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Abstract

In this work, we focus on the segmentation of tumors on PET/CT [Positron Emission

Tomography used with Computed Tomography], which is crucial in routine clinical

oncology. Based on the advances in recent deep learning-based methodologies, we

studied the relative performances of three different frameworks: (a) nnU-Net [Convo-

lutional Neural Network (CNN)-based], (b) nnU-Net with prompting a large Vision-

Transformer (ViT) model called Segment Anything Model (SAM) (Hybrid), and (c)

Swin-Unet (U-Net-like pure transformer) in a publicly available dataset of PET/CT

images including normal patients and patients with lung cancer, lymphoma, and

melanoma. Our study includes a holistic performance analysis for three cancer types

and normal cases, which is typically avoided in the literature. The image volumes with

cancer typically include more than one lesion (primary tumor and potential metas-

tases). Therefore, we conducted two types of analyses. Our first analysis is conducted

at an image volume level, considering all lesions together as foreground, and the rest

as background. For the second analysis, we executed connected-component labelling

to algorithmically label different parts of the tumor and assessed at lesion component

level. At image volume level, nnU-Net performed best for lung cancer (Dice score:

73.25%) compared to melanoma (63%) and lymphoma (72.6%) among the three meth-

ods. The median largest lesion component-wise Dice score for nnU-Net, SAM with
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nnU-Net prompts, and Swin-Unet on three cancer types combined are 85%, 67%,

and 72%, respectively. Both nnU-Net and SAM with nnU-Net approaches missed 2,

4, and 4 image volumes of lung cancer, lymphoma, and melanoma patients, resp.,

whereas Swin-Unet did not miss a single volume. Out of 513 normal volumes, 201

were successfully identified by nnU-Net and SAM, whereas Swin-Unet only identified

7 of them. In conclusion, the performance of models varied across the cancer types.

nnU-Net proved to be the most reliable and precise algorithm evaluated in this study

by showing the best performance for identifying normal patients and in delineating

the largest lesions.
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Definitions and Abbreviations

Definitions

Image processing

Refers to the general set of computational methods for analyzing and

manipulating images to extract patterns and meaningful data, which

would take longer time or much effort if done manually.

Medical Image Segmentation

The process of manipulating a digital image related to human’s body

to identify a specific region-of-interest by delineating the detailed

boundaries of a desired region. This could be done manually, semi-

manually (also called semi-automatically), or automatically.

Deep Learning

An advanced category of machine learning methodologies that em-

ploys multi-layered neural networks to iteratively extract increasingly

sophisticated features from raw data inputs.

CNN Convolutional Neural Network, a deep learning algorithm engineered

to analyze input images, assigning significance to various features or
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objects within the image through learnable weights and biases, and

effectively differentiating between them. The term ‘convolutional’

pertains to the process of sliding filters across the image using am

athematical operation called ‘convolution operation’.

Transformers An architecture for transforming an input sequence to a desired out-

put with the help of two parts (Encoder and Decoder), using a mech-

anism called “self-attention”. It processes all the input elements in

parallel irrespective of their position (unlike traditional sequential

models) allowing for more efficient results.

Image volume

A 3D image representation of human anatomy consisting of cross-

sectional views (2D slices) stacked along a specific direction.

Abbreviations
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3D Three dimensional

AI Artificial intelligence
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CT Computed tomography
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Chapter 1

Introduction

Cancer’s incidence continues to rise at an alarming rate worldwide[10]. The urgency of

innovative solutions in cancer care is highlighted by the alarming prevalence of cancer

worldwide and in Canada. Throughout the cancer continuum, biomedical or medical

imaging plays an important part[11]. A variety of medical imaging modalities, such

as computed tomography, x-ray, magnetic resonance (MR) imaging, etc., are used for

cancer screening, diagnosis, monitoring, treatment, follow-up, and drug discovery[12].

The physical properties (e.g., sensitivity, temporal and spatial resolution) of different

medical imaging modalities can vary significantly.

Methods for semi-automated and automated analysis of different medical imag-

ing modalities[13][14][15][16] have existed for more than several decades now. These

methods are based on image processing/computer vision[17], machine learning[18],

and more recently, deep learning[19], and data-driven models in Artificial Intelligence

(AI)[20]. Examples of these image analyses include image registration[21], image

segmentation[22], image classification for several tasks such as diagnosis[23], disease

types[24], and organs[25].
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This research work is related to image segmentation. Image segmentation in-

volves detailing the outline of regions of interest (ROIs) in an image manually, semi-

automatically, or automatically through computational techniques. Despite decades

of seminal work, the task of automated medical image segmentation remains an un-

solved problem due to its complexity.

Several factors contribute to this complexity. Firstly, defining the problem is

challenging, as ground truth or reference standard ROIs exhibit intra- and inter-reader

variability. Secondly, data complexity is high; different medical imaging modalities

have unique properties, and even the same modality can vary in appearance and

properties based on the image acquisition protocol and equipment. Additionally,

medical images vary significantly in dimensionality—ranging from 2D, 3D, to 4D (3D

+ time)—and resolution. The non-rigid nature and deformation of human body parts

also introduce variation.

Nevertheless, automated image segmentation is highly sought after to improve ef-

ficiency in various tasks, such as diagnosis through abnormality detection and subse-

quent outlining, automated measurements in images, treatment planning, and disease

management[26][27].

Automated image segmentation in cancer is particularly significant as it can expe-

dite the screening and measurement of lesion properties (including volume, shape, and

textural properties or quantitative imaging biomarkers), assist in treatment planning,

and enable the classification of lesions (e.g., benign/malignant, histological grades in

lung cancer, molecular subtypes in breast cancer). Although image segmentation

is highly dependent on the imaging modality, the advent of new deep learning tech-

niques has mitigated this dependence. However, in contrast to non-medical or natural

2
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images, medical images (such as radiological and pathological images) remain more

modality-dependent despite the emergence of recent foundational models that support

a variety of imaging modalities[28].

The work presented in this master’s thesis involves the implementation and de-

tailed evaluation of three recent deep learning-based techniques for PET/CT segmen-

tation using a publicly available dataset from The Cancer Imaging Archive (TCIA)[29].

This dataset includes image volumes (defined as a stack of 2D slices) from patients

with various cancer types, with multiple lesions, as well as images from normal pa-

tients. The results presented in the thesis describe the quantitative evaluation of three

recent competitive deep learning-based techniques both overall and by cancer type.

The evaluation is conducted in two ways: (a) using the traditional image volume-wise

evaluation method, and (b) through an unconventional lesion-specific analysis. The

latter is important for subsequent tasks such as various measurements from lesions

and feature extraction, which occur after segmentation but are not strongly empha-

sized in the literature. The rest of this chapter focuses on providing the background

of automated PET/CT segmentation and offers an overview of recent advances in

deep learning literature. This sets the stage for the subsequent description of the

problem statement of this thesis.

1.1 General overview of image segmentation

Image segmentation involves dividing an image into fragments (ROIs), or segments,

and assigning a label to each segment based on the content. This process can some-

times be confused with similar concepts such as image classification or object local-

ization.
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The objective of image classification is to determine the presence of specific objects

within an image, typically producing probabilities indicating presence of those, or

identifying a single main object type (such as cups, bottles, etc.) in the image[1].

In object localization, the goal is to locate all instances of predefined objects

within an image and predict bounding boxes and labels for each object[1].

Semantic segmentation, a type of image segmentation, aims to label all the pixels

in an image. For example, in Figure 1.1 on the bottom left, the pixels that belong

to any type of cube would be assigned an integer label (let’s say 1 in this case), and

all the pixels representing cups in the image would be assigned another label (let’s

say 2). The objective illustrated in this figure is to assign labels to specific objects

(cubes, bottles, and cups in this example). Anything else would be regarded as the

“background” and would receive a label of 0.

Instance segmentation is a sub-division of image segmentation that advances be-

yond merely labeling every pixel of each object by also differentiating between distinct

instances of the same class. For example, all the cubes in the figure below would be

labeled separately, even though they all belong to the same class, allowing each cube

to be uniquely identified.

4

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/msbe/


M.A.Sc. Thesis – M. Pouromidi; McMaster University – School of Biomedical Engineering

Figure 1.1: Differences between image classification, object localization, semantic
segmentation, and instance segmentation. Adopted from[1]

Image segmentation has been utilized in various fields, and one significant applica-

tion is in healthcare, where medical experts take advantage of the resulting extracted

data for better disease diagnosis, treatment planning, and more precise measurements.
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1.2 Medical image segmentation

Medical images encompass essential biological data, serving as a crucial foundation for

healthcare professionals to formulate informed decisions. Handling such images fun-

damentally differs from managing conventional images captured by standard cameras,

as they entail various modalities with different dynamic ranges. These images carry

meaningful biological concepts, so interpretability is of utmost importance. They are

also harder to obtain, making it more challenging to gather enough data for auto-

mated models, which require a plethora of data to perform well compared to manual

methods. There are multiple modalities using which experts and developers utilize

to perform segmentation tasks on organ, tumors, or tissues[28].

1.3 Importance of PET/CT image segmentation

PET/CT plays a pivotal role in oncology by providing valuable information for cancer

diagnosis, staging, treatment planning, and monitoring response to therapy. The inte-

gration of metabolic information from PET with anatomical details from CT enhances

the precision and accuracy of cancer assessment. PET/CT is particularly vital in

identifying primary tumor locations, detecting metastases, and evaluating treatment

efficacy. The ability to visualize metabolic activity aids in distinguishing between

benign and malignant lesions, facilitating more informed clinical decisions[30].

We will now discuss the underlying physics of PET/CT and how the images are

acquired.
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1.3.1 Physics of PET/CT acquisition

PET is a nuclear medicine imaging technique that utilizes radioactive tracers to mon-

itor biochemical processes in the body. The tracers, composed of carrier molecules

tightly linked to radioisotopes (unstable isotopes), are introduced to human body

via intravenous injection. These carrier molecules selectively interact with specific

proteins or sugars, chosen based on medical professionals’ diagnostic objectives. The

stabilization of radioisotopes can occur through positron emission or electron cap-

ture, with elements having lower atomic weight typically favoring positron emission

for stabilization.

Following the administration of the radiotracer, the emitted positron travels a

short range in the body, leading to two possible scenarios: combining with a free

electron in the electron cloud, producing a pair of 511 keV photons (also referred to

as “annihilation photons”), or forming a positronium, which decays into a pair of 511

keV photons. Detectors around the patient’s body capture the annihilation photons,

illuminating corresponding areas in the final image.

Although the acquired image provides valuable insights, its spatial resolution and

precise boundaries are limited. These limitations stem from factors such as the resid-

ual momentum of the positron and the dispersion angle of the annihilation photons,

resulting in less detailed depictions of the examined areas. Now, we will explain some

important concepts related to PET/CT acquisition procedure:

• Positron range: As stated, the final acquired image represents the locations

of annihilation photons, not the positron emission locations. These positrons

can travel a short range before combining with a free electron and emitting

two photons. This causes a misplacement of these events, compromising the
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precision of the image.

• Noncollinearity of the annihilation photons: The residual momentum of the

positron before it combines with an electron causes the angle between the two

emitted photons to deviate from exactly 180◦. This deviation results in a blurry

image, with the extent of blurriness potentially being 1 or 2 mm, depending on

whether the ring diameter is 50 or 90 cm[31].

• Detector size: An important factor affecting the spatial resolution of the final

image is the spatial resolution of the detector itself, which is an intrinsic property

of the equipment.

• Detector crystals: The materials used in the detector can affect decay time,

high light output, and sensitivity.

• Positron emitting radiotracers used in PET: Numerous radiotracers have been

developed for PET. The most well-known of these is 18F-FDG (Fluorine-18

fluorodeoxyglucose), which offers advantages due to its relatively long half-life

(110 minutes), allowing for transport to remote sites and extended study dura-

tions. Additionally, its low positron energy results in shorter travel distances

for positrons, thereby combining with electrons more quickly and producing a

more accurate and less blurry image. It can also be mass produced without a

significant burden[31].

The major drawbacks of PET are the low spatial resolution and the absence of an

anatomical reference frame, making it difficult to precisely pinpoint the location of tu-

mors and the organs involved. This is particularly important in clinical studies where

the accumulation of radiotracers must be determined as pathological or physiological.
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Moreover, locating the site of pathological radiotracer accumulation helps with tumor

staging and correct diagnosis. It has been a while ago since the incorporation of CT

images with the PET has shown potentials to overcome this challenge and come up

with a better tumor localization. This incorporation of two imaging modalities can

take place in a manual fashion, where a reader compares the two images side by side,

or through software that integrates them into one image. However, various factors like

different scanner bed profiles, organ movement, and patient positioning may put an

obstacle on the manual integration process. Therefore, scientists developed a special

scanning device to acquire both image modalities simultaneously, overcoming these

challenges and reducing cost and time.

One issue with PET is that some deeper parts of the body, surrounded by many

organs, experience less photon annihilation because the positrons get absorbed or their

energy dissipates in the body before combining with an electron. In contrast, in parts

of the body like the skin, which is not surrounded by any organs, or the lung, which

is mostly filled with air and has little tissue to slow down the positrons, the majority

of the positrons react with electrons and consequently, there is no attenuation in the

final image. As a result, not all parts of the body are represented at the same scale

and quality in the PET image. To compensate, an attenuation map of the whole

body, created with the help of CT scanners, is applied to the acquired PET image.

This not only amplifies the attenuated regions in the body but also retains the image

quality in areas that have not undergone attenuation[32].
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1.3.2 Importance of automated segmentation in PET/CT

In recent years, PET/CT has become increasingly prevalent, leading to the develop-

ment of more complex and advanced equipment, which in turn has resulted in higher

data volumes and resolutions per scan. This has increased the workload for experts

and requires more time and effort for the interpretation of the scans[33]. The im-

provement in image quality demands that readers spend more time on certain parts

of the image, thereby increasing the risk of missing critical areas in the scans for

nuclear medicine physicians and radiologists[34]. Developing expertise in PET/CT

image reading and interpretation requires significant training and time. Additionally,

the presence of multiple scanner types with varying settings introduces inconsistency

across different systems. These factors contribute to the high susceptibility of reading

scans and identifying tumor regions to inter- and intra-observer variability[35].

Automating tumor segmentation allows for the efficient identification of total tu-

mor burden for treatment and prognostication and the usage of automatic quanti-

tative biomarkers/radiomics, thereby assisting experts and providing support [36],

[37], [34]. This automation in PET/CT significantly accelerates the segmentation

of tumor regions, saving experts considerable time. Furthermore, with technological

advancements, the outcomes of automated models are improving in consistency and

robustness. Automated models, particularly those based on deep learning, are more

objective and do not suffer from the subjectivity associated with human skill variance

and fatigue.
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1.4 Deep learning and its advances for imaging

analysis

Deep learning uses multi-layered neural networks to automatically learn data repre-

sentations, revolutionizing fields like speech, image recognition, and natural language

processing[19]. These models vary in size, shape, architecture, and complexity. For

years, convolutional neural networks (CNNs) had been the state-of-the-art for classifi-

cation/segmentation tasks related to images and videos in the deep learning domain.

They excelled in image/video segmentation tasks due to their ability to automatically

learn hierarchical features from data. CNNs exploit spatial correlations within images

through convolutional layers, capturing local patterns and gradually integrating them

into higher-level representations. However, CNNs lack the innate ability to capture

long-range dependencies and global context effectively[9].

More recently, transformer architectures[3] initially designed for sequential data,

have gained traction for segmentation tasks. Transformers, especially vision trans-

formers (ViTs)[4], offer global context understanding without relying on fixed-size

convolutional kernels, which is crucial for capturing intricate spatial relationships in

images. They leverage self-attention mechanisms to weigh the importance of differ-

ent image regions adaptively. This adaptability, combined with efficient training and

scalability, has led the transformer architectures progressively competing with CNNs

in image segmentation tasks.
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1.5 Problem statement

Given the advances in recent deep learning architectures for image segmentation, we

adapt and evaluate three algorithms for lesion segmentation task in PET/CT images:

one solely based on CNN, one as a hybrid method using a CNN and a transformer,

and one completely based on transformers.

• nnU-Net (no-new-U-Net): nnU-Net[38] is a self-configuring approach based

on CNNs that can automatically configure itself by extracting relevant parame-

ters for preprocessing, network architecture selection, training procedures, and

postprocessing for the segmentation task.

• Segment Anything Model (SAM) using nnU-Net box prompts: SAM[8]

is an open-source model trained using transformers used for segmenting any

object, even without being trained on that class.

• Swin-Unet: Swin-Unet[9] is a pure transformer modeled after U-Net[39] with

skip-connections to extract local-global semantic features from the image patches.

Our problem statement at its core is:

Performance analysis of three recent deep neural network-based automated approaches

for tumor segmentation in whole body PET/CT images.

1.6 Organization of the thesis

The rest of this thesis is organized as follows:

Chapter 2 provides an in-depth discussion of the literature on tumor segmenta-

tion in PET/CT images. Chapter 3 describes the materials and methods in detail
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for our algorithms. Chapter 4 reports the quantitative and visual results from our

experiments. Chapter 5 discusses the results. Chapter 6 provides the limitations of

our work. Finally, Chapter 7 concludes the thesis and provides future prospects for

advancements in the current work.
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Chapter 2

Literature Review and Related

Concepts

In this chapter, we provide details of the search methodology we used to gather

research articles from existing literature, and then elaborate on the studies focusing

on tumor segmentation in PET/CT images in detail.

2.1 Searching methodology

We conducted our initial search across the most popular academic databases for paper

extraction in September 2022, including: Google Scholar, IEEE Explore, PubMed,

and ScienceDirect. The search terms considered are: artificial intelligence, deep learn-

ing, machine learning, biomedical image analysis, biomedical image segmentation,

segmentation, PET/CT, and tumor delineation. We tried to extract the most rel-

evant papers based on the following criteria: the number of citations, recency, and

venue (journal/conference) of publication.
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Among the relevant studies retrieved by our search, deep learning-based methods

are predominant, however, we also discuss image processing/computer vision and

machine learning-based methods in our review to highlight the differences of these

with the deep learning-based methods.

We will now elaborate on the relevant studies in the literature, starting from older

methods like image processing, and move on to the most recent ones.

2.2 Image processing and computer vision-based

methods

Note: Throughout this and following chapters, we may use the terms ‘image process-

ing’ and ‘computer vision’ interchangeably. We refer to the same concept by using

either of these terms, although in the pre-deep learning era, they enjoyed distinct

usage in the research community.

Image processing-based methods refer to techniques that utilize handcrafted rules,

filters, and algorithms to extract features, and segment the targeted object. These

features are mostly manually designed based on domain knowledge and heuristics[40].

Thresholding has been one of the most well-known approaches in the image processing

realm. However, thresholding is prone to many errors and can be easily biased.

For example, FDG uptake is indicated by high standard uptake value (SUV) in the

chest for acute inflammatory and infectious diseases, such as pneumonia, whereas

some tumors can have low SUV[41]. Moreover, there are many factors that lead to

variability in PET images, including, but not limited to, different acquisition scanners,

image reconstruction methods, calculations of SUV based on scanner type, and the
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noise involved[42].

One example of this category of work is the study by D. Han et. al,[43]. They

used MRFs for the segmentation problem. Different energy functions were developed

for PET and CT modalities, and ultimately, the global optimal solution was derived

by computing a single maximum flow. They reported an average Dice score (also

called Dice Similarity Coefficient, discussed in Chapter 3) of 85% on 16 test images,

and reported a 10% increase compared to graph cuts methods.

Image processing-based models can be effective, but with the emergence of new

machine learning and deep learning models that outperform conventional methods,

there has been a shift towards these algorithms in academic research. The reasons

for this shift include but are not limited to:

• Sophisticated image processing models are computationally heavy and require

extensive numerical calculation, making real-time inference a challenge. In con-

trast, deep learning models benefit from various optimization techniques and

frameworks that significantly enhance inference speed on current graphics pro-

cessing units (GPUs)[44].

• The availability of larger and higher-quality medical imaging datasets meets

the demands of data-intensive deep learning models, facilitating significant im-

provements and enhanced performance in previous tasks.

• Deep learning and traditional machine learning methods show comparatively

less susceptibility to dataset biases compared to image processing-based models,

if trained and validated properly[45].
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2.3 Traditional machine learning

Traditional machine learning (non-deep learning) refers to methods that classify, seg-

ment, or differentiate between distinct classes based on learning from handcrafted

features extracted from images in a training dataset provided by experts. Usually,

prior to the feature extraction, the images could undergo some pre-processing steps

(e.g. resampling and zero-padding, resizing, augmentation, intensity normalization,

windowing and leveling for CT, and conversion to SUV maps for PET[34]). These

features can be of any format or length, numerical or categorical. We will provide

examples of two such studies here.

In the work of K. Ikushima, et al.[46], a support vector machine (SVM) as the

machine learning classifier was employed to delineate gross tumor volume (GTV)

regions. The SVM learned image features around GTV contours determined by radi-

ation oncologists during the training step. These features included voxel values and

image gradient magnitudes from planning CT, PET, and diagnostic CT images. They

compared the bare SVM model versus a model that applied an algorithm called opti-

mum contour selection (OCS) on top of SVM outputs from their previous study[47].

The authors used images from 14 lung cancers patients for training and reported an

average 3D Dice score of 77.7% using the proposed framework, and 50.7% for the

OCS algorithm.

E. Grossiord et. al,[48] proposed an automated method for segmenting lymphoma

lesions in 3D PET/CT images using hierarchical image models and machine learning.

They used component trees to represent PET images and compute PET/CT descrip-

tors for each region, followed by random forest classification to categorize nodes as
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lesions, organs, or non-relevant structures. The method achieves a 92% lesion de-

tection rate with mean Recall and Specificity of 73% and 99% respectively, without

user interaction. However, there is a 35% volume overestimation compared to ground

truth, suggesting the need for refining feature selection and incorporating anatomical

atlases to address false positives and volume overestimation in future iterations.

There are many works done related to traditional machine learning, but because

at its core, the segmentation problem could be handled much more conveniently using

deep learning models, there are more recent research work published in that area.

2.4 Deep learning

In general, methodologies in deep learning that have manifested high potentials for

image segmentation tasks, fall into two categories: CNN-based and Transformer-

based.

2.4.1 CNN-based models

Definition of CNN models

CNNs are among the most successful architectures in deep neural networks. CNNs

are particularly effective for grid-like data, such as images or videos. They are widely

adopted in fields like object detection, image recognition, and image classification[49].

The learning process involves feeding training data to the network, computing out-

puts, calculating a loss function, and updating the network’s parameters (weights

and biases) based on a process called backpropagation[19]. During backpropaga-

tion, the loss function is differentiated with respect to each weight and bias in the
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network’s topology, allowing the parameters to adapt for better output predictions.

This architecture is particularly useful in image and video domain because of a con-

cept called kernels (filters). These kernels are arrays (1D, 2D, 3D) that are slid over

the image and extract some patterns from it based on the weights present in the

arrays. Each kernel could have a specific functionality, extracting unique features

from the image. The output of applying a kernel forms a feature map, which empha-

sizes certain features in the image, such as edges, textures, or other patterns. During

backpropagation, the kernels’ weights get updated based on the losses calculated from

the training set to adapt the network to learn features that are more suitable to the

learning objective[50].

Favored CNN-based architectures for segmentation

CNNs have demonstrated considerable potential to compete with human-level exper-

tise in image segmentation tasks with models like Mask R-CNN[51], SegNet[52], and

DeepLab[53]. Another notable model is U-Net[39], which has shown remarkable re-

sults for image segmentation. The U-Net architecture is a fully convolutional neural

network upon which our first and second segmentation approaches are based on. It

comprises a contracting path, a bottleneck, and an expansive path. The contracting

path captures context and extracts features from the input image. The bottleneck

acts as a bridge between the contracting and expansive paths, reducing spatial di-

mensions while retaining essential information. The expansive path is responsible

for generating the segmented output. Below are listed the salient components of a

standard U-Net:

• Contracting path: This involves several convolutional layers that extract
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Figure 2.1: U-Net architecture. Adopted from[2]

features from the images, followed by rectified linear unit (ReLU)[54] activation

functions and either average or max-pooling layers[55]. As the images pass

through these layers, deeper and more complex features are extracted, and the

dimension of the subsequent images (features maps) is further reduced.

• Bottleneck: This section between the contracting and expansive paths retains

the most critical features of the image while further reducing spatial dimen-

sions. It includes convolutional layers but omits pooling layers to prevent loss

of important features. Dropout layers[56] may also be included to mitigate

overfitting.

• Expansive path: Operating inversely to the contracting path, this path in-

volves upsampling (via a process called transpose-convolution) the images back

to their original spatial dimensions. During this process, spatial resolution is
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enhanced by concatenating feature maps from the contracting path with the

features after upsampling, ensuring both high resolution and the retention of

deep features from the bottleneck layer. A ReLU activation function is applied

after deconvolution layers to refine the features further.

• Skip connections: An innovative aspect of U-Net is the use of skip con-

nections, which allows the network to bypass intermediate layers and connect

outputs directly to deeper layers. This helps retain fine-grained details in the

image and addresses the vanishing gradient problem.

• Final layer: This is a 1 × 1 convolutional layer with a sigmoid activation

function, producing multiple channels that correspond to the different classes to

be segmented. Each channel outputs a probability map indicating the likelihood

of each pixel belonging to its respective class.

• Loss Function: The original implementation of U-Net used the cross-entropy

loss[57], a common choice for segmentation tasks.

Related studies in tumor segmentation using CNN-based models

L. Xu et al.[58] employed V-Nets[59] (a 3D version of U-Net) and W-Nets[60] for

bone lesion identification for diagnostic assessment of multiple myeloma (MM), using

PET/CT modalities in conjunction. They conducted four experiments: V-Net with

CT only, V-Net with PET only, V-Net with PET/CT, and W-Net for PET/CT. The

last experiment yielded the highest scores in terms of Dice score (72.98%), Recall

(73.5%), Precision (72.46%), and Specificity (99.59%). However, their dataset was
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small, containing only 12 clinical PET/CT images, which may introduce bias. Ad-

ditionally, they produced synthetic digital phantoms of 68Ga-Pentixafor PET scans,

which might not be ideal for testing in real-world scenarios.

X. Fu et al.[61] utilized two U-Nets for tumor segmentation: one network was solely

trained on PET images to extract and highlight tumor regions. The probability map

from this network’s output was then fused with the decoder part of the second U-

Net, which processed CT images. The rationale was that PET and CT modalities do

not necessarily contain complementary information, hence, the study focused more

on PET images. The alogorithm was tested in two datasets, one containing patients

with non-small cell lung cancer (NSCLC) and one with soft tissue sarcomas (STSs)

Zhong et al.[62] trained two U-Nets separately on PET and CT images to segment

lung cancer. Subsequently, a graph-cut co-segmentation algorithm was applied to

the results to achieve a more consistent segmentation. However, this paper lacked

detailed information and did not adequately compare their work with other studies.

Additionally, their validation techniques were not mentioned properly and is vague.

Dirks et al.[63] developed a two-step localization and segmentation approach for

tumor in malignant melanoma cancers, employing five fully connected networks; three

trained on PETs with different spacings, and two on CTs with different spacings. A

significant drawback of this study was the use of a thresholding technique to discard

lesions smaller than 1 ml. Moreover, they calculated the SUV threshold value based

on the SUV in the liver, which could be misleading due to tumor heterogeneity.

B. Huang et al.[64] utilized a deep neural network inspired by U-Net and processed

two 512 × 512 PET and CT images to contour head and neck cancer tumors. They

employed leave-one-out cross-validation and devised two datasets, one containing 17
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images and the other 5. These sample sizes seem insufficient to train a robust and

generalizable network. However, they reported an average Dice score of 74.1% over

the two databases.

X. Zhao et al.[65] developed two V-Nets to separately extract features from PET

and CT modalities. Subsequently, a fusion framework consisting of several cascaded

convolutional layers was used to re-extract features from the two feature maps us-

ing weighted cross-entropy minimization. The algorithm was trained on a dataset

including 84 patients with lung cancer, and the Dice score of 85% was reported.

Xiang et al.[66] utilized a dual-stream encoder to extract complementary infor-

mation from PET and CT modalities, while a decoder was employed to fuse these

distinct modality features to segment tumors in lung cancer. Additionally, two sepa-

rate decoders were used to preserve modality-specific features of PET and CT images.

Three conditional generative adversarial networks (GANs)[67] were utilized: one for

PET, one for CT, and one for discriminating between the two modalities. The net-

works were trained to recognize and penalize discrepancies between the actual images

and the segmentation outputs. At the end, average Dice scores of 75.52% and 77.72%

were reported for the network trained on CT and PET images respectively.

Kumar et al.[68] emphasized that most papers often overlook the spatially vary-

ing visual characteristics that translate distinct information in each modality. They

adopted two encoders, one for each modality, to extract modality-specific information.

A co-learning scheme consisting of a CNN was then used to derive spatially varying

fusion maps, followed by a fusion operation to weight different features differently.

The scheme was trained and evaluated on a dataset of lung cancer patients, and they

segmented lung, mediastinum, and the tumors inside these areas. A mean Dice score

23

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/msbe/


M.A.Sc. Thesis – M. Pouromidi; McMaster University – School of Biomedical Engineering

of 63.85% was reported at the end.

The HECKTOR Challenge[69] focused on tumor segmentation in the head and

neck using PET/CT images. The best performing method[70] (Dice score= 75.9%

on test set) employed 3D U-Nets[71] with squeeze-and-excitation norm layers in the

decoder section. The runner-up[72] implemented a 3D U-Net (derived from nnU-

Net[38]) and a hybrid active contour for refinement on the test set only, based on the

value of the normalized surface Dice (Dice score= 75.2% on test set).

S. Jemaa et al.,[73] proposed a method that utilizes a 2D U-Net for segmenting

non-Hodgkin’s lymphoma and advanced NSCLC from 18F-FDG PET/CT images, fo-

cusing particularly on liver and lung detection through connected component analysis.

This approach was applied to the head-neck, chest, and abdomen-pelvis regions. Ad-

ditionally, a 3D U-Net was employed for the same purpose across these three regions.

The final tumor mask was derived by averaging the results obtained from the 2D

and 3D segmentation processes. An average 3D Dice score of 88.6% was reported on

1124 hold-out non-Hodgkin’s lymphoma cancer scans, and 93% Recall on 274 NSCLC

hold-out scans.

A. R. Groendah et al.[74] performed a comparison between four thresholding meth-

ods, six machine learning algorithms, and one deep learning-based model for tumor

segmentation in patients with head and neck cancer. The thresholding methods were

based on the absolute SUV, a percentage of the maximum SUV, 41% of the maximum

SUV, or the Laplacian of Gaussian method (LoG). The machine learning algorithms

included Gaussian näıve Bayes, linear discriminant analysis, quadratic discriminant

analysis, logistic regression, linear support vector machines (SVM), and random forest

(RF). The deep learning-based method, a 2D U-Net, was trained on three conditions:
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PET only, CT only, and PET/CT together. Ultimately, the U-Net’s results with

PET/CT modalities and windowing outperformed the other methods (mean Dice

score of 75%), demonstrating the superiority of deep learning approaches over tradi-

tional models.

Z. Zhong et al.[75] developed two 3D U-Nets with skip connections and shortcuts

between the two networks to share parameters and help each other extract comple-

mentary information from the images. A weighted average of the two scores related

to the two maps from the networks was calculated and reported as the final score.

Their dataset included 60 patients with NSCLC who received stereotactic body radi-

ation therapy. The average Dice score on network trained on CT modality was 86.1%,

whereas for the network trained on PET, the score was 82.8%.

J. Xie and Y. Peng[76] enhanced a 3D nnU-Net with squeeze and excitation

blocks[77] to boost meaningful features while suppressing weaker ones. Their results

on the head and neck tumor segmentation challenge showed slight improvements over

the original nnU-Net.

L. Li et al.[78] utilized 3D CT images and fed them to a fully convolutional net-

work to obtain a probability map to distinguish between NSCLC tumor regions and

surrounding tissues. Subsequently, a fuzzy variational model was proposed to incor-

porate the probability map from CT and the intensity of PET images to determine

the tumor regions. Additionally, a split Bregman algorithm was applied to refine the

boundaries. An average Dice score of 86% was reported on 36 scans held out for

testing the algorithm.

L. Sibille et al.[79] utilized a cascaded methodology for tumor segmentation in

PET/CT images. Initially, a stacked ensemble of 3D U-Net CNNs processed the
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images at a fixed 6mm resolution. Following this, a refiner network, consisting of

residual layers, improved the 6mm segmentation mask to achieve the original reso-

lution. The approach consisted of two modules: they first analyzed global patterns

and dependencies at a coarse level using an ensemble of modified U-Net networks,

while the second refined the coarse segmentation using the original image. Training

involved minimizing a composite loss function, including Dice loss, cross-entropy loss,

and Sensitivity loss, with separate training for each model component. Additionally,

post-processing involved exploring sequence-based models to reduce false positives,

but these were ultimately removed due to similar results. This study uses a dataset of

three cancers, namely, lung cancer, melanoma, and lymphoma (same as that used by

us as described in Chapter 3). They had 84 volumes held out for testing and reported

an average Dice score of 68% on this set. No cancer-specific analysis was conducted

in this study.

The study by Y. Peng et. al,[80] proposes a false positive reduction network for tu-

mor segmentation in the same dataset as ours, regardless of the cancer type. Initially,

a self-supervised pre-trained global segmentation module roughly delineates candidate

tumor regions using a pre-trained encoder. A local refinement module then refines

these regions by removing false positives. The global segmentation module employs a

ResNet50[81] encoder pre-trained via contrastive learning on concatenated PET/CT

images, while the local refinement module uses a 2D U-Net with 5-channel input

data. The Dice score on a hold-out set of 200 volumes was not exactly mentioned but

according to the authors, they were placed among the top 7 scorers in the AutoPET

2022 challenge[82]. The best performing algorithm holds a Dice score of 62.26%.

Some novel approaches[83] integrated the idea of reinforcement learning into the
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2D U-Net architecture, highlighting the importance of updating the network’s weights

through online learning to help the model continuously adapt to new images.

2.4.2 Transformer-based models

Introduced in 2017, transformers[3] are designed to handle sequential data, unlike

CNNs which are predominantly used for image-related tasks. The core innovation

of transformers is the attention mechanism, explained later. This technique is

especially useful in tasks like language translation, where understanding the context

provided by all parts of the sentence is crucial. While there are relatively fewer papers

focused on this architecture, their numbers are increasing considerably. In Figure 2.2,

the general architecture of a transformer is presented.

Vision Transformer (ViT)[4] is a variation of transformer (depicted in Figure 2.3)

specifically designed to handle image data. The components of a ViT are as follows:

• Input representation: Unlike traditional CNNs that process raw pixel data

directly, a ViT divides an image into fixed-size patches. Each patch is then

flattened and linearly transformed into a higher dimensional space. In this

space, each patch has been transformed into an “embedding”. An embedding

represents a patch as a vector of features, capturing its contextual information

and visual details.

• Positional encoding: A number referred to as the positional encoding is

concatenated to each image embedding to retain the positional information of

each patch.

• Self-attention mechanism: This mechanism allows the model to learn the
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contextual relationships among all image patches, and assign weights to all the

elements of the input at the same time when predicting the semantic label. The

representations along with the positional encodings are passed to this mecha-

nism.

• Multi-head attention: By concatenating multiple attention mechanisms and

running them in parallel, the model learns to determine the extent to which it

should focus on each part of the image when predicting the segmentation map.

• Feed-Forward networks (FFN): The output of the attention step is then

fed to a feed-forward network (usually a normal multi-layer perceptron).

• Upsampling: Just like the idea of transpose-convolution in U-Net, feature

maps in transformers experience a reduction in resolution due to patching and

need to be upsampled to match the original image dimensions for pixel-wise

classification. This is essential for the task of segmentation.

• Segmentation head: This is typically a convolution or a series of convolutional

layers that process the upsampled features and predict each pixel’s class.

• Softmax activation: This is applied across the channel dimensions of input

image to obtain a probability distribution for each pixel, representing the prob-

ability of it belonging to each class in the set.
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Figure 2.2: Transformer architecture. Adopted from[3]
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Figure 2.3: Vision transformer architecture for classification task. Adopted from[4]

Research articles related to transformer models or NLP-related architec-

tures

Huang et al.[84] proposed a segmentation method for nasopharyngeal carcinoma

(NPC) based on PET, CT, and parametric images (Ki images). They employed

a generative adversarial network (GAN) with a modified version of U-Net and a

transformer as the generator.

The method proposed by L. Huang et. al,[85] involves combining three consecu-

tive slices from PET and CT scans along the depth dimension to form one volumet-

ric representation for each modality. These representations are then concatenated

as channels. Subsequently, an encoder-decoder pathway incorporating spatial and

channel attention blocks generates a volumetric feature block representing the con-

secutive frames, alongside two types of slice-wise probabilities. A bidirectional Long
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short-term memory (LSTM), also equipped with spatial and channel attention blocks,

processes the volumetric feature block to integrate contextual information, ultimately

generating three probability maps for the three slices.

One of the early studies addressing biomedical image segmentation problem using

transformers is TransUnet[86]. The authors stated that a naive approach of using

only transformers as the encoder of a neural network and then upsampling the hidden

feature representations does not yield satisfactory results. This is due to the fact that

transformers try to extract the global dependencies in any 1D sequence and this results

in low-resolution features that lack the detailed local information. Hence, they took

a hybrid CNN-transformer approach, where multiple levels of convolutional layers

extract the local information from the image first. Then, the lowest-level features

are fed to 12 layers of self-attentions. In the upsampling path, features extracted at

each level of the CNN model are concatenated with the upsampled features from the

transformer encoders. They compared their algorithm with V-Net, U-Net, DARR[87],

and AttnUNet[88] on the Synapse multi-organ CT dataset[89] and reported better

performance in the segmentation of various organs using TransUnet (average Dice

score of 77.48%).

2.5 Drawbacks of current studies in PET/CT seg-

mentation

• The majority of research studies have utilized CNNs for tumor segmentation

tasks. There is a need for further investigation and exploration of transformer-

based models in this domain.
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• Several papers lack a detailed breakdown of their fold descriptions and do not

adequately describe their approach to data splitting, which is crucial for miti-

gating any imbalance in the dataset.

• In our dataset (details of which will be elaborated in Chapter 3), there are both

normal (no malignancy) and positive (with malignancy) cases. The positive

cases include three types of cancer: lung cancer, melanoma, and lymphoma.

Most studies utilizing this dataset do not provide performance comparisons of

their models across these cancer types, an issue we addressed in our experiments.

• The majority of research studies have analyzed entire 3D or 2D images contain-

ing multiple tumors located at various body sites. To the best of our knowledge,

no study has conducted an analysis of different tumor instances spread across

different parts of the body. This is often due to the lack of distinct label-

ing for different tumor instances. Conducting such analyses would be pivotal

for enhancing the automatic computation and analysis of quantitative imaging

biomarkers. We addressed this gap in this thesis.
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Chapter 3

Materials and Methods

In this chapter, we elaborate on the methodology followed by the implementation

and evaluation of the three recent deep learning techniques for segmentation that

we mentioned in Section 1.5. First, we describe the dataset used for training and

evaluation. This is followed by an in-depth description of each technique, including

details of its implementation for training (if necessary) and evaluation. Subsequently,

we discuss the evaluation measures and statistical analyses conducted to obtain the

results.

3.1 Dataset

We utilized a dataset provided by The Cancer Imaging Archive (TCIA)[90][29], which

consists of whole-body PET/CT images with manually annotated lesions. This

anonymized dataset was collected by University Hospital Tübingen, Germany, span-

ning from 2014 to 2018. It encompasses 900 patients (a total of 1014 image volumes),

with some patients having undergone multiple visits. The cancer types represented

33



M.A.Sc. Thesis – M. Pouromidi; McMaster University – School of Biomedical Engineering

include lung cancer (168 patients, 168 image volumes), melanoma (177 patients, 188

image volumes), and lymphoma (144 patients, 145 image volumes). In total, 501 out

of 1014 studies indicate malignant lesion, while the remaining 513 studies do not ex-

hibit any PET-positive malignant lesions and are clinically normal. The distributions

of the SUVs indicating PET-positive malignancy (presence of cancer) in this dataset

in depicted in Figure A.9.

All image volumes were acquired using a single PET/CT scanner (Siemens Bio-

graph mCT). The diagnostic CT scans (primarily covering the skull base to mid-thigh

level) were conducted with intravenous contrast enhancement for most volumes, ex-

cept for those patients with contraindications. The CT scan parameters are as follows:

• Reference dose of 200 milliampere-seconds (mAs)

• Tube voltage of 120 kilovolts (kV)

• Iterative reconstruction with a slice thickness of 2 - 3 mm

The whole-body PET/CT scans were performed one hour after the intravenous

injection of 300-350 MBq 18F-FDG. PET images were reconstructed using the ordered-

subset expectation maximization (OSEM) method, which included 21 subsets and 2

iterations, along with a Gaussian kernel of 2 mm and a matrix size of 400 × 400.

All image volumes were reviewed jointly by a radiologist and a nuclear medicine

physician to identify primary tumors and metastases. Following this identification,

a radiologist with 10 years of experience in hybrid imaging segmented all FDG-avid

tumor lesions (primary tumor and/or metastases, if present) using NORA image anal-

ysis platform, University of Freiburg, Germany. This segmentation resulted in ground

truth PET/CT lesion masks. For each PET/CT image volume, regions containing
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lesions were marked with an intensity value of 1 (foreground), while other regions in

the image were marked with an intensity value of 0 (background) in the ground truth

segmentation. Table 3.1 provides a summary of the dataset.

Table 3.1: Dataset summary

Variables Count
Patients 900
Studies 1014
Normal studies 513
Positive/malignant studies 501
Positive slices 28280
Total slices 355147
Lung cancer studies 168
Lymphoma studies 145
Melanoma studies 188

3.2 Data pre-processing

3.2.1 PET/CT pre-processing

CT images were resampled to match the resolution of the PET images. All PET

images were converted to SUV maps. The CT images, SUV maps, and ground truth

lesion annotations were saved as ‘nifti’ files. These procedures were conducted in

accordance with the protocols provided by the dataset authors[91]. We use the term

‘PET’ throughout this thesis, however, we refer to the usage of SUV maps for imple-

menting and evaluating our models.
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3.2.2 Ground truth pre-processing

The lesions in the ground truth were not confined to any specific organ or region in

the body, even within the same cancer type. Consequently, a 3D-connected compo-

nent analysis was performed to algorithmically identify connected neighboring voxels

in lesions using the connectedcomponent function from the sitk package[92]. This

analysis enabled the assignment of separate labels to connected lesion regions or

components. For instance, if seven connected lesion components were identified, they

were labeled sequentially from 1 to 7, with 1 corresponding to the component with

the highest volume and 7 to the component with the lowest volume. An example of

connected components in a single slice is illustrated in Figure 3.1. This connected

component analysis, applied to both ground truth and predicted segmentations, fa-

cilitated experiments using SAM and allowed for lesion component-wise evaluation of

the segmentation models’ performances.

Figure 3.1: A slice from a segmentation volume map, containing five 2D connected
components
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3.3 nnU-Net

nnU-Net[38] is a neural network architecture developed for semantic segmentation

tasks in medical image analysis. It extends the U-Net architecture, widely used for

biomedical image segmentation, by incorporating advancements in deep learning and

addressing specific challenges in medical imaging. The various components of this

architecture are as follows:

Figure 3.2: nnU-Net pipeline. Adopted from[5]

Figure 3.3: nnU-Net development procedure. Adopted from[5]
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• Architecture: nnU-Net builds upon the U-Net architecture, detailed in Section

2.4. This pipeline evaluates three model types: a 2D U-Net, a 3D full resolution

U-Net, and a cascaded 3D U-Net that first operates on low-resolution images

before refining the segmentation maps using full resolution images.

• Modular design: nnU-Net introduces a modular design that allows for flex-

ibility in configuring the network architecture based on dataset and task re-

quirements. It features various modifications and enhancements to the original

U-Net architecture, with adjustable parameters like batch size, patch size, and

network topology to ensure an effective receptive field size, preventing the loss

of contextual information.

• Multi-Scale feature integration: nnU-Net integrates multi-scale features

from different network levels, aiding in capturing both local and global context,

which is crucial for accurate segmentation in medical images where structures

vary significantly in size.

• Data augmentation and preprocessing: nnU-Net employs advanced data

augmentation techniques to enhance model robustness and improve generaliza-

tion. This is particularly vital in medical imaging where datasets may be limited

and highly imbalanced. Examples of augmentations include scaling, Gaussian

blur, rotation, Gaussian noise, and variations in brightness and contrast.

• Loss function: nnU-Net typically uses a specialized loss function tailored for

medical image segmentation, accommodating class imbalance, spatial proximity,

and class-specific characteristics of medical structures. This function combines

Dice loss and cross-entropy loss.
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• Training strategies: nnU-Net utilizes specific training strategies such as pro-

gressive resizing, where the input resolution is gradually increased during train-

ing to help the network learn features at different scales and enhance its adapt-

ability to images of varying resolutions.

• Ensemble learning: Some variants of nnU-Net apply ensemble learning tech-

niques to boost performance. Multiple models trained with different initializa-

tions or architectures are combined for predictions, leading to enhanced seg-

mentation accuracy and robustness.

• Application in medical imaging: nnU-Net is primarily applied to medical

imaging tasks such as organ segmentation, tumor detection, and anomaly lo-

calization. Its precise delineation of regions of interest from medical images is

crucial for treatment planning, disease diagnosis, and monitoring.

nnU-Net distills domain knowledge into three groups of parameters: fixed, rule-based,

and empirical.

• Fixed parameters: These parameters do not require adaptation between

datasets, such as architecture template, optimizer, learning rate, loss function,

and data augmentation. They are set by the developer at the beginning of the

experiments, and the model’s performance ultimately depends on these choices.

• Rule-based parameters: The authors of nnU-Net have set heuristic rules in

the form of explicit dependencies to calculate certain design choices (like patch

size, batch size, and network configuration) based on the dataset fingerprint.

The dataset fingerprint refers to a collection of characteristics captured from
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the dataset, such as image size, voxel spacing information, class ratios, intensity

distribution, and median shape. Examples of these rule-based decisions include:

– Image resampling strategy: For anisotropic images, resampling in-plane is

done with third-order spline and out-of-plane with nearest neighbor inter-

polation. For isotropic images, a third-order spline is used.

– Intensity normalization: For CT images, global dataset percentile clipping

and z-score normalization using the global foreground mean and standard

deviation are performed. For PET, z-score normalization with per-image

mean and standard deviation is applied.

• Empirical parameters: These parameters are adjusted at the end of the

training procedure and include configurations for the post-processing step and

ensemble selection. Non-maximum suppression is applied for post-processing,

treating all foreground classes as one and retaining only the largest compo-

nent. If cross-validation performance improves, this post-processing step is im-

plemented, focusing on the largest component for each individual class. For

ensemble selection, the model variant (2D, 3D, or cascaded 3D) that yields the

highest cross-validation performance is chosen as the final model.

3.3.1 nnU-Net implementation

As discussed, fixed parameters are a subset of parameters in nnU-Net that are not

optimized and are chosen based on the developer’s decision, unlike the other two pa-

rameter groups (rule-based and empirical). Changing these parameters and tracking

the extent to which the results of the segmentation differ is completely dependent
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on the task at hand. Therefore, we decided to choose the loss function as a variable

to tweak and observe how significantly the outputs deviate based on its choice. In

addition to the loss function, we also experimented with the effects of various imaging

modalities used as input. Below are the details of these variational changes:

1. Loss function: We tested five different loss functions to determine if model

performance depends on this choice: Dice loss[93], Cross Entropy (CE) loss[94],

Focal loss[95], a combination of Dice loss and CE loss, and Tversky loss[96].

2. Modality: We experimented with three different modalities: PET only, CT

only, and PET/CT combined.

Initially, we conducted these experiments using 30% of the entire dataset as a pilot

study to observe any significant deviations in the results by adjusting the aforemen-

tioned parameters. After identifying the most effective loss function and modality

combination based on the highest scores from this subset of the dataset, we applied

these settings to conduct a more comprehensive analysis on the entire dataset. Below

are the formulas for the loss functions in a binary pixel classification scenario:

CE loss:

CE(p, y) = −y log(p) − (1 − y) log(1 − p) (3.3.1)

p = predicted probability of a pixel belonging to the positive class

y = true label of the pixel

Focal loss:
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FL(p, α, γ, y) = −αy(1 − p)γ log(p) − (1 − α)(1 − y)pγ log(1 − p) (3.3.2)

p = predicted probability of a pixel belonging to the positive class

γ : a tunable focusing parameter to adjust the rate at which easy examples are down-weighted

α : weighting factor

y : true label of a pixel

For any value of γ > 0, the misclassified samples can be controlled to be penalized

more for hard samples, adapting the network to learn better representations for these

data. For γ = 0, Focal loss is the same as α-balanced CE loss. The parameter α is

used to address the class imbalance problem. In our experiments, we set γ = 2 and

α = 0.5.

Dice loss:

DL =
FP + FN

2TP + FP + FN
(3.3.3)

TP = True positive , FP = False positive , FN = False negative

Tversky loss:

TL =
2TP

2TP + αFP + βFN
(3.3.4)

TP = True positive , FP = False positive , FN = False negative

(α, β) = Hyperparameters that control the balance between false positives and false

negatives

Tversky loss is similar to Dice loss but addresses the class imbalance problem by

weighting false predictions differently. For a higher Recall, normally a higher value of

β is adopted, whereas for higher Precision, higher α is chosen[97]. In our experiments,
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we set α = 0.3 and β = 0.7.

Following extensive experiments documented in Appendix A for our pilot study,

we determined that the Focal loss with the PET/CT combination yielded the high-

est Dice scores. Consequently, we proceeded with these parameters for our broader

analysis of the entire dataset.

3.3.2 nnU-Net model implementation and evaluation on the

entire dataset

The nnU-Net model was tested under the following conditions:

• No data augmentation was applied.

• Image spacing was adjusted to isotropic [2, 2, 2]mm.

• Validation was performed using 5-fold cross-validation.

• Focal loss (this loss function yielded the highest score among other loss functions

as illustrated in Appendix A)

• PET images in conjunction with CT images were used (as this combination

yielded the highest score in Appendix A)

• Training was conducted for 1000 epochs in each fold to obtain the fold-specific

final model.
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3.4 Segment Anything Model (SAM) with nnU-

Net prompts

3.4.1 SAM

SAM[8], from the Segment Anything (SA) project by Meta Inc. (Figure 3.7), is a

foundation model for image segmentation that aims to generalize image segmentation

task towards a variety of images and pre-conditions (also called prompts). Foundation

models are based on transformer architecture and are trained on a vast, diverse,

rich, and versatile data that can be adapted to perform segmentation, classification,

and other tasks[98], which led to significant advancements in the Natural Language

Processing (NLP) domain, initially. These models are characterized to serve as a

base model upon which specialized capabilities can be established. Examples of these

architectures are BERT[99], GPT-3[100], and DALL-E[101], which are specialized in

domains such as language, vision, etc.

SAM was trained on a dataset (called SA-1B) which contains over 1 billion masks

on 11 million images, making it a powerful and large foundation model able to perform

segmentation tasks using prompts. The different components of SAM are explained

as follows:

• Task Definition (Promptable Segmentation):

– The task involves generating valid segmentation masks from any segmen-

tation prompt, facilitating zero-shot generalization. Prompts are task-

specific instructions designed to guide the model towards a desired output[102].

In the case of computer vision and image segmentation, this prompt could
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be in many forms. In the case of SAM, box, point, and text prompts are

supported. In Figures 3.5 and 3.6, examples of box and point prompts are

presented, respectively.

– The model ensures that at least one resulting mask is meaningful, even

when the prompt is ambiguous.

• Model Architecture:

– SAM comprises an image encoder, a prompt encoder, and a mask decoder.

– The image encoder processes high-resolution inputs to produce image em-

beddings.

– The prompt encoder handles various types of prompts, embedding them

into a unified representation.

– The mask decoder generates segmentation masks based on combined image

and prompt embeddings, efficiently computing masks in real-time.

3.4.2 SAM implementation

We considered providing box prompts to SAM as it was shown to be more effective

than providing point prompts[103]. These prompts are rectangle boxes surrounding

the lesion areas from the predicted segmentations by the nnU-Net.

The nnU-Net algorithm tends to undersegment the tumor regions. To address this

issue, we conducted an experiment where we first dilated the 3D lesion components

obtained through connected component analysis on the predicted segmentation masks

from the trained nnU-Net algorithm. This dilation was performed along the x, y, and

z axes using a random pixel expansion ranging from 1 to 5. Subsequently, we enclosed
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the tumor regions in 2D slices with bounding boxes and input these into the SAM

algorithm, as SAM accepts 2D images. Examples of the dilation process are depicted

in Figure 3.4. The code for the dilation and connected component analysis is provided

in Appendix B.

This approach was tested under these variations:

• SAM was initially pre-trained using colored natural images; therefore, it takes

input 2D images in three channels. Different permutations were analyzed for

possible channel combinations: 3 PET, 2 PET and 1 CT, and 1 PET and 2 CT.

The purpose of this test was to determine the extent to which each modality

contributes towards improved segmentation outcomes.

• Box prompts from both dilated and non-dilated lesion components were tested.

In total, three channel combinations along with two versions for both the dilated

and non-dilated formats, resulted in 3 × 2 = 6 different testing configurations.
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Figure 3.4: Comparison of dilated segmentation map (left) versus the original
segmentation map (right). Adopted from[6]

Here are the inference settings for SAM:

• The biggest image encoder was utilized (ViT-H) with 636M parameters which

outputs higher quality image representations.

• Contrast stretching was applied on the SUV images. The maximum SUV was

mapped to 255, and the image data type was converted to unsigned integer with

8 bits (code available in Appendix B).

• Windowing and normalization were performed as pre-processing steps for CT

images. A window level of 40 and a window width of 400 was selected[28].

After clipping the CT image values, they were normalized between the values

of 0 − 255 and data type was converted to unsigned integer with 8 bits (code

available in Appendix B)[28].
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• The model was run in inference mode using onnx (Open Neural Network Ex-

change) format[104]. The prompt encoder and mask decoder of SAM are

lightweight, allowing it to run on any platform that support onnx-runtime.

Onnx models are scalable, platform- and framework-independent, and fast for

deployment in various applications.

The ONNX model incorporates the original SAM architecture, which includes an

image encoder, a prompt encoder, and a mask decoder. Both the prompt encoder and

mask decoder are lightweight and capable of fast inference. Throughout this thesis,

we use this model in the “SAM with nnU-Net prompts” method for inference.
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Figure 3.5: Box prompting in SAM. Adopted
from[7]

Figure 3.6: Point prompting in SAM. Adopted
from[7]

Figure 3.7: SAM architecture. Adopted from[8]
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3.5 Swin-Unet

Swin-Unet[9] integrates the Swin Transformer architecture[105], tailored for vision

tasks, with the skip connection strategy from the U-net architecture (Figure 3.8).

It outperformed many other architectures (CNN-based or transformer-based) on the

organ segmentation task on Synapse multi-organ CT dataset[105]. Here are the key

components of the Swin Transformer:

• Shifted windowing: The Swin Transformer uses non-overlapping local win-

dows that shift across layers, reducing computation compared to traditional

transformers that apply global self-attention across all patches.

• Hierarchical structure: Similar to CNNs, it processes features at multiple

scales, beneficial for capturing details necessary for image segmentation across

different scales.

In Swin-Unet, traditional convolutional layers are replaced with Swin Transformer

blocks that function as both encoder and decoder:

• As an encoder, it efficiently captures local features from the input image using

shifted windows.

• As a decoder, it upsamples and refines the segmentation maps.

3.5.1 Swin-Unet implementation

Swin-Unet operates on two-dimensional (2D) images. We first trained the Swin-Unet

using the entire dataset (including 355,147 slices) containing 28,280 positive slices

(almost 8% of the entire dataset) under 5-fold cross-validation. However, the results
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were not satisfactory enough as the model tended to flag the majority of cases as

normal. Hence, we decided to increase the proportion of positive slices in the training

set so that the model observes more malignant slices. Therefore, we selected all

positive slices from the volumes and added normal slices at a ratio of 4:1 to the

number of positive slices, chosen randomly from the rest of slices in each volume. If

the calculated number of normal slices exceeded the total number of slices in a volume,

all the remaining slices in that specific volume was taken. Ultimately, we compiled

approximately 111,394 slices for training the model. It should be noted that only

PET-positive volumes were utilized for training under 5-fold cross-validation, and no

normal volumes were included during either the training or the internal validation

phases.

The Swin-Unet model was implemented and tested under the following conditions:

• A model pre-trained on ImageNet dataset was used[106]. This helps the model

find the optimal parameters for the objective task faster and more efficiently.

• Only PET images were used.

• The batch size is set to 32.

• All images were resized to [224, 224] using nearest-neighbor interpolation.

• The loss function is a combination of Cross-Entropy (CE) and Dice loss[9].

• Stratified-5-fold cross-validation was conducted. This strategy ensures that

there is a balanced number of positive slices in each fold.
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• Within each fold, 80% of the patients among the 513 PET-positive image vol-

umes was allocated for development (70% for training, 10% for internal valida-

tion), and 20% for testing.

• The test set features unique patients, ensuring no overlap with the training or

internal validation sets. However, there were slices present in the training and

internal validation sets which belonged to the same patient.

• All volumes used in the development part of this study showed PET-positive

indications. Upon completion, we saved and evaluated the performance of the

five models resulting from each fold. We also tested the normal volumes using

one of the trained models obtained from a cross-validation-fold.
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Figure 3.8: Swin-Unet architecture. Adopted from[9]
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3.6 Evaluation metrics

To assess our methods, we used several crucial metrics: Dice score, Precision, Sensitiv-

ity (Recall), False Negative Rate (FNR), and Specificity. These metrics are computed

at the volume level, not slice level.

The formulas for these metrics are:

Dice Score =
2TP

2TP + FP + FN
(3.6.1)

Precision =
TP

TP + FP
(3.6.2)

Sensitivity =
TP

TP + FN
(3.6.3)

FNR =
FN

FN + TP
(3.6.4)

Specificity =
TN

TN + FP
(3.6.5)

Where TP is true positive, TN is true negative, FP is false positive, and FN is

false negative. A “True” scenario refers to correctly identified pixels in the prediction

map: True Positive for correctly identified cancer pixels and True Negative for normal

pixels. Conversely, a “False” scenario refers to inaccurately predicted pixels: False

Negative for cancer pixels misidentified as normal, and False Positive for normal

pixels incorrectly flagged as cancerous.

Spearman correlation coefficient is another measurement reported which calculates

the strength of correlation between two ranked variables.

ρ = 1 − 6
∑
d2i

n(n2 − 1)
(3.6.6)
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Where:

• di is the difference between the ranks of corresponding values xi and yi.

• n is the number of observations.

If the ranks of two variables are identical, the Spearman coefficient will be +1,

indicating a perfect monotonic relationship. This means that both variables consis-

tently increase or decrease together, following a monotonic function.

For all algorithms, we ensured to carry out the proper inference using the corre-

sponding model to which the image volume of the test set belongs. For Swin-Unet

specifically, in terms of normal volumes, we only chose the trained model from the

fourth CV fold as it demonstrated the best performance in identifying normal cases.

3.7 Analysis paradigm

We performed two categories of analyses: volume-level and lesion component-level.

The volume-level analysis involves comparing the predicted segmentations with the

provided ground truth (considering all lesions as foreground) and computing relevant

metrics for comparison. The lesion component-level analysis computes metrics for

different lesion components (using the labels provided by the connected-component

analysis) in each volume.

The first approach predominates in most research articles in the literature. How-

ever, the second type of assessment is not well-explored or detailed. This type of

analysis is particularly useful for automated imaging biomarker analysis.
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Another aspect of our analysis is evaluating the performance of various algorithms

concerning different types of cancer. This perspective is often overlooked in the

literature, but we aim to identify any significant and meaningful patterns in our

results in this regard.

All segmentation models identify the lesions as foreground, marked by a single

label with an intensity of 1. These are considered predicted positives, while the rest

are considered predicted negatives. These classifications are used to calculate the

metrics (3.6.1 - 3.6.5) as part of our volume-wise analysis for each cancer type and

all cancers combined. An average of all the metrics over the number of volumes for

which the scores are real numbers (not NaNs) are reported. Additionally, we note

the missing rate (the percentage of cancer image volumes and cancer pixels missed).

We closely examine the misclassification of normal image volumes as having posi-

tive predictions for pixels. We also analyze the segmentation performance (using Dice

scores) against the total lesion spread, i.e., the overall tumor volume in an image vol-

ume. Additionally, we provide visual examples of the predicted segmentation against

the ground truth in patients with the highest overall tumor volume, using the slice

with the highest tumor volume.

We applied the same connected component analysis to the predicted segmentation

volumes to identify different lesion components within the predictions. We tabulated

the number of 3D lesions per image volume in the ground truth and the predicted

segmentations across all evaluated models (nnU-Net, “SAM with nnU-Net prompts”

for different channel combinations, and Swin-Unet). We calculated Spearman’s rank

correlation for the number of lesion components in the ground truth versus the pre-

dictions for each of the three cancer types and for all cancers combined.
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Dice scores were calculated between each pair of a ground truth lesion compo-

nent and a predicted lesion component. The average and largest of these lesion

component-wise Dice scores was obtained for each of the three cancer types and for

all cancers combined. Then, the median and the range of these average and largest

lesion component-wise Dice scores were calculated for each cancer type and for all

cancers together. These scores were also compared with the median volume-wise Dice

scores. We also captured the percentage of the highest Dice scores stemming from

the largest lesion in the ground truth volume.
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Chapter 4

Results

4.1 Volume-wise analysis

4.1.1 Cancer type-specific performance

As depicted in Figures 4.1, 4.2, and 4.3, 4.4, the nnU-Net algorithm consistently

outperforms the other two approaches with respect to all performance metrics, across

all three cancer types.

Furthermore, we noted that the fewer PET channels we used in the “SAM with

nnU-Net prompts” experiment, the lower the scores became. This illustrates that

PET modality is the primary modality (between PET and CT) contributing to tumor

delineation and our initial hypothesis on using CT modality to provide the algorithms

with skeleton details and help with a more precise boundary, fails for SAM. Addi-

tionally, dilation improves all the scores except Precision; the reason is by dilation we

are capturing a larger area and this can potentially increase Dice and Recall scores,

however, we are more likely to flag normal tissues as having cancer resulting in the
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decrease of Precision. Also, dilation decreases FNR which is accomplished mainly

due to the increase in the number of true positives.

Figure 4.1: Comparison among the nnU-Net, SAM with nnU-Net prompts
(indicated as SAM in the legend), and Swin-Unet on lung cancer patients using five

performance measures. ‘Dice’ denotes the Dice score.

Figure 4.2: Comparison among the nnU-Net, SAM with nnU-Net prompts
(indicated as SAM in the legend), and Swin-Unet on lymphoma patients using five

performance measures. ‘Dice’ denotes the Dice score.
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Figure 4.3: Comparison among the nnU-Net, SAM with nnU-Net prompts
(indicated as SAM in the legend), and Swin-Unet on melanoma patients using five

performance measures. ‘Dice’ denotes the Dice score.

Figure 4.4: Comparison among the nnU-Net, SAM with nnU-Net prompts
(indicated as SAM in the legend), and Swin-Unet on three cancers combined using

five performance measures. ‘Dice’ denotes the Dice score
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Figure 4.5: Comparison of cancer evaluation metrics for the nnU-Net method.
‘Dice’ denotes the Dice score, and stars indicate the best scores.

In Figure 4.5, we observe that lung cancer achieves the highest Dice and Preci-

sion scores. This indicates a more reliable tumor segmentation map for lung cancer

compared to the other two cancer types (corresponding figures for other approaches

are included in Appendix A). For lymphoma, we see slightly better Recall and FNR

scores, suggesting a lower likelihood of missing tumor regions relative to the other

cancers. However, this improved detection rate for lymphoma is observed only at

the pixel level within image volumes. At the volume level, as shown in Table 4.1,

lymphoma exhibits the highest miss rate (identified as fully normal) among the three

cancer types, with a rate of 4
145

≈ 2.76%.
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Table 4.1: Number of missed image volumes by cancer type. ‘SAM’ refers to all the
six “SAM with nnU-Net prompts” approaches.

Model
Cancer

lung cancer (168) lymphoma (145) melanoma (188)

nnU-Net 2 4 4
SAM 2 4 4

Swin-Unet 0 0 0

In nnU-Net and “SAM with nnU-Net prompts” experiments, nearly 201
513

= 40% of

normal volumes were successfully flagged as normal, whereas in Swin-Unet approach,

only 7
513

= 1.5% of normal volumes were successfully identified (Table 4.2). This

data indicates that the Swin-Unet algorithm is inclined towards flagging volumes as

positive cases, which can be helpful for not missing the normal volumes, but could

be misleading in some cases, too.

Table 4.2: Number of normal image volumes successfully flagged as normal

Number of image volumes (513 total)
nnU-Net 201

SAM 201
Swin-Unet 7
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Figure 4.6: Dice score versus overall tumor volume

Figure 4.6 suggests that the performance of the three methodologies is not de-

pendent on the total tumor spread within the body. As can be seen, the models

are performing even better for volumes which have relatively smaller tumor spread.

For volumes with a combined tumor spread exceeding 1000 cm3, the three algorithms

tend to show reduced performance compared to those with a total tumor spread below

1000 cm3.

Another takeaway from this figure is that “SAM with nnU-Net prompts” is per-

forming worse than Swin-Unet on volumes whose total tumor spread exceeds 1000

cm3. But in low tumor spread regime, we clearly observe the superiority of nnU-Net,

followed by “SAM with nnU-Net prompts”, and then Swin-Unet.
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4.1.2 Visual examples of segmentation

In Figures 4.7, 4.8 and 4.9, we compare the performance of three methodologies on

a specific slice—the one with the largest tumor spread across all slices in the same

volume. These image volumes contain the largest tumor spread compared to other

image volumes of the same cancer type. We observe that the “SAM with nnU-Net

prompts” algorithm, using 3 PET channels and no dilation, fails to cover most areas.

In contrast, Swin-Unet demonstrates better performance, although this improvement

is only evident in cases where the total tumor spread in the body exceeds cm3.
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Figure 4.7: Visual comparison of the three methods on a particular slice taken from
the patient with the largest tumor volume among all lung cancer patients. This slice

has the largest tumor volume of all slices for this patient.
The SAM experiment uses 3 PET channels and no dilation
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Figure 4.8: Visual comparison of the three methods on a particular slice taken from
the patient with the largest tumor volume among all lymphoma patients. This slice

has the largest tumor volume of all slices for this patient.
The SAM experiment uses 3 PET channels and no dilation
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Figure 4.9: Visual comparison of the three methods on a particular slice taken from
the patient with the largest tumor volume among all melanoma patients. This slice

has the largest tumor volume of all slices for this patient.
The SAM experiment uses 3 PET channels and no dilation
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4.2 Lesion component-wise analysis

Figure 4.10 shows the Spearman correlation coefficient measured on the number of

connected components in the ground truth and the number of connected components

in the prediction maps. As can be seen, for nnU-Net and “SAM with nnU-Net

prompts” experiments, we observe a better correlation between the number of lesion

components generated in the prediction map and that of ground truth compared to

Swin-Unet. This means that Swin-Unet usually fails to follow the true number of

lesion components in the image volume, which was foreseeable as it is a 2D method,

compared to the other two 3D methods.

Figure 4.10: Spearman correlation between the number of connected components in
the ground truth and the number of connected components in the prediction map

As shown in Tables (4.3, 4.4, 4.5, 4.6), nnU-Net consistently outperforms other al-

gorithms in terms of median and average/highest lesion component-wise Dice scores,

median volume-wise Dice scores, and the percentage of image volumes for which the
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highest lesion component-wise Dice score is obtained from the largest lesion com-

ponent in the body. Swin-Unet manifested comparable results to nnU-Net when

delineating the largest tumor lesion in the body according to Table 4.6. SAM, how-

ever, did not have a satisfactory outcome for segmenting largest tumor lesion despite

being prompted.

We also note that the volume-wise segmentation performance across cancer types

and all cancers combined (Tables 4.3, 4.4, and 4.5) is closer to the median highest

Dice scores rather than the median average Dice scores across the components for lung

cancer and lymphoma. For all models, the largest lesion component contributed to

the best segmentation in 71% to 91% of the image volumes for lung cancer. However,

this was reduced for lymphoma (58% - 88%) and melanoma (57% - 76%) as shown

in Table 4.6 (the accumulated number of lesion component pairs considered for Dice

scores calculation is shown in Table 4.7). However, this trend only holds for 6 out of 8

models (with the exception of SAM with nnU-Net prompts with 2 PET 1 CT, and 1

PET 2 CT both with no dilation experiments). Therefore, we can state that in most

cancerous image volumes, the largest component in the ground truth contributed

to the highest Dice score. Given the 91% inclusion of largest components in highest

lesion component-wise Dice score for nnU-Net, we can say that lung cancer biomarkers

could be extracted more reliably from the largest lesion component automatically

using nnU-Net using both modalities (PET/CT).
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Table 4.3: Median average lesion component-wise Dice score (Range).
Bold numbers indicate the highest values obtained for each cancer type and

combined.
D: dilation, ND: no dilation

Model
Cancer type

Lung cancer Lymphoma Melanoma Cancers combined

nnU-Net 0.43 (0.07 - 0.94) 0.39 (0.03 - 0.95) 0.49 (0.02 - 0.96) 0.44 (0.02 - 0.96)
SAM(3PET+ND) 0.37 (0.05 - 0.90) 0.26 (0.02 - 0.94) 0.45 (0.02 - 0.93) 0.39 (0.02 - 0.94)
SAM(3PET+D) 0.38 (0.09 - 0.88) 0.28 (0.02 - 0.90) 0.38 (0.02 - 0.91) 0.36 (0.02 - 0.91)
SAM(2PET1CT+ND) 0.26 (0.03 - 0.88) 0.19 (0.01 - 0.87) 0.40 (0.02 - 0.92) 0.31 (0.01 - 0.92)
SAM(2PET1CT+D) 0.29 (0.06 - 0.87) 0.18 (0.02 - 0.89) 0.34 (0.02 - 0.89) 0.29 (0.02 - 0.89)
SAM(1PET2CT+ND) 0.25 (0.03 - 0.89) 0.20 (0.01 - 0.89) 0.40 (0.02 - 0.90) 0.31 (0.01 - 0.90)
SAM(1PET2CT+D) 0.28 (0.03 - 0.85) 0.18 (0.01 - 0.87) 0.34 (0.02 - 0.90) 0.28 (0.01 - 0.90)
Swin-Unet 0.40 (0.15 - 0.91) 0.32 (0.03 - 0.90) 0.39 (0.02 - 0.93) 0.37 (0.02 - 0.93)

Table 4.4: Median highest lesion component-wise Dice score (Range).
Bold numbers indicate the highest values obtained for each cancer type and

combined.
D: dilation, ND: no dilation

Model
Cancer type

Lung cancer Lymphoma Melanoma Cancers combined

nnU-Net 0.86 (0.07 - 0.96) 0.83 (0.06 - 0.98) 0.85 (0.06 - 0.98) 0.85 (0.06 - 0.98)
SAM(3PET+ND) 0.69 (0.21 - 0.90) 0.60 (0.09 - 0.94) 0.73 (0.42 - 0.95) 0.67 (0.09 - 0.95)
SAM(3PET+D) 0.70 (0.32 - 0.88) 0.62 (0.10 - 0.94) 0.63 (0.21 - 0.91) 0.67 (0.10 - 0.94)
SAM(2PET1CT+ND) 0.57 (0.08 - 0.88) 0.52 (0.09 - 0.92) 0.64 (0.31 - 0.92) 0.58 (0.08 - 0.92)
SAM(2PET1CT+D) 0.56 (0.09 - 0.90) 0.51 (0.10 - 0.92) 0.56 (0.12 - 0.92) 0.55 (0.09 - 0.92)
SAM(1PET2CT+ND) 0.55 (0.08 - 0.89) 0.52 (0.08 - 0.92) 0.63 (0.37 - 0.92) 0.57 (0.08 - 0.92)
SAM(1PET2CT+D) 0.55 (0.15 - 0.86) 0.51 (0.12 - 0.90) 0.57 (0.28 - 0.92) 0.54 (0.12 - 0.92)
Swin-Unet 0.78 (0.25 - 0.91) 0.70 (0.03 - 0.92) 0.62 (0.12 - 0.93) 0.72 (0.03 - 0.93)

Table 4.5: Median volume-wise Dice score (Range).
Bold numbers indicate the highest values obtained for each cancer type and

combined.
D: dilation, ND: no dilation

Model
Cancer type

Lung cancer Lymphoma Melanoma Cancers combined

nnU-Net 0.80 (0 - 0.94) 0.81 (0 - 0.97) 0.75 (0 - 0.96) 0.79 (0 - 0.97)
SAM(3PET+ND) 0.62 (0 - 0.88) 0.61 (0 - 0.92) 0.64 (0 - 0.93) 0.63 ( 0 - 0.93)
SAM(3PET+D) 0.65 (0 - 0.85) 0.65 (0 - 0.92) 0.56 (0 - 0.90) 0.63 (0 - 0.92)
SAM(2PET1CT+ND) 0.52 (0 - 0.88) 0.48 (0 - 0.87) 0.55 (0 - 0.92) 0.51 (0 - 0.92)
SAM(2PET1CT+D) 0.53 (0 - 0.87) 0.48 (0 - 0.86) 0.44 (0 - 0.92) 0.50 (0 - 0.92)
SAM(1PET2CT+ND) 0.50 (0 - 0.89) 0.48 (0 - 0.86) 0.54 (0 - 0.92) 0.51 (0 - 0.92)
SAM(1PET2CT+D) 0.51 (0 - 0.84) 0.48 (0 - 0.85) 0.44 (0 - 0.92) 0.48 (0 - 0.92)
Swin-Unet 0.50 (0 - 0.62) 0.48 (0 - 0.61) 0.35 (0 - 0.61) 0.45 (0 - 0.62)
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Table 4.6: Percentage of image volumes for which the highest lesion component-wise
Dice score was obtained from the largest lesion component in the ground truth.

Bold numbers indicate the highest values obtained for each cancer type and
combined.

D: dilation, ND: no dilation

Model
Cancer type

Lung cancer Lymphoma Melanoma Cancers combined

nnU-Net 90.48 87.59 75.53 84.03
SAM(3PET+ND) 80.36 68.27 62.77 70.26
SAM(3PET+D) 83.93 73.79 67.55 74.85
SAM(2PET1CT+ND) 71.43 58.62 60.11 63.47
SAM(2PET1CT+D) 71.43 62.76 59.04 64.27
SAM(1PET2CT+ND) 71.43 57.93 60.64 63.47
SAM(1PET2CT+D) 70.83 64.83 56.91 63.87
Swin-Unet 87.50 78.62 57.45 73.65

Table 4.7: Number of lesion-component pairs (lesion-component from ground truth
versus that from predicted segmentation map) for which the calculated Dice scores

are not zero.
D: dilation, ND: no dilation

Model
Cancer type

Lung cancer Lymphoma Melanoma Cancers combined

nnU-Net 1488 2255 2483 6226
SAM(3PET+ND) 1667 2875 2623 7165
SAM(3PET+D) 1608 2763 2617 6988
SAM(2PET1CT+ND) 1510 2145 1783 5438
SAM(2PET1CT+D) 1418 2065 1759 5942
SAM(1PET2CT+ND) 1513 2174 1804 5491
SAM(1PET2CT+D) 1433 2081 1793 5307
Swin-Unet 1452 2581 2737 6770
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Chapter 5

Discussion

In this thesis, we evaluated the performance of three deep learning-based models

for segmenting tumors in a whole-body PET/CT dataset from The Cancer Imaging

Archive (TCIA). The models assessed include a convolutional neural network (nnU-

Net), a transformer-based model (Swin-Unet), and a hybrid model that combines

both of them (SAM with nnU-Net prompts).

Our evaluations were conducted in two categories: volume-wise and lesion component-

wise. The volume-wise evaluation involves computing metrics across the entire 3D

volume, while the lesion component-wise evaluation focuses on calculating metrics

for individual lesion components within the volume. Additionally, we compared the

performance of these models across different cancer types provided in the dataset,

namely lung cancer, melanoma, and lymphoma.

Overall, our results verify the superiority of nnU-Net model compared to the

others. The average volume-wise Dice score over all cancer types for nnU-Net, “SAM

with nnU-Net prompts with 3 PET channels and no dilation”, and for Swin-Unet,

are 69.22%, 57.20%, and 39.36% respectively. The rest of the “SAM with nnU-Net
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prompts” experiments showed inferior results with 2 CT, 1 PET channels and dilation

method maintaining the lowest Dice score of 46%. In terms of lesion component-wise

analysis, we computed the Dice scores between all the isolated lesion component pairs

in the ground truth and prediction maps. nnU-Net obtains a median largest lesion

component-wise Dice score of 85%, followed by 67% for “SAM with nnU-Net prompts

with 3 PET channels and no dilation”, and 72% for Swin-Unet on three cancer types

combined. The least median largest lesion component-wise Dice score belonged to

“SAM with nnU-Net prompts with 2 CT, 1 PET channels and with dilation” with a

Dice score of 54%.

Considering volume-wise analyses with respect to cancer types, lung cancer consis-

tently holds the highest Precision score. Out of 8 models, 7 reported the highest Dice

score on lung cancer image volumes. Out of 8 models, 6 reported the best Recall and

FNR scores for melanoma image volumes, while the other two models held this title

in favor of lymphoma patients. Therefore, with melanoma and lymphoma volumes,

it is less likely that we miss the tumor areas, but at the cost of reduced Precision.

We compared our results with A Alloula et. al,[107] which used nnU-Net on the

same dataset in AutoPET 2023 challenge[108]. They used 90% of the dataset for

training and cross-validated on the remaining 10%. They reported an overall Dice

score of 74.3% on the validation set without providing a breakdown of the results

with respect to the cancer types. Another study[90] used nnU-Net on the same

dataset, performed 5-fold cross-validation, and reported 73% mean Dice score over

the positive cases. Our overall mean Dice score over the positive cases, was 69.22%.

The deviation among the results could possibly stem from the different data split

between folds considered in our experiments and theirs.
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The nnU-Net algorithm successfully captures most tumor areas, accurately iden-

tified normal patients (201 out of 513), and infrequently flagged normal patients as

positive. While the model is well-documented and explained on the authors’ GitHub

page, some fundamental information about the model remain vague. For instance,

the process of computing the pseudo Dice score is not well-explained; it is unclear how

random patches are sampled and in what proportion to the size of the validation set.

Additionally, it is not specified whether an internal validation set is used when per-

forming 5-fold cross-validation. It remains uncertain whether the pseudo Dice score

closely aligns with the actual Dice score, regardless of the imaging modality and data

imbalance in the datasets.

The “SAM with nnU-Net prompts” experiments demonstrated a close relationship

with nnU-Net but performed poorly for patients with large tumor volumes (Figure

4.6). This issue is particularly concerning for lung cancer patients, as the largest

tumor components in these patients are typically located in the lungs. Random

dilation did not yield the expected results; while it improved the Dice, Recall, and

FNR scores, it decreased Precision. Therefore, its utilization is contingent upon

specific use case. Though there is a very recent fine-tuned version of SAM for medical

images[28] (called MedSAM); it is already trained on the same PET/CT dataset from

TCIA, making it unsuitable for evaluation in our study.
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Chapter 6

Limitations

There were several limitations associated with this study. For instance, Swin-Unet

is a novel architecture that combines the skip-connections inherited from U-Net with

a transformer. This model took significantly longer to train compared to nnU-Net

(one month versus five days). We attempted to train a 3D version of Swin-Unet,

but our hardware could not support large batch sizes due to GPU RAM limitations.

To address this issue, we employed a method called “gradient accumulation”[109]

where instead of updating the model’s weights after every batch, we passed mini-

batches and updated the model’s weights after a specific number of time-steps (in

this case, the number of slices in each image volume). However, the first fold of

this 3D version of Swin-Unet model (trained on the same dataset as the 2D Swin-

Unet in this thesis, subsection 3.5.1) did not perform adequately. Consequently, we

halted this experiment and ruled it out, as training the model on the entire dataset

would have taken considerably more time on our servers. We conducted stratified

5-fold cross-validation to ensure a balanced number of positive and negative slices in

each fold. The 2D version of the model performed decently for patients with tumors
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spread throughout their body but underperformed for low-volume tumors, where SAM

showed better results. Additionally, Swin-Unet tended to flag most image volumes as

PET-positive. The performance of Swin-UNet can improve with better experimental

set-up, including hardware.

Lesion-wise analysis was a crucial aspect of this research, as it aids in the eval-

uation of quantitative imaging biomarkers—a subject less thoroughly investigated

compared to other areas. We conducted several analyses, including calculating Dice

scores between all connected component pairs in the ground truth and the prediction

maps. For example, if the ground truth contained 5 connected components and the

prediction map had 3, we performed 5×3 = 15 Dice score calculations for that specific

volume. During lesion component-wise analysis, we relied heavily on the connected

component analysis algorithm to identify the lesion components in the absence of

expert-provided ground truth for connected lesions. If individual lesions in image

volumes were labeled distinctly by experts apriori, we could have approached the

segmentation problem from the perspective of instance segmentation. Within the

stipulated time frame of this research work and the limited clinical data available, it

was not feasible to obtain adequate information on the instances of the lesions. In

the absence of expert-provided instance labels for the lesions, we mapped the ground

truth lesions to the predicted lesions (from each of the eight models) based on the

overlap of lesion components between the ground truth and the predicted segmenta-

tions.

We are obtaining better results using PET alone or in combination with CT

(PET/CT), but not with CT alone. Since we are unaware whether metabolic pri-

oritization was applied to the provided ground truth labels, we cannot comment on
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whether this is a factor contributing to the better performance

Overall, the research works we reviewed on tumor segmentation in PET/CT im-

ages using automated approaches predominantly focused on the engineering aspects,

with less emphasis on medical interpretation and collaboration with medical experts

to refine their models for real-world applications. Therefore, we advocate for the avail-

ability of newer and richer datasets for developers and scientists to construct more

robust and clinically meaningful models. An increased variety of datasets would facil-

itate the testing of algorithms on out-of-distribution data, thereby enabling a better

assessment of the models’ generalization capabilities.

We also recognized some potential architectures and solutions that could have been

analyzed for the problem of tumor segmentation using PET/CT modalities ( specially

transformer-based models), namely Trans-Unet [86], UNETR [110], and Segmenter

[111].

Transformer-based models, equipped with the self-attention mechanism, are theo-

retically more powerful than CNNs due to their ability to capture long-range relations

and dependencies in the data. However, our results demonstrated the superiority

of nnU-Net, which is based on CNNs. This discrepancy could be attributed to the

dataset size, as transformer-based models tend to perform better with larger datasets,

whereas models with inductive biases like CNNs perform better with smaller datasets.

Additionally, our experimental setup may have influenced the outcomes. Studies sug-

gest that the combination of transformers and U-Net is suitable for segmentation[112].

This could be a potential direction for future work stemming from this thesis.

77

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/msbe/


Chapter 7

Conclusion and Future Works

This thesis evaluated the performance of three recent deep learning-based approaches

for segmenting tumors/lesions in whole-body PET/CT images from The Cancer Imag-

ing Archive (TCIA) dataset. The models assessed were nnU-Net (a CNN-based

approach), Swin-Unet (a transformer-based model), and a hybrid model combining

nnU-Net with the Segment Anything Model (SAM). Our evaluations were conducted

at both the volume-wise and lesion component-wise levels, across three cancer types:

lung cancer, melanoma, and lymphoma, as well as normal cases present in the dataset.

The nnU-Net algorithm demonstrated superior performance overall, achieving the

highest volume-wise Dice scores and successfully identifying the majority of tumor ar-

eas. It was particularly effective at identifying normal patients by flagging fewer false

positives compared to the other models. In contrast, Swin-Unet showed a tendency to

over-segment, marking many tissue areas as PET-positive, and needed significantly

more training time given the available hardware resources. The hybrid approach us-

ing “SAM with nnU-Net prompts” showed potential but underperformed for patients
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with large tumor volumes, especially lung cancer. The nnU-Net and SAM models in-

correctly flagged 2, 4, and 4 image volumes of lung cancer, lymphoma, and melanoma

patients as normal, respectively, whereas Swin-Unet did not miss any malignant vol-

ume. This indicates that the performance of each model varies across cancer types,

with melanoma and lymphoma patients being the most susceptible to missed detec-

tions. Out of 513 normal volumes, 201 were successfully identified by nnU-Net and

SAM, but only 7 were accurately flagged as normal by Swin-Unet. Therefore, nnU-

Net and “SAM with nnU-Net prompts” models show superiority in terms of correctly

identifying the normal patients.

Our analyses revealed the importance of model selection based on specific appli-

cation needs and highlighted the limitations of current datasets and methodologies.

While nnU-Net performed well overall, the results suggest that more robust and varied

datasets are needed to improve the generalizability of these models. Additionally, the

unavailability of instance-related details in the ground truth segmentations limited

the scope of our methodology and analysis. In the future, we expect richer datasets

to emerge, where the problem of instance segmentation in different cancer types can

be handled more efficiently by better models.
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Appendix A

A.1 nnU-Net model evaluation on partial dataset

The details of the training procedure for this partial dataset are listed below:

• Number of patients: 270 (297 image volumes).

• Training set: 231 volumes; Testing set: 66 volumes (approximately a 78/22%

split).

• The dataset split is depicted in Table A.1.

• No data augmentation was performed, as recommended by the authors.

• The original anisotropic spacing was modified from [2.03642, 2.03642, 3],mm to

isotropic [2, 2, 2],mm spacing.

• We utilized 5-fold cross-validation to mitigate the risk of overfitting and reduce

bias.

• Experiments were conducted over 1,000 epochs.
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Category
Split

Train Test

Normal images 111 25
Malignant images 120 41

Table A.1: Train/test split in partial dataset for nnU-Net

• A total of 15 models were trained for performance comparison, involving 5 loss

functions and 3 variations in modalities.

At the end of training each model, two types of model weights are saved; one with

the lowest training loss saved as Best, and one saved at the end of the 1000th epoch

saved as Final.

Loss function Test/Final Test/Best
Focal 11 6
Dice 4 1
CE 11 2

Tversky 2 1
Dice+CE 1 1

Table A.2: Normal cases successfully
identified using PET only (out of 25)

Loss function Test/Final Test/Best
Focal 1 1
Dice 1 0
CE 1 1

Tversky 0 0
Dice+CE 0 0

Table A.3: Malignant cases identified as
normal using PET only (out of 111)

Loss function
Dice Precision Recall

Test/Final Test/Best Test/Final Test/Best Test/Final Test/Best
Focal 45.4 41.44 60.3 54.27 61.96 62.57
Dice 42.32 37.39 51.26 43.67 67.63 66.75
CE 47.75 39.97 63.56 48.67 62.66 63.74

Tversky 39.84 39.04 46.12 43.81 67.1 69.25
Dice+CE 38.29 36.78 44.65 43.53 65.71 65.68

Table A.4: Performance evaluation metrics for partial dataset trained on PET only,
evaluated on the entire dataset
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Loss function
Dice Precision Recall

Test/Final Test/Best Test/Final Test/Best Test/Final Test/Best
Focal 60.9 60.65 81.4 80.05 61.96 62.57
Dice 64 59.29 78.18 70.96 67.63 66.75
CE 64.04 62.39 85.8 76.65 62.66 63.74

Tversky 62.19 61.89 72 69.46 67.1 69.25
Dice+CE 60.7 58.31 70.8 69.02 65.71 65.68

Table A.5: Performance evaluation metrics for partial dataset trained on PET only,
evaluated on positive volumes only

Loss function Test/Final Test/Best
Focal 17 17
Dice 0 0
CE 21 21

Tversky 0 0
Dice+CE 0 0

Table A.6: Normal cases successfully
identified using CT only (out of 25)

Loss function Test/Final Test/Best
Focal 10 11
Dice 0 0
CE 10 10

Tversky 0 0
Dice+CE 0 0

Table A.7: Malignant cases identified as
normal using CT only (out of 41)

Loss function
Dice Precision Recall

Test/Final Test/Best Test/Final Test/Best Test/Final Test/Best
Focal 27.59 25.64 57.15 59.69 27.97 25.45
Dice 15.14 15.23 15.74 15.56 30.35 31.01
CE 30.86 29.22 60.72 63.68 28.66 27.34

Tversky 16.23 14.7 17.24 15.27 30.02 29.72
Dice+CE 15.64 15.49 16.44 15.87 30.16 31.81

Table A.8: Performance evaluation metrics for partial dataset trained on CT only,
evaluated on the entire dataset

Loss function
Dice Precision Recall

Test/Final Test/Best Test/Final Test/Best Test/Final Test/Best
Focal 32.98 30.64 71.9 75.6 27.97 25.45
Dice 24.37 24.52 25.33 25.05 30.35 31.01
CE 33.87 32.07 68.56 71.9 28.66 27.34

Tversky 26.13 23.66 27.75 24.75 30.02 29.72
Dice+CE 25.18 24.94 26.47 25.54 30.16 31.81

Table A.9: Performance evaluation metrics for partial dataset trained for CT only,
evaluated on positive volumes only
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Loss function Test/Final Test/Best
Focal 12 8
Dice 0 2
CE 10 5

Tversky 7 8
Dice+CE 4 5

Table A.10: Normal cases successfully
identified using PET/CT (out of 25)

Loss function Test/Final Test/Best
Focal 2 2
Dice 0 0
CE 1 1

Tversky 1 1
Dice+CE 0 0

Table A.11: Malignant cases identified
as normal using PET/CT (out of 41)

Loss function
Dice Precision Recall

Test/Final Test/Best Test/Final Test/Best Test/Final Test/Best
Focal 49.5 45.86 62.79 55.79 64.74 67.49
Dice 37.78 39.86 44.01 46.96 66.94 66.24
CE 47.96 44.47 62.04 54.68 64.39 67.41

Tversky 42.83 43.21 53.14 54.15 64.2 63.62
Dice+CE 40.27 38.31 47.29 43.89 66.07 64.61

Table A.12: Performance evaluation metrics for partial dataset trained on PET/CT,
evaluated on the entire dataset

Loss function
Dice Precision Recall

Test/Final Test/Best Test/Final Test/Best Test/Final Test/Best
Focal 65.2 64.88 83.72 80.1 64.74 67.49
Dice 60.82 62.22 70.85 73.31 66.94 66.24
CE 65.51 66.17 85.3 82.02 64.39 67.41

Tversky 61.63 61.13 77.06 77.17 64.2 63.62
Dice+CE 60.89 57 71.51 65.3 66.07 64.61

Table A.13: Performance evaluation metrics for partial dataset trained on PET/CT,
evaluated on positive volumes only
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Figure A.1: Modality and loss function performance comparison for the partial
dataset using nnU-Net

The tables and figure above indicate that the highest scores were achieved using

the PET/CT combination with Focal loss, as shown in Table A.12. Although CE loss

produced better results in some instances compared to Focal loss, the Dice score was

the most critical metric, especially given that the dataset comprises both normal and

malignant volumes.
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A.2 Performance metrics comparison for SAM and

Swin-Unet with respect to cancer type in whole-

body volumes

Figure A.2: Comparison of cancer evaluation metrics for the “SAM with nnU-Net
prompts with 3 PET channels and no dilation” method. ‘Dice’ denotes the Dice

score, and stars indicate the highest score.
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Figure A.3: Comparison of cancer evaluation metrics for the “SAM with nnU-Net
prompts with 3 PET channels and dilation” method. ‘Dice’ denotes the Dice score,

and stars indicate the highest score.

Figure A.4: Comparison of cancer evaluation metrics for the “SAM with nnU-Net
prompts with 2 PET, 1 CT channels and no dilation” method. ‘Dice’ denotes the

Dice score, and stars indicate the highest score.
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Figure A.5: Comparison of cancer evaluation metrics for the “SAM with nnU-Net
prompts with 2 PET, 1 CT channels and dilation” method. ‘Dice’ denotes the Dice

score, and stars indicate the highest score.

Figure A.6: Comparison of cancer evaluation metrics for the “SAM with nnU-Net
prompts with 1 PET, 2 CT channels and no dilation” method. ‘Dice’ denotes the

Dice score, and stars indicate the highest score.
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Figure A.7: Comparison of cancer evaluation metrics for the “SAM with nnU-Net
prompts with 1 PET, 2 CT channels and dilation” method. ‘Dice’ denotes the Dice

score, with and stars indicate the highest score.

88

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/msbe/


M.A.Sc. Thesis – M. Pouromidi; McMaster University – School of Biomedical Engineering

Figure A.8: Comparison of cancer evaluation metrics for the Swin-Unet method.
‘Dice’ denotes the Dice score, with and stars indicate the highest score.
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A.3 Further insight on the dataset and nnU-Net’s

performance

Figure A.9: Distribution of SUVs corresponding to PET-positive malignancy
(presence of cancer) across three cancer types in ground truth.

90

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/msbe/


M.A.Sc. Thesis – M. Pouromidi; McMaster University – School of Biomedical Engineering

Figure A.10: Comparison of True Positive (TP), False Negative (FN) or missing,
and False Positive (FP) pixels distribution in lung cancer patients for nnU-Net

algorithm.

91

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/msbe/


M.A.Sc. Thesis – M. Pouromidi; McMaster University – School of Biomedical Engineering

Figure A.11: Comparison of True Positive (TP), False Negative (FN) or missing,
and False Positive (FP) pixels distribution in lymphoma patients for nnU-Net

algorithm.
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Figure A.12: Comparison of True Positive (TP), False Negative (FN) or missing,
and False Positive (FP) pixels distribution in melanoma patients for nnU-Net

algorithm.

93

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/msbe/


M.A.Sc. Thesis – M. Pouromidi; McMaster University – School of Biomedical Engineering

Figure A.13: Histogram of volumes of all the lesions (ground truth) in lung cancer
patients for nnU-Net algorithm.
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Figure A.14: Histogram of volumes of all the lesions (ground truth) in lymphoma
patients for nnU-Net algorithm.
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Figure A.15: Histogram of volumes of all the lesions (ground truth) in melanoma
patients for nnU-Net algorithm.
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Figure A.16: Maximum SUV captured in lesions. For lesions that were partially
identified (segmented) by nnU-Net, MAX SUV of the identified portion is reported.
For the completely missed lesions, MAX SUV of the whole lesion is reported in lung

cancer patients.
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Figure A.17: Maximum SUV captured in lesions. For lesions that were partially
identified (segmented) by nnU-Net, MAX SUV of the identified portion is reported.
For the completely missed lesions, MAX SUV of the whole lesion is reported in lung

cancer patients with limited x-axis for a better view on the low volume lesions.
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Figure A.18: Maximum SUV captured in lesions. For lesions that were partially
identified (segmented) by nnU-Net, MAX SUV of the identified portion is reported.

For the completely missed lesions, MAX SUV of the whole lesion is reported in
lymphoma patients.
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Figure A.19: Maximum SUV captured in lesions. For lesions that were partially
identified (segmented) by nnU-Net, MAX SUV of the identified portion is reported.

For the completely missed lesions, MAX SUV of the whole lesion is reported in
lymphoma patients with limited x-axis for a better view on the low volume lesions.
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Figure A.20: Maximum SUV captured in lesions. For lesions that were partially
identified (segmented) by nnU-Net, MAX SUV of the identified portion is reported.

For the completely missed lesions, MAX SUV of the whole lesion is reported in
melanoma patients.
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Figure A.21: Maximum SUV captured in lesions. For lesions that were partially
identified (segmented) by nnU-Net, MAX SUV of the identified portion is reported.

For the completely missed lesions, MAX SUV of the whole lesion is reported in
melanoma patients with limited x-axis for a better view on the low volume lesions.
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Figure A.22: Mean SUV captured in lesions. For lesions that were partially
identified (segmented) by nnU-Net, Mean SUV of the identified portion is reported.
For the completely missed lesions, Mean SUV of the whole lesion is reported in lung

cancer patients.
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Figure A.23: Mean SUV captured in lesions. For lesions that were partially
identified (segmented) by nnU-Net, Mean SUV of the identified portion is reported.
For the completely missed lesions, Mean SUV of the whole lesion is reported in lung

cancer patients with limited x-axis for a better view on the low volume lesions.
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Figure A.24: Mean SUV captured in lesions. For lesions that were partially
identified (segmented) by nnU-Net, Mean SUV of the identified portion is reported.

For the completely missed lesions, Mean SUV of the whole lesion is reported in
lymphoma patients.
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Figure A.25: Mean SUV captured in lesions. For lesions that were partially
identified (segmented) by nnU-Net, Mean SUV of the identified portion is reported.

For the completely missed lesions, Mean SUV of the whole lesion is reported in
lymphoma patients with limited x-axis for a better view on the low volume lesions.
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Figure A.26: Mean SUV captured in lesions. For lesions that were partially
identified (segmented) by nnU-Net, Mean SUV of the identified portion is reported.

For the completely missed lesions, Mean SUV of the whole lesion is reported in
melanoma patients.
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Figure A.27: Mean SUV captured in lesions. For lesions that were partially
identified (segmented) by nnU-Net, Mean SUV of the identified portion is reported.

For the completely missed lesions, Mean SUV of the whole lesion is reported in
melanoma patients with limited x-axis for a better view on the low volume lesions.
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Figure A.28: Percentage of each lesion that has been correctly identified with
respect to their volumes in lung cancer patients for nnU-Net algorithm.
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Figure A.29: Percentage of each lesion that has been correctly identified with
respect to their volumes in lung cancer patients with limited x-axis for a better view

on the low volume lesions for nnU-Net algorithm.
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Figure A.30: Percentage of each lesion that has been correctly identified with
respect to their volumes in lymphoma patients for nnU-Net algorithm.

111

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/msbe/


M.A.Sc. Thesis – M. Pouromidi; McMaster University – School of Biomedical Engineering

Figure A.31: Percentage of each lesion that has been correctly identified with
respect to their volumes in lymphoma patients with limited x-axis for a better view

on the low volume lesions for nnU-Net algorithm.
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Figure A.32: Percentage of each lesion that has been correctly identified with
respect to their volumes in melanoma patients for nnU-Net algorithm.
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Figure A.33: Percentage of each lesion that has been correctly identified with
respect to their volumes in melanoma patients with limited x-axis for a better view

on the low volume lesions for nnU-Net algorithm.

114

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/msbe/


Appendix B

B.1 Code for connected component analysis

1 import SimpleITK as sitk

2 import numpy as np

3 import os

4

5 def do component analysis(path, filename):

6 sitkimageobj = sitk.ReadImage(os.path.join(path, filename), sitk.

sitkUInt8)

7 component imageobj = sitk.ConnectedComponent(sitkimageobj)

8 sorted component imageobj = sitk.RelabelComponent(component imageobj

, sortByObjectSize=True)

9 imagearray = sitk.GetArrayFromImage(sorted component imageobj)

10 return np.transpose(imagearray, (1, 2, 0))

Listing B.1: Disconnected component analysis function

B.2 Code for random dilation

1 import random
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2 import numpy as np

3 from scipy.ndimage import binary dilation

4

5 def random dilation(binary image, min size=1, max size=5):

6 # Generate random size for structuring element

7 size x = random.randint(min size, max size)

8 size y = random.randint(min size, max size)

9 size z = random.randint(min size, max size)

10

11 # Create the random−sized structuring element

12 structuring element = np.ones((size x, size y, size z), dtype=bool)

13

14 # Perform dilation

15 return binary dilation(binary image, structure=structuring element)

Listing B.2: Random dilation function

B.3 Code for CT image pre-processing

1 import numpy as np

2

3 def preprocess CT(image):

4 WINDOW LEVEL = 40

5 WINDOW WIDTH = 400

6 lower bound = WINDOW LEVEL − WINDOW WIDTH / 2

7 upper bound = WINDOW LEVEL + WINDOW WIDTH / 2

8 image preprocessed = np.clip(image, lower bound, upper bound)

9 image preprocessed = (

10 (image preprocessed − np.min(image preprocessed))
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11 / (np.max(image preprocessed) − np.min(image preprocessed))

12 * 255.0

13 )

14 return np.uint8(image preprocessed)

Listing B.3: CT image pre-processing

B.4 Code for SUV contrast stretching

1 import numpy as np

2 import cv2

3

4 def contrast stretching(img):

5 minmax img = np.zeros like(img)

6 for i in range(img.shape[2]):

7 minmax img[:, :, i] = cv2.normalize(img[:, :, i], None, 0, 255,

cv2.NORM MINMAX)

8 return minmax img.astype(np.uint8)

Listing B.4: SUV contrast stretching
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