be expected, the SA model is less accurate in comparison to the OA model for

the triplets (÷+ +−), (÷−−+), (Ì+ + +) and (Ì−−−). However, the performance of SA model is still

better than that of the pair approximation model for the triplets (÷+ +−), (÷−−+) and (Ì−−−). To

conclude, the adjustments to the OA model sacrifice a degree of the accuracy in reconstructing the triplet

concentration for (Ì+ + +) while achieving a simpler and interpretable model.

As a result of the simple structure of the SA closure, cf. Table 2.3, system (2.8) closed with this model

becomes linear and hence analytically solvable. It takes the form

d

dt
C++ = 2α1C+−, (2.19a)

d

dt
C−− = 2α2C+−, (2.19b)

d

dt
C+− = (−α1 − α2)C+−, (2.19c)
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where the parameters α1 = 4
5k1 + 1

5k2 − 4
5k3 − 1

5k4 and α2 = 4
5k5 + 1

5k6 − 4
5k7 − 1

5k8 are linear

combinations of the reaction rates. The solution then is

C+−(t) = µ1e
(−α1−α2)t, µ1 = C+−0

, (2.20a)

C++(t) =
2α1µ1

−α1 − α2
e(−α1−α2)t + µ2, µ2 = C++0

− 2α1µ1

−α1 − α2
, (2.20b)

C−−(t) =
2α2µ1

−α1 − α2
e(−α1−α2)t + µ3, µ3 = C−−0

− 2α2µ1

−α1 − α2
, (2.20c)

where C+−0
, C++0

and C−−0
are the initial concentrations of the corresponding 2-clusters. The two

parameters α1 and α2 instead of eight reaction rates k1 to k8 are sufficient to describe the evolution of

concentrations of different clusters in time. If the growth rates α1 and α2 are negative, which will be

shown to be indeed the case in Section 2.5.1, then as is evident from (2.20a), the concentration C+−

grows exponentially with the growth rate −(α1 + α2). On the other hand, the concentrations C++ and

C−− decay exponentially in time. As will be shown in Section 2.5.1, the growth of the concentration

C+− and the decay of the concentrations C++ and C−− is in fact qualitatively consistent with the early-

time evolution, but not with the late-time evolution, of the 2-cluster concentrations obtained from the

simulated annealing experiment. In addition to producing an analytically solvable model, an advantage

of the SA closure is that the inverse problem (2.23) also simplifies and needs to be solved with respect to

α1 and α2 only which does not require Bayesian inference.

2.4.5 Prediction Capability of the Closure Models

In order to assess the predictive capability of the truncated model closed with the optimal approximation

or the sparse approximation, the 3-cluster concentrations are reconstructed as functions of time from

2-cluster concentrations. We are interested in evaluating the prediction accuracy of these models in

comparison to the model equipped with the pair approximation. In order to assess the robustness of these

predictions, we will do this for stoichiometries other than the one for which the models were calibrated,

cf. Sections 2.4.3 and 2.4.4. More specifically, while the simulated annealing data for the system with the

composition Li1/3Mn2/3 was used for calibration, accuracy of the models will be analyzed here for 10

different stoichiometries LixMn1−x, x ∈ {0.25, 0.30, 0.33, 0.36, 0.42, 0.50, 0.58, 0.64, 0.70, 0.75}. In

particular, we are interested in the effect of regularization — soft versus hard with different parameters δ,

β1 and β2 — in the solution of problem (2.15).

Robustness of the model performance will be assessed in terms of the mean-square error (2.14) aver-
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aged over all types of 3-clusters, i.e.,

E =
1

|Θ|
∑
i∈Θ

Ji, (2.21)

where |Θ| = 16 is the total number of 3-clusters, cf. (2.4), and the true 3-cluster concentrations ‹Ci(t)
are obtained from simulated annealing experiments performed for each considered stoichiometry. This

diagnostic is designed to asses only the accuracy of the closure relations given in Table 2.3, rather than of

the entire truncated model (2.8).

Error (2.21) is shown as function of the stoichiometry for the optimal closure obtained for the system

Li1/3Mn2/3 subject to hard and soft regularization in Figures 2.9a and 2.9b, respectively. In addition, in

these figures we also show the errors obtained with the model based on the pair approximation. As can be

observed, harder regularization results in larger prediction errors for stoichiometries close to Li1/3Mn2/3

in comparison to softer regularization strategies. On the other hand, harder regularization reveals better

predictive performance for stoichiometries different from Li1/3Mn2/3. In other words, less aggressive

regularization performs better on stoichiometries close to the stoichiometry for which the calibration

of the closure relations from Table 2.1 was performed in Section 2.4.3, and the performance gradually

degrades as the stoichiometries become more different from Li1/3Mn2/3. We thus conclude that there is

a trade-off between robustness and accuracy of the closure models, in the sense that models optimized for

a particular stoichiometry tend to be less robust when used to describe other stoichiometries.

Finally, robustness of the closures based on the pair approximation, the optimal approximation sub-

ject to hard regularization for the system Li1/3Mn2/3 and the corresponding sparse approximation is

compared for a range of stoichiometries in Figure 2.9. Note that solving the minimization problem (2.15)

subject to hard regularization produces more versatile closure models that can be applied to a range of

stoichiometries without significant loss of accuracy. Hence, the optimal approximation models of interest

are achieved by hard regularization in (2.15). Figure 2.10 shows the mean error (2.21) for a range of

stoichiometries for the three aforementioned closure models. A significant improvement with respect to

the performance of the pair approximation model is achieved by the optimal closure models for all stoi-

chiometries. As can be observed, the SA model performs better than the OA-1/3 model for most of the

stoichiometries, except the ones that are close to the system Li1/3Mn2/3. This is due to the fact that in

the OA-1/3 model the minimization problem (2.15) is solved for the system Li1/3Mn2/3, and hence fits

are more accurate in the neighbourhood of this stoichiometry. We conclude by noting that when averaged

over all stoichiometries, the performance of the sparse approximation model is improved by 36.13% over

the performance of the pair approximation model.
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Figure 2.9: Dependence of the mean error (2.21) characterizing the accuracy of the different
closure relations on the stoichiometry for (a) hard regularization and (b) soft regularization em-
ployed in the solution of optimization problem (2.15) with parameters indicated in the legend
for Li1/3Mn2/3 system. “PA” and “OA” refer to, respectively, the pair and the optimal approxi-
mation.

Lithium concentration

PA

OA-1/3, hard regularization

OA-1/2, hard regularization

SA

Figure 2.10: The mean error (2.21) characterizing the accuracy of the different closure relations
indicated in the legend for a range of different stoichiometries.

2.5. Determining Reaction Rates via Bayesian Inference

In order for the truncated model (2.8) closed with either the pair or optimal approximation to predict the

time evolution of 2-cluster concentrations, it must be equipped with correct values of the rate constants

k1, . . . , k8, cf. Figures 2.4 and 2.5. Here we show how these constants can be determined by solving an

appropriate inverse problem. It will be demonstrated that this problem is in fact ill-posed and a suitable
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solution will be obtained using Bayesian inference which also provides information about the uncertainty

of this solution.

We define the error functional as

J (K) =
1

2

∫ T

0

∥∥C(t,K)− ‹C(t)
∥∥2

2
dt+ α

∥∥Q(K)− ‹Q∥∥2

2
, (2.22)

where ‹C(t) =
î‹C++(t), ‹C−−(t), ‹C+−(t)

ó
is the vector of pair concentrations obtained from the simu-

lated annealing experiment, K = [k1, k2, · · · , k8] is the vector of unknown rate constants, and C(t,K) is

the vector of pair concentrations predicted by model (2.8) equipped with the rate constants K. The second

term in (2.22) is the mean-square error between the equilibrium constants Q(K) = [Q1, Q2, Q3, Q4],

cf. relation (2.7), predicted by model (2.8) equipped with parameters K and the equilibrium constant‹Q = [‹Q1, ‹Q2, ‹Q3, ‹Q4] obtained experimentally via simulated annealing. We note that the equilibrium

constants in (2.7) are written in terms of 3-cluster concentrations and one of the closure models (i.e.,

the pair or the optimal approximation) is used to express the equilibrium constants in terms of 2-cluster

concentrations. The parameter α weights the relative importance of matching the equilibrium constants

versus matching the time-dependent concentrations in (2.22).

The optimal reaction rates are then obtained by solving the problem

min J (K)
K∈R8; K≥0

subject to system (2.8)

, (2.23)

where the notation K ≥ 0 means that each component of vector K is non-negative, separately for the case

of the pair and the optimal approximations. We note that the minimization problems (2.15) and (2.23)

are in fact quite different: in the former the mismatch between the evolution of 3-cluster concentrations is

minimized with respect to a suitably-parameterized structure of the closure model, whereas in the latter

one seeks to minimize the mismatch between the evolution of 2-clusters in order to find the optimal

reaction rates in the closed system (2.8).

Inverse problems such as (2.23) are often ill-posed, in the sense that they usually do not admit a

unique exact solution, but rather many, typically infinitely many, approximate solutions. This is a result

of the presence of multiple local minima, which is a consequence of the non-convexity of the error func-

tional (2.22), and the fact that these minima are often “shallow” reflecting weak dependence of the model

predictions C on the parameters K. As will be evident from the results presented below, it is thus not very
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useful to solve problem (2.23) directly using standard methods of numerical optimization [74]. Instead,

we will adopt a probabilistic approach based on Bayesian inference where the unknown parameters in the

vector K and the corresponding model predictions C will be represented in terms of suitable conditional

probability densities. This will allow us to systematically assess the relative uncertainty of the many ap-

proximate solutions admitted by problem (2.23). In this framework, the distribution of the parameters in

K is given by a posterior probability distribution P
Ä

K|C̃
ä

defined as the probability of obtaining param-

eters K given the observed experimental data ‹C. Inverse problem (2.23) is nonlinear, in the sense that

the map C = C(t,K) from the model parameters to model predictions is not linear, and therefore we

cannot expect the posterior distribution to have a simple form. A Markov-Chain Monte-Carlo (MCMC)

sampling method is then used in order to sample the posterior parameter space (we remark that a Monte-

Carlo sampling technique is also independently used in the simulated annealing approach to generate data

describing the evolution of the lattice as discussed in Section 2.2). MCMC methods are commonly used

to sample arbitrary distributions known up to a normalizing factor, in particular, for distributions defined

in high dimensions where exploration of the entire space with classical methods is computationally in-

tractable. They have found applications in many different fields such as electrochemistry [33], medical

imaging [75, 76], environmental and geophysical sciences [77, 78], ecology [79] and statistical mechan-

ics [80]. The mathematical foundations of Bayesian inference are reviewed in the monographs [21,81,82]

whereas details of our approach are provided in Appendix A.2.

2.5.1 Results of Bayesian Analysis

The reaction rates k1, . . . , k8 in system (2.8) are determined in probabilistic terms using Bayesian in-

ference for the pair approximation and the optimal closure models. On the other hand, for the sparse

approximation there are only two unknown parameters (α1 and α2) so they can be inferred by solving the

problem min(α1,α2)∈R2 J (α1, α2) where the concentrations in the error functional are evaluated using

the closed-form relations (2.20). Although this minimization problem is not convex, a global minimum

can be found using standard optimization methods.

In the problems involving the pair approximation and the optimal closure models some of the reaction

rates were found to be essentially equal to zero (or vanishingly small), so here the results are presented

for the remaining rates only. In Figures 2.11a and 2.11c we visualize the Markov chains obtained with

Algorithm 4, cf. Appendix A.2, for system (2.8) closed with, respectively, the pair approximation, the

optimal approximation with exponents determined subject to hard regularization (OA-1/2), cf. Table 2.2.

The Cartesian coordinates of each point in Figures 2.11a,c represent three of the parameters characterizing

an individual Monte-Carlo sample, whereas information about the remaining parameters is encoded in the
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color of the symbol via the red-green-blue (RGB) mapping, as shown in the color maps in Figures 2.11b,d.

The size of the symbols is proportional to J (K)−1 such that parameter values producing better fits stand

out as they are represented with larger symbols. Note that, for clarity, the entire Markov chains are not

presented in Figure 2.11 as the data is filtered based on the value of the cost function (i.e., data points are

shown only if J (K) is smaller than some threshold).

It is evident from Figures 2.11a,c that in each case parameter values producing good fits form a

number of clusters, which reflects the fact that problem (2.23) indeed admits multiple local minima. The

complicated form of the posterior distributions shown in these figures is a consequence of the nonlinearity

of the inverse problem (2.23). It is also interesting to see that good fits are obtained with some of the

reaction rates varying by 200% or more which is a manifestation of the ill-posedness of problem (2.23)

when the outputs C(K) reveal weak dependence on some of the parameters in K. In order to compare

the quality of fits obtained with the pair and optimal approximations, in Figures 2.12a,b we show the

histograms of the values of the error functional J (K) obtained along the Markov chains. Overall, the

quality of the fits is comparable in both cases and exhibits significant uncertainty, although poor fits

appear more likely when the closure based on the the pair approximation is used. The optimal parameter

values for the closure based on the SA model are (α∗1, α
∗
2) = (−0.083,−0.166) and, as we can see in

Figures 2.12a,b, while the accuracy of the fit is lower than in the previous two cases, there is effectively

no uncertainty in the determination of the parameters.

Finally, the time evolution of pair concentrations is determined by solving system (2.8) closed with

one of the closure models discussed, i.e., the pair approximation (PA), optimal approximation with expo-

nents subject to hard regularization (OA-1/2) or sparse approximation (SA). However, in order to solve

problem (2.8), one needs to find a point estimate of the parameters of the model (the reaction rates),

rather than their probability distribution. This can be done in two ways. In the first approach, one finds

the a posteriori probability distribution of parameters K and then the mode of this distribution, known as

the Maximum-a-Posteriori (MAP) estimation, can be used as a point estimate maximizing the posterior

probability distribution. The second approach is to find a parameter vector K by solving the optimiza-

tion problem (2.23) using a classical optimization technique. It is known that the MAP point estimate

obtained using a normally distributed prior is in fact equivalent to solving a minimization problem with

the error functional subject to Tikhonov regularization, such as our problem (2.23) [83]. Here the latter

approach has been adopted for determining the point estimates.

The point estimates obtained as described above are used to solve the initial value problem (2.8)

and the results are shown in Figure 2.13. As can be observed, system (2.8) closed with the OA-1/2
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(a) (b)

(c) (d)

Figure 2.11: Posterior probability densities P
Ä
K|‹Cä obtained using Algorithm 4 for problem

(2.23) with system (2.8) closed using (a) the pair approximation and (c) the optimal approx-
imation with exponents determined subject to hard regularization (OA-1/2). The parameters
k1, k2 and k3 are represented in term of the Cartesian coordinates whereas the remaining three
nonzero rate constants are encoded in terms of the color of the symbols via the color maps shown
in panel (b) and (d). The size of the symbols in panels (a) and (c) is proportional to J(K)−1.

(a) (b)

Figure 2.12: Histograms of the error functional J (K) obtained along the Markov chains for
problem (2.23) with system (2.8) closed using (a) the pair approximation and (b) the optimal
approximation with exponents determined subject to hard regularization (OA-1/2). The black
vertical lines represent the values of the error functional J (α∗1, α

∗
2) obtained when the model

based on the SA closure is used.

and PA closure models is more accurate in terms of predicting the evolutions of the pair concentrations

than when it is closed with the SA model. The reason is that both the OA-1/2 and the PA closures offer
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more flexibility in fitting the experimental data as there are 8 parameters in K to be tuned. On the other

hand, the sparse approximation involves two parameters, α1 and α2, only. Moreover, as explained in

Section 2.4.4, the analytic solution (2.20) of system (2.8) closed with the sparse approximation predicts

exponential behaviour of pair concentrations such that for large times these concentrations tend to ±∞.

This is clearly inconsistent with the long-time behavior of the pair concentrations in the experiment where

they converge to finite equilibrium values. However, predictions of the SA closure are valid for short time

scales which are in fact long enough to cover at least half of the time window of interest, cf. Figure

2.13. We thus conclude that, as expected, there is a trade-off between the simplicity (interpretability) of

the model and its accuracy and the sparse approximation sacrifices accuracy in favor of simplicity and

robustness.
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Figure 2.13: Time evolution of pair concentrations (a) C++, (b) C−− and (c) C+− obtained
by solving system (2.8) closed with the pair approximation, the optimal approximation with
exponents subject to hard regularization and the sparse approximation. The concentrations
obtained from the simulated annealing experiment are shown as well.
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2.6. Summary & Conclusions

We have considered a mathematical model for the evolution of different cluster types in a structured

lattice. We focused our attention on the structured lattice of a nickel-based oxide similar to those used

in Li-ion batteries. That being said, the approach used here is much more broadly applicable. As is

usual, the mean-clustering approach gives rise to an infinite hierarchy of ordinary differential equations,

where concentrations of clusters of a certain size are described in terms of concentrations of clusters of

higher order. This infinite hierarchy must be truncated at an arbitrary level and closed with a suitable

closure model (or closure condition) in order to be solvable. This closure requires an approximation of

the concentrations of the higher-order clusters in terms of the concentrations of lower-order ones. As

a point of departure, we consider the pair approximation which is a classical closure model, and then

introduce its generalization referred to as the optimal approximation which is calibrated using a novel

data-driven approach.

The optimal approximation can be tuned for different levels of accuracy and robustness by adjusting

the degree of regularization employed in the solution of the optimization problem. Our analysis shows

that the model subject to soft regularization results in highly accurate approximations for the local stoi-

chiometry but the accuracy deteriorates for other stoichiometries. On the other hand, the model subject

to hard regularization has a lower accuracy at the local stoichiometry but is more robust with respect to

changes of stoichiometry. The model subject to hard regularization produces more accurate results than

the pair approximation for a broad range of stoichiometries. More importantly, the closure model found in

this way turns out to have a simple structure with many exponents having nearly integer values. Exploit-

ing this structure, we arrive at the sparse approximation model which is linear and therefore analytically

solvable.

In addition to being simpler, the sparse approximation model is also more accurate and robust than

the pair approximation, in that it can be applied to a wide range of stoichiometries without a significant

loss of accuracy. This model is interpretable as it makes it possible to refine some of the simplifying

assumptions at the heart of the pair approximation. One of these assumptions states that the conditional

probability of k being a nearest neighbour of ij in a triplet (ijk) is equal to that of k being a nearest

neighbour of j. In other words, it is assumed that every j element in the lattice has a nearest neighbour

in state i. The sparse approximation refines this assumption by adding a term that takes into account the

conditional probability of j being a nearest neighbour of i. This correction makes the model both simpler

and more accurate.
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The reaction rates in system (2.8) closed using one of the closure models are determined by formu-

lating a suitable inverse problem. We solve these problems using a state-of-the-art Bayesian inference

approach which also allows us to estimate the uncertainties of the reconstructed parameters. The results

obtained show that the inverse problem is in fact ill-posed in the case of the closures based on the pair and

optimal approximation, in the sense that the corresponding optimization problems admit multiple local

minima. Moreover, these minima tend to be “shallow” reflecting the low sensitivity of the models closed

with the pair and optimal approximations to the reaction rates. As a result, the inferred values of these

parameters suffer from uncertainties on the order of 200%. In contrast, the model closed using the sparse

approximation is well-posed with respect to α1 and α2 which are linear combinations of reaction rates.

This model is analytically solvable which completely eliminates the uncertainty in the reconstruction of

its parameters. However, we note that this simplicity and robustness are achieved by sacrificing some

accuracy of the model predictions. Namely, while the sparse approximation predicts the evolution of pair

concentration at short time scales, it fails to predict their convergence to equilibrium values for longer

times.

Notably, the mean-cluster modeling approach considered in the present work can be used to describe

the evolution of clusters of arbitrary size and type defined on structured lattices various types. The size

and shape of the cluster and the structure of the lattice determine the reactions between elements. More

complicated lattices and bigger cluster sizes involve more possible nearest-neighbour element swaps,

resulting in a larger number of parameters in the model. The sparse approximation methodology could

be utilized in a similar way to close the corresponding hierarchical models. We add that the sparse

approximation has been realized by inferring the structure of the closure from the results obtained using

the optimal closure approximation. The optimal closure approximation could in principle be generalized

to other lattice structures and cluster evolution types and, although the sparse approximation involves a

heuristic aspect, it does lead to refined probabilistic rules describing lattice evolution on short time scales.

It is therefore an interesting question if these rules could be used to improve closure models for other,

more complicated, lattice configurations.
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Chapter 3

State-of-Charge Estimation of Cells Under

Dynamic Loading Conditions using

Identification of Nonlinear Dynamics and

Filtering

3.1. Introduction

Lithium-ion batteries (LIBs) have found extensive applications due to their high energy density, long

cycle life, and low self-discharge. One of the challenging questions in this field is the accurate and reliable

estimation of the State-of-Charge (SoC) and State-of-Health (SoH) of battery cells. Reliable estimates

of the state of the cell help prevent overcharge and overdischarge during charge/discharge cycles, which

can extend its lifetime and prevent destructive degradation mechanisms such as Lithium (Li) plating [84].

Additionally, many other parameters require accurate estimates of the internal state of the system, such

as power calculations, cell balancing in a battery pack, and the SoH of the cell. The SoH of a cell

is defined as the ratio of the maximum available capacity of the battery that can be used during a full

charge/discharge of the cell to its nominal capacity

SoH =
Qmax
Qn

, (3.1)
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where SoH ∈ [0, 1] is the state-of-health of the cell,Qn[A·hr] andQmax[A·hr] are the nominal capacity

and the maximum available capacity of the cell, respectively. The capacity of the cell is determined by the

quantity of the cycleable Lithium in the cell and the extent to which the negative and positive electrode

particles can participate in the electrochemical reactions. This capacity is affected by several degradation

mechanisms, e.g., Li plating. On the other hand, the SoC of a cell is defined as the ratio of available

charge in the cell to be discharged while in operation, to its maximum available capacity,

z =
Q

Qmax
, (3.2)

where z ∈ [0, 1] is the SoC of the cell, and Q[A · hr] is the available charge in the cell to be used for

charge/discharge processes. Note that throughout this study the state-of-charge of the cell is denoted SoC

in the text and z in the mathematical context. Another important factor in determining the state of a

cell is its polarization potential, defined as the overpotential at the solid-electrolyte interface caused by

the electrochemical reaction. The electrochemical reaction, giving rise to the polarization potential, is

the main cause of deviation of the terminal voltage of the cell from its Open-Circuit Voltage (OCV) at

a particular SoC of the cell. The terminal voltage is measured as the difference in potential between the

two ends of current collectors in the cell (two ends of the cell), and the OCV is defined as the terminal

voltage of the cell while the cell is at equilibrium at a particular state-of-charge. Other ohmic resistances

in the cell are additional sources of the deviation of terminal voltage from its OCV value. The SoC and

polarization potential of the cell are referred to as the "internal states" or "states" of the cell, which are

the matters of interest in this chapter.

The problem of state estimation is challenging due to the highly nonlinear nature of Li-ion cells.

The state of the cell depends on many internal and external factors. The nature of the cell involves

many multi-physics and multi-scale phenomena, e.g., ion diffusion in the electrolyte and solid electrode,

charge transfer, etc. Different physical processes evolving at different temporal and spatial scales make it

highly complex to estimate the state of the cell. Furthermore, fluctuations in external control parameters,

such as temperature, can significantly affect the internal electrochemical behavior of the cell. Cell-to-

cell differences are another important reason that makes modeling LIBs a significant challenge. Hence,

developing advanced state estimators for LIBs is important for the reliable, stable, and optimal operation

of cells, which has gained extensive attention. Some of the relevant work is summarized in [85–89].

There are multiple sources of error involved in the estimation of the state of the cell, as outlined

by Espedal et al. [86], including capacity-induced errors, initial SoC errors, measurement errors, and

model prediction errors. Capacity-induced errors refer to the decline in the nominal capacity of the cell
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due to aging effects, affecting the SoH of the cell. Minimizing this error requires frequent calibration

of the cell to obtain its current capacity. Initial SoC errors are the discrepancies between the actual and

theoretical initial states of the cell, which can be minimized by re-calibrating the cell to its fully discharged

state. Current and voltage measurement errors can occur due to sensor inaccuracy, bias, and noise in

measurements, which are difficult to eliminate. Lastly, model prediction errors refer to the discrepancy

between the predicted terminal voltage of the cell, as the output of a mathematical model, and the actual

measurement from the cell. This information is typically used in conjunction with closed-loop models to

provide feedback to the system. Overall, these types of errors can contaminate the computations of the

state of the cell.

The main contribution of this chapter is in improving the modeling of the internal states of the cell

by using measurement data, which could potentially reduce the effect of modeling errors and increase

the robustness and reliability of the designed models. Different techniques could be used for modeling

polarization potential, including physics-based models and machine-learning-based models. Also, differ-

ent methodologies for approaching the state estimation problem are proposed in the literature, including

experimental techniques, Coulomb Counting, physical modeling [16,90], data-driven nonlinear mapping

(AI techniques) [91], and model-based techniques [92, 93]. A brief summary of each of these methods,

their pros and cons, and their relevance to this work is presented below. Note that all the data-driven-

based techniques for modeling the state of the cell require information about the state of the cell to be

used as training data for calibrating the model. However, the task of inferring the SoC of the cell is chal-

lenging while the cell is in operation, and hence, there is no known method for finding the "true" state

of the system. For this reason, we use a series of experimental and computational techniques together

with some assumptions in order to approximate the state of the system. We refer to the approximated

state as the "reference state" of the cell, which might be different from the unknown "true" state of the

cell. We use the reference state as our "experimental data" for calibrating the proposed mathematical

models. Note that in this study a commercial Lithium-iron-phosphate (LFP) cell with a nominal capacity

of Qn = 200 [A.hr], is used for collection of the data and the reference state of the cell is determined

while the cell is operating under dynamic loading conditions.

In this study, we begin by using standard modeling approaches to obtain a reference state for the cell

while the cell is in operation. We then employ a hybrid approach for identifying the nonlinear dynamics

of the system based on a method known as the Sparse Identification of Nonlinear Dynamics (SINDy), in

which the state of the system is identified based on data while using some knowledge about the physics

of the cell. Once the system dynamics are identified, we use this model for estimating the state of the cell
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along with quantifying the uncertainties involved. To the best knowledge of the author, this is the first

instance of using SINDy as a system identification technique in modeling internal states of Li-ion cells.

This research proposes new avenues to be further explored in this field.

3.1.1 Experimental Techniques

The most conventional technique in SoC estimation of cells relies on monitoring the OCV of the cell.

The OCV of the cell is a function of its SoC. The conventional method of obtaining the OCV of the cell

at a particular state generally involves leaving the cell uninterrupted for a sufficient amount of time until

the potential stops to change and the equilibrium potential of the cell is achieved. The SoC of the cell is

then inferred via a lookup table according to its OCV. The lookup table is normally obtained by cycling

the cell and collecting information about its OCV at different states of the cell (Note that the SoC itself

will be approximated using the Coulomb Counting technique as highlighted in Section 3.1.2). Despite

its simplicity, this technique is not suitable for online applications, as the terminal voltage across the cell

deviates from its equilibrium potential due to polarization and ohmic resistances in the cell. Figure 3.1

demonstrates the behavior of the cell potential as a function of the SoC in two different operating modes

for this cell, charge and discharge. Note that SoC in this graph is estimated using the Coulomb Counting

method as explained in Section 3.1.2. As will be discussed below, the estimates of SoC remain reliable

for a single constant-current cycle.

Figure 3.1: Terminal voltage across the cell as a function of its SoC in two different operating
modes: charge and discharge. A constant-current charge/discharge with three rest periods at
approximately z = 0.25, z = 0.5 and z = 0.75 is used in this cycle. Note that the open-circuit
voltage in this graph is approximated using a polynomial fit to charge and discharge terminal
voltages.

A constant-current charge/discharge with three rest periods at approximately z = 0.25, z = 0.5, and
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z = 0.75 was used in this experiment. As it is not trivial to infer the equilibrium potential of the cell

while in operation, a polynomial fit to both charge and discharge potentials is used to infer the OCV-SoC

relationship (black solid line in Figure 3.1) from the terminal potential of the cell (blue dotted line in

charge state and orange dotted line in discharge state in Figure 3.1). As can be observed, the terminal

voltage of the cell (OCV in this case) approaches the equilibrium potential while at rest (note that the

OCV of the cell is different from its equilibrium potential, and it converges to equilibrium potential once

the cell is put at rest). This phenomenon is fundamental in describing battery dynamics and is present

in most battery chemistries with different levels of intensity [94]. In particular, LFP cells demonstrate

significant deviation from open-circuit potential, as shown in Figure 3.1. Additionally, these batteries

have a nearly horizontal OCV-SoC relation for most of their operating range. Thus, the lookup table

method becomes inappropriate for estimating the state of the LFP cells, while in operation.

To infer the SoC via lookup tables, cells need to be put in the rest mode for a sufficient amount of time

until equilibrium is achieved. Although this method is time-consuming, it can yield accurate estimations

of the state of the battery for some chemistries, since there is a unique relation between the OCV and

SoC that only depends on temperature. Although this technique cannot be applied to cells in operation,

the OCV-SoC relation shown in Figure 3.1 will be used in conjunction with other techniques such as

Equivalent Circuit Modeling (ECM), to estimate the OCV of the cell while in operation, as described in

Section 3.2.

3.1.2 Coulomb Counting

Another common approach to estimating the SoC of a cell is the Coulomb Counting (CC) technique.

It is an easy-to-implement and computationally inexpensive method based on counting the amount of

charge passed to the cell during charge/discharge. The current passing through the cell during operation

is integrated over time to compute its SoC at a given time as

ż =
ηI(t)

Qn
,

z(tf ) = z(0) +
1

Qn

∫ tf

0

ηI(τ)dτ,

(3.3)

where I(t) [A] is the current applied to the cell, η ∈ (1,∞) is the Coulombic efficiency of the cell and

is the inverse of its SoH , and tf is the final time of integration. This technique will be referred to as

the Forward Coulomb Counting (FCC), from now on. In this technique, the amount of charge passed to

the cell is computed by moving forward in time. In contrast, when working with the data in an offline

manner, one can compute the amount of charge passed to the cell by moving backward in time, a method
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referred to as the Backward Coulomb Counting (BCC). The current passing through the cell is integrated

backwards in time to compute the SoC at a given time t as

z(t) = z(tf ) +
1

Qn

∫ t

tf

ηI(τ)dτ. (3.4)

There are a few drawbacks to the Coulomb Counting technique in general as outlined below.

1. It relies on accurate initial SoC estimates for tracking the true state of the cell.

2. It only relies on excitation dynamics of the cell (driven by exciting the cell using the current applied

to the cell) and does not take into account the relaxation dynamics (driven by the internal dynamics

of the cell in the absence of external excitation). The relaxation dynamics might cause the self-

discharge of the cell while it is in open-circuit condition. Better estimates of the internal states of

the cell are obtained when both excitation and relaxation dynamics are modelled. The modeling

of polarization potential, as the main contribution of this study, will be discussed in more detail in

Section 3.5.

3. The true SoH of the cell is required for this technique. Hence, periodic recalibration of the cell to

obtain its maximum capacity is required.

4. Errors due to sensor drifts will accumulate over long periods, making it unsuitable for real-time

estimations over extended durations.

In our application, the cells begin to operate from a fully discharged state, eliminating the initial SoC

error. The self-discharge and periodic recalibration issues are not considered in this study. Note that the

SoC estimates obtained by the CC method are reliable for short durations, and become unreliable over

extended durations due to error accumulation and absence of a feedback loop. Despite such issues, the

simplicity of this method makes it an interesting choice for state estimation.

In this study, the CC method is used for inferring SoC estimates for short durations as a reliable

technique to infer an approximation of the "true" state of the cell. However, the SoC estimates obtained

with this method over extended durations deviate from the true state. In Section 3.4 we will discuss how

the CC method is used in short durations as an open-loop technique for inferring the "near-true" state of

the cell, and in extended durations as a closed-loop technique for inferring a "reference" state of the cell.

Note that the reference state is different from the true state of the cell as there is no known way of inferring

the true state. In other words, the near-true estimates obtained by the CC method in short durations will be

used as a guide to improve SoC estimates by the CC method in extended durations to infer the reference
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state of the cell during the extended duration, a method explained in Section 3.4. Data-driven modeling

techniques and filtering techniques will be utilized along with the CC method to increase the reliability

of this technique by adding a feedback loop and a probabilistic aspect to the estimations.

3.1.3 Physical Modeling

Another common approach to estimating the state of cells is to model the physical processes in the

cell. The number of Lithium ions intercalated/deintercalated on the negative electrode of the cell during

charge/discharge operation can be deduced using continuum models. Different levels of complexity can

be adopted for such models depending on the specific application. Microscale models, homogenized

models, Doyle-Fuller-Newman type models, and single-particle models are the most common approaches

in modeling Li-ion cells, as summarized by Planella et al. [95]. The single-particle model is the simplest

type, where the entire positive and negative electrode is represented as single particles. As a result of

its simplicity, the performance of this model is poor, particularly at high charge rates. Increasing the

complexity of such models, one can obtain the Doyle-Fuller-Newman type models, where electrodes are

represented as a collection of particles of the same size and shape. By removing some of the simplifying

assumptions of this modeling technique, one can obtain microscale models in which the phenomena

are modeled at the microscale. All these models are described in terms of complex partial differential

equations which require significant computing resources to solve, hence making them inappropriate for

most online applications. Additionally, they incorporate a large number of physical parameters which are

difficult to obtain. For these reasons, physical modeling of electrochemical cells is not the optimal choice

for estimating the state of the cell [86].

In this work, we intend to leverage data-driven techniques to gain insight into the physical dynamics

of the cell without explicitly modeling all of the physical processes present in the cell. However, we will

utilize the classical Butler-Volmer (BV) relation [96] to model the polarization potential of the cell, as

described in Section 3.5.

3.1.4 Equivalent Circuit Modeling

Yet, another common approach to modeling LIBs is the ECM technique, which can be used in conjunction

with Electrochemical Impedance Spectroscopy (EIS) to replace the physical modeling of cells, in order

to capture the overpotential effects and infer the electrochemical parameters [97, 98]. This method has

gained popularity due to its simplicity and the potential for online applications. In this technique, instead

of explicitly modeling the physical processes (e.g., Lithium intercalation), an equivalent circuit element

is assigned to each physical process in the cell. The effect of physical processes is then isolated from
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the OCV of the cell. In other words, the electrochemical parameters (representing circuit elements)

can be used for extracting the overpotentials in the system (due to electrochemical processes and ohmic

resistances in the cell) from the terminal voltage of the cell. This type of modeling requires EIS data (to

be collected using special instruments) in addition to knowledge about the chemistry of the cell to adopt

suitable equivalent circuits. The choice of equivalent models for the battery chemistry is challenging

and nontrivial; however, using a suitable model, one can monitor the evolution of the electrochemical

parameters in time in an online operation. Common ECMs for battery modeling are reviewed in [85,

97]. The electrochemical parameters could be used in conjunction with filter-based models for SoC

estimation as described in Section 3.4. Also, the electrochemical parameters can be utilized to build more

sophisticated machine learning models for SoC estimation. A more detailed description of the ECM and

EIS techniques is presented in Section 3.2.

3.1.5 Filtering Techniques

A complementary approach to the Coulomb Counting method for SoC estimation relies on model-based

Bayesian estimators. The most common Bayesian estimators used in the state estimation of cells are

different variants of Kalman filters. In this approach, a battery model is used in conjunction with a state

estimation filter/observer to infer the internal state of the system. The prior estimates of the internal state

are obtained based on prior knowledge about the cell and an underlying mathematical model. The prior

estimates of the state of the cell are then updated using an optimization approach to minimize the deviation

of the theoretical response of the system with respect to a measured one, to obtain the posterior estimates.

This iterative algorithm can be used for online SoC estimation. While a linear Kalman filter is an optimal

choice for a linear system, the cell dynamics are nonlinear. The OCV-SoC relation is nonlinear, as shown

in Figure 3.1, and linear Kalman filters cannot be explicitly used in this case. The Extended Kalman

Filter (EKF) [99,100] utilizes local linearization of the nonlinear system at each time step of the iterative

algorithm. The Adaptive Extended Kalman Filter (AEKF) [101–103] corresponds to the case where the

parameters of the model are adaptively updated according to the measurements to lower the possibility

of algorithm divergence. The Unscented Kalman Filter (UKF) [104] and Adaptive Unscented Kalman

Filter (AUKF) [105] are extensions of Kalman filters to nonlinear systems using more efficient sampling

techniques, referred to as unscented transformation. Particle filters [106] and H-infinity filters [107] are

other commonly used variants of the filters for enhancing SoC estimates of cells.

This approach, if combined with an ECM as the underlying model, requires real-time electrochemical

measurements of the system. One method for inferring such information is by leveraging the EIS tech-

nique in real-time, as described in Section 3.2. Although these models are capable of tracking the state of
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the system, they have a few drawbacks. First, these algorithms require proper underlying ECM models;

hence, they might rely on additional equipment for inferring electrochemical parameters. Second, the

convergence of the posterior state estimates to their reference values is not guaranteed in the presence

of nonlinearity in the system, and especially when the underlying model is not capable of capturing the

system dynamics. As one of the goals of this work, we propose a data-driven technique for identifying

an underlying dynamical model for the system, which can be used in conjunction with a suitable filter

to enhance the robustness of the estimation process. The details of this technique will be presented in

Sections 3.4 and 3.6.

3.1.6 Data-Driven Techniques

In order to estimate the SoC of a cell, one can learn the nonlinear relation between the inputs into the

system and its internal states. In this regard, machine learning techniques [91, 108, 109] could be used

to find a nonlinear map between the inputs and outputs of the system with minimal domain-specific

knowledge about the physical processes involved. The inputs of the model could include both DC domain

data (DC current and terminal voltage of the cell) and AC domain data (electrochemical parameters

and impedance data at different frequencies). Different neural network architectures have been used

for this purpose, namely, Deep Neural Network [110], Gated Recurrent Unit [111], Long Short Term

Memory [112] and Convolution Neural Network [113]. Although machine learning models have the

capability of learning highly nonlinear relations at the expense of model complexity, they suffer from

a few drawbacks. First, these models are data-greedy. A large amount of data for training and testing

of such models is required that should cover all possible operating conditions. Hence, these models

are prone to overfitting/underfitting issues and the robustness of such models is questionable. Second, the

performance of such models is highly affected by the quality of the data and the methods used for training

the models. Third, no insight into the physical processes in the system is obtained via such models and

they are purely predictive. As noted by How et al. [87], if the model of the cell is fully known a priori,

the model-based techniques could be viewed as superior to data-driven techniques from the statistical and

physical point of view. However, if the underlying system is not fully understood, data-driven techniques

can outperform other approaches. In this study, we are interested in developing a hybrid data-driven

technique in order to not only train a predictive model, but also to gain insight into the dynamics of the

cell. For this purpose, a SINDy framework is proposed.
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3.1.7 Sparse Identification of Nonlinear Dynamics

The SINDy framework was first introduced by Brunton et al. [114] as a purely data-driven methodology

for identifying the dynamics of a physical system via sparse regression techniques. In this approach,

the measurements of the state of the system are collected as the system evolves in time. No a priori

functional form is assumed for the underlying dynamical system in this technique. However, a large

library of linear and nonlinear candidate terms describing the dynamics of the system is formed, from

which a small number of terms are used to represent the dynamics of the cell. In order to find a suitable

collection of terms describing the dynamics of the cell, sparse regression techniques are used to minimize

the mismatch between the predicted state and the measured data by promoting sparsity in the solution of

the optimization problem. This powerful technique has recently found applications in fluid mechanics

[115–117], biology [118,119], and epidemiology [120,121]. In this research, we intend to employ sparse

regression techniques for identifying the dynamics of a cell based on experimental measurements, a

method that could be seen as an improvement over classical techniques for modeling LIBs. This method

is computationally inexpensive and requires a minimal amount of data for training purposes compared

to machine learning techniques. The robustness of the model (understood as model transferability from

one experiment to another) could be enhanced using data from multiple cycles of the cell, as discussed

in Section 3.5. This technique can lead to interpretable improvements in modeling the dynamics of

the system, which facilitates the task of estimating SoC. In general, there is a trade-off between model

complexity and model accuracy. In this approach, our aim is to find an optimal balance between these

two aspects, while also gaining insights into the internal dynamics of the cell. The proposed methodology

could be extended to different battery chemistries and operating conditions.

3.1.8 Outline

The modeling steps are listed below.

1. Collect DC domain and AC domain data from a cell running under dynamic loading conditions,

as outlined in Section 3.3. The AC domain data is used to select a simple ECM by capturing the

ohmic resistance, interfacial capacitance and charge-transfer resistance as the dynamics of the cell

in real-time using EIS as an operando technique, as outlined in Section 3.2. ECM parameters,

referred to as "electrochemical parameters", are collected in time for the duration of the cycle.

2. Use the BCC method in short durations of time (near the end of the time window) to obtain a "near-

true" state of the cell at a single point in time and use this point as a guide to enhance the SoC

estimates for the entire cycle. Use the FCC method complemented with an EKF for longer times to
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approximate the SoC of the cell for the entire cycle using the precomputed "near-true" state of the

cell as a guide. The approximated SoC will serve as the "reference" state of the cell. This technique

is explained in Section 3.4. The inferred reference state of the cell will be used as training data for

the SINDy framework.

3. Implement the SINDy framework for identifying the dynamics of the cell using reference data, as

described in Section 3.5.

4. Design an AUKF for enhancing state estimation using the identified model of SINDy, and quantify

the uncertainty in estimations, as described in Section 3.6.

In general, this modeling framework focuses on improving the understanding of the dynamics of the

cell while it is running under dynamic loading conditions, using the identified dynamics to estimate the

internal state of the cell, and complementing this analysis by developing a feedback loop for enhancing

estimates. The modeling prediction error is reduced using this framework. This chapter is organized as

follows: the details of the EIS are described in Section 3.2; the experimental measurements are presented

in Section 3.3; the mathematical background for the EKF is described in Section 3.4; the mathematical

details and the results obtained with the SINDy framework are presented in Section 3.5; the AUKF

technique is explained in Section 3.6; whereas the conclusions are deferred to Section 3.7.

3.2. Electrochemical Impedance Spectroscopy

EIS is a well-established non-invasive diagnostic tool for determining the dynamic behavior of elec-

trochemical processes in a cell without interfering with its normal operation. In this technique, a low-

amplitude (to ensure the linearity of the system response) AC signal is injected into the system over a wide

range of frequencies. The response of the system to this excitation signal is obtained, and the impedance

is calculated as the ratio of the AC voltage to the AC current, as described in Equations (3.5)-(3.7).

Impedance is defined as the resistance to the current flow when an AC signal is applied to the system. In

a purely resistive medium, there is no phase shift between the AC voltage and current signals; hence, the

impedance of the system is represented by its real component, which is pure resistance. In the presence

of inductive and capacitive effects, there will be a phase shift between the voltage and current signals,

and the internal impedance of the circuit is then represented by the real and imaginary components for

ohmic and non-ohmic effects, respectively. The impedance of the cell is computed at a wide range of

frequencies. Different physical processes in the cell exhibit different time constants (a measure of time

scale of the process), hence leaving unique signatures (phase shifts) on the impedance response. If a low
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amplitude AC voltage at a particular frequency ω is applied to the cell as

VAC(t) = Vm sin(ωt), (3.5)

in the time domain (or ‹V (ω) = Vm in the frequency domain), the resulting AC current as the response of

the cell at the same frequency is measured as

IAC(t) = Im sin(ωt+ φ), (3.6)

in the time domain (or Ĩ(ω) = Ime
jφ in the frequency domain where j =

√
−1 is the imaginary unit).

The total impedance of the cell at that particular frequency can be computed as

Z(ω) =
‹V (ω)

Ĩ(ω)
=
Vm
Im

e−jφ, (3.7)

where the ω = 2πf is the angular frequency, t is time, φ is the phase shift between AC voltage and

current, and Vm and Im are the amplitudes of AC voltage and current, respectively.

In a Li-ion cell, Li particles are involved in various physical processes, such as mass transfer in the

electrolyte during charge/discharge and electrochemical reactions at the interface of the solid phase and

the electrolyte, known as charge transfer reactions. In order to infer information about these processes in

the cell, one is required to model each physical process in the system via an equivalent circuit element,

a method referred to as Equivalent Circuit Modeling. Each of these physical processes is represented

by resistive, capacitive, or inductive types of components in an ECM. The resistive effects stem from

the bulk of the electrodes, current collectors, the electrolyte, and the charge-transfer reactions at the

solid-electrolyte interface. Capacitive effects arise from the double layer formed on the surface of the

solid-electrolyte interface. The porous nature of the electrodes leads to inductive effects. Various ECMs

have been proposed in the literature to account for different processes according to the specific battery

chemistry. Since the time constants associated with each process are different, these processes are sepa-

rated using different frequencies for measuring the impedance. For instance, the mass transfer process is

slow and hence dominant at lower frequencies. In the ECM technique, the theoretical impedance response

of the equivalent circuit model is matched with the true impedance of the system using optimization tech-

niques to infer the electrochemical parameters of the cell. This technique can be viewed as a macro-scale

modeling of cells, where the spatial resolution of the cell is neglected, and only the temporal evolution of

some key electrochemical parameters in the cell is traced.
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In this study, using the Pulsenics Probe [122], hereafter referred to as "The Probe", the cell impedance

is obtained for a range of frequencies in an operando mode using Equations (3.5)-(3.7), while the battery

is running under constant-loading or dynamic-loading conditions. The Nyquist plot, containing the real

and imaginary parts of the cell impedance at different frequencies, and the Bode plot, containing the

magnitude and phase shift of impedance measurements for a battery running in the constant-loading

condition, are shown in Figures 3.2a and 3.2b, respectively, at one snapshot of time corresponding to

the beginning of charging under constant loading at 60A. The impedance information is collected at a

temporal resolution of 25 seconds, across 30 different frequencies ranging from 5Hz to 600Hz.

(a) (b)

Figure 3.2: Nyquist plot (a), and Bode plot (b) at the beginning of charge in a constant-loading
experiment. Real(Z) and Imag(Z) refer to the real and imaginary parts of impedance, respec-
tively.

To analyze the response of the system to the excitation signal (3.7), an equivalent model can be

used. One of the simplest and most common equivalent circuits used for electrochemical systems is the

Thevenin model [123] shown in Figure 3.3. In this circuit, the interfacial charge-transfer phenomena

(intercalation of Li ions on the surface of the negative electrode during charging and deintercalation

of Li ions during discharge) is represented by a resistor in parallel with a capacitor accounting for the

double layer capacitance formed on the surface of the solid-electrolyte interface, and in series with a

resistance representing the bulk resistance of the electrolyte due to ohmic resistances in the cell. An ideal

voltage source represents the ideal behaviour of the cell at open-circuit when at equilibrium. Note that the

equivalent circuit model presented in Figure 3.3 is used as a large-signal model where the dynamics of the

cell can be potentially nonlinear, as described in Equation (3.11). The small-signal model can be obtained

by linearizing the nonlinear model of the equivalent circuit around an operating point. The details of the

impedance computation for the small-signal excitation of this circuit is presented in Appendix B.1.
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uoc(z)

I
R0

Rp

Cp

ut
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Figure 3.3: Schematic of a Thevenin equivalent circuit model used as a large-signal model. The
terminal voltage of the cell ut [V ], the polarization potential up [V ], the open-circuit potential
uoc [V ], the current applied to the cell I [A], the ohmic resistance R0 [Ω], the charge-transfer
resistance Rp [Ω], and the double-layer capacitance Cp [F ] are shown.

The ohmic resistance (R0), the charge-transfer resistance (Rp), and the double-layer capacitance (Cp),

referred to here as the electrochemical parameters of the cell θ = [R0, Rp, Cp], are computed by min-

imizing a mismatch between the theoretical and the measured impedance of the cell. The theoretical

impedance of the Thevenin circuit in Figure 3.3 is calculated using Ohm’s law as (refer to Appendix B.1)

Z(ω;θ) = R0 +
Rp

1 + (ωRpCp)2
− j

ωR2
pCp

1 + (ωRpCp)2
, (3.8)

where the impedance of the capacitor is 1/(jωCp). The electrochemical parameters θ̂ are computed by

solving the minimization problem

θ̂ = arg min
θ∈R3

n∑
i=1

∣∣∣Z(ωi;θ)− Z̃(ωi)
∣∣∣2, (3.9)

where n is the number of frequencies used in the EIS experiment, and Z̃ represents the impedance mea-

sured by EIS. Standard numerical techniques can be used for solving this problem. The software provided

by Pulsenics Inc. is used for inferring electrochemical parameters in this study. Tracking the time evolu-

tion of electrochemical parameters serves as a diagnostic tool for evaluating the performance of the cell.

Figure 3.4 shows the evolution of electrochemical parameters over time for one charge/discharge cycle

of the cell running at 60A in a constant-current mode, with a time resolution of 25 seconds and four rest

periods at approximately z = 0.2, z = 0.4, z = 0.6, and z = 0.8.

The Thevenin model is the simplest equivalent circuit model that can capture the interfacial physics of

the cell through a charge-transfer resistance and a double-layer capacitance. Note that the semi-empirical

Butler-Volmer relation represents the interfacial dynamics of the cell and under some specific conditions it
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(a) (b)

(c) (d)

Figure 3.4: Terminal voltage ut (a), and the evolution of electrochemical parameters, R0(t) (b),
Rp(t) (c), and Cp(t) (d) in time for a 60A constant-current charge and discharge cycle. The
electrochemical parameters are collected every 25 seconds.

admits connections to an equivalent circuit model. In the case of small overpotentials, the Butler-Volmer

relation can be linearized as described in (3.37), and the charge-transfer resistance can be computed for

small-signal regimes. Different equivalent models suitable for Li-ion cells have been proposed in the

literature [97], which are superior to the Thevenin model; however, their complexity is also increased. In

particular, estimating the parameters of such more complex models requires solutions of inverse problems,

which in turn introduces uncertainties in the estimation of the parameters due to the ill-posed nature of

such problems. Hence, in this study real-time inference of electrochemical parameters is performed on

the Thevenin model. These electrochemical parameters will be used in conjunction with an EKF to

infer the reference SoC estimates of the cell parameters while the cell is running under dynamic loading

conditions.

3.3. Experimental Data

Before delving into the modeling framework, we will present the experimental data. To assess the per-

formance of a model for SoC estimation, one must assign "true" SoC values to the experimental mea-

surements. As discussed earlier, this task is inherently challenging. The CC technique could be used as a

reliable method in short durations for assigning true SoC values based on the system described in Equa-

tion (3.3) to experimental data obtained under static loading conditions. The error of such calculations is
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small and can be neglected. Figure 3.5 demonstrates the SoC assigned to different cycles operating under

constant loading conditions. In the experiments presented in Figure 3.5, the cell is cycled in its voltage

Figure 3.5: SoC of a cell determined via the CC method (3.3) under static loading conditions
with 20 minutes rest periods after each 0.2 increment of SoC during charge/discharge. The effect
of relaxation dynamics of the cell and its self-discharge during the rest period is neglected.

operating range (2.5V − 3.6V ). The maximum available capacity of the cell in these experiments can be

calculated as the total amount of charge transferred to the cell during a constant-rate charge/discharge of

the cell. In this case, the maximum available capacity of the cell is calculated to be Qmax ≈ 190[A.hr],

compared to its nominal capacity of Qn = 200[A.hr]. This information will be used along with the

Coulomb Counting method, Eq. (3.3), in order to determine the reference state of the cell at different

cycles during dynamic loading conditions. Figure 3.6 demonstrates the current and terminal voltage of a

cell, cycled under dynamic loading conditions. This current profile includes three important steps:

1. charging of the cell from z(t0) = 0 to almost half of the capacity of the cell, where t ∈ [t0, t1], t0 =

0 is the beginning of charge from z = 0, and t1 is the beginning of dynamic loading experiment,

2. operating under a randomly generated dynamic loading profile for 24 or 48 hours, where t ∈

[t1, t2]; this includes a subsequent 5 minute charge/discharge of the cell at a randomly generated

rate, t1 and t2 are the beginning and ending of the dynamic loading profile, respectively,

3. a full discharge of the cell to z(tf ) = 0, where t ∈ [t2, tf ] and tf is the final time of the experiment.

The SoC of the cell is calculated based on the FCC model (3.3). The challenge arises when the cell

is running under dynamic loading conditions, as there is no way of inferring the "true" SoC evolution.

Additionally, using the FCC method might lead to the accumulation of errors over extended durations.

However, step 3 of the dynamic loading profile consists of a full discharge to z(tf ) = 0. According to

the amount of charge passed through the cell during step 3, one can track back the SoC of the cell using
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the BCC model (3.4) to obtain its "near-true" state at t = t2 (grey vertical lines in Figure 3.6c). This

estimation over short durations is assumed to be reliable as the accumulation of error is negligible. Figure

3.6c highlights the state of the system at t = t2 using both FCC and BCC methods. As observed, there is

a discrepancy between the predictions of these two methods. To infer the SoC evolution for 0 < t < t2,

the EKF technique will be used with FCC method to produce reliable estimates of the state of the system,

as described in Section 3.4. Ten different cycles are performed on the cell, followed by a similar approach

based on dynamic profiles. The error of computing SoC using FCC method in comparison to the BCC

method is calculated as

E = |z(t2)− z̃(t2)| · 100, (3.10)

where z(t) and z̃(t) are the SoC computed using FCC and BCC methods, respectively.

(a) (b)

(c)

Figure 3.6: Current I(t) (a), terminal voltage ut(t) (b), and state-of-charge z(t) (c) of the cell
for one cycle operating under dynamic loading conditions.

3.4. Extended Kalman Filtering

To obtain reference SoC estimates for different cycles, we will use the Kalman filtering technique. This

technique relies on an underlying model of the cell representing its dynamics. In order to model the

polarization potential, different ECMs could be adapted based on battery chemistry with different levels

of complexity. More complex models require more sophisticated inverse modeling techniques to obtain

the parameters of the ECM from EIS data. Kalman filters have been extensively investigated in the
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literature for this purpose [92, 93, 101–103, 124]. In this section, the model representing the dynamics of

the cell is obtained via the CC method (3.3) for estimating SoC, and the Thevenin model as presented

in Figure 3.3 for estimating the polarization potential of the cell, while in operation. In the Kalman

filtering technique, the internal state of the cell is predicted using the mathematical model, leading to

the estimation of the terminal voltage of the cell. The computed terminal voltage is then compared to

its measured one and based on the observed error the estimates of the state variables are updated. This

technique is used for inferring reference SoC estimates, which then can be used as the training data in

Section 3.5 to perform the task of system identification.

3.4.1 Mathematical Background

Kalman filtering is a type of sequential probabilistic inference that seeks to enhance the state estimation

process in the presence of process and measurement noise. The task of the Kalman filter is to take in

information about internal state estimates which is known to be polluted by some errors and uncertainty,

filter out the unreliable information by leveraging data from output variable observations and finally

improve the state estimates. In our problem, the state variables are SoC and polarization potential, and the

observed variable is the terminal voltage of the cell. The Kalman filter is a predictor-corrector filter. In the

prediction step, the state variables are advanced in time using the mathematical model, and the terminal

voltage of the cell is estimated. In the correction step, the computed terminal voltage is compared to the

measurement, and the error of estimation is used for updating the estimates of state variables. There are

two types of uncertainties involved in the model. First, the process noise is referred to as the uncertainty in

the underlying model. The underlying mathematical model might fail to describe the dynamic behaviour

of the system, and this will give rise to the process noise. Second, the measurement noise represents the

error in the experimental measurements caused by the noise of the sensors. The task of the Kalman filter

is to find a balance between the two sources of uncertainty, i.e., the process noise and measurement noise.

In the case of more certain models (small process noise) the filter relies less on measurement data, and

vice versa. The process and sensor noise are assumed to be Gaussian random variables. Kalman filters

were first introduced for state estimation of linear systems and later extended to nonlinear systems through

linear approximations or sampling techniques. A Kalman filter is the optimal solution for a linear system,

where the convergence to the true state is guaranteed. The Kalman filter used in this work is based on a

nonlinear Kalman filter formulation, also known as the EKF, due to the nonlinear dependency of OCV on

SoC, as implemented by [102]. Note that the convergence of nonlinear extensions of Kalman filters such

as EKF to the true estimates is not guaranteed, and the obtained solution is referred to as "near-optimal"

solution.
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In this approach, a Thevenin equivalent circuit model is assumed for the physical processes occurring

in the cell, as shown in Figure 3.3, due to its simplicity and the ease of inferring electrochemical param-

eters via EIS technique. The dynamics of the cell for the polarization potential are obtained from this

equivalent circuit, however, the SoC is modelled via the CC method (3.3). The deterministic continuous

state equations for the evolution of state variable X(t) = [up(t), z(t)]
> ∈ R2 are

Ẋ = A′X + B′U, (3.11a)

ut = h(X,U) = up + uoc(z) + IR0, (3.11b)

A′ =

− 1
RpCp

0

0 0

 , (3.11c)

B′ =

 1
Cp

η
Qn

 , (3.11d)

where h : R2 × R → R is a nonlinear observer function, A′ and B′ are the system transition matrices

representing the dynamics of the cell, and U = [I(t)] is the vector of control parameters (in this for-

mulation this vector reduces to the applied current only, however, in later sections, more terms will be

added to the vector of control parameters). The terminal voltage of the cell is obtained as the sum of

its open-circuit voltage, its polarization potential, and its ohmic resistance, cf. (3.11b). Also, the open-

circuit voltage uoc(z) is evaluated using the polynomial fit to the terminal voltage of the cell in charging

and discharge regimes as presented in Figure 3.1. The internal state of the system is unknown, however,

the terminal voltage of the cell is observed through experimental measurements. The model introduced

in (3.11) is deterministic, however, the model and the measurements might incorporate uncertainties. By

incorporating the uncertainties in the model and measurements, and by integrating the state equations
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(3.11) in time, one can obtain the stochastic discrete state equations as

Xk+1 = AkXk + BkIk + Wk, (3.12a)

ut,k+1 = h(Xk+1,Uk+1) = up,k+1 + uoc(zk+1) + Ik+1R0,k+1 + Vk+1, (3.12b)

Ak =

exp(− ∆t
Rp,kCp,k

) 0

0 1

 , (3.12c)

Bk =

Rp,k(1− exp( ∆t
Rp,kCp,k

))

∆tη
Qn

 , (3.12d)

Wk ∼ N (0,Qk), (3.12e)

Vk ∼ N (0, Rk), (3.12f)

where Xk(t) ∈ R2 is the state vector at time step k, A ∈ R2×2 and B ∈ R2×1 are the state transition

matrices, and Ik is the current (control variable) at time step k. The process noise W ∈ R2 represents

the modeling uncertainties, drawn from a normal distribution with mean zero and covariance matrix Q ∈

R2×2, whereas, Vk ∈ R is the terminal voltage measurement noise drawn from a normal distribution with

mean zero and variance Rk. Also, the model introduced in (3.12) incorporates a nonlinear observation

model h(X,U) which maps the state space into observed space. As dependence of uoc on z is nonlinear,

cf. Figure 3.1, the EKF uses local linearization of the corresponding nonlinear term. This term will be

linearized by a first-order Taylor series expansion as Ck =
[
1, duocdz

]
. As the internal state variables

cannot be measured directly, one needs to leverage the existence of observations on the terminal voltage

and design a feedback loop. A correction to the state estimates is performed based on the mismatch

between the observations and model-based prediction of the terminal voltage. We seek to minimize

the mismatch between the state variable prediction by the mathematical model and the true state of the

system, given the observations of the terminal voltage of the cell. In other words, the predicted state of

the system in each time step is corrected by solving the minimization problem

min
Kk

E
î
‖ek‖22 |ũtk

ó
, ek = ‹Xk −X+

k , (3.13)

where ek is the error of estimating state of system, ‹Xk is the true state of the system, X+
k is the pos-

terior state of the system predicted by the mathematical model, Kk is the Kalman gain, and ũtk is the

experimental observation of the terminal voltage of the cell at time k. This minimization problem needs

to be solved at each time step, to infer the best estimate of the internal states of the system, subject to

experimental observations. The covariance of the process noise and the measurement noise are computed
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as

Q = E[WkW
>
k ],

R = E[VkV
>
k ],

(3.14)

by assuming that they are stationary. The error covariance matrix of the posterior estimate at time step k

is computed as

P+
k = E[eke

>
k ] = E[(‹Xk −X+

k )(‹Xk −X+
k )>]. (3.15)

Denoting the prior estimate of the state obtained by the mathematical model (3.11) X−k , we can write the

posterior estimate of the state as a combination of its prior estimate and a term proportional to the error

of estimating the terminal voltage of the cell as

X+
k = X−k + Kk(ũtk − utk), (3.16)

where (ũtk − utk) is referred to as "innovation", and utk is the estimated terminal voltage of the cell as

the output of the mathematical model. Substituting (3.12b) for the terminal voltage in expression (3.16)

we get

X+
k = X−k + Kk

Ä
Ck
‹Xk +R0,kIk + Vk −CkX

−
k −R0,kIk

ä
= X−k + Kk

Ä
Ck
‹Xk + Vk −CkX

−
k

ä
.

(3.17)

Substituting (3.17) into (3.15), we get

P+
k = E

[Ä
(I−KkCk)(‹Xk −X−k )−KkVk

ä Ä
(I−KkCk)(‹Xk −X−k )−KkVk

ä>]
. (3.18)

Note that ‹Xk − X−k is uncorrelated with Vk, and using relations (3.14) and (3.15), equation (3.18)

reduces to

P+
k = (I−KkCk)P−k (I−KkCk)> + KkRK>k , (3.19)

where P−k is the error covariance matrix based on the prior estimate of state variable. Referring to the

definition of the error covariance matrix (3.15), it is clear that the trace of this matrix is equal to the mean-

squared-error introduced in (3.13). The objective is to minimize this error with respect to the Kalman

gain introduced in (3.16). Thus, we expand (3.19), compute the trace of it, differentiate with respect to

the Kalman gain and equate to zero, which gives

∂tr(P+
k )

∂Kk
=
∂tr(P−k )

∂Kk
− 2(CkP

−
k )> + 2Kk(CkP

−
k C>k +R) = 0. (3.20)
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Note that the trace of the error covariance matrix is a scalar quantity, whereas the Kalman gain is a vector

quantity. The differentiation of the trace of the error covariance matrix with respect to the Kalman gain

vector is equivalent to computing the gradient, where ∂
∂ denotes gradient operator. Rearranging (3.20),

we obtain the Kalman gain corresponding to the optimal solution as

Kk = P−k C>k
[
CkP

−
k C>k +R

]−1
. (3.21)

Substituting (3.21) into (3.19), we obtain the equation for computing the posterior error covariance matrix

as

P+
k = [I−KkCk] P−k . (3.22)

In order to complete the recursive process in the Kalman filter, we need to advance the error covariance

matrix in time. We define the error of the prior estimate as

e−k = ‹Xk −X−k = Ak−1
‹Xk−1 + Bk−1Ik−1 + Wk −Ak−1X

−1
k−1 −Bk−1Ik−1 = Ak−1e

−
k−1 + Wk.

(3.23)

The prior error covariance can be computed by substituting (3.23) into P−k = E
î
e−k e−>k

ó
as

P−k = Ak−1P
+
k−1A

>
k−1 + Qk−1. (3.24)

The Kalman filter formulation presented above is the optimal solution for linear problems in the

sense of minimizing the estimation error. The linearization involved in the EKF algorithm affects the

robustness of the algorithm for nonlinear systems. The recursive Kalman filter algorithm consists of

a prediction step and an update step. The former involves the calculation of internal state variables

along with their uncertainties using information from previous time step, cf. (3.12) and (3.24); the latter

involves updating the estimated state variables using error of estimation in comparison to experimental

measurements, cf. (3.16) and (3.22). An advantage of this algorithm in comparison to conventional

optimization algorithms is that it can produce estimates in real time and that the optimization process

happens in real time. The EKF algorithm is detailed in Algorithm 1. Note that information about how

to choose the error covariance matrix Q and variance R is in general not available. Adaptive algorithms

for computing this information are used in this case [102]. Note that the adaptive approach presented

in Algorithm 1 includes a "forget factor" α, determining the amount of information to be taken from

previous time steps with respect to information from current time step. The initial guesses for Q and R,
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and the forget factor are the parameters to be tuned in this algorithm.

Algorithm 1: Extended Kalman Filter

Input: k — Iteration number
X−k — Prior internal state at step k
P−k — Prior error covariance matrix at step k
α — Forget factor

Output: ut — Estimated terminal voltage
X+
k — Posterior internal state at step k

P+
k — Posterior error covairnace matrix at step k

k ← 0
Initialize Q0, R0:

X+
0 = E(X0)

P+
0 = E

[
(X0 −X+

0 )(X0 −X+
0 )T

]
repeat

k ← k + 1
Time update: performing prior estimate

State estimate time update
X−k = Ak−1X

+
k−1 + Bk−1Ik−1

Error covariance time update
P−k = Ak−1P

+
k−1A

T
k−1 + Qk−1

Measurement update: correction by Kalman gain
Output estimate

ut,k = h(X−k ,Uk)
Kalman gain matrix

Kk = P−k CT
k

[
CkP

−
k CT

k +Rk
]−1

State estimate measurement update
X+
k = X−k + Kk [ut,k − ũt,k]

Error covariance measurement update
P+
k = (I−KkCk)P−k

until tk = tf ;
where adaptive covariance matrices are calculated as [102]:

dk = ũt,k − ut,k = ũt,k − h(X−k ,Uk)
εk = ũt,k − h(X+

k ,Uk)
Qk = αQk−1 + (1− α)(Kkdkd

T
kKT

k )
Rk = αRk−1 + (1− α)(εkε

T
k + CkP

−
k CT

k )

Although Kalman filtering is a standard technique for estimating SoC of cells, the innovation in this

work is in the derivation of the parameters of the Thevenin model, namely R0, Rp, Cp, via the probe.

These parameters are drawn in real-time using EIS, and leveraging optimization techniques to infer pa-

rameters from impedance measurements [125]. Conventionally, the electrochemical parameters were

obtained by formulating inverse problems in the time domain. One drawback of such techniques is that

a constant electrochemical parameter is fitted to the whole evolution of the cell, and it does not account

for changes in electrochemical parameters while the cell is in operation. The current technique allows us

to obtain the evolution of electrochemical parameters in time, rather than using constant parameter val-

ues. These electrochemical parameters are used in the mathematical model (3.12) along with the Kalman
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filter, to find an estimate for the posterior state of the system.

3.4.2 Results

The EKF is run on every cycle and the results are summarized in Figure 3.7. The training of the parameters

of the EKF algorithm is performed on individual cycles manually, to ensure accurate SoC estimations for

each cycle. Note that in Figure 3.7, the SoC absolute error at t = t2 is computed using FCC and EKF

and compared to the true values (BCC estimates) based on (3.10). As can be observed the SoC estimate

at t = t2 is improved via EKF in comparison to FCC model.

Figure 3.7: The absolute error of SoC estimation at t = t2, E , cf. (3.10), using FCC (blue) and
EKF (orange), for ten different cycles operating under dynamic loading conditions.

The evolution of the SoC over time and the true and estimated terminal voltage of the cell for one of

the cycles are shown in Figure 3.8 for reference. As can be observed, the SoC estimates by EKF align

with the SoC estimates of FCC model with slight improvements. However, the prior estimation of the

terminal voltage of the cell has major differences with respect to the true terminal voltage, and the EKF

is not capable of significantly improving this estimation as the posterior terminal voltage does not predict

the behaviour of the system. The reason for this behavior, which is observed in all cycles, is an inaccurate

underlying model of the dynamics of the cell. This model is not consistent with the true dynamics of the

cell and can lead to discrepancies in the estimation of the terminal potential of the cell. This issue will be

investigated in detail in Section 3.5.

In tuning the EKF parameters to the data from different cycles, there are a few criteria to observe.

1. The underlying model of the cell (3.12) uses the CC model for estimating the SoC of the cell, hence,

60



Ph.D. Thesis - A. Ahmadi McMaster University - CSE

the evolution of the posterior SoC estimate obtained by the Kalman filter must be in agreement with

the CC prediction, as observed in Figure 3.8a.

2. As only one single point exists for assessing the performance of the EKF (t = t2) based on BCC

in comparison to FCC, emphasis is put on improving the SoC estimate at this point only.

The EKF parameters are tuned for each cycle in order to improve the SoC estimate at t = t2 without

significantly deviating from the CC dynamics based on the two above criteria.

(a) (b)

Figure 3.8: SoC evolution determined via FCC and EKF (a), and terminal voltage estimation
using EKF (b) for one of the experiments under dynamic loading conditions. Note that the plots
are magnified such that only the dynamic loading part of the experiment is shown (t1 < t < t2).

It is notable that the EKF is not the optimal solution, rather a near-optimal solution for a nonlinear

system, which suffers from the divergence issues from the true state of the system. Due to the approxima-

tion involved in the framework of EKF, the Kalman filter tends to lose robustness when moving from one

cycle to another, giving rise to the possibility of diverging from the reference state. In other words, trans-

ferring the parameters tuned on one cycle to another one does not guarantee convergence of the model

predictions for the data in the new cycle, especially when the operating conditions deviate from those of

the original cycle. Inaccurate initial values for the state variables used to initiate the algorithm could be

one source of inconsistency in the results. However, in our case, the cells are cycled starting from step

1, meaning that information about the state of the cell is available. Another important factor affecting

the robustness of the algorithm is that the sensor error variance (Rk in (3.12f)) is not consistent across

different cycles, hence, the adaptive algorithm cannot properly predict the uncertainty in the system for

all cycles. This source of inconsistency is normally difficult to eliminate. Another important factor re-

sulting in the loss of robustness of the EKF relates to the process noise covariance (Qk in (3.12e)). It has

been shown that the chosen model for the dynamics of the cell can significantly affect the performance

of the Kalman filter [126]. This problem arises when the model (the ECM model in this case) is not a
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suitable choice for the system under study. Hence, it introduces significant uncertainty in the modeling

process, which could, in fact, affect the robustness of the model. The discrepancy between the true termi-

nal voltage and the predicted one in Figure 3.8b is a consequence of modeling flaws. The EKF framework

can be robustified through more reliable estimations of the polarization potential to reduce the modeling

noise. The purpose of this study is to improve the design of the Kalman filter to produce an acceptable

balance between accuracy and robustness. To do so, we will focus on lowering the process modeling

uncertainty by adopting a data-driven approach for identifying the dynamics of the system. This is done

via the SINDy framework, which is introduced in the next section.

3.5. Sparse Identification of Nonlinear Dynamics

In this section, we intend to use the SINDy framework for identifying system dynamics using minimal

a priori assumptions about the dynamics and relying solely on measurement data, by employing sparse

regression techniques, particularly the l0 and l1 norms. Traditional approaches to describing system

dynamics involve identifying physical processes, developing mathematical models, tuning model param-

eters through inverse modeling techniques, and using these models for prediction and control. However,

SINDy is different in that it seeks to identify the underlying model itself. It operates by assuming a feature

library consisting of arbitrary number of terms, linear or nonlinear, with various functional forms of the

dependence on the state and control variables which may describe the system’s evolution. The objective

of this section is to uncover the potentially nonlinear dynamics of the system to improve state estimations

compared to approaches based on the classical model (such as the Thevenin model).

SINDy offers several advantages over other data-driven approaches: (i) lower computational com-

plexity during training compared to other data-driven techniques, (ii) interpretable results compared to

other data-driven techniques, and (iii) tunability of complexity/accuracy based on specified parameters.

In this study, we employ the SINDy-with-Control framework, as introduced by Fasel et al. [127], to incor-

porate control variables into the model. It is worth noting that SINDy has a close connection to Dynamic

Mode Decomposition [128] and Koopman operator theory [129]. The former aims to extract spatiotem-

poral coherent structures from discrete-time measurement data by finding a linear dynamical model that

best describes the evolution of a dynamical system in time. The latter, however, describes every nonlinear

system as an infinite-dimensional but linear operator, with its spectral decomposition characterizing the

nonlinear system. Hence, if one formulates SINDy in discrete time with only linear terms in the feature

library without sparsification, the solution would be reduced to the DMD model if the choice of the linear

terms in the feature library is optimal. Conversely, including all possible nonlinearities in the feature
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library would produce a model converging to the Koopman operator. In this study, we aim to deduce an

optimal representation of the dynamical system starting from a basis of predefined possible nonlinearities.

3.5.1 Mathematical Background

The general form of our continuous dynamical system is

Ẋ(t) = F (X(t),U(t)) ,

X(0) = X0,

(3.25)

with state X(t) = [up(t), z(t)] ∈ R2, control inputs included in U(t) ∈ R, and dynamics F : R2 ×R→

R2 describing the evolution of the system which needs to be found from data. Note there is one control

input to the system, meaning U(t) = I(t); however, we will see below that the control input matrix will

be extended to incorporate more nonlinearities as described in Section 3.5.2. Due to the highly nonlinear

nature of the problem, no closed-form expression for F is a priori assumed. The only information that is

available is the initial condition of state variables at t = 0, X0, and the measurement data in the form of

full state observations in discrete time as ‹X(tk), where k is the time step. However, one can approximate

F as a linear combination of predefined basis functions forming a library. Let

Θ (X(t),U(t)) = [θ1 (X(t),U(t)) , · · · , θn (X(t),U(t))] (3.26)

be the library of user-defined candidate functions (including linear and nonlinear terms), where Θ(X,U) ∈

Rn, θi : R2 × R → R, i = 1, . . . , n, and n is the number of terms in the feature library. Note that the

feature library consists of terms depending both linearly and nonlinearly, on both the state variable X and

the control variable U. One can write

F (X(t),U(t)) =

n∑
j=1

θj (X(t),U(t)) ξj , (3.27)

where ξj ∈ R2 is the coefficient of j-th term in the feature library such that the governing system becomes

Ẋ(t) = Θ (X(t),U(t)) Ξ, (3.28)

where

Ξ = [ξ1 ξ2 · · · ξn]
T (3.29)
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is the matrix of a priori unknown coefficients for candidate functions in the feature library. The objective

is then to find a sparse representation of the matrix Ξ, which results in the elimination of some of the less

important functions in the feature library. This leads to an optimization problem in the form

Ξ̂ = arg min
Ξ

1

2

∥∥∥‹̇X−Θ (X,U) Ξ
∥∥∥2

2
+ λR(Ξ), (3.30)

where λ > 0 is a regularization parameter, R : Rn → R is a regularization function, ‹X is the vector

of state measurements, ‹̇X is the time derivative of the state measurements, and ‖·‖2 represents the l2

norm. Note that in (3.30) the time dependency of the state measurements ‹X and the feature library

Θ (X,U) is dropped as they represent matrices where each row corresponds to time increments. The

vector of state measurements ‹X consists of the reference state of the system as obtained in Section 3.4

for the polarization potential and the SoC. The reference SoC of the cell is drawn from the results of the

EKF presented in Section 3.4 for each cycle. The reference polarization potential is then computed via

up = ũt−uoc(z)− IR0 based on (3.11), and using the reference SoC of the cell and the electrochemical

parameter R0 inferred from EIS. The time derivatives of the state variables will be computed numerically

using a finite difference scheme. A schematic of the SINDy framework is presented in Figure 3.9.

Figure 3.9: Schematic of SINDy framework.

There are different choices for the regularization function usually given by different lp norms where

p = 0, 1, 2. The norm l0 refers to the number of nonzero terms in a vector. It is shown that the l0

norm is non-convex and leads to an NP-hard optimization problem [130]. However, l1 and l2 norms

are convex functions. Using the l1 norm, R(Ξ) = ‖Ξ‖1, reduces (3.30) to the well-known LASSO

problem [130]. LASSO regularization, similar to other regularization methods, penalizes the coefficients
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of the model, thus forces them toward zero. According to the intensity of the regularization represented by

the parameter λ, some of the coefficients in the vector of coefficients will become zero, however, many of

the coefficients will not vanish. In contrast, in the l2 regularization (known as Ridge regularization [131]),

all coefficients will be penalized without becoming zero. Hence, LASSO will naturally result in a sparser

representation of the coefficients in comparison to the l2 regularization. Although this representation is

sparse, it turns out that in many applications of SINDy, LASSO regularization results in only mildly sparse

models, still retaining many non-zero coefficients. Hence, Brunton et al. [114] have proposed another

optimization technique that promotes sparsity in the model, as known as Sequentially Thresholded Least

Squares (STLSQ) regression. In this approach the cost functional introduced in (3.30) could use any

regularization function. However, the coefficients are sequentially thresholded at each iteration of the

optimization algorithm such that the coefficients with magnitude smaller than a certain threshold Λ are

pruned. In this case, the parameter Λ determines the sparsity of the resulting model. Large threshold

values result in highly sparse models, and vice versa. In this method, the coefficients that are smaller than

a pre-defined threshold are eliminated in each iteration until there are no more terms with coefficients

smaller than the threshold. Note that some accuracy is lost when using regularization techniques as

the coefficients are penalized. So, the optimal model found will lose some accuracy due to the applied

penalization. Another technique, namely, Stepwise Sparse Regression (SSR) [132], is also proposed

as a greedy algorithm by eliminating the smallest coefficient at each iteration until convergence to a

set of terms in the feature library. The SSR method results in more accurate coefficients and lower

cost functional values due to the lack of penalization in the model, however, the sparsity level is not

tuneable. Recently, Sparse Relaxed Regularized Regression (SR3) technique has been proposed for sparse

regression [130] where the regularization is relaxed by introducing an auxiliary variable to account for

accuracy and sparsity using two different decision variables in the optimization problem. In this study,

we use the STLSQ technique with the l2 norm as regularization function for sparse optimization through

the open source python package PySINDy [133].

3.5.2 The Feature Library

There is a large freedom in how one can choose the terms of the feature library to form a finite set of

nonlinearities suitable for the SINDy framework. However, basic knowledge of the physics of the system

can guide one in choosing a relevant set of functions for the system under consideration. In this study,

the terms in the feature library are inspired by empirical relations, equivalent circuit models, and physics-

based relations [134, 135].

Electrochemical battery models based on first principles are not suitable for battery management pur-
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poses as they require solving large partial differential equations, which is computationally costly. Some

purely empirical models are proposed which ignore the thermodynamics of the cell and describe the volt-

age evolution in the cell. The Shepherd model, the Unnewehr model, the Nernst model, and a combined

model are representatives of such empirical models [136, 137]. The empirical relations of Shepherd and

Unnewehr simply model the polarization resistance of the cell, whereas the effect of temperature and ma-

terial activity during electrochemical reaction is described by the Nernst model. These models are listed

in Table 3.1.

The second category of models for describing the polarization overpotential is based on equivalent

circuit modeling such as the Thevenin model, cf. (3.11). More complex models can also be considered for

this case; however, the parameters of such models need to be obtained using sophisticated optimization

methods and the EIS data. Hence, we stick with the Thevenin model dynamics based on (3.11) for

incorporation into the feature library.

The last category of functions included in the feature library is based on physical modeling of cells.

The polarization overpotential of the cells is normally modeled by Butler-Volmer (BV) type equations

[96]. In this relation, the current density at the interface is related to overpotential through exponential

functions of overpotential as

J(t) = J0 [exp(αafup(t))− exp(−αcfup(t))] , (3.31)

where J(t) [ Am2 ] is the current density at the interface, J0 [ Am2 ] is the exchange current density defined

as current density at the equilibrium state, αa and αc are anodic and cathodic transfer coefficients, and

f = F
RT [ 1

V ] is defined as the inverse of thermal voltage of the cell, F is the Faraday’s constant, R

is the ideal gas constant, and T is temperature,. There are different versions of this relation proposed

in the literature based on various approximations and assumptions. Linearized BV, Tafel-type BV, and

engineering-type BV are among such models. In this work, symmetric BV, Tafel-type BV, and linearized

BV are included in the feature library. The symmetric BV corresponds to the case where the cathodic and

anodic transfer coefficients are equal to each other αa = αc = α, hence, the BV equation reduces to

up(t) =
1

αf
arcsinh

Å
J(t)

2J0

ã
. (3.32)

As the time derivatives of state variables are required for the SINDy framework, we compute it as

u̇p(t) =
1

αf

J̇(t)

(( J
2J0

)2 + 1)0.5
. (3.33)
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The range of exchange current density for different chemistries of Li-ion cells is reported in the literature

to be 10−8 − 10−4[A/cm2] [138], depending on the cell type. As this range is much smaller than the

current density values (in the order of 1[A/cm2]), the term J
2J0

dominates in the denominator, and the

time derivative of polarization potential can be approximated as

u̇p(t) ∼=
2J0

αf

J̇(t)

J(t)
. (3.34)

This expression will be used to approximate the time derivatives of the polarization potential correspond-

ing to the symmetric BV term (3.32). On the other hand, the Tafel-type BV relation corresponds to the

case where αa � αc or up is large, and the anodic current density dominates the reaction. The BV

relation in this case reduces to

J(t) = J0 exp(αafup(t)). (3.35)

Rearranging (3.35) we get

up(t) =
1

αaf
ln

Å
J(t)

J0

ã
. (3.36)

Taking the time derivative of (3.36) results in a similar expression as the time derivative of symmetric

BV relation (3.34), where the time derivative of the polarization potential is proportional to J̇(t)
J(t) . Thus,

these two terms are not distinguished in the feature library of the SINDy framework. On the other hand,

the linearized BV relation corresponds to the case where the overpotential is small and the BV relation

can be linearized as

up(t) =
1

αaf

J(t)

J0
. (3.37)

The time derivative of the polarization potential in this case is equal to u̇p(t) = 1
αfJ0

J̇(t). All terms of the

feature library are summarized in Table 3.1. It is notable that the SINDy framework introduced in (3.28)

involves two state variables, reflecting the fact that the optimization problem in (3.30) needs to be solved

for both state variables simultaneously. However, in practice, the cost functional in (3.30) is minimized

for each state variable separately. The reason is that the time derivatives of the state measurements ‹̇X
and the feature library on the right-hand-side of (3.28) are both precomputed using the measurement data‹X. For this reason, the evolution in time of one state variable becomes independent of the evolution

of the other state variable within the SINDy framework. We note that essentially the state variables are

coupled and the evolution of one state variable is dependent on the other state variable. However, within

the SINDy framework, both ‹̇X and Θ(‹X,U) in (3.30) are precomputed using the measurement data ‹X.

Therefore, the optimization problem (3.30) is split into two subproblems, each solved with respect to one

state variable.
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Category Model Equation for up Feature Library Term (u̇p)

Empirical Simple Model up = 0 u̇p ∝ 0

Shepherd Model up = k
z u̇p ∝ ż

z2

Unnewehr Model up = k · z u̇p ∝ ż

Nernst Model up = k1 ln(z) + k2 ln(1− z) u̇p ∝ ż
z ,

ż
1−z

Combined Model up = k1/z + k2 · z

+k3 ln(z) + k4 ln(1− z)

u̇p ∝ ż, żz ,
ż

1−z ,
ż
z2

Equivalent Circuit Thevenin Model u̇p = I
Cp
− up

RpCp
u̇p ∝ I

Cp
,

up
RpCp

Physical Symmetric BV up = 1
αf arcsinh( J

2J0
) u̇p ∝ J̇

J

Tafel-type BV up = 1
αf ln( JJ0 ) u̇p ∝ J̇

J

Linearized BV up = 1
αaf

J
J0

u̇p ∝ J̇

Table 3.1: Candidate relations for the polarization potential and their time derivatives. The time
derivative relations are included in the feature library of the SINDy framework. Note that the
prefactors are dropped from the time derivative relations as they will be determined as part of
the optimization process (3.30). Note that the time dependency is dropped from the variables,
and k, k1, k2, k3 and k4 are arbitrary constants.

The terms introduced in Table 3.1 for modeling the polarization potential can be used in the SINDy

framework for finding an optimal combination of nonlinearities represent the dynamics of the cell. As we

are modeling two state variables, SoC and polarization potential, all of the terms in Table 3.1 are included

in the feature library for the polarization potential, whereas only some of them are included in the feature

library for SoC. The reason is that many candidate terms listed in Table 3.1 contain ż(t) which cannot be

used for describing the dynamics of SoC in the feature library as the corresponding equation in (3.28) is

then satisfied initially. Table 3.2 summarizes the candidate terms used in each subproblem (for each state

variable) based on the terms introduced in Table 3.1. Note that each state variable is included in the other

variable’s function library. Also, the current density variable J(t) [ Am2 ] in the expressions in Table 3.1

will be replaced with the current I(t) [A] applied to the cell, as the surface area of the cell will remain

constant in all experiments.
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Candidate Term Symbol
Included in Included in

SoC control library? up control library?

I
Cp

u1 X X

up
RpCp

u2 X X

ż u3 X

ż
z u4 X

ż
z2 u5 X

ż
1−z u6 X

İ
I u7 X X

İ u8 X X

I I X X

z z X

up up X

Table 3.2: State and control variables included in the control library U for each of the state
variables.

For each state variable the minimization problem (3.30) is solved separately. The library of candidate

functions for each state variable is constructed using the terms included in Table 3.2. The feature library

of candidate functions used for identifying the optimal dynamics of the polarization potential is denoted

Θu(X,Uu), whereas the feature library of candidate functions used for identifying the optimal dynamics

of SoC is denoted Θz(X,Uz). The feature libraries in each case are constructed as described below. Note

that θi, i = 1 . . . ,M, refers to a functional form defined by the user (e.g. polynomials of different orders,

exponential functions, etc), and M represents the number of functional forms.

• When solving (3.30) for identifying the optimal dynamics of the polarization potential, the library

of control variables is constructed as

Uu = [z, I, u1, u2, · · · , u8, θi(up), θi(z), θi(I), θi(u1), · · · ] , i = 1, · · · ,M . The feature library
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for the polarization potential will be constructed as Θu(X,Uu) = [1,X,Uu,X ⊗ Uu,X ⊗

X,Uu ⊗Uu], where X⊗Uu represents all product combinations of elements in X and Uu.

• When solving (3.30) for identifying the optimal dynamics of SoC, the library of control variables is

constructed as Uz = [up, I, u1, u2, u7, u8, θi(z), θi(up), θi(I), θi(u1), · · · ] , i = 1, · · · ,M . The

feature library for SoC will be constructed as Θz(X,Uz) = [1,X,Uz,X⊗Uz,X⊗X,Uz⊗Uz].

In order to evaluate the performance of various models, different error metrics can be introduced as

J1 =
1

m

m∑
i=0

∣∣∣∣∣î‹X(i∆t)
ó
1
−
Ç∫ i∆t

0

î
Θu(X(τ),Uu(τ))Ξ̂

ó
1
dτ + [X0]1

å∣∣∣∣∣ , (3.38)

for the mean absolute error of polarization potential, and

J2 =
1

m

m∑
i=0

∣∣∣∣∣î‹X(i∆t)
ó
2
−
Ç∫ i∆t

0

î
Θz(X(τ),Uz(τ))Ξ̂

ó
2
dτ + [X0]2

å∣∣∣∣∣ , (3.39)

for the mean absolute error of SoC, where m is the number of time steps and [X]k refers to the k-th state

variable (k = 1, 2).

3.5.3 Results

The result of the proposed SINDy framework highly depends on the quality of the measurements, the

choice of the functions in the library, and how the solution is sparsified. Failure to find an optimal and

accurate sparse model might imply incorrect choice for the functions in the library. In this section, we use

SINDy to construct a model for the dynamics of the system using the dynamic loading data presented in

Section 3.3. For this purpose, reference SoC and polarization potential estimates of the cell for different

cycles obtained in Section 3.4 are used as the training data ‹X. The feature library terms introduced in

Table 3.2 will be computed using ‹X and the applied current as the control input. For calculating the time

derivatives, the smoothed finite difference routine of PySINDy package is used with order 5 differencing.

In the first attempt, only the terms proposed in Table 3.2 are used as the candidate terms in the feature

library, meaning that the terms corresponding to θi() functional forms in Uu and Uz are eliminated.

The purpose of this simulation is to give a glimpse of how the SINDy framework performs overall with

respect to the Thevenin model. Three different sparsity levels (strong, normal, and weak) are considered

when minimizing the cost functional (3.30) with respect to the vector of coefficients for each cycle. The

obtained model is tested on all other cycles by evaluating the error metrics (3.38) and (3.39). The results

are presented in Figure 3.10.
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(a)

(b)

Figure 3.10: Error J2 computed for SoC according to (3.39) (a), and J1 computed for the
polarization potential according to (3.38) (b) by comparing the reference state of the cell with
the solution of the forward ODE model in (3.28) for each cycle. The identified model is obtained
by minimizing the cost functional (3.30) with respect to the vector of coefficients using three
different sparsity levels for each cycle. The indices on the vertical axes represent the data sets
(cycles) used to solve problem (3.30), whereas the indices on the horizontal axes represent the
data sets used to test the accuracy of the obtained models. Note that "Th" on the y-axis of each
sub-figure refers to the Thevenin model (3.11). Also, some of the errors presented in (a) and (b)
attain large values, and hence, their values are replaced with 0.5 and 0.1, respectively, for ease
of visualization.

As can be observed in Figure 3.10, highly sparsified models obtained with SINDy fail to perform

well in estimating the state variables. Moving from strong to weak thresholds, the accuracy of the models

increases. Considering polarization potential dynamics, the model identified by SINDy outperforms the

Thevenin model in the case of weak thresholding. As can be observed, however, the model is not capable

of outperforming the Thevenin model (3.11) for estimating the SoC even at low sparsity levels. Note

that in this experiment, we have restricted ourselves to the terms presented in Table 3.2 only, as more

complex nonlinearities may give rise to the blow up of the ODE system. Without adding more complex

nonlinearities to the reconstruction, the models found by the SINDy framework have been able to improve

the polarization potential estimates of the Thevenin model at low sparsity levels in many cases.

Fitting a model via the SINDy framework to only one cycle increases the chance of producing a dy-

namical system that might underpreform against data from other cycles due to the presence of unsuitable

terms in the dynamics. Hence, in order to improve the robustness of the models found by SINDy we fit the

model using composite data corresponding to all cycles at different sparsity levels, and test the resulted

models on all cycles. In this case, the feature library is constructed by considering polynomials of up

to third order of the control terms and their products, in addition to sine and cosine functions of control
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terms, cf. Table 3.2. Hence, the feature library for SoC and polarization potential consists of 131 and 385

linear and nonlinear terms, respectively. First, we will focus on improving estimates of the polarization

potential. In this scenario, we fix the threshold for the SoC dynamics in the SINDy framework such that

only one term, representing the CC term, cf. Eq. (3.11), is preserved in its feature library (Λ = 0.003).

Note that the fitting procedure will still be required for this purpose as the prefactor of this term needs to

be determined using the SINDy framework. The results are shown in Figure 3.11 at four different sparsity

levels for the polarization potential. Note that an excessively sparse solution will significantly underfit,

while a barely-sparse model may overfit to the data. Both scenarios must be avoided and a balance be-

tween sparsity and goodness of fit should be determined. As shown in Figure 3.11, the sparsity threshold

of Λ = 2× 10−10 produces a model that balances sparsity with accuracy. This model beats the Thevenin

model across all cycles without increasing the chance of system blow up, while keeping the least number

of terms. In the next section the terms involved in this dynamical system are discussed.

Figure 3.11: Results of fitting model (3.28) via the SINDy framework using composite data of
all cycles at four different sparsity levels for the polarization potential. The threshold for the
coefficients of the feature library terms for SoC is adjusted such that only one term (the CC
term) is preserved in its dynamics.

In order to have a closer look at the performance of the models in Figure 3.11, Figures 3.12-3.13 show

the time evolution of the polarization potential constructed by solving the forward model (3.28) obtained
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by SINDy at different sparsity levels. As can be observed, there is a tradeoff between the accuracy and

sparsity of models. Strong thresholding of the models results in sparser, less accurate models, whereas

weak thresholding gives rise to less sparse, more accurate models. In this case, a model needs to be

adopted that balances the sparsity and the accuracy. Strong and moderate thresholds (Λ = 2.5 × 10−10

and Λ = 2×10−10) in Figure 3.12 satisfy these requirements. In Figure 3.13 we show the result obtained

with a moderate threshold Λ = 2 × 10−10 magnified over a part of the cycle. Also, the performance

of the Thevenin model is compared to the models obtained by SINDy and the reference data. As can

be observed, the model obtained by SINDy significantly improves the estimation of the polarization

potential.

(a) Λ = 3× 10−10 (b) Λ = 2.5× 10−10

(c) Λ = 2× 10−10 (d) Λ = 1.5× 10−10

Figure 3.12: Time evolution of the polarization potential up(t) for one cycle as the solution
of the forward problem (3.28) obtained by solving minimization problem (3.30) via the SINDy
framework and by using composite data of all cycles, with different thresholding levels.
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Figure 3.13: Time evolution of polarization potential up(t) for one cycle as the solution of
the forward problem (3.28) obtained by solving minimization problem (3.30) via the SINDy
framework and using composite data of all cycles with the threshold set at Λ = 2× 10−10. The
time evolution is shown over a part of the cycle only. The performance of the Thevenin model
and the model obtained by SINDy are compared with reference data.

As observed in Figures 3.11-3.13, the SINDy framework has the potential to improve the estimates

of the polarization potential, however, the improvement of the SoC estimates is questionable. In order

to improve the SoC estimates, we will take the best model found in Figure 3.11 for predicting the polar-

ization potential (obtained with Λ = 2 × 10−10), and will try different thresholds on the coefficients of

the feature library terms corresponding to the SoC dynamics. The results are shown in Figure 3.14. As

can be observed, the SINDy framework is not capable of finding a set of terms that can improve the SoC

estimates for a range of cycles over the CC model. This could be due to the possibility that the feature

library is populated with nonlinearities that cannot capture the behaviour of the SoC dynamics in a robust

and accurate manner. More complicated terms may need to be included in the feature library in order to

find a model that can beat the estimates of SoC using the CC model.
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Figure 3.14: Results of fitting model (3.28) via the SINDy framework using composite data of
all cycles at four different sparsity levels for SoC estimation. The threshold for the coefficients
of the feature library terms for the polarization potential is set at Λ = 2× 10−10.

Thus, the SINDy framework with a variety of linear and nonlinear terms in the feature library is

capable of significantly and robustly improving the polarization potential estimates, however, the SoC

estimates are not improved due to the presence of noise and the choice of nonlinearities in the feature

library. In the next section, we will take a closer look at the model obtained by SINDy.

3.5.4 Interpretation of Results

The model calibrated with SINDy using data from multiple cycles was able to improve the polarization

potential estimates. In particular, using the threshold Λ = 2 × 10−10, we found a robust model that

improves estimates for all cycles. The ODE model corresponding to this threshold level is

u̇p = −5.857714 · up + 0.183970 · I
Cp

+ 0.363350 · ηI

Qn(1− z)

−0.000015 · İ
I

+ 0.000601 · İ − 0.005697 ·
u2
p

RpCp
.

(3.40)

As can be observed, this model has six terms, linear and nonlinear, from a library of 385 terms, including

polynomials of control terms and their products of degree up to three, plus sine and cosine functions
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of control terms, cf. Table 3.2. The second term on the right-hand-side of (3.40) is included in the

Thevenin model. The third term on the right-hand-side of (3.40) is the time derivative of ln(1 − z) as

introduced by the Nernst model. The fourth and fifth terms on the right-hand-side of (3.40) correspond

to the symmetric BV (or Tafel-type BV) and the linearized BV relations for the polarization potential,

respectively. The nonlinear term
u2
p

RpCp
is added to complement the dynamics of the cell. As can be

observed, the dynamics of the system is captured by a combination of classical dynamics, Nernst model

dynamics, approximations of BV and a nonlinear term. It is interesting to note that, apart from the

candidate terms introduced in Table 3.2, only one candidate term is preserved out of all the nonlinearities

added to the feature library in the form of polynomials and sine and cosine functions. A combination of

six terms is sufficient to capture the dynamics of this cell in a robust manner. A collection of all these

terms contributes to the estimation of the polarization potential. As an ODE describes the evolution of

a system only in the presence of all its terms, this ODE would become incomplete without any of these

terms. Hence, interpretations of the significance of each one of these terms is nontrivial.

3.6. Unscented Kalman Filtering

In this section, we aim to enhance the estimates of the SoC using a variant of a Kalman filter. As the model

obtained by SINDy in (3.40) incorporates nonlinear terms, a nonlinear extension of Kalman filtering must

be used. The general methodology remains the same as introduced in Section 3.4; however, in this case, a

more sophisticated Kalman filter is designed to handle a nonlinear dynamical system. The EKF approach

relies on the first-order Taylor approximation for linearizing the model, whereas the UKF approach retains

the original nonlinear system and uses a sampling technique, known as the unscented transformation, for

handling nonlinearities. In this framework, a minimal number of points are sampled from the distribution

of the state variables (by assuming that the state variables have a Gaussian distribution), referred to as

sigma points. The sigma points then are advanced in time using the nonlinear state equations. The mean

and covariance of the state variables is determined via the computed sigma points. It has been shown that

this technique produces a third-order accuracy and is superior to EKF [139]. In this study, we adopt an

Adaptive Unscented Kalman Filter investigated by [105]. The aim is to add a probabilistic aspect to the

SoC estimates, as well as improve their accuracy through a feedback loop. The model for polarization

potential dynamics (3.40) identified by the SINDy framework, and the CC model for SoC estimation

(3.3) are used in this study as the underling nonlinear model of the cell.
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3.6.1 Mathematical Background

The deterministic continuous state equation used in conjunction with AUKF is

Ẋ = G′(X,U),

G′(X,U) =

−5.86up + 0.18 I
Cp

+ 0.36ηI
Qn(1−z) − 0.000015 İI + 0.000601İ − 0.005697

u2
p

RpCp

ηI(t)
Qn

 ,
ut = h(X,U) = uoc(z) + up + IR0,

(3.41)

where h : R2 × R→ R is the nonlinear observer function, and G′ : R2 × R→ R2 is the nonlinear state

transition function. This system can be written in stochastic discrete form as

Xk+1 = G(Xk,Uk) + Wk, (3.42a)

ut,k+1 = h(Xk+1,Uk+1) + Vk+1, (3.42b)

Wk ∼ N (0,Qk), (3.42c)

Vk ∼ N (0, Rk), (3.42d)

where the measurement and process noise is added to equations (3.42a) and (3.42b), and G : R2 ×

R → R2 is the state transition matrix. A deterministic sampling technique, as known as unscented

transformation, is used in order to select sigma points from a distribution of state variables. In the case

of two state variables n = 2, five sigma points are drawn from a joint distribution according to unscented

transformation as

X0
k−1 = X+

k−1, (3.43a)

Xi
k−1 = X+

k−1 +
[»

(n+ λ)P+
k−1

]
i
, i = 1, 2, (3.43b)

Xi
k−1 = X+

k−1 −
[»

(n+ λ)P+
k−1

]
i
, i = 3, 4, (3.43c)

where the superscript i refers to each sigma point, Xi
k−1 is the i-th sigma point at time step k− 1, X+

k−1

is the mean of the state variables, P+
k−1 is the covariance of the state variables, and λ = ρ2(n + s) − n

determines the dispersion of the sigma points. The parameters ρ and s are the scaling parameters that

determine the dispersion intensity. Note that in one dimension n = 1, setting s = 0 and ρ = 1 results

in selecting three sigma points: the mean, plus and minus one standard deviation from the mean. Hence,

parameters ρ and s need to be tuned in order to effectively sample the joint distribution of state variables

at each time step. Each sigma point carries a weight, to be used for computing the mean and covariance
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at the new time step. The computation of weights is detailed in Algorithm 2. The sigma points selected

at each time step are then propagated in time through the nonlinear system of equations (3.42) to obtain

the updated estimates in the new time step. The mean and covariance of the distribution is then computed

using the updated sigma points at the new time step. The details of this approach are summarized in

Algorithm 2. The adaptive laws for computation of process and measurement noise variance used in this

study are borrowed from [105].

Algorithm 2: Adaptive Unscented Kalman Filter Algorithm.

Input: ρ, s — Scaling parameters of sigma points.
α — Forget factor.

Output: X+
k ,P

+
k — Posterior state estimation and error covariance matrix at time step k.

Initialize X+
0 and P+

0

Set k ← 1
repeat

Attain sigma points at time step (k − 1): (superscript refers to sigma points)
X0
k−1 = X+

k−1

Xi
k−1 = X+

k−1 +
î»

(n+ λ)P+
k−1

ó
i
, i = 1, 2

Xi
k−1 = X+

k−1 −
î»

(n+ λ)P+
k−1

ó
i
, i = 3, 4

Calculation of weights for sigma points:
w0
m = λ/(n+ λ)

w0
c = λ/(n+ λ) + (3− ρ2)

wim = wic = 1/2(n+ λ), i = 1, 2, 3, 4
Time update: performing prior estimation

X−k =
∑2n
i=0 w

i
mG(Xi

k−1,Uk−1)

P−k =
∑2n
i=0 w

i
c(G(Xi

k−1,Uk−1)−X−k )(G(Xi
k−1,Uk−1)−X−k )T + Qk

Attain sigma points at time step (k): X̄0
k = X−k

X̄i
k = X−k +

[»
(n+ λ)P−k

]
i
, i = 1, 2

X̄i
k = X−k −

[»
(n+ λ)P−k

]
i
, i = 3, 4

Measurement update:
u−t,k =

∑2n
i=0 w

i
mh(X̄i

k,Uk)
Kalman gain

Kk = Pxy,kP
−1
y,k

Py,k =
∑2n
i=0 w

i
c

Ä
h(X̄i

k,Uk)− u−t,k
ä Ä
h(X̄i

k,Uk)− u−t,k
äT

+Rk

Pxy,k =
∑2n
i=0 w

i
c

(
X̄i
k −X−k

) Ä
h(X̄i

k,Uk)− u−t,k
äT

State update
X+
k = X−k + Kk

î
ut,k − u−t,k

ó
P+
k = P−k −KkPy,kK

T
k

k ← k + 1
until t = tf ;
where adaptive laws are :

εk = ut,k − h(X+
k ,Uk)

Qk = (1− α)Qk−1 + α(Kkεkε
T
kKT

k + P+
k )

Rk = (1− α)Rk−1 + αεkε
T
k

Notes:
[
√

X]i refers to the i-th column of the matrix square root factor of X
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3.6.2 Results

The results for fitting the AUKF for all cycles are shown in Figure 3.15. Also, the mean absolute error

of SoC estimates for all cycles is computed for the AUKF and the Thevenin model by comparing to the

reference state of the cell. The results are shown in Figure 3.16. The error metric used in this case is

J3 =
1

m

m∑
k=0

|z(tk)− z̃(tk)| · 100, (3.44)

where z̃(tk) is the reference state at time step k, and z(tk) is the posterior state. The improved dynamics

obtained by the SINDy framework in (3.40) reduces the modeling error with respect to the reference

states, whereas the measurement noise is still present and cannot be eliminated. With the help of a more

accurate model with lower modeling error for the polarization potential, the AUKF algorithm becomes

more robust, meaning that a single set of tuning parameters is used for all cycles for this algorithm.

As can be observed in Figure 3.16, in general the SoC estimates by the CC model are better than the

SoC estimates by the AUKF algorithm, however, the AUKF framework is superior in the sense that

it is capable of quantifying the confidence in state estimates. The reason behind this fact is that the

AUKF framework works by striking a balance between the measurement uncertainty and the modeling

uncertainty. As the model and measurement noise might exhibit cycle-to-cycle differences, finding the

right balance for all cycles is non-trivial, hence some accuracy is lost in some cycles. In most cycles in

Figure 3.15 except cycle 5, the true SoC estimate at t = t2 is contained within the confidence intervals of

the AUKF algorithm.
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Figure 3.15: Time evolution of SoC by solving the ODE system (3.41) in time, and the confidence
intervals of SoC estimates for all cycles obtained using the AUKF algorithm 2. The reference
SoC values and the SoC estimates by FCC model are also shown for comparison.
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Figure 3.16: The mean absolute error of SoC estimates (3.44) using the FCC model and the
AUKF algorithm. The errors are computed by comparing to the reference state.

3.7. Discussion

In this work, we investigated the challenging question of SoC estimation of LFP cells operating under

dynamic loading conditions. The internal dynamics of the cell contributes to cell relaxation, which may

lead to self-discharge and adds complexity to SoC modeling. Quantifying the uncertainty in SoC estima-

tions is crucial for understanding the reliability of estimates and the necessity for cell recalibration. In this

study, we explored the problem of uncertainty quantification in SoC estimations and utilized probabilistic

models to minimize the discrepancy between model outputs and cell measurements over time. However,

such a framework relies on an underlying model that is most suitable for the system under study. In-

correct modeling of the internal dynamics of the cell can result in unreliable estimations and increased

uncertainty. This, in turn, can compromise the robustness of the employed filters.

The primary contribution of this study lies in the improved modeling of the internal state of the cell,

particularly the polarization potential, under dynamic loading conditions. For this purpose, we adopted

a hybrid data-driven approach, where the cell internal dynamics are inferred from experimental data

using the SINDy framework. This method is not purely predictive, as it leverages knowledge about the

system’s physics to optimally select a feature library that describes the cell dynamics. Although the

final model robustly predicts the cell dynamics, interpreting the optimal dynamical model (3.40) remains

challenging. Our findings suggest that a combination of the Thevenin model (with EIS data) and the

Butler-Volmer terms with a minimal nonlinearity can effectively describe the cell dynamics without the
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need for highly nonlinear terms or interactions between them. However, explaining why this combination

performs best remains elusive. We also observe that relations relying solely on the Butler-Volmer terms

are insufficient to describe the evolution of the polarization potential in this case; some terms related to

the ECM parameters (obtained via EIS) are also necessary to accurately capture the cell dynamics.

Despite the challenges, with sufficient data, a robust SINDy framework capable of reliably tracking

the cell dynamics can be obtained. This model, when combined with uncertainty quantification tech-

niques, provides insights into the uncertainty propagated in the estimations. Moreover, this method is

computationally inexpensive and easily adaptable for online estimation and control. While various ma-

chine learning algorithms can be used for predictive modeling, their robustness becomes crucial as they

lack physical terms describing the dynamics. Combining data-driven predictive models with physics-

based cell modeling can yield robust and interpretable predictive models. An important question pertains

to the performance of such models across different cells and chemistries. Addressing the reliability of

these models across cell-to-cell and chemistry-to-chemistry differences is beyond the scope of this study.
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Chapter 4

Data-Driven Approach to Learning Optimal

Forms of Constitutive Relations in Models

Describing Lithium Plating in Battery Cells

4.1. Introduction

In recent years, due to the growing demand for green energy and the phasing out of fossil fuels in pur-

suit of a more sustainable future, rechargeable batteries have assumed a prominent role in the transition

to green technologies. Lithium ion (Li-ion) batteries, among the most promising energy storage solu-

tions, have found extensive applications in portable electronic devices, electric vehicles, and grid storage.

With the increasing need for clean energy storage technologies, addressing challenges related to the per-

formance and reliability of Li-ion batteries has become crucial. Aging and inefficiency mechanisms in

cells contribute to their degradation. Battery degradation involves complex processes, both physical and

chemical, within a cell. To comprehend, analyze, mitigate, and control the impact of these mechanisms,

sophisticated experimental and computational techniques are essential. Current research aims to con-

tribute to the understanding, prediction, and management of one of the primary degradation mechanisms

in Li-ion batteries, commonly known as Lithium plating (Li-plating).

A Li-ion cell is composed of a pair of porous electrodes: the negative electrode (anode) and the pos-

itive electrode (cathode), separated by a porous separator, and immersed in a liquid electrolyte. These
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components are enclosed between two current collectors, each connected to an external circuit. The

porous nature of the electrodes facilitates the movement of Lithium ions within the material. Typically,

graphite is used as the material for the negative electrode due to its layered crystalline structure. In recent

years, silicon has received significant attention as an alternative to graphite electrodes due to its high

capacity and abundance [140]. The cathode material is typically a Lithium-metal-oxide, with Nickel,

Manganese, and Cobalt being common metal components. The primary constituent in the electrolyte so-

lution is Li+ ions, which migrate between the electrodes during the cell’s operation. During the charging

process, Li ions are deintercalated from the cathode layers, freeing up electrons. Electrons then travel

through the cathode’s solid phase to the current collector, through an external circuit, and into the anode

solid phase. Simultaneously, Li ions dissolve into the electrolyte and diffuse through the separator pores

to the anode layers, where they undergo intercalation. The charging process continues as more Li ions

intercalate into the anode. Depending on the capacity of the anode to host Li ions, the charging process

continues until most available sites on the anode surface are occupied by Li elements. During cell dis-

charge, reverse process occurs, with Li deintercalating from the anode surface, prompting the migration

of Li ions from the anode to the cathode. Intercalation of Li ions on the anode solid phase during the

charge process, and their subsequent deintercalation during the discharge process, are the desired mecha-

nisms to the operation of the cell. However, such desired processes are accompanied by (or hindered by)

some undesired processes, referred to as degradation mechanisms.

Several degradation mechanisms contribute to the inefficiencies observed in Li-ion cells, most impor-

tantly Solid-Electrolyte Interphase (SEI) growth, Li-plating, and binder decomposition. These degrada-

tion mechanisms can result in three distinct degradation modes, namely, the loss of cycleable Lithium,

loss of active materials, and loss of electrolyte, as noted in different studies [8, 141, 142]. The loss of

cycleable Lithium, which leads to significant capacity fade in the cell, is primarily caused by the con-

sumption of Li ions through undesirable side reactions like irreversible Li-plating and SEI growth. Con-

versely, the loss of active material is linked to structural changes in the anode, potentially leading to a

reduction in active sites available for Li intercalation. On the cathode side, the loss of active material

can occur due to structural changes in the cathode, transition metal dissolution, and particle cracking.

Moreover, the consumption of electrolyte can also contribute to cell degradation. This is driven by in-

teractions with deposited Lithium at the anode interface, ultimately leading to the depletion of cycleable

Lithium. The SEI growth is categorized as primary or secondary. The primary SEI growth process per-

tains to the creation of a SEI layer on the anode surface during the initial cycle of the cell. Although it

consumes some cycleable Lithium, its presence is vital for the battery’s performance and stability. The

secondary SEI growth, on the other hand, pertains to the creation of SEI layer during the subsequent
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cycles of the cell, which could be another potential mechanism contributing to degradation of cell. Also,

inactive particles within the negative electrode play a crucial role in providing structural stability to the

cell. However, binder decomposition can lead to changes in the cell’s morphology, ultimately contributing

to cell degradation. Additionally, a primary challenge associated with silicon anodes is their substantial

volume change during charge/discharge cycles, a characteristic that enhances their energy density due to

the presence of free sites for Lithium ions to intercalate. However, the continuous volume fluctuations

might lead to the formation of secondary films on the anode surface, increasing the chance of Li-plating,

and thereby depleting cycleable Lithium and contributing to capacity fade of the cell over time. Each

of these degradation mechanisms could get pronounced in certain circumstances of cell operation such

as extreme temperatures, high charge/discharge rates, and overvoltage of the cell due to overcharge and

overdischarge.

Li-plating is a critical degradation mechanism that becomes more pronounced under harsh charging

conditions, as discussed in a study by Zhang et al. [143]. It is primarily accelerated when metallic

Lithium forms during the charging process under conditions such as high charging rates, overcharging at

high state-of-charge, and charging at low temperatures. At lower temperatures, the cell’s energy density

decreases due to several factors, including reduced ionic conductivity and diffusivity in the electrolyte,

lower solid-state diffusivity of Li ions in the electrodes, and slower intercalation rates. Higher charge

rates introduce greater kinetic and transport overpotentials, contributing to the Li-plating phenomenon,

as highlighted by Lin et al. [142]. Additionally, when the state-of-charge of the cell is high, continued

charging can lead to an excess of Lithium ions saturating on the anode surface, surpassing the maximum

allowable Lithium levels, further accelerating Li-plating. In essence, under low-temperature and high

state-of-charge conditions, the diffusion rate of Li ions within the electrolyte toward the anode outpaces

the rate of Li ions diffusing into the SEI layer and graphite interlayer. This results in an accumulation

of Li ions on the surface of the SEI layer, which subsequently absorbs electrons and forms metallic

Lithium. This metallic Lithium is deposited onto the surface of the SEI layer. The Li-plating process

can be either reversible or irreversible. The reversible process, known as Lithium stripping, occurs when

metallic Lithium maintains electrical contact with the anode, allowing for the release of an electron and

the deposition of Li ions back into the electrolyte. Conversely, if the plated Lithium loses electrical

contact with the anode, the process becomes irreversible, leading to the loss of cycleable Lithium and

the growth of dendrites on the anode surface. This form of metallic Lithium is often referred to as

“dead Lithium”. The growth of metallic Lithium dendrites on the anode surface can potentially rupture

the separator, creating an electrical pathway between the anode and cathode, resulting in a cell short

circuit [144]. Furthermore, the high surface area of dead Lithium can contribute to secondary SEI growth
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on its surface, further reducing the available cycleable Lithium [145]. Parasitic reactions related to Li-

plating can be exacerbated during fast-charging operating conditions [146].

Quantifying plated Lithium in Li-ion batteries has been a long-standing challenge in battery studies.

The separate quantification of Solid-Electrolyte Interphase (SEI) and metallic Lithium further compli-

cates this task. Various techniques, categorized as ex-situ, in-situ, and operando, have been proposed for

determining the dead Lithium content within the cell, as discussed by Lin et al. [142]. Different experi-

mental techniques could be used for detection of metallic Lithium in the cell including Scanning Electron

Microscopy,Nuclear Magnetic Resonance Spectroscopy (NMR), X-ray Photoelectron Spectroscopy, and

Electrochemical Impedance Spectroscopy. Detailed discussions about these experimental techniques can

be found in references such as [142, 147, 148]. In the current study, in order to better understand the Li-

plating phenomena, we leverage experimental data obtained from novel Li-NMR spectroscopy technique,

introduced and developed by Sanders et al. [149]. Fang et al. [145] have also used a similar approach for

quantification of metallic Lithium using Li-NMR technique as an operando approach.

Expanding upon efforts to quantify Lithium plating in the cell, we aim to model the growth and decay

of plated Lithium within the cell using mathematical and computational tools, to eliminate the need for

experimentation in an online application of cells or battery packs. Building upon advancements in exper-

imental quantification, we seek to track the evolution of different phases of Lithium in operando under

diverse charge/discharge protocols. Mathematical tools will aid in developing underlying models based

on the physical principles governing cell behavior. Additionally, sophisticated computational tools will

be employed to calibrate these models, optimizing their alignment with experimental data. The technique

of inverse modeling will be utilized for this purpose. Many authors have used inverse modeling in sys-

tematic optimization of electrochemistry problems including [27, 29–31], in which the electrochemical

parameters of the model are calibrated via experimental data. Also, the optimal reconstruction of consti-

tutive relations in electrochemical problems have been investigated in these studies. In the current study,

the techniques of inverse modeling and optimal reconstruction are leveraged to calibrate the mathematical

models using experimental data. The calibrated model holds promise for online applications, enabling

real-time monitoring, recommending optimal charge/discharge protocols, and ultimately enhancing cell

performance while mitigating degradation in the long run.

The paper is organized as follows: details of the experimental data are presented in Section 4.2; then

in Section 4.3 we introduce the mathematical modeling framework for the this problem and develop a

dynamical system governing the evolution of lumped concentrations of different phases of Lithium in the

cell; in Section 4.4 we introduce the inverse modeling framework and the computational tools used for
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calibrating the dynamical system; Section 4.5 presents the results of this analysis and compares them to

the experimental data; finally, the summary of the work and the conclusions are deferred to Section 4.6.

4.2. Experimental Data

To calibrate the mathematical models for subsequent prediction and control, one requires experimen-

tal data tailored for this purpose. The experimental data utilized in this study was collected using the

operando Li-NMR spectroscopy technique, as introduced in a prior publication by Sanders et al. [149].

This technique enables the identification and quantification of various Lithium phases within the anode

while the cell is in operation, as depicted in Figure 4.1.

The anode material used for these experiments is silicon, recognized as one of the most promising ma-

terials due to its high energy density. The cathode material employed is NMC622 (LiNi0.6Mn0.2Co0.2O2).

The test protocol of each experiment comprises constant-current (CC) followed by constant-voltage (CV)

charge/discharge, and open-circuit resting (OCV) phases. The charge rates for the constant-current phase

are C/3 (3-hour charge), C/2 (2-hour charge), 1C (1-hour charge), 2C (30-minute charge), and 3C (20-

minute charge); while the discharge rates for the CC phase remain constant at C/3 (3-hour discharge) for

all cycles. Here, ’C’ denotes the capacity of the cell. Note that in this study, the cycles C/3 and C/2 are

denoted C3 and C2, respectively, for the simplicity of notation. The voltage of the cell ranges from 2.5V

to 4.2V , with the former representing the cell at full discharge, while the latter corresponds to its fully

charged state. The OCV segment after charge and discharge is set for a duration of one hour. Operando

NMR measurements were conducted at intervals of 5 minutes for the C3 cycle, 3 minutes for the C2 and

1C cycles, and 1.5 minutes for the 2C and 3C cycles. The evolution of various Lithium phases from Li-

NMR experiments, alongside their operational current profile and the cell’s terminal voltage, is depicted

in Figure 4.1.

Several peaks are modelled when fitting NMR spectra to quantify different phases of Lithium, includ-

ing

1. Lithium in the electrolyte or solid-electrolyte interphase (SEI),

2. Lithium in dilute LixSi where x < 2.0 in a locally-ordered environment (referred to as dilute Li),

3. Lithium in concentrated LixSi where x > 2.0 in a locally-ordered environment (referred to as

concentrated Li),
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4. LixSi in a disordered environment (referred to as disordered Li), and

5. dendritic and plated Lithium.

These different phases of Lithium manifest distinct chemical shifts in the operando NMR data. It is

worth noting that all dendritic Lithium formed is irreversible, while plated Lithium may exhibit reversible

or irreversible behavior. As depicted in Figure 4.1, the evolution of different phases at constant rates

demonstrates a nonlinear behavior during cell operation. Also, the dendritic Lithium content does not

appear in all cycles, but in the ones with higher C-rates. In other words, in the cycles with lower C-rates,

the formation of dendritic Lithium is smaller than the sensitivity of the measurement device.

In order to pre-process the experimental data depicted in Figure 4.1 and make it suitably formatted for

the mathematical model and further analysis, the Lithium in the anode solid phase (dilute Li, concentrated

Li, and disordered Li) are added to form the solid phase concentration ‹C1(t). Similarly, addition of plated

and dendritic Li content in the cell forms the Li phase ‹C2(t) corresponding to side reactions. Note that the

subscripts 1 and 2 refer to intercalated and side-reacted Lithium, respectively; a notation that is consistent

with mathematical the model in Section 4.3.5. These concentrations are normalized and their evolution

for each cycle are shown in Figure 4.2. As can be observed in Figure 4.1, the total Li content in the cell

does not add up to a constant, and it is changing with the cell operation, due to several factors. First, the

Li content in the positive electrode of the cell is not accounted for in the Li-NMR measurements. The

complement of the Li content in the cell could be stored in the positive electrode which is not modelled

in this case. Second, the presence of noise in Li-NMR measurements is another source of deviation from

the normalization condition (conservation of Lithium), cf. Section 4.3.3. It is also notable that two forms

of dynamics are evident in the cell: the excitation dynamics as the primary source, and the relaxation

dynamics. The excitation dynamics is the response of the system to external current source, which is the

dominant form of dynamics in the cell. The relaxation dynamics represents the evolution of the system

while the cell is at rest in the absence of an external current source. We note that the dynamics of the

system are primarily determined by excitation, and hence, change in the dynamics due to excitation is

larger than change in the dynamics due to relaxation. This fact will be used in mathematical modeling,

cf. Section 4.3.

The data for each experiment is split into three regimes: the charging regime, the OCV regime,

and the discharge regime. To use a proper notation for the amalgamated data, Dt =
⊕

iDi, i ∈

{C3,C2, 1C, 2C, 3C}, where Di refers to the total concentration data available for the cycle with rate

i, and
⊕

denotes the concatenation operator. Each cycle consists of three regimes: Di =
⊕

j D
j
i , j ∈
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Figure 4.1: Terminal voltage and current applied to the cell (a,c,e,g,i), and evolution of Li
content in time in different phases via Li-NMR spectroscopy method (b,d,f,h,j) using different
test protocols of the cell.

{ch, ocv, dch}, where {ch, ocv, dch} refer to charge, OCV, and discharge regimes of the cell testing

protocols, respectively. Different segments of Dt will be used for analysis.
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Figure 4.2: Evolution of Li content in time in negative electrode solid phase corresponding to
intercalated Li (a), and plated Li (b) for different C-rates. Note that the variables are normalized.

4.3. Physical Modeling

Mathematical modeling plays a pivotal role in comprehending the intricate physical processes within a

battery cell, exploring degradation mechanisms and their influencing factors, and crafting effective miti-

gation and control strategies for the challenges encountered in large-scale applications of Li-ion batteries.

Various approaches can be employed for mathematical modeling, with two primary paradigms being

physics-based modeling and data-driven machine-learning modeling. In this study, we aim to navigate

the border between these two paradigms, with more emphasis placed on physics-based modeling of cells.

This approach involves utilizing fundamental physical principles to construct a mathematical framework

that represents the behavior of the cell, augmenting the model, and leveraging data-driven strategies for

calibration. The ultimate objective is to predict the Li-plating dynamics of the cell using experimental

data obtained from Li-NMR spectroscopy. The use of Li-NMR spectroscopy data in the modeling pro-

cess highlights the integration of experimental data into the physics-based framework. This coupling of

experimental observations with theoretical modeling can yield highly informative and predictive models

for understanding and mitigating the critical issue of Li-plating in Li-ion batteries.

The operation of a Li-ion cell involves a multitude of physical and chemical processes, each occurring

at different spatial and temporal scales. This complex multi-physics multi-scale nature of the phenomenon

makes it challenging to develop suitable models for specific applications aimed at investigating various

aspects of the cell’s behavior. One of the most widely accepted physics-based modeling approaches

for Li-ion cells is rooted in the porous electrode theory initially introduced by Newman et al. [16]. In

these models, the cell is treated as a continuum medium, and it operates on larger temporal and spa-

tial scales compared to discrete particle-level models that necessitate fine-scale resolution. Continuum
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models, which are widely regarded as the fundamental approach, serve as the basis for modeling Li-ion

cells. Depending on the specific application and research objectives, models of varying levels of com-

plexity can be adapted. These models allow researchers to delve into the intricacies of the cell’s behavior,

considering the multitude of physical and chemical processes occurring within it. The review by Brosa

Planella et al. [95] explores various modeling approaches for Li-ion cells and introduces a systematic

reductive framework, called asymptotic reduction, to simplify complex mathematical models using phys-

ical assumptions. Among the different modeling approaches, the most intricate is the microscale model,

which operates at the finest temporal and spatial scales to capture the detailed physical phenomena within

the cell. In microscale modeling, the framework is built upon the conservation laws for Lithium ions

and counter-ions in the electrolyte, as well as the conservation of Lithium ions and electrons in the solid

phase of the electrodes. Because electrons serve as charge carriers in the solid phase, the conservation of

electrons and Lithium ions is treated separately. In contrast, ions act as the charge carriers in the elec-

trolyte phase, resulting in more intricate conservation equations in the electrolyte phase. To close these

conservation laws and make them mathematically complete, suitable constitutive relations are employed.

These relations establish the connection between the flux of a species (e.g. Lithium ions or electrons) and

the thermodynamic forces acting upon them, allowing for a comprehensive representation of the physical

processes occurring at the microscale within the Li-ion cell. The process of Lithium intercalation and

deintercalation primarily takes place on the surface of the anode particles and is considered as an interfa-

cial phenomenon. The rate of intercalation reactions on the surface of the anode active material depends

on the surface overpotential. This overpotential is defined as the difference between the electrochemical

potential of Li ions on the surface of the solid phase and the Li ions in the adjacent electrolyte, and is typ-

ically represented by the well-known Butler-Volmer (BV) relation. Solid-phase diffusion of Lithium ions

within the anode is a complex process that may involve phase transition phenomena. While simplifying

assumptions are often applied to this diffusion process, conventional diffusion equations are commonly

used to model it. However, recent modeling techniques have relaxed the assumption of linear diffusion

and instead incorporate nonlinear diffusion within the solid phase. This nonlinear diffusion accounts for

concentration-dependent diffusion coefficients, making it capable of capturing phase-transition behav-

ior [30, 150]. Furthermore, an alternative approach based on the Cahn-Hilliard modeling framework has

gained attention due to its ability to naturally capture the dynamics of phase transitions during solid-

state diffusion [30, 151]. In the electrolyte, charge transport is described using various theories. Two

common theories include (i) Dilute Electrolyte Theory, which is based on Nernst-Planck equations and

is applicable to dilute electrolytes where there is limited interaction between species, and (ii) Concen-

trated Electrolyte Theory, which is based on Stefan-Maxwell type equations and is more suitable for
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concentrated electrolyte solutions. These models govern charge transport in the electrolyte phase and are

essential components of comprehensive Li-ion cell models. Microscale models offer a highly detailed

representation of Li-ion cells, but they come with the drawback of demanding significant computational

resources and requiring extensive knowledge about the microstructure of various cell components. They

also depend on more parameters which makes them harder to calibrate. As a result, they are not well-

suited for online estimation and control, where real-time decision-making is essential.

To address these challenges, one could rely on some simplifying assumptions to transform complex

microscale models into more manageable homogenized models [95]. In homogenized models, the porous

media within the cell is treated as a continuum, and the equations are modified to incorporate the influence

of the microstructure. This approach allows for the resolution of electrolyte flow at the macroscale, while

retaining the microscale representation of solid-state diffusion, as this process is typically slow and in-

volves significant concentration gradients in fine spatial scales. In this type of modeling, microstructural

information is still required, but the model simplifies this by generalizing a small subdomain to repre-

sent the entire domain using periodic boundary conditions. These homogenized models can be reduced

to the well-known Doyle-Fuller-Newman (DFN) model by assuming a simpler geometry for all elec-

trode particles, a model that is also referred to as the pseudo-two-dimensional (P2D) or Newman model,

firstly introduced by Fuller, Doyle, and Newman [152]. The DFN model simplifies the representation

of electrode particles by assuming them to be spherical. Consequently, it solves the solid-state diffusion

equations in a 1D radial coordinate, rather than attempting to capture the intricate 3D microstructure of

the electrode particles. Similarly, the electrolyte equations are solved in a 1D planar geometry. This

simplification results in a model that can be conceptually described as 1D+1D, giving rise to the term

“pseudo-two-dimensional”. The P2D model is renowned for its computational efficiency while retaining

the capability to capture the internal dynamics and behavior of Li-ion cells.

In pursuit of enhanced computational efficiency and suitability for online estimation and control,

reduced-order models have been introduced as alternatives to the comprehensive DFN models. Two

notable reduced-order models are the Single-Particle Model (SPM), originally introduced by Atlung et

al. [153], and the Single-Particle Model with Electrolyte (SPMe), developed by Prada et al. [154]. The

fundamental assumption in these models is that the spherical electrode particles, as considered in the

DFN model, are sufficiently similar in nature. This similarity allows these particles to be effectively

represented by a single averaged or representative particle. It is assumed that the intercalation and dein-

tercalation processes occur almost uniformly across all electrode particles, making it feasible to describe

these processes using a single representative particle. In this setting, the partial differential equations
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(PDEs) governing the Li-ion cell behavior can be effectively decoupled into micro and macro scales. It is

worth noting that the SPMe model, unlike the simpler SPM model, accounts for the electrolyte dynamics,

offering a more comprehensive representation of cell dynamics by considering the behavior of the elec-

trolyte phase. The SPM and SPMe models could be achieved by asymptotic reduction of DFN model as

developed by different authors [155–157]. Certain physical assumptions are used by Marquis et al. [156]

to systematically reduce the DFN model to a much simpler SPM model which will affect the range of

validity of these models. The physical assumptions include high electrical conductivity in the electrodes

and electrolyte, and fast Li ion migration in electrolyte in comparison to the discharge timescale. The

range of validity of the SPM model according to Brosa Planella et al. [155] is small overpotentials from

open-circuit-voltage, and weak side reactions. The two assumptions hold for low to moderate charge rates

and will break at high rates. In summary, starting from the most complex microscale model and utilizing

a systematic asymptotic reduction framework, the order of complexity can be progressively reduced.

The objective of this research is to adopt a simple model that can effectively capture the internal dy-

namics of a Li-ion cell, focusing on the interactions among various particles within the cell. The physical

model is developed in a manner to match the experimental data obtained from Li-NMR experiments.

The physical modeling framework of this study is inspired by the SP model with side reactions, recently

introduced by Brosa Planella et al. [155]. This study also finds close connections to a recent study by

Sahu et al. [158]. The model used in this study could be seen as a simpler version of the SP model with

side reactions, where certain parameters and functions are to be calibrated using experimental data. The

final model takes the form of a system of ordinary differential equations (ODE). It involves employing a

SP model in the form of partial differential equations (PDE) and applying reduction and averaging tech-

niques to derive a suitable ODE model that describes the evolution of key space-averaged concentrations

within the cell. Some aspects of the model are shown to increase its flexibility in fitting the experimental

data. We begin by introducing the DFN model in Section 4.3.1, developing the dimensionless model

in Section 4.3.2, applying the asymptotic reduction technique in Section 4.3.3, and finally introducing

our dynamical system as forward model in Section 4.3.5. The key differences of our model with similar

studies are highlighted in Section 4.3.4.

4.3.1 DFN Model

In this study, we begin by presenting the 1D DFN model. The SP model is derived from an asymptotic

reduction analysis. This model is then further simplified using averaging techniques to yield a mathemat-

ical representation suitable for modeling our experimental data, cf. Section 4.2. It is noteworthy that our

modeling approach is inspired by the SPMe+SR (Single-Particle Model with Side Reactions) framework
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of Brosa Planella et al. [155], albeit with some modifications to the underlying assumptions, which serve

to mitigate certain limitations associated with the Brosa Planella’s model. The differences in modeling

assumptions are highlighted in Section 4.3.3. The current study also finds close connections to Li plating

modeling efforts of Sahu et al. [158]. The SP model assumes the presence of a representative (averaged)

particle to describe the transport of species within the solid state of the electrode. The key assumption is

that all solid particles within the electrode are indistinguishable, allowing a single particle to serve as a

representative for the entire solid phase. It is important to note that the cathode component of the cell is

also considered in the modeling effort, however, the final model (presented in Section 4.3.5) eliminates

the need for solving for the positive electrode components, as the experimental data does not contain

information from the positive electrode domain. The model is composed of five distinct components,

namely, charge conservation in the solid phase of positive and negative electrodes, Li Transport in the

solid phase of positive and negative electrodes, Li transport in the electrolyte phase, charge conservation

in the electrolyte phase, and models of side reactions through interfacial dynamics. Each of these compo-

nents is explained in more detail below. Note that in our model we only take into account the Li-plating

side reaction and we disregard other side reactions in the cell (e.g., SEI growth). We also disregard the

film resistance formed on the surface of the anode particle due to side reactions, and porosity change of

the anode particles in time is not modelled. Also, the volume change of anode particles (which could

be significant in silicon anodes) is not explicitly considered in this model, however, the concentration-

dependent constitutive relations can implicitly take this effect into account, as described in Section 4.3.5.

The model geometry consists of the negative electrode (Ωn), the separator (Ωs), and the positive

electrode (Ωp) where Ω = Ωn ∪ Ωs ∪ Ωp. The model’s geometry is depicted in Figure 4.3, where the

1D macroscale coordinate is indicated on the horizontal axis with Ωn = [0, Ln], Ωs = [Ln, L− Lp] and

Ωp = [L− Lp, L], where Ln, Lp > 0 are the widths of the negative electrode and positive electrode,

respectively. In contrast, the microscale dimension is described using spherical coordinates with r ∈

Ωrn = [0, Rn] for the negative particle and r ∈ Ωrp = [0, Rp] for the positive particle, where Rn and

Rp represent the radii of the spherical negative and positive particles, respectively. In our study, each of

these sub-models is averaged over its respective spatial domain to eliminate the spatial dependence of the

model to match to the experimental data.

Note that in the following sections, where the mathematical model is presented, variables with a hat

are dimensionless, variables in bold are vector quantities, and variables with a bar refer to quantities av-

eraged over their spatial domain. Subscripts n, e, and p refer to the negative electrode solid phase, the

electrolyte phase, and the positive electrode solid phase, respectively. In each of the following subsec-
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Figure 4.3: Schematic of a Li-ion cell in the charging state. Li ions deintercalate from the positive
electrode surface, migrate toward the negative electrode through the electrolyte, and intercalate
int negative particles. Electrons will migrate through the external circuit toward the negative
electrode. The domain of the system is highlighted in red.

tions, different components of the DFN model are presented.

Charge Conservation in the Solid Phase

This sub-model describes charge conservation within the solid phase of the negative electrode. The charge

conservation equation is stated in macroscale in Ωn. The potential profile in the solid phase is obtained

by solving the following equation in 1D as

∂Jn
∂x

= −anJn,tot,

Jn = −σn
∂φn
∂x

,

Jn = Japp, at x = 0,

Jn = 0, at x = Ln,

(4.1)

where φn[V ] is the electrostatic potential in the solid phase, Jn[ Am2 ] is the current density in the solid

phase, σn[S/m] is the effective conductivity of the solid particles, Jn,tot[ Am2 ] is the source/sink term

representing the total current density flux at the solid-electrolyte interface of the negative electrode due to

intercalation and side reactions, Japp[ Am2 ] denotes the current density applied to the cell, and an = 3
Rn

[ 1
m ]

is the effective surface area of the anode particles per unit volume. Similarly, the charge conservation in
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the solid phase for the positive electrode in 1D becomes

∂Jp
∂x

= −apJp,tot,

Jp = −σp
∂φp
∂x

,

Jp = 0, at x = L− Lp,

Jp = Japp, at x = L.

(4.2)

Note that the total current density is a source/sink term that is present in negative electrode and positive

electrode only and vanishes in the separator, as

Jtot =


Jn,tot = Jn,int + Jn,sr 0 ≤ x ≤ Ln,

0 Ln ≤ x ≤ L− Lp,

Jp,tot = Jp,int L− Lp ≤ x ≤ L,

(4.3)

where Jn,int, Jn,sr and Jp,int represent intercalation and side reaction current densities at the solid-

electrolyte interface of the negative electrode and intercalation current density at the solid-electrolyte

interface of the positive electrode, respectively. Note that no side reaction is assumed on the positive

electrode.

Li Ion Transport in the Solid Phase

This sub-model describes the slow diffusion of Li ions inside the solid phase. The diffusion equation for

Li transport in the solid phase is stated in the microscale in the spherical coordinates for a representative

particle (assuming uniformity along all particles). In the 1D spherical coordinates, the system is

∂Cn
∂t

=
1

r2

∂

∂r

Å
r2Dn

∂Cn
∂r

ã
, r ∈ (0, Rn),

∂Cn
∂r

= 0, at r = 0,

−Dn
∂Cn
∂r

=
Jn,tot
F

, at r = Rn,

Cn = Cni(r), at t = 0,

(4.4)

where Cn = Cn(r, t)[molm3 ], Dn[m
2

s ], Cni(r) are the Li concentration, the diffusion coefficient, and

initial concentration profile, respectively. Ntot is the total molar flux at the solid-electrolyte interface as

Ntot = Nint+Nsr, whereNint is the molar flux of Li corresponding to the intercalation process, whereas

Nsr is the molar flux of Li resulting from side reactions. The Li flux on the surface of the anode particle
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is obtained from n · Nn

∣∣
r=Rn

= −Jn,totF , where Jn,tot[ Am2 ] is the current density flux at the interface

(obtained from the Butler-Volmer relation), and F [ A.smol ] is Faraday’s constant. Note that the interfacial

current density Jn,tot will be replaced with the intercalation current density Jn,int in Section 4.3.3, to

account for side reaction as well. Similarly, Li transport in the solid phase of the positive particles in 1D

spherical coordinates is governed by

∂Cp
∂t

=
1

r2

∂

∂r

Å
r2Dp

∂Cp
∂r

ã
, r ∈ (0, Rp),

∂Cp
∂r

= 0, at r = 0,

−Dp
∂Cp
∂r

= −Jp,tot
F

, at r = Rp,

Cp = Cpi(r), at t = 0.

(4.5)

Charge Conservation in the Electrolyte Phase

This sub-model describes charge conservation within the electrolyte phase. The continuity equation of

charge conservation in the electrolyte phase is defined in the macroscale in Ω in terms of the potential

profile and has the form

∂

∂x
Je = aJtot,

Je = −σeB(x)

ï
∂

∂x
φe − 2(1− t+)

RT

F

∂

∂x
logCe

ò
,

∂

∂x
φe = 2(1− t+)

RT

F

∂

∂x
logCe, at x = 0, L,

(4.6)

where Je is the current density in the electrolyte phase, φe is the potential in electrolyte phase, σe is the

electrolyte conductivity, B = B(x, t) is the permeability, and t+ = t+(Ce) is the transference number.

Li Ion Transport in the Electrolyte Phase

This sub-model deals with the transport of Li ions within the electrolyte phase at macroscale. The conti-

nuity equation for Li ion conservation in the electrolyte phase is stated on Ω in terms of the concentration

profile of Li ions and has the following form

∂

∂t
(εCe) = − ∂

∂x
Ne +

a

F
Jtot,

Ne = −DeB(x)
∂

∂x
Ce +

t+

F
Je,

∂

∂x
Ce =

1

DeB(x)

t+

F
Je, at x = 0, L,

Ce = Cei , at t = 0.

(4.7)
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where ε = ε(x, t) is the porosity of the domain, Ce = Ce(x, t) is the Li ion concentration in the elec-

trolyte, De = De(Ce) is the diffusion coefficient in the electrolyte phase, and Je is the current density

vector in the electrolyte phase.

Interfacial Dynamics

Interfacial processes in the cell are normally modelled through the well-known Butler-Volmer (BV) re-

lation for electrochemical kinetics. It describes how the current density at the solid-electrolyte interface

depends on the potential difference between the electrode surface and the neighbouring electrolyte. Sev-

eral variants of this semi-empirical relation exist in the literature as surveyed by Dickinson et al. [96].

Depending on the nature of the problem and the level of complexity required for a given application, a

suitable BV relation could be used. Lithium plating and stripping as interfacial processes can also be

modelled by adding an extra BV equation for the side reaction. Essentially, one BV relation can be added

for each of the side reactions, representing the intensity of each side reaction as a function of overpoten-

tial, as first introduced by Arora et. al. [159] and later expanded by Yang et. al. [160]. The BV relations

representing interfacial phenomena at the solid-electrolyte interface are represented by [159, 160]

Jn,int = jint [exp(αa,intfηint)− exp(−αc,intfηint)] ,

Jn,sr = jsr [exp(αa,srfηsr)− exp(−αc,srfηsr)] ,

ηint = φn − φe − Un,

ηsr = φn − φe − Usr,

jint = k
αc,int
a,int k

αa,int
c,int C

αc,int
n Cαa,inte (Cmax − Cn)αa,int ,

jsr = kαc,sra,sr k
αa,sr
c,sr Cαa,sre ,

(4.8)

where jint and jsr are the exchange current densities for intercalation and side reaction, respectively,

ηint and ηsr are the overpotentials at the solid-electrolyte interface for intercalation and side reactions,

respectively, Un and Usr are equilibrium potentials, kc,int, ka,int, kc,sr, ka,sr are the reaction rates for

cathodic and anodic currents of intercalation and cathodic and anodic currents of side reaction, respec-

tively, Cmax is the saturation concentration of Li in solid phase, and Cn = Cn
∣∣
r=Rn

refers to solid phase

concentration on the surface of the particle. On the other hand, Escalante et al. [30] use a more sophisti-

cated technique for modeling side reaction in the cell, where one BV relation is used to represent both Li

intercalation/deintercalation and plating/stripping as

jint = k0C
0.5
n C0.5

e (Cmax − Cn)0.5 tanh

Å
γ
Cmax−Cn
Cmax

ã
,
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where the intercalation exchange current density is multiplied by a factor describing how the total current

is divided between the intercalation and side reactions, hence, reducing the formulations for exchange

current densities. Thus, the two equations for exchange current density of intercalation and side reaction

are replaced with one, with a significantly lower number of parameters. As can be observed, the exchange

current densities are concentration dependent, and most authors have used similar functional forms to

model this dependency. Daniels et al. [31] leverage a data-driven approach in order to optimally construct

the exchange current density as a function of concentration, without assuming any a priori functional

form for this function. In our modeling approach, we use a combination of aforementioned techniques.

We use separate BV relations as in first approach in order to account for the side reaction, cf. (4.8). We

also introduce a variable as the ratio of exchange current densities for intercalation and plating processes

that represents the competition between the intercalation versus plating, as outlined in Section 4.3.3. This

key variable is concentration dependent, and the optimal functional form will be constructed using data-

driven inverse modeling techniques. Before we start the analysis, we present a dimensionless version of

our model in the next section.

4.3.2 Dimensionless Model

The model introduced in (4.1), (4.2) (4.4), (4.5), (4.6), and (4.7) could be rescaled to a dimensionless

form that will facilitate its asymptotic reduction. We focus on the 1D version of the model where the

independent and dependent variables are rescaled as follows

x = Lx̂, Ln = Lln, Lp = Llp, r = Rnr̂n, r = Rpr̂p,

Jk = JtĴk, JK = JtĴK , jint = Jtĵint, jsr = Jtĵsr, φn = φtφ̂n,

φe =
1

f
φ̂e, Un = φt“Un, ηint =

1

f
η̂int, ηsr =

1

f
η̂sr, σe = σtyp

e σ̂e,

Cn = Cmax
n
“Cn, Cp = Cmax

p
“Cp, Ce = Cmax

e
“Ce, Csr = Cmax

n
“Csr, t = τ t̂,

Ne =
Dtyp
e Cmax

e

L
“Ne, Dn = Dtyp

n
“Dn, De = Dtyp

e
“De, Dp = Dtyp

p
“Dp,

where x̂ ∈ [0, l], l = 1, k ∈ {n, e, p}, K ∈ {tot, int, sr, app}, f = F
RT , Jt is the typical current density

in the cell, φt is defined as the characteristic change in the potential of the cell from low to high states-of-

charge of the cell (note that the order of magnitude of this quantity is large for some chemistries such as

NMC and LCO, however, LFP chemistry notoriously exhibits smaller magnitudes of this quantity), Dtyp
k

is the typical diffusion coefficient, σtyp
e is the typical conductivity, Cmax

k is the maximum concentration of

Lithium in the corresponding domain, and τ =
FCmax

n L
Jt

is the discharge time scale. Note that 1
f = RT

F

has the unit of Volts and is defined as the thermal voltage of the cell. The dimensionless parameters are
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then defined as

λ = φtf, Ξn =
σn
fLJt

, Ξe =
σtyp
e

fLJt
, Ξp =

σtyp
p

fLJt
, Kn =

R2
n

τDtyp
n

,

Ke =
L2

τDtyp
e

, Kp =
R2
p

τDtyp
p

, γn =
τJt

RnFCmax
n

, γe =
τJt

LFCmax
e

γp =
τJt

RpFCmax
p

.

The dimensionless system of equations will become

∂Ĵn
∂x̂

= −anLĴn,tot, on 0 ≤ x̂ ≤ ln, (4.9a)

Ĵn = −λΞn
∂φ̂n
∂x̂

, on 0 ≤ x̂ ≤ ln, (4.9b)

Kn
∂“Cn
∂t̂

=
1

r̂2

∂

∂r̂

Ç
r̂2“Dn

∂“Cn
∂r̂

å
, on 0 ≤ r̂ ≤ r̂n, (4.9c)

∂Ĵp
∂x̂

= −apLĴp,tot, on 1− lp ≤ x̂ ≤ 1, (4.9d)

Ĵp = −λΞp
∂φ̂p
∂x̂

, on 1− lp ≤ x̂ ≤ 1, (4.9e)

Kp
∂“Cp
∂t̂

=
1

r̂2

∂

∂r̂

Ç
r̂2“Dp

∂“Cp
∂r̂

å
, on 0 ≤ r̂ ≤ r̂p, (4.9f)

∂Ĵe
∂x̂

= aLĴtot, on 0 ≤ x̂ ≤ 1, (4.9g)

Ĵe = −ΞeσeB(x)

ñ
∂φ̂e
∂x̂
− 2(1− t+)

∂ log “Ce
∂x̂

ô
, on 0 ≤ x̂ ≤ 1, (4.9h)

Ke
γe

∂(ε“Ce)
∂t

= − 1

γe

∂“Ne
∂x̂

+ aLKeĴtot, on 0 ≤ x̂ ≤ 1, (4.9i)“Ne = −“DeB(x)
∂“Ce
∂x̂

+ t+KeγeĴe, on 0 ≤ x̂ ≤ 1, (4.9j)

Ĵn,int = ĵint [exp(αa,intη̂int)− exp(−αc,intη̂int)] , (4.9k)

Ĵn,sr = ĵsr [exp(αa,srη̂sr)− exp(−αc,srη̂sr)] , (4.9l)

η̂int = λ
î
φ̂n − “Unó− φ̂e, at r̂ = r̂n, (4.9m)

η̂sr = λ
î
φ̂n − “Usró− φ̂e, at r̂ = r̂n, (4.9n)

100



Ph.D. Thesis - A. Ahmadi McMaster University - CSE

with following boundary and initial conditions

∂“Cn
∂r̂

= 0, at r̂ = 0, (4.10a)

−“Dn
∂“Cn
∂r̂

= KnγnĴn,tot, at r̂ = r̂n, (4.10b)

∂“Cp
∂r̂

= 0, at r̂ = 0, (4.10c)

−“Dp
∂“Cp
∂r̂

= KpγpĴp,tot, at r̂ = r̂p, (4.10d)

Ĵn = Ĵapp, Ĵe = 0, “Ne = 0, φ̂e = 0, at x̂ = 0, (4.10e)

Ĵn = 0, Ĵe = Ĵapp, at x̂ = ln, (4.10f)

Ĵp = 0 Ĵe = Ĵapp, at x̂ = l − lp,

(4.10g)

Ĵp = Ĵapp, Ĵe = 0, “Ne = 0, φ̂e = 0, at x̂ = l, (4.10h)“Ce = 1 “Cn = “Cni , “Cp = “Cpi , at t̂ = 0. (4.10i)

To simplify the notation in the analysis below, we opt to drop the hat sign from the dimensionless

variables from now on. In the next section, an asymptotic reduction and averaging techniques will be

used to reduce the full model (4.9)-(4.10) to a simpler time-dependent ODE system, where the evolution

of some key averaged concentrations are tracked.

4.3.3 Asymptotic Reduction and Averaging

In the current study the objective is to develop a simplified dynamical model in the form of the system

of ODEs, capable of tracking the evolution of key concentrations in the cell. Certain simplifying as-

sumptions are to be made to develop a suitable mathematical model for our application. There are two

important techniques used in this analysis that help in simplifying system (4.9)-(4.10). The first tech-

nique is asymptotic reduction which assumes that a certain parameter in the system takes a limiting value

(either large or small), and the dynamics of the system are investigated in the vicinity of that limiting

value by expanding each dependent variable in a Taylor series with respect to that parameter. Asymptotic

reduction of the DFN model to the SP model has been considered by various authors [155–157], where

different assumptions have been employed in each case to reduce the DFN model to a SP model. Marquis

et al. [156] derives an asymptotic reduction of the DFN model to find a simplified SPM with electrolyte.

This new model is shown to diverge from the DFN model for charging rates greater than 1C (C referring
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to the capacity of the cell). Richardson et al. [157] extends this work with a different assumption for

performing the asymptotic reduction, to generate a simple SP model that can perform better under higher

charging rates. Brosa Planella et al. [155] extend this work to account for side reactions in the cell, a

study that inspired the current investigation. However, certain assumptions in our work are different from

work of Brosa Planella et al. Note that only the relevant equations in the system of equations (4.9) will

be used in this analysis. In particular, electrolyte equations are not a matter of interest in this work and

will not be used in this asymptotic analysis.

The second technique used in this analysis is the averaging of equations over their corresponding

spatial domains in order to eliminate the spatial dependency. Some quantities in the DFN model, e.g.

concentrations, depend on both time and space (note that in the DFN model "space" means both the mi-

croscale variable r and the macroscale variable x) in contrast to our experimental data which is resolved

only in time. Hence, averaging space-dependent quantities over their domains will eliminate the spatial

dependency, and we will be left with a time-dependent model describing the evolution of lumped quan-

tities. The aforementioned two techniques are used in conjunction. First, we start with the following

assumptions needed for this analysis.

Assumptions

• A1: The parameter λ is large enough, so that the Taylor expansion of state variables in the vicinity

of small λ−1 remains a valid approximation. Note that the parameter λ is defined as the ratio of

the characteristic change in the potential of the cell from low to high states-of-charge of the cell to

the thermal voltage of the cell. At room temperature the thermal voltage is approximately 25mV ,

and represents the characteristic scale of the overpotential at the interface in BV relation. When the

scale of the characteristic change in the potential from low to high states-of-charge is large (in the

order of magnitude of 1 Volt), the parameter λ remains large enough for the asymptotic analysis.

This assumption refers to the physical case of small deviations from the equilibrium potential (small

overpotentials), when the typical variation in the voltage of the electrodes is much larger than the

thermal voltage. In this setting, the BV relations can be linearized.

• A2: The cathodic and anodic charge transfer coefficients for an interfacial reaction, cf. (4.9k)-

(4.9l), are assumed to add up to one, namely, αa + αc = 1.

• A3: Side reactions in the cell are weak and in the order of λ−1 relative to the main intercala-

tion/deintercalation reactions. This assumption allows us to capture the side reaction dynamics as

corrections to the main reactions, as explained below.
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• A4: The equilibrium potentials of the intercalation and side reactions are dependent on the con-

centration of the intercalated Lithium and of the Lithium participating in the side reactions, respec-

tively. The local sensitivity of these equilibrium potentials to changes in concentrations is small,

thus, these nonlinear relationships can be linearized in the neighbourhood of certain reference val-

ues of concentrations. Note that concentrations might exhibit large variations while the cell is in

operation, however, if the local sensitivity of the equilibrium potential to concentrations is small

(small local variations of equilibrium potentials with respect to concentrations), this simplification

remains valid.

Note that the inherent assumption of the SP model states that the electrode particles behave in a similar

manner, hence, one representative particle is sufficient to represent the microscale dynamics of the cell.

This inherent assumption will be re-derived as part of the asymptotic analysis.

Relaxation and Excitation Dynamics Before delving into the asymptotic analysis of the DFN

model, we discuss the fundamental sources of dynamics within the cell. The primary driver of dynamics

in the cell is the excitation induced by the current applied to it. When the cell is brought to rest or

an open-circuit state after an excitation period (charge/discharge), the system continues to evolve until

it reaches an equilibrium state corresponding to the specific state-of-charge of the cell. The intensity

of this phenomenon varies across different chemistries [161]. Consequently, we can distinguish two

main regimes in the operation of the cell: excitation, representing the main process, and the relaxation

dynamics of the cell in the absence of external influence. In our modeling effort, both excitation and

relaxation dynamics will be captured by the mathematical model.

Expansion of variables In order to perform the asymptotic reduction, according to assumption

A1 we expand each of the dependent variables in system (4.9)-(4.10) in the vicinity of λ−1 ≈ 0. The

expansion of variables in powers of λ−1 takes the form

φn = φn,0 + λ−1φn,1 + · · · ,

where the subscripts 0 and 1 refer to the leading-order and first-order approximations, respectively. All

other dependent variables in the system (4.9)-(4.10) are expanded in a similar manner. The expanded

version of variables will be substituted into (4.9)-(4.10) to derive the leading-order and first-order ap-

proximation of equations.
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Electrode Potential We start with the equations for the negative electrode potential. Averaging

(4.9a) over the negative electrode domain, using the Gauss divergence theorem, and applying boundary

conditions (4.10e) and (4.10f) we get

1

ln

∫ ln

0

∂

∂x
Jndx = − 1

ln

∫ ln

0

anLJn,totdx = 0− Japp,

Jn,tot =
Japp
anLln

, Jn,tot :=
1

ln

∫ ln

0

Jn,totdx,

(4.11)

where Jn,tot is the total current density averaged over the domain of the negative electrode. Hence,

by averaging over the spatial domain the partial differential equation for the charge conservation in the

solid phase reduces to an algebraic equation. This algebraic equation states that all the current applied

to the anode during charge/discharge will be consumed at the solid-electrolyte interface for intercala-

tion/deintercalation or side reactions, and acts as a constraint on the system of equations. Performing

similar analysis for the positive electrode using (4.9d), (4.10g) and (4.10h) results in Jp,tot = − Japp
apLlp

.

Asymptotic reduction of (4.9b) at the leading-order leads to

∂φn,0
∂x

= 0, 0 < x < ln. (4.12)

Thus, φn,0 = φn,0(t), and the leading-order potential is homogeneous in space. Also, at the first-order,

we have

Jn0 = −Ξn
∂φn,1
∂x

. (4.13)

Interfacial Kinetics In the next step, we simplify the BV relations introduced in (4.9k) and (4.9l).

For this purpose, we first linearize the BV relation, and second, we also linearize the relations between the

equilibrium potentials and concentrations. Using assumption A1, the BV relation (4.9k) can be linearized

as

Jint ∼= jint(αa,int + αc,int)ηint,

and similarly for (4.9l). Invoking assumption A2, they can be further simplified to

Jint = jintηint, (4.14a)

Jsr = jsrηsr. (4.14b)

Also, the overpotentials in the description of BV relations involve terms related to equilibrium poten-

tials of intercalation and side reaction. As stipulated by assumption A4, the equilibrium potentials are
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expanded as

Un(Cn) = Un
∣∣
Cn,0

+ λ−1 dUn
dCn

∣∣
Cn,0

Cn,1 + · · · , (4.15a)

Usr(Csr) = Usr
∣∣
Csr,0

+ λ−1 dUsr
dCsr

∣∣
Csr,0

Csr,1 + · · · , (4.15b)

where Cn,0 and Csr,0 are the leading-order concentrations used as the reference states for linearization,

and Cn,1 and Csr,1 are the first-order approximations of concentrations i.e. Cn ∼= Cn,0 + λ−1Cn,1 and

Csr ∼= Csr,0 + λ−1Csr,1. Hence, performing asymptotic reduction on BV relation (4.14a), and using

(4.9m) and (4.15a), we get

Jint,0 =
(
jint,0 + λ−1jint,1

)Å
λ

ï
φn,0 + λ−1φn,1 − Un

∣∣
Cn,0
− λ−1 dUn

dCn

∣∣
Cn,0

Cn,1

ò
− φe,0 − λ−1φe,1 + · · ·

ã
.

Thus, at the leading-order we have

Jint,0 = jint,0

Å
φn,1 − φe,0 −

dUn
dCn

∣∣
Cn,0

Cn,1

ã
︸ ︷︷ ︸

J†n

+ jint,1
Ä
φn,0 − Un

∣∣
Cn,0

ä
︸ ︷︷ ︸

J‡n

,
(4.16)

where J†n and J‡n represent (at the leading-order) the excitation and relaxation dynamics of the cell,

respectively. This choice of excitation and relaxation dynamics in (4.16) is justified in two ways. First,

as explained in Section 4.3.4, the second term is assumed to be zero in the study by Brosa Planella et

al. [155]. However, their assumption leads to the lack of relaxation dynamics in the positive electrode.

For this reason, the second term in (4.16) is assumed to take into account the relaxation dynamics of

the cell. Second, the second term represents the deviation of the leading-order potential of the negative

particle from its equilibrium potential. Setting this term to zero eliminates the relaxation dynamics of the

negative particle. Equation (4.16) will be used in subsequent analysis for describing (φn,1 − φe,0), as

φn,1 − φe,0 =
J†n
jint,0

+
dUn
dCn

∣∣
Cn,0

Cn,1. (4.17)

Next, we focus our attention on the side reaction current density. Assuming that the side reactions

in the cell are weak as stipulated by assumption A3, we postulate that jsr = λ−1j̃sr, where j̃sr is of

a different order of magnitude than jsr. This choice allows us to capture the side reaction effect at the

order of λ−1 (smaller order of magnitude than the intercalation). At the leading-order, the side reaction is

not observed due to this choice reflecting the assumption of weak side reactions. Therefore, performing
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asymptotic reduction on (4.14b), and using (4.9n) and (4.15b), we get

Jsr,0 = λ−1j̃sr,0

Å
λ
î
φn,0 − Usr

∣∣
Csr,0

ó
+ φn,1 − φe,0 −

dUsr
dCsr

∣∣
Csr,0

Csr,1

ã
, (4.18)

and by rearranging this equation we get

Jsr,0 = j̃sr,0
Ä
φn,0 − Usr

∣∣
Csr,0

ä
+ λ−1j̃sr,0

Å
φn,1 − φe,0 −

dUsr
dCsr

∣∣
Csr,0

Csr,1

ã
. (4.19)

As already mentioned, the side reaction is only considered at the first-order approximation and vanishes

at the leading-order. Hence, to eliminate the term of order O(1) in (4.19), we set φn,0 = Usr
∣∣
Csr,0

.

Therefore, Usr
∣∣
Csr,0

is also uniform in space (as is φn,0), which refines the underlying assumption of the

SP model in which the behaviour of all solid particles is assumed uniform in space at the macroscale.

Note that this assumption will impose the uniformity of Un
∣∣
Cn,0

in space as well. Hence, starting with

particles with the same initial concentrations, they will evolve in exactly same manner. Consequently,

solving for one representative particle suffices to capture the dynamics of all solid particles. Note that

quantities that are concentration-dependent will then be uniform in space, and can be easily averaged.

Thus, the expression for the relaxation dynamic in (4.16) becomes (after averaging quantities)

J
‡
n = jint,1

Ä
Usr
∣∣
Csr,0

− Un
∣∣
Cn,0

ä
. (4.20)

By substituting (4.17) into (4.19) for the side reaction current density, we get

Jsr,0 = λ−1j̃sr,0

Ç
J†n
jint,0

+
dUn
dCn

∣∣
Cn,0

Cn,1 −
dUsr
dCsr

∣∣
Csr,0

Csr,1

å
. (4.21)

The averaged current density for the side reaction Jsr,0 can be computed by averaging (4.21) over the

negative electrode domain. Note that the exchange current density is a function of the concentration at

the interface, however, due to the inherent assumption in the SP model, where particles are uniform in

space, the exchange current density will also be uniform in electrode domain. Also, the excitation current

density averaged over the negative electrode domain becomes J
†
n =

Japp
anLln

according to (4.11). We can

then average the expression (4.21) as

Jsr,0 =
jsr,0

aLlnjint,0
Japp + jsr,0

dUn
dCn

∣∣
Cn,0

Cn,1 − jsr,0
dUsr
dCsr

∣∣
Csr,0

Csr,1. (4.22)

Equations (4.20) and (4.22) will be used in subsequent analysis.
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Conservation of Charge The conservation of charge within the cell implies that the quantity of

charge entering the cell is equivalent to the amount exiting the cell at each instance of time. This funda-

mental principle reflects the balance of electrical charge within the cell, ensuring that the net charge in

the cell remains constant throughout the cell processes. The total current density on the negative elec-

trode can be split into two components Jn,tot = Jn,tot,0 + λ−1Jn,tot,1, and Jn,tot,0 = Jn,int,0 + Jsr,0.

At the leading-order Jsr,0 vanishes (due to assumption A3), and the leading-order interfacial current

density is given entirely by the intercalation current density, Jn,tot,0 = Jn,int,0. This implies that at

the leading-order, the dynamics are driven merely by intercalation (and there are no side reactions).

The side reaction will enter as a correction term in the first-order approximation. Also, the interca-

lation current density at the leading-order can be split into two components, namely, the excitation

(J†n) and relaxation dynamics (J‡n). Hence, the total current density on the negative electrode becomes

Jn,tot = J†n + J‡n + λ−1(Jint,1 + Jsr,1). A similar analysis for the positive electrode can be performed,

yielding Jp,tot = J†p + J‡p . Note that in the positive electrode there is no side reaction, and hence the

correction to intercalation process is absent for this electrode.

The Li concentration on the interface of the electrode particle (r = 1) is homogeneous over the

electrode spatial domain due to the macroscale uniformity of electrode particles assumed in the SP model.

Hence the total current density is uniform over space, and is equal to its average value. Averaging each of

these relations over the corresponding electrode domains, we get Jn,tot = J
†
n+J

‡
n+λ−1(J int,1+Jsr,1),

and Jp,tot = J
†
p + J

‡
p. It is also known that the total current density driven by the excitation dynamics

in each electrode is proportional to the applied current density as J
†
n =

Japp
anLln

, and J
†
p = − Japp

apLlp
.

For the conservation of charge to hold in the cell, the total charge flux in the cell must be zero, namely,

Jn,totln+Jp,totlp = 0. This implies that at the leading order, the current densities driven by the relaxation

dynamics for the positive and negative electrodes should interact as J
‡
p = − lnlp J

‡
n, and at the first order

approximation as Jsr,1 = −J int,1.

With this definition of relaxation dynamics for negative and positive electrodes interfacial current

density, the total charge in the cell is conserved. We note that the first-order approximation terms in the

negative electrode serve as a correction factor to the intercalation process occurring at the leading-order.

Transport of Lithium in Particles We perform asymptotic analysis and averaging on microscale

equations of electrode particles to describe the evolution of concentration of intercalated Li. Introducing

the asymptotic expansion in (4.9c) and using the boundary conditions in (4.10a) and (4.10b), followed
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by averaging over the spherical domain, gives at the leading-order (note the boundary condition at rn = 1)

∫ rn

0

Kn
∂Cn,0
∂t

r2dr =

∫ rn

0

1

r2

∂

∂r

Å
r2Dn0

∂Cn,0
∂r

ã
r2dr, t ≥ 0, (4.23)

with the boundary conditions

∂Cn,0
∂r

= 0, at r = 0,

−Dn0
∂Cn,0
∂r

= KnγnJn,int,0, at r = rn.

(4.24)

Applying the Gauss divergence theorem, the average rate of growth of concentration at the leading-order

is obtained as the net flux out of the boundary, hence

dCn,0
dt

=
γn
rn
Jn,int,0 =

γn
rn

(J
†
n + J

‡
n) =

γn
rn

(
Japp
anLln

+ J
‡
n), where Cn,0 =

∫ rn

0

Cn,0r
2dr.

(4.25)

On the other hand, at the first-order approximation we get

∫ rn

0

Kn
∂Cn,1
∂t

r2dr =

∫ rn

0

1

r2

∂

∂r

Å
r2Dn

∣∣
Cn,0

∂Cn,1
∂r

+ r2D′n
∣∣
Cn,0

Cn,1
∂Cn,0
∂r

ã
r2dr, t ≥ 0,

(4.26)

with the boundary conditions

∂Cn,1
∂r

= 0, at r = 0,

KnγnJint,1 = −
Å
r2Dn

∣∣
Cn,0

∂Cn,1
∂r

+ r2D′n
∣∣
Cn,0

Cn,1
∂Cn,0
∂r

ã
, at r = rn.

(4.27)

Note that the boundary condition on the interface of the electrode particle is computed using Jint,1.

Applying the boundary conditions and the Gauss divergence theorem, and knowing that Jint,1 = −Jsr,0,

we obtain
dCn,1
dt

=
γn
rn
J int,1 = −γn

rn
Jsr,0, where Cn,1 =

∫ rn

0

Cn,1r
2dr. (4.28)

Noting that Cn ≈ Cn,0 + λ−1Cn,1, the growth rate of Li concentration in the negative electrode is

governed by
dCn
dt

=
γn
rn

Å
Japp
anLln

+ J
‡
n − λ−1Jsr,0

ã
, (4.29)

where the expression for Jsr,0 is computed in (4.22).

A similar analysis can be performed for the positive particle. Introducing the asymptotic expansion in

(4.9f) and using the boundary conditions (4.10c) and (4.10d), followed by averaging over the spherical
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domain gives at the leading-order we get

dCp0
dt

=
γp
rp
Jp,int,0 =

γp
rp

(J
†
p + J

‡
p), where Cp0 =

∫ rp

0

Cp0r
2dr. (4.30)

Conservation of Lithium As the total inventory of Lithium in the cell is conserved, Li assumed

to occur in four different phases (anode intercalation, anode side reaction, electrolyte, and cathode solid

phase) such that the corresponding rates of change should add up to zero, namely,

ln
d

dt
Cn(t) + ln

d

dt
Csr(t) + l

d

dt
Ce(t) + lp

d

dt
Cp(t) = 0, (4.31)

whereA denotes the cross-sectional area of the electrode. This normalization condition should be satisfied

by the derived system of equations. However, the computation of Ce(t) necessitates information about

the concentration gradient at the boundary (after asymptotic reduction and averaging of (4.9g)), which is

absent in the time-dependent model. Also, the amount of Lithium in the electrolyte is always conserved

as noted in [155], meaning that d
dtCe(t) = 0. This implies that the Li ions will enter the electrolyte at

the same rate that they exit the electrolyte phase in different domains of the cell. Referring to (4.29) and

(4.30), we conclude that the side reaction dynamic becomes

dCsr,1
dt

=
γn
rn
Jsr,0, (4.32)

in order to retain the Li conservation in the cell.

Dynamical Model The concentration evolution in time of the two key averaged concentrations in

the cell can be computed as

dCn
dt

=
γn
rn

Å
Japp
anLln

+ J
‡
n − λ−1Jsr

ã
,

dCsr,1
dt

=
γn
rn
Jsr,

(4.33)

where J
‡
n and Jsr are obtained from (4.20) and (4.22), respectively. Before moving on to the formulation

of the inverse problem, we need to prepare the ground by making the following comments about (4.33).

• As discussed in Section 4.3.1, upon consideration of the relations governing the intercalation and

plating current densities in the BV equation (4.8), it becomes apparent that these equations are

both dependent on the concentrations of the intercalated Li and Li in side reactions, namely,

jsr,0 = jsr,0(Cn, Csr) and jint,0 = jint,0(Cn, Csr), and overpotential η. In our SPM model-
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ing framework, the need for solving for the potential profile and the overpotential is eliminated

using equation (4.17). The dependency of the exchange current densities on concentrations is un-

known, and needs to be determined using data-driven calibration strategies, cf. Section 4.4. As

both exchange current densities are concentration dependent, we close the model by introducing a

variable ω = ω(Cn, Csr) =
jsr,0
jint,0

representing a constitutive relation describing the competition

between the side reaction and intercalation exchange current densities. This relation controls how

the total current density is split between side reaction and intercalation at each particular state of

the cell.

• The concentrations Cn and Csr introduced in the asymptotic analysis are expanded up to the first-

order in λ−1. Knowing that side reactions are not observed at the leading-order Csr,0 = 0, we

conclude that Csr = Csr,1. The concentration of the intercalated Lithium can then be expressed as

Cn = Cn,0 + λ−1Cn,1. Note that when we expand Csr in (4.33), only the first-order approxima-

tion of concentration Cn,1 appears in the expressions (with the leading term Cn,0 absent). In this

case we make the assumption that Cn,1 = ζCn in order to close the mathematical model, where ζ

is a scalar parameter, 0 < ζ � 1. Note that this assumption is not true, as the parameter ζ could

be concentration-dependent. However, in order to close the mathematical model we opt to simplify

the expression to reduce the computational complexity of the inverse modeling.

• The exchange current density in the cell is defined as the interfacial current density while the cell

is in an equilibrium state, for both the forward and the backward interfacial reactions. jint,0 refers

to the interfacial current density for Li intercalation or deintercalation on the negative particle

surface at the leading-order (assuming no side reactions) while at equilibrium. While the cell is in

an equilibrium state, the dynamics are driven by two physical mechanisms active at the electrode-

electrolyte interface. The leading one is the Li intercalation/deintercalation at a specific rate (jint,0).

The second mechanism are the side reactions occurring at the interface and represented by the first-

order correction terms. This mechanism can be regarded as the interaction between the intercalated

Li and plated Li. In mathematical terms, jint,1 represents the rate at which the intercalated Li is

contributing to the growth of the plated Li phase, and vice versa, jsr,0 represents the rate at which

the plated Li is contributing to the growth of intercalated Li. This interaction can be viewed as

the forward/backward reactions between the two phases. As the local concentrations in each phase

must remain stationary at equilibrium, we conclude that jint,1 = jsr,0. We denote this exchange

current density by jsr, and note that the exchange current density is a function of concentration,

jsr = jsr(Cn, Csr).
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Taking into account these considerations, and substituting (4.20) and (4.22) into the system of equations

(4.33), we finally get

dCn
dt

=
γn

rnanLln

[
1− λ−1ω

]
Japp +

γn
rn
jsr [Usr,0 − Un,0]− γn

rn
jsrU

′
nCn +

γn
rn
λ−1jsrU

′
srCsr,

dCsr
dt

=
γn

rnanLln
ωJapp︸ ︷︷ ︸

Excitation Dynamics

+
γn
rn
jsrU

′
nζCn −

γn
rn
jsrU

′
srCsr,︸ ︷︷ ︸

Relaxation Dynamics

(4.34)

where Usr,0 and Un,0 are scalar reference potentials. Note that the right-hand-side of this system consists

of two parts corresponding to the relaxation dynamics and the excitation dynamics. The first term on the

right-hand-side of each equation represents the excitation dynamics of the cell. The remaining terms are

linear in concentrations and represent the relaxation dynamics of the cell. Thus, this simplified model is

capable of both taking into account the relaxation when excitation is absent (Japp = 0), and also to track

the dynamics of the cell when the excitation is present. This concludes the derivation of the ODE model.

4.3.4 Comparison to SPMe+SR Model

This modeling framework is inspired by the SPMe+SR model of Brosa Planella et al. [155]. However,

certain assumptions in our modeling approach differ from their work to better suit our specific config-

uration, particularly in tracking time-dependent concentrations without spatial resolution. After careful

consideration of the SPMe+SR model, it is evident that this model has the following drawbacks.

1. A one-sided BV relation is used for modeling plating in the cell, with one exponential term in the

corresponding expression. As the output of the exponential term is always positive, the current

density of Li plating at the solid-electrolyte interface is always negative. This implies that the

model is only capable of predicting Li plating (and not stripping). As noted by Sahu et al. [158],

a two-sided BV relation must be used to account for both plating and stripping in the cell. In our

framework, we have used a two-sided BV relation in (4.9) to prevent this issue.

2. Once averaged over the spatial domain, the model fails to take into account the relaxation dynamics

for the positive electrode, as evidenced by Equations (23)-(25) in [155]. While the space-averaged

model adequately accounts for Lithium conservation within the cell, it fails to capture the relaxation

dynamics on the positive electrode, and its dynamics are solely driven by excitation.

3. On the negative electrode the terms corresponding to relaxation dynamics of plated Li and inter-

calated Li possess opposite signs (once the cell is set to rest), meaning that intercalated Li phase

and plated Li phase will converge to equilibrium state in different directions. If Li in the interca-
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lated phase becomes intercalated (deintercalated) in relaxation regime, the Li in plated phase gets

stripped (plated). This contradicts the evidence from experimental data, cf. Section 4.2, in which

the deintercalation process is accompanied by the stripping process in relaxation the regime.

These inconsistencies in the SPMe+SR model stem from two key factors:

1. The one-sided BV relation prevents the model from predicting Li stripping, as discussed earlier.

The solution to this issue is to use a two-sided BV relation as in (4.9).

2. The relaxation dynamics of the SPMe+SR model are not consistent with the dynamics of the cell

due to the underlying assumptions of the asymptotic reduction framework of Brosa Planella et

al. [155].

In order to address the second issue (inconsistency in relaxation dynamics), we need to understand the

source of this inconsistency in the SPMe+SR model. Referring to this model, if we assume there is no

side reaction in the cell, the interfacial current density for the side reaction becomes zero, and hence, the

intercalated Li dynamics will only be driven by excitation. In other words, the relaxation dynamics of the

Li in negative electrode particles is only accounted for when a side reaction is present, and it is indeed

in the reverse direction to the side reaction. In simpler terms, the relaxation dynamics of the Li in the

negative electrode is dependant on the side reaction dynamics and this dependence is also observed for

the Li dynamics in the positive electrode (no side reaction on the positive electrode results in no relaxation

dynamics for Li in positive electrode). This dependency of the relaxation dynamics on the presence of a

side reaction is the source of the inconsistency.

This inconsistency arises due to the fact that the relaxation dynamics is not accounted for in the

leading-order terms of the interfacial current density (recall that leading-order terms refer to vanishing

side reaction, cf. Assumption A3). Specifically, Brosa Planella et al. [155] assume that φn,0 = Un
∣∣
Cn,0

.

Consequently, the second term on the right-hand side of Equation (4.16) vanishes, refining the underlying

assumption of the SP model that all particles exhibit uniform behaviour in space (as φn,0 is spatially

uniform). We elucidate how this assumption leads to loss of relaxation dynamics at the leading order.

In our modeling framework, we decompose the intercalation process at the leading-order into two

components, capturing both the excitation and relaxation dynamics of the cell. This formulation ensures

that both dynamics are present in the space-averaged model, and that the relaxation dynamics is indepen-

dent of the presence of side reactions in the cell. We highlight that failure to include relaxation dynamics

terms will result in the space-averaged model to exhibit non-trivial behavior only when a current is applied
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to the cell. To achieve that, we relax the assumption that φn,0 = Un
∣∣
Cn,0

, and introduce the relaxation

dynamics as the second term on the right-hand side in (4.16). In order to refine the inherent assumption

of the SPM regarding the uniformity of particles in space, we introduce the assumption φn,0 = Usr
∣∣
Csr,0

,

as detailed in (4.19). While one might argue that this assumption neglects the relaxation dynamics of the

side reaction, it is important to consider the relative magnitudes of the plated Li concentrations compared

to the intercalated Li concentrations. The relaxation dynamics is primarily driven by the intercalation

process rather than the side reaction. Consequently, this assumption remains valid and allows us to close

the mathematical model. We also note that the aforementioned assumptions imply that the relaxation dy-

namics of the Li in the negative electrode is driven by the difference between the equilibrium potentials

of the intercalated Li and plated Li.

By comparing our model to the one introduced by Sahu et al. [158], we remark that they introduced a

Heaviside step function in the definition of the Li plating dynamics. The intention of this step function is

to ensure that Li stripping process is stopped once the concentration of the plated Li becomes zero. Our

mathematical model does not take this into account, however, it could be easily added to the model to

ensure proper operation of the model at all concentrations. As we will see in Section 4.5.2, the results of

model fitting to experimental data demonstrate the desired behaviour, meaning no stripping occurs below

zero concentration. Thus, in the interest of simplicity, we have decided not to include the Heaviside

function in our model.

4.3.5 Linearizing Relaxation Dynamics

For simplicity, from now on, we will be using C1 and C2 to denote Cn and Csr, respectively. Also, the

hat sign on top of variables will be dropped for simplicity of notation. Aggregating all constants, the ODE

system (4.34) becomes

dC1

dt
= α

[
1− λ−1ω(C1, C2)

]
Japp + β1jsr(C1, C2) + β2jsr(C1, C2)C1 + β3λ

−1jsr(C1, C2)C2,

dC2

dt
= αω(C1, C2)Japp + β4jsr(C1, C2)C1 − β3jsr(C1, C2)C2,

(4.35)

where jsr = jsr(C1, C2), ω = ω(C1, C2), α ∈ R, and βi ∈ R, i = 1, · · · , 4. As can be observed,

the system of equations (4.35) has many unknown parameters (five scalar parameters and two functions),

which makes the inverse modeling formulation complicated to solve, as discussed in Section 4.4. Also,

both the relaxation and the excitation dynamics components of the mathematical model are nonlinear,

adding to the complexity of the inverse problem. As both the relaxation part and the excitation part of

the model are functions of the exchange current densities, one needs to solve the inverse problem by

113



Ph.D. Thesis - A. Ahmadi McMaster University - CSE

matching the model output against the experimental data for the entire charge/discharge cycle, fitting all

unknown parameters and constitutive relation simultaneously. The resulting infinite-dimensional opti-

mization problem is therefore very difficult to solve. One simplifying assumption can break this problem

down into two simpler sub-problems. When the cell is excited, specifically through high charge/discharge

rates, the contribution of excitation dynamics is much larger than the relaxation dynamics portion. Thus,

the problem can be segmented into two parts as follows: (i) solve the inverse problem for the relaxation

dynamics when the excitation is zero (eliminating the excitation part from the equations), and (ii) solve

the inverse problem for the full model when the cell is excited (with the relaxation part calibrated in step

(i)). This formulation will break the inverse problem into two separate sub-problems, each involving

a smaller number of unknown parameters, hence decreasing the overall computational complexity. It

has however one caveat, namely, the relaxation dynamics part is also a function of the exchange current

density (which in turn is a function of concentration). Calibrating the relaxation dynamics first requires

finding an optimal form of the constitutive relation jsr(C1, C2), which will then be used for the excita-

tion dynamics. However, we know that the excitation dynamics plays a stronger role in determining the

behavior of the system, and hence, the constitutive relation needs to be determined from the excitation

dynamics. This brings us to another simplifying assumption. When the cell is not excited, changes in

concentrations are small in comparison to when the cell is excited. This means that the concentrations will

exhibit small changes with respect to some reference state, and accordingly, the change in the exchange

current density jsr is also negligible. Therefore, the second assumption is to linearize the relaxation dy-

namics part around a reference state of the cell. We thus define C1 = “C1 + C ′1, C2 = “C2 + C ′2, and

linearize the constitutive relation as jsr ≈ ĵsr(“C1, “C2) + ∂jsr
∂C1

∣∣“C1
(C1 − “C1) + ∂jsr

∂C2

∣∣“C2
(C2 − “C2). Note

that “C1 and “C2 denote a reference state of concentrations and deviations from the reference state “C1 and“C2 are small. We substitute these equations into the relaxation portion of equation (4.35), aggregate all

constants and after eliminating high-order terms, we get (the constants are again named as β, however,

these are different constants than before)

dC1

dt
= β1 + β2C1 + λ−1β3C2,

dC2

dt
= β4C1 − β3C2,

(4.36)
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for the relaxation dynamics of the cell. Therefore, with this linearization, the full model takes the form

(in vector notation)
d

dt
C(t) = AC(t) + B + F(Japp(t)),

C(0) = C0,

C(t) =

C1(t)

C2(t)

 ,
B =

β1

0

 ,
A =

β2 λ−1β3

β4 −β3

 ,
F =

α [1− λ−1ω
]
Japp

αωJapp

 ,

(4.37)

where β = [β1, β2, β3, β4] ∈ R4 are the parameters of the relaxation dynamics, and ω = ω(C1, C2)

and α ∈ R are the unknown parameters and functions for the excitation dynamics of the cell. There are

five scalar parameters and one constitutive relation given in terms of a function of two variables to be

determined using inverse modeling. It is notable that the concentrations of different Li phases obtained

from NMR spectroscopy experiments do not have a physical unit due to the nature of this methodology

and the complexities of the computational post-processing of its data. Hence, it is impossible to match

the concentrations of the physical model i.e., C1(t) and C2(t), to the Li content obtained from NMR

spectroscopy. The inverse modeling approach will need to be designed to account for the conversion

between physical variables in the model and the experimental quantities. The parameters of the model

will be tuned from the experimental data, which automatically takes care of this conversion between

variables and experimental quantities.

4.4. Inverse modeling

The system of equations in (4.37) is not closed due to the dependence of ω on state variables, which is un-

known. To address this challenge, one can explore the relationship between ω and the two state variables

C1 and C2 through a data-driven calibration technique. In this methodology, the function ω(C1, C2) can

be determined through either parametric or non-parametric studies. In a parametric study, the functional

form describing the dependence of ω on the state variables can be identified using data-driven techniques

of system identification. In this case, the functional form is assumed and its parameters are calibrated
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via data-driven calibration techniques. Conversely, in a non-parametric study, the relationship can be

inferred without explicitly assuming a functional form describing how the constitutive relation ω depends

on the state variables. The only assumptions imposed on the constitutive relation are the regularity of the

functional and the behaviour of the functional on the boundaries of the domain. The latter technique is

superior, as it removes the assumptions about the underlying functional form of the constitutive relation.

In the current investigation, our focus will be on the latter approach.

The inverse problem will be defined as follows: given a set of time-dependent measurements of state

variables, ‹C1(t) and ‹C2(t), within the time window t ∈ [0, T ], cf. Figure 4.2, we seek to reconstruct

the constitutive relation ω = ω(C1, C2) such that the solution to the ODE system (4.37) will best fit

the experimental measurements. Note that in this formulation, no a priori assumption regarding the

functional form of the constitutive relation is made other than its regularity and behavior for limiting

values of the state variables, and we seek to find a non-parametric dependence of the constitutive relation

on the state variables. The dynamics of the system is split into two parts: (i) the relaxation dynamics

and (ii) the excitation dynamics. In Section 4.4.1 we present the result of formulation of the inverse

model for relaxation dynamics, whereas the details of the formulation are deferred to Appendix C.1 due

to the similarity of the framework to the excitation dynamics part. In Section 4.4.2 we formulate the

computational framework for optimal reconstruction of the excitation dynamics. Finally, in Section 4.4.3

a more robust optimization framework for optimal reconstruction is introduced.

4.4.1 Relaxation Dynamics

In this section, we aim to calibrate model (4.37) for the relaxation dynamics only. When the cell is set to

rest, the applied current is zero, and the excitation term F(Japp(t)) on the right-hand-side of the model

vanishes. Hence, the problem reduces to finding β using an inverse modeling approach and one can

formulate a suitable inverse model to calibrate each of the parameters using cell data by minimizing a
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cost functional J1 : R4 → R as

J1(β) =
1

2

∫ T

0

∣∣∣W r(t;β)
∣∣∣2
2
dt,

r(t;β) = C(t;β)− ‹C(t),

C(t;β) =

C1(t;β)

C2(t;β)

 ,
‹C(t) =

‹C1(t)‹C2(t)

 ,
W =

1 0

0
√
w

 ,

(4.38)

where W is a weight matrix, T is the final time of the cycle, |·|2 represents the Euclidean norm, and

the dependence of the state variables (C1 and C2) on the parameters β is governed by Eq. (4.37). As

the typical magnitudes of the state variables differ by one order of magnitude, the weight matrix W is

designed to introduce a suitable normalization. Optimal parameter values can be found by solving the

minimization problem

β = arg minJ1(β)
β∈R4

. (4.39)

For the purpose of solving this problem, a gradient-based optimization approach can be used, defined by

the iterative procedure as

β(n+1) = β(n) − τ (n)∇βJ1(β(n)), n = 1, 2, · · · ,

∇βJ1(β(n)) =
[
∂
∂β1
J1(β(n)) ∂

∂β2
J1(β(n)) ∂

∂β3
J1(β(n)) ∂

∂β4
J1(β(n))

]
,

(4.40)

where n refers to the iteration number, τ (n) refers to the step length along the descent direction at each

iteration, and ∇βJ1(β) represents the gradient of cost functional with respect to the each of the unknown

parameters. Note that this optimization problem can be solved in two ways. First, the step length τ (n)

could be computed once in each iteration for the gradient of the cost functional, referred to as the regular

gradient descent technique. Second approach is to update each of the parameters one after another in

each iteration of the algorithm, and a step length is to be computed for each of them, referred to as

the coordinate descent technique. The regular gradient descent technique is used for this case. The

mathematical details of computation of the gradient vector are deferred to Appendix C.1. The gradient of
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cost functional is obtained as

∇βJ1 =
[
−
∫ T

0
C∗>I0 dt −

∫ T
0

C∗>I2
“C dt −

∫ T
0

C∗>I3
“C dt −

∫ T
0

C∗>I4
“C dt

]
.

(4.41)

Now that the gradient is computed, we can use the iterative scheme (4.40) to minimize the cost functional

with respect to the parameters and find the optimal values of parameters. The computational framework

is summarized in Algorithm 3. The model will be trained on the piece of each cycle that corresponds to

the relaxation dynamics.

4.4.2 Excitation Dynamics

In this section, we assume that the optimal parameter values of the linear dynamics corresponding re-

laxation dynamics are determined. Consequently, we would like to train a model that can predict the

excitation dynamics of the cell using a nonlinear constitutive relation, via minimizing the mismatch be-

tween model predictions and experimental data. The nonlinear dynamics of the excitation consists of a

constitutive relation ω(C1, C2) (representing the competition between intercalation and plating), and a

scalar parameter α. Before introducing the optimization framework, we need to define two intervals on

which the state variables are defined:

• I :=

ï
C1, C2 ∈ R

∣∣∣C1 ∈ [Cα1 , C
β
1 ], C2 ∈ [Cα2 , C

β
2 ]

ò
is referred to as the identifiability interval,

which is the region of state variables spanned by the solution of Eq. (4.37), note that this interval

is a function of iterations of the iterative algorithm 3,

• L :=

ï
C1, C2 ∈ R

∣∣∣C1 ∈ [Ca1 , C
b
1], C2 ∈ [Ca2 , C

b
2]

ò
, where Ca1 ≤ Cα1 , Cb1 ≥ Cβ1 , Ca2 ≤ Cα2 and

Cb2 ≥ Cβ2 ; this will be the interval we seek to reconstruct the constitutive relation on, which is

generally larger than the identifiability region, i.e., I ⊆ L; the aim is to reconstruct the constitutive

relation on this larger interval than spanned by the solution of the ODE system in order to make it

possible to reconstruct the constitutive relation on a fixed domain.

The constitutive relation defined over L is considered to be an element of a Hilbert space X . Note

that the function ω depends on two state variables which is an extension to the problems considered

in [27, 37, 38, 162], in which the constitutive relation is a function of one state variable only. This will

add another layer of complexity to the problem of identifying constitutive relation. The complexity arises

in converting the directional derivative of the objective function (4.46) to its Riesz form by a change of

variables in two dimensions, as will be explained below. Hence, to simplify the problem, we will assume
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that the constitutive relation depending on two state variables has a separable form, i.e.,

ω(C1, C2) = ω1(C1) · ω2(C2). (4.42)

Consequently, one can reconstruct each of these factors separately, and then merge the results. The

functions ω1(C1) and ω2(C2), and the parameter α need to be identified from data by solving a suitable

inverse problem to minimize the mismatch between the experimental and true measurements of the system

by defining the cost functional J2 : R×X × X → R as

J2(α, ω1, ω2) =
1

2

∫ T

0

∣∣∣W r(t;α, ω1, ω2)
∣∣∣2
2
dt,

r(t;α, ω1, ω2) = C(t;α, ω1, ω2)− ‹C(t),

C(t;α, ω1, ω2) =

C1(t;α, ω1, ω2)

C2(t;α, ω1, ω2)

 ,
(4.43)

where the dependence of the state variables (C1 and C2) on the constitutive relation ω is governed by

Eq. (4.37). The optimal reconstructions of the constitutive relations are obtained by solving the mini-

mization problem

[ω1, ω2, α] = arg minJ2(α, ω1, ω2)
ω1∈X , ω2∈X , α∈R

, (4.44)

where X is a suitable Hilbert function space where ω1 and ω2 belong to. Note that the cost functional

J2(α, ω1, ω2) is a function of two constitutive relations and a parameter. Hence, when solving the in-

verse problem, three parallel problems need to be solved simultaneously. For simplicity, these three

sub-problems are decoupled and solved. In each problem, two of the unknowns are kept constant and the

third one is optimized. For the purpose of solving this problem, a gradient-based optimization approach

can be used with an iterative procedure as

ω
(n+1)
1 = ω

(n)
1 − τ (n)

1 ∇Xω1
J2(α(n), ω

(n)
1 , ω

(n)
2 ) n = 1, 2, · · · ,

ω
(n+1)
2 = ω

(n)
2 − τ (n)

2 ∇Xω2
J2(α(n), ω

(n+1)
1 , ω

(n)
2 ) n = 1, 2, · · · ,

α(n+1) = α(n) − τ (n)
3

∂

∂α
J2(α(n), ω

(n+1)
1 , ω

(n+1)
2 ) n = 1, 2, · · · ,

(4.45)

where n refers to the iteration number, τ (n)
i , i ∈ {1, 2, 3} refers to the step length along the descent

direction at each iteration, and ∇Xω1
J2(α, ω1, ω2) and ∇Xω2

J2(α, ω1, ω2) represent the gradients of cost

functional with respect to the each of the constitutive relations, and ∂
∂αJ2(α, ω1, ω2) is the partial deriva-

tive of the cost functional with respect to the unknown parameter. Note that relation (4.45) represents the

steepest-descent optimization algorithm, however, in practice, one can use more sophisticated techniques
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such as the conjugate-gradients method. The Polak-Ribiere conjugate-gradient formulation has been used

for this study. In all cases, the key ingredient of the optimization algorithm is the information about the

gradient of the cost functional with respect to the constitutive relation. Note that the constitutive rela-

tion ω(C1, C2) is a continuous function of state variables over L, hence the gradients ∇Xω1
J2(α, ω1, ω2)

and ∇Xω2
J2(α, ω1, ω2) are infinite-dimensional sensitivities of the cost functional to the perturbations

of these constitutive relations. In order to compute these gradients, adjoint sensitivity analysis is lever-

aged [37, 38, 162]. An application of this adjoint sensitivity analysis to reconstruction of constitutive

relations in electrochemistry field can also be found in [27]. One needs to reconstruct each of the factors

ω1(C1) and ω2(C2) in (4.42) as the elements of the Sobolev space H1(L) to ensure the continuity of

the reconstructed constitutive relation, thus, the gradient needs to be obtained with respect to the corre-

sponding inner product. However, to simplify the derivation, we will first obtain the gradient in the space

X (I) = L2(I), and we will use the results of this derivation to find the Sobolev gradient. Note that the

following mathematical derivation focuses solely on the gradient of the cost functional with respect to

ω1. The derivation of the gradient with respect to ω2 and the partial derivative of the cost functional with

respect to α follow a similar process. In order to obtain convenient expression for the gradient, we begin

by computing the Gateaux (directional) derivative with respect to perturbation of ω1 as

J ′2(α, ω1, ω2;ω′1) = lim
ε→0

ε−1 [J2(α, ω1 + εω′1, ω2)− J2(α, ω1, ω2)]

=

∫ T

0

(w r(t;α, ω1, ω2))>C′(α, ω1, ω2;ω′1)dt,

C′(α, ω1, ω2;ω′1) =

C ′1(α, ω1, ω2;ω′1)

C ′2(α, ω1, ω2;ω′1)

 ,
(4.46)

where C′(α, ω1, ω2;ω′1) is the solution to the system of perturbation equations. In order to derive this

system, the state variables are perturbed with respect to ω1 as

C(α, ω1, ω2) = “C(α̂, ω̂1, ω̂2) + ε [C′(α, ω1, ω2;ω′1)] +O(ε2). (4.47)

The constitutive relations are perturbed with respect to ω1 as (the arguments are dropped for brevity)

ω1 = ω̂1 + ε

ï
ω′1 +

dω1

dC1
C ′1

ò
+O(ε2),

ω2 = ω̂2 + ε

ï
dω2

dC2
C ′2

ò
+O(ε2).

(4.48)
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Note that perturbation of one constitutive relation will affect both concentrations (as C1 and C2 are not

decoupled). The perturbation of the constitutive relation takes the form

ω = ω̂1 ω̂2 + ε

ï
ω̂2ω

′
1 + ω̂2

dω1

dC1
C ′1 + ω̂1

dω2

dC2
C ′2

ò
+O(ε2). (4.49)

Substituting (4.47) and (4.49) into (4.37), and collecting terms proportional to ε, we get the perturbation

system of equations corresponding to ω′1 as

dC ′1
dt

= β2C
′
1 + λ−1β3C

′
2 − α̂λ−1Japp

ï
ω̂2ω

′
1 + ω̂2

dω1

dC1
C ′1 + ω̂1

dω2

dC2
C ′2

ò
dC ′2
dt

= β4C
′
1 − β3C

′
2 + α̂Japp

ï
ω̂2ω

′
1 + ω̂2

dω1

dC1
C ′1 + ω̂1

dω2

dC2
C ′2

ò
C ′1(ω′1)(0) = C ′2(ω′1)(0) = 0.

(4.50)

Following similar procedure the perturbation system of equations corresponding to ω′2 and α′ will be

obtained. In matrix form, we get the perturbed system of equations as

d

dt
C′(t) = AC′(t) + DC′(t) + ω̂2α̂ρω

′
1, (4.51a)

C′(0) = 0, (4.51b)

D =

−α̂λ−1Jappω̂2
dω1

dC1
−α̂λ−1Jappω̂1

dω2

dC2

α̂Jappω̂2
dω1

dC1
α̂Jappω̂1

dω2

dC2

 , (4.51c)

ρ =

−λ−1Japp

Japp

 . (4.51d)

Note that the first term in the right-hand-side of the ODE (4.51a) is the linear sub-problem corresponding

to the relaxation dynamics (cf. Eq. (4.36)), and the second and third terms correspond to the excitation

dynamics. We will obtain one ODE system for the perturbation of each unknown. Also, in all scenarios

of perturbation of α, ω1 and ω2 the matrix D appears to be identical, with differences occurring in the

definition of the third term in the right-hand-side of (4.51a). The directional derivative of the cost func-

tional can be computed in a different manner than (4.46) by invoking the Riesz representation theorem to

the directional derivatives in the functional space as

J ′2(α, ω1, ω2;ω′1) = 〈∇Xω1
J2, ω

′
1〉X (L), (4.52)

and similarly for J ′2(α, ω1, ω2;ω′2), where 〈·, ·〉X (L) represents the inner product in the Hilbert space X

over L interval. Note that the Riesz representer in a functional space will reduce to the partial derivative in
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a finite-dimensional Euclidean space, namely, J ′2(α, ω1, ω2;α′) = ∂J2

∂α · α
′. Assuming X (L) = L2(L),

the directional derivative will be expressed in terms of the L2 inner product as

J ′2(α, ω1, ω2;ω′1) =

∫ Cb1

Ca1

∇L2

ω1
J2 · ω′1ds. (4.53)

Note that the Gateaux derivative (4.46) is not consistent with the Riesz form (4.53), as the expres-

sion for the perturbation of the constitutive relations is hidden in the perturbations of the state variables

C ′1(α, ω1, ω2;ω′1) and C ′2(α, ω1, ω2;ω′1) in Eq. (4.46). Also, the integration variable in Gateaux form is

time, whereas the Riesz form uses the state variable as the integration variable. In order to tackle the first

issue (introducing an explicit dependence on the perturbation of the constitutive relation into the Gateaux

differential, as in (4.53)), we will leverage adjoint analysis, in which an adjoint problem is defined in

a judicious manner so that expression for directional derivative becomes consistent with its Riesz form

(4.53). Whereas, to overcome the latter issue (inconsistency in integration variable) a change of variables

is used.

We begin with adjoint analysis. We multiply (4.51) by the vector of adjoint variables C∗(t) =

[C∗1 (t), C∗2 (t)]
>, and integrating in time, we obtain

∫ T

0

C∗>
d

dt
C′dt−

∫ T

0

C∗>AC′dt−
∫ T

0

C∗>DC′dt−
∫ T

0

C∗>ω̂2α̂ρω
′
1dt = 0. (4.54)

Performing integration by parts for the first term and applying the initial conditions of the perturbation

system (4.50), we get

−C∗>(T )C′(T ) +

∫ T

0

d

dt
C∗>C′dt+

∫ T

0

C∗>AC′dt+

∫ T

0

C∗>DC′dt+

∫ T

0

C∗>ω̂2α̂ρω
′
1dt = 0.

(4.55)

Factoring out C′, we get

−C∗>(T )C′(T ) +

∫ T

0

ï
d

dt
C∗> + C∗>A + C∗>D

ò
C′dt+

∫ T

0

C∗>ω̂2α̂ρω
′
1dt = 0. (4.56)

We define the adjoint system of equations in a judicious manner as

d

dt
C∗(t) + A>C∗(t) + D>C∗(t) = w r(t;ω1, ω2),

C∗(T ) = 0.

(4.57)

Note that when performing adjoint analysis for system of equations with respect to perturbation of ω2
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and α, the evolution of adjoint variables C∗(t) is governed by exactly the same system of equations and

terminal conditions and the difference is in how this information is used to determine the corresponding

gradient. With this definition of the adjoint system, Eq. (4.56) becomes

∫ T

0

[
(w r)>

]
C′dt = −

∫ T

0

C∗>ω̂2α̂ρω
′
1dt. (4.58)

Thus, the directional derivative with respect to ω′1 becomes

J ′2(α, ω1, ω2;ω′1) = −
∫ T

0

ω̂2α̂C∗>ρω′1dt, (4.59)

due to the choice of the source term in the adjoint system (4.57) so that the expression of Gateaux

differential appears in the equation. Likewise, following similar procedure of adjoint analysis for ω′2 and

α′, the directional derivatives with respect to each of these unknowns become

J ′2(α, ω1, ω2;ω′2) = −
∫ T

0

ω̂1α̂C∗>ρω′2dt, (4.60a)

J ′2(α, ω1, ω2;α′) = −
∫ T

0

ω̂1ω̂2C
∗>%α′dt, (4.60b)

where

% =

(ω̂−1 − λ−1)Japp

Japp

 .
As can be observed, the Gateaux differential (4.60a)-(4.60b) is expressed in terms of perturbation of

the constitutive relation, which is consistent with Riesz form (4.53). However, the integration variable in

relations (4.60a)-(4.60b) (time) is different than the integration variable in Riesz form (state variable).

To make them consistent, a change of variables must be used, namely,

dt =
dC1

β1 + β2C1 + λ−1β3C2 + α̂(1− λ−1ω̂)Japp
=

dC2

β4C1 − β3C2 + α̂ω̂Japp
, (4.61)

which is obtained by rearrangement of the forward model (4.37). This makes it possible to change the

integration variable in (4.59) from time (dt) to the state (dC1 and dC2), as required by the Riesz repre-

sentation (4.53), as the mapping from time to state variable is unique, K := {∪t∈[0,T ][C1(t), C2(t)]}. As

the mapping from time to state variables is unique, the integral over the L interval can be expressed as an
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integral over the contour K. Hence, applying this change of variables to (4.59) and (4.60b), we obtain

J ′2(α, ω1, ω2;ω′1) = −
∫ Cβ1

Cα1

ω̂2α̂C∗>ρ

β1 + β2C1 + λ−1β3C2 + α̂(1− λ−1ω̂)Japp
ω′1ds,

J ′2(α, ω1, ω2;ω′2) = −
∫ Cβ2

Cα2

ω̂1α̂C∗>ρ

β4C1 − β3C2 + α̂ω̂Japp
ω′2ds,

J ′2(α, ω1, ω2;α′) =

ñ
−
∫ T

0

ω̂1ω̂2C
∗>%dt

ô
· α′.

(4.62)

Note that α′ is independent of time and is taken out of integral. Hence, the L2 gradients and the partial

derivative are computed as

∇L2

ω1
J2 = − ω̂2α̂C∗>ρ

β1 + β2C1 + λ−1β3C2 + α̂(1− λ−1ω̂)Japp
,

∇L2

ω2
J2 = − ω̂1α̂C∗>ρ

β4C1 − β3C2 + α̂ω̂Japp
,

∂J2

∂α
= −

∫ T

0

ω̂1ω̂2C
∗>%dt.

(4.63)

Above, we derived gradient expressions with respect to constitutive relations in the L2 functional space.

However, as noted in earlier studies [37,38,162], these gradients are not a suitable choice for reconstruc-

tion of constitutive relations as they are generally discontinuous and are undefined outside the identifia-

bility region I. Thus, to ensure the regularity and the smoothness of the reconstructed relations over the

domain of definition L, we will redefine them in the H1 Sobolev space of functions of the concentrations

C1 and C2 with square-integrable derivatives. A natural choice is to construct the Sobolev gradients for

both constitutive relations by assuming X = H1(L). Since the constitutive relation in the governing

system (4.37) depends on the product ω1 · ω2, an optimization formulation in which these two factors

are determined independently as in (4.44) is underdetermined, because the mean of the product ω1 · ω2

can be changed by each of the factors, which can lead to numerical complications. We will therefore

amend the formulation such that the mean value of one of the factors will be fixed (for example, at zero).

One can achieve this by imposing hard constraints on the mean of the functions so that their mean stays

stationary in the optimization framework. In this work, the mean of one of the factors is set to remain

constant during the optimization process by ensuring the Sobolev gradients are defined such that they do

not modify the mean. This will leave the first factor to capture the mean value of the entire constitutive

relation. Also, the physical constraints of the problem imply that the constitutive relations should be

bounded between zero and one. For such reasons, one is required to constrain the functions in order to

ensure physically plausible solutions. In this framework, we do not impose any restrictions on the mean

of the constitutive relation ω, thus, the physical constraint is not guaranteed to be satisfied. Thus, two
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functional spaces will be used in this framework for extending the L2 gradients to L interval, namely,

X = H1(L) and X = H1
0 (L) (where the subscript 0 denotes a space of functions of zero mean). The H1

Sobolev space is endowed with the inner product as

〈∇H1

ω1
J2, ω

′
1〉H1 =

∫ Cb1

Ca1

Ç
∇H1

ω1
J2 · ω′1 + l2

d∇H1

ω1
J2

ds

dω′1
ds

å
ds, (4.64)

for computing the directional derivative J ′2(α, ω1, ω2;ω′1), where 0 < l < ∞ is the length-scale pa-

rameter, controlling the intensity of smoothness of gradients. Setting this parameter to zero recovers

the L2 inner product, cf. Eq. (4.53). A similar H1 inner product is also used for the computation of

J ′2(α, ω1, ω2;ω′2) with the difference that ∇H1

ω2
J2 is replaced with P0∇

H1
0

ω2 J2 to ensure the zero mean

of the reconstructed function. The operator P0 : H1 → H1
0 represents the orthogonal projection on the

subspace of functions with zero mean and is defined as P0u = u−u, where u in the mean of the function

over the domain. Here we assume that ω′1 ∈ H1(L) and ω′2 ∈ H1
0 (L). So by invoking the Riesz theorem,

we obtain

J ′2(α, ω1, ω2;ω′1) = 〈∇L2

ω1
J2, ω

′
1〉L2(L) = 〈∇H1

ω1
J2, ω

′
1〉H1(L), (4.65)

and similarly for J ′2(α, ω1, ω2;ω′2). Considering (4.64) and (4.65), and performing integration by parts

with respect to s, we obtain

∫ Cb1

Ca1

∇L2

ω1
J2 · ω′1ds =

∫ Cb1

Ca1

Ç
∇H1

ω1
J2 · ω′1 − l2

d2∇H1

ω1
J2

ds2
ω′1

å
ds+

d∇H1

ω1
J2

ds
ω′1

∣∣∣Cb1
Ca1

, (4.66)

noting that the perturbations ω′1 and ω′2 are arbitrary. A similar analysis can be performed for perturbation

with respect to ω′2. By imposing the Neumann boundary conditions on the Sobolev gradients, we obtain

the following inhomogeneous elliptic boundary-value problems defining the smoothed gradients in the

H1 and H1
0 space based on the L2 gradients as

∇H1

ω1
J2 − l2

d2∇H1

ω1
J2

ds2
= ∇L2

ω1
J2, on L,

d∇H1

ω1
J2

ds
= 0, at s = Ca1 , C

b
1,

(4.67)

and

∇H1
0

ω2 J2 −
1

Cb2 − Ca2

∫ Cb2

Ca2

∇H1
0

ω2 J2 ds− l2
d2∇H1

0
ω2 J2

ds2
= ∇L2

ω2
J2, on L,

d∇H1
0

ω2 J2

ds
= 0, at s = Ca2 , C

b
2.

(4.68)

This framework ensures that the gradient of the cost functional with respect to ω2 has a zero mean at each
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step of the algorithm, hence, the mean of the function ω2 remains unchanged during the iteration process.

Note that the behaviour of the Sobolev gradients on the boundaries needs to be specified via suitable

boundary conditions. The choice of the boundary condition is nontrivial. In this case, the homogeneous

Neumann boundary condition is adopted which preserves the values of the derivatives of the functions

ω1 and ω2 at the boundaries, but allows the gradient to modify their values at the boundary. Some other

choices of boundary condition are possible based on the physics of the problem. For example, imposing

homogeneous Dirichlet boundary conditions would preserve the values of ω1 and ω2 at the boundaries, but

would make it possible to modify their derivatives. Also, extending the gradients to a Sobolev space can

be seen as an extrapolation of gradients to the regions of the state space where the sensitivity information

is not available, i.e., the L2 gradient vanishes identically [37]. The computational framework for the

solution of optimization problems (4.40) and (4.45) is summarized in Algorithm 3. It is also notable that

for solving the forward system (4.37) as part of the computational framework in Algorithm 3 throughout

this study the MATLAB routine ODE45 is used with a loose tolerance. As can be observed in Figure

4.1, the current applied to the cell is discontinuous, hence making the forward problem stiff. However,

some analysis revealed that when the tolerance of the ODE solver is loose, the accuracy of the results is

satisfactory as the step size of the ODE solver will be large and the effect of sharp changes in current

profile will not be pronounced by the solver. On the other hand, using stiff ODE solvers requires very

tight tolerances to be able to achieve the required accuracy from the algorithm. Hence, for the sake of

saving computational time, the non-stiff solver (ODE45) with loose tolerance is used in this work.

4.4.3 Problem with Aggregated Data

The computational framework outlined in Algorithm 3 could be utilized to train models for both re-

laxation and excitation dynamics based on a single cycle of the cell. In other words, each sequence

of data Di, i ∈ C, C = {C3,C2, 1C, 2C, 3C}, could be used as the training data for optimal recon-

struction of parameters and constitutive relations. In this scenario, the parameters and the constitutive

relations would be adjusted to minimize the mismatch between predictions of the model and the experi-

mental concentrations for a specific cycle. However, it is known that such models suffer from robustness

issues, as the trained model tends to exhibit acceptable performance only over a limited range of cy-

cles (C-rates) close to the cycle used for training, cf. Section 4.5.2. To enhance the robustness of the

optimal reconstruction framework, one can train the models on a wider range of C-rates by concate-

nating different sequences of data, each corresponding to a particular C-rate, Dt =
⊕

iDi, i ∈ C. In

this scenario, the cost functional would be defined as the sum of cost functionals for each sequence

of data for relaxation dynamics as J1(β;Docvt ) =
∑
i∈C J1(β;Docvi ), where J1(β;Docvi ) denotes the
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Algorithm 3: Computational Framework for Optimal Reconstruction of Con-
stitutive Relations

Input: β(0), α(0), ω
(0)
1 , ω

(0)
2 — Initial guesses for parameters and constitutive relations

N — Maximum iteration number
TOL — Tolerance

Output: β, α, ω(C1, C2) — Optimally constructed parameters and constitutive relations

Stage I: Optimal reconstruction of β:
Initialization:

set n = 0,
set β(0) as initial guess,

repeat
• set n = n+ 1,
• solve forward problem (4.37) based on prior estimation of β̂ to obtain
C1(t;β(n−1)) and C2(t;β(n−1)), assuming Japp = 0,
• solve adjoint problem (C.7) to obtain C∗1 (t;β(n−1)) and C∗2 (t;β(n−1)),
• compute gradient of cost functional with respect to parameters, ∇βJ1 via
(4.41),
• determine step length τ (n) of optimization iterative scheme (4.40) via Brent’s
line search scheme as outlined in [163],
• compute the updated parameters for β(n) via (4.40) as the posterior estimation
of β̂,

until J1(β(n))
J1(β(n−1))

< TOL or n > N ;

Stage II: Optimal reconstruction of α, ω1 and ω2:
Initialization:

set n = 0,
set β = β,
set α(0), ω(0)

1 (C1) and ω(0)
2 (C2) as initial guesses,

repeat
• set n = n+ 1,
• solve forward problem (4.37) to obtain C1(t;α(n−1), ω

(n−1)
1 , ω

(n−1)
2 ) and

C2(t;α(n−1), ω
(n−1)
1 , ω

(n−1)
2 ),

• solve adjoint problem (4.57) to obtain C∗1 (t;α(n−1), ω
(n−1)
1 , ω

(n−1)
2 ) and

C∗2 (t;α(n−1), ω
(n−1)
1 , ω

(n−1)
2 ),

• compute L2 gradients of cost functional with respect to constitutive relations,
∇L2

ω1
J and ∇L2

ω2
J , and ∂J

∂α via (4.63),
• solve the boundary-value problems (4.67) and (4.68) to obtain Sobolev
gradients of cost functionals ∇H1

ω1
J and ∇H1

0
ω2 J ,

• determine step length τ (n) of optimization iterative scheme (4.45) via Brent’s
line search scheme as outlined in [163],
• compute the updated relations for α(n), ω(n)

1 and ω(n)
2 via (4.45),

until J2(α(n),ω
(n)
1 ,ω

(n)
2 )

J2(α(n−1),ω
(n−1)
1 ,ω

(n−1)
2 )

< TOL or n > N ;

Compute ω(C1, C2) = ω
(n)
1 · ω(n)

2

127



Ph.D. Thesis - A. Ahmadi McMaster University - CSE

cost functional computed by using Docvi as the experimental data. The cost functional for the excita-

tion dynamics would be defined as J2(α, ω1, ω2;Djt ) =
∑
i∈C J2(α, ω1, ω2;Dji ), where j ∈ {ch, dch}.

With this revised definition of cost functionals for optimization, the gradients need to be computed ac-

cordingly. Since the gradient is a linear operator, the gradient of the combined cost functional reduces

to the sum of the gradients of cost functionals for each sequence of data Di. More precisely, for the

relaxation dynamics we get ∇βJ1(β;Docvt ) =
∑
i∈C∇βJ1(β;Docvi ), and for the excitation dynam-

ics ∇ω1J2(α, ω1, ω2;Djt ) =
∑
i∈C∇ω1J2(α, ω1, ω2;Dji ), where j ∈ {ch, dch}, and similarly for

∇ω2
J2(α, ω1, ω2;Djt ) and ∂

∂αJ2(α, ω1, ω2;Djt ). After the computation of the cost functionals and gra-

dients for optimization, the remainder of the computational framework remains unchanged.

4.5. Results

In this section, we first present the results for the relaxation dynamics part of the model, as outlined in

Section 4.4.1. Once the parameters β of the relaxation dynamics are determined, we solve the inverse

problem to compute the optimal forms of the constitutive relations and parameters for the excitation dy-

namics, namely, ω1, ω2 and α, using the parameters describing the relaxation dynamics obtained earlier,

according to Section 4.4.2. Before doing so, one needs to validate the methodology proposed in Sections

4.4.1 and 4.4.2 for the gradients computed using the adjoint analysis. One can design a computational test

that verifies the validity of all the steps involved, and hence the validity of the gradients computed using

the proposed methodology. Also, the computational framework presented in Algorithm 3 is validated

using synthetic data that is manufactured, in order to reconstruct some known constitutive relations from

manufactured data. The results of computational tests are presented in Appendix C.2.

4.5.1 Relaxation Dynamics

The computational framework outlined in Stage I of Algorithm 3 is used to find optimal parameter values

of the relaxation dynamics of the cell. The parameters to initialize the optimization algorithm are chosen

as β(0) = [−0.1,−0.1,−0.1,−0.1], N = 500, and TOL = 10−6. The interval L for the optimization

framework is (C1, C2) ∈ [−0.5, 1.5]× [−0.2, 0.5]. This choice has been made based on the magnitude of

the state variables in different cycles. Also, the optimization framework with aggregated data, cf. Section

4.4.3, has been used here. In other words, Dt =
⊕

iDi, i ∈ C has been used as the training data. The

relative decay of the cost functional for the iterative scheme, cf. (4.38), is presented in Figure 4.4. As

can be observed, the cost functional value is decaying significantly relative to its initial value. The rate of

decay is becoming slow at later iterations. The optimal solution found as the result of the iterative scheme
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Figure 4.4: Cost functional history J1(β) relative to its initial value as a function of iteration
number.

is β̄ ≈ [0.85,−1.85, 0.55,−0.02]. According to (4.37), the matrices in system (4.36) become

B =

0.85

0

 ,
A =

−1.85 0.003

−0.02 −0.55

 .
(4.69)

Note that matrix A has two real negative eigenvalues as σ(A) = −1.85,−0.55. This implies that the

linear part of the system corresponding to the relaxation dynamics of the cell has the form of a delay

towards an equilibrium point, which is consistent with the behaviour of the cell at relaxation mode,

cf. Figure 4.2. The results of predicting the evolution of concentrations for different cycles of the cell

using the optimal parameter values are shown in Figure 4.5. As can be observed, the model performs

relatively well on a wide range of C-rates. The optimal parameter values for the relaxation dynamics will

be used when solving the optimization problem for excitation dynamics.

4.5.2 Excitation Dynamics

In this section, we present the results of the inverse modeling approach presented in Algorithm 3 using

the machinery developed in Section 4.4.2. Note that in this section, the parameters of the relaxation

dynamics are assumed known, and are given by the results of Section 4.5.1. First, we begin by fitting

the unknown constitutive relations and parameter in (4.37) describing the excitation dynamics to the data

corresponding to individual cycles, namely, Dji , i ∈ C, j ∈ {ch, dch}. Also, two different regimes are

used for solving the inverse problem (4.44), namely, charge and discharge regimes. Thus, a separate

inverse problem is solved pertaining to each regime and the results are compared. In order to initialize

the stage II of the Algorithm 3, the initial guesses for constitutive relations are set to be ω(0)
1 (C1) =
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Figure 4.5: Dependence of concentrations C1(t) and C2(t) on time for different cycles of the cell,
using the initial guess for parameters β(0) (dashed red line), and the optimal values of parameters
β (solid blue line). The experimental concentrations ‹C1(t) and ‹C2(t) for each cycle are shown
as dotted green lines.

0.25, ω(0)
2 (C2) = 0.25, α(0) = 5. The choice of this initial guess for constitutive relations is dictated

by our knowledge of the physics of the cell, in which the constitutive relation ω(C1, C2) (defining the

competition between intercalation vs. plating) is dominated by the intercalation process, hence attains

a value between zero to one, closer to zero. As mentioned in Section 4.4.2, the function ω1(C1) is

reconstructed in space H1, however, the function ω2(C2) is reconstructed in space H1
0 , where the mean

of the function remains stationary. Algorithm 3 is allowed to run for a maximum of N = 30 iterations.
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The smoothing parameter in the H1 inner product is set l = 1. The interval L is set as (C1, C2) ∈

[−0.5, 1.5]× [−0.2, 0.5]. The wide choice of interval L for each state variable ensures that the choice of

the somewhat arbitrary boundary conditions satisfied by the Sobolev gradient, cf. (4.64), has little effect

on the behavior of the gradient for concentrations of interest. In other words, if the interval L is chosen

to be too close to the identifiability region bounds, the behaviour of the function at the end points of the

identifiability region will be affected by the choice of boundary conditions in H1 reconstruction. The

results obtained by solving optimization problem (4.44) for the charge and discharge regimes of the 1C

cycle are presented in Figure 4.6. As can be observed, the large-scale details of the measurement data
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Figure 4.6: The dependence of concentrations C1(t) and C2(t) on time for the charge regime
of the 1C cycle (a,b), and the discharge regime of the 1C cycle (c,d), using the initial guess
for the parameter and constitutive relations (α(0), ω

(0)
1 , ω

(0)
2 ) (dashed red line), and the optimal

parameter and constitutive relations (α, ω1, ω2) (solid blue line) obtained by solving the inverse
problem (4.44) using the data for the charge and discharge regimes of 1C cycle, namely, Dch1C and
Ddch1C , respectively. The experimental concentrations ‹C1 and ‹C2(t) are shown using green dotted
line.‹C1(t) and ‹C2(t) are well captured by the model equipped with the optimally reconstructed constitutive

relations and parameter. Note that the fine details of the measurements result from the noise in the

NMR measurements, and hence, it is preferable for the model not to resolve such details. The optimal

constitutive relations and parameter as the result of fitting (4.37) to individual cycles are not presented
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here for brevity, as such results are similar with minor differences.

In principle, one uses the inverse problem (4.44) to train (4.37) on individual sequences of data

corresponding to particular C-rates, and for charge and discharge regimes. It is known however that each

of these models can only perform well in the vicinity of the original C-rate that it has been trained on.

In order to systematically assess the prediction capability of the calibrated models, one is required to test

the trained models on unseen data from other cycles. Individual models are therefore trained on each of

the five cycles for charge and discharge regimes. These calibrated models will then be used to assess

the performance of the model on the data from other cycles by generating performance metrics as cost

functional error J2(α, ω1, ω2). Additionally, in order to obtain a more robust model that can generalize

well to a range of charge and discharge rates, the model is trained by using the optimization framework

presented in Section 4.4.3. The charging regime comprising all cycles Dcht will be used for training a

robust model for the charging regime. A similar calibration procedure will be followed for the discharge

regime by fitting the model to Ddcht . Also, in another attempt to find a robust model using a minimal

amount of experimental measurements, model (4.37) is trained using the experimental measurements of

the charging regime for the C3 and 3C cycles only, namely,
⊕

iDchi , i ∈ {C3, 3C}, using the optimization

framework presented in Section 4.4.3. A similar calibration procedure will be followed for training model

(4.37) using experimental measurements of the discharge regime, namely,
⊕

iDdchi , i ∈ {C3, 3C}. The

results of this analysis are depicted in Figure 4.7. Each solid line corresponds to model (4.37) trained

on a particular individual cycle, with the dashed line corresponding to the robust model trained on all

cycles, and the dotted line corresponding to the robust model trained on the C3 and 3C cycles only. As

can be observed, each trained model performs best in the vicinity of the training cycle (C-rate), and the

performance deteriorates as we deviate from the C-rate. Also, the robust model that is trained by fitting to

data from all cycles shows an overall better and more robust performance in comparison to models that are

trained on individual cycles. In most cycles shown in Figure 4.7, this robust model (which is trained on all

cycles) outperforms most models on each cycle, Therefore, this robust model can be used for prediction

and control. Also, the robust model that is trained by fitting to data from the C3 and 3C cycles (dotted lines

in Figure 4.7) shows an overall good agreement with the model trained by fitting to data from all cycles

(dashed lines in Figure 4.7), both for the charging and the discharge regimes. This agreement between

the two robust models indicates that a minimal amount of experimental measurements is sufficient for

calibrating a robust model without sacrificing accuracy, provided that the experimental cycles chosen

cover the two extreme values of the C-rate. The results obtained by solving inverse model (4.44) using

all cycles as training data, for charge (Dcht ) and discharge regimes (Ddcht ) are demonstrated in Figures

4.8 and 4.9. The evolution of cost functional values and the parameter α with iterations of the algorithm
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Figure 4.7: Dependence of the least-squares error J2(α, ω1, ω2;Dchi ) between the experimental
data from different cycles i ∈ C, and the predictions of model (4.37) using the optimally re-
constructed parameter and constitutive relations (α, ω1, ω2) obtained by solving inverse problem
(4.44) using the data corresponding to a given cycle, for the charge regime (a) and the discharge
regime (b). For each line in the plots, model (4.37) is calibrated with Algorithm 3 using the
data from the cycle indicated in the legend and then tested against data from all other cycles
(indicated on the horizontal axis). Also, the performance of the model calibrated using aggre-
gated data Dcht for (a) and Ddcht for (b), is demonstrated by dashed line. Additionally, the
performance of the model calibrated using data for C3 and 3C cycles (

⊕
iDchi , i ∈ {C3, 3C} for

(a) and
⊕

iDdchi , i ∈ {C3, 3C} for (b)), is as the dotted line.

are depicted in Figure 4.8, whereas the optimal reconstructed constitutive relations are shown in Figure

4.9. Although the optimal constitutive relations found by fitting forward model (4.37) to individual

cycles for charge and discharge regimes are not presented here for brevity, they show a similar behaviour

to the optimally reconstructed constitutive relations in Figure 4.9. Note the magnitude of the function ω

is in both cases of the order of 0.1, highlighting the dominating effect of the intercalation/deintercalation

relative to plating/stripping. Also, it is clear from Figures 4.8 and 4.9 that the optimal reconstructions of

constitutive relations and parameter α are slightly different between the charge and discharge regimes.

As can be observed, the reconstructed relations ω2 for the charge and discharge regimes show similar

behaviour, however, the relation ω1 and the parameter α demonstrate different behaviours in the charge

and discharge regimes. This is contrary to what we expect to observe in the system, namely, that the

constitutive relations deduced in the two regimes should be approximately the same. This could have a

few potential reasons.

1. The dynamical behaviour of the system for charge and discharge regimes might show some irre-

versibility. Note that the function ω is defined as the balance between Li plating and Li intercala-

tion. This implies that the competition between side reaction and intercalation is different between

the charge and discharge regimes. At a particular state of the cell, charging might result in an

intercalation-plating competition that might be different from the deintercalation-stripping compe-

tition when discharging at the same state of the cell. This would indicate that Li metal does not get
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Figure 4.8: The decay of cost functional J2(α, ω1, ω2) normalized with respect to its initial value
with iterations (a,c), and the evolution of parameter α with iterations (b,d) in the solution of
the inverse problem (4.44) where model (4.37) is calibrated with stage II of Algorithm 3 using
aggregated data for the charge regime Dcht (a,b), and discharge regime Ddcht (c,d).

stripped in exactly the same manner as it gets plated. One possibility is that some plated Li loses

electrical connectivity with the negative particles, and for this reason, it becomes electrochemically

inactive. In other words, not all plated Li is recoverable, giving rise to slightly different behaviour

of function ω for stripping in comparison to plating.

2. The experimental conditions between the charge and discharge regimes might have slightly changed,

hence, giving rise to different cell behaviour for each regime.

3. The noise in the experimental data could be a factor that affects the fitting process and results in

slightly different behaviour between charge and discharge regimes. As the inverse problem tends

to be ill-posed, the effect of noise could be significant.

The results of solving the forward problem (4.37) equipped with the optimally reconstructed constitutive

relations and optimal parameters α andβ by fitting the model to all cycles are depicted in Figures 4.10 and

4.11. The optimal relations and parameters used correspond to the dashed line in Figure 4.7, i.e., model
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Figure 4.9: The initial guess for the constitutive relations ω(0)
1 (C1), ω(0)

2 (C2), and ω(0)(C1, C2)
(red), and the optimal form of the reconstructed constitutive relations ω1(C1), ω2(C2), and
ω(C1, C2) (blue) where model (4.37) is calibrated with stage II of Algorithm 3 using aggregated
data for the charge regime Dcht (a,c,e), and discharge regime Ddcht (b,d,f).

that is fitted to aggregated data according to Section 4.4.3. The results are shown for the time dependence

of the reconstructed concentrations for all cycles, along with the true experimental concentrations. As

can be observed, the concentrations from the model follow the overall behaviour of the dynamics of the

system, with some minor deviations. There can be multiple reasons for this.

1. The noise in the NMR measurements is one source of inconsistency between the predictions of the
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mathematical model and the measured concentrations.

2. The computational framework has one caveat which can potentially limit its performance. The

separation of variables (ω(C1, C2) = ω1(C1) · ω2(C2)) is assumed in the optimal reconstruction

formulation. The "true" optimal form of constitutive relation might not be separable as assumed in

the computational framework.

3. This model does not take into account other undesired processes in the cell that might consume

some of the interfacial current density, such as secondary SEI growth. The current density applied

to the cell is entirely consumed by intercalation/deintercalation and plating/stripping processes.

4. Model (4.37) is trained on a range of C-rates simultaneously. It is known that the dynamics of Li-

ion cells highly depend on the C-rate, and different simplified models are developed for describing

the dynamics of the cell at different ranges of C-rates, see [156] and [157]. Hence, one model could

lose its accuracy when trained on a wide range of C-rates.

5. The optimization problems of this nature are typically non-convex and may therefore admit multi-

ple local minima. We cannot guarantee that with the gradient-based approach we used the solutions

we found are global minimizers.

Thus, due to these reasons, it is unlikely the optimal solutions presented in this section could be further

improves.

As can be observed in Figure 4.11, the experimental concentrations of plated Li demonstrate a partial

recovery (stripping) of plated Li. This implies that some of the plated Li is inactive, and hence the

calibrated constitutive relation must take into account this phenomenon. As explained before, this could

be one reason for different behaviour of the constitutive relations between charge and discharge regimes.

4.6. Discussion

In this study, Li plating was investigated as one of the main degradation mechanisms in Li-ion cells using

mathematical and computational tools. Physical modeling was employed in order to model the physical

and chemical processes in the cell. Starting with the DFN model, we employed a variety of techniques,

including asymptotic reduction and averaging, in order to simplify it to an SP model with side reactions,

tailored to our experimental data. The resulting SP model with side reaction tracks the evolution of two

lumped concentrations: intercalated Li and plated Li in the cell. Notably, the model has the following
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Figure 4.10: The dependence of the state variable C1(t) on time in the solution of the forward
problem (4.37) using the optimal parameters values and optimal forms of the constitutive rela-
tion (β, α, ω) reconstructed by calibrating system (4.37) using aggregated data Dt for charge,
discharge and OCV regimes, cf. Section 4.4.3. The dashed green and the solid blue lines represent
the experimental concentrations and the solution of the forward problem (4.37) using optimal
parameters and constitutive relations, respectively.

properties: (i) concentrations are averaged over their corresponding spatial domains to eliminate spatial

dependence from the equations, (ii) the model takes the form of an ODE system describing the evolution

of the averaged quantities, circumventing the need to solve for the potential distribution in the cell, as done

in the DFN models, due to the simplifying assumptions of the proposed framework, such as uniformity

of particles in negative and positive electrodes, (iii) the model accounts for both relaxation and excitation

dynamics in the cell, with excitation being the primary cause of dynamics in the cell, and (iv) the model

accounts for both plating and stripping processes in the cell, allowing for the recovery of some of the

plated Li. These properties make the model a good candidate for online state estimations and monitoring

of the cells. From the physical modeling perspective, the study by Brosa Planella et al. [155] bears the

closest resemblance to this work, although it does not account for Li stripping. Sahu et al. [158] consider

more interactions between different phases of Li in the cell and develop a more comprehensive mathe-

matical model capable of predicting both plating and stripping. Our resulting physical model involved

a multitude of physical parameters and constitutive relations that require calibration using experimental

data. Inverse modeling and optimization techniques are employed for this purpose in order to determine

the optimal value of parameters and the optimal form of constitutive relations, aiming to minimize dis-

crepancies between model outputs and experimental data. To our knowledge, this study represents the
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Figure 4.11: The dependence of the state variable C2(t) on time in the solution of the forward
problem (4.37) using the optimal parameters values and optimal forms of the constitutive rela-
tion (β, α, ω) reconstructed by calibrating system (4.37) using aggregated data Dt for charge,
discharge and OCV regimes, cf. Section 4.4.3. The dashed green and the solid blue lines represent
the experimental concentrations and the solution of the forward problem (4.37) using optimal
parameters and constitutive relations, respectively.

first instance of using inverse modeling to optimally predict Li plating and stripping in Li-ion cells.

We note that the negative electrode material utilized in this study is silicon. This material experiences

significant volume variations during charge/discharge cycles of the cell, a phenomenon linked to its high

charge density. These volume changes may influence the model’s performance, as we have not explicitly

accounted for this phenomenon. Nonetheless, the calibrated parameters and constitutive relations of the

model can implicitly account for this effect.

An important consideration is the range of validity of Li-plating model. As highlighted by Marquis

et al. [156], the SP model remains valid up to a C-rate of 1C, beyond which it begins to diverge from the

DFN model. In this study, we have also developed a variant of the SP model that accounts for Li-plating as

a side reaction. Consequently, it becomes imperative to investigate the range of validity of this model. As

depicted in Figures 4.10 and 4.11, the model trained across a spectrum of cycles demonstrates the ability

to predict intercalation/deintercalation and plating/stripping behaviours in an overall acceptable manner.

Due to the fact that the mathematical model is calibrated using data, its fidelity may extend beyond 1C

rate. Figure 4.7 suggests that a model calibrated on a specific C-rate performs well in its proximity, and

its performance gradually deteriorates as the C-rate deviates from the C-rate used for training. Thus, the
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range of validity of the model highly depends on the training process used to calibrate the model, which,

in turn, is determined by the specific application assumed for the model.

The proposed physical modeling and computational framework can also be extended to differentiate

between different phases of Li within the cell, particularly non-recoverable Li and recoverable Li. In

the current study, these two phases are not distinguished as the experimental data for inactive Li is not

available. Additionally, this framework does not account for other degradation mechanisms in the cell

and solely focuses on the Li plating behaviour. However, it can be readily expanded to include other types

of degradation mechanisms in the cell.
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Chapter 5

Summary, Conclusion and Outlook

In this study, multiple problems revolving around Li-ion cells were investigated to model, identify, and

predict degradation mechanisms, and improve reliability of such models. The models developed are used

to (i) predict the lattice structure of the cathode phase, (ii) model the degradation mechanisms in the neg-

ative electrode of the cell, and (iii) predict the dynamic behaviour of the cell including its inefficiencies

while in operation. These models were developed, calibrated, and tested against experimental data from

lab-made or commercial Li-ion cells. Data-driven inverse modeling approaches were leveraged for cali-

brating models for each specific application. Two categories of models were used in this study, namely,

data-driven techniques and physics-based techniques, to understand and model cell dynamics.

From the modeling point of view, this thesis focuses on modeling of cells based on ODEs and the

calibration of such models using inverse modeling techniques as follows.

• In Chapter 2, an ODE model was used for the prediction of the cathode cell structure, calibrated

via an inverse modeling technique, and the uncertainty of this model was quantified. A model was

developed that tracks the evolution of the concentrations of different clusters in the lattice. Instead

of tracking the state of the individual lattice sites using computationally expensive techniques, one

can quantify the agglomerate information about different clusters in a lattice, which is computa-

tionally more efficient. The resulting model takes the form of an ODE for tracking the evolution of

the concentrations of different clusters in the lattice. This model, calibrated with suitable experi-

mental data, could be used to produce information about lattice structure. Learning the structure of

the cathode can help in understanding the intercalation/deintercalation mechanisms in the cathode
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phase and the local structures formed during this process. This modeling technique is an example of

a system identification approach using prior knowledge about the physics of the system and about

how interactions can take place in the lattice. The resulting ODE takes the form of a nonlinear

hierarchical system with scalar parameters, to be determined. Data-driven techniques are leveraged

to close the dynamical system in an optimal manner using regularization methods. This framework

leads to an improvement of the closure models for hierarchical ODEs.

• In Chapter 3, data-driven modeling is used to enhance cell state estimates of LFP cells using the

EIS operando technique. A hybrid data-driven approach is employed for system identification,

where experimental data is used to find an optimal combination of candidate terms describing the

evolution of the dynamics in the cell, drawn either from the physical knowledge of the system or

from some empirical functions. This technique is a computationally inexpensive way of identifying

system dynamics for predicting the state of the system while in operation. Accurate modeling of

cell dynamics helps improve cell estimations and design more reliable feedback loops, used for

monitoring and control.

• In Chapter 4, a data-driven modeling approach is used to identify degradation mechanisms in the

cells. A physics-based modeling approach is employed to develop a system of ODEs for tracking

the evolution of cell dynamics. In this case, the system of ODEs is derived from the physics of

the system with the help of an asymptotic reduction; however, the model is not closed as some

parameters are state-dependent. The behavior of this model’s response depends on the form of the

state-dependent constitutive relations that are unknown and need to be determined. Experimental

data can help in learning the optimal form of these constitutive relations. In this model, only

minimum a priori assumptions about the functional forms of the constitutive relations are used.

Calibration of this model requires sophisticated computational tools to identify optimal parameters

and constitutive relations. The resulting model can be used for monitoring and predicting cell

inefficiencies while in operation.

From the computational point of view, three different model development techniques were used. (i)

Physical modeling to get an ODE with scalar parameters: this approach is common in science and engi-

neering. Standard techniques for solving inverse problems can be leveraged to calibrate such models. (ii)

Data-driven modeling to get an ODE describing the dynamics of the system learned using measurement

data: this technique is simple, inexpensive, and well-suited for predictive control to enhance state predic-

tion. However, it is restricted by our choice of functionals and nonlinearities for the system’s dynamics.

(iii) Physical modeling to obtain an ODE for describing system’s dynamics with minimal assumptions
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about the functional forms of constitutive relations: this approach is superior to the two other previous

modeling techniques as the resulting ODE model is interpretable and computationally inexpensive. In

this case, the unknown parameters of the model are state-dependent and can better capture the system’s

dynamics compared to previous models. This technique allows for an accurate reconstruction of optimal

forms of constitutive relations instead of imposing specific functional forms. This technique, combined

with physics-based modeling, could result in accurate and interpretable estimations of the system.
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Appendix A

Data-Driven Optimal Closures for Mean-Cluster Models

A.1. Rotational Symmetry

Theorem A.1.1. In a 2D triangular lattice (where each element is surrounded by 6 nearest-

neighbours), if the energy function of the lattice is invariant with respect to the spatial orientation

of the bonds, 2-clusters with different spatial orientations have the same concentrations in the

ground state, i.e., the probability of finding a particular 2-cluster in the lattice is independent of

its spatial orientation.

Proof. The energy function used in the simulated annealing experiment in Section 2.2 is achieved

by summing over energies of single oxygen sites i.e. E =
∑
iEi. The energy over each oxygen

site is calculated by considering its neighbor elements in 6 different positions. The energy over

each oxygen site is independent of the orientation of the neighbouring sites and only depends on

the type and charge of the neighbouring elements.

A.2. Bayesian Inference

In the Bayesian framework the distribution of the model parameters is given by the posterior probability

distribution P
Ä

K|C̃
ä

defined as the probability of obtaining parameters K given the observed experimen-

tal data ‹C. According to Bayes’ rule, we then have

P
Ä

K|C̃
ä

=
P
Ä

C̃|K
ä
P (K)

P
Ä

C̃
ä , (A.1)

where P
Ä

C̃|K
ä

is the likelihood function describing the likelihood of obtaining observations ‹C given the

model parameters K, P (K) is the prior probability distribution reflecting some a priori assumptions on
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the parameters K (based, e.g., on direct measurements or literature data), whereas P (C) can be viewed

as a normalizing factor.

One approach to choosing the prior distribution P (K) is to use an uniform distribution, leading to the

so-called uninformative prior. Another common approach useful when no prior information is available

is to employ a normal distribution with zero mean which allows one to explore parameter values with

bounded magnitudes, and this is the approach we adopt here. In our problem the reaction rates in K are

non-negative, hence a half-Gaussian distribution truncated at zero is used as the prior.

As regards the likelihood function, it is usually defined as

P
Ä

C̃|K
ä
∝ e−J (K). (A.2)

This definition of the likelihood function arises from the fact that parameter values are considered more

likely if they produce model predictions C closer to the data‹C. Unlike the linear case where the inference

problem can be often solved directly by exploiting connections with Tikhonov regularization [83], this is

not possible here due to the nonlinearity of the inverse problem (2.23) and we can expect the posterior

distribution P
Ä

K|C̃
ä

to have a complicated form.

The main challenge is efficient sampling of the likelihood function P
Ä

C̃|K
ä

and this can be performed

using a Markov-Chain Monte-Carlo (MCMC) approach. It is a form of a random walk in the parameter

space designed to preference the sampling of high-likelihood regions of the space while also exploring

other regions. In the MCMC algorithm, a kernel Q (K∗|K) is used to generate a proposal for a move

in the parameter space from the current point K to a new point K∗. This new point is accepted with a

probability given by the Hastings ratio; otherwise, it is rejected (the “Metropolis rejection”). In order to

preserve the reversibility of the Markov chain, the Hastings ratio for the acceptance probability is defined

as

α (K∗,K) = min

1,
P
Ä

K∗|C̃
ä
Q (K|K∗)

P
Ä

K|C̃
ä
Q (K∗|K)

 . (A.3)

Thus, the Markov chain is reversible with respect to the posterior distribution, meaning that a transition

in space is equally probable during forward and backward evolution. This property makes the posterior

distribution invariant on the Markov chain. In other words, if given enough iterations, the distribution

converges to its equilibrium distribution. The most common choice of the random walk is in the form

K∗ = K + ξ (A.4)
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such that Q (K∗|K) = Q (K∗ −K) = Q (ξ), where ξ is an 8-dimensional random variable drawn from

a uniform distribution with scale σ ∈ R8, i.e., ξ ∼ U [−σ,σ]. Note that the components of the scale σ

represent intervals defining the uniform distribution. It has been suggested that uniform kernels outper-

form Gaussian ones in terms of convergence of the MCMC algorithm [164], hence, we adopt the uniform

kernel in our study. The choice of symmetric kernels simplifies relation (A.3) as the factors represent-

ing the density in the numerator and denominator cancel. However, the choice of scale for the proposal

kernel is nontrivial. Small scales will result in slow convergence to the posterior distribution, whereas

large scales will prevent sampling of desirable regions in the parameter space. Moreover, in our model

there is no prior information about an appropriate scale for the proposal kernel. In order to tackle this

issue, a two-step Delayed-Rejection Metropolis-Hastings (DR-MH) algorithm is used [77, 165, 166]. In

this algorithm, the rejection of the first proposed point at a given iteration of the Markov chain is delayed

by proposing a new step in the space based on a different scale. Normally, the scale of the first kernel

is chosen to be large in order to explore a wider region of the high-dimensional parameter space and the

scale of the second kernel is small to gather more samples from higher-likelihood regions. This approach

combines exploration of large regions in a high dimensional space with focus on high-likelihood neigh-

bourhoods. Here, we adopt the two scales to be equal to 1 and 0.1, respectively. The DR-MH algorithm

also ensures the reversibility of the Markov chain, meaning that the direction of time in which the random

walk is taking place does not affect the dynamics of the Markov chain. In other words, a random walk

in the forward direction of the chain from state n to state n + 1 is equally probable as the reverse walk

from state n + 1 to state n. This ensures that the chain remains in an equilibrium state as it evolves.

This is an important property as the Markov chain is essentially a random walk in the posterior space

and reversibility is required to ensure it remains in the same posterior space. The acceptance probability

of the delayed proposed point is calculated using relation (A.6). To initialize the DR-MH algorithm, we

require an initial set of model parameters which is drawn from a half-Gaussian prior distribution with

zero mean and unit standard deviation. The total number of samples in the Markov chain is M = 104.

Algorithm 4 outlines the entire procedure needed to approximate the posterior probability distribution

P
Ä

K|C̃
ä

. Additional details concerning MCMC approaches can be found in monographs [21, 167].
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Algorithm 4: Random walk delayed rejection algorithm
Input: M — Number of samples to be drawn from the posterior distribution

Q1 (K∗|K) — Proposal density of the first trial

Y1 — initial point for the random walk in the space R8

σ1,σ2 — scales defining the random walk

Output: P
Ä

K|C̃
ä

— Posterior probability distribution

n← 1

repeat
Propose a step: ξ ∼ U [−σ1,σ1]

Propose a candidate: Y1 = Kn−1 + ξ

Accept the proposed step with probability α1:

α1

(
Y1,K

n−1
)
∝ min

{
1,

exp(−J (Y1))P (Y1)

exp(−J (Kn−1))P (Kn−1)

}
(A.5)

Draw a random number: r ∼ U [0, 1]

if α1

(
Y1,K

n−1
)
< r then

Propose a new step with scale σ2: ξ ∼ U [−σ2,σ2]

Propose a new candidate: Y2 = Kn−1 + ξ

Accept the new proposed point with probability α2:

α2

(
Kn−1,Y1,Y2

)
= min

{
1,

P
Ä
Y2|C̃

ä
Q1 (Y2|Y1)

ï
max

Å
0, 1− P(Y1|C̃)

P(Y2|C̃)

ãò
P
Ä

Kn−1|C̃
ä
Q1 (Y1|Kn−1)

ï
max

Å
0, 1− P(Y1|C̃)

P(Kn−1|C̃)

ãò}
(A.6)

Draw a random number: r ∼ U [0, 1]

if α2

(
Kn−1,Y1,Y2

)
> r then

Kn ← Y2

n← n+ 1

else
discard Y2

else
Kn ← Y1

n← n+ 1

untilM samples are drawn;

Construct the posterior probability distribution
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Appendix B

Small-Signal Excitation by Electrochemical Impedance Spectroscopy

B.1. Small-Signal Perturbation

The equivalent circuit model presented in Figure 3.3 is a large-signal model. The small-signal perturba-

tion can be obtained by linearizing the large-signal model around an operating point. First, we derive the

large-signal model. According to Kirchhoff’s current law, the current is split between the two components

of the parallel RC element as

I(t) =
up(t)

Rp
+ Cp

dup(t)

dt
. (B.1)

Hence, the large-signal model presented in (3.11) can be obtained by rearranging (B.1) as

dup(t)

dt
=
I(t)

Cp
− up(t)

RpCp
. (B.2)

According to Kirchhoff’s voltage law,

ut(t) = uoc(t) + I(t)R0 + up(t). (B.3)

Now we linearize the equations around a reference point to obtain the small-signal model of the circuit.

The current and the voltage are perturbed in time domain as I = I + ε∆I , ut = ut + ε∆ut, and

up = up + ε∆up. Substituting these equations into (B.1) and (B.3), and arranging the equations with

respect to ε, we get

∆I =
∆up
Rp

+ Cp
d∆up
dt

,

∆ut = ∆IR0 + ∆up.

(B.4)
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Converting the equation (B.4) to frequency domain using the Laplace transform, we get

∆I(s) =
∆up(s)

Rp
+ Cps∆up(s),

∆ut(s) = ∆I(s)R0 + ∆up(s),

(B.5)

where s = jω, L{I(t)} = I(s), L{∆ut(t)} = ∆ut(s), L{∆up(t)} = ∆up(s), and L denotes a Laplace

transform. Using (B.5) the impedance of the circuit is then computed as

Z(s) =
∆ut(s)

∆I(s)
= R0 +

Rp
1 + (ωRpCp)2

− j
ωR2

pCp

1 + (ωRpCp)2
. (B.6)
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Appendix C

Learning Optimal Forms of Constitutive Relations in Models Describ-

ing Lithium Plating

C.1. Relaxation Dynamics

In order to compute components of the gradient vector, adjoint sensitivity analysis is leveraged [37, 38,

162]. We begin by computing the directional derivatives

J ′1(β;β′i) = lim
ε→0

ε−1 [J1(β;βi + εβ′i)− J1(β)] =

∫ T

0

(w r(t;β))>C′(β′i)dt,

C′(β′i) =

C ′1(β;β′i)

C ′2(β;β′i)

 ,
w =

1 0

0 w

 ,
(C.1)

where i ∈ {1, 2, 3, 4}, and C′(β′i) is the solution of a system of equations describing perturbations of the

state variables resulting from the perturbations of each of the parameters. In order to derive this system,

the parameters are perturbed, and the state variables are perturbed with respect to each of the parameters

in β as

βi = β̂i + εβ′i,

C(β) = “C(β̂) + εC′(β;β′i) +O(ε2),

(C.2)

where i ∈ {1, 2, 3, 4}, the variables with a hat sign represent the unperturbed version of the variables,

and the prime sign represents the perturbation. Substituting (C.2) into the system of equations (4.37),

collecting terms with respect to different powers of ε, at the leading-order we get one system of equations

corresponding to the unperturbed version of equations, d“C/dt = “B+“A“C. At the order of ε, four systems

of equations are obtained corresponding to the perturbation of each of the parameters in the vector β. The
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four systems of equations are obtained as

d

dt
C′(β′i) = “AC′(β′i) + Iiβ

′
i
“C + ziI0,

I0 =

1

0

 , I1 =

0 0

0 0

 , I2 =

1 0

0 0

 , I3 =

0 λ−1

0 −1

 , I4 =

0 0

1 0

 , (C.3)

where i ∈ {1, 2, 3, 4}, z1 = β′1, and zi = 0 for i ∈ {2, 3, 4}. Dotting this equation with the vectors of the

adjoint variables C∗i (t) = [C∗1 (t), C∗2 (t)]
>, and integrating in time we obtain

∫ T

0

C∗i
> d

dt
C′(β′i) dt−

∫ T

0

C∗i
>“AC′(β′i) dt−

∫ T

0

C∗i
>Iiβ

′
i
“C dt−

∫ T

0

C∗i
>ziI0 dt = 0. (C.4)

Note that four different adjoint vectors are required, each of which correspond to one system of equations

resulting from perturbation of one parameter. Performing integration by parts on the first term, and

applying initial conditions, we get

−C∗i
>(T )C′(β′i)(T ) +

∫ T

0

d

dt
C∗i
>C′(β′i) dt+

∫ T

0

C∗i
>“AC′(β′i) dt+

∫ T

0

C∗i
>Iiβ

′
i
“C dt

+

∫ T

0

C∗i
>ziI0 dt = 0.

(C.5)

Factoring out C′ results in

−C∗i
>(T )C′(β′i)(T ) +

∫ T

0

ï
d

dt
C∗i
> + C∗i

>“AòC′(β′i) dt = −
∫ T

0

C∗i
>Iiβ

′
i
“C dt−

∫ T

0

C∗i
>ziI0 dt.

(C.6)

Thus, we define the adjoint system in a judicious manner to provide a convenient expression for the

directional derivative as
d

dt
C∗> = (w r(t;β))> −C∗>“A,

C∗(T ) = 0.

(C.7)

Note that different adjoint systems defined for each adjoint vector C∗i , i ∈ {1, 2, 3, 4} are identical, and

hence, the subscript i is removed. Consequently, with this definition of the adjoint system equation (C.6)

reduces to

J ′1(β;β′i) = −
∫ T

0

C∗>Iiβ
′
i
“C dt−

∫ T

0

C∗>ziI0 dt. (C.8)
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Note that we can also compute the directional derivative as J ′1(β;β′i) = ∂J1/∂βi ·β′i. Thus, the gradient

of cost functional is obtained as

∇βJ1 =
[
−
∫ T

0
C∗>I0 dt −

∫ T
0

C∗>I2
“C dt −

∫ T
0

C∗>I3
“C dt −

∫ T
0

C∗>I4
“C dt

]
.

(C.9)

C.2. Model Validation

C.2.1 Validation of Gradients

To validate the derivation and computation of the gradients computed using adjoint analysis we will

compare the adjoint-based expression for the Gateaux differential, cf. (4.53) and (4.63), with a finite-

difference approximation of the differential. In order to determine the consistency of the gradients, we

define the ratio of the directional derivative evaluated as described above for each of the gradients as

κ1(ε) =
ε−1 [J2(α, ω1 + εω′1, ω2)− J2(α, ω1, ω2)]∫ Cβ1

Cα1
∇L2

ω1
J2 · ω′1ds

,

κ2(ε) =
ε−1 [J2(α, ω1, ω2 + εω′2)− J2(α, ω1, ω2)]∫ Cβ2

Cα2
∇L2

ω2
J2 · ω′2ds

,

κ3(ε) =
ε−1 [J2(α+ εα′, ω1, ω2)− J2(α, ω1, ω2)]

∂J2

∂α · α′
,

(C.10)

which we will refer to as the κ-test. We note that either functional spaces, L2 or H1, could be used to

evaluate the expressions in the denominator and for simplicity we choose the L2 gradients here. When

the gradients are approximated correctly, the quantities κ1, κ2 and κ3 should be close to unity for a broad

range of ε values. However, these quantities deviate from the unity for very small or very large values of ε

due to round-off and truncation errors, respectively, which are well-understood effects. The results of the

κ-test are demonstrated in Figure C.1. In this test, two different discretizations of the interval L are used.

In Figures C.1a,b we see that, as expected, when the discretization N of the state interval L is refined, the

quantities κ1(ε) and κ2(ε) approach unity for a broad range of values of epsilon ε. This trend is absent

from Figure C.1c, since approximation of the derivative (4.63) does not depend on the discretization of

the interval L. The results of constructing the L2 and H1 gradients of the constitutive relations in the first

iteration of the Algorithm 3 are demonstrated in Figure C.2, with ω(0)
1 = ω

(0)
2 = 0.7 and α(0) = 3 as

the initial guess and 5000 grid points in the L interval. Note that β = [−0.1,−0.1,−0.1,−0.1] in this

experiment. As it can be observed in Figure C.2, the L2 gradients are discontinuous and vanish outside

the identifiability region (the discontinuity occurs on the boundary of the identifiability region). However,

151



Ph.D. Thesis - A. Ahmadi McMaster University - CSE

10
-15

10
-10

10
-5

10
0

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(a)

10
-15

10
-10

10
-5

10
0

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(b)

10
-15

10
-10

10
-5

10
0

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(c)

Figure C.1: The behaviour of κ1(ε) (a), κ2(ε) (b), and κ3(ε) (c), over a wide range of ε values,
by using ω(0)

1 = ω
(0)
2 = 0.7, α(0) = 3 as the starting point, and using different perturbations of

constitutive relations and parameters. Two different discretizations of the interval L are used,
namely, N = 100 (dashed lines) and N = 5000 (solid lines). Note that discretization of the state
interval L does not affect the quantity κ3(ε), as its partial derivative (4.63) is computed without
discretizing the state space L. Note that β = [−0.1,−0.1,−0.1,−0.1] in this experiment.

the H1 gradients behave well outside the identifiability region where their behavior is determined by the

choice of the boundary conditions in (4.67) and (4.68) whereas their smoothness is controlled by the

parameter l in the definition of the H1 inner product (4.64). A Neumann boundary condition, and a

smoothing parameter of l = 1 is used for this experiment.

C.2.2 Validation of Computational Framework

In order to validate the computational framework, one can manufacture synthetic "experimental" data us-

ing some assumed forms of the constitutive relations and parameter values, and then seek to reconstruct

them based on the manufactured data using Algorithm 3, starting from arbitrary initial guesses. One

can assume an arbitrary functional form of the factors ω1 and ω2 defining the constitutive relation, along

with an arbitrary parameter α. Subsequently, synthetic experimental concentrations can be manufac-

tured based on these assumed functional forms and parameters. Finally, the manufactured experimental

concentrations can be employed to reconstruct the "unknown" parameters and relations optimally. By
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Figure C.2: ∇L2

ω1
J2 (a), ∇L2

ω2
J2 (c), ∇H1

ω1
J2 (b), and∇H1

0
ω2 J2 (d) at the first iteration of Algorithm

3. Note the mean of the gradient in (d), as it is reconstructed in H1
0 space.

comparing the reconstructed relations to their assumed forms, this process allows for the validation of

the proposed methodology and ensures its effectiveness under controlled conditions. Note that for the

purpose of computational validation, we only perform the validation on the adjoint analysis of the exci-

tation dynamics (stage II of Algorithm 3) as it is computationally more complex. The analogous tests

have also been performed for the relaxation dynamics, but are omitted here due to the simpler nature of

the problem. Figure C.5 demonstrates the assumed functional forms of the factors determining the con-

stitutive relation and the resulting relation. Also, the optimal parameter value is chosen as α = 5 for this

experiment. Based on the forms of the constitutive relations presented in Figure C.5, the corresponding

manufactured concentrations with some arbitrary initial conditions will be generated, as shown in Figure

C.4. This data will be used as the "true" data for computation of cost functionals in the current section.

The results of the optimal reconstruction of the constitutive relations are presented in Figure C.5, along

with their "true" forms. In this experiment the initial guesses of the algorithm are chosen as ω(0)
1 = 0.4,

ω
(0)
2 = 0.85 and α(0) = 0.1. Algorithm 3 is terminated when the relative decrease of the objective

functional between two consecutive iterations becomes smaller than a prescribed tolerance (TOL =

10−6) or the maximum number of iterations (N = 300) has been exceeded. Note that the mean squared
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error for the omega relation between the true and the reconstructed one is defined as

E(ω) =
1

(Cb1 − Ca1 )(Cb2 − Ca2 )

∫ Cb1

Ca1

∫ Cb2

Ca2

[ω(C1, C2)− ω̃]
2
dC2dC1. (C.11)

The performance of the algorithm is illustrated in Figure C.3, in which the mean squared error of the

reconstruction of ω with iterations, the relative decay of cost functional with respect to its initial value,

and the evolution of the parameter α with iterations are plotted. As can be observed, the parameter α is

approaching to its true value, α = 5.
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Figure C.3: Performance evaluation of the iterative algorithm according to Algorithm 3. The
mean squared error between the true and the reconstructed constitutive relations (a), the relative
decay of cost functional normalized with respect to its initial value (b), and the evolution of
parameter α (c) are shown as functions of iterations n.

The time histories of concentrations corresponding to the true constitutive relations ‹C1(t; α̃, ω̃1, ω̃2)

and ‹C2(t; α̃, ω̃1, ω̃2), the time evolution of concentrations corresponding to the initial guess of parameter

and relations C1(t;α(0), ω
(0)
1 , ω

(0)
2 ) and C2(t;α(0), ω

(0)
1 , ω

(0)
2 ), and the time evolution of concentrations

corresponding to the optimal reconstructed relations C1(t;α, ω1, ω2) and C2(t;α, ω1, ω2) are shown in

Figure C.4. As can be observed, the model (4.37) equipped with the optimally reconstructed constitu-
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tive relations and parameters can very well predict the time evolution of concentrations. The optimal
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Figure C.4: Time history of concentrations C1(t) (a) and C2(t) (b) obtained using the true
parameter and constitutive relations (dotted green line), the initial guess of parameter and
relations (dashed red line), and the optimal reconstructed parameter and relations (solid blue
line).

reconstruction of constitutive relation is demonstrated in Figure C.5. As can be observed, there are slight

differences between the true and the reconstructed relations, however, the time evolution of concentra-

tions matches the true data very accurately, cf. Figure C.4. This provides information about the degree

of sensitivity of the concentrations to the form of constitutive relations. Comparing the initial guess for

constitutive relation ω(0) to its optimal reconstruction ω, it is clear that there is a significant improvement.

The small differences between the true and the reconstructed relations have two main reasons. First, the

sensitivity of the concentrations to the constitutive relations is small, meaning that small perturbations in

constitutive relation will not have significant impact on the results. This is a measure of the ill-posedness

of the inverse problem (4.44). Second, the constitutive relations are extended beyond the identifiability

region based on some boundary conditions that might not be completely correct. For this reason, the

deviation between the reconstructed function and the true one beyond the identifiability region becomes

larger. This concludes the validation of the computational framework. It is shown that the computa-

tional framework is capable of reconstructing constitutive relations to minimize the mismatch between

experimental and predicted concentrations.
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Figure C.5: Constitutive relations (a) ω1(C1), (b) ω2(C2), and (c) ω(C1, C2). Optimally recon-
structed constitutive relations ω (blue), along with the initial guess of relations ω(0) (red) and
the true relations ω̃ (green) are shown. Note that grey vertical lines in panels (a) and (b) denote
the identifiability region for the last iteration of the Algorithm 3.
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