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Lay Abstract

Advancements in artificial intelligence (AI) are transforming medicine, particularly in

robotic surgery. This thesis focuses on improving how robots recognize and classify

surgeons’ movements during operations. Using a special AI model called a bidi-

rectional Long Short-Term Memory (BiLSTM) network, which looks at data both

forwards and backwards, the study aims to better understand and predict surgical

gestures.

By applying this model to a dataset of surgical tasks, specifically suturing, and

optimizing its settings with advanced techniques, the research shows significant im-

provements in accuracy and efficiency over traditional methods. The enhanced model

is not only more accurate but also smaller and faster.

These improvements can help train surgeons more effectively and advance robotic

assistance in surgeries, leading to safer and more precise operations, ultimately ben-

efiting both surgeons and patients.
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Abstract

The integration of artificial intelligence (AI) and machine learning in the medical field

has led to significant advancements in surgical robotics, particularly in enhancing the

precision and efficiency of surgical procedures. This thesis investigates the application

of a single-layer bidirectional Long Short-Term Memory (BiLSTM) model to the

JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) dataset, aiming to

improve the recognition and classification of surgical gestures. The BiLSTM model,

with its capability to process data in both forward and backward directions, offers

a comprehensive analysis of temporal sequences, capturing intricate patterns within

surgical motion data. This research explores the potential of BiLSTM models to

outperform traditional unidirectional models in the context of robotic surgery.

In addition to the core model development, this study employs evolutionary com-

putation techniques for hyperparameter tuning, systematically searching for optimal

configurations to enhance model performance. The evaluation metrics include train-

ing and validation loss, accuracy, confusion matrices, prediction time, and model size.

The results demonstrate that the BiLSTM model with evolutionary hyperparameter

tuning achieves superior performance in recognizing surgical gestures compared to

standard LSTM models.

The findings of this thesis contribute to the broader field of surgical robotics and
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human-AI partnership by providing a robust method for accurate gesture recogni-

tion, which is crucial for assessing and training surgeons and advancing automated

and assistive technologies in surgical procedures. The improved model performance

underscores the importance of sophisticated hyperparameter optimization in devel-

oping high-performing deep learning models for complex sequential data analysis.
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Chapter 1

Introduction

The advancement of robot systems and machine learning has led to the employment

of robots in various industries to restructure labor. According to a report by the

International Federation of Robotics (IFR), the adoption of human-robot collabora-

tion is on the rise, with an 11% increase in collaborative robot (cobot) installations

compared to 2019 [56]. Cobots are designed to work alongside humans, enhancing

productivity and safety in various tasks. In the medical field, these advancements have

been particularly transformative, leading to the development of sophisticated robotic

systems designed to assist surgeons in performing complex procedures. One notable

example is the Da Vinci Surgical System, which enhances a surgeon’s capabilities by

providing greater precision, flexibility, and control during operations [23].

Intention-based systems are a new class of user-centered assistance systems that

recognize the user’s intention and act upon it to take on both active and passive roles

in the interaction [55]. This results in a more natural interaction between the user and

the robot as the system synchronizes with the interacting entity during the process.

In surgical settings, these systems can significantly enhance the surgeon’s ability to
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perform delicate procedures by anticipating and responding to their needs in real-time.

However, the implementation of these systems necessitates the integration of multiple

sensors and sophisticated algorithms to accurately interpret the surgeon’s intentions

from limited information such as voice commands, gestures, and eye movements.

The rapid advancement of machine learning and artificial intelligence has pro-

foundly impacted various research fields, leading to significant progress in data anal-

ysis, pattern recognition, and predictive modeling. Among these advancements, Re-

current Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM)

networks, have emerged as powerful tools for handling sequential data. Their success

in capturing temporal dependencies makes them particularly well-suited for time-

series analysis, natural language processing, and complex tasks like surgical gesture

recognition in robotic surgery.

A key aspect of these advancements is the growing partnership between humans

and AI. In the medical field, this partnership aims to leverage the strengths of both

humans and machines to achieve outcomes that neither could accomplish alone. For

instance, AI can process vast amounts of data with high precision, while human sur-

geons bring expertise, intuition, and decision-making skills that are crucial in complex

medical scenarios. This synergy enhances the overall efficiency and effectiveness of

medical procedures, leading to improved patient outcomes and advancing the field of

surgery.

However, traditional LSTM models are limited in their ability to fully capture the

nuances of sequential data that contain important features at both the beginning and

end of the sequence. This limitation stems from their unidirectional processing of

data, which can result in the loss of crucial contextual information from future events

2
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within a sequence. To address this issue, Bidirectional LSTM (BiLSTM) models have

been developed [48]. These models process data in both forward and backward direc-

tions, offering a more comprehensive analysis of temporal sequences and improving

the ability to understand and predict complex patterns.

In the context of robotic surgery, the JHU-ISI Gesture and Skill Assessment Work-

ing Set (JIGSAWS) has become a pivotal dataset for developing and testing machine

learning models aimed at recognizing and classifying surgical gestures. This dataset

includes kinematic and video data from surgeons performing fundamental surgical

tasks such as suturing, knot-tying, and needle-passing. Accurate recognition of these

gestures is crucial for assessing and training surgeons and advancing automated and

assistive technologies in surgical procedures.

Despite these advancements, there are still significant challenges in effectively

analyzing and modeling complex, sequential data. The inherent complexity of surgical

gestures, combined with the variability in individual surgeon techniques, necessitates

innovative approaches to improve accuracy and reliability. Advanced models capable

of capturing subtle temporal patterns and dependencies within the data are essential

for accurate surgical gesture recognition.

The introduction of intention-based systems in human-robot interaction (HRI)

represents a significant advancement in the field of robotics and artificial intelligence.

These systems are designed to recognize and predict human intentions, facilitating a

more natural and efficient interaction between humans and robots. Intention-based

systems utilize various sensors and algorithms to understand user intentions and act

upon them, enhancing the collaborative capabilities of robots in diverse scenarios.

However, trust in these systems remains a critical factor that has not been extensively

3
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studied. Understanding the role of trust in the implementation of AI within healthcare

and other domains is essential for optimizing human-robot collaboration and ensuring

the effective use of these technologies.

This thesis introduces a novel application of a single-layer bidirectional LSTM

model to the JIGSAWS dataset to enhance the recognition and classification of surgi-

cal gestures. The hypothesis is that the BiLSTM architecture, with its dual-direction

processing capability, will outperform traditional unidirectional models in capturing

the intricate patterns of surgical motion sequences. Additionally, the study explores

optimizing the model through hyperparameter tuning, employing evolutionary com-

putation techniques to systematically search for optimal configurations. This ap-

proach not only seeks to improve model performance but also contributes to the

broader discussion on efficient hyperparameter optimization strategies in deep learn-

ing.

By leveraging the strengths of BiLSTM models and advanced hyperparameter

optimization, this research aims to provide valuable insights into the applicability

of these models for complex sequential data analysis, specifically in surgical gesture

recognition. The methodology and findings presented in this thesis have the potential

to enhance surgical training programs, improve surgical outcomes, and advance the

field of robotic surgery.

note

4
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Chapter 2

Literature Review

2.1 Overview

The current robots involved in human-robot interaction scenarios range from taking

and serving orders in restaurants to assembling sophisticated parts in factories. How-

ever, most interactions with robots require people to approach the robot and initiate

the interaction, reflecting their belief in the robot’s ability to complete a successful

social encounter [2]. In contrast, humans are both initiators and responders in social

interactions, relying on rich sensory input and experience to anticipate the other’s

actions. This is where intention-based systems come into play in HRI scenarios.

In the field of Human-Robot Interaction, the definition of a ”robot” or ”intention-

based system” has been a subject of debate, particularly with the integration of AI

technologies blurring the traditional boundaries. A robot is conventionally considered

as an autonomous or semi-autonomous system, capable of perceiving its environment,

processing information, and performing actions to achieve specific goals [23]. However,
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the advent of AI has extended this definition to include systems that were not tradi-

tionally considered robots. For instance, autonomous vehicles, which have the ability

to perceive their environment and operate without human intervention, could be clas-

sified as robots within the broader understanding [23]. Similarly, exoskeletons, which

enable or enhance human capabilities through intelligent design and control, can also

be included under this umbrella [23]. Moreover, a prime example of this expansive

definition is the Da Vinci Surgical System, a robot-assisted platform designed to facil-

itate complex surgery using a minimally invasive approach in healthcare domain [23].

Although it doesn’t operate autonomously, the system enhances the surgeon’s capa-

bilities, enabling more precise movements and greater control, with the need for more

communication and teamwork during robotic assisted surgery (RAS) [4]. This further

illustrates how AI-driven systems, even those requiring substantial human operation,

can be classified as robots within the context of their intention-based operation. This

expanded definition recognizes that as technologies advance, the line distinguishing

robots from other systems becomes increasingly ambiguous.

Previous literature has proposed various methods of determining the user’s in-

tention in HRI scenarios by utilizing different sensor data and algorithms. Some of

the designs are already employed in working environments such as rehabilitation [35],

life-support [36], assembly [41], driving [15], etc. Like machine learning algorithms,

intention-based systems are task-oriented in implementation, leading to variability in

the choice of sensor combination and algorithm, given the tasks spanning different

areas of the industry.

Aside from designing the system, trust is also fundamental in HRI, especially in

healthcare. It significantly affects the adoption and optimal use of AI technologies

6
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by influencing users’ confidence in the system’s capabilities, reliability, and safety [9].

Trust involves not only belief in the AI’s technical competencies but also understand-

ing its operations, transparency, and risk management [9]. Hence, cultivating trust

in HRI is paramount to the successful integration of AI in healthcare and vital for

ensuring beneficial interactions between users and AI systems. However, despite the

nature of intention-based systems where factors like trust, which influences human

interaction with these systems, are pivotal, the exploration of this aspect remains

scarce in the existing literature.

2.2 Scoping Review Methodology

This section outlines the methodology used to conduct the scoping review for this

thesis. The aim of the scoping review is to provide a comprehensive overview of

the existing research on intention-based systems in human-robot interaction (HRI),

particularly in the context of surgical gesture recognition. The review follows the

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)

guidelines to ensure a systematic and unbiased approach. The methodology includes

the formulation of research questions, literature search strategy, selection criteria, and

data extraction process.

2.2.1 Objective

As AI and robotics continue to advance, the use of intention-based systems in work-

ing environments is becoming increasingly common [56]. However, there is currently

no literature providing a comprehensive overview of the design characteristics of

7
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intention-based systems. Therefore, a scoping review is needed to gain a better un-

derstanding of the field before impactful designs can be made. The aim of this study

is to provide a basic understanding of the current state of intention-based systems

and assist in future implementations. Specifically, the objectives are to:

1. Provide an overview of the sensors and algorithms used in intention-based sys-

tems in the collected experimental research and describe the HRI scenarios in

which each system is used.

2. Explore the possible effects of human trust when working with intention-based

systems.

3. Identify gaps in literature for future research and establish a foundation for

subsequent design.

By compiling these different aspects, this study can help researchers implement

more comprehensive and user-friendly intention-based systems in HRI scenarios. The

review process will be conducted according to PRISMA (Preferred Reporting Items for

Systematic Reviews and Meta-Analyses) guideline [44] to minimize bias and provide

a broad understanding of the current state of the field.

This systematic review adheres to the PRISMA guideline throughout the entire

process. This guideline outlines a systematic approach to collecting and synthesizing

data while having a well-formulated research question. By following this structure,

the review aims to provide a comprehensive and unbiased overview of the current

status and design characteristics of intention-based systems.

8
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2.2.2 Strategy

The literature search for this review was conducted between October and November

2022 using three databases: Ovid MEDLINE, Ovid Embase, and IEEE Xplore. The

search query used for each database is shown in Table 2.1. While the syntax of

the search string may vary depending on the database, the terms were chosen to

capture a similar set of research literature. Both title and abstract, as well as subject

headings, were searched and reviewed based on the availability of search methods

for each database. The search was limited to English language publications but not

restricted by publication date. The aim of the search was to identify as many relevant

studies as possible to ensure the comprehensiveness of the review.

9
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Table 2.1: Database and respective search strings.

Database Search string
Ovid MEDLINE, Ovid Embase 1. Exp artificial intelligence/

2. (Machine intelligence OR Computer intelli-
gence OR Cognitive computing OR Robot* OR
Expert system* OR Intelligent system* OR Au-
tonomous agent* OR Artificial* intelligen* OR
Machine learning OR Deep learning OR Neural
network OR Computational intelligence).ti,ab,sh
3. (Intent* OR intent* predict* OR move*
predict* OR act* predict* OR Prediction algo-
rithm).ti,ab,sh
4. 1 AND 2 AND 3

IEEE (”Document Title”:”machine intelligence”
OR ”Document Title”:”computer intelli-
gence” OR ”Document Title”:”cognitive
computing” OR ”Document Title”:”robot”
OR ”Document Title”:”expert system” OR
”Document Title”:”intelligent system” OR
”Document Title”:”autonomous agent” OR
”Document Title”:”artificial intelligence” OR
”Document Title”:”machine learning” OR
”Document Title”:”deep learning” OR ”Docu-
ment Title”:”neural network” OR ”Document
Title”:”computational intelligence”) AND
(”Document Title”:”intent*” OR ”Document
Title”:”intent* predict*” OR ”Document
Title”:”move* predict*” OR ”Document
Title”:”act* predict*” OR ”Document Ti-
tle”:”prediction algorithm”)

10
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2.2.3 Participants

Studies with human aged above or equal to 18 years old are included. The demo-

graphics of participants drawn from the surveyed literatures present a diverse range.

In totality, they comprise of more than 200 individuals spanning various age groups,

sex, and physical abilities. The age of participants largely ranged from young adults

in their early twenties to individuals in their late sixties, with a few studies focus-

ing on specific age ranges from 21 to 35 years old. In terms of sex, a majority of

the subjects were male, though a substantial number of females were also included.

The handedness of participants was also considered in some studies in hand gesture

recognition, and a few in lower and upper-limb intention recognition included subjects

with specific physical conditions, such as amputations. Overall, the participant pool

was diverse, providing a broad perspective on the interaction between humans and

intention-based systems across different demographic groups.

2.2.4 Intervention

The inclusion criteria for this review were studies that proposed the design of sen-

sors or algorithms for intention-based systems, as well as evaluations of such systems.

For the purposes of this review, any system that utilized human intention to provide

feedback or judgments was considered an intention-based system, as long as it was

implemented in an HRI scenario that directly involved human interaction. Addi-

tionally, studies that used Wizard of Oz testing were included in order to provide a

comparison, where users believed they were interacting with intention-based systems,

but the system was actually controlled by a human [26].

11
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2.2.5 Inclusion and Exclusion Criteria

Exclusion criteria was chosen to prune out less relevant literature to this study. Three

exclusion criteria (E) and three inclusion criteria (I) are identified as following before

screening and assessing the search results from databases:

• E1: Studies that are review articles, dissertations, and conference abstract.

• E2: Studies focusing on financial, cryptocurrency, and brain-computer interface.

• E3: Studies that do not meet the requirement stated in participants, that is,

with humans under 18 years of age, or do not meet any inclusion criteria.

• I1: Studies focusing on intention, intention-based system, human-robot inter-

action.

• I2: Studies that include implementation of sensors or algorithms.

• I3: Studies evaluating effect of intention-based system on team dynamics or

human perceptions and attitudes when working with one.

Inclusion criterion I1 required that any study searched had to focus on the topics of

intention, intention-based system, or human-robot interaction to be considered for

inclusion. Additionally, studies needed to meet at least one of the other inclusion

criteria: I2, which included studies that discussed the implementation of sensors or

algorithms in intention-based systems, and I3, which included studies that evaluated

the effect of intention-based systems on team dynamics or human perceptions and

attitudes. However, studies that met any of the exclusion criteria were excluded from

the review. E1 excluded all review articles, dissertations, and conference abstracts to

ensure that the review was based only on primary sources. E2 excluded studies that
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focused on irrelevant topics such as financial or cryptocurrency markets, or derivation

of human intention in non-HRI scenarios such as brain-computer interfaces. While

these topics related to AI methodologies are often incorporated and can be included

in the initial search, given that they do not specifically focus on HRI, they will be

omitted from the scope of this review. Finally, E3 excluded any study that included

a participant of under-aged or did not meet any of the inclusion criteria.

2.2.6 Information Extraction

After applying the inclusion and exclusion criteria, full-text articles were reviewed,

and data were extracted from the selected references. To ensure the collected data

is relevant to the purpose of the review, several crucial aspects were considered,

such as the design’s purpose, the sensors and algorithms utilized, the data collection

process, the data size for training, testing, and validation, the performance evaluation,

demographic information of the participants involved(age, sex, height, weight, right-

handed or left-handed), and the method used for identifying intentions. Once the data

extraction was completed, the identified design characteristics were compiled into a

single file and categorized accordingly. A matrix was created to show the statistical

outcomes from the references. The designs were then grouped together based on the

recognized intention and were analyzed in comparison.
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2.3 Conducting the Review

2.3.1 Analysis

The entire process is shown in Figure 2.1. With the search string in Table 2.1 applied

to the following databases: Ovid MEDLINE, Ovid Embase, and IEEE Xplore. The

search identified a total of 1296, 428, and 223 articles, respectively. After removing

duplicates and retracted articles, the number of literatures reduced to 1293 before

screening. All remaining studies were screened by title, and 1015 articles (78.50%

of deduplicated search) were ineligible for not discussing social impacts, sensor, or

algorithm implementation, or is application in financial, cryptocurrency, or brain-

computer interface; 19 articles (1.47% of deduplicated search) that are under different

author names (problem of naming convention). In the remaining 259 articles, abstract

screening excluded 196 articles (75.68%) due to not discuss intention-based system,

no sensor or algorithm mentioned, not in HRI context, or not original research. Fi-

nally, the remaining 63 articles were screened as full-text, leaving 35 articles (51.61%)

as included in this review. The exclusion is more specific compared to the two before:

discussed about psychology of intention rather than intention recognition of systems,

trials but limited social impact mention, design for recognizing vehicle intention in-

stead of human, etc.
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Figure 2.1: PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) flowchart.
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Table 2.2 presents a summary of the demographic information of the studies in-

cluded in the review that proposed new designs for sensors and algorithms in intention-

based systems. Since the identification of human intention varies depending on the

task, the designs proposed in the studies were categorized based on the type of inten-

tion, mentioned in Figure 2.2. It shows the ontology created to better visualize the

structure of the literature review. The intention types are separated into whole body

and localized body parts, where interaction, motion, and activity are the former, and

hand gesture, upper/lower limb movement, facial gesture are the latter. Each would

be introduced in the later sections. The use of sensor clusters also varies depending

on the specific intention, especially in upper-limb and lower-limb detection, where

the placement of electrodes on muscles may differ. Thus, it is difficult to rank the

sensors and algorithms used in the designs as being best or worst. Instead, they have

their own advantages and disadvantages. Table 2.3 provides the complete reference

to the intention types, and Table 2.4 for reference to algorithms, which both will be

discussed in detail in the later sections. Figure 2.3 depicts the distribution of included

studies from 2017 to 2022, and indicates that interest in intention-based systems has

peaked in 2020, although it remains consistent throughout the years.
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Table 2.2: Summary of study characteristics of sensor and algorithm design
literature (n = 35).

Study characteristics Value, n (%)
Year
2017 4 (11)
2018 4 (11)
2019 6 (17)
2020 11 (31)
2021 6 (17)
2022 4 (11)
Involved participants
1–4 6 (17)
5–9 3 (9)
10–15 9 (26)
16–20 2 (6)
21–100 2 (6)
Unspecified 13 (37)
Sensor
RGB camera 10 (29)
Inertial Measurement Unit (IMU) 6 (17)
Surface electromyography (sEMG) 6 (17)
Depth camera 4 (11)
Force sensor 4 (11)
Myo armband 3 (9)
Custom 5 (14)
Other (mentioned once in article) 11 (31)
Algorithm
CNN-based 15 (43)
LDA 3 (9)
CNN + ConvLSTM 2 (6)
NN 2 (6)
Other (mentioned once in article) 13 (37)
Data type used
Image 11
sEMG 10
IMU 3
Force 2
Other (once in article) 9
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Figure 2.2: Ontology of intention-based system.
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Table 2.3: Literature to intention type.

Intention type Study
Motion Ding and Zheng (2020), Follmann et al. (2018), Foer-

ster et al. (2020), Golumbic et al. (2020), Gao et al.
(2021), Thakur et al. (2020), Chiu et al. (2020)

Hand gesture Chao et al. (2019), Chen et al. (2020), Dely et al.
(2020), Gao et al. (2021), Liang et al. (2020), Nguyen
et al. (2020), Novak et al. (2020), Popa et al. (2020)

Facial gesture Cha et al. (2019)
Upper-limb movement Benatti et al. (2019), Chen et al. (2020), Kim et al.

(2020), Lin et al. (2020), Wang et al. (2020), Yousefi
et al. (2020)

Activity Singh et al. (2020), Takizawa et al. (2020)
Category Abedini et al. (2020), Alavizadeh et al. (2020), Gao

et al. (2021), Nishizawa et al. (2022)

Table 2.4: Literature to algorithm.

Algorithm Study
CNN-based 15 Fang et al. (2017), Owoyemi and

Hashimoto (2017), Su et al. (2019), Chen
et al. (2020a), Chen et al. (2020b),
Janušonis et al. (2020), Kumar and
Michmizos (2020), Li et al. (2020), Mo-
hammadi Amin et al. (2020), Chin et
al. (2021), Velash et al. (2021), Wang
(2021), Wen and Wang (2021), Ding and
Zheng (2022), Poulos et al. (2022)

LDA 3 Lamini et al. (2018), Huang et al.
(2020), Kopke et al. (2020)

CNN + ConvLSTM 2 Cha et al. (2019), Zhang et al. (2022)
NN 2 Moon et al. (2019), Coker et al. (2021)
Other (mentioned once in article) 13 Kılıç and Doğan (2017), Liu et al.

(2017), Liu et al. (2018), Masalin et
al. (2018), Ren et al. (2018), Lin et al.
(2019), Cole-Albarran (2019), Young et
al. (2019), Gardner et al. (2020), Gold-
hammer et al. (2020), Liu et al. (2020),
Fedot et al. (2021), Tsitso et al. (2022)
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Figure 2.3: Distribution of studies from 2017 to 2022.

2.4 Reporting the Review

2.4.1 Whole Body Intention

Motion

The intention of human body movement, including standing posture, gait pattern,

and walking, is covered in the section on motion intention. Instead of focusing on

specific body parts such as the upper-limb or lower-limb, the studies discussed in this

section prioritize whole body movements that are more general. The determination

of motion intention can ensure human safety in HRI scenarios by avoiding collisions

and increasing efficiency. It differs from activity, as activity focuses on different types
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of action (e.g., push-up vs. sit-up vs. walking with one algorithm) whereas motion

determines the occurrence of one type of action (e.g., only walking). There are a total

of 7 articles that falls in the category, a summary of citations can be found in Table

2.3.

Pedestrian Intention One aspect of motion intention is predicting the movement

of pedestrians in the context of automated vehicles. Goldhammer et al. [19] proposed

a method called ”PolyMLP” which uses artificial neural networks to predict the future

movement of pedestrians and cyclists. The method employs a multilayer perceptron

(MLP) with sigmoid activation functions and polynomial approximation of time series

to recognize the current motion state and future trajectory of vulnerable road users

(VRUs). The network is trained using offline learning approach, meaning the model

would have no further learning input after training. Since it only requires information

regarding VRU’s past position in any coordinate system to make prediction, the

sensor choice is widely flexible, and no additional information such as map data is

needed. MLP was chosen due to its ability to handle multi-dimensional data input

and output and learn complex patterns through several hidden layers. However, MLP

requires a large amount of training data and can be prone to overfitting. In this study,

the model was trained with video data of pedestrians and cyclists, and the resilient

backpropagation (RPROP) algorithm was used to optimize the number and sizes

of hidden layers and improve generalization [47]. The trained model classified four

motion intentions, including moving, waiting, starting, and stopping, organized into

connected states. The method does not require additional information such as map

data and is widely flexible in sensor choice.

Fang and López [15] proposed a method to detect a pedestrian’s intention to cross
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the road or turn in front of the vehicle using stereo camera images as input. The

system employs a two-branch multi-stage convolutional neural network (CNN) for

recognition of human posture. The CNN is trained on the Microsoft COCO 2016

keypoints challenge dataset for skeleton fitting [34], and then a support vector ma-

chine (SVM) and random forest (RF) are compared as binary classifiers to determine

the motion intention. Both classifiers output a normalized score, with SVM using

Platt scaling on radial basis function kernel scores and RF using probability values.

The system achieves an identification of crossing intention in under 750 milliseconds

when transitioning from other actions such as standing still and bending. The study

identifies a problem when encountering pedestrians at a far distance where the skele-

ton fitting may confuse left and right side body parts. This issue could potentially

be minimized with a larger or more specific dataset including these cases.

Walking Intention The ability to identify the walking direction of humans is crit-

ical in several human-robot interaction scenarios, such as walking support, object

manipulation, and exoskeleton control. Liu and Yang [36] proposed a design that

can detect the walking direction intention of a human when using a walking support

robot (WSR). The design employs a smartphone as a 3-axis accelerometer, along

with force sensors embedded in the armrest of the WSR to detect pressure exerted

by the human. The accelerometer is placed on the chest of the subject. To classify

the intention, SVM is used, which has the advantage of being robust to noise and

having global optimization. The training and validation dataset is collected from

four participants when using the WSR to walk in eight directions, including forward,

back, left, right, left front, left back, right front, and right back. The data is split into

80% for training and 20% for testing. The combined sensors can achieve an accuracy
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of 89.4% at a data collection window width of 0.1s, and an accuracy of 95.9% at a

window width of 0.5s.

LANINI et al. [30] proposed a model for human-robot collaboration when carrying

heavy objects together. The model identifies the motion state of humans and enables

the robot to perform synchronous movement. The study used 3D force sensors (Opto-

force) and a motion capture system (Optitrack) with 15 markers to collect training

data, and only used the force sensor during testing and imaginary work environment.

The data collection involved 16 individuals with fair distribution, where one subject

always acted as a leader in motion, and the others were followers. The followers were

blindfolded and wore earmuffs to prevent visual and acoustic feedback, and the leader

was equipped with Bluetooth earphones from which an audible beat was played to

minimize disturbances in the data. The feature extraction was performed using sin-

gle variable classification (SVC) and multivariable classification (MVC) models. SVC

was used to investigate the effect of a single threshold approach on features such as

force and position, and MVC was not limited in the number of features used. For

classification of the four types of identified intentions (Stationary State SS, Walk-

ing Forward State WFS, and Walking Backward State WBS), linear discriminant

analysis (LDA) classifier was used as it has interpretability on which are the most

discriminative features and is fast for training and testing. As a result of supervised

learning, SVC performs well on SS, achieving a 96% accuracy, but less satisfactory

on WFS with only 79%, while MVC has a 92.3% accuracy for WFS. When the model

is implemented on the COMAN robot, it performs well on the starting and stopping

of synchronized motion but poorly on acceleration and deceleration, possibly due to

misclassification of deceleration as stopping with slow walking speed (0.25m/s).
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Another usage of walking intention detection is in dynamic gait generation for

exoskeleton. Ren and Liu [46] designed a on-line dynamic gait generation model to

plan real-time gait trajectories in continuous motion process according to user inten-

tions. The exoskeleton used in the study is lightweight lower-limb exoskeleton robot

(LLEX), with inertial measurement unit (IMU) in the backpack and angle sensors in

the joints. Since the users all have unique stride length, the study adopted a strategy

to utilize real-time spatial position planning, then use inverse kinematics to calculate

the joint angle trajectory. The walking process is divided into four distinct patterns,

start, normal gait, transition, and end, each with different constraint conditions. A

two-state state machine is used to distinguish the two-leg support phase and other

phases, which the movement intention recognition would focus on. With multi-sensor

fusion of the data of IMU and angle sensors and rules developed, the four patterns can

be correctly identified, with a 5% difference between generated gait and natural gait

collected at the same time of generating. Comparing with existing method proposed

by Kagawa et al. [25], it shows higher accuracy, naturalness, and continuity, among

varies stride length tested.

Other Motion Intention In addition to the previously mentioned motion inten-

tions, there are other categories that require identification.

Rehabilitation Kumar and Michmizos [29] proposed a design to assess motor

learning by identifying the intent of initializing a goal-directed movement and the

reaction time (RT) of the movement, which can be used in the rehabilitation of

sensorimotor impairment. A deep CNN consisting of five layers was trained using 128-

channel EEG signals to predict movement intention, and four layers were used for RT
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classification. Data collection was performed in two separate tasks: the first is active

mode, where the subject performs the motion, and the second is passive mode, where

motion is performed by the robot with the subject’s arm affixed to the robotic end

effector. The training and testing dataset ratio is 4:1, and the mean accuracy achieved

for movement intent and RT classification were 87.34%± 2.83% and 84.68%± 3.68%,

respectively. In the future, the proposed model could be used to target specific

treatment and provide assistance according to the percentage of voluntary movement,

and RT could be used as an indicator of functional motor recovery.

Standing Posture Li et al. [31] proposed a design for the recognition of stand-

ing posture using a pressure-sensing floor. The floor design includes a pressure buffer

layer, a pressure sensor array, and a supporting plate, along with a data collection

unit that gathers foot-pressure distribution over the sensor matrix. The foot-pressure

distribution is then converted into a grayscale image for further usage. The proposed

multi-classifier fusion algorithm includes a CNN similar to lenet-5, a SVM classifier,

and a KNN classifier. The latter two were selected after comparing the training re-

sults within a group of classifiers that included SVM, KNN, RF, decision tree (DT),

Näıve Bayes (NB), and backpropagation (BP) neural network. The trained network

can classify between nine standing postures with an average accuracy of 99.96% across

testing data. However, this study is limited to static standing postures, and future

implementations could focus on identifying dynamically moving subject’s posture.

Activity

This literature review focuses on activity recognition, which involves classifying whole

body movements into distinct categories. The studies analyzed in this section utilize
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image sensors, which are a common method as they convey more comprehensive

information. [33]. Moreover, the sensors do not need to be placed directly on humans,

which allows activities to proceed without interference. Detecting activities is critical

when it comes to collaborating on multiple tasks, as the robot can then identify

the specific task the human partner is performing and provide the corresponding

assistance. There are a total of 3 articles that falls in the category, a summary of

citations can be found in Table 2.3.

Jaouedi et al. [24] proposed a novel approach for human activity recognition us-

ing a combination of Convolutional Neural Network (CNN) and Recurrent Neural

Network (RNN) with a Kalman filter. The CNN model used in this study is a com-

bination of Inception V3 and MobileNet, while the RNN model is used for activity

classification. The approach was applied to videos captured using an RGB-D cam-

era and depth camera, and the spatio-temporal features of the human skeleton were

extracted for feature presentation. The CAD-60 dataset was used for training and

testing the model. The dataset consists of RGB-D video sequences of humans per-

forming activities, recorded using the Microsoft Kinect sensor. The study achieved

an accuracy of 95.50% for activity recognition, demonstrating the effectiveness of the

proposed approach.

Poulose et al. [45] proposed a novel approach for Human Activity Recognition

(HAR) systems that use a smartphone camera to capture human images and sub-

sequently perform activity recognition. The proposed approach, referred to as the

Human Image Threshing (HIT) machine-based HAR system, uses Mask R-CNN for

human body detection and ResNet for classification. The HIT machine-based HAR

system relies on images captured from a smartphone camera for activity recognition,
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which has the potential to significantly lower the cost and complexity of HAR systems.

The accuracy of the proposed system was evaluated using a dataset of 9 activities,

including sitting, standing, walking, dancing, sit-up, running, jumping, push-up, and

lying. The model accuracy was reported as 98.53%, with a model loss of 0.20. The

precision, recall, and F1 scores were also reported as 98.56%, 98.53%, and 98.54%,

respectively. The HIT machine-based HAR system achieved high accuracy in activity

recognition, indicating its potential to serve as a cost-effective and efficient solution

for HAR systems.

Li et al. [32] proposes a novel gaze-based intention inference framework for robots.

The framework consists of three main components: head pose estimation, eye center

localization, and eye model and gaze tracking. By analyzing the gaze data, the system

predicts the user’s intention, allowing the robot to provide appropriate assistance

or interaction. Existing frameworks mainly focus on establishing the relationship

between gaze points and objects, but lack the ability to predict the user’s intentions.

The proposed framework aims to address this limitation by enabling the robot to

understand the user’s intentions and provide more personalized assistance. The input

to the system is gaze data captured by a camera and a fixed monitor of scene image

observed by the robot.

Interaction

This literature review underscores the significance of recognizing interaction intention

to ensure safety in human-robot interaction (HRI) scenarios. There are instances

when humans have no intention of interacting with robots, and it is vital for the

robot to identify these moments and halt the collaboration to avoid any potential
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risks. This category differs from the others, focuses on multimodal approaches, similar

to a human-human interaction where multiple sensors (eyes, ears, hands, etc.) are

utilized to express intent. There are a total of 1 articles that falls in the category, a

summary of citations can be found in Table 2.3.

Amin et al. [41] proposed a method to enhance safety by combining visual and

tactile perception in human-robot interaction. To achieve this, the study employs a

camera system consisting of two Kinect V2 cameras, with RGB and depth cameras.

The study utilizes a 3D CNN for human action recognition and 1D CNN for contact

recognition. The input for the system includes RGB and depth images captured by

the camera system. The dataset for the study consists of 33,050 images divided into

five classes of human action recognition and 1,114 samples divided into five classes

of contact recognition. The study achieved an accuracy of 99.72% for human action

recognition and 93% for contact recognition.

2.4.2 Localized Body Intentions

Hand Gesture

In this literature review, the topic of hand gestures is explored, encompassing both

hands and wrist movements. Various studies discussed in this section focus on rec-

ognizing different hand gestures and their intended actions. The recognition process

involves the use of several sensors and algorithm combinations, such as sEMG, MMG,

RGB, and depth sensors. The primary objective of recognizing hand gestures is to en-

able robots to interpret human actions accurately or follow commands during collab-

oration, thereby enhancing the efficiency of human-robot interaction (HRI) scenarios.

There are a total of 11 articles that falls in the category, a summary of citations can
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be found in Table 2.3.

Chen et al. [6] proposed a design that utilizes a compact deep neural network

called EMGNet for gesture recognition using sEMG data collected by Myo armband.

The network has four convolutional layers and a max pooling layer, without a full

connection layer as final output. EMGNet has reduced the parameters to 34,311,

which is significantly lower than other models, such as CNN LSTM, LCNN, and

ConvNet. Moreover, the accuracy of EMGNet is also higher, with 98.81% on the

Myo dataset and 69.62% on the NinaPro DB5 dataset. However, the NinaPro DB5

dataset suffers from low accuracy due to a relatively small amount of data with a large

number of gesture categories and similar gestures representing different categories.

The Myo dataset has 19 subjects performing 7 gestures, with 2280 samples for each

gesture by each person, while the NinaPro DB5 dataset has 10 subjects performing

12 gestures, with 1140 samples for each gesture by each person.

In another study, Chiu et al. [8] proposed a design for recognizing human intention

to open automatic doors by detecting and interpreting hand gestures. The proposed

system aims to address privacy concerns and reduce the spread of infection during

pandemics by enabling non-contact intention recognition. The authors utilized both

thermal and camera sensors to collect data, but only the thermal data was used for

actual recognition. The data consists of 6,000 images of RGB and thermal data that

were masked into 64x48 pixels for ”open” and ”close” classes. The masked images

were then fed into a Mask R-CNN, implemented with the Detectron2 library, to

extract human masking. A U-Net structure was subsequently employed to identify

the intention of the detected human.

Cote-Allard et al. [11] presented a novel 3-D printed armband called the 3DC
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armband for sEMG hand gesture recognition. This armband features a custom SoC

that can record 10 sEMG channels in parallel, a 9-axis IMU, a wireless transceiver, a

MCU for interfacing the components, and a power management unit (PMU) for low-

power consumption. The system is powered by a 100-mAh LiPo battery and employs

a Molex connector for connecting with the armband and programming the MCU.

For comparative experiment, the performance of the 3DC armband was compared to

the widely used Myo armband as an sEMG measurement sensor. The Myo and 3DC

armbands were worn simultaneously on the dominant arm of participants, and a total

of 8 cycles of 11 hand gestures were collected for testing and training. The ConvNet

architecture was then used to classify each gesture. Results showed an accuracy of

89.47% for the 3DC armband and 86.41% for the Myo armband.

Ding et al. [12] proposes a dual-channel VGG-16 CNN for gesture recognition us-

ing CCD RGB-IR and depth-grayscale images. The authors collected 30,000 CCD

RGB-IR and 30,000 depth-grayscale images using a Kinect depth camera, with 10 ac-

tions to recognize in total. They fused the images using three different wavelet fusion

techniques (max-min, min-max, and mean-mean), resulting in 30,000 of each fused

image. The dataset was split into 15,000 for training and 15,000 for testing. The re-

sults showed that the fusion of the min-max type had the highest accuracy of 83.88%,

while CCD RGB-IR only had an accuracy of 75.33% and depth-grayscale only had an

accuracy of 72.94%. The mean-mean type fusion had an accuracy of 80.95%, which

was also relatively high. Overall, the proposed method achieved high accuracy in

gesture recognition by combining CCD RGB-IR and depth-grayscale images through

wavelet fusion.

In Feleke et al. [16], a recurrent fuzzy neural network (RFNN) is proposed to map
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sEMG signals to 3D hand positions without considering joint movements. The aim

is to predict human motor intention for robotic applications. The study analyzed

the effects of slow and fast hand movements on the accuracy of the RFNN model.

Two complex tasks were performed, one involving picking up a bottle from the table

and pouring it into a cup, and the other a manipulation task with multiple obstacles,

resembling intelligent manufacturing. Each task was performed at both slow and fast

speeds, with 9 trials for each scenario, making a total of 36 trials. The accuracy for

slow tasks are 83.02%, 81.29% and for fast tasks 85.29%, 82.38%, both in the order

of task 1 and task 2. The results showed that RFNN could predict hand positions

with high accuracy, regardless of the speed of motion. This approach could be useful

for developing human-robot interaction systems. In Young et al. [58], a simplified

pipeline system for hand gesture recognition is proposed for prosthetic hand users.

The system utilizes a Myo armband as the sEMG sensor and a random forest (RF)

algorithm for classification. The system was tested on a dataset consisting of five

hand gestures: wave in, wave out, spread fingers, fist, and pinch, from the Myo

dataset. The results show that the proposed system achieved an accuracy of 94.80%,

indicating high performance.

In this study by Gardner et al. [18], a low-cost multi-modal sensor suite is proposed

for shared autonomy grasping, which includes a custom mechanomyography (MMG)

sensor, an IMU, and a camera. The system is used to estimate muscle activation,

perform object recognition, and enhance intention prediction based on grasping tra-

jectory. The proposed KNN grasp classifier achieved high accuracy for bottle (100%),

box (88.88%), and lid (82.46%) grasping tasks. The study aims to overcome limita-

tions of commercially available systems, which often employ indirect mode-switching
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or limited sequential control strategies. The proposed system allows for simultane-

ous activation of multiple degrees of freedom (DoF) during grasping. Three different

grasp patterns were tested for a box and two different grasp patterns were tested for

a bottle and a lid. Each object was tested at 18 different locations, with a 3-second

time window provided for the user to reach and grasp the object and 2.5 seconds to

return to a resting position. The results demonstrate the feasibility and potential for

shared autonomy grasping using the proposed multi-modal sensor suite.

Tsitos et al. [51] used a single RGB-D camera to observe human behavior and

predict intentions in real-time for robotic actions using logistic regression (LR) algo-

rithm. The aim was to evaluate the feasibility of the proposed approach. The results

showed 100% accuracy for both touching and distant objects when compared to hu-

man performance in all scenarios. The input was an image, and the dataset consisted

of two subjects who performed grasping movements towards two identical objects

in two different scenarios. Each participant completed 50 movements towards each

object (left or right) for each scenario, making a total of 400 movements. An 85% to

15% split was used for training and testing. Further studies are needed to evaluate

the proposed approach with a larger sample size and a wider range of scenarios to

determine its generalizability and practicality.

From Chen et al. [7], a CNN-based algorithm was proposed for stiffness estimation

and intention detection using sEMG data collected from the Myo armband. The

algorithm consisted of six 2D convolutional layers (Conv2D), a 2D max-pooling layer

(MaxPool2D), and three 2D Global Average Pooling layers (GAP2D). The output of

the last GAP2D layer was concatenated with the output of the previous layer, and

the process was repeated three times. The accuracy of the algorithm was 96% for
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each type of wrist configurations in several trials.

The ability to identify hand movement intention is prominent for robots on col-

laborated assembly line in HRI scenario. Zhang et al. [59] proposed a method to

predict human hand motion during an assembly task to improve collaboration flow

and efficiency. The design utilizes an RGB camera mounted over the robot, facing

downwards at the working area on the table. The study proposed a state-enhanced

ConvLSTM network that combines the flexibility and effectiveness of regular Con-

vLSTM with improved accuracy [37]. The experiment involved six sub-tasks, each

requiring the installation of one part of a seat. Using an extended Kalman filter (EKF)

to track and a separate CNN to recognize the human intended part, together with

the ConvLSTM to predict intention, the robot arm can assist the human in assembly

with only image data. After training, the recognition accuracy was higher than 99%.

Comparing this method with using speech recognition to detect and deliver intended

parts, the prediction method saved 36.43 seconds in completing all sub-tasks. This

approach reduces idle time during the process and improves the efficiency and quality

of collaboration since longer idle time reflects worse collaboration between human

and robot.

Owoyemi and Hashimoto [43] developed an approach to identify intention by uti-

lizing collections of point clouds. The study used a 3D sensor mapped into 3D occu-

pancy grids and input the processed data into a 3D CNN to recognize arm and hand

motion. The evaluation of the model was to recognize subject’s pick and place action

from four boxes. Using 119,102 datasets for training and 14,802 separate datasets

for offline testing, the model achieved 100% accuracy in identifying the intention of
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the subject. When compared to LSTM and 1D convolution model variants, the pro-

posed model showed better accuracy with significantly fewer parameters. However,

the positioning of the camera used to generate the point cloud can affect the accu-

racy of the final result. Additionally, generalization can be a problem since only one

subject was used in the training and testing datasets, which requires further data col-

lection with different participants and more complex motions to enhance the model’s

generalizability.

Upper-limb Movement

This literature review delves into the topic of upper-limb movement, which encom-

passes the entire arm and shoulder, excluding hand gestures and wrist configurations.

Various sensors, including sEMG and muscle shape change (MSC), as well as torque

and limb position detection by exoskeletons, are utilized to detect upper-limb move-

ments. The primary objective of recognizing upper-limb movement intentions is to

enable robots to anticipate the trajectory of human arms and provide assistance in

movement, thus reducing the workload for humans in specific muscle areas with effec-

tive designs . There are a total of 5 articles that falls in the category, a summary of

citations can be found in Table 2.3. In Liu et al. [35], the focus is on upper-limb reha-

bilitation using exoskeleton robots, and a study proposing a sensorless control scheme

with human intention estimation is discussed. The study aims to address the control

problem of upper-limb rehabilitation by utilizing a self-built exoskeleton robot called

NTUH-II, which detects shoulder horizontal abduction/adduction (HABD), shoul-

der flexion/extension (SF), and elbow flexion/extension (EF) joints. The proposed
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control scheme employs a deep neural network (DNN) for human intention estima-

tion, with the input being the upper limb torque. The accuracy of the scheme was

evaluated using root mean square error (RMSE) and normalized RMSE (NRMSE)

metrics. The dataset used for training and testing consisted of 28,000 data points

and was split into 85% to 15% for training and testing, respectively.

Lu et al. [38] focuses on a study that proposes a novel controller for a Franka Emika

robot. The purpose of the study is to enhance the efficiency of human-robot interac-

tion by improving trajectory prediction accuracy. The controller combines variable

admittance control and assistant control, and utilizes fuzzy Q-learning and LSTM al-

gorithms for optimization. The input for the controller is human limb dynamics, and

the dataset consists of 30 trajectories sampled at 1000 Hz. The trajectory prediction

accuracy after model training was less than 1mm with the actual trajectory. The

fuzzy Q-learning algorithm optimizes the damping value of the admittance controller

by minimizing the reward function. The LSTM algorithm is utilized to predict the

trajectory of the robot based on the human limb dynamics input.

The design and control of an active wrist orthosis that is mobile, powerful, and

lightweight is proposed in Kilic et al. [27] as a means to avoid the occurrence and/or

for the treatment of repetitive strain injuries. The study utilizes two sEMG sensors

at the extensor carpi radialis (ECR) and flexor capi radialis (FCR) muscles, and a

force sensor. The control system is based on a fuzzy logic controller. The study

aims to reduce the workload of the FCR muscle while maintaining the accuracy of

the orthosis. The study recorded the deviation from the intended trajectory for wrist

movement and found that it increased from 1.794 degrees to 2.934 degrees on average,

but reduced the workload by half for the FCR muscle. The dataset for the study
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consisted of a healthy person performing an isometric test to record maximum torque

and sEMG at the forearm. The orthosis generated three levels of torque according to

EMG signals detected at the FCR and ECR muscles.

Kopke et al. [28] focuses on investigating the effectiveness of pattern recognition

of sensor data to identify user intent for various combinations of 1- and 2-degree-of-

freedom shoulder tasks. The sensors used in this study include load cells and sEMG

electrodes. The dataset consists of different max joint torque lifting or depressing

conditions determined by isometric testing. The conditions include 0%, 25%, and

50% of maximum joint torque, with a minimum of three and a maximum of ten trials

of each condition completed. Two sets of LDA classifiers were developed for each

dataset type, including sEMG, raw load cell data, and a combined dataset, with one

set using 0% and ±25% lifting condition data and the other using 0% and ±50%.

The accuracy of the combined set was found to have a 9.7% error rate.

Huang et al. [22] presents the development of a novel sensor for the acquisition

of muscle shape change (MSC) signals in order to decode multiple classes of limb

movement intents. The sensor is custom made using nanogold and is both flexible

and stretchable. The study utilized a linear discriminant analysis (LDA) classifier

to classify seven classes of targeted upper-limb movements, including hand close,

hand open, wrist pronation, wrist supination, wrist extension, wrist flexion, and rest

state. The dataset was collected with a video prompt for each movement, followed

by a rest session, with each prompt lasting 5 seconds. The accuracy achieved was

96.06% ±1.84%, demonstrating the potential of using MSC signals for multi-class

limb movement intent recognition.
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Lower-limb Movement

This literature review explores the topic of lower-limb movement, which pertains to leg

motions. As walking intention is considered a part of the overall body movement, this

section places greater emphasis on detecting signals from the lower body to determine

related activities and partial movement intentions of the thigh, knee, and other such

areas. The primary objective of recognizing lower-limb movement intentions is to

enable robots to predict and assist humans in various movements, including walking,

standing, and stair ascending/descending, among others. There are a total of 7

articles that falls in the category, a summary of citations can be found in Table 2.3.

In Moon et al. [42], the development of a single leg knee joint assistance robot with

motion intention detection using a sliding variable resistor to measure length between

the knee center of rotation and the ankle (LBKA) was investigated. The aim of the

study was to enhance the control of exoskeletons by incorporating the detection of

motion intention. The algorithm used in the study was a neural network with 15

hidden layers and one input/output layer. The dataset used in the study consisted of

three motions: stairs ascending, stairs descending, and walking. 40 training datasets

were used for each motion, and 200 training datasets were used for exception state

training. The performance of the algorithm was evaluated based on the ROC curve.

The results showed that the algorithm had good performance, indicating that it is a

promising approach for motion intention detection in exoskeletons.

Su et al. [49] proposed a novel method for training an intent recognition system

that provides natural transitions between level walk, stair ascent/descent, and ramp

ascent/descent. The study utilizes three IMUs (thigh, shank, and ankle of the healthy

leg) and a CNN algorithm for motion intent recognition. The input to the system is
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lower limb IMU data, and the dataset consists of 13 classes of motion intent. The

able-bodied individuals performed ten trials each, with at least five steps, while the

amputees performed ten locomotion modes, including level ground, stairs, and ramp,

and any transition between them. The dataset comprises 1300 samples from able-

bodied individuals and 130 from amputees. The accuracy of the system is 94.15% for

able-bodied individuals and 89.23% for amputees.

In Wen et al. [54], a lower-limb motion intention recognition algorithm is proposed

that utilizes multimodal long-term and short-term spatiotemporal feature fusion for

accurate recognition. The input used for the algorithm is sEMG data, and the pro-

posed algorithm consists of a 3D CNN for extracting short term spatiotemporal fea-

tures in segments, Le Net and shape context to extract features of the target motion

trajectory, and an LSTM network for time-series modeling of the extracted features.

The purpose of the study is to develop a robust motion intention recognition system

that can accurately interpret human motion in real-time scenarios. The accuracy

achieved by the proposed algorithm is 90%, indicating that the fusion of long-term

and short-term spatiotemporal features has significantly improved the recognition

performance. However, the study does not provide any information regarding the

dataset used for testing the proposed algorithm.

The study of Massalin et al. [39] proposes a user-independent intent recognition

framework using depth sensing for five activities: standing, walking, running, stair

ascent, and stair descent. The objective of the study is to develop and validate

a framework that can accurately recognize user intention without relying on user-

specific data. The sensor framework consists of a depth camera on the shank and an

action camera for class labeling, with support vector machine (SVM) as the algorithm
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for classification. The dataset includes 5 activities with 20 trials per subject, resulting

in a total of 402403 depth images. The study concludes that the proposed framework

can accurately recognize user intention in real-time, which could have potential appli-

cations in various fields such as sports training, gait analysis, and rehabilitation. The

framework’s user-independent nature makes it particularly useful in scenarios where

user-specific data cannot be obtained, such as in public spaces or medical facilities.

The accuracy of the proposed framework is reported to be 94.5%, which is achieved

using 8 subjects’ data for training and 4 subjects for testing.

Wang et al. [53] proposes the use of a convolutional neural network (CNN) model

to reconstruct the motion pattern of a lower limb prosthesis. The input to the CNN

model is the data collected from the IMU sensor attached to the prosthesis. The

dataset used in this study includes four different motion patterns: heel strike, support,

swing, and tippy toes touchdown. The CNN model used in this study includes seven

layers, which are used to extract the features from the input data and classify the

motion pattern. The accuracy of the system is measured using a recognition rate,

which is found to be 98.2%. The use of a single sensor and the high accuracy of the

system make it a practical and convenient solution for motion pattern recognition in

lower limb prostheses.

Coker et al. [10] presents a method for predicting knee flexion angle using surface

electromyography (sEMG) signals from thigh muscles and knee joint angle data. The

purpose of this research is to develop a framework for predicting human intent for

control purposes in exoskeleton technology. Twelve sEMG electrodes and a 10-camera

Vicon motion capture system were used to collect data from ten subjects during

walking trials. A nonlinear input-output time series neural network trained using
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Bayesian regularization was used to predict the knee’s flexion angle at 50, 100, 150,

and 200 ms into the future. The neural network consisted of a single hidden layer

of ten nodes with a feedback delay set to two. The accuracy of the predictions was

evaluated using RMSE, which was found to be 0.68 for 50 ms, 2.04 for 100 ms, 3.38

for 150 ms, and 4.61 for 200 ms. The results showed good accuracy in predicting the

knee joint angle up to 100 ms in advance, which is promising for real-time control of

exoskeletons. However, the accuracy decreased for longer prediction horizons, which

may be due to the complexity of the underlying muscle activation patterns. The

dataset included ten subjects with no history of chronic pain in the spine or lower

extremities, which suggests that the results may not be generalizable to individuals

with injuries or pathologies.

Viekash et al. [52] presents a new approach for controlling and actuating a con-

tinuous passive motion (CPM) machine using a deep learning-based control strategy

that integrates CNNs. The sensor inputs include sEMG and thigh IMU data, which

are used to train three 1D-CNN models. Each 1D CNN algorithm is employed to

analyze the sensor data, and 40 trials are conducted for each motion (forward, back-

ward, and rest) during the training phase. The training and testing datasets are split

at an 80% to 20% ratio. The accuracy of the proposed approach is reported to be

97.40%, indicating good performance.

Facial Gesture

This literature review highlights the importance of facial gestures in controlling aug-

mented reality/virtual reality (AR/VR) systems. These gestures can potentially be

utilized to collaborate with robots and enhance the efficiency of such collaborations.
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In Cha et al. [5], an infrared (IR) camera and laser diode were used to cap-

ture skin deformation data as input for a spatial-temporal autoencoder (STAE) that

recognizes facial gestures for hands-free user interaction (UI) with an augmented re-

ality (AR) headset. The use of skin deformation as input for gesture recognition

is a novel approach to hands-free UI for AR headsets. The STAE consists of two

3D convolutional neural networks (CNN), two convolutional long-short-term memory

(ConvLSTM) networks, and one 3D CNN. The goal was to achieve high accuracy in

recognizing user intentions based on facial gestures. The results showed an accuracy

of 95.4% on 10 subjects during data collection. Future work could investigate the use

of this approach in real-world AR applications, as well as explore the potential for

combining facial gesture recognition with other types of input, such as voice or gaze,

to further enhance hands-free UI for AR.

2.4.3 Discussion

As robotics become more integrated into our working and living environments, en-

suring the safety and efficiency of human-robot interaction has become increasingly

important. Intention-based systems have emerged as a promising approach to achieve

this, as they allow robots to anticipate and respond to human movements and inten-

tions. This literature review provides an overview of the current methods used in

implementing intention-based systems, with a specific focus on the sensors and algo-

rithms used in the process. Various studies have proposed designs for different task

environments to react to different determined intentions. However, due to the current

limitations of sensors and algorithms, it is premature to assume that one combination

of sensors and algorithms is the best choice for all tasks. Therefore, further research is
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needed to determine the most effective sensor and algorithm combinations for specific

human-robot interaction scenarios.

When analyzing the data extracted from the literature and presented in Table

2, it becomes clear that the most popular sensor used in designs is the RGB cam-

era [24, 45, 32, 8, 12, 18, 51, 41, 59, 15]. This is likely due to the widespread use of

image recognition applications in recent years, as well as the relative affordability and

accessibility of RGB cameras in work environments. RGB cameras have a distinct

advantage in intention recognition due to their ability to capture detailed color infor-

mation. This allows AI systems to accurately perceive and understand human actions

in real-world scenarios, enhancing the robot’s ability to infer human intent. By cap-

turing rich visual data, RGB cameras enable machine learning models to interpret

nuanced human behaviors and gestures, improving the robot’s ability to anticipate

human actions and interact more naturally and efficiently. However, they also have

notable disadvantages. RGB cameras may struggle with recognizing intentions in

low light conditions or when the subject is at a distance. Additionally, they can be

affected by occlusion, where objects in the foreground block those in the background.

Lastly, there are significant privacy concerns associated with using RGB cameras for

intention recognition, as they can capture identifiable and sensitive visual data.

The second most commonly used sensors are IMUs and sEMG sensors. IMUs are

often found in exoskeleton designs and commercialized armbands, such as the Myo

armband [11, 18, 49, 53, 52, 46], while sEMG sensors are mainly used to measure

upper-limb movements with armbands [6, 7, 11, 58] and lower-limb movements with

sEMG electrodes [16, 10, 54, 52, 27, 28]. IMUs, which measure body acceleration

and angular rate, offer the advantage of being unobtrusive, portable, and relatively
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easy to use, making them ideal for real-time, dynamic motion tracking. However,

their accuracy may be affected by sensor drift over time, and they may not capture

subtle movements or muscular activities that do not result in noticeable motion. On

the other hand, sEMG sensors, which record muscle activation, offer high temporal

resolution and can detect subtle muscle contractions that might not result in visible

motion, potentially improving the detection of intended movements. They can provide

detailed information about the degree of muscle activation, which can be useful in

assessing user intent in tasks that require fine motor control. However, sEMG signals

can be sensitive to variations in sensor placement, skin condition, and muscle fatigue,

which can affect their reliability. Also, the setup of sEMG sensors can be more

obtrusive and uncomfortable for the user, which might limit their use in certain

scenarios.

In contrast, force sensors and depth cameras are less popular. Force sensors have

limitations regarding the area and tasks that require contact, which may account for

their relatively low usage in designs. Additionally, depth cameras are often used in

conjunction with RGB cameras rather than being employed as a standalone sensor

in designs. They may also struggle with distant subjects. Moreover, they can have

difficulties with transparent or reflective surfaces, and their depth accuracy decreases

as the distance from the camera increases.

When compared to other algorithms, those based on CNN have been used most

frequently in intention recognition research. This is likely due to the popularity of

RGB cameras, which capture visual input that can be processed by CNNs to identify

patterns or features indicative of specific motions or actions. They excel in feature

extraction from images, which makes them ideal for interpreting complex patterns and
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details in RGB images. The result can be a more accurate, real-time prediction of

intentions based on visual cues, gestures, and behaviors captured by the RGB camera

and analyzed by the CNN. Furthermore, CNNs are well-suited to handling complex

and high-dimensional datasets, which are often generated when multiple sensors are

used simultaneously in intention recognition.

The majority of studies are focused on motion intention-based system. There

appears to be an even spread in more specific directions such as walking intention,

pedestrian intention, and hand motion. The most common sensor and algorithm used

to determine motion intents are cameras and CNN. Since motion intention is about

whole body movement, sEMG and IMU are not as descriptive as camera sensor with

the same effort, which builds up to a lot of CNN usage.

Several studies also focus on recognizing hand gestures, which are often used to

issue commands to robots or signal collaboration intent. In these studies, sEMG and

RGB sensors are used in relatively equal numbers. This is because sEMG sensors,

when used on armbands, can accurately predict hand motion, while cameras can

capture detailed visual information about hand gestures. Additionally, there has been

an increasing usage of sEMG in upper-limb and lower-limb intention determination,

making it an ideal choice when only partial intention needs to be determined. This

occurs when only a small group of related muscles are used to complete an intended

action. While CNN-based algorithms remain the majority in intention recognition

research, various other algorithms and classifiers are also used, including RFNN, RF,

and KNN. This is because some designs employ sEMG sensors, which can classify

hand gestures without requiring complex data input. As a result, CNNs may not

always be necessary for these specific applications, leading researchers to explore
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alternative algorithms and classifiers.

While motion-based systems have been widely explored in intention recognition

research, there are other domains that have received less attention and present oppor-

tunities for further study. For example, interaction and facial gestures are relatively

unexplored areas that could benefit from more research.

Interaction can be studied in both social robot and industrial robot contexts,

although the literature review focused primarily on the latter, with the expanded def-

inition described in the introduction. One included study [41] proposed a design for

ensuring safety during interactions with robots using visual and tactile perception,

which initiated research on combining tactile cues with intention-based systems. In

addition, as collaboration between humans and robots is most efficient when commu-

nication is bidirectional, it is also important to explore methods for recognizing the

intentions of robots, as this will enable more effective collaboration.

Facial gesture can be explored further for integration with other intention recogni-

tion in working environment. For example, a robot could be programmed to recognize

specific facial expressions, such as frustration or confusion, and use this information

to adjust its actions accordingly. This could be used as an additional factor for robot

reaction, improving the robot’s ability to support human operators in various tasks.

Additionally, facial gesture recognition could be used in assistive robots, allowing

users to control the robot’s behavior using facial expressions and gestures, leading to

more intuitive communication between the user and the robot.

The impact of intention-based systems on trust in HRI scenario has not been

extensively studied. None of the articles related to sensor and algorithms included

in this review have considered the effect of trust on participants. While there is a
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lack of specific research on the effects of these systems on trust, general research

on robots and AI in healthcare domain can provide some insight. The studies con-

ducted by Choudhury et al. [9], Esmaeilzadeh et al. [14], Asan et al. [1] underscore

the multifaceted importance of trust in the implementation of AI within healthcare

scenarios, as it emerges as a pivotal factor influencing the acceptance and effective

use of these technologies, as well as Torrent-Sellens et al. [50], which highlights the

factors affecting trust in RAS.

Choudhury et al.’s study [9] offers a targeted perspective by examining clinicians’

trust in AI systems and how this influences their willingness to adopt such tech-

nologies. Notably, trust appears to serve as a mediator between perceived risk and

expectancy in the decision to use the AI tool. This study underscores the importance

of striking a balance between trust and over-reliance, suggesting that an informed

and rational level of trust leads to an optimal utilization of AI, whereas blind trust

can lead to overdependence and potential misuse.

Esmaeilzadeh et al. [14] broaden the perspective by focusing on patients’ percep-

tions and how they interact with trust. Their study identifies an array of factors -

from privacy concerns to communication barriers - that could influence patients’ trust

in AI and subsequently their intention to use AI in their healthcare. The study par-

ticularly emphasizes the importance of physician involvement in healthcare delivery

involving AI tools, suggesting a co-existence model where AI augments rather than

replaces human care providers.

Another study by Asan et al. [1] discussed a similar aspect. The study reflected

that trust varies between patients and clinicians. With the rise of patient-centered

care, understanding the role of AI in patient-clinician decision-making is essential.
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Concerning medical responsibility, clinicians could face accountability if AI recom-

mendations deviate from standard care, leading to negative outcomes. Thus, it’s

crucial to find a balance of trust between human judgment and AI recommendations,

considering the evolving nature of AI and individual human factors.

The study by Torrent-Sellens et al. [50] examines factors affecting trust in robot-

assisted surgery in Europe. Trust initially increases with more experience with robots

but declines as this experience grows, suggesting a nuanced relationship. Sociodemo-

graphic factors play a pivotal role; men, those aged 40-54, and higher-educated indi-

viduals show pronounced trust based on their experience. Access to detailed, accurate

information about procedures significantly impacts trust. The study calls for public

policy should address the fluctuating trust by funding research on regulatory, ethical,

and legal aspects and emphasizing clinical efficacy, as current design and model lacks

attention on the importance of trust during RAS.

While the studies mentioned above shed some light on trust of human with

robots and AI in healthcare, they do not specifically address the potential impact

of intention-based systems in human-robot interaction scenarios. Intention-based

systems are designed to be more ”intelligent” and responsive to human intention and

behavior, which may lead to different characteristics and perceptions of the robot by

the human team members. As robots become more integrated into various aspects

of human society, it is crucial to examine the effect of intention-based systems on

trust and cooperation in different settings, such as in industrial or medical contexts.

Further research on intention-based systems can provide insight into how to design

and implement such systems to gain adequate trust and cooperation between humans

and robots in various contexts.
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2.5 Literature Review Summary

This literature review follows the PRISMA guidelines and examines the sensors and

algorithms used in intention-based systems, as well as their potential impact on trust

and team dynamics. The studies included in this review propose various designs

for intention-based systems based on the given task environment, with the choice of

sensors and algorithms being dependent on the task at hand. RGB cameras and CNN-

based algorithms are the most commonly used sensors and algorithms, respectively.

In contrast, sEMG measurements in electrodes and armbands are more commonly

used for determining partial body intention, such as for upper-limb and lower-limb.

Despite the advancements in intention-based systems, there are still several areas

where further research is needed. For instance, interaction intention can be further ex-

plored to improve bidirectional communication and increase the efficiency of collabo-

ration. Facial gesture recognition could be integrated with other intention recognition

methods to create a more intuitive interaction environment. Additionally, the effect

of intention-based systems on trust and team dynamics in HRI scenarios has not been

well studied. Finally, there is a need to investigate the impact of anthropomorphism

on the perception of robots in moral interactions.

This literature review provides a foundation for future research and development

of intention-based systems, as well as analysis of their social impact factors. By

exploring the gaps in the existing literature, future research can help improve the

effectiveness and safety of human-robot interactions in various industries.
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Chapter 3

Domain Data

3.1 Overview of JIGSAWS Dataset

The JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) is a pioneering

dataset designed to facilitate research in the domain of computer-assisted surgical

training and evaluation [17]. Collected through a collaboration between Johns Hop-

kins University and Intuitive Surgical, Inc., JIGSAWS provides a comprehensive col-

lection of synchronized video and kinematic data from robotic surgical systems during

various surgical tasks. This dataset is integral to this study, providing the foundation

for analyzing and modeling surgical gestures.

The JIGSAWS dataset comprises recordings from eight surgeons performing three

fundamental surgical tasks: suturing, knot-tying, and needle-passing. Each task in-

volves complex hand-eye coordination and precision, which are critical components

of surgical training. The kinematic data includes positional, orientational, and grasp

information of the surgical instruments manipulated by the da Vinci Surgical System.

The suturing task, in particular, is the focus of this study, as it involves a series of
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predefined gestures that are essential for evaluating surgical skills.

3.2 Detailed Description of JIGSAWS Data

The JIGSAWS dataset is highly relevant for surgical skill analysis and the develop-

ment of intention recognition models due to its detailed and structured nature. The

data collection involved eight right-handed subjects with varying levels of robotic sur-

gical experience, ranging from those with over 100 hours of experience to those with

less than 10 hours. Each subject performed each task five times, resulting in a set

of trials, each uniquely identified by a specific format. In total, the dataset includes

39 trials of suturing, 36 trials of knot-tying, and 28 trials of needle-passing, although

some trials were unusable due to corrupted data recordings.

The suturing task requires the subject to pick up a needle and proceed to an

incision designated as a vertical line on the bench-top model. The needle is passed

through the “tissue,” entering at a marked dot on one side of the incision and exiting

at the corresponding dot on the other side. After the first needle pass, the subject

extracts the needle, passes it to the right hand, and repeats this process for three more

passes. This task is fundamental for surgical training as it involves precise hand-eye

coordination and dexterity.

The dataset contains three main components: kinematic data, video data, and

manual annotations. The kinematic data is captured using the API of the da Vinci

Surgical System at a frequency of 30Hz and includes motion data for the left and right

Master Tool Manipulators (MTMs) and the first and second Patient Side Manipu-

lators (PSMs). This data is described by 19 kinematic variables per manipulator,

50

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – Y. Zhang; McMaster University – Electrical and Computer Engineering

resulting in a total of 76 variables for the four manipulators. These variables in-

clude Cartesian positions, rotation matrices, linear velocities, angular velocities, and

gripper angles. The kinematic data is synchronized with the video data, ensuring a

consistent temporal alignment.

The video data consists of stereo video recordings from both endoscopic cameras

of the da Vinci Surgical System, also captured at 30Hz with a resolution of 640x480

pixels. These video frames are synchronized with the kinematic data, providing a vi-

sual context for the recorded movements. The video files are encoded in the FOURCC

format with the DX50 codec and are named based on the left and right endoscopic

cameras. However, the dataset does not include calibration parameters for the cam-

eras.

Manual annotations in the dataset provide crucial information for supervised

learning. Each annotation includes the name of the gesture and the start and end

frames in the video. Surgical gestures are defined by watching the video in consulta-

tion with a surgeon after data collection. A list of surgical gestures is shown in Table

3.1 All frames for each trial are assigned a gesture label, except for the final frames

when the task is finished. Additionally, surgical technical skills are rated by a sur-

geon using a modified Objective Structured Assessments of Technical Skills (OS-ATS)

scale, where each of the six terms is scored on a Likert scale from 1 to 5.

The JIGSAWS dataset inherently supports a Leave-One-User-Out (LOUO) eval-

uation scheme, where the model is trained on data from all but one surgeon and

then tested on the excluded surgeon’s data. This evaluation method is critical for

assessing the generalizability and robustness of the machine learning models across

different users, which is essential for real-world applications in surgical training and
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Gesture Index Gesture Description
G1 Reaching for needle with right hand
G2 Positioning needle
G3 Pushing needle through tissue
G4 Transferring needle from left to right
G5 Moving to center with needle in grip
G6 Pulling suture with left hand
G7 Pulling suture with right hand
G8 Orienting needle
G9 Using right hand to help tighten suture
G10 Loosening more suture
G11 Dropping suture at end and moving to end points
G12 Reaching for needle with left hand
G13 Making C loop around right hand
G14 Reaching for suture with right hand
G15 Pulling suture with both hands

Table 3.1: Gesture list from the JIGSAWS dataset.

skill assessment. The dataset also includes two cross-validation schemes to account for

its structure: Leave-One-Supertrial-Out (LOSO) and Leave-One-User-Out (LOUO).

LOSO involves creating five folds, each comprising data from one of the five super-

trials, while LOUO creates eight folds, each consisting of data from one of the eight

subjects.

3.3 Data Preprocessing

The preprocessing of kinematic data from the JIGSAWS dataset is a critical step in

preparing the data for training a bidirectional LSTM model. This process involves

several stages to ensure that the data is in a suitable format for effective learning.
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3.3.1 Data Cleaning and Segmentation

Kinematic data from the suturing task is first extracted from the dataset, focusing on

essential features such as positional coordinates, orientation angles, and grip angles

of the surgical instruments. This data is then segmented according to the specific

suturing gestures being performed, based on timestamps and gesture labels provided

in the dataset’s annotations. Such segmentation is vital for associating each data

snippet with the corresponding surgical gesture, facilitating gesture recognition.

3.3.2 Data Trimming and Label Generation

Following extraction, the kinematic data undergoes trimming to align with the start

and end times of each suturing gesture, as indicated in the dataset’s transcription

files. This step ensures that only the relevant portions of the kinematic data are

considered, removing any extraneous information that could potentially hinder the

model’s learning process. Concurrently, gesture labels are generated and matched

with the trimmed kinematic data segments. These labels are crucial for supervised

learning, providing the model with the necessary ground truth for each data snippet.

3.3.3 Snippet Generation and Normalization

To accommodate the LSTM model’s requirements, the kinematic data is divided into

smaller, fixed-length snippets. This division helps in maintaining uniformity across

all data samples, ensuring that each input to the model has the same shape and size.

Given the temporal nature of the LSTM model, which relies on sequences of data, this

step is crucial for capturing the dynamic aspects of surgical gestures. Furthermore,

the data is normalized to have a consistent scale, enhancing the model’s ability to
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learn from the kinematic features.

3.3.4 Training and Validation Split

The final step in the preprocessing pipeline involves splitting the processed kinematic

data and corresponding labels into training and validation sets. This split is performed

randomly, ensuring a diverse mix of data samples in both sets. Such a division is

essential for evaluating the model’s performance and its ability to generalize beyond

the data it was trained on.

The preprocessing steps described above transform the raw kinematic data from

the JIGSAWS dataset into a format that is suitable for training and validating the

bidirectional LSTM model. By cleaning, segmenting, and normalizing the data, and

by generating appropriate labels for supervised learning, the preprocessing pipeline

lays the foundation for developing a robust model capable of recognizing surgical

gestures with high accuracy.
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Chapter 4

Machine Learning Model

4.1 Prior Knowledge

The domain of surgical gesture recognition, particularly through the analysis of kine-

matic data from robotic surgery, has garnered significant attention in recent years.

This interest is driven by the potential to enhance surgical training, improve the

automation of surgical procedures, and offer novel insights into the surgical skill as-

sessment.

4.1.1 Neural Networks for Recognizing Surgical Activities

DiPietro et al. [13] applied recurrent neural networks (RNNs), notably LSTM net-

works, to recognize surgical activities from robot kinematics. This approach was

innovative, diverging from the traditional use of Hidden Markov Models (HMMs)

and Conditional Random Fields (CRFs), which were limited to recognizing short,

low-level activities. DiPietro et al. extended the application to both gestures and
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higher-level maneuvers, showcasing RNNs’ capability to capture complex temporal

dependencies inherent in surgical tasks. Their work established a new benchmark for

gesture recognition accuracy and maneuver recognition, emphasizing the effectiveness

of RNNs in processing sequential data for surgical applications.

Menegozzo et al. [40] introduced Time Delay Neural Networks (TDNN) applied

to kinematic data for surgical gesture recognition, proposing a method that incorpo-

rates temporal modeling. By validating their approach on the JIGSAWS dataset and

a novel dataset from virtual training simulators, they highlighted TDNN’s general-

ization capability and computational efficiency, marking an important step towards

real-time applications in surgical systems.

4.1.2 Bidirectional LSTM

The exploration of bidirectional LSTM (BiLSTM) models, capable of processing data

in both forward and backward directions, offers a promising avenue for capturing

the full spectrum of temporal dynamics in surgical gestures. This approach aims

to leverage the strengths of LSTM models in recognizing long-term dependencies

while addressing the limitations of unidirectional models in capturing patterns and

dependencies that emerge across the entire sequence of surgical activities.
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4.1.3 Evolutionary Computation for Hyperparameter Opti-

mization

The optimization of machine learning models, including BiLSTMs, remains a critical

challenge. The application of evolutionary computation techniques for hyperparam-

eter tuning presents an innovative solution. By systematically exploring the hyper-

parameter space, this approach seeks to identify optimal configurations that enhance

model performance, addressing a gap in the existing literature on surgical gesture

recognition.

The collective insights from these studies underline the progress and challenges in

the field of surgical gesture recognition. DiPietro et al. and Menegozzo et al. have

laid the groundwork by demonstrating the potential of LSTM and TDNN models

in this domain. The exploration of BiLSTM models and evolutionary computation

techniques for hyperparameter tuning represents the next frontier in advancing the

accuracy and efficiency of these models. This study contributes to this evolving

landscape by harnessing the capabilities of BiLSTMs, augmented with advanced hy-

perparameter optimization, to offer new perspectives on analyzing complex kinematic

data for surgical gesture recognition.

4.2 Model

4.2.1 Long Short-term Memory (LSTM) Neural Network

Recurrent Neural Networks (RNNs) are a class of neural networks that are particularly

effective for sequential data because they include loops that allow information to

persist. Unlike feedforward neural networks, which process inputs independently,
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RNNs take the sequence’s previous states into account, making them suitable for

tasks like time-series prediction and natural language processing. However, traditional

RNNs suffer from the vanishing gradient problem, which limits their ability to learn

long-term dependencies.

LSTMs, a specialized form of Recurrent Neural Networks (RNNs), are designed

to address the vanishing gradient problem inherent in traditional RNNs, enabling

the model to learn and retain long-term dependencies in sequential data more effec-

tively. This capability is critical in surgical gesture recognition where the context and

sequence of actions play a significant role in accurate classification.

LSTMs overcome these limitations through the use of a more complex architecture

that includes memory cells and gates. The key to LSTM’s success is its cell state and

the use of gates—forget gate ft, input gate it, and output gate ot—which regulate

the flow of information. These gates decide which information is important to keep

or discard as the sequence progresses, making LSTMs particularly adept at modeling

time-series data like kinematic sequences in surgery.

ft = σ(Wf · [ht−1, xt] + bf ) (4.2.1)

it = σ(Wi · [ht−1, xt] + bi) (4.2.2)

C̃t = tanh(WC · [ht−1, xt] + bC) (4.2.3)

Ct = ft ∗ Ct−1 + it ∗ C̃t (4.2.4)

ot = σ(Wo · [ht−1, xt] + bo) (4.2.5)

ht = ot ∗ tanh(Ct) (4.2.6)
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In these equations, ft is the forget gate’s activation vector, deciding what informa-

tion to discard from the cell state; it is the input gate’s activation vector, determining

which new information is added to the cell state; C̃t is the candidate vector for addi-

tion to the cell state; Ct is the new cell state, updated by forgetting old information

and adding new information; ot is the output gate’s activation vector, deciding what

part of the cell state makes it to the output; ht is the output vector of the LSTM

unit, based on the cell state and the output gate’s activation; σ denotes the sigmoid

function; and tanh is the hyperbolic tangent function, both of which are activation

functions that help regulate the flow of information [21, 20].

4.2.2 Bidirectional LSTM

BiLSTMs enhance the LSTM architecture by processing data in both forward and

backward directions, thus capturing context from both past and future data points as

shown in Figure 4.1. This bidirectional processing is particularly beneficial in surgical

gesture recognition, where the context before and after a specific gesture can provide

valuable cues for accurate classification. The forward pass
−→
ht and the backward pass

←−
ht are computed independently and their outputs are concatenated to form the final

output ht. This allows BiLSTMs to have a more comprehensive understanding of

the sequence, offering an advantage over traditional LSTMs which only consider past

context. BiLSTMs are particularly adept at recognizing patterns and dependencies

that are not immediately apparent, enhancing the model’s predictive capabilities.
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−→
ht =

−−−−→
LSTM(xt) (4.2.7)

←−
ht =

←−−−−
LSTM(xt) (4.2.8)

ht = [
−→
ht ;
←−
ht ] (4.2.9)

Here,
−→
ht and

←−
ht represent the hidden states from forward and backward LSTMs

at time t, respectively, and ht is the concatenated hidden state combining information

from both directions, providing a comprehensive view of the sequence from both past

and future perspectives.

Figure 4.1: Conceptual diagram of a BiLSTM

4.2.3 Hyperparameter Tuning with Evolutionary Computa-

tion Technique

Evolutionary computation techniques, inspired by natural selection, offer a robust

alternative to traditional hyperparameter tuning methods such as grid search and

random search. These traditional methods, while straightforward, can be inefficient
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and may not effectively explore the hyperparameter space due to their exhaustive

or random nature, which can lead to excessive computational costs and suboptimal

performance [3]. Evolutionary algorithms, on the other hand, use mechanisms like

mutation, crossover, and selection to iteratively evolve the hyperparameters towards

optimal configurations. This process begins with an initial population of hyperpa-

rameter sets as demonstrated example in Figure 4.2, which is then evaluated based

on model performance. The best-performing sets are selected and used to generate

new sets through crossover and mutation. This cycle repeats until the algorithm con-

verges on a set of hyperparameters that yield the best model performance, typically

determined by a convergence criterion such as a predefined number of generations

or a threshold for performance improvement. This approach is particularly advanta-

geous in complex models like LSTMs and BiLSTMs, where the hyperparameter space

is vast and the relationships between hyperparameters and model performance are

nonlinear. Evolutionary computation not only enhances the efficiency of the tuning

process but also increases the likelihood of discovering optimal configurations that

might be missed by more conventional tuning methods [57].
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Figure 4.2: An example of initial population
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Chapter 5

Methodology

5.1 Experimental Setup

The methodology for this study involves a systematic approach to validate the ef-

fectiveness of the bidirectional LSTM (BiLSTM) model optimized with evolution-

ary computation techniques for recognizing surgical gestures. This chapter details

the experimental setup, including the data preprocessing, model training, evaluation

metrics, and validation methods. Figure 5.1 shows the overall process of the setup.

Figure 5.1: Experimental setup flow diagram
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5.2 Data Preprocessing

The first step in the methodology is the preprocessing of kinematic data from the

JIGSAWS dataset. This involves several stages to ensure that the data is in a suit-

able format for training the BiLSTM model. The kinematic data from the suturing

task was extracted, focusing on essential features such as positional coordinates, ori-

entation angles, and grip angles of the surgical instruments. These features were

then segmented according to the specific suturing gestures being performed, based on

timestamps and gesture labels provided in the dataset’s annotations. This segmenta-

tion is vital for associating each data snippet with the corresponding surgical gesture,

facilitating gesture recognition.

Following extraction, the kinematic data underwent trimming to align with the

start and end times of each suturing gesture, as indicated in the dataset’s transcription

files. This step ensured that only the relevant portions of the kinematic data were

considered, removing any extraneous information that could potentially hinder the

model’s learning process. Concurrently, gesture labels were generated and matched

with the trimmed kinematic data segments, providing the necessary ground truth for

supervised learning.
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Figure 5.2: Data preprocessing flow diagram

To accommodate the LSTM model’s requirements, the kinematic data was divided

into smaller, fixed-length snippets. This division helped in maintaining uniformity

across all data samples, ensuring that each input to the model had the same shape

and size. Given the temporal nature of the LSTM model, which relies on sequences of

data, this step was crucial for capturing the dynamic aspects of surgical gestures. Fur-

thermore, the data was normalized to have a consistent scale, enhancing the model’s

ability to learn from the kinematic features. Finally, the processed kinematic data

and corresponding labels were split into training and validation sets. This split was
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performed randomly, ensuring a diverse mix of data samples in both sets, which was

essential for evaluating the model’s performance and its ability to generalize beyond

the data it was trained on.

5.3 Model Training

The BiLSTM model architecture, optimized through evolutionary computation, con-

sisted of two bidirectional LSTM layers with 256 units each, followed by a dense

layer. This architecture was selected based on its ability to capture the temporal

dependencies in the kinematic data while maintaining computational efficiency. The

model was trained using the Adam optimizer, with a learning rate and batch size de-

termined through hyperparameter tuning. Training involved multiple epochs, during

which the model learned to recognize and classify the predefined surgical gestures.

The training process was monitored by observing the training and validation loss

curves to ensure effective learning and to prevent overfitting. The evolutionary com-

putation technique was employed to optimize hyperparameters such as the number

of LSTM units, learning rate, batch size, and dropout rate. This approach system-

atically explored the hyperparameter space, identifying configurations that balanced

model complexity, training time, and generalization performance.
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Figure 5.3: Model training flow diagram

5.4 Validation Method

The Leave-One-User-Out (LOUO) cross-validation scheme was employed to evaluate

the robustness and generalizability of the BiLSTM model [17]. In this scheme, the

model was trained on data from all but one surgeon and tested on the excluded

surgeon’s data. This process was repeated for each surgeon, ensuring that the model’s

performance was assessed across all users by averaging the accuracy. This evaluation

method is critical for assessing the generalizability and robustness of the machine

learning models across different users, which is essential for real-world applications

in surgical training and skill assessment. The LOUO validation method provided

insights into the model’s performance under different conditions, ensuring that the

developed model could generalize well to new, unseen data, making it suitable for

practical applications in surgical gesture recognition.
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Figure 5.4: Validation methods flow diagram

5.5 Evaluation Metrics

The model’s performance was evaluated using several metrics, including the com-

parison of train/validation curves, accuracy comparison, confusion matrix analysis,

prediction time, and model size. These metrics provided a comprehensive assessment

of the model’s ability to recognize and classify surgical gestures accurately. The train-

ing and validation loss curves were compared to assess the model’s learning progress

and detect overfitting. Smooth convergence of these curves indicated effective learn-

ing. Accuracy was measured to determine the overall correctness of the model by

comparing the number of correct predictions to the total number of predictions. The

confusion matrix was used to visualize the model’s performance in classifying each
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gesture, highlighting the true positives, false positives, false negatives, and true nega-

tives. Prediction time was tracked to evaluate the model’s efficiency, which is crucial

for real-time applications. The size of the trained model was measured to ensure it

is suitable for deployment in resource-constrained environments. For the BiLSTM

model optimized with evolutionary computation, the evolution of hyperparameters

was also tracked to understand how the optimal configuration was reached. This

tracking provided insights into the effectiveness of the evolutionary algorithm in hy-

perparameter tuning.

Figure 5.5: Evaluation metrics flow diagram
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Chapter 6

Results

This chapter presents the findings from the experimental evaluation of the BiL-

STM model optimized using evolutionary computation techniques for surgical gesture

recognition. The results include an analysis of gesture counts, model performance, hy-

perparameter evolution, and model evaluation through confusion matrices and other

metrics. Each section provides a detailed breakdown of these aspects to highlight the

effectiveness and efficiency of the proposed approach.

6.1 Gesture Count Analysis

As part of our study, we analyzed the gesture counts within the dataset for a leave-

one-user-out (LOUO) evaluation, differentiating between the training and testing sets

by a 80% to 20% train-test split.
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6.1.1 Training Set Gesture Counts

Figure 6.1 illustrates the gesture counts in the training set for the leave-one-user-

out evaluation. In the training set, Gesture 3 has the highest count, with over 2000

instances. This indicates it is the most frequently performed gesture among the

training data, due to the nature of suturing task. Gestures 2, 6, and 11 also have

high counts, with each having over 1000 instances. This suggests that these gestures

are also commonly performed during the training tasks. In contrast, Gestures 1, 9,

and 10 have relatively low counts, with Gesture 1 having the least occurrences, under

250 instances. This uneven distribution could pose a challenge for the model to learn

less frequent gestures effectively.

Figure 6.1: Gesture counts in the training set for leave-one-user-out evaluation.
Gesture 3 has the highest count with over 2000 instances, while Gesture 1 has the

least occurrences.
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6.1.2 Testing Set Gesture Counts

Figure 6.2 shows the gesture counts in the testing set for the leave-one-user-out eval-

uation. In the testing set, similar to the training set, Gesture 3 is the most frequent,

with around 1250 instances. Gestures 2, 6, and 11 again show higher counts compared

to other gestures, although their counts are significantly lower than in the training

set. The counts for Gestures 1, 9, and 10 remain low, with Gesture 1 again being the

least frequent.

Figure 6.2: Gesture counts in the testing set for leave-one-user-out evaluation.
Gesture 3 is the most frequent with around 1250 instances, while Gesture 1 remains

the least frequent.
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6.2 Model Performance Analysis

In this section, we present the performance of the BiLSTM model optimized with

evolutionary computation compared to the standard LSTM model. We focus on

training and validation loss trends to evaluate the models’ learning and generalization

capabilities.

6.2.1 Training and Validation Loss

Figure 6.3 shows the training and validation loss for the BiLSTM model with hyper-

parameters optimized using evolutionary computing. We observe that the training

loss decreases steadily, converging smoothly as the epochs progress. The validation

loss follows a similar trend, initially decreasing and then stabilizing around the same

level as the training loss. This indicates that the model is effectively learning from

the training data without overfitting, thanks to the well-tuned hyperparameters. The

close alignment between the training and validation loss curves suggests that the

model generalizes well to unseen data.
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Figure 6.3: Training vs. Validation Loss for BiLSTM with Evolutionary Computing
Hyperparameter Tuning. The model shows smooth convergence with closely aligned

training and validation loss curves, indicating good generalization.

For contrast, Figure 6.4 shows the training and validation loss for the standard

LSTM model without evolutionary computing hyperparameter tuning. In this case,

while the training loss decreases and stabilizes, the validation loss exhibits more fluc-

tuation and does not converge as smoothly as the BiLSTM model. This suggests

potential overfitting or inadequate learning from the training data, likely due to sub-

optimal hyperparameter settings. The divergence between the training and validation

loss indicates that the model may not generalize as effectively to new data.
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Figure 6.4: Training vs. Validation Loss for LSTM without Evolutionary
Computing Hyperparameter Tuning. The validation loss exhibits fluctuations and

does not converge smoothly, indicating potential overfitting and suboptimal
hyperparameter settings.

6.2.2 Hyperparameter Evolution

By efficiently explore the hyperparameter space, the evolutionary algorithm was able

to identify configurations that balanced model complexity, training time, and gener-

alization performance. The tuned BiLSTM model with optimized hyperparameters

showed smoother and more stable convergence in both training and validation loss,

as discussed in the previous section. In Figure 6.5, the left subplot illustrates the
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evolution of the number of LSTM units across generations. Initially, the number of

units starts at a higher value but quickly stabilizes to a lower, optimal range as the

evolutionary algorithm identifies the configurations that lead to better model perfor-

mance. This reduction and stabilization indicate that a lower number of LSTM units

is sufficient for capturing the temporal dependencies in the dataset, balancing model

complexity and training efficiency.

Figure 6.5: Evolution of LSTM Units and Dropout Rate using Evolutionary
Computation. The left plot shows the stabilization of LSTM units over generations,
indicating an optimal lower range for capturing temporal dependencies. The right
plot demonstrates the fluctuation and convergence of the dropout rate, optimizing

for model generalization and preventing overfitting.

The right subplot shows the evolution of the dropout rate over the generations.

The dropout rate begins with higher values and fluctuates before converging to a

more stable range. The initial variations suggest that the evolutionary algorithm is

exploring diverse dropout rates to identify the optimal setting that prevents overfitting

while maintaining model performance. The final stabilization of the dropout rate
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indicates that the evolutionary algorithm has effectively fine-tuned this parameter to

enhance the model’s generalization capabilities.

Figure 6.6 shows two lines: the best fitness (dashed line) and the average fitness

(solid line) of the population over 50 generations. The best fitness line demonstrates

that the evolutionary algorithm consistently identifies better-performing hyperparam-

eter configurations as the generations progress, although with some fluctuations due

to the stochastic nature of the process. The average fitness line shows a general

upward trend, indicating overall improvement in the population’s performance.

Figure 6.6: Evolution of Population Fitness Over Generations. The best fitness
(dashed line) shows consistent identification of better-performing hyperparameter

configurations, while the average fitness (solid line) indicates overall improvement in
the population’s performance.

The gap between the best fitness and the average fitness lines suggests that while

the algorithm finds superior solutions, there is still variability in the population. This
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variability is crucial for the evolutionary process as it ensures diversity, preventing

premature convergence to suboptimal solutions and allowing for continued exploration

of the hyperparameter space.

6.2.3 LOUO Cross Validation

The box plot shows the model’s performance across the 8 different folds from the

Leave-One-User-Out (LOUO) cross-validation. Each fold represents how well the

model did when trained on data from all but one user and tested on the excluded

user.

Fold 6 had the highest accuracy, with a median just over 84%, while Fold 7 had the

lowest, dipping around 77%. This variation suggests that the model’s performance

can vary depending on the specific user’s data. Despite this, most folds maintain

an accuracy between 78% and 82%, indicating a fairly consistent performance across

users.

We also see a few outliers in Fold 4 and Fold 7, suggesting there were some specific

samples within those folds where the model struggled more. Overall, though, the

results show that the model generalizes reasonably well, even if it finds some users’

data more challenging.

6.3 Model Performance Evaluation

This section evaluates the model performance through confusion matrices and other

key metrics, providing a detailed breakdown of the BiLSTM model’s accuracy in

recognizing surgical gestures.
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Figure 6.7: Leave-One-User-Out Cross-Validation Accuracies per Fold. The box
plot shows the accuracy distribution for each fold, with the median marked by the

red line and potential outliers shown as individual points.

6.3.1 Confusion Matrix Analysis

The confusion matrix provides a detailed breakdown of the model’s performance

by showing the correct and incorrect predictions for each class. In the BiLSTM

model with optimized hyperparameters, we observe strong performance in recognizing

several gestures. For instance, in Figure 6.8 gesture 2 (corresponding to gesture index

3, ’Pushing needle through tissue’) shows 161 correct predictions. However, there

are still notable misclassifications. Gesture 2 is sometimes incorrectly predicted as

gesture 9 (corresponding to gesture index 11, ’Dropping suture at end and moving

to end points’). Additionally, gesture 5 (corresponding to gesture index 6, ’Pulling

suture with left hand’) is recognized relatively well, with 105 correct predictions,

but also shows some misclassifications as gestures 6 (corresponding to gesture index

7, ’Pulling suture with right hand’). Gesture 6 (corresponding to gesture index 7,

’Pulling suture with right hand’) is often misclassified as gestures 0 to 5, indicating a
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challenge in distinguishing this gesture accurately.

Figure 6.8: Confusion Matrix for BiLSTM with Evolutionary Computing
Hyperparameter Tuning. The model shows strong performance in recognizing
several gestures, particularly gesture 2, with reduced misclassification rates.

Comparably, in Figure 6.9, the standard LSTM model without hyperparameter

tuning shows less accuracy in several gesture recognitions. Gesture 2 is still the

most accurately predicted gesture with 151 correct predictions, though this is fewer

than the BiLSTM model’s 161 correct predictions. There are higher misclassification

rates across the board, with gestures being more frequently confused with each other.

For instance, gesture 2 (corresponding to gesture index 3, ’Pushing needle through
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tissue’) is often misclassified as gestures 1 and 9 (corresponding to gesture index 2,

’Positioning the needle’ and gesture index 11, ’Dropping suture at end and moving

to end points’). Gesture 3 (corresponding to gesture index 4, ’Transferring needle

from left to right’) is more frequently confused with gesture 6 (corresponding to

gesture index 7, ’Pulling suture with right hand’). Additionally, gesture 5 (gesture

index 6, ’Pulling suture with left hand’) shows notable misclassifications as gesture 6

(corresponding to gesture index 7, ’Pulling suture with right hand’). The confusion

matrix for the LSTM model without evolutionary computing hyperparameter tuning

demonstrates lower performance in correctly classifying gestures compared to the

BiLSTM model with such tuning.
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Figure 6.9: Confusion Matrix for LSTM without Evolutionary Computing
Hyperparameter Tuning. The model shows higher misclassification rates compared

to the BiLSTM model with optimized hyperparameters.

6.4 Model Size and Prediction Time

In addition to evaluating the performance of the models through accuracy and con-

fusion matrices, it is essential to consider the model size and prediction time, which

impact the feasibility of deploying these models in real-world applications. Here, we

compare the size and average prediction time of two models: the LSTM without
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evolutionary computing hyperparameter tuning and the BiLSTM with evolutionary

computing hyperparameter tuning.

The model sizes are a critical factor, especially when deploying on devices with

limited storage and memory capabilities. The LSTM model without EC has a size of

97.68 MB, while the BiLSTM model with EC has a significantly smaller size of 6.28

MB. The BiLSTM model with evolutionary hyperparameter tuning is considerably

more compact, which is advantageous for deployment on devices that has limited

memory resources. This reduction in size is due to the optimized configuration of the

model, achieved through evolutionary computation, which identifies the most efficient

architecture without compromising performance.

The detailed architecture and number of parameters for both models further show-

case the efficiency of the BiLSTM model. The LSTM model without EC has a sig-

nificantly larger number of parameters, with a total of 8,531,978 parameters. The

architecture includes a LSTM layer with 2048 units followed by a dense layer. In

contrast, the BiLSTM model with EC is more compact with a total of 543,242 pa-

rameters. Its architecture consists of two bidirectional LSTM layers with 256 units

each, followed by a dense layer. This reduction in parameters not only decreases the

model size but also improves computational efficiency.

Prediction time is another critical metric, particularly for real-time applications

where quick inference is necessary. The LSTM model has an average prediction time

of 0.073208 seconds, while the BiLSTM model has a slightly faster average prediction

time of 0.068100 seconds. The BiLSTM model with evolutionary hyperparameter

tuning not only achieves better performance but also provides faster predictions. This

is likely due to the streamlined architecture and reduced parameter count, resulting
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in more efficient computations.

Table 6.1: Model Size and Prediction Time Comparison

Metric LSTM (No EC) BiLSTM (With EC)

Model Size (MB) 97.68 6.28

Number of Parameters 8,531,978 543,242

Average Prediction Time (seconds) 0.073208 0.068100

6.5 Summary of Results

In summary, the BiLSTM model optimized with evolutionary computation outper-

forms the standard LSTM model in several key areas. It achieves lower and more

stable training and validation loss, better generalization to unseen data, and improved

accuracy in recognizing surgical gestures. The evolutionary algorithm effectively nav-

igates the hyperparameter space, leading to a more compact and efficient model with

faster prediction times. These results highlight the advantages of using advanced

hyperparameter optimization techniques in developing high-performing deep learning

models for complex tasks such as surgical gesture recognition.

note
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Chapter 7

Discussion

The results of our study highlight several key observations regarding the performance

of the BiLSTM model optimized with evolutionary computation. The analysis of ges-

ture counts in the dataset revealed an uneven distribution of gestures, with some ges-

tures being significantly more frequent than others. This imbalance posed a challenge

for the model to learn less frequent gestures effectively. Despite this, the BiLSTM

model demonstrated strong performance, particularly in recognizing the most com-

mon gestures, as evidenced by the confusion matrix analysis. The BiLSTM model

achieved an accuracy of 81.17%, while the standard LSTM model without evolution-

ary computation tuning had an accuracy of 71.76%.

The comparison between the BiLSTM model with evolutionary hyperparameter

tuning and the standard LSTM model without such tuning underscores the impor-

tance of effective hyperparameter optimization. The BiLSTM model, which took

9.46 seconds to train, achieved lower and more stable training and validation loss,

indicating effective learning and good generalization to unseen data. In contrast, the

standard LSTM model, which trained in 5.98 seconds, exhibited more fluctuation
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in the validation loss, suggesting potential overfitting and inadequate learning from

the training data. The longer training time for the BiLSTM model is due to its

bidirectional nature, which processes data in both forward and backward directions,

leading to more comprehensive learning but at the cost of increased computational

complexity. The close alignment between the training and validation loss curves for

the BiLSTM model suggests that the model is well-tuned and capable of generalizing

effectively to new data.

The comparison between the two models underscores the importance of effective

hyperparameter tuning. The BiLSTM model with evolutionary computing hyperpa-

rameter tuning not only achieves lower and more stable training and validation loss

but also demonstrates better generalization to unseen data. This highlights the ben-

efits of using evolutionary algorithms to explore the hyperparameter space efficiently,

leading to improved model performance and robustness. These observations align

with our hypothesis that BiLSTM models, when coupled with sophisticated hyper-

parameter tuning techniques, can outperform traditional LSTM models in complex

tasks such as surgical gesture recognition. The results emphasize the critical role of

hyperparameter optimization in developing high-performing deep learning models for

sequential data analysis.

The evolution of hyperparameters tracked during the training of the BiLSTM

model provided valuable insights into the optimization process. The reduction and

stabilization of the number of LSTM units and the convergence of the dropout rate to

a stable range indicate that the evolutionary algorithm was successful in identifying

optimal configurations that balance model complexity, training efficiency, and gener-

alization performance. The evolutionary computation technique not only enhanced
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the efficiency of the tuning process but also increased the likelihood of discovering

optimal configurations that might be missed by more conventional tuning methods.

The confusion matrix analysis highlighted the improved performance of the BiL-

STM model in correctly classifying gestures compared to the standard LSTM model.

Although there were still some misclassifications, the overall accuracy and the num-

ber of correct predictions for each gesture were higher for the BiLSTM model. This

demonstrates the model’s ability to capture complex temporal dependencies in the

kinematic data, thanks to the bidirectional processing and the optimized hyperpa-

rameters.

Considering the model size and prediction time, the BiLSTM model with evolu-

tionary hyperparameter tuning proved to be more efficient and suitable for deploy-

ment in real-world applications. The significantly smaller model size and faster pre-

diction time make it a viable candidate for use in resource-constrained environments

where storage and computational power are limited. The reduced number of parame-

ters in the BiLSTM model, achieved through evolutionary optimization, contributed

to its compact size and efficient computation.

The integration of BiLSTM networks with evolutionary hyperparameter tuning

offers a robust solution for surgical gesture recognition, providing a valuable tool for

enhancing Human-Robot Interaction (HRI) in surgical contexts. By accurately recog-

nizing and classifying surgical gestures, the model can be used to develop intelligent

robotic assistants that can anticipate and respond to a surgeon’s needs during an

operation. This capability could significantly enhance the precision and efficiency of

surgical procedures, reducing the cognitive load on surgeons and improving patient

outcomes.
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Moreover, the model’s ability to generalize across different surgeons and gestures

makes it a promising candidate for surgical training and skill assessment. Trainee

surgeons can receive real-time feedback on their performance, with the system recog-

nizing and evaluating their gestures against established benchmarks. This automated

assessment can provide consistent and objective evaluations, helping trainees to im-

prove their skills more effectively.

In the broader context of HRI, the advancements demonstrated by the BiLSTM

model with evolutionary hyperparameter tuning can be applied to other domains

requiring precise and real-time gesture recognition. For instance, in collaborative

robotics, the ability to accurately interpret human gestures can enable robots to

work more seamlessly alongside humans, enhancing productivity and safety in in-

dustrial settings. Similarly, in healthcare beyond surgery, such models can assist in

rehabilitation, where robots need to understand and respond to patients’ movements.

In conclusion, the improvements in accuracy, model size, and prediction time

achieved by integrating BiLSTM networks with evolutionary hyperparameter tuning

make this approach a viable candidate for practical applications in automated surgical

skill assessment and real-time gesture recognition. The results of this study emphasize

the critical role of hyperparameter optimization in developing high-performing deep

learning models for sequential data analysis. Future work can extend this approach

to other viable datasets and explore the combination of different deep learning archi-

tectures and optimization techniques to further advance the field of robotic surgery,

HRI, and machine learning. The potential applications of this technology are vast,

offering significant benefits across various domains where precise and reliable gesture

recognition is essential.
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Chapter 8

Conclusion

In this thesis, we have explored the development and application of a bidirectional

Long Short-Term Memory (BiLSTM) model optimized through evolutionary compu-

tation for the task of surgical gesture recognition. This study was grounded in the

JIGSAWS dataset, which provided a comprehensive collection of kinematic and video

data from robotic surgical systems. Our approach aimed to address the inherent

challenges in recognizing complex temporal patterns in surgical gestures, enhancing

both the accuracy and efficiency of such recognition systems.

8.1 Summary of Findings

The preprocessing of kinematic data, including segmentation, trimming, and normal-

ization, set the stage for effective model training. The BiLSTM model architecture,

characterized by its bidirectional processing capability, proved adept at capturing

temporal dependencies within the kinematic data. The integration of evolutionary
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computation for hyperparameter tuning further refined the model, leading to sig-

nificant improvements in both training and validation performance. The optimized

BiLSTM model demonstrated superior performance compared to a standard LSTM

model, as evidenced by smoother convergence of training and validation loss curves,

higher accuracy, and better generalization to unseen data.

8.2 Key Contributions

Enhanced Model Performance The BiLSTM model with evolutionary hyper-

parameter tuning consistently outperformed the standard LSTM model, highlighting

the importance of sophisticated hyperparameter optimization techniques in develop-

ing high-performing deep learning models.

Efficient Hyperparameter Tuning The use of evolutionary algorithms allowed

for an efficient exploration of the hyperparameter space, identifying optimal con-

figurations that balanced model complexity, training efficiency, and generalization

performance.

Real-world Applicability The significantly reduced model size and faster predic-

tion times of the optimized BiLSTM model make it a viable candidate for deployment

in real-world applications, particularly in resource-constrained environments such as

portable surgical training devices and robotic surgical systems.

Advancements in Human-Robot Interaction (HRI) The ability of the BiL-

STM model to accurately recognize surgical gestures has potential applications be-

yond surgical training, including enhancing the capabilities of robotic assistants in
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surgical environments and improving collaborative robotics in industrial settings.

8.3 Implications for Human-AI Partnership

The integration of advanced AI models like BiLSTM with evolutionary hyperparam-

eter tuning in the medical field exemplifies the potential of human-AI partnerships.

These models can act as intelligent assistants, providing surgeons with real-time feed-

back and decision support, thereby enhancing the precision and efficiency of surgical

procedures. This partnership can reduce the cognitive load on surgeons, allowing

them to focus on more complex aspects of the surgery while relying on AI for accu-

rate gesture recognition and predictive analytics. Such systems can also be instru-

mental in the training of surgeons, offering consistent and objective evaluations of

surgical performance and helping trainees to refine their skills more effectively. This

collaborative approach can significantly enhance the learning curve for new surgeons,

ensuring a higher standard of surgical proficiency and ultimately leading to better

patient outcomes.

8.4 Implications for Surgical Training and HRI

The findings of this study have substantial implications for the field of surgical training

and human-robot interaction. The ability to provide real-time feedback on surgical

performance can revolutionize surgical education, offering objective and consistent

evaluations that help trainees refine their skills more effectively. In the context of

HRI, the enhanced gesture recognition capabilities of the BiLSTM model can lead to

more intuitive and responsive robotic systems, improving the collaboration between

91

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – Y. Zhang; McMaster University – Electrical and Computer Engineering

humans and robots in various applications.

8.5 Future Directions

This thesis lays the groundwork for future research in several promising directions.

Future work could explore the application of the BiLSTM model to other datasets

and surgical tasks, further validating its robustness and versatility. Additionally,

combining BiLSTM models with other advanced deep learning architectures, such as

attention mechanisms and transformer models, could yield even greater improvements

in performance. Expanding the scope of evolutionary computation techniques to

include more sophisticated optimization strategies may also enhance the efficiency

and effectiveness of hyperparameter tuning.

Furthermore, integrating multimodal data, such as combining kinematic and video

data more seamlessly, could provide richer contextual information, further improving

gesture recognition accuracy. Investigating the transferability of these models to

other domains, such as rehabilitation and industrial robotics, would also be valuable,

broadening the impact of this research.

8.6 Future Implementation of a Surgeon Training

System

In practice, a future surgical training system powered by AI and machine learning

could offer a highly interactive and immersive environment. The system would in-

corporate real-time feedback mechanisms using gesture recognition models like the
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BiLSTM developed in this thesis. Trainee surgeons would perform various surgi-

cal tasks, while the system captures both their kinematic data and visual data in

real-time.

This data would be fed into the model, which has been trained to recognize specific

gestures and evaluate them based on a predefined skill set. The system could provide

immediate feedback on the trainee’s technique, highlighting any incorrect movements

or inefficiencies and offering suggestions for improvement.

Moreover, the system could include a virtual or augmented reality interface, where

users practice in simulated surgical environments. The training data would then be

used not only to evaluate their performance but also to adapt and personalize train-

ing modules according to the individual’s progress. This personalized feedback loop

would continuously refine the surgeon’s skills, offering targeted advice and exercises

to improve weak areas.

The ultimate goal of such a system would be to create a seamless Human-AI

partnership where the AI assistant enhances the surgeon’s learning process, offering

consistent, objective evaluations and ensuring that skill acquisition is not only efficient

but also safe.

8.7 Final Thoughts

In conclusion, this thesis demonstrates the efficacy of BiLSTM models optimized with

evolutionary computation for the task of surgical gesture recognition. The improve-

ments in accuracy, model size, and prediction time achieved through this approach

underscore the importance of advanced hyperparameter optimization techniques in

deep learning. The potential applications of this technology extend beyond surgical
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training, offering significant benefits across various domains where precise and reliable

gesture recognition is essential. As we continue to advance the field of machine learn-

ing and human-robot interaction, the insights gained from this study will contribute

to the development of more intelligent and responsive robotic systems, ultimately

enhancing the synergy between humans and machines.

94

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Bibliography

[1] O. Asan, A. E. Bayrak, and A. Choudhury. Artificial intelligence and human

trust in healthcare: Focus on clinicians. Journal of Medical Internet Research,

22(6) (no pagination), 2020. ISSN 1438-8871 (electronic) 1438-8871. doi: https:

//dx.doi.org/10.2196/15154. Embase.

[2] C. Bartneck, T. Belpaeme, F. Eyssel, T. Kanda, M. Keijsers, and S. Sabanovi´c.

Human–Robot Interaction: An Introduction. 2019.

[3] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13(10):281–305, 2012.

[4] K. Catchpole, A. Bisantz, M. S. Hallbeck, M. Weigl, R. Randell, M. Kossack,

and J. T. Anger. Human factors in robotic assisted surgery: Lessons from studies

’in the wild’. Applied Ergonomics, 78:270–276, 2019. ISSN 0003-6870 1872-9126.

doi: https://dx.doi.org/10.1016/j.apergo.2018.02.011. Embase.

[5] J. Cha, J. Kim, and S. Kim. Hands-free user interface for ar/vr devices exploit-

ing wearer’s facial gestures using unsupervised deep learning. Sensors (Basel,

Switzerland), 19(20), 2019. ISSN 1424-8220. doi: https://dx.doi.org/10.3390/

s19204441.

95



M.A.Sc. Thesis – Y. Zhang; McMaster University – Electrical and Computer Engineering

[6] L. Chen, J. Fu, Y. Wu, H. Li, and B. Zheng. Hand gesture recognition using

compact cnn via surface electromyography signals. Sensors (Basel, Switzerland),

20(3), 2020. ISSN 1424-8220. doi: https://dx.doi.org/10.3390/s20030672.

[7] X. Chen, Y. Jiang, and C. Yang. Stiffness estimation and intention detection

for human-robot collaboration. In 2020 15th IEEE Conference on Industrial

Electronics and Applications (ICIEA), pages 1802–1807. ISBN 2158-2297. doi:

10.1109/ICIEA48937.2020.9248186.

[8] S. Y. Chiu, S. Y. Chiu, Y. J. Tu, and C. I. Hsu. Gesture-based intention

prediction for automatic door opening using low-resolution thermal sensors:

A u-net-based deep learning approach. In 2021 IEEE 3rd Eurasia Confer-

ence on IOT, Communication and Engineering (ECICE), pages 271–274. doi:

10.1109/ECICE52819.2021.9645718.

[9] A. Choudhury, O. Asan, and J. E. Medow. Effect of risk, expectancy, and trust

on clinicians’ intent to use an artificial intelligence system - blood utilization

calculator. Applied Ergonomics, 101:103708, 2022. ISSN 0003-6870 1872-9126.

doi: https://dx.doi.org/10.1016/j.apergo.2022.103708.

[10] J. Coker, H. Chen, J. Schall, Mark C., S. Gallagher, and M. Zabala. Emg and

joint angle-based machine learning to predict future joint angles at the knee.

Sensors (Basel, Switzerland), 21(11), 2021. ISSN 1424-8220. doi: https://dx.

doi.org/10.3390/s21113622.

[11] U. Cote-Allard, G. Gagnon-Turcotte, F. Laviolette, and B. Gosselin. A low-cost,

wireless, 3-d-printed custom armband for semg hand gesture recognition. Sensors

96

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – Y. Zhang; McMaster University – Electrical and Computer Engineering

(Basel, Switzerland), 19(12), 2019. ISSN 1424-8220. doi: https://dx.doi.org/10.

3390/s19122811.

[12] J. Ding, Ing and N.-W. Zheng. Cnn deep learning with wavelet image fusion of

ccd rgb-ir and depth-grayscale sensor data for hand gesture intention recognition.

Sensors (Basel, Switzerland), 22(3), 2022. ISSN 1424-8220. doi: https://dx.doi.

org/10.3390/s22030803.

[13] R. DiPietro, C. Lea, A. Malpani, N. Ahmidi, S. S. Vedula, G. I. Lee, M. R.

Lee, and G. D. Hager. Recognizing surgical activities with recurrent neu-

ral networks. In Medical Image Computing and Computer-Assisted Interven-

tion–MICCAI 2016: 19th International Conference, Athens, Greece, October

17-21, 2016, Proceedings, Part I 19, pages 551–558. Springer. ISBN 3319467190.

[14] P. Esmaeilzadeh, T. Mirzaei, and S. Dharanikota. Patients’ perceptions to-

ward human-artificial intelligence interaction in health care: Experimental study.

Journal of Medical Internet Research, 23(11):e25856, 2021. ISSN 1438-8871 (elec-

tronic) 1438-8871. doi: https://dx.doi.org/10.2196/25856.

[15] Z. Fang, D. Vazquez, and A. M. Lopez. On-board detection of pedestrian inten-

tions. Sensors (Basel, Switzerland), 17(10), 2017. ISSN 1424-8220 (electronic)

1424-8220. doi: https://dx.doi.org/10.3390/s17102193.

[16] A. G. Feleke, L. Bi, and W. Fei. Emg-based 3d hand motor intention prediction

for information transfer from human to robot. Sensors (Basel, Switzerland), 21

(4), 2021. ISSN 1424-8220. doi: https://dx.doi.org/10.3390/s21041316.

[17] Y. Gao, S. S. Vedula, C. E. Reiley, N. Ahmidi, B. Varadarajan, H. C. Lin,

97

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – Y. Zhang; McMaster University – Electrical and Computer Engineering
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