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Lay Abstract

Have you ever wondered how we naturally tap our foot in time with music? This

thesis investigates this human ability, known as sensorimotor synchronization, using

artificial intelligence. By creating artificial agents that learn to tap along with a steady

beat through reinforcement learning—like a person tapping to a metronome—we

aimed to understand how the brain acquires this skill.

Our experiments showed that how we define success, significantly affects how the

agents learn the skill. Notably, when we rewarded both precise timing and consistent

tapping, the agents’ behavior closely resembled that of humans. They even exhibited

a human-like pattern in error correction, making larger adjustments when tapping

too late rather than too early.

This research offers new insights into how our brains process and learn rhythm and

timing. It also lays the groundwork for developing AI systems capable of replicating

human-like timing behaviors, with potential applications in music technology and

robotics.
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Abstract

This thesis investigates the computational principles underlying sensorimotor syn-

chronization (SMS) through the novel application of deep reinforcement learning

(RL). SMS, the coordination of rhythmic movement with external stimuli, is essen-

tial for human activities like music performance and social interaction, yet its neural

mechanisms and learning processes are not fully understood.

We present a computational framework utilizing recurrent neural networks with

Long Short-Term Memory (LSTM) units, trained via RL, to model SMS behavior.

This approach allows for the exploration of how different reward structures shape the

acquisition and execution of synchronization skills. Our model is evaluated on both

steady-state synchronization and perturbation response tasks, paralleling human SMS

studies.

Key findings reveal that agents trained with a combined reward—minimizing next-

beat asynchrony and maintaining interval accuracy—exhibit human-like adaptive be-

haviors. Notably, these agents exhibited asymmetric error correction, making larger

adjustments for late versus early taps, a phenomenon documented in human subjects.

This suggests that such asymmetry may arise from the inherent reward structure of

the task rather than from specific neural architectures. While our model did not con-

sistently reproduce the negative mean asynchrony observed in human steady-state
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tapping, it demonstrated anticipatory behavior in response to perturbations. This

offers new insights into how the brain might learn and execute rhythmic tasks, in-

dicating that anticipatory strategies in human synchronization could naturally arise

from processing rewards and timing errors.

Our work contributes to the growing integration of machine learning techniques

with cognitive neuroscience, offering new computational insights into the acquisition

of timing skills. It establishes a flexible framework, which can be extended for future

investigations in studying more complex rhythms, coordination between individuals,

and even the neural basis of rhythm perception and production.
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Chapter 1

Introduction

The remarkable human ability to synchronize bodily movements to an external au-

ditory rhythm, known as sensorimotor synchronization, is a fundamental skill that

underlies diverse behaviours from basic bodily movements to complex activities such

as speaking and musical performance. Closely intertwined with this is beat percep-

tion - the perception and cognitive tracking of the regular pulse underlying periodic

rhythmic patterns. These capabilities represent complex integrations of auditory, mo-

tor, and cognitive processes that are shaped by multiple factors over the course of

human development.

Numerous empirical investigations have shed light on how sensorimotor synchro-

nization and beat perception are influenced by musical training experience [38]. Indi-

viduals with extensive formal musical training tend to exhibit significantly enhanced

precision and temporal consistency when tapping along with rhythmic auditory stim-

uli compared to non-musician controls. Musically trained participants also demon-

strate improved performance on beat perception tasks that require detecting or dis-

criminating temporal deviations from isochronous sequences. These findings suggest
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that long-term engagement with music and its inherent rhythmic structure can fine-

tune the neural mechanisms underlying synchronization and beat processing abilities.

Moreover, the cultural context in which one is raised also plays a pivotal role. Dif-

ferent musical systems around the world employ diverse rhythmic structures, meters,

and temporal primitives. From a young age, infants are enculturated to the rhyth-

mic patterns and beat biases prominent in their musical environment. Cross-cultural

research has revealed that adult listeners’ metrical interpretations and beat track-

ing tendencies are shaped by their familiarity with the rhythmic properties of their

culture’s music. Sensitivity to canonical rhythmic structures gets reinforced through

repeated exposure during development. For instance, individuals raised in Western

musical traditions may struggle with complex rhythms common in Balkan or African

music, while those from these cultures show enhanced abilities to synchronize with

such rhythms [8].

Intriguingly, the development of sensorimotor synchronization and beat percep-

tion in humans follows a protracted developmental trajectory. Infants younger than

around 2 years old exhibit great difficulty synchronizing body movements to audi-

tory rhythms, failing to consistently match movements to beat locations [56]. This

capacity for rhythmic entrainment gradually emerges over late childhood and con-

tinues improving into adolescence, suggesting an extended developmental process.

In stark contrast, most non-human animal species appear to lack the spontaneous

ability for sensorimotor synchronization, although some primates like monkeys have

been trained using reinforcement learning techniques to tap in synchrony with an

isochronous metronome beat. Moreover, cockatoos and parrots have demonstrated

the capacity to spontaneously synchronize with musical beats [33].
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These observations indicate that while sensorimotor synchronization and beat per-

ception likely have innate biological foundations, their full-fledged expression critically

depends on learning processes that occur over an extended period through interaction

with rhythmic stimuli present in the individual’s environment and culture. The neu-

ral substrates underlying sensorimotor synchronization and beat perception involve

a distributed network of brain regions. Neuroimaging studies have consistently im-

plicated the basal ganglia, cerebellum, premotor cortex, supplementary motor area,

and auditory cortex in these processes [39]. Of particular interest is the role of the

basal ganglia in beat perception and the cerebellum in precise timing. Furthermore,

dopaminergic activity in the basal ganglia has been associated with both reward pro-

cessing and temporal prediction [17], providing a potential neural link between the

rewarding nature of rhythmic synchronization and the underlying timing mechanisms.

Crucially, the act of moving in synchrony with rhythmic auditory stimuli appears

to be intrinsically rewarding, engaging neural reward circuitry in the brain. Stud-

ies have found that the subjective experience of ”groove” when synchronizing body

movements to music involves the intersection of reward processing and the motor

processes underlying beat perception, driven by rhythmic expectation mechanisms

[25]. This suggests that sensorimotor synchronization abilities could be acquired

incrementally through a reinforcement learning process, where successful synchro-

nization is rewarding and reinforces the appropriate temporal predictions and motor

patterns. The reinforcement learning paradigm therefore provides a compelling frame-

work for conceptualizing how these rhythmic skills develop based on the consequences

of synchronization attempts and the rewarding experiences that arise from accurate

synchronization. With each iteration of rewarding synchronization experiences, the
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neural mechanisms for temporal prediction, error correction, and motor entrainment

could become gradually refined and entrenched through this reinforcement process.

The intrinsically rewarding nature of groove may represent a pivotal driver of the pro-

tracted learning trajectory observed in humans as they capitalize on these rewarding

synchronization experiences over development.

Reinforcement learning models are neurally plausible accounts of how learning can

occur in the brain. Numerous neuroscientific studies have identified neural correlates

of reward prediction errors - the core signals driving learning in reinforcement models.

Dopaminergic neurons in the basal ganglia have been found to encode just such reward

prediction error signals [45, 17, 3]. This neural evidence lends plausibility to the idea

that the brain’s sensorimotor timing capacities could be tuned over development using

reinforcement learning mechanisms.

Importantly, reinforcement learning has already proven successful in training non-

human primates like monkeys to synchronize movements to an isochronous metronome

beat, providing a compelling existence proof for this learning approach in sensorimo-

tor timing acquisition [5, 50]. In [5], they explored how monkeys can be trained to

synchronize tapping movements to rhythmic visual or auditory cues. By recording

neural activity in the medial premotor cortex (MPC), the researchers discovered neu-

rons in this region create circular timing patterns that reset with each tap, functioning

like an internal clock for beat synchronization. The speed and rhythm of the tapping

behaviour was reflected in the size and timing of these neural patterns, even across

different sensory modalities. This work provides insight into the brain mechanisms for

processing and synchronizing movements to rhythmic beats, which we aims to capture

computationally with the reinforcement learning model proposed in the following.

4
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To create an empirical model capturing these learning mechanisms for sensori-

motor synchronization, we implement a deep reinforcement learning agent using re-

current neural networks (RNNs), particularly those employing long short-term mem-

ory (LSTM) architectures. RNNs represent neurally-plausible computational models

well-suited for this purpose. They have proven remarkably effective at learning and

encoding time-dependent patterns, rhythmic grammars, and sequence predictions in

a manner analogous to how the brain may engage in temporal information processing

for time keeping, beat induction, and rhythmic prediction. Moreover, the rhythmic

synchronization task we use to train our model agent is directly inspired by exper-

imental paradigms from the neuroscience literature investigating the mechanisms of

temporal processing and timing behaviour. We are simulating a synchronization task,

where the agent is being rewarded for synchronized actions, initiated in anticipation

of the metronome cues. By implementing goal-directed reinforcement learning in an

LSTM agent operating within such a rhythmic synchronization task environment, we

can create an empirical model that captures the incremental acquisition of sensorimo-

tor synchronization that occurs through repeated interaction with rhythmic stimuli

and the consequences of synchronization accuracy.

To further explore the potential of reinforcement learning in modeling sensori-

motor synchronization, we will train our RL agent using different reward policies.

Specifically, we will investigate the effects of calculating rewards based on two dis-

tinct approaches: (1) comparing the agent’s taps to the next beat versus the nearest

beat, and (2) rewarding for asynchrony only versus rewarding for both asynchrony

and interval errors. By implementing these varied reward structures, we aim to un-

derstand how different feedback mechanisms influence the learning and performance

5
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of sensorimotor synchronization tasks. This approach allows us to model and compare

different hypothetical learning scenarios that may occur during human development

or in experimental settings.

After training, we will test our agent on perturbation sensorimotor synchroniza-

tion (SMS) tasks. These tasks, which involve introducing unexpected changes in the

timing of auditory stimuli, have been crucial in understanding error correction mech-

anisms in human sensorimotor synchronization [37]. By examining the agent’s per-

formance in these perturbation tasks, we can assess how well our model captures the

flexibility and error correction capabilities observed in human sensorimotor synchro-

nization. This novel approach of combining varied reward policies with perturbation

testing will provide insights into the learning mechanisms underlying sensorimotor

synchronization and may offer new perspectives on how humans develop and refine

these critical timing skills.

In summary, this thesis aims to develop a novel computational model of sensori-

motor synchronization using deep reinforcement learning with LSTM networks. By

training this model on a tapping task and comparing its performance to existing be-

havioral data, including responses to perturbations, we hope to gain new insights into

the learning mechanisms underlying this fundamental human ability. This approach

bridges neuroscience, psychology, and machine learning, offering a unique perspective

on how the brain learns to move in time with music.

The subsequent chapters will be structured as follows:

• Chapter 2 - Literature Review: provides a review on the foundational concepts

and existing data in sensorimotor synchronization, reinforcement learning, tim-

ing models of brain, and recurrent neural networks.

6
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• Chapter 3 - Methodology: details the computational models used and experi-

mental setup.

• Chapter 4 - Results and Discussion: presents findings from the simulations and

comparative analysis for existing empirical data.

• Chapter 5 - Conclusion and Future Work: summarizes the research findings,

discusses their implications, and outlines potential areas for further research.

7
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Chapter 2

Literature Review

2.1 Learning to Synchronize

Synchronizing movement to external rhythmic patterns is one of the most remarkably

complex capabilities of the human mind and body. This fundamental skill, known

as sensorimotor synchronization (SMS), enables activities ranging from musical per-

formance and dance to the rhythmic patterning of speech and coordinated physical

actions. At its core lies beat perception – the cognitive ability to extract and in-

ternally model the underlying periodic pulse from a rhythmic sensory stream. Beat

perception allows us to leverage the temporal regularities within complex auditory

signals like music and speech, enabling us to prospectively guide synchronized motor

outputs. These inextricably intertwined abilities emerge from the convergence of mul-

tiple intricate processes spanning perception, action, reward, cognition, and temporal

prediction. Their development follows an extended trajectory, gradually unfolding

through childhood and adolescence. While they likely have innate neurobiological

foundations, their full-fledged behavioural expression critically depends on learning
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and enculturation processes that occur through immersion in the structured rhythmic

patterns present within one’s cultural and musical environments. Extensive musical

training further refines and optimizes these capabilities by progressively sculpting and

enhancing their neural underpinnings.

Sensorimotor synchronization and beat perception are not innate; they develop

over time, shaped by cultural exposure and practice. Children begin exhibiting basic

rhythmic abilities early on, but mastering these skills is a protracted process that

continues into adolescence. Cultural context plays a crucial role in shaping how indi-

viduals perceive and synchronize with musical rhythms. Different musical traditions

emphasize unique rhythmic patterns and complexities, which influence synchroniza-

tion abilities. For example, the structured meters of Western classical music might

foster different synchronization skills compared to the intricate rhythms found in

African drumming traditions. Cross-cultural studies have shown that while most

adults can synchronize movements with simple, regular patterns, the ability to ac-

curately follow complex rhythms is significantly affected by one’s musical encultura-

tion. The precision of this synchronization is linked to a listener’s musical experience;

long-term exposure to specific musical cultures shapes rhythm perception and creates

expectations that make familiar rhythms easier to predict and synchronize with. This

phenomenon is observed in finger-tapping tasks, where participants from India [53],

Turkey [15], Mali [34], and other non-Western musical cultures exhibit remarkable

consistency in synchronizing with the complex rhythms common in their traditions.

This contrasts sharply with participants from Western cultures, where such rhyth-

mic patterns are relatively rare. Listeners from non-Western musical backgrounds

can accurately tap along to the intricate rhythmic nuances of their native music, a

9
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task that may be challenging for those from Western musical backgrounds. These

findings underscore how extensive exposure to the structured rhythmic complexities

embedded within a culture’s musical environment critically refines and influences

sensorimotor synchronization skills specific to those rhythms. Therefore, while basic

synchronization to simple beat patterns emerges through typical development, achiev-

ing precision with highly complex rhythms appears to depend crucially on sustained

learning and immersion in the rhythmic nuances particular to one’s cultural and musi-

cal context. Extensive musical training also acts as a catalyst, enhancing sensorimotor

synchronization and beat perception abilities. Musicians often demonstrate superior

timing accuracy and an exceptional capacity to synchronize with complex rhythmic

structures. Training progressively refines the neural mechanisms that underpin these

abilities, making motor responses more precise and auditory processing more acutely

sensitive to rhythmic nuances.

Recent research by Betancourt et al. (2023) [5] provides compelling evidence

for the learned nature of rhythmic skills and sensorimotor synchronization. In their

study, they trained macaque monkeys to perform a synchronization tapping task

(ST) with both auditory and visual metronomes. The monkeys were able to learn

to tap in synchrony with isochronous stimuli at different tempos (450 ms and 850

ms intervals), demonstrating that even non-human primates can acquire these abili-

ties through training and reinforcement learning. The study found that the monkeys

could accurately produce intervals with errors close to zero, showing slight under-

estimation in the auditory condition. Importantly, the monkeys exhibited an error

correction mechanism, particularly strong for visual metronomes. This suggests that

10
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the monkeys learned not only to synchronize but also to continually adjust their tim-

ing based on feedback, a hallmark of a sophisticated learned skill. Furthermore, the

researchers observed that the monkeys’ performance showed characteristics similar to

human sensorimotor synchronization, such as the scalar property of timing (increased

variability for longer intervals) and differences in performance between auditory and

visual modalities. These findings support the idea that rhythmic skills, while po-

tentially built on innate neural substrates, are significantly shaped by learning and

experience.

2.1.1 Neural Basis of Beat Perception

The neural basis of beat perception involves a complex interplay between audi-

tory and motor regions, particularly the motor cortico-basal-ganglia-thalamo-cortical

(mCBGT) circuit [26]. Key structures in this circuit, such as the supplementary mo-

tor area (SMA) and putamen, are consistently active during beat perception tasks

[10]. Recent research emphasizes the critical role of motor systems in beat percep-

tion, even without overt movement. Cannon and Patel (2021) [9] proposed that beat

anticipation relies on ”proto-actions” in the SMA, orchestrated by the dorsal stria-

tum. These neural processes provide temporal structure without specifying particular

movements.

The tight coupling between auditory and motor systems is further evidenced by

increased functional connectivity between these areas during beat perception, par-

ticularly for musicians [10]. This connectivity is facilitated by oscillatory activity,

especially in the delta (1–3 Hz) and beta (15–30 Hz) frequency bands, which aligns

motor predictions with auditory inputs, enabling the synchronization of movements

11

http://www.mcmaster.ca/
https://cse.mcmaster.ca/


M.Sc. Thesis – Y. Ommi; McMaster University – Computational Science and Engineering

with perceived beats [18], and underlies the ability to imagine and process hierarchical

timing [11]. Thus, motor regions are not merely involved in movement execution but

also play a fundamental role in the perception and cognitive processing of rhythmic

patterns [26].

The sensation of groove – the pleasurable urge to move with music – also engages

motor regions in tandem with reward systems. Rhythms of medium complexity, which

maximize groove, activate motor areas like the SMA and premotor cortex, as well as

reward centers like the nucleus accumbens. This interplay suggests that the rewarding

aspects of rhythm enhance synchronization by motivating engagement with the beat,

reinforcing the deep connection between music, movement, and pleasure [25].

2.1.2 Laboratory Studies of SMS

Laboratory studies of sensorimotor synchronization (SMS) frequently employ sim-

ple yet insightful paradigms, such as finger tapping tasks with auditory sequences

of tones or clicks. However, the experimental landscape is rich and diverse, with

numerous variants arising from different forms of movement (e.g., tapping on a sur-

face versus finger flexion or limb movement without contact), different modalities of

sensory stimulation (e.g., auditory or visual rhythms), and different coordination pat-

terns (e.g., in-phase or antiphase synchronization) [37, 39]. Among these paradigms,

perturbation studies, introduced by Michon (1967) [27], have played a pivotal role

in elucidating the underlying mechanisms of SMS. In these experiments, researchers

intentionally introduce unexpected timing deviations or disruptions into the rhythmic

sequences to probe how the sensorimotor system responds and maintains synchroniza-

tion. Three main types of perturbations are commonly used: phase shifts, event onset

12
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shifts, and tempo changes. These studies have revealed two primary error correction

mechanisms: phase correction and period correction. Phase correction is a rapid,

automatic process that adjusts the timing of individual movements, while period

correction involves a slower, more cognitive adjustment of the internal timekeeper.

A particularly illuminating paradigm involves event onset shifts, wherein the tim-

ing of a single tone within the sequence is abruptly advanced or delayed. Despite

explicit instructions to ignore such timing shifts, participants exhibit an involuntary

phase correction response, automatically adjusting their tapping to realign with the

new rhythm. This robust phenomenon not only reveals the exquisite sensitivity of

the SMS system to timing deviations but also provides a window into the implicit

temporal processing mechanisms involved in beat tracking and synchronization. Fur-

thermore, research has uncovered an intriguing asymmetry in the error correction

process during SMS tasks. Tomyta et al. (2023) [51] demonstrated that the error cor-

rection rate is larger when the asynchrony is positive (taps following the metronome)

compared to when it is negative (taps preceding the metronome). This asymmetric

error correction may contribute to the well-known negative mean asynchrony (NMA)

phenomenon, where tapping onset tends to precede metronome onset by a few tens

of milliseconds.

It is worth noting that while humans excel at SMS, this ability is relatively rare

in the animal kingdom [7]. Some bird species, particularly those capable of vocal

learning, have demonstrated SMS abilities, but evidence in non-human primates is

limited. This species difference has led to intriguing hypotheses about the evolution-

ary origins of rhythm perception and its potential links to vocal learning and language
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[32]. In conclusion, the human capacity for sensorimotor synchronization with audi-

tory rhythms emerges from an intricate tapestry of perception, action, reward, and

prediction systems. Cultural exposure, musical training, and continuous feedback

and error correction are crucial for developing and refining these abilities. Pertur-

bation studies reveal the system’s remarkable flexibility and precision in maintaining

synchronization, highlighting the importance of implicit and explicit error correc-

tion processes. The rewarding sensation of groove further motivates and reinforces

rhythmic engagement, underscoring the profound interconnectedness between music,

movement, and the human experience. Future research in this field may benefit from

integrating insights from neuroscience, psychology, and computational modeling to

further unravel the complexities of this fundamental human ability.

2.2 Inner Timekeepers

Understanding how the brain perceives, maintains, and utilizes time intervals is cru-

cial for a wide range of cognitive functions, from motor control to decision-making.

To take full advantage of the rewards in our environment, we rely on relationships

between causes and effects that exhibit precise temporal dependencies. For instance,

to evade an incoming threat, one must gauge its velocity by tracking its movement

over a fixed time period, project its future location during another time interval, and

time an escape maneuver based on the estimated moment of potential impact. This

capability to measure time and use it to guide behaviour is essential and ubiquitous

in both biological organisms and artificial agents. However, due to fundamental dif-

ferences in their underlying implementations, artificial intelligence (AI) and biological
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systems have distinct relationships with the concept of time. Nonetheless, examin-

ing the temporal measurement challenge across these domains may yield valuable

cross-disciplinary insights.

2.2.1 Recurrent Neural Networks

Neural Networks are computational models inspired by the structure and function

of biological neural networks in the human brain. They consist of interconnected

nodes that transmit signals between each other, mimicking the behavior of neurons.

The connections between these artificial neurons are modulated by numeric weights,

analogous to the strengths of synaptic connections in the brain. Neural networks

excel at finding intricate patterns in data, making them powerful tools for various

tasks. Importantly, their architecture and mechanisms have enabled researchers to

draw insights from neuroscience literature and develop models that simulate brain

functions, bridging the gap between artificial and biological neural networks.

Feedforward neural networks are the most basic type, where the connections be-

tween nodes do not form any cycles or loops, and information flows in only one direc-

tion from input to output. These networks process each input independently, lacking

the capability to maintain and utilize information from previous inputs. However,

human cognition is marked by the persistence of thoughts and integration of infor-

mation across time, where our understanding of the present is shaped by our prior

experience and context. Recurrent Neural Networks (RNNs) address this shortcom-

ing by introducing recurrent connections that allow information to flow through the

network over time. Through these looped connections, RNNs can maintain an inter-

nal state that captures and integrates sequential information, imitating the persistent
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nature of human thinking and reasoning (Figure 2.1).

Figure 2.1: Recurrent Neural Networks have loops. This sequential structure shows
that recurrent neural networks are inherently connected to sequences.

(Figure from [31])

Due to these recurrent connections, RNNs are well-suited for processing sequential

data, such as time series or natural language, and have been extensively used to model

temporal processing in the brain. The basic architecture of an RNN can be described

by the following equations:

ht = f(Whx.xt +Whh.ht−1 + bh), (2.2.1)

yt = g(Wyh.ht + by). (2.2.2)

Where:

• xt is the input at time step t

• ht is the hidden state at time step t

• yt is the output at time step t

• Whx, Whh, Wyh are weight matrices

• bh and by are bias vectors
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• f and g are activation functions

At each time step t, the network computes a new hidden state ht based on the current

input xt and the previous hidden state ht−1. This recurrent computation, represented

by the term Whh.ht−1, allows the network to maintain and update information over

time. The function f is typically a nonlinear activation function such as tanh or

ReLU , which introduces nonlinearity into the network’s computations. The output

yt is then computed from the current hidden state ht. RNNs are particularly well-

suited for modeling timing processes in the brain for several reasons:

• Temporal Integration: RNNs can integrate information over time, mimicking

the brain’s ability to accumulate and process temporal information.

• State-Dependent Processing: The current output of an RNN depends on

both its current input and its internal state, reflecting how neural responses in

the brain depend on both current stimuli and recent history.

• Flexible Timescales: RNNs can learn to represent and process information

across various timescales, from milliseconds to seconds or longer, matching the

brain’s ability to handle diverse temporal tasks.

• Emergent Timing: Instead of relying on an explicit clock mechanism, tim-

ing in RNNs emerges from the network dynamics, aligning with theories that

suggest timing in the brain arises from the intrinsic properties of neural circuits.
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Learning to Forget: Long Short-Term Memory

However, traditional RNNs suffer from the vanishing and exploding gradient prob-

lems, which can make it difficult to learn long-term dependencies. The vanishing gra-

dient problem occurs when gradients become extremely small as they are propagated

back through time during training, effectively preventing the network from learn-

ing connections between temporally distant events. This limitation is particularly

problematic for tasks requiring long-term memory, such as understanding context in

language or recognizing patterns over extended time periods in timing tasks.

To address this, LSTM units were introduced by Hochreiter and Schmidhuber in

1997 [16]. LSTMs maintain a cell state that is modulated by gates (input, output,

and forget gates), enabling them to selectively remember or forget information over

long periods. Gates function as selective information filters, consisting of a sigmoid

layer (σ) and pointwise multiplication. The sigmoid layer outputs values between 0

and 1, determining the degree of information transmission for each component. This

mechanism enables precise control over information flow within the network. The

LSTM architecture and the interaction between the its layers are shown in Figure

2.2.

Figure 2.2: The repeating module in an LSTM contains four interacting layers.
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A step-by-step overview of how an LSTM works and updates its cell state, C, is

shown in 2.3. For a more detailed review on LSTM and its equations, see [16, 47] .

(a) Forget Gate Layer (b) Input Gate Layer

(c) Cell State Update (d) Output Gate Layer

Figure 2.3: The equation governing each layer of an LSTM unit. Notations are the
same as mentioned in section 2.2.1. 2.3a The forget gate decides what information
to keep and what to forget. 2.3b The input gate decides what new information is
going to be stores in the cell state. 2.3c Cell state is updated by forgetting some

(ft ∗Ct−1) and learning some (it ∗ C̃t). 2.3d The output gate filters the cell state and
generates the output.

RNNs for Neural Dynamics Modeling

The use of RNNs in modeling neural processes, particularly those involved in tim-

ing and temporal processing, has gained significant traction in recent years. This

approach is rooted in the idea that the brain’s ability to process temporal informa-

tion emerges from the dynamics of recurrently connected neural networks, rather

than relying on a centralized clock mechanism. The biological plausibility of RNNs

stems from the recurrent connectivity observed in cortical circuits. In the brain,

neurons are extensively interconnected, with feedforward and feedback connections

forming complex networks. This architecture allows for the persistence and integra-

tion of information over time, a key feature that RNNs aim to emulate. Mante et al.
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(2013) [23] demonstrated that the prefrontal cortex implements context-dependent

processing through the dynamics of recurrent networks. Their findings showed strik-

ing similarities between the neural trajectories observed in monkey prefrontal cortex

and those produced by trained RNNs, providing strong support for the use of these

models in understanding cortical computation. Another crucial aspect of neural pro-

cessing captured by RNNs is state-dependent computation. In the brain, the response

of neural circuits to incoming stimuli depends not only on the current input but also

on the network’s internal state, which is shaped by recent history. This property is

essential for tasks requiring temporal integration or working memory.

In the domain of timing and temporal processing, RNNs have proven particularly

valuable. The ability of these networks to maintain and manipulate temporal informa-

tion aligns well with theories of how the brain represents time. Laje and Buonomano

(2013) [21] proposed that the brain tells time through the evolution of neural trajecto-

ries in recurrent networks. They demonstrated that RNNs can be trained to generate

complex temporal patterns, mimicking the ability of cortical circuits to encode and

produce precisely timed sequences.

Moreover, RNN models are able to capture the heterogeneity and mixed selectivity

observed in real neural populations. In the brain, individual neurons often respond

to multiple task variables and exhibit complex, time-varying patterns of activity.

Rigotti et al. (2013) [41] showed that this mixed selectivity is a crucial feature of pre-

frontal cortex, enabling flexible cognitive behavior. RNNs naturally develop similar

properties when trained on complex tasks, providing a computational framework for

understanding how mixed representations support cognitive flexibility. Recent work

has focused on establishing more direct links between the computations performed
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by RNNs and potential neural mechanisms. For instance, Masse et al. (2019) [24]

developed a method for mapping RNN units onto biologically plausible neural cir-

cuits, providing a way to generate testable predictions about the implementation of

complex computations in the brain.

RNN Models of Timing in the Brain

Recent theories suggest that timing may emerge from the intrinsic dynamics of neural

networks rather than from a dedicated clock mechanism. This aligns well with the

aforementioned properties of RNNs, which can maintain temporal information across

variable lengths of time. Jazayeri and Shadlen (2015) [19] conducted a pivotal study

recording neural activity in the lateral intraparietal cortex (LIP) of monkeys perform-

ing a time reproduction task. They found that neural activity patterns during the

measurement phase predicted the timing of subsequent actions. This study provided

compelling evidence that the brain encodes time prospectively, integrating sensory

inputs with motor plans to achieve precise timing. Building on this work, Jazayeri

and colleagues have developed several RNN-based models to explain various aspects

of timing in the brain. In a 2018 study, Wang et al. [54] trained RNNs to perform in-

terval timing tasks and found that the networks developed representations similar to

those observed in neural recordings. The RNNs exhibited ramping activity and neu-

ral trajectories that closely matched empirical data from the prefrontal and parietal

cortices. Remington et al. (2018) [36] further extended this approach by using RNNs

to model flexible timing behavior. They trained networks to produce different time

intervals based on contextual cues and found that the models captured key features of

neural dynamics observed in primate supplementary motor area and prefrontal cortex

21

http://www.mcmaster.ca/
https://cse.mcmaster.ca/


M.Sc. Thesis – Y. Ommi; McMaster University – Computational Science and Engineering

during similar tasks. More recently, Sohn et al. (2019) [46] used RNNs to investigate

how the brain might represent time across multiple scales. Their model, trained on

tasks requiring both precise timing and temporal abstraction, developed hierarchical

representations that mirror those found in the cortex and striatum, validating the

use of RNNs in modeling complex timing behaviors. The study demonstrated how

prior beliefs about time intervals can be incorporated into neural representations,

allowing for Bayesian integration of sensory inputs and prior knowledge. This work

revealed that recurrent interactions among neurons can mediate Bayesian inference,

with the network’s activity manifesting as a low-dimensional curved manifold that

warps neural representations to reflect prior statistics.

2.3 Learning through Reward

The ability to make decisions and learn from their outcomes is a fundamental aspect

of intelligent behavior, crucial for survival and success in complex, dynamic envi-

ronments. This process, known as reinforcement learning (RL), allows organisms to

adapt their behavior based on the consequences of their actions, maximizing rewards

and minimizing punishments over time. Decision-making, as an integral part of RL,

is essential for navigating the complexities of life. Effective decision-making enables

organisms to choose actions that lead to favorable outcomes, thereby increasing their

chances of survival and reproduction.

Reinforcement learning is ubiquitous in nature. From single-celled organisms nav-

igating chemical gradients to humans making complex decisions, the principles of

trial-and-error learning and reward maximization are at play. Evolution has shaped

our brains to be highly adept at this form of learning, as it confers significant adaptive
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advantages. In the natural world, animals face a constant stream of decisions: where

to forage, how to avoid predators, whom to mate with, and how to allocate limited

resources. Those individuals better at learning which actions lead to positive out-

comes and which to negative ones have a clear evolutionary advantage. This selective

pressure has resulted in sophisticated neural mechanisms for reinforcement learning.

For humans, reinforcement learning extends far beyond basic survival. It under-

pins our ability to acquire new skills, form habits, navigate social interactions, and

make countless daily decisions in personal and professional contexts. From a child

learning to ride a bicycle to an adult mastering a new language or optimizing their

investment strategy, reinforcement learning processes are at work. Decision-making is

not only vital for immediate survival but also for long-term success and fulfillment. It

influences every aspect of our lives, from daily routines to major life choices, shaping

our experiences and determining our paths.

The study of reinforcement learning in the brain lies at the intersection of neu-

roscience, psychology, and computational modeling. Computational models of re-

inforcement learning have proven invaluable in formalizing hypotheses about neural

processes and generating testable predictions. These models provide a normative

framework for understanding behavior—that is, they describe how an agent should

behave to maximize rewards, given certain assumptions and constraints. In recent

years, the field of deep reinforcement learning has made significant strides, with al-

gorithms like Deep Q-Networks (DQN) and Proximal Policy Optimization (PPO)

achieving superhuman performance in complex tasks. However, bridging the gap be-

tween these artificial systems and biological learning remains a significant challenge.
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In the following sections, we will explore the theoretical background of reinforce-

ment learning models and their neural correlates, focusing on how these computa-

tional ideas have illuminated our understanding of brain function, adaptive behavior,

and the learning of rhythmic and synchronized motor skills.

2.3.1 Adaptive Minds: Theoretical Background

Reinforcement learning (RL) emerged as a powerful paradigm in machine learning

through the convergence of two distinct research streams. The first, pioneered by

Richard Sutton and Andrew Barto, drew inspiration from psychology and artificial

intelligence. Sutton, with his background in psychology, and Barto, a computer scien-

tist, developed core RL algorithms and concepts based on insights from Pavlovian and

instrumental conditioning [1, 49]. Their work laid the groundwork for fundamental

RL principles and methods, and is what considered today as the core concepts of RL.

Concurrently, a second line of research evolved from the fields of operations research

and optimal control. Engineers like Dimitri Bertsekas and John Tsitsiklis approached

the problem from a mathematical perspective, developing stochastic approximations

to dynamic programming methods. They termed this approach ”neurodynamic pro-

gramming,” which led to reinforcement learning rules that closely paralleled those

developed by Sutton and Barto [4]. The fusion of these two research streams proved

transformative. It couched the behaviorally-inspired heuristic reinforcement learning

algorithms in more formal terms of optimality, providing a rigorous mathematical

foundation for what were initially intuitive approaches. This synthesis not only val-

idated the practical effectiveness of RL algorithms but also provided powerful tools

for analyzing their convergence properties in various situations. This interdisciplinary
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origin of RL contributes to its strength and versatility, combining insights from psy-

chology, computer science, and control theory. As a result, modern RL offers a robust

framework for developing adaptive learning systems capable of making sequential de-

cisions in complex, uncertain environments.

Rescorla-Wagner Model

The Rescorla-Wagner model [40], proposed in 1972, was a groundbreaking contribu-

tion to our understanding of associative learning. It formalized the intuition that

learning occurs when events violate expectations, providing a simple yet powerful

mathematical framework for predicting the strength of associations between stimuli.

The model rests on two fundamental assumptions: (1) learning occurs exclusively

when events are unpredicted, and (2) predictions arising from various stimuli are

combined to generate the overall prediction in a trial. These assumptions enabled the

model to account for several previously puzzling phenomena in classical conditioning,

including blocking, overshadowing, and conditioned inhibition.

Consider a conditioning trial with some conditional stimuli CS (like a tone, or

light), and an affective unconditional stimulus US (like food). The Rescorla-Wagner

model mathematically expresses:

Vnew(CSi) = Vold(CSi) + η
[
λUS −

∑
i

Vold(CSi)
]
. (2.3.1)

In this error-correcting learning rule, V (CSi) denotes the associative strength of a

conditional stimulus CSi. The alteration in associative strength is prompted by the

difference between the predicted outcome ΣiVold(CSi), where i represents all CSs

present in the trial, and the actual outcome λUS, whose magnitude corresponds to
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the significance of the unconditional stimulus. η is a learning rate that can vary

depending on the salience of both the unconditional and conditional stimuli being

associated.

These rules and assumptions allowed the model to parsimoniously explain several

anomalous features of animal learning. It clarified why a previously predicted uncon-

ditioned stimulus (US) does not support conditioning of a new conditional stimulus

(CS), a phenomenon known as blocking. It also elucidated how conditional stimuli

of varying salience, when presented together, might form different associations with

an unconditioned stimulus, explaining overshadowing. Additionally, it accounted for

inhibitory conditioning, where a stimulus that predicts the absence of an expected

unconditioned stimulus gains a negative associative strength.

However, despite its successes, the Rescorla-Wagner model had several limitations.

It was temporally insensitive, treating conditioning trials as discrete events and fail-

ing to account for the effects of different temporal relationships between CS and US

within a trial. It also lacked an explanation for second-order conditioning, which is

when stimulus B predicts an affective outcome, and stimulus A predicts stimulus B,

then stimulus A also gains reward predictive value. Moreover, the model assumed

a constant learning rate, whereas evidence suggests that learning rates can change

over the course of training. Lastly, it did not address how animals learn about the

timing of events, which is crucial in many forms of conditioning. These limitations

motivated the development of more sophisticated models, including the temporal

difference learning model, which we’ll explore next. The temporal difference model

addresses these limitations by taking into account the timing of different events, al-

lowing it to account for higher-order conditioning and making it sensitive to temporal
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relationships within learning trials.

Temporal Difference Learning

Temporal Difference (TD) learning, introduced by Sutton and Barto (1990) [48],

addressed many of the limitations of the Rescorla-Wagner model by incorporating the

concept of estimating future rewards. The key innovation was to frame the learning

problem as one of predicting the total expected future reward from any given state,

rather than just the immediate outcome. In TD learning, the goal is to estimate the

value V (St) of a state St, defined as the expected sum of all future rewards when

starting from that state:

V (St) = E[rt + γrt+1 + γ2rt+2 + ...|St]

= E

[
∞∑
i=t

γi−tri

∣∣∣∣∣St

]
.

(2.3.2)

Where rt is the reward at time t and γ ≤ 1 is a discount factor that reduces the weight

of future rewards. The discount rate γ was initially introduced to ensure that the

total of future rewards remains finite. Additionally, it aligns with the observation that

humans and animals favor immediate rewards over delayed ones. This exponential

discounting corresponds to the assumption of a constant ’interest rate’ per unit time

on obtained rewards or a consistent probability of leaving the task per unit time.

This formulation allows TD learning to consider long-term consequences of actions

and states.

The core of TD learning is the temporal difference error, which measures the dif-

ference between the predicted value of the current state and the sum of the immediate
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reward plus the discounted value of the next state:

δt = rt + γV (St+1)− V (St). (2.3.3)

This error signal is crucial for learning and represents a form of prediction error.

It can be interpreted as the difference between the ”actual” return (rt + γV (St+1))

and the predicted return V (St). The ”actual” return includes the immediate reward

rt and the discounted estimate of future rewards γV (St+1), while V (St) represents

the current estimate of the total expected future reward from the current state. If

the prediction is accurate, the error will be zero. A positive error indicates that the

outcome was better than expected, suggesting that the value of the current state

should be increased. Conversely, a negative error means the outcome was worse

than expected, and the value of the current state should be decreased. This error

signal drives the learning process by constantly refining the value estimates based on

experienced outcomes. We can then use the temporal difference error as a measure

of ’surprise’ in the Rescorla-Wagner learning rule:

V (St)new = V (St)old + η.δt. (2.3.4)

Where η is a learning rate that determines how quickly new information overrides

old information. This update rule allows the agent to incrementally improve its

value estimates based on experienced transitions and rewards, gradually converging

on accurate predictions of future rewards. While TD learning shares some similarities

with the Rescorla-Wagner model, such as using a learning rate and being driven

by discrepancies between expected and actual outcomes, it introduces several key
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innovations. TD learning explicitly represents time within a trial, allowing learning

to occur at every time point, rather than treating each trial as a discrete unit. It also

extends predictions to include not only immediate rewards but also future predictions

from stimuli that will still be present in subsequent time steps. This allows TD

learning to account for delayed rewards and long-term consequences. Furthermore,

TD learning updates its predictions continuously, rather than only at the end of

a trial, capturing the temporal dynamics of conditioning more accurately. These

advancements allow TD learning to address major shortcomings of the Rescorla-

Wagner model, such as its inability to explain second-order conditioning and its lack

of sensitivity to temporal relationships between stimuli within a trial. TD learning

is temporally sensitive, operating in continuous time (or fine-grained discrete time

steps), allowing it to account for the effects of different CS−US intervals. It naturally

explains second-order conditioning and provides a mechanism for learning about the

timing of events, as the value function can represent expectations of reward at different

future time points.

Action Selection and Actor/Critic Models

The above applies when the probabilities of transitioning between different states of

the environment are constant, such as in Pavlovian conditioning (where the animal

cannot influence events through its actions). However, how do we improve action

selection to obtain more rewards, as in instrumental conditioning? Since the environ-

ment rewards actions rather than predictions (even accurate ones), it can be argued

that the ultimate goal of prediction learning is to assist in selecting actions. In re-

inforcement learning, a fundamental challenge is the problem of credit assignment -
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determining which actions in a sequence led to a particular outcome, especially when

rewards are delayed. This issue is crucial for improving the behavioral policy, as

actions leading to rewards should be reinforced while those leading to punishments

should be avoided. The credit assignment problem becomes particularly complex in

scenarios where actions have long-term consequences or when multiple actions are

required to achieve an outcome. For instance, in a game of chess, the final outcome

(win or loss) is the result of a long sequence of moves, and it is not immediately clear

which moves were critical in determining the result.

Actor-critic methods offer an elegant solution to this problem by using temporal

difference learning to estimate state values and guide action selection. This approach

was first introduced by Barto, Sutton, and Anderson in 1983 [1], inspired by neural

network models of learning. In this framework, an ”adaptive critic element”, Critic,

learns to estimate state values V (S) using TD learning, while an ”associative search

element”, Actor, learns and maintains a policy π(S, a) - a probability distribution

over actions for each state.

The key insight of the actor-critic model is that even when external reinforcement

is delayed, the TD prediction error can provide a useful learning signal at every

time step. This prediction error, given by δt = rt + γV (St+1) − V (St), serves as a

surrogate reinforcement signal for the Actor. A positive prediction error indicates

that the chosen action has led to a better state than expected, suggesting that this

action should be repeated in similar situations in the future. Conversely, a negative

prediction error suggests that the action should be chosen less often. Moreover,

in the case of no external reinforcement (ie rt = 0), the prediction error will be

γV (St+1)−V (St), which is the comparison of two consecutive states, and can provide
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data on whether the chosen action has landed us in a higher-value state than the

previous one or not. Using δt, the Actor’s policy - a probability distribution over

all available actions at each state π(S, a)new = p(a|S), is updated according to the

following rule:

π(S, a)new = π(S, a)old + ηπδt, (2.3.5)

where ηπ is the policy learning rate and δt is the TD prediction error. This allows the

Actor to learn to select actions that lead to higher-valued states, effectively solving

the credit assignment problem. Actor-critic methods have been closely linked to the

function of the basal ganglia in the brain, particularly in relation to instrumental

action selection and Pavlovian prediction learning. The Critic is often associated

with the ventral striatum and related structures, which are thought to be involved

in reward prediction and evaluation. The Actor, on the other hand, is linked to the

dorsal striatum and motor cortical areas, which play a crucial role in action selection

and execution. This mapping aligns with our understanding of how the basal ganglia

contribute to both learning and action selection in the brain, and has been supported

by various neurophysiological and neuroimaging studies. We will elaborate on the

neural correlates of RL in the next section. While actor-critic models have provided

valuable insights into basal ganglia function, some researchers have raised important

questions about their anatomical plausibility. Joel et al. (2002) [20] provide a critical

review of several actor-critic models of the basal ganglia, highlighting discrepancies

between model assumptions and known neuroanatomy. They argue that many im-

plementations of the critic in basal ganglia circuitry rely on anatomical assumptions

that are not well-supported, particularly in primates. As an alternative, they pro-

pose a ”reinforcement driven dimensionality reduction” (RDDR) model that aims
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to better account for basal ganglia anatomy and physiology. This work underscores

the importance of grounding computational models in biological constraints and sug-

gests promising directions for refining actor-critic architectures to more closely match

brain structure and function. Even though actor-critic methods have shown success

in many applications, they are not guaranteed to converge to an optimal policy in

all cases. Nevertheless, they remain one of the strongest links between reinforcement

learning theory and neurobiological data on decision-making in animals and humans.

An alternative to actor-critic methods is to learn state-action values, denoted as

Q(S, a), which represent the expected future reward of taking a specific action in a

given state. This approach, known as Q-learning, was introduced by Watkins in 1989

[55]. Q-learning allows for direct action selection by choosing the action with the

highest Q-value in each state. The Q-values are updated using the following rule:

Q(St, at)new = Q(St, at)old + ηδt, (2.3.6)

where the prediction error δt is computed slightly differently:

δt = rt + γmax
a

Q(St+1, a)−Q(St, at), (2.3.7)

where the max operator indicates that the temporal difference is calculated based on

the action believed to be the optimal choice at the next state St+1. This ”off-policy”

method considers the best possible future action when computing the prediction error,

even if this is not the action that will actually be taken.

These state-action value methods have also found support in neuroscience re-

search. Recent studies in non-human primates and rats suggest that dopaminergic
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neurons may be conveying prediction errors based on state-action values, rather than

state values as in the actor-critic model. Some evidence supports a Q-learning-like

prediction error, while other findings point to alternative formulations of state-action

value-based learning. The diversity of these models and their neural correlates high-

lights the complexity of reinforcement learning in the brain and suggests that multiple

mechanisms may be at play in different contexts or brain regions. It is possible that

the brain uses a combination of these strategies, perhaps employing different ap-

proaches depending on the specific task, the level of uncertainty in the environment,

or the stage of learning. Understanding how these different mechanisms interact

and are implemented in neural circuits remains an active area of research in both

neuroscience and artificial intelligence.

2.3.2 The Rewarding Brain: Reinforcement Learning in The

Brain

The application of reinforcement learning (RL) models to neuroscience has provided

crucial insights into the neural mechanisms underlying learning and decision-making.

Of particular significance is the discovery of neural correlates of RL processes, es-

pecially in the dopamine system. Groundbreaking research by Wolfram Schultz and

colleagues in the 1990s revealed that dopaminergic neurons in the midbrain exhibit

firing patterns remarkably consistent with RL theory, specifically temporal difference

(TD) learning [44, 42]. These neurons were found to encode a ’prediction error’ sig-

nal - a key concept in RL. Initially, they responded strongly to unexpected rewards.

However, as animals learned to associate specific cues with subsequent rewards, the

33

http://www.mcmaster.ca/
https://cse.mcmaster.ca/


M.Sc. Thesis – Y. Ommi; McMaster University – Computational Science and Engineering

neuronal response shifted to the predictive cue itself. Importantly, if a predicted re-

ward was omitted, these neurons showed a dip in their firing rate at the expected time

of reward delivery. This pattern closely mirrors the TD error signal in computational

RL models, suggesting that dopamine neurons might broadcast a teaching signal used

to update value estimates throughout the brain. These findings not only challenged

the simplistic ”dopamine equals reward” hypothesis, but also provided a neural sub-

strate for RL processes. Subsequently, similar RL-like signals have been identified in

other brain areas, including the striatum, prefrontal cortex, and habenula, forming

a distributed network involved in value-based learning and decision-making. This

convergence of computational theory and neurophysiology has significantly advanced

our understanding of how the brain implements reinforcement learning mechanisms.

Dopamine as a Neural Currency of Prediction

The reward prediction error hypothesis of dopamine, proposed by Montague, Dayan,

and Sejnowski (1996) [28], is one of the most successful applications of computational

theory to neuroscience. This hypothesis posits that the phasic activity of midbrain

dopamine neurons encodes a reward prediction error signal analogous to the temporal

difference (TD) prediction error.

Extensive and compelling evidence supports this hypothesis. Dopamine neurons

exhibit phasic activation to unexpected rewards early in learning, and as learning

progresses, this activation shifts to the earliest reliable predictor of reward, precisely

as TD learning predicts. Dopamine neurons increase their firing rate for positive

prediction errors and decrease their firing rate below baseline for negative prediction

errors, with the magnitude of responses scaling with the size of the prediction error.
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When cues predict delayed rewards, the magnitude of the dopamine response to

the cue decreases with longer delays, consistent with temporal discounting in TD

learning. The evolution of dopamine responses over the course of learning closely

matches the dynamics predicted by TD learning models. The temporal precision of

dopamine signals further bolsters their consistency with TD learning, as dopamine

neurons respond to reward prediction errors with remarkably short latencies, often

within 50-100 ms after stimulus onset. This rapid signaling is crucial for real-time

learning and decision-making, allowing swift updates of value estimates in dynamic

environments.

Causal manipulations of dopamine signaling also provide compelling evidence for

its role in learning. Advanced techniques like optogenetics have shown that activa-

tion of dopamine neurons can effectively substitute for actual rewards in classical

conditioning paradigms. Conversely, inhibiting dopamine neurons at the time of ex-

pected reward significantly impairs learning. These findings underscore the causal

relationship between dopamine signaling and reinforcement learning processes.

Niv’s review on RL in brain [30], highlights several key experiments that have

solidified our understanding of dopamine’s role in reward prediction. For instance,

studies by Bayer and Glimcher [3] have shown that the contribution of previously

experienced rewards to the current dopaminergic response follows an exponentially

weighted average of past experiences, aligning perfectly with TD learning principles.

Furthermore, investigations into probabilistic rewards have revealed that dopamine

responses to predictive cues scale with reward probability, while responses to the

rewards themselves inversely scale with probability [13]. This nuanced encoding of

uncertainty and expectation in dopaminergic signaling provides a neural substrate for
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the complex computations required in reinforcement learning.

Actor/Critic Models and The Basal Ganglia

The reward prediction error hypothesis naturally led to the proposal that the basal

ganglia implement an actor-critic architecture for reinforcement learning, as detailed

by Joel et al. (2002) [20]. In this framework, the ventral striatum, particularly the

nucleus accumbens, acts as the ”critic,” learning to predict future rewards based on

current states. The dorsal striatum, on the other hand, functions as the ”actor,”

learning to select actions that maximize predicted rewards. Dopamine signals from

the midbrain serve as the common currency for updating both critic and actor com-

ponents, providing a unified mechanism for learning and action selection.

This model is supported by converging evidence from multiple research approaches.

Anatomical studies have revealed that the ventral and dorsal striatum receive topo-

graphically organized inputs from cortical and limbic areas, allowing them to repre-

sent states and actions, respectively. This anatomical organization aligns perfectly

with the proposed functional division in the actor-critic model. Functional imag-

ing studies, particularly fMRI investigations in humans, have shown that the ventral

striatum responds robustly to reward prediction errors, while the dorsal striatum is

predominantly involved in action selection and learning. These findings provide a

direct link between the computational principles of reinforcement learning and the

functional organization of the basal ganglia. Lesion studies have further corroborated

this framework. Damage to different parts of the basal ganglia produces dissocia-

ble deficits in learning and decision-making that are consistent with the actor-critic

model. For instance, lesions to the ventral striatum impair the ability to learn reward
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predictions, while dorsal striatal lesions specifically affect action selection and skill

learning.

Rewarding Synchronization

Recent work has begun to explore the role of reward and reinforcement processes

in sensorimotor synchronization (SMS). The study by Matthews et al. (2020) [25]

provides intriguing insights into the neural correlates of groove, defined as the pleasur-

able desire to move to music. Their findings reveal that medium-complexity rhythms,

which elicit the strongest groove sensation, activate both motor regions involved in

beat perception and reward-related areas, including the nucleus accumbens and me-

dial orbitofrontal cortex. This research suggests that the rewarding aspects of SMS

may engage similar neural circuits as those involved in other forms of reward-based

learning. The authors propose a model in which different cortico-striatal circuits inter-

act to support groove. A ”motor” circuit involving the putamen and supplementary

motor area is thought to be responsible for internal generation of the beat. A ”cog-

nitive” circuit including the caudate and prefrontal cortex is implicated in updating

beat-based expectations. Finally, a ”limbic” circuit involving the nucleus accumbens

and orbitofrontal cortex is proposed to assign affective value to rhythmic patterns.

This framework integrates reinforcement learning principles with the sensorimotor

aspects of rhythm perception and production. It suggests that the pleasure derived

from synchronizing with a beat may serve as an intrinsic reward signal, potentially

driving learning and refinement of SMS skills. This intrinsic reward could explain

why humans are motivated to engage in rhythmic activities and continually improve

their synchronization abilities.
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While the work of Matthews et al. (2020) [25] focuses on the rewarding aspects of

SMS, it is crucial to consider how the brain represents and processes time intervals,

which is fundamental to accurate synchronization. In this context, the work of Gersh-

man et al. (2014) [14] provides valuable insights into the role of interval timing within

the framework of reinforcement learning (RL) and semi-Markov processes. They pro-

posed that the basal ganglia could model interval timing using state transitions that

occur at variable intervals, similar to the dynamics observed in RNNs. Gershman and

colleagues argued that the basal ganglia’s ability to represent time intervals as states

in a semi-Markov process aligns well with the properties of RNNs, which can maintain

temporal information across variable lengths of time. This perspective highlights the

flexibility of the basal ganglia in adapting to different timing tasks through state-

dependent processes. The interaction between reinforcement learning algorithms and

state-dependent timing could provide insights into the neural mechanisms underlying

both the motor and reward aspects of SMS.

By integrating these two lines of research, we can begin to construct a more com-

prehensive model of SMS that accounts for both the rewarding nature of rhythmic

synchronization and the precise temporal computations required to achieve it. The

cortico-striatal circuits proposed by Matthews et al. (2020) could potentially imple-

ment the state-dependent timing processes described by Gershman et al. (2014), with

the basal ganglia playing a central role in both timing and reward processing. This

integrated view offers a promising direction for future research, potentially bridging

the gap between traditional RL models and more dynamic, state-dependent models of

timing in the context of sensorimotor synchronization. It suggests that the pleasure
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derived from synchronizing with a beat may serve as an intrinsic reward signal, driv-

ing learning and refinement of SMS skills through reinforcement learning mechanisms.

Simultaneously, the flexible timing abilities emerging from neural network dynamics

could explain the remarkable adaptability of human synchronization abilities across

various tempos and rhythmic complexities.
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Chapter 3

Methodology

This chapter outlines the methodology employed in our study of sensorimotor synchro-

nization (SMS) using deep reinforcement learning. We present a novel approach to

modeling time-related behaviors, specifically metronome tapping synchronization, us-

ing recurrent neural networks (RNNs) and reinforcement learning (RL). Our method

is inspired by neuroscience literature and aims to bridge the gap between computa-

tional models and observed human behaviors in SMS tasks.

The study of SMS is crucial for understanding how humans and artificial agents

perceive and interact with rhythmic stimuli. By applying deep RL techniques to this

domain, we aim to shed light on the underlying mechanisms of temporal processing

and motor coordination. This approach not only allows us to model SMS behavior

but also provides insights into the learning processes that might be at play in bio-

logical systems. Our choice of using RNNs with Long Short-Term Memory (LSTM)

units in our RL agents is based on theoretical reasoning, which is consistent with con-

temporary neuroscientific insights. This approach offers several benefits for modeling

timing and decision-making processes:
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• LSTMs can learn and remember dependencies over long sequences, crucial for

tasks involving timing and sequential decision-making. This aligns with the

dynamic state representation observed in state-dependent network models of

timing, where time is encoded in the evolving states of neural circuits.

• RNNs can adapt to various timing tasks without explicit timing mechanisms,

mirroring the flexible timing observed in the brain.

• In RL, LSTM units can help assign credit to actions based on their long-term

consequences, improving learning efficiency in environments with delayed re-

wards.

• RNNs with LSTM units can maintain an internal state that captures relevant

history, making them ideal for non-Markovian environments where the current

state does not fully capture the interaction history.

Empirical studies support this approach. Bi and Zhou (2020) [6] demonstrated

that RNNs could effectively model the computation of time in neural networks. Jaza-

yeri and Shadlen (2015) [19] showed that the brain uses a form of preplanning to

coordinate sensorimotor functions, a process that can be mirrored in RL agents us-

ing RNNs with LSTM to plan and execute timed actions. Deverett et al. (2019)

[12] found that recurrent agents with LSTM units demonstrated near-perfect accu-

racy in interval timing tasks and could generalize timing rules to new intervals. The

use of LSTM-based agents is thus not merely a computational convenience, but a

theoretically motivated choice that aligns with current neuroscientific understanding.

Moreover, our methodological approach draws partial inspiration from the ground-

breaking work of Betancourt et al. (2023) [5] on training monkeys in to synchronize.
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Their study utilized a synchronization-continuation task (SCT) where monkeys syn-

chronized taps to auditory or visual cues with IOI ranging from 450 ms to 850 ms,

using juice to reward them for maintaining a specified interval error and asynchrony

thresholds. They demonstrated that non-human primates could learn to synchronize

tapping movements with both auditory and visual metronomes through reinforce-

ment. Building on these insights, we developed our computational framework that

employs a similar task environment to model the learning processes underlying sen-

sorimotor synchronization.

The following sections provide a detailed description of our task design, proposed

model architecture, environment setup, agent specifications, reward function formu-

lations, training procedures, and the RL algorithm used.

3.1 Task Design

Our study focuses on a metronome tapping synchronization task, a paradigm widely

used in SMS research. In this task, the agent receives a series of beats and is required

to synchronize its tapping with the metronome after the third beat. The taps during

the first three beats are not recorded or rewarded, allowing the agent to acclimate to

the rhythm before being evaluated. The task mechanism operates on a fine-grained

timestep resolution of 0.01 seconds, allowing for precise temporal control and mea-

surement. At the beginning of each episode, an inter-onset interval (IOI) is randomly

selected from a range of 400ms to 700ms, determining the rhythm of the metronome

beats for that particular trial. The metronome input is presented to the agent as a

binary signal, where a value of 1 represents a beat and 0 indicates the absence of a
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beat. In response, the agent can choose between two actions at each timestep: initiat-

ing a tap (represented by 1) or not taking any action (represented by 0). To simulate

the realistic delay between a decision to tap and the actual motor execution, the task

incorporates a fixed delay between the agent’s action initiation and the resulting tap

execution. This design closely mimics the temporal dynamics and decision-making

processes involved in human sensorimotor synchronization tasks, providing a robust

framework for investigating timing-related behaviors in artificial agents.

This design incorporates key features of human SMS behavior, including the need

for temporal prediction and the inherent delay between motor command and action

execution. The range of IOIs (400-700ms) is chosen to reflect a tempo range com-

monly used in SMS studies. This allows for direct comparisons between our model’s

performance and existing data. The fixed delay between action initiation and tap

execution is a crucial feature of our task design. It simulates the neural and biome-

chanical delays present in human motor systems, adding a layer of realism to our

model. This delay challenges the agent to not only predict when a beat will occur

but also to initiate its action in advance to achieve synchronization.

3.2 Proposed Model

Our model utilizes a recurrent neural network architecture to capture the temporal

dependencies inherent in the SMS task. Specifically, we employ a single-layer Long

Short-Term Memory (LSTM) network. This choice is motivated by the LSTM’s

ability to learn and remember long-term dependencies, which is crucial for temporal

tasks like metronome synchronization. The model’s architecture is as follows:

• Input layer: Accepts the binary input representing metronome beats
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• LSTM layer: A single layer of LSTM units (various unit numbers were tested

during training)

• Output layer: A fully connected layer that produces the binary action output

The model’s input (state) is a binary one-dimensional array representing the metronome

beats. The output (action) is also a binary one-dimensional array indicating the

agent’s chosen action (tap or no tap). The LSTM layer is key to our model’s ability

to process temporal sequences. Unlike feedforward networks, the LSTM can maintain

information about past inputs, allowing it to detect and utilize temporal patterns in

the metronome sequence. This is particularly important for SMS tasks, where the

timing of future beats must be predicted based on the pattern of past beats.

3.2.1 The Environment

The environment is designed to simulate a metronome tapping task with several key

characteristics. Each episode has a variable length, which is determined by the se-

lected inter-onset interval (IOI) for that particular trial (8 times the IOI). Throughout

the episode, the metronome stimulus is presented to the agent as a binary input at

every 0.01-second timestep, providing a high-resolution temporal framework. The

tapping mechanism incorporates a realistic fixed delay between the agent’s action se-

lection and the actual tap execution, mimicking the neural and biomechanical delays

present in biological systems. Importantly, rewards are not provided at the moment of

action selection, but rather at the moment when the tap actually lands. The delayed

reward mechanism is a crucial feature of our environment. By providing rewards at

the moment of tap landing rather than at action selection, we create a more chal-

lenging and realistic learning scenario. This design choice forces the agent to learn to
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anticipate the consequences of its actions, much like humans must do in real-world

SMS tasks. This design creates a challenging and dynamic environment that closely

mirrors the conditions of sensorimotor synchronization experiments conducted with

human participants. The design of our environment reflects the non-Markovian na-

ture of many real-world timing tasks, where the information from the current state

that can presently be directly observed alone is not sufficient for optimal decision-

making. This aligns with our use of RNNs with LSTM units, which can maintain an

internal state capturing relevant history.

3.2.2 The Agent

Our agent is implemented as a recurrent neural network, specifically utilizing a single-

layer Long Short-Term Memory (LSTM) architecture. The agent receives input in

the form of a binary one-dimensional array representing metronome beats, or in an

extended configuration, a two-dimensional array that includes both beats and action

feedback. The output of the network is a binary one-dimensional array indicating

whether to tap or not. The agent operates in a discrete action space, choosing be-

tween tapping and not tapping. Its state space is also discrete and binary, representing

the presence or absence of beats at each timestep. The agent’s primary task is to

learn a policy that effectively maps these discrete sequences of metronome beats to

appropriate tapping actions. Despite the discrete nature of the input, the LSTM

architecture allows the agent to maintain an internal representation of the beat se-

quence, facilitating anticipation of future beats and precise timing of actions. Figure

3.1 includes a scheme of the whole RL model.
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Figure 3.1: Reinforcement learning framework for sensorimotor synchronization.
The agent receives state information and rewards from the environment, and

initiates tapping actions. The environment processes these actions and provides
updated state and reward signals, creating a closed-loop interaction between the

agent and its sensorimotor task environment

3.2.3 The Reward Function

Our study investigates various reward policies to explore their impact on the agent’s

learned behavior in the sensorimotor synchronization task. These policies are de-

signed to test different aspects of synchronization and timing accuracy, allowing us to

compare how various reward structures influence the agent’s performance and strat-

egy development.

It is important to note that in our RL framework, the ’rewards’ are calculated to

be negative values, with 0 representing the optimal outcome. While this formulation

might more intuitively be described as a ’penalty’ system, we maintain the terminol-

ogy of ’rewards’ to align with standard RL conventions. In RL literature, ’reward’ is

the conventional term used to describe the signal provided to the agent, regardless of

whether the values are positive or negative. Hence, this choice of terminology ensures

clarity and coherence with established RL practices.

• The first policy, the next beat reward policy, focuses on the asynchrony between
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the agent’s tap and the next metronome beat, calculated as the negative ab-

solute time difference between these two events. This approach encourages the

agent to anticipate upcoming beats and tap slightly ahead of them, mirror-

ing the anticipatory behavior often observed in human participants. A perfect

tapping behaviour results in 0 as reward.

reward = ttap − tnext beat (3.2.1)

• The second policy, namely the nearest beat reward policy, considers the asyn-

chrony relative to the nearest beat, rather than the next beat. This allows

for a more flexible synchronization strategy, potentially accommodating both

anticipatory and reactive tapping behaviors.

reward = −|ttap − tnearest beat| (3.2.2)

• Our third policy, next/nearest beat + interval, combines asynchrony with in-

terval accuracy. In addition to rewarding synchronization with reference beats

(next vs. nearest), this policy provides an additional reward if the agent’s inter-

tap interval closely matches the metronome’s inter-onset interval (within a 16%

error margin). This dual reward structure encourages both precise synchro-

nization and consistent tempo matching, addressing two key aspects of skilled

sensorimotor synchronization.

reward = rewardasynchrony + rewardinterval (3.2.3)
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• To discourage inaction and promote consistent engagement with the task, we

implement two penalty mechanisms. First, a missed tap incurs a penalty propor-

tional to the current inter-onset interval. This scaling ensures that the penalty

is contextually appropriate across different tempi, reflecting the increased diffi-

culty of maintaining synchronization at slower tempi.

Missed tap penalty = −interval × (interval − 1)

2
+ 1 (3.2.4)

Second, a fixed huge penalty is applied if the agent makes no taps at all during

an episode, strongly discouraging complete inaction.

Importantly, rewards are not provided at the moment of action selection, but at the

moment of tap landing. This delay in reward delivery creates a more challenging

learning environment that more closely mimics the temporal dynamics of real-world

sensorimotor tasks. By comparing the agent’s performance and learned strategies

across these different reward policies, we aim to gain insights into how various aspects

of reward structure influence the development of sensorimotor synchronization skills.

For instance, the comparison between next beat and nearest beat asynchrony allows

us to explore whether the agent learns to anticipate or react to beats. The inclusion of

interval accuracy in one reward function enables us to study how the agent balances

synchronization and regularity in its tapping behavior. The results may provide

valuable insights into the reward mechanisms that might underlie human sensorimotor

learning and performance, potentially informing both artificial intelligence design and

our understanding of human motor control and timing.
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3.3 Training

3.3.1 Reinforcement Learning Algorithm

We employ a recurrent version of the Proximal Policy Optimization (PPO) algo-

rithm for training our agent, specifically the implementation provided in the stable-

baselines3 contrib version. [35]

PPO [43] is an on-policy algorithm that belongs to the family of policy gradient

methods in reinforcement learning. It aims to improve the stability and sample ef-

ficiency of policy gradient methods by limiting the size of policy updates. The key

idea behind PPO is to ensure that the new policy doesn’t deviate too far from the old

policy, which helps prevent catastrophic drops in performance during training. This

is achieved through a clipped objective function:

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

]
, (3.3.1)

where θ represents the policy parameters, rt(θ) is the probability ratio between

the new and old policy: π(at|st)
πθ old(at|st)

, Ât is the estimated advantage function (which is

the value for a selected action, used by the agent to choose the better one), and ϵ is a

hyperparameter, typically set to 0.2. The clip function restricts rt(θ) to the interval

[1 − ϵ, 1 + ϵ], which prevents excessively large policy updates. This clipping mecha-

nism is a key innovation of PPO, providing a simple yet effective way to constrain

policy updates. By limiting the magnitude of policy changes, PPO helps maintain

stability during training and avoids catastrophic performance drops that can occur

with unconstrained policy updates. The algorithm alternates between sampling data

through interaction with the environment and optimizing this surrogate objective
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function using stochastic gradient ascent:

θk+1 = max
θ

Êt[L
CLIP (θ)]. (3.3.2)

This iterative process allows the agent to gradually improve its policy based on its

experiences in the environment. The use of the clipped objective ensures that these

improvements are made conservatively, striking a balance between exploration and

exploitation. PPO also typically includes an entropy bonus to encourage exploration:

LCLIP + S(θ) = Êt[L
CLIP () + βSπθ] (3.3.3)

Where S denotes the entropy of the policy and β is a coefficient. This entropy

term helps prevent premature convergence to suboptimal deterministic policies by

encouraging the agent to maintain a level of stochasticity in its actions. This is

particularly important in complex environments where exploration is crucial for dis-

covering optimal strategies.

The PPO algorithm offers several advantages that make it suitable for our task.

Its stability, provided by the clipping mechanism, ensures more consistent training

compared to other policy gradient methods. This is particularly valuable in complex

environments where training instability can be a significant challenge. Moreover,

PPO’s compatibility with recurrent policies is crucial for our work in sensorimotor

synchronization. The ability to easily adapt PPO to work with recurrent neural

networks allows us to capture and learn from the temporal dependencies inherent in

our task. This is essential for an agent that must understand and respond to rhythmic

patterns and timing cues.
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3.3.2 Training Configurations

The reinforcement learning environment for our sensorimotor synchronization task

was implemented using the Gymnasium library [52], which provides a flexible and

standardized interface for defining and interacting with RL environments. This al-

lowed for seamless integration with our chosen other libraries. For the implementation

of the reinforcement learning algorithms, we utilized the stable-baselines3 contrib li-

brary [35]. This library offers implementations of state-of-the-art RL algorithms,

including the PPO algorithm used in our study, with support for recurrent policies.

The RL agent’s neural network architecture consisted of a single LSTM layer with

a hidden size of 128 units, allowing the agent to capture and utilize temporal de-

pendencies in the sensorimotor synchronization task. All experiments were run using

Python 3.9.13.

Training was conducted on a MacBook Air 2022, equipped with an Apple M2

Chip and 16 GB of memory. This setup provided adequate computational power to

train the model efficiently while maintaining a relatively low hardware requirement.

Training times varied depending on the complexity of the reward policy, ranging from

approximately 36 hours for the simplest policy to 100 hours for the most complex.

Convergence was determined based on the stability of the reward curve and the agent’s

performance on test episodes.

Hyperparameter optimization was crucial to enhance the performance of the RL

agent. The hyperparameters for each reward policy were individually optimized to

achieve the best performance. Key hyperparameters included:

• Entropy coefficient: Adjusted to balance exploration and exploitation

• Learning rate: Tuned to ensure stable and efficient learning
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• Batch size: Optimized for each policy to balance computational efficiency and

learning stability

The specific values for these hyperparameters varied across the different reward

policies and were determined through manual tuning.

52

http://www.mcmaster.ca/
https://cse.mcmaster.ca/


Chapter 4

Results and Discussion

This chapter presents the results of training reinforcement learning (RL) agents us-

ing different reward policies for sensorimotor synchronization tasks. The agents were

evaluated on their ability to synchronize with a steady metronome as well as their

responses to perturbations in the form of event onset shifts. The findings provide

insights into how different reward structures influence the development of synchro-

nization behavior in artificial agents, with implications for understanding human sen-

sorimotor synchronization.

4.1 Training Process

As mentioned before, four different reward policies were investigated:

• Next-beat asynchrony reward

• Nearest-beat asynchrony reward

• Next-beat asynchrony + interval accuracy reward
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• Nearest-beat asynchrony + interval accuracy reward

(a) Next-beat Policy (b) Nearest-beat Policy

(c) Next-beat + Interval Policy (d) Nearest-beat + Interval Policy

Figure 4.1: Learning Curves For Each Trained Agent

Figure 4.1 shows the learning curves for agents trained with each reward policy,

as the episodes’ mean reward over the total number of steps taken in all episodes.

The next-beat asynchrony reward policy (Figure 4.1a) resulted in the fastest learn-

ing and most stable performance during training. The agent learned to minimize

asynchrony relative to the next metronome beat. In contrast, the nearest-beat asyn-

chrony reward (Figure 4.1b) led to slower and less stable learning, with the agent

converging on a sub-optimal solution. Encouraging exploration also won’t make the

agent move from that point, and makes the learning process even more unstable.

Adding an interval accuracy component to the reward function (policies 3 and 4)

increased the complexity of the learning task. The next-beat + interval policy (Figure

4.1c) showed intermediate learning speed and stability, and eventually converges to
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the optimal solution. The nearest-beat + interval policy (Figure 4.1d) had the slowest

learning progression and highest variability in performance during training. Due to

its poor performance, we decided to abandon this policy for further tests and continue

with well-trained agents with acceptable performances in the tasks.

These results highlight how the structure of the reward signal significantly impacts

the learning dynamics and ultimate behavior of the RL agents. The simpler, more

directed next-beat reward facilitates rapid acquisition of basic synchronization, while

more complex reward schemes pose greater challenges for the learning algorithm.

However, it’s important to note that while we aim to avoid unnecessary complexity

in reward structures, we must also ensure that the reward policy includes all fea-

tures required for robust and adaptable performance across various tasks. As we will

see in subsequent tests, although the next-beat policy leads to faster learning and

better performance in the basic synchronization task, the next-beat+interval policy

results in a more robust agent capable of adapting to different scenarios. This under-

scores the delicate balance between simplicity for efficient learning and complexity

for comprehensive skill development in reinforcement learning contexts.

4.2 Metronome Synchronization Task

During and after training, the agents were tested on their ability to synchronize with a

steady metronome at the training tempo. Figures 4.2 and 4.3 show example episodes

of metronome synchronization for each agent, mid-training process and after training

respectively.
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(a) Nearest-beat Policy

(b) Next-beat Policy

(c) Next-beat + Interval Policy

Figure 4.2: Semi-Trained Agents’ Performances in a Synchronization Task with
IOI=500ms. (4.2a) Nearest-beat Policy: The agent displays sub-optimal

synchronization, behaving more like reacting to the beat and making multiple taps.
(4.2b) Next-beat Policy: The agent inclines toward tapping ahead of the beat but
still makes errors, likely due to ongoing exploration mid-training. (4.2c) Next-beat
+ Interval Policy: This agent, with extra reward for interval accuracy, demonstrates

lower variability in interval consistency compared to the other policies.
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(a) Nearest-beat Policy

(b) Next-beat Policy

(c) Next-beat + Interval Policy

Figure 4.3: Fully-Trained Agents’ Performances in a Synchronization Task with
IOI=500ms. (4.3a) Nearest-beat Policy: This agent has converged on a sub-optimal
solution of reacting to the beat rather than anticipating it. (4.3b) Next-beat Policy:

The agent has successfully learned to anticipate and synchronize with the
metronome’s beats. (4.3c) Next-beat + Interval Policy: Similar to (4.3b), this agent
demonstrates successful anticipation and synchronization, potentially with improved

interval consistency and robustness due to the additional reward component.

57

http://www.mcmaster.ca/
https://cse.mcmaster.ca/


M.Sc. Thesis – Y. Ommi; McMaster University – Computational Science and Engineering

4.3 Event Onset Shift Task

Based on the initial training results and steady metronome synchronization perfor-

mance, we made a strategic decision to focus our subsequent analyses on the most

promising agents. Specifically, we continued our investigation with the next-beat

asynchrony agent (1) and the next-beat + interval agent (3), as these demonstrated

stable learning and effective synchronization behavior. The nearest-beat asynchrony

agent (2) and the nearest-beat + interval agent (4) were excluded from further testing

due to their sub-optimal performance and inconsistent behavior.

To assess the agents’ ability in recovery of synchronization following a perturba-

tion, we tested their responses to event onset shifts in the metronome sequence. Shifts

of varying magnitudes (±5%, ±10% of the inter-onset interval) were introduced, and

the agents’ tap timing adjustments were analyzed. Figures 4.4 and 4.5 shows example

perturbation responses for each agent.

The next-beat asynchrony agent (Figure 4.4) showed no adjustment to its tap-

ping in response to event onset shifts. This inflexibility suggests the agent learned

to produce taps at a fixed interval matching the initial tempo, rather than truly syn-

chronizing with external events. While effective for steady sequences, this strategy

fails to adapt to timing changes.

Most notably, the next-beat + interval reward agent (Figure 4.5) demonstrated

adaptive responses to event onset shifts that closely resemble human behavior. This

agent made appropriate corrections to its tap timing following perturbations, with

an asymmetry in the magnitude of corrections that mirrors patterns observed in

human subjects. Specifically, the agent made larger corrections when its taps were

late (positive asynchrony) compared to when they were early (negative asynchrony).
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(a)

(b)

Figure 4.4: Next-beat Agent’s Event Onset Shift Test Episodes. In (4.4a) the sixth
metronome beat is expedited by 20ms and in (4.4b), it’s delayed by 20ms. The

pre-shift position of the shifted beat is denoted by the grey dotted line. (Only the
shifted beat and its adjacent beats are shown for better clarity.)
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(a)

(b)

Figure 4.5: Next-beat + Interval Agent’s Event Onset Shift Test Episodes. In (4.5a)
the sixth metronome beat is expedited by 20ms and in (4.5b), it’s delayed by 20ms.
The pre-shift position of the shifted beat is denoted by the grey dotted line. (Only

the shifted beat and its adjacent beats are shown for better clarity.)
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Figure 4.6: Asymmetric Error Correction in the Next-beat + Interval RL Agent at
IOI=700ms. This plot demonstrates the agent’s tap adjustment as a function of

shift size in the metronome beat. The x-axis represents the shift size in milliseconds,
with negative values indicating early shifts (expedited beats) and positive values
indicating late shifts (delayed beats). The y-axis shows the agent’s corresponding

tap adjustment in milliseconds. The asymmetric response is evident, with the agent
making larger corrections when it is late compared to when it is early.

Figure 4.6 quantifies this asymmetry in error correction across different pertur-

bation magnitudes in a sample test episode. This asymmetric error correction is a

documented phenomenon in human sensorimotor synchronization [2, 51, 29]. The

emergence of this behavior in our RL agent suggests that the combination of next-

beat asynchrony and interval accuracy rewards captures important aspects of the

human synchronization learning process. To further validate our model’s behavior,

we compared our results to empirical data from human subjects performing similar

sensorimotor synchronization tasks. Figure 4.7 shows data from a study [29] that

demonstrates asymmetric error correction in human participants.
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Figure 4.7: Reprinted from [29]. Negative asynchronies are usually left alone, while
positive ones are quickly adjusted. In both studies, the data plots meet precisely at
zero asynchrony, indicating the system can accurately differentiate between early

and late timing.

4.4 Discussion

The results of this study offer valuable insights into the development of sensorimotor

synchronization through reinforcement learning. The stark differences in performance

across reward policies underscore the critical role that reward structure plays in shap-

ing synchronization behavior. Simple, directed rewards can facilitate rapid learning

of basic synchronization, while more complex reward schemes may better capture

nuanced aspects of human performance.

One of the most intriguing findings is the emergence of human-like adaptation in

the agent trained with the next-beat + interval reward policy. This agent demon-

strated adaptive behavior closely resembling human sensorimotor synchronization,

including the phenomenon of asymmetric error correction. The agent made larger

corrections when its taps were late compared to when they were early, mirroring a

documented pattern in human subjects. This asymmetry likely emerges from the

reward structure itself, where late taps risk missing the next beat entirely and thus

incur a more severe penalty.
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The appearance of asymmetric error correction in our model suggests that hu-

man synchronization abilities may arise from a similar combination of timing goals –

minimizing asynchrony with upcoming events while maintaining a consistent interval

between actions. It aligns with theories proposing that humans may experience dif-

ferent subjective costs for early vs. late synchronization errors [22, 29]. In real-world

scenarios, early actions may often be less costly than late ones, potentially leading to

the development of timing strategies biased towards anticipation rather than reaction.

Interestingly, while our model didn’t explicitly demonstrate the negative mean

asynchrony (NMA) commonly observed in human subjects during steady-state syn-

chronization, it did exhibit behavior that implies a similar underlying mechanism.

The next-beat + interval agent, when faced with event onset shifts, showed a ten-

dency to ”play it safe” by tapping earlier rather than later. This bias towards earlier

responses, while not manifesting as a consistent NMA in steady-state tapping, sug-

gests a similar anticipatory strategy to that seen in humans.

The relationship between this anticipatory bias and the asymmetric error correc-

tion observed in our model provides a novel perspective on these phenomena. Both

may emerge from the same underlying reward structure that more harshly penalizes

late responses. In humans, this anticipatory strategy manifests as the NMA during

steady synchronization. In our model, it appears more prominently in adaptive sit-

uations, such as responding to perturbations. This finding suggests that the NMA

observed in humans might not be a necessary feature of the synchronization process

itself, but rather a byproduct of an anticipatory strategy that becomes more evident

in challenging or unpredictable timing contexts. Our model thus offers a new compu-

tational framework for understanding how these anticipatory behaviors might develop
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through experience and feedback, even if they don’t always manifest in the same way

as in human subjects.

The failure of agents trained with nearest-beat rewards to develop stable, adap-

tive synchronization highlights the importance of temporal direction in error signals

for sensorimotor learning. Human learners likely benefit from clear feedback distin-

guishing early from late timing errors, allowing for appropriate adjustments to their

internal timekeeping processes.
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Chapter 5

Conclusion and Future Directions

This thesis has explored the application of deep reinforcement learning to model senso-

rimotor synchronization (SMS), a fundamental human ability that underlies activities

ranging from musical performance to everyday social interactions. By implementing

recurrent neural network agents trained with various reward policies, we have demon-

strated that reinforcement learning can capture key aspects of human synchronization

behavior, including adaptive responses to perturbations and asymmetric error correc-

tion.

Our results highlight the critical role of reward structure in shaping synchro-

nization behavior. The emergence of human-like adaptation in agents trained with a

combined next-beat and interval accuracy reward suggests that similar reward mecha-

nisms may underlie the development of SMS skills in biological systems. The observed

asymmetry in error correction, mirroring patterns seen in human subjects, provides a

computational framework for understanding how anticipatory strategies might arise

from experience-dependent learning processes.

Importantly, our model offers new perspectives on established phenomena in SMS
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research. While we did not observe a consistent negative mean asynchrony (NMA)

during steady-state synchronization, our agents exhibited anticipatory behavior in

response to perturbations. This suggests that the NMA observed in humans may be a

byproduct of a more general anticipatory strategy that becomes evident in challenging

timing contexts, rather than a necessary feature of the synchronization process itself.

5.1 Summary of Contributions

The key contributions of this thesis are as follows:

• Development of a novel deep reinforcement learning framework for modeling

SMS, using recurrent neural networks with LSTM units to capture temporal

dependencies in rhythmic tasks.

• Demonstration that different reward structures lead to distinct synchronization

behaviors, with combined next-beat and interval accuracy rewards producing

the most human-like performance.

• Emergence of asymmetric error correction in our model, providing a computa-

tional account for this documented phenomenon in human SMS.

• New insights into the relationship between anticipatory bias and asymmetric

error correction, suggesting a common underlying mechanism driven by the

reward structure of the task.

• A flexible computational framework for studying SMS that can be extended to

investigate more complex rhythmic behaviors and interpersonal coordination.
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5.2 Future Directions

While our work has provided valuable insights into the computational principles un-

derlying SMS, several avenues for future research remain:

• Increased Action-Tap Interval: Investigate the impact of varying delays be-

tween the agent’s action selection and the resulting tap execution. This could

involve: (a) Systematically increasing the delay between action choice and tap

landing during training to examine how agents adapt their strategies. (b) Ex-

ploring how different delay durations affect the agent’s ability to synchronize

and its error correction mechanisms.

• Robustness and Noise: Our agents were trained and tested in noise-free en-

vironments, which may have contributed to their performance. Future work

should investigate the robustness of these models by introducing various forms

of noise during training and testing. This could include: (a) Motor noise: Im-

plementing a jittered metronome during training to simulate the variability

inherent in biological motor systems. (b) Sensory noise: Adding uncertainty to

the agent’s perception of beat timings. (c) Neural noise: Incorporating stochas-

ticity into the neural network’s activations.

• Sensory Feedback: Introducing feedback from the agent’s own taps and ma-

nipulating the delay between tap execution and the agent’s perception of the

feedback could reveal how agents adjust to sensorimotor feedback delays. Hu-

mans experience delays in sensory processing, and studying how agents cope

with feedback delays would provide deeper insights into error correction mech-

anisms.
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• Expanded Temporal Range: Train agents on a wider range of tempi to

investigate how synchronization strategies generalize across different time scales.

This could reveal insights into the scalar property of timing and the limits of

SMS abilities.

• Complex Rhythmic Patterns: Extend the model to handle more complex

rhythmic patterns with metrical hierarchies. This could shed light on how

agents learn to extract and utilize hierarchical temporal structures, a key aspect

of musical rhythm perception.

• Interpersonal Synchronization: Develop multi-agent models to study the

emergence of interpersonal synchronization. This could involve: (a) Training

multiple agents to coordinate with each other, simulating ensemble performance.

(b) Investigating how different reward structures influence the development of

leader-follower dynamics. (c) Exploring how individual differences in timing

abilities affect group synchronization.

• Neural Activity Analysis: Investigate the internal representations and tra-

jectories of the trained agent’s neural network and compare them to existing

data from non-human primates performing similar SMS tasks.

• Synchronization-Continuation Task: Extend the model to perform synchronization-

continuation tasks, where the agent must continue tapping at the learned tempo

after the external metronome stops.

In conclusion, while this thesis lays the groundwork for using RL to model sensori-

motor synchronization, future work should focus on training agents in more complex,

noisy, and interactive environments to fully understand the mechanisms behind robust
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synchronization behaviors. By incorporating these additional research directions, we

can further bridge the gap between computational models and neurobiological find-

ings, potentially leading to more comprehensive theories of temporal processing in

both artificial and biological systems. These investigations could also provide valuable

insights into the neural basis of rhythm perception and production, with implications

for understanding both normal timing behavior and timing-related disorders.
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