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Abstract
This thesis addresses the design of distributed scalar quantizers (DSQs) for two sensors,

tailored to maximize the classification accuracy for a pre-trained binary linear classifier

at the central node, diverging from traditional designs that prioritize data reconstruction

quality.

The first contribution of this thesis is the development of efficient globally optimal

DSQ design algorithms for two correlated discrete sources when the quantizer cells are

assumed to be convex. First, it is shown that the problem is equivalent to a minimum

weight path problem (with certain constraints) in a weighted directed acyclic graph.

The latter problem can be solved using dynamic programming with O(K1K2M
4) com-

putational complexity, where Ki, is the number of cells for the quantizer of source i,

i = 1, 2, and M is the size of the union of the sources’ alphabets. Additionally, it is

proved that the dynamic programming algorithm can be expedited by a factor of M by

exploiting the so called Monge property, for scenarios where the pre-trained classifier is

the optimal classifier for the unquantized sources.

Next, the design of so-called staggered DSQs (SDSQs) is addressed, i.e., DSQ’s with

K1 = K2 = K and with the thresholds of the two quantizers being interleaved. First, a

faster dynamic programming algorithm with only O(KM2) time complexity is devised

for the design of the SDSQ that minimizes an upperbound on the classification error.

This sped up is obtained by simplifying the graph model for the problem. Moreover,

it is shown that this algorithm can also be further accelerated by a factor of M when

the pre-trained linear classifier is the optimal classifier. Furthermore, some theoretical

results are derived that provide support to imposing the above constraints to the DSQ
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design problem in the case when the pre-trained classifier is optimal. First, it is shown

that when the sources (discrete or continuous) satisfy a certain symmetry property, the

SDSQ that minimizes the modified cost also minimizes the original cost within the class

of DSQs without the staggerness constraint. For continuous sources, it is also shown

that the SDSQ that minimizes the modified cost also minimizes the original cost and all

quantizer thresholds are distinct, even if the sources do not satisfy the aforementioned

symmetry condition. The latter result implies that DSQs with identical encoders are

not optimal even when the sources has the same marginal distribution, a fact which is

proved here for the first time, up to our knowledge.

The last (but not least) contribution of this thesis resides in leveraging the aforemen-

tioned results to obtain efficient globally optimal solution algorithms for the problem

of decentralized detection under the probability of error criterion of two discrete vec-

tor sources that are conditionally independent given any class label. The previously

known globally optimal solution has O(NK1+K2+1) time complexity, where N is the

size of the union of the alphabets of the two sources. We show that by applying an

appropriate transformation to each vector source, the problem reduces to the problem

of designing the optimal DSQ with convex cells in the transformed scalar domain for

a scenario where the pre-trained linear classifier is the optimal classifier. We conclude

that the problem can be solved by a much faster algorithm with only O(K1K2N
3) time

complexity. Similarly, for the case of equal quantizer rates, the problem can be solved

in O(KN) operations if the sources satisfy an additional symmetry condition. Fur-

thermore, our results prove the conjecture that for continuous sources, imposing the

constraint that the encoders be identical precludes optimality, even when the marginal

distributions of the sources are the same.
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Chapter 1

Introduction

Quantization plays a pivotal role in nearly all lossy data compression algorithms, serv-

ing to reduce the number of bits necessary for storage and communication. These tech-

niques aim to optimize a rate-distortion trade-off, striving to represent data as accu-

rately as possible with a limited number of bits. In contrast, this work introduces dis-

tributed quantization schemes specifically designed for data intended for classification

purposes. We focus on creating distributed quantizers that balance the rate-classification

error trade-off, optimizing not for reconstruction accuracy, but for correct classification.

Intuitively, for data reconstruction, the objective is to represent regions with high signal

concentration more precisely. For classification, however, the focus shifts to more finely

representing areas near the decision boundary, where errors are more likely to occur.

In this thesis, our goal is to study and design distributed scalar quantizers for the fol-

lowing system. Two sensor nodes collect data, independently from one another. These

sensors do not communicate with each other. The collected data is sent to a central node

in which a known pre-trained linear classifier exists, for classification. The communi-

cation between the sensors and the central node is rate limited. Therefore, the collected
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data cannot be sent to the server with full precision. Instead, each sensor node applies a

scalar quantization step, independent from the other node, to encode its measurements

into bit representations as efficiently as possible. As a result of this data compression,

some information will be lost. The goal is to design quantizers at each node such that

this information loss has the least negative effect on the classification results. The fol-

lowing section reviews some prior works and Section 1.2 describes our contribution and

thesis organization.

1.1 Prior Work

The problem of distributed quantization was framed in a variety of scenarios, includ-

ing traditional lossy multiterminal source coding [3, 53, 4, 37, 45, 58, 59, 57, 15],

distributed source coding for functional computation [29, 34, 50, 8, 54, 56, 49], and

statistical inference under multiterminal data compression [23, 22, 6, 55, 28, 7, 52].

In traditional multiterminal source coding, two or more correlated sources are encoded

separately and sent to a joint decoder that aims at reconstructing all sources. The prac-

tical design of distributed quantizers for this task was addressed in [40, 18, 42, 60, 43,

65, 67, 39]. In distributed source coding for functional computation, the goal of the

common decoder is to reconstruct a specified function of the sources.

The problem of task-based scalar quantizer design using neural networks is consid-

ered in [47, 48, 46]. In all of these works, the encoders and decoders are jointly trained

using fully connected neural networks. The scalar quantizers are modelled as the acti-

vation functions of the last layer of the encoder neural network. The goal is to minimize

the distortion between the parameter to be estimated and the true parameter value for all

2
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examples of a training sequence. In all of these works, all quantizers are constrained to

be identical.

Standard tasks in multiterminal inference problems are estimation of an unknown

parameter that is dependent on the encoded sources and detection (or hypothesis test-

ing). Algorithms for optimal design of distributed quantizers tailored for the estimation

problem were proposed in [51, 19, 20, 30, 33, 38, 17, 24]. Decentralized detection

was first considered in [51] for the case of two sensors and two hypotheses with equal

encoder rates of 2. In all these works, except for [33], the joint probability distribution

of the data is assumed to be known. Among the optimization objectives considered are

minimizing the average distortion for a general distortion function [19] and minimizing

the mean squared error [20, 30, 33, 24]. Other objectives are maximization of Fischer’s

information [30], maximization of the minimum asymptotic relative efficiency between

the quantized and unquantized estimators [38] and the minimization of the trace of the

Cramer-Rao bound matrix [17]. The authors of [30] also considered the minimization of

the probability of estimation error (the same criterion as in our work), but their solution

algorithm cannot ensure global optimality. In all of these works, an iterative algorithm

that successively optimizes each encoder while keeping the other encoders fixed is used.

This strategy is known as the "person-by-person" optimization strategy, which does not

guarantee the globally optimal solution.

The problem of distributed quantizers design for binary hypothesis testing was ad-

dressed in [32, 2, 36, 52]. The authors of [32] propose a locally optimal algorithm to

maximize the Bhattacharyya distance between the distributions of the space of interest

under the two hypotheses. In [2] the cost to be minimized is an approximation of the

probability of error, known as the saddlepoint approximation. While in [32, 2] the data

3
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distribution is assumed to be known, in [36], only a training set is available. The authors

of [36] assume that probabilistic decision rules are used at the encoders and consider the

average loss combined with a regularization term as the cost function, where the loss

function is a convex upper bound of the 0−1 loss1. In [52], a general scenario, i.e., gen-

eral number of sensors and of hypotheses, and general error functions was addressed.

For the case of conditionally independent sources, Tsitsiklis derived necessary optimal-

ity conditions [52]. Based on these, he proposed a person-by-person algorithm. Tsit-

siklis emphasized that the person-by-person algorithm does not guarantee convergence

to a globally optimal solution. For the scenario of two binary hypotheses, conditionally

independent sources and the probability of error criterion (i.e., our scenario), Tsitsiklis

noted that when the sources are discrete, an exhaustive search over all possible thresh-

old rules solves the problem globally optimally, but this algorithm is computationally

extensive.

The problem of Distributed Scalar Quantizer (DSQ) design for a classification task

is also considered in [16, 25]. The authors of [16] address the problem of designing a

DSQ that minimizes the mismatch between the classifier applied to the quantized train-

ing data versus unquantized data, but impose a constraint on the structure of the DSQ.

In particular, in the case when the rates of the two encoders are equal, the constraint

corresponds to considering identical encoders. The proposed solution for this scenario

is a greedy design algorithm. The problem studied in [25] is the problem of practical

distributed quantizer design for a general classification task with the goal of minimiz-

ing the training misclassification rate. A general number of features and of sensors that

collect these features is considered. The authors of [25] prove that the problem is NP-

hard in the general case and propose a greedy algorithm of polynomial time complexity.

1Note that the expected 0− 1 loss equals the probability of error.

4
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Furthermore, for the case of two features, two sensors and linearly separable data, they

provide an efficient algorithm for the optimal DSQ design within the class of DSQs with

identical encoders. Note that the latter algorithm also provides an optimal solution to

the constrained problem considered in [16].

1.2 Contribution and Thesis Organization

Previous research on quantizer design primarily focused on achieving high-quality re-

construction of original samples. However, in our context, precise reconstruction of all

samples is not crucial, as the output of the DSQ is used solely for a classification task.

The design process could be more efficient if the optimization criterion were tailored

specifically to the classification task. Thus, in this thesis we aim to minimize the error

of the classifier applied to the quantized output.

The scenario we consider involves two sensor nodes collecting data independently.

Each sensor node quantizes its data separately before sending it to a server node, which

hosts a known linear binary classifier. Our objective is to design the quantizers in a way

that minimizes the classifier’s error on the quantized output. To reduce quantization de-

lay, we focus on the use of scalar quantizers. In addition, we assume that each quantizer

has convex cells (or bins, or regions), i.e., each quantization region is an interval of the

real line (or the intersection of the source alphabet with an interval of the real line).

The assumption of a pre-trained classifier is practical in situations where the com-

munication channel constraints are unknown during classifier design, allowing the same

classifier to be used across systems with varying communication channels.

5
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The selection of a linear classifier is also optimal in many scenarios. For linearly

separable data or for cases where the joint conditional probability of the sources given

each class label is Gaussian with equal variances, the optimal classifier is linear. Ad-

ditionally, some scenarios allow for separate data transformation on each source such

that the optimal decision boundary becomes linear in the transformed domain, even if

it is not linear in the original domain. An example is the detection problem described

in [52], when the sources are conditionally independent given the class label. In this

case, a transformation related to the likelihood ratio results in an optimal linear deci-

sion boundary in the transformed domain, without requiring any specific conditions or

knowledge about the optimal decision boundary in the original domain.

Up to our knowledge, there is no efficient solution algorithm available that guar-

antees optimality, even for the case of two sensors and linear binary classifier, without

constraining the classes to be linearly separable and imposing identical encoders [16, 25,

14]. In Tsitsiklis’ work [52], the proposed optimal solution for conditionally indepen-

dent sources given the class label is computationally expensive and a person-by-person

approach is taken for efficient quantizer design, which does not guarantee global opti-

mality. In this thesis, we first address the problem in the general case, then we study

some special scenarios, including the case when the given linear classifier is optimal,

the case of equal quantizer rates, symmetric data distribution, identical encoders, and

conditionally independent sources given the class label.

In particular, in Chapter 2, we study the problem of optimal design of DSQs with

two correlated sources and for a known linear binary classifier present at the decoder. In

contrast to prior works, we do not impose any condition on the data distribution, linear

separability, optimality of the linear classifier, or structure of the encoders. The only

6
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assumption is that the quantizer cells are convex. For the case of discrete sources, we

establish that optimizing the DSQ equates to solving a minimum weight path problem,

subject to constraints on the number of vertices of certain types, in a weighted directed

acyclic graph (WDAG). We devise a dynamic programming solution algorithm that op-

erates with a time complexity ofO(K1K2M
4) whereKi is the number of quantizer cells

at encoder i, i = 1, 2, and M is the size of the union of the sources’ alphabets. Next,

we showcase a significant acceleration of the proposed algorithm, achieving a speedup

by a factor of M through leveraging a fast matrix search technique in matrices with the

Monge property, for the case where the given linear classifier is the optimal classifier.

Furthermore, we emphasize the adaptability of this algorithm to situations where the

source distribution is continuous or only a training sequence is available. Some of these

results were presented in [14] and [68]. It is important to note that in [14], the goal is

to minimize the mismatch between the classifier applied to the unquantized data and

the classifier applied to the quantized data. Thus, the cost is different from the cost

considered in this thesis unless the linear classifier separates the two classes completely.

Therefore, the algorithm proposed in [14] does not guarantee the minimization of the

classification error unless the data is separable by the linear classifier. Nevertheless, a

similar algorithm can be used to minimize the classification error, as will be shown,

since the graph model used there can be translated to the scenario of this thesis.

Chapter 3 explores the characteristics of the optimal DSQ for the equal-rate scenario,

i.e., where K1 = K2 = K, with the aim of streamlining the design process. In several

prior works addressing this case, the encoders are constrained to be identical [16, 25,

47]. In this chapter, we consider continuous sources for which the optimal classifier is

7
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linear. We show that for such sources, the identical-encoders constraint is highly restric-

tive. Our approach involves investigating staggered DSQ (SDSQ) designs, i.e., where

the threshold values of the two encoders are interleaved. We prove that the optimal

SDSQ must be strict, i.e., the two encoders cannot have any identical thresholds. In

addition, we demonstrate that the optimal SDSQ also minimizes an upper bound on the

classification error that is easier to compute. Furthermore, we establish that for distribu-

tions that additionally satisfy a certain symmetry condition, the globally optimal DSQ

must be strictly staggered.

Given the results of Chapter 3 for the case of equal quantizer rates for continuous

sources, in Chapter 4, we establish similar properties that hold when the sources are

discrete. Specifically, we show that in the case where the linear classifier is the optimal

classifier for the unquantized data and the data distribution satisfies a certain symmetry

condition, the optimal SDSQ is also optimal among all DSQs. Further, we address the

problem of minimizing the modified cost that is the upper bound on the probability of

error considered in the previous chapter. This strategic choice significantly simplifies

the graph model, reducing the solution algorithm’s time complexity to O(KM2). Fur-

thermore, we prove that the Monge property holds for sources for which the optimal

classifier is linear, facilitating a reduction in time complexity by an order of M . More-

over, we propose a globally optimal solution for the case where encoders have identical

thresholds. Experimental results with training data illustrate the superiority of the de-

signed SDSQs with this modified cost over prior work that assume identical encoders,

despite our focus on minimizing an upper bound of the error.

Chapter 5 extends the discussions from Chapters 2 and 4 by exploring a practical

application for the proposed designs. Specifically, we consider the detection problem of

8
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[52] in which the sources are vectors, are discrete and conditionally independent given

the class label. Note that for this case, it was shown in [52] that the optimal encoders

are scalar quantizers with convex cells in the likelihood ratio domain. Therefore, an ex-

haustive search over all possible threshold rules solves the problem globally optimally

as observed by Tsitsiklis [52]. Up to our knowledge, the aforementioned exhaustive

search is the fastest globally optimal algorithm known so far, but it is very inefficient

since it requires NK1+K2(N + K1K2) operations, where N is the size of the union of

the alphabets of the input vectors. We propose a considerably faster globally optimal

solution with time complexity O(K1K2N
3). To achieve this, we show that the problem

can be mapped to the DSQ design problem of Chapter 2 in a transformed space, and

therefore can be solved with a similar solution algorithm. This result was presented in

[68]. Moreover, we show that the properties discussed in Chapter 4 hold in the trans-

formed space for the case of encoders with equal rates. We further derive a sufficient

condition on the vectors sources that guarantees that the symmetry property introduced

in Chapter 3 holds in the transformed domain and provide some examples.

Finally, Chapter 6 concludes the thesis and discusses some directions for future work.

9
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Chapter 2

Globally Optimal Design of DSQ for

Binary Linear Classification. General

Problem

In this chapter, we study the problem of designing an optimal (K1, K2)-level distributed

scalar quantizer, where Kk denotes the number of quantizer regions of the encoder at

node k, for k = 1, 2, such that the error of the given classifier applied to the quantized

output is minimized. We consider the case of two scalar and correlated sources, two

classes, and a given linear classifier at the decoder. We assume that the quantizer cells

are convex. We consider the scenario in which the joint distribution of the data and

labels is known and discrete. We prove that the problem of optimal DSQ design is

equivalent to a minimum weight path problem with some constraints on the number

of vertices of certain types in a certain weighted directed acyclic graph (WDAG). The

proposed solution algorithm has time complexity O(K1K2M
4), where M is the size of

the union of the alphabets of the two sources. Next, we demonstrate that the proposed

10
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dynamic programming algorithm can be sped up by a factor of M by exploiting the so-

called Monge property, if the given linear classifier is the optimal classifier. Moreover,

we show how the proposed algorithm can be adopted in the scenario where the joint

distribution of the data in each class is known and continuous as well as the scenario

where the source distribution is not known but a training sequence is available.

This chapter is organized into seven sections. Section 2.1 describes the general

framework and introduces the notations. Section 2.2 formulates the optimization prob-

lem. Section 2.3 shows that the problem of optimizing the DSQ is equivalent to a

constrained shortest path problem in a specific WDAG and describes the graph model.

In Section 2.4, the solution algorithm for the optimal DSQ design is proposed. Section

2.5 demonstrates that the Monge property is satisfied and can be used to speed up the

solution algorithm when the linear classifier is the optimal classifier. Section 2.6 dis-

cusses the adaptation of the algorithm to the cases when the sources are continuous or

when the distribution is unknown but a training sequence is available instead. Finally,

Section 2.7 concludes the chapter.

2.1 Notations and Problem Description

Consider two distributed sensor nodes as in Fig. 2.1. The data collected by each node

is quantized using a scalar quantizer with convex cells. Let Qk denote the quantizer at

node k, let αk denote the encoder of Qk and let Rk denote the rate of Qk, for k = 1, 2.

Then αk : R → {1, 2, . . . , 2Rk}, for k = 1, 2. The messages mk = αk(xk) transmitted

by the sensor nodes are received at a server node, where they are decoded using the

decoding mapping β : {1, 2, . . . , 2R1} × {1, 2, . . . , 2R2} → R2. Let xk denote the input

to the encoder at node k, for k = 1, 2, and x = (x1, x2). The output x̂ of the decoder

11
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is further used as input to a linear binary classifier γ : R2 → {1,−1}. We assume that

the joint probability distribution of the sources and labels is known and that the linear

classifier γ is given. Note that the system described by the triple (α1, α2, β) forms a

distributed scalar quantizer. We will also use the notation Q = (Q1, Q2) for this DSQ

and will say that Q is a (K1, K2)-level DSQ, where K1 = 2R1 and K2 = 2R2 .

FIGURE 2.1: System block diagram.

Without restricting the generality, we assume that the decision boundary of the linear

classifier obeys the equation x1−x2 = 0. Note that any affine equation ax1+bx2+c = 0

with a 6= 0 and b 6= 0 can be reduced to the above after applying an affine transformation

to each variable1.

Recall that, for k = 1, 2, Kk = 2Rk . It follows that the encoder of Qk partitions

the real line into Kk intervals called cells or bins. All elements in the same bin are

assigned the same index by the encoder. Let us denote Ui = α−1
1 (i), for 1 ≤ i ≤ K1

and Vj = α−1
2 (j), for 1 ≤ j ≤ K2. Since each cell of Q1 is an interval, the encoder

partition of Q1 is completely specified by the separators between cells. Consider the

(K1 − 1)-tuple obtained by ordering these separators in increasing order. We denote

it by ũ = (ũ1, · · · , ũK1−1), where −∞ = ũ0 < ũ1 < · · · < ũK1−1 < ũK1 = ∞,

1If either a = 0 or b = 0, then the output of the classifier depends only on one the inputs, therefore
only the data collected at one of the sending nodes is needed at the server.
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and Uj = [ũj−1, ũj), for 1 ≤ j ≤ K1. We will refer to the components of ũ as the

thresholds of quantizer Q1. Likewise, the encoder partition of Q2 is determined by the

ordered (K2 − 1)-tuple of integers ṽ = (ṽ1, · · · , ṽK2−1), where −∞ = ṽ0 < ṽ1 < ṽ2 <

· · · < ṽK2−1 < vK2 = ∞, and Vk = [ṽk−1, ṽk), for 1 ≤ k ≤ K2. The components

of ṽ are called the thresholds of quantizer Q2. Recall that the DSQ Q is said to be a

(K1, K2)-level DSQ.

The DSQ Q = (Q1, Q2) induces a partition of the set of the two-dimensional vectors

x = (x1, x2) into the rectangular regions Ui×Vj for all 1 ≤ i ≤ K1, 1 ≤ j ≤ K2. They

can be regarded as the bins of the product quantizer Q1 ×Q2. Note that for each region

Ui × Vj , all vectors x belonging to it are assigned to the same class, namely γ(β(i, j)),

where β(i, j) ∈ Ui × Vj .

We will use the term classifier line for the decision boundary of the linear classifier

γ and we will denote it by L. We also denote by H− the closed half-plane below L

and by H+ the closed half-plane above L. In other words, L = {(x1, x2) : x1 = x2},

H− = {(x1, x2) : x1 ≥ x2} and H+ = {(x1, x2) : x1 ≤ x2}. We further assume that

γ(x) =


1 if x ∈ H+

−1 if x ∈ H̆−

,

where H̆− = H− \ L.
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Then the problem we seek to solve is to find the triple (α1, α2, β) that minimizes the

probability of classification error, i.e.,

min
(α1,α2,β)

Pr(γ(x̂) 6= `) (2.1)

where Pr(E) denotes the probability of the event E, x̂ = β(α1(x1), α2(x2)) and

β(i, j) ∈ α−1
1 (i) × α−1

2 (j) for all (i, j). Throughout this thesis, we will refer to this

problem as the optimal DSQ design problem.

2.2 Equivalent Problem Formulation

In this section, we propose an equivalent formulation of the optimization problem,

which facilitates the solution algorithm. We will denote by X the set where x takes

values in, where X ⊂ R2. For x ∈ X and ` ∈ {1,−1}, we denote by P (x, `) the

joint probability mass function (pmf) of x and label ` when the sources are discrete, and

by f(x, `) we denote the joint probability density function (pdf) when the sources are

continuous, where f(x, `) is a continuous function in x.

Note the definitions introduced in this sections apply to both cases when the sources

are discrete or continuous. At times, we will spell out the definitions for the discrete

case. The corresponding relations for the continuous case can be obtained by replacing

the pmf by the pdf, and summations over x by integrals.

The expected error of the DSQ is defined as the expected classification error as fol-

lows.
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ρ(Q) = Pr{γ(x̂) 6= `} =
∑

`∈{−1,1}

∑
x∈X

P (x, `)I(γ(x̂) 6= `), (2.2)

where I(·) denotes the indicator function.

Additionally, we denote by ρu the probability of error of the classifier applied to the

unquantized input. In other words,

ρu = Pr{γ(x) 6= `} =
∑

`∈{−1,1}

∑
x∈X

P (x, `)I(γ(x) 6= `). (2.3)

The first crucial observation that enables our approach is that since γ is given, it follows

that ρu is fixed, therefore, in order to minimize ρ(Q) defined in (2.2), it is sufficient to

minimize ρ(Q)− ρu. Note that

ρ(Q) = Pr{γ(x̂) 6= ` & γ(x) 6= `}+ Pr{γ(x̂) 6= ` & γ(x) = `}, (2.4)

and

ρu = Pr{γ(x) 6= ` & γ(x̂) 6= `}+ Pr{γ(x) 6= ` & γ(x̂) = `}. (2.5)

Relations (2.4) and (2.5) imply that

ρ(Q)− ρu = Pr{γ(x̂) 6= ` & γ(x) = `} − Pr{γ(x) 6= ` & γ(x̂) = `}. (2.6)
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Further, we associate to each measurable set A ∈ R2 the following value

c(A) = Pr{x ∈ A & γ(x̂) 6= ` & γ(x) = `}

− Pr{x ∈ A & γ(x) 6= ` & γ(x̂) = `}.
(2.7)

Using the notation

c(Q) =
K1∑
i=1

K2∑
j=1

c (Ui × Vj) ,

we obtain, according to (2.6) and (2.7), that ρ(Q) = c(Q) + ρu. We conclude that

minimizing ρ(Q) is equivalent to minimizing c(Q).

Recall our assumption that β(i, j) ∈ Ui × Vj . This implies that if Ui × Vj ⊂ H+ or

Ui × Vj ⊂ H̆−, then γ(x) = γ(β(i, j)) = γ(x̂) for all x ∈ Ui × Vj , thus both terms in

(2.7) are 0, which leads to c (Ui × Vj) = 0.

For the quantization regions Ui × Vj that are not entirely included in H+ or in H̆−,

the value of c(Ui×Vj) depends on whether β(i, j) is in H+ or in H̆−. Before analyzing

the two options, we need to introduce some more notations. For any measurable set A

satisfying A ⊆ H+ or A ⊆ H−, define µ(A) as follows:

a) in the discrete case

µ(A) =


∑

x∈A(P (x, 1)− P (x,−1)) if A ⊆ H+

∑
x∈A(P (x,−1)− P (x, 1)) if A ⊆ H−

,
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b) in the continuous case

µ(A) =


∫
A(f(x, 1)− f(x,−1)) dx if A ⊆ H+∫
A(f(x,−1)− f(x, 1)) dx if A ⊆ H−

.

Clearly, µ(∅) = 0. Note that in the discrete case µ(A) = µ(Ā), where Ā denotes the

closure of A as [a1, a2) × [a3, a4). In addition, the relation µ(A) = 0 holds in the

continuous case whenever area(A) = 0, where area(A) =
∫
A 1 dx.

Next, by considering the values 1 and −1 for `, we rewrite (2.7) as follows

c(A) = Pr{x ∈ A & γ(x̂) 6= ` & γ(x) = ` & ` = 1}

+ Pr{x ∈ A & γ(x̂) 6= ` & γ(x) = ` & ` = −1}

− Pr{x ∈ A & γ(x) 6= ` & γ(x̂) = ` & ` = 1}

− Pr{x ∈ A & γ(x) 6= ` & γ(x̂) = ` & ` = −1}.

Further, if β(i, j) ∈ H+, then γ(x̂) = 1 for x ∈ Ui × Vj leading to

c(Ui × Vj) = Pr{x ∈ Ui × Vj ∩ H̆− & ` = −1} − Pr{x ∈ Ui × Vj ∩ H̆− & ` = 1}

=
∑

x∈Ui×Vj∩H̆−

(P (x,−1)− P (x, 1)) = µ(Ui × Vj ∩ H̆−).
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On the other hand, if β(i, j) ∈ H̆−, then γ(x̂) = −1 for all x ∈ Ui × Vj implying

that

c(Ui × Vj) = Pr{x ∈ Ui × Vj ∩H+ & ` = 1} − Pr{x ∈ Ui × Vj ∩H+ & ` = −1}

=
∑

x∈Ui×Vj∩H+

(P (x, 1)− P (x,−1)) = µ(Ui × Vj ∩H+).

Note that for the case of continuous sources, similar relations hold by replacing pmf

by pdf and summations on x by integrals.

When Ui×Vj∩H̆− 6= ∅ and Ui×Vj∩H+ 6= ∅, we choose β(i, j) such that c(Ui×Vj)

is minimized. Therefore, for any S = Ui × Vj , c(S) satisfies the following relation

c(S) =


0 if S ⊂ H̆− or S ⊂ H+

min{µ(S ∩H+), µ(S ∩ H̆−)} if S ∩ H̆− 6= ∅ and S ∩H+ 6= ∅
.

Note that since both Ui and Vj are intervals and Vj does not contain its right boundary,

it follows that whenever Ui × Vj ∩ H+ 6= ∅, we have Ui × Vj ∩ H̆+ 6= ∅, where

H̆+ = H+ \ L. Consequently, only the regions Ui × Vj that satisfy Ui × Vj ∩ H̆− 6= ∅

and Ui × Vj ∩ H̆+ 6= ∅ can contribute to c(Q). We will call these cells of the product

quantizer the relevant cells of the DSQ.
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FIGURE 2.2: Example of a DSQ: a) partition of Q1×Q2 (each cell Ui×
Vj is denoted by Si,j); b) corresponding path in the associated WDAG;
the thick segment lines represent the nodes on the path, while the arcs
represent the edges.

2.3 Optimal DSQ Design Problem for Discrete Sources

and Its Graph Model

In this section we consider the optimal DSQ design problem (2.1) for the case when

the sources take values in a finite alphabet and will show that it can be modelled as a

constrained shortest path problem in a certain WDAG. We will assume that the set X

consist only of the pairs x for which either P (x, 1) or P (x,−1) is nonzero.

For k = 1, 2, let Ak denote the projection of X on the k-th axis. In other words,

A1 = {x1 : (x1, x2) ∈ X for some x2} and A2 = {x2 : (x1, x2) ∈ X for some x1}. It

can be easily seen that it is sufficient to consider only the scalar quantizers Qk that have

as separators between cells only values from the set Ak, for k = 1, 2.

Let Mk denote the size of Ak, k = 1, 2. Further, denote A = A1 ∪ A2, M = |A|

and let us label the elements of A in increasing order, i.e., A = {a1, · · · , aM} where
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am < am+1 for 1 ≤ m ≤M − 1.

Also, denote a0 = −∞ and aM+1 = ∞. By convention [−∞, x) = (−∞, x).

Additionally, for k = 1, 2, let Mk = {m : am ∈ Ak}. Let Q(K1, K2,A1,A2)

denote the set of (K1, K2)-level DSQs determined by all possible pairs ũ, ṽ, where

ũ = (ũ1, · · · , ũK1−1), ṽ = (ṽ1, · · · , ṽK2−1), ũi ∈ A1 and ṽj ∈ A2, for all i and j.

According to the discussion in the previous sections, minimizing ρ(Q) is equiva-

lent to minimizing c(Q). Then the problem of optimal (K1, K2)-level DSQ design is

equivalent to

min
Q∈Q(K1,K2,A1,A2)

c(Q). (2.8)

Since each threshold of Qk is an element in the alphabet Ak, k = 1, 2, we can

identify it with the integer index corresponding to that element. For this, let ui denote

the integer such that ũi = aui and let vj denote the integer such that ṽj = avj . The

encoder partition of Q1 is determined by the ordered (K1 + 1)-tuple of integers u =

(u0, · · · , uK1) satisfying 0 = u0 < u1 < · · · < uK1−1 < uK1 = M + 1, uj ∈ M1, for

1 ≤ j ≤ K1−1, andUj = [auj−1 , auj), for 1 ≤ j ≤ K1. We will refer to the components

of u as the integral thresholds of quantizer Q1. Likewise, the encoder partition of Q2

is determined by the ordered (K2 + 1)-tuple of integers v = (v0, · · · , vK2) satisfying

0 = v0 < v1 < · · · < vK2−1 < vK2 = M + 1, vk ∈ M2, for 1 ≤ k ≤ K2 − 1,

and Vk = [avk−1 , avk), for 1 ≤ k ≤ K2. The components of v are called the integral

thresholds of quantizer Q2.

Next, we will show that this problem is equivalent to the shortest path problem with
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some constraints in a certain WDAG. We will first explain the intuition behind the graph

construction. Our goal is to map the DSQ to a path in the WDAG such that the weight

of the path (i.e., the sum of the weights of its edges) is equal to the cost of the DSQ

(Fig. 2.2). On the other hand, the cost of the DSQ is equal to the sum of the costs of

the relevant cells of Q1 × Q2. Then the relevant cells can represent the edges in the

path. This leads to the idea of associating each rectangular region that intersects L to

an edge in the graph. The vertices (also called nodes) forming the edge are the two

sides of the rectangle that intersect the line L. In other words, the vertices of the graph

correspond to horizontal and vertical segment lines that intersect L. Then the vertices

on the path corresponding to the DSQ are the vertices corresponding to the boundaries

between the relevant cells of Q1 × Q2. The path starts in the source node ν0, visits the

aforementioned vertices in increasing order of their intersection with L and ends in the

final node νf . An illustration of a DSQ and its corresponding path is provided in Fig.

2.2(b).

Let us introduce now the WDAG formally: G = (V,E,w) has V = Vv ∪ Vh ∪

{ν0, νf}, where

Vh = {(j, k, i)h : 0 ≤ j < k ≤ i ≤M + 1, j, i ∈M1, k ∈M2},

Vv = {(k, i, `)v : 0 ≤ k ≤ i < ` ≤M + 1, i ∈M1, k, ` ∈M2}.

The node (j, k, i)h represents the set [aj, ai) × {ak}, i.e., the horizontal segment line

connecting the points of coordinates (aj, ak) and (ai, ak). The node (k, i, `)v represents

the set {ai}× [ak, a`), i.e., the vertical segment line connecting the points of coordinates

(ai, ak) and (ai, a`). The nodes in Vv are called vertical nodes (e.g., the nodes labeled

1, 3, 4, 7 in Fig. 2.2(b)) and the nodes in Vh are called horizontal nodes (e.g., the nodes
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labeled 2, 5, 6 in Fig. 2.2(b)). ν0 is the source node and νf is the final node.

The set of edges is E = E0h ∪ E0v ∪ EMh ∪ EMv ∪ Ehh ∪ Ehv ∪ Evh ∪ Evv, where

E0h = {ν0 → (0, k, i)h : 1 ≤ k ≤ i ≤M + 1},

E0v = {ν0 → (0, i, `)v : 1 ≤ i < ` ≤M + 1},

Ehf = {(j, k,M + 1)h → νf : 0 ≤ j < k < M + 1},

Evf = {(k, i,M + 1)v → νf : 0 ≤ k ≤ i < M + 1},

Ehh = {(j, k, i)h → (j, k′, i)h : 0 ≤ j < k < k′ ≤ i ≤M + 1},

Ehv = {(j, k, i)h → (k, i, `)v : 0 ≤ j < k ≤ i < ` ≤M + 1},

Evh = {(`, j, k)v → (j, k, i)h : 0 ≤ ` ≤ j < k ≤ i ≤M + 1},

Evv = {(k, i, `)v → (k, i′, `)v : 0 ≤ k ≤ i < i′ < ` ≤M + 1}.

Each edge e ∈ E represents a possible relevant cell of Q1×Q2, namely, the rectangular

region determined by the segment lines corresponding to the nodes connected by the

edge. Let us denote by R(e) the set represented by edge e. Then

• for e = (j, k, i)h → (j, k′, i)h, R(e) = [aj, ai) × [ak, ak′) (e.g., cell S3,3 in Fig.

2.2(a));

• for e = (j, k, i)h → (k, i, `)v, R(e) = [aj, ai) × [ak, a`) (e.g., cell S1,2 in Fig.

2.2(a));

• for e = (`, j, k)v → (j, k, i)h, R(e) = [aj, ai) × [a`, ak) (e.g., cell S3,2 in Fig.

2.2(a));
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• for e = (k, i, `)v → (k, i′, `)v, R(e) = [ai, ai′) × [ak, a`) (e.g., cell S2,2 in Fig.

2.2(a));

• for e = ν0 → (0, k, i)h, R(e) = (−∞, ai) × (−∞, ak) (e.g., cell S1,1 in Fig.

2.2(a));

• for e = ν0 → (0, i, `)v, R(e) = (−∞, ai)× (−∞, a`) ;

• for e = (j, k,M + 1)h → νf , R(e) = [aj,∞) × [ak,∞) (e.g., cell S3,4 in Fig.

2.2(a));

• for e = (k, i,M + 1)v → νf , R(e) = [ai,∞)× [ak,∞).

Finally, for each edge e ∈ E, its weight is w(e) = c(R(e)).

The key result of this section is the following proposition, whose proof is deferred to

Appendix A.

Proposition 1. There is a one-to-one mapping P from the set of all possible DSQs Q

in Q(K1, K2,A1,A2) to the set of (K1 + K2 − 1)-edge paths from ν0 to νf in G with

K1 − 1 vertical nodes and K2 − 1 horizontal nodes such that c(Q) = w(P(Q)).

Corollary 1. In virtue of Proposition 1, the problem (2.8) is equivalent to finding the

path of minimum-weight among all (K1 + K2 − 1)-edge paths from ν0 to νf in G that

have K1 − 1 vertical nodes and K2 − 1 horizontal nodes.
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2.4 Solution Algorithm

This section presents the solution algorithm to problem (2.8). Proposition 1 indicates

that the problem (2.8) can be solved by finding the path of minimum weight among all

(K1 + K2 − 1)-edge paths in G from ν0 to νf , with K1 − 1 vertical nodes and K2 − 1

horizontal nodes. In order to describe the algorithm, let us introduce a few notations.

For each 0 ≤ k1 ≤ K1−1, 0 ≤ k2 ≤ K2−1 and v ∈ V , let Ŵk1,k2(v) denote the weight

of the minimum-weight path from ν0 to v with k1 vertical nodes and k2 horizontal nodes

without counting v. Then the following recursive formula holds

Ŵk1,k2(v) = min(Ŵ ′
k1,k2(v), Ŵ ′′

k1,k2(v)), (2.9)

Ŵ ′
k1,k2(v) = min

u∈Vv ,(u,v)∈E
(Ŵk1−1,k2(u) + w(u, v)), (2.10)

Ŵ ′′
k1,k2(v) = min

u∈Vh,(u,v)∈E
(Ŵk1,k2−1(u) + w(u, v)), (2.11)

where 1 ≤ k1 ≤ K1 − 1, 1 ≤ k2 ≤ K2 − 1 and v ∈ V .

For many quantizer systems, for finite-alphabet sources, globally optimal design is

possible using dynamic programming. This includes single description scalar quantizers

[35, 44, 64, 66], Wyner-Ziv scalar quantizers [35, 69], sequential scalar quantizers [61,

27], successively refined and multiple description scalar quantizers [35, 11, 12, 13,

41, 21], successively refinable polar quantizers [62, 63], joint source-channel scalar

quantizers with random index assignment [10], and in zero-delay coding of Markov

sources [31]. The current problem can also be solved using a dynamic programming

algorithm that computes Ŵk1,k2(v) for all 1 ≤ k1 ≤ K1 − 1, 1 ≤ k2 ≤ K2 − 1 and
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v ∈ V by processing the pairs k1, k2 in lexicographical order. The pseudo code for the

solution algorithm is provided in Algorithm 1.

Note that if the weight of any edge can be calculated in constant time, then the

time complexity of the solution algorithm is O(K1K2M
4). For this requirement to be

satisfied, we perform a preprocessing stage that will be described shortly.

For each pair (ξ1, ξ2) ∈ R2 with ξ1 < ξ2, let us denote by T (ξ1, ξ2) the triangular

region in H+ with vertices (ξ1, ξ1), (ξ2, ξ2) and (ξ1, ξ2), more specifically, T (ξ1, ξ2) =

{(x1, x2) ∈ R2 : x1 ≤ x2 < ξ2}. Additionally, denote by T ′(ξ1, ξ2) the reflection of

T (ξ1, ξ2) across L from which the points in L have been removed, i.e., T ′(ξ1, ξ2) =

{(x1, x2) ∈ R2 : ξ1 ≤ x2 < x1 < ξ2}.

In the preprocessing stage we calculate and store the values µ(T (am, an)) and

µ(T ′(am, an)) for all m,n, 0 ≤ m < n ≤ M + 1. In order to compute the quanti-

ties µ(T (am, an)), the elements x of X ∩ H+ are first stored in an array B in reverse

lexicographical order along with their probabilities P (x, 1) and P (x,−1). Note that by

the reverse lexicographic order of pairs (x1, x2), we understand the lexicographic order

of the reversed pairs, i.e. of (x2, x1).

The calculation of the values µ(T (am, an)) is performed in increasing order of m,

1 ≤ m ≤ M , and for each m, in increasing order of n,m < n ≤ M . Note that for

each pair (m,n), the triangular region T (am, an) is included in T (am, an+1). Therefore,

µ(T (am, an+1)) is computed by adding to µ(T (am, an)) the value µ(A(m,n)), where

A(m,n) = T (am, an+1) \ T (am, an). In other words, A(m,n) consists of the points x

with x2 = an and am ≤ x1 < an. These points are stored in consecutive positions in

the array B. In order to compute the values µ(A(m,n)) for fixed m and all n > m, the
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Algorithm 1. Solution to the minimum-weight (K1 + K2 − 1)-edge path
problem with K1 − 1 vertical and K2 − 1 horizontal nodes.

begin
W0,0(s)← 0
for k1 = 1 to K1 − 1 do

k2 ← 0
for v ∈ V do

Wk1,k2(v)← minu:(u,v)∈(Evv∪Evh)(Wk1−1,k2(u) + w(u, v))
prev(k1, k2, v)← arg minu:(u,v)∈(Evv∪Evh)(Wk1−1,k2(u) + w(u, v))

for k2 = 1 to K2 − 1 do
k1 ← 0
for v ∈ V do

Wk1,k2(v)← minu:(u,v)∈(Ehv∪Ehh)(Wk1,k2−1(u) + w(u, v))
prev(k1, k2, v)← arg minu:(u,v)∈(Ehv∪Ehh)(Wk1,k2−1(u) + w(u, v))

for k1 = 1 to K1 − 1 do
for k2 = 1 to K2 − 1 do

for v ∈ V do
W1(v)← minu:(u,v)∈(Evv∪Evh)(Wk1−1,k2(u) + w(u, v))
W2(v)← minu:(u,v)∈(Ehv∪Ehh)(Wk1,k2−1(u) + w(u, v))
Wk1,k2(v)← min(W1(v),W2(v))
prev(k1, k2, v)← arg minu:(u,v)∈E(Wk1,k2(v))

Recover the best path from s to t using array prev
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FIGURE 2.3: Illustration for the computation of µ(R(e) ∩ H̆−); the
striped region represents the set R(e)∩ H̆−. By appending to R(e)∩ H̆−
two triangular regions (a) or one triangular region (b), a bigger triangular
region is obtained.

portion of the array B starting at the first occurrence of the element (am, am) is scanned

only once. After finishing the computation of T (am, an), this pointer is situated at the

first element in the array with x2 = an (recall that pairs (x1, x2) with x2 = an are

not included in T (am, an)). Then the pointer advances until reaching the first pair with

x1 = am. Here is where the block storing the alphabet points corresponding to A(m,n)

starts. While the block is scanned, µ(A(m,n)) is updated correspondingly. The first

element after the block ends is the first pair with x2 = an+1. When the pointer reaches

this position, the computation of µ(A(m,n)) is finished. We conclude that the number

of operations to compute all weights µ(T (am, an)) for fixed m and all n > m is O(M),

further amounting to O(M2) over all m. The computation of the values µ(T ′(am, an))

proceeds similarly, therefore the preprocessing takes O(M2) operations.

When the weight of an edge e is needed, each of the values µ(R(e) ∩ H+) and

µ(R(e) ∩ H̆−) is computed by subtracting the µ-value of a smaller triangle from that

of a bigger triangle (as in Fig. 2.3(b)) or the µ-values of two smaller triangles from the

µ-value of a bigger triangle (as in Fig. 2.3(a)).
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2.5 Faster Solution Algorithm using the Monge Prop-

erty

In this section, we show how the dynamic programming algorithm presented in Sec-

tion 2.4 can be sped up by a factor of M by exploiting the so-called Monge property

[5], in the case where the given linear classifier at the decoder is the optimal classifier

for the unquantized data. This is to say that for discrete sources, the joint probability

distribution P satisfies the following condition.

Condition OCd: The following relations hold

• P (x, 1) = P (x,−1), for all x ∈ L ∩ X;

• P (x, 1) > P (x,−1), for all x ∈ (H+ ∩ X) \ L;

• P (x,−1) > P (x, 1), for all x ∈ (H− ∩ X) \ L.

Remark 1. If condition OCd holds, then for any measurable set satisfying A ⊆ H+ or

A ⊆ H−, we have µ(A) ≥ 0.

Remark 2. When condition OCd holds, for any measurable set A ⊂ R2, we have

c(A) ≥ 0 and

c(A) = min(µ(A ∩H+), µ(A ∩ H̆−)). (2.12)

Remark 3. If the probability distribution given by P (x, `) satisfies P (x, 1) = β(||x −

µ1||), and P (x,−1) = β(||x − µ2||), where β(·) is a strictly decreasing function,
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µ1 ∈ H+, µ2 is the reflection of µ1 across L and ||x − y|| denotes the Euclidian

distance between x and y, then condition OCd holds.

Proof. The optimal decision boundary is defined by the equation P (x, 1) = P (x,−1).

Based on the hypothesis of this remark, this happens if and only if (iff) ||x − µ1|| =

||x − µ2||, i.e., iff x is on the mediator line of the line segment connecting µ1 and µ2,

which is L. On the other hand, since β(·) is a strictly decreasing function, if x is closer

to µ1 compared to µ2, then P (x, 1) > P (x,−1) and otherwise, P (x, 1) < P (x,−1).

Therefore, condition OCd holds.

Example 1. Another example when the condition OCd holds is when the class condi-

tional distributions are Gaussian with flipped means and covariance matrices, µ1 = µτ
−1

and Σ1 = Στ
−1, where (a1, a2)τ = (a2, a1) and

a11 a12

a21 a22


τ

=

a22 a12

a21 a11

 .

In other words, P (x1, x2, 1) = c

2π
√
|Σ1|

exp(−1
2z1

TΣ−1
1 z1) and P (x1, x2,−1) =

c

2π
√
|Σ−1|

exp(−1
2z−1

TΣ−1
−1z−1), for (x1, x2) ∈ X, where c is an appropriate constant

and

z1 =

x1 − µ1

x2 − µ2

 , z−1 =

x1 − µ2

x2 − µ1

 ,

Σ1 =

a11 a12

a21 a22

 ,Σ−1 =

a22 a12

a21 a11

 .

An illustration of this example is shown in Fig. 2.4.
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Note that when the optimal decision boundary has the equation ax1 + bx2 + c = 0,

with a 6= 0 and b 6= 0. In this case, with the simple transformation x′1 = ax1 and

x′2 = −bx2 + c, the decision boundary becomes x′1 − x′2 = 0.

FIGURE 2.4: Example of distribution with x1 − x2 = 0 as the optimal
classifier.

To show that Monge property is satisfied, for each pair (k1, k2), we will organize

the problems (2.10) and (2.11) for all nodes v as a series of matrix search problems

where each matrix satisfies the Monge property. The Matrix Search (MS) problem is the

problem of finding the minimum element on each column. For a general k × n matrix,

this can be done in O(kn) operations. If the matrix satisfies the Monge property (to be

defined shortly), the solution can be obtained by using a fast matrix search algorithm

nicknamed SMAWK [1], which requires O(k + n) operations. A k × n matrix G is

said to satisfy the Monge property if G(i, j) + G(i′, j′) ≤ G(i, j′) + G(i′, j) for any

1 ≤ i < i′ ≤ k, 1 ≤ j < j′ ≤ n.

Proposition 2. For each (k1, k2) with 1 ≤ k1 ≤ K1−1, 1 ≤ k2 ≤ K2−1, the problems

(2.10) and (2.11) can be solved for all nodes v ∈ V in O(M3) time.

Corollary 2. The problem (2.8) can be solved in O(K1K2M
3) operations.
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Proof of Proposition 2. For each edge e = (m,n) ∈ E, define w1(e) = µ(R(e) ∩H+),

w2(e) = µ(R(e) ∩H−). Clearly, w(e) = min(w1(e), w2(e)). Next define

Γ′k1,k2,1(v) = min
u∈Vv ,(u,v)∈E

(Ŵk1−1,k2(u) + w1(u, v)) (2.13)

Γ′k1,k2,2(v) = min
u∈Vv ,(u,v)∈E

(Ŵk1−1,k2(u) + w2(u, v)) (2.14)

Then relation (2.10) becomes equivalent to

Ŵ ′
k1,k2(v) = min(Γ′k1,k2,1(v),Γ′k1,k2,2(v)) (2.15)

For simplicity, we will assume that M1 = M2 = {1, · · · ,M−1} since the argument can

be easily extended to the case M1 6= M2. Let v be a vertical node, then v = (k, i′, `)v.

The search in (2.13) is over the edges (k, i, `)v → (k, i′, `)v, i.e., for all i such that

k ≤ i < i′. For each pair (k, `), with k + 1 < `, we form two (` − k) × (` − k)

matrices G′k,`,1 and G′k,`,2 as follows. For s = 1, 2, the elements of G′k,`,s are G′k,`,s(i, i′)

for k ≤ i, i′ ≤ `− 1, where

G′k,`,s(i, i′) = Ŵk1−1,k2(k, i, `)v + ws((k, i, `)v, (k, i′, `)v)

if i < i′ and G′k,`,s(i, i′) =∞ if i ≥ i′. Then

Γ′k1,k2,s((k, i
′, `)v) = min

i:k≤i<i′
G′k,`,s(i, i′)

This implies that finding Γ′k1,k2,s(v) for all vertical nodes v is equivalent to solving the

MS problem in the matrix G′k,`,s for all pairs (k, `) such that 0 ≤ k < `−1 and s = 1, 2.
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For the case of horizontal node v, we have v = (j, k, i)h, and the search in (2.13) is

over the edges (`, j, k)v → (j, k, i)h, i.e., for all ` such that 0 ≤ ` ≤ j. For each pair

(j, k) with j < k, we form two (j + 1) × (M + 2 − k) matrices G′′j,k,1 and G′′j,k,2 with

elements G′′j,k,s(`, i) for 0 ≤ ` ≤ j, k ≤ i ≤M + 1, s = 1, 2, where

G′′j,k,s(`, i) = Ŵk1−1,k2(`, j, k)v + ws((`, j, k)v, (j, k, i)h).

This implies that finding Γ′k1,k2,s(v) for all horizontal nodes v is equivalent to solving

the MS problem in G′′j,k,s for all pairs (j, k) such that 0 ≤ j < k ≤M + 1 and s = 1, 2.

According to Lemma 1, all matrices G′k,`,s and G′′j,k,s satisfy the Monge property, there-

fore the MS problem can be solved in O(M) time for each of them. Since their total

number is O(M2), solving all the aforementioned MS problems requires O(M3) oper-

ations. In view of the above discussion and using (2.15), we conclude that computing

Ŵ ′
k1,k2(v) for all nodes v can be done withO(M3) operations. Similarly, it can be shown

that computing Ŵ ′′
k1,k2(v) for all nodes v can be performed in O(M3) time. With these

observations, the conclusion follows.

Lemma 1. The matrices G′k,`,s and G′′j,k,s satisfy the Monge property.

Proof. For the Monge property to hold for the matrix G′k,`,s, for any i1, i2, i′1, i
′
2 satisfy-

ing k ≤ i1 < i2 < `, k ≤ i′1 < i′2 < `, the following should hold

G′k,`,s(i1, i′1) +G′k,`,s(i2, i′2) ≤ G′k,`,s(i1, i′2) +G′k,`,s(i2, i′1). (2.16)
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FIGURE 2.5: (a) example for Gk,`,1(i, i′). (b) example for Gj,k,2(`, i).

If i′2 ≥ i1, G′k,`,s(i2, i′1) = ∞ and (2.16) is satisfied. It remains to consider the case

when i′2 < i1. Then (2.16) reduces to

ws((k, i1, `)v, (k, i′1, `)v) + ws((k, i2, `)v, (k, i′2, `)v)

≤ ws((k, i1, `)v, (k, i′2, `)v) + ws((k, i2, `)v, (k, i′1, `)v).
(2.17)

This situation is illustrated in Fig. 2.5(a). The above weights are defined in terms of the

regions Rt,s, where t = 1, 2, 3 and s = 1, 2, shown in the figure. More specifically,

ws((k, i1, `)v, (k, i′1, `)v) = µ(R1,s ∪R2,s)

ws((k, i2, `)v, (k, i′2, `)v) = µ(R2,s ∪R3,s)

ws((k, i1, `)v, (k, i′2, `)v) = µ(R1,s ∪R2,s ∪R3,s)

ws((k, i2, `)v, (k, i′1, `)v) = µ(R2,s).

By further applying the fact that µ(A ∪B) = µ(A) + µ(B), for any disjoint sets A and

B, we obtain that (2.17) holds with equality.
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For the Monge property to hold for the matrix G′′j,k,s, for any `1, `2, i1, i2, satisfying

0 ≤ `1 < `2 ≤ j, k ≤ i1 < i2 ≤M + 1, the following must hold

G′′j,k,s(`1, i1) +G′′j,k,s(`2, i2) ≤ G′′j,k,s(`1, i2) +G′′j,k,s(`2, i1).

The above relation can be simplified to

ws((`1, j, k)v, (j, k, i1)h) + ws((`2, j, k)v, (j, k, i2)h)

≤ ws((`1, j, k)v, (j, k, i2)h) + ws((`2, j, k)v, (j, k, i1)h) (2.18)

This case is depicted in Fig. 2.5(b). The above weights are defined in terms of the

regions R1, · · · , R6 shown in the figure. More specifically, for s = 1, all terms in (2.18)

are equal to µ(R1), therefore the relation holds with equality. For s = 2, we have

w2((`1, j, k)v, (j, k, i1)h) = µ(R2 ∪R4)

w2((`2, j, k)v, (j, k, i2)h) = µ(R2 ∪R3)

w2((`1, j, k)v, (j, k, i2)h) = µ(R2 ∪R3 ∪R4 ∪R5)

w2((`2, j, k)v, (j, k, i1)h) = µ(R2)

After replacing the above in (2.18) and applying the additivity of µ over unions of

disjoint sets, (2.18) becomes

2µ(R2) + µ(R3) + µ(R4) ≤

2µ(R2) + µ(R3) + µ(R4) + µ(R5),

which holds since µ(A) ≥ 0 for any set A.
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2.6 Discussion

In this section, we discuss how the algorithm can be adapted to the case when the sources

are continuous and their pdf is known, or when the probability distribution is not known.

In the context of continuous sources, it is crucial to acknowledge the existence of

an infinite number of potential thresholds for each quantizer. In this case, an intuitive

approach for obtaining approximate solutions to the DSQ design problem resides in

applying the proposed algorithm to a discretization of the original sources. The DSQ

derived through this method should progressively converge to the performance of the

optimal DSQ for the original sources as the accuracy of the discretization process im-

proves.

The discretization of the sources can be done by randomly sampling N examples

(x1, x2) from the joint density functions f(x, 1) and f(x,−1), leading to the creation

of a sample set denoted as X′. Further, the set A of possible boundaries is constructed

as in the discrete case. It is noteworthy that for sufficiently large values of N , by this

spatial discretization, the resultant set of boundaries aligns effectively with the pdf.

In practice, the probability distribution of the data and the labels is generally not

known and only a training sequence is available. In this case, we can find the empirical

probability distribution of the training sequence, which is discrete, and can apply the

algorithm of Section 2.4 to find the DSQ that minimizes the classification error on the

given training sequence. Assume that only a training sequence T is given, where T =

(xt, `t)1≤t≤N , xt = (x1,t, x2,t) ∈ R2 and `t denotes the class label of xt, for 1 ≤ t ≤ N .
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In this case, we define the empirical probability distribution Pemp(x, `) = 1
N
|{t : xt =

x & γ(xt) = `}|. Hence, the values ρ, ρu, µ, and c can be calculated as in Section 2.2

and the rest of the conclusions follow.

2.7 Conclusion

In this chapter, the problem of designing a fixed-rate DSQ with convex cells for two dis-

crete correlated sources is studied. We assume that the joint probability distribution of

the sources and labels is known and that a fixed binary linear classifier is present at the

decoder. The goal is to design the DSQ that minimizes the error of the classifier applied

to the quantized outputs. We prove that the problem is equivalent to the problem of find-

ing the shortest path with specific numbers and types of vertices in a certain weighted

directed acyclic graph, and propose an efficient dynamic programming solution with a

polynomial runtime. Further, we demonstrate that if the given linear classifier is the

optimal classifier for the unquantized sources, then the solution algorithm can be expe-

dited by a factor of M by leveraging the Monge property. Moreover, we illustrate how

this algorithm can be adapted for scenarios where the source distribution is continuous

and known, or when only a training sequence is available.

36

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/
https://www.eng.mcmaster.ca/ece/


Chapter 3

Properties of the Optimal DSQ for

Continuous Sources in the Equal-rate

Case

This chapter is motivated by our goal to streamline the design process in the case of

equal rates, i.e., where K1 = K2 = K. To this aim, we confine our search to the set of

DSQs for which the threshold values of the two encoders are interleaved, which we call

Staggered DSQs (SDSQs). To give some support to this choice, we study the properties

of the SDSQs in the case of continuous sources when the linear classifier given at the

decoder is the optimal classifier for the unquantized data. We demonstrate that for such

sources, the optimal SDSQ must be strictly staggered meaning that no two thresholds

are identical between the two encoders. This result implies that DSQs with identical

encoders, used in many prior works, are not optimal for the aforementioned sources.

Up to our knowledge, this result was not known before. In addition, we prove that the

optimal SDSQ also minimizes a modified cost that is an upperbound of the original
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cost. The choice of staggered DSQ and modified cost will enable us to simplify the

graph model significantly, consequently reducing the time complexity of the solution

algorithm to O(KM2) as it will be shown in Chapter 4. Moreover, we show that if,

in addition, the sources fulfill a certain symmetry condition, the globally optimal DSQ

must be strictly staggered.

This chapter is organized as follows. Section 3.1 introduces the SDSQs and the

modified cost. Section 3.2 establishes the properties of the optimal SDSQ when the

optimal classifier is linear, and also when in addition, the data distribution satisfies a

symmetry condition. Moreover, more insight on why the staggered structure performs

better compared to identical encoders is provided in Section 3.3. Finally, Section 3.4

concludes the chapter.

3.1 Problem Description and Notations

First, let us introduce the formal definition of Staggered DSQs. We say that the DSQ is

staggered if the sequences of thresholds ũ and ṽ satisfy

ũ1 ≤ ṽ1 ≤ ũ2 ≤ ṽ2 ≤ · · · ≤ ũi ≤ ṽi ≤ ũi+1 ≤ · · · ≤ ũK−1 ≤ ṽK−1, (3.1)

or

ṽ1 ≤ ũ1 ≤ ṽ2 ≤ ũ2 ≤ · · · ≤ ṽi ≤ ũi ≤ ṽi+1 ≤ · · · ≤ ṽK−1 ≤ ũK−1. (3.2)

If (3.1) holds, we will say that the thresholds satisfy the u-first order and that the SDSQ

is a u-first SDSQ and that it has a u-first orientation. If (3.2) is satisfied, we will say
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FIGURE 3.1: In (a) the relevant cells are highlighted. In (b) the triangular
regions used in the computation of the modified cost are highlighted.

that the thresholds satisfy the v-first order and that the SDSQ is a v-first SDSQ and that

it has a v-first orientation. Additionally, A DSQ is strict if the two encoders do not

have any threshold in common. Thus, an SDSQ is strict if (3.1) or (3.2) hold with strict

inequalities. The product quantizer partition of a u-first strict SDSQ is depicted in Fig.

3.1.

Recall that a cell Si,j = Ui × Vj is called relevant if and only if Si,j ∩ H̆− 6= ∅ and

Si,j ∩ H̆+ 6= ∅. Then for a u-first strict SDSQ, the relevant cells are Si,i, for 1 ≤ i ≤ K,

and Si+1,i, for 1 ≤ i ≤ K − 1 (see Fig. 3.1(a)). For a v-first strict SDSQ, the relevant

cells are Si,i, for 1 ≤ i ≤ K, and Si,i+1, for 1 ≤ i ≤ K − 1.

In any SDSQ, each relevant cell Si,j with ũi 6= ṽj , ũi−1 6= ṽj−1, is divided by L into

a triangular region denoted Ti,j , and a pentagonal region denoted Pi,j . The definition

is extended to the cases when ũi = ṽj or ũi−1 = ṽj−1 as follows. When only one of

the above equalities holds, the region Pi,j has actually only four sides, while when both
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equalities hold, i.e., ũi = ṽj and ũi−1 = ṽj−1, both Ti,j and Pi,j are triangular. To make

more clear the distinction we provide next the formal definition.

Definition 1. For each relevant cell Si,j of an SDSQ, we define Ti,j and Pi,j as follows.

If the SDSQ has a u-first orientation, then

Ti,i = Si,i ∩ H̆− = T ′(ṽi−1, ũi), Pi,i = Si,i ∩H+

Ti+1,i = Si+1,i ∩H+ = T (ũi, ṽi), Pi+1,i = Si+1,i ∩ H̆−.

If the SDSQ has a v-first orientation, then

Ti,i = Si,i ∩H+ = T (ũi−1, ṽi), Pi,i = Si,i ∩ H̆−

Ti,i+1 = Si,i+1 ∩ H̆− = T ′(ṽi, ũi), Pi,i+1 = Si,i+1 ∩H+.

For each cell Si,j we define a modified cost c′(Si,j) as follows. If Si,j is a relevant

cell, then

c′(Si,j) = µ(Ti,j),

otherwise c′(Si,j) = 0. The choice of Ti,j instead of Pi,j is by considering a smaller

region for the cost of each cell, aiming for minimum cost possible. Note that these

notations are valid for both continuous and discrete probability distributions. It follows

that the modified cost is an upperbound of the original cost, i.e.,

c(Si,j) ≤ c′(Si,j). (3.3)
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The modified cost of an SDSQ Q, denoted by c′(Q) is defined as the sum of the modified

costs of its cells, i.e.,

c′(Q) =
K∑
i=1

K∑
j=1

c′(Si,j).

According to (3.3), we have

c(Q) ≤ c′(Q), (3.4)

Let Qst(K) denote the set of (K,K)-level strict SDSQs determined by all possible

pairs ũ ∈ RK−1, ṽ ∈ RK−1, satisfying relations (3.1) or (3.2). Then we are analyzing

properties of DSQs that would minimize this modified cost,

inf
Q∈Qst(K)

c′(Q). (3.5)

Note that if the distribution is discrete, the infimum is actually the minimum. In the

next section, we study the properties that support the use of this modified cost instead

of the original cost.

3.2 Properties of Optimal Staggered DSQ for Continu-

ous Sources when the Optimal Classifier is Linear

In this section, we assume that the two sources are continuous and that the linear clas-

sifier γ is the optimal classifier for the unquantized data. In this scenario, we prove that

the (K,K)-level staggered DSQ that minimizes the expected classification error is strict
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and satisfies relation (3.4) with equality, i.e., the DSQ that minimizes the modified cost,

in fact, minimizes the true cost. Further, we show that if the distribution additionally

satisfies a certain symmetry property, the DSQ that minimizes the expected classifica-

tion error has to be staggered and strict. These results support the use of the algorithm

developed in the next chapter.

More specifically, we consider the situation when the classifier γ minimizes the clas-

sification error ρu for the unquantized data, and any other classifier that achieves the

smallest classification error has the line L as the decision boundary. In other words, this

is to say that the joint distribution f(x, `) satisfies the condition OCc presented next.

Condition OCc: The following relations hold

• f(x, 1) = f(x,−1), for all x ∈ L;

• f(x, 1) > f(x,−1), for all x ∈ (H+) \ L;

• f(x,−1) > f(x, 1), for all x ∈ (H−) \ L.

As in Chapter 2, if condition OCc holds, then for any measurable set satisfying

A ⊆ H+ or A ⊆ H−, we have µ(A) ≥ 0.

Recall that for a measurable set S ⊂ R2, area(S) =
∫
S dx. The following lemma is

straightforward.

Lemma 2. Assume that the sources are continuous with joint pdf f(x, `) of sources and

labels and that condition OCc holds. Then for any measurable sets A and B satisfying

A ⊂ B ⊆ R2 the following are valid.
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a) µ(A ∩ H+) ≤ µ(B ∩ H+); if area((B \ A) ∩ H+) is larger than 0, then the

inequality is strict;

b) µ(A ∩ H̆−) ≤ µ(B ∩ H̆−); if area((B \ A) ∩ H̆−) is larger than 0, then the

inequality is strict;

c) c(A) ≤ c(B).

Lemma 3. Assume that the sources are continuous with joint pdf f(x, `) of sources and

labels and that condition OCc holds. Then for any DSQ Q, by splitting a cell of any

encoder into two cells, the cost c(Q) does not increase.

Proof. Splitting a cell in one encoder leads to splitting some cells in the product

quantizer Q1 × Q2. The split of a non-relevant cell of Q1 × Q2 does not have any

impact. Let A be a relevant cell of Q1 × Q2 that is split into A1 and A2. Then

µ(A∩H+) = µ(A1∩H+)+µ(A2∩H+) and µ(A∩H̆−) = µ(A1∩H̆−)+µ(A2∩H̆−).

Combining these with Remark 1, we obtain

min(µ(A1 ∩H+), µ(A1 ∩ H̆−)) + min(µ(A2 ∩H+), µ(A2 ∩ H̆−))

≤ min(µ(A ∩H+), µ(A ∩ H̆−)),

leading further to c(A1) + c(A2) ≤ c(A) according to Remark 2.

Let OK denote the set of pairs of threshold vectors (ũ, ṽ) ∈ R2K−2 satisfying rela-

tions (3.1) or (3.2) and ũi < ũi+1, ṽi < ṽi+1, for 1 ≤ i ≤ K − 1. Thus, (ũ, ṽ) are the

threshold sequences of a (K,K)-level SDSQ if and only if (ũ, ṽ) ∈ OK . Further, let R̄

denote the extended real line, i.e., R̄ = R ∪ {−∞,+∞}, and let ŌK denote the pairs
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of vectors (ũ, ṽ) ∈ R̄2K−2 satisfying relations (3.1) or (3.2). Note that ŌK equals the

closure of the set OK in R̄2K−2. Furthermore, any pair (ũ′, ṽ′) ∈ ŌK \ OK corresponds

to a DSQ where at least one encoder has less than K nonempty cells. Then the cost

function c can be defined for (ũ′, ṽ′) as the summation of the costs of the relevant cells.

This way, the function c can be extended to R̄2K−2.

Since OK is not a compact set, it is not guaranteed that a continuous function can

achieve its minimum on this set. However, we will show that this is true for the cost

function c. In other words, there exists an optimum (K,K)-level SDSQ, i.e., a (K,K)-

level SDSQ minimizing c. This is stated in the following theorem.

Theorem 1. Assume that the sources are continuous with joint pdf f(x, `) of sources

and labels and that condition OCc holds. Then there exists (ũopt, ṽopt) ∈ OK such that

c(ũopt, ṽopt) = min
(ũ,ṽ)∈OK

c(ũ, ṽ).

Proof. It can be easily verified that the function c is continuous on ŌK . Since ŌK con-

tains all its limiting points and the function c is continuous and bounded, it follows that

the function c has a finite minimum on ŌK . Let (ũopt, ṽopt) ∈ ŌK denote a point of min-

imum. If (ũopt, ṽopt) ∈ ŌK \ OK , then (ũopt, ṽopt) represents a SDSQ Q where at least

one encoder has less thanK nonempty cells. Then we can construct a new (ũ′, ṽ′) ∈ OK

by appropriately splitting some nonempty cells of encoder 1 and/or encoder 2 until both

encoders have K nonempty cells1. By Lemma 3, we have c(ũ′, ṽ′) ≤ c(ũopt, ṽopt), and

according to the optimality of (ũopt, ṽopt), we have c(ũ′, ṽ′) ≥ c(ũopt, ṽopt). It follows

that c(ũ′, ṽ′) = c(ũopt, ṽopt) and the proof is completed.

1The splitting has to be done such that relations (3.1) or (3.2) hold, which is possible.
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A relevant cell Si,j is called a Tcell if µ(Ti,j) ≤ µ(Pi,j), and it is called a Pcell

otherwise. By the status of a relevant cell, we understand the status of it being a Tcell

or a Pcell.

Remark 4. Obviously, if Si,j is a Tcell, then c(Si,j) = c′(Si,j). Thus, if an SDSQ Q has

only Tcells, then c(Q) = c′(Q).

The proof of the next result is deferred to Appendix C.

Theorem 2. Assume that the sources are continuous with joint pdf f(x, `) of sources

and labels and that condition OCc holds. Then any optimum (K,K)-level SDSQ must

be strict and have only Tcells.

The following corollary is immediate.

Corollary 3. When condition OCc is satisfied, the following holds

min
(ũ,ṽ)∈OK

c(ũ, ṽ) = min
(ũ,ṽ)∈OK

c′(ũ, ṽ).

Remark 5. According to Corollary 3, although c′ is in general only an upperbound of

the true cost c, the (K,K)-level SDSQ that minimizes c′ also minimizes the true cost c

when condition OCc holds.

In order to present the next results of this section, we first introduce the following

symmetry condition.
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Condition Sc: The following relation is valid for all (x1, x2) ∈ R2:

f(x1, x2, 1)− f(x1, x2,−1) = f(x2, x1,−1)− f(x2, x1, 1).

Remark 6. A special case when condition Sc is satisfied is when the following equality

is true for all (x1, x2) ∈ R2: f(x1, x2, 1) = f(x2, x1,−1). Note that if f(x, `) fulfills

the conditions in Remark 3, then condition Sc holds as well.

Example 2. An example of such a case is when the conditional joint distribution

given each class is Gaussian with flipped covariance matrix and mean vectors, i.e.,

µ1 = µτ
−1 and Σ1 = Στ

−1, where (a1, a2)τ = (a2, a1) and

a11 a12

a21 a22


τ

=

a22 a12

a21 a11

.

In other words, f(x1, x2, 1) = 1
2π
√
|Σ1|

exp(−1
2z1

TΣ−1
1 z1) and f(x1, x2,−1) =

1
2π
√
|Σ−1|

exp(−1
2z−1

TΣ−1
−1z−1), where z1 =

x1 − µ1

x2 − µ2

, z−1 =

x1 − µ2

x2 − µ1

, Σ1 =

a11 a12

a21 a22

 and Σ−1 =

a22 a12

a21 a11

 . Note that in this case, f(x2, x1,−1) would

have z−1 =

x2 − µ2

x1 − µ1

, |Σ1| = |Σ−1|, and z1
TΣ−1

1 z1 = z−1
TΣ−1
−1z−1. Therefore,

f(x1, x2, 1) = f(x2, x1,−1), which is the special case discussed in Remark 6.

Consider now the following notation. For any set S ⊆ R2, let σ(S) = {(y, x) :

(x, y) ∈ S}. In other words, σ(S) is the reflection of S across the line L. We will

simply refer to it as the reflection of S. The following lemma is obvious.

Lemma 4. Assume that the sources are continuous with joint pdf f(x, `) of sources and

labels. If condition Sc holds then for any measurable set S ⊆ R2, we have µ(S∩H+) =
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µ(σ(S) ∩ H̆−), µ(S ∩ H̆−) = µ(σ(S) ∩H+), and c(S) = c(σ(S)).

Lemma 5. Assume that the sources are continuous with joint pdf f(x, `) of sources and

labels. If both conditions OCc and Sc are satisfied, then any SDSQ has only Tcells.

Proof. Note that if Si,j is a cell in an SDSQ then σ(Ti,j) ⊆ Pi,j . By applying further

Lemmas 4 and Lemma 2 the claim follows.

The proof of the following theorem is deferred to Appendix D.

Theorem 3. Assume that the sources are continuous with joint pdf f(x, `) of sources

and labels, and that conditions OCc and Sc hold. Then the (K,K)-level DSQ that

minimizes the expected misclassification error ρ must be strictly staggered.

This result shows that for the case of equal rates, when the joint probability distri-

bution is symmetric with respect to the classification line and the given linear classifier

is the optimal classifier, the globally optimal DSQ is strictly staggered. Further, due to

symmetry property, the modified cost is equivalent to the original cost. Hence, the DSQ

that minimizes the modified cost is the one that minimizes the expected classification

error.

3.3 Suboptimality of DSQs with Identical Encoders

The following result is a corollary of Theorem 2.

Corollary 4. When the sources are continuous with joint pdf f(x, `) of sources and la-

bels, and condition OCc is satisfied, any optimum SDSQ has strictly better performance

than any DSQ with identical encoders.
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Proof. Note that any DSQ with identical encoders is a special case of an SDSQ, but

it is not strict. Based on Theorem 2, an SDSQ that is not strictly staggered cannot be

optimal.

In order to gain a better insight into the reason why the constraint of identical en-

coders is highly restrictive, we illustrate in Fig. 3.2 a training set and the partition of the

product quantizer Q1 × Q2 obtained with Uniform Length (UL) encoders [9], Optimal

Identical Encoders (OIE) and Optimal Non-Identical Encoders (ONIE) whenR = 2 and

there are 10000 data samples, for a symmetric bivariate normal distribution. Fig. 3.3

shows the magnified version of Fig. 3.2 (b) and (c) in the region of high concentration

of training points. It can be seen that the decision boundary of the nonlinear classifier

obtained by cascading the DSQ and the linear classifier is more complex in the case

of ONIE and its number of relevant cells is almost doubled in comparison with OIE.

This confers ONIE a higher flexibility and allows it to choose cost regions that are less

populated. Note that the plotted quantizer thresholds are obtained using optimization on

training data as will be shown in Chapter 4.

FIGURE 3.2: Training set and partition of the product quantizer for UL,
OIE and ONIE whenR = 2. The cost regions of the relevant cells are de-
picted in grey. The decision boundary of the nonlinear classifier obtained
after incorporating the quantization is shown in pink.
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FIGURE 3.3: Quantizer partition for OIE and ONIE, magnified. The cost
regions of the relevant cells are depicted in grey. The decision boundary
of the nonlinear classifier obtained after incorporating the quantization is
shown in pink.

3.4 Conclusion

In this chapter, we study the properties of the DSQs when the quantizer rates are equal.

We introduce the structural constraint of staggered thresholds and a modified cost, which

is generally an upperbound on the actual classification error. For the scenario of con-

tinuous sources and optimal classifier, we show that the optimal staggered DSQ among

all staggered DSQs is strict, i.,e., no two thresholds of the quantizers are identical, and

minimizing the modified cost is equivalent to minimizing the actual classification er-

ror. Further, we show that if, in addition, the joint distribution of sources and labels is

symmetric with respect to the decision boundary, then the optimal DSQ that minimizes

the misclassification error, must be strictly staggered. These results indicate that any

optimal staggered DSQ has better performance than any DSQ with identical encoders.
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Chapter 4

Faster DSQ Design for Discrete

Sources in the Equal-rate Case

In this chapter, we propose a faster DSQ design algorithm for discrete sources in the

equal-rate case, inspired by the results of Chapter 3. To expedite the design algorithm

we restrict our search to the set of Staggered DSQ and use the modified cost that was

introduced in the previous chapter (which is an upper bound of the classification error)

as the objective function to be minimized. We also provide an algorithm for the design of

optimal DSQs with identical encoders. Additionally, we establish that in instances when

the given linear classifier is the optimal classifier for the unquantized data, the Monge

property holds, facilitating a reduction in time complexity of the algorithm by an order

of M . Moreover, we show that if the sources additionally satisfy the symmetry property

introduced in the previous chapter, the proposed algorithm provides the globally optimal

DSQ with respect to the original cost.

The experimental results demonstrate the superiority of the designed SDSQs with

this modified cost, compared to the prior work that uses identical encoders, even though
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we try to minimize only an upper bound of the error.

This chapter is organized as follows. In Section 4.1, we clarify which results estab-

lished in the previous chapter for continuous distributions hold for discrete distributions

as well. In Section 4.2, the graph model for the problem with the modified cost along

with a dynamic programming solution algorithm are proposed. Section 4.3 describes

how the algorithm of the previous section can be sped up by a factor ofM by leveraging

the Monge property when the given classifier is optimal for the unquantized sources.

Section 4.4 proposes an optimal solution algorithm for the case when the quantizer

thresholds are restricted to be identical for the two sources. Experimental results illus-

trated in Section 4.5 confirm the superiority of the SDSQs designed by minimizing the

modified cost, compared to prior work that imposed identical encoders. Finally, Section

4.6 concludes the chapter.

4.1 Notes on the Optimal SDSQ for Discrete Distribu-

tion

The results in Section 3.2 are derived for continuous sources. However, the continuity

is not a necessary condition for some of them. In this section, we specify which of those

results hold for the discrete case too. Throughout this section, we consider the condition

OCd to be satisfied.

It can be easily verified that the results of Lemmas 2 and 3 hold in the discrete case

as well. For clarity, we will restate them next for the discrete scenario.

Lemma 6. Assume that the sources are discrete with joint probability P (x, `) of sources
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and labels and that condition OCd holds. Then for any measurable sets A and B satis-

fying A ⊂ B ⊆ R2 the following are valid.

a) µ(A ∩ H+) ≤ µ(B ∩ H+); if area((B \ A) ∩ H+) is larger than 0, then the

inequality is strict;

b) µ(A ∩ H̆−) ≤ µ(B ∩ H̆−); if area((B \ A) ∩ H̆−) is larger than 0, then the

inequality is strict;

c) c(A) ≤ c(B).

Lemma 7. Assume that the sources are discrete with joint probability P (x, `) of sources

and labels and that condition OCd holds. Then for any DSQ Q, by splitting a cell of

any encoder into two cells, the cost c(Q) does not increase.

Note that in the discrete case, the set of all possible (K,K)-level SDSQs can be

restricted to a finite set. Therefore, result of Theorem 1 is obvious.

The condition Sc can be easily translated to discrete distributions for which X =

A1 ×A2. Recall that Ak was defined as the projection of X on the k-th axis, k = 1, 2.

Condition Sd: The following relation is valid for all (x1, x2) ∈ A1 ×A2:

P (x1, x2, 1)− P (x1, x2,−1) = P (x2, x1,−1)− P (x2, x1, 1).

It can be easily verified that Remark 4, and Lemmas 4 and 5 hold in the discrete case

too.
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Remark 7. Obviously, if Si,j is a Tcell, then c(Si,j) = c′(Si,j). Thus, if an SDSQ Q has

only Tcells, then c(Q) = c′(Q).

Lemma 8. Assume that the sources are discrete with joint probability P (x, `) of sources

and labels. If condition Sd holds then for any measurable set S ⊆ R2, we have µ(S ∩

H+) = µ(σ(S) ∩ H̆−), µ(S ∩ H̆−) = µ(σ(S) ∩H+), and c(S) = c(σ(S)).

Lemma 9. Assume that the sources are discrete with joint probability P (x, `) of sources

and labels. If both conditions OCd and Sd are satisfied, then any SDSQ has only Tcells.

Furthermore, a close inspection of the proof of Theorem 3 shows that the continuity

of the distribution is only needed to prove that the strictness of the optimal staggered

DSQ but not to prove the optimality of staggered DSQs within the general class of

DSQs. Therefore, we have the following result.

Then the following theorem is derived in similar steps as Theorem 3.

Theorem 4. Assume that the sources are discrete with joint probability P (x, `) of

sources and labels and that both conditions OCd and Sd hold. Then the optimal (K,K)-

level staggered DSQ that minimizes the expected classification error is also optimal

within the general class of (K,K)-level DSQs without the staggerness constraint.

Proof. Lemmas 17 and 18 which are stated in Appendix D do not require the continuity

of sources. Based on that it can be concluded that there is a staggered DSQ that is

optimal within the class of DSQs.

For Theorem 2, the continuity of the distribution is essential since it relies on Lemma

16 stated in Appendix B. Therefore, the proof cannot be translated to the discrete case.
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Nevertheless, in practice, often the discrete distribution at hand is obtained by dis-

cretizing a continuous distribution and the true goal is to optimize the DSQ for the true

continuous distribution, which is not known. Therefore, the results on the structure

of the optimal DSQ/SDSQ for continuous sources give some support for imposing the

staggered structure and using the modified cost in the design of the optimal DSQ for the

discrete case.

4.2 Graph Model for the Modified Cost Problem and its

Solution

In this section we propose a graph model and a solution to the problem of minimiz-

ing modified the cost of strict SDSQs, for the case of equal encoder rates and discrete

sources. In other words, we consider the following problem.

min
Q∈Q′st(K,A)

c′(Q), (4.1)

where c′ is the modified cost defined in Chapter 3 and Q′st(K,A) denotes the set of

(K,K)-level strict SDSQs determined by all possible pairs ũ ∈ AK−1, ṽ ∈ AK−1,

satisfying relations (3.1) or (3.2).

Problem (4.1) can be modelled as a minimum weight path problem with certain

constraints on the edges in the WDAG G′ = (V ′, E ′, w′) described next. Its set of

vertices is V ′ = {m : 0 ≤ m ≤ M + 1} and its set of edges is E ′ = {(m,n)i : 0 ≤

m < n ≤M+1, i ∈ {1, 2}}. Note that between each two vertices we have two types of
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edges, namely (m,n)1 (an edge of type 1), which corresponds to T ′(m,n), and (m,n)2

(an edge of type 2), which corresponds to T (m,n). The weights of the edges in G′ are

w′((m,n)1) = µ(T ′(m,n)) and w′((m,n)2) = µ(T (m,n)). Then, the following result

holds.

Proposition 3. The problem (4.1) is equivalent to the problem of finding the minimum

path in G′ among all the paths from 0 to M + 1 that have 2K − 1 edges of alternating

types.

Proof. We will show that there is a one-to-one correspondence between the paths in

G′ specified in the statement of Proposition 3 and the strict SDSQs in Qst(K,A). Let

(z0, z1, · · · , z2K−1) be the sequence of nodes on such a path. Then 0 = z0 < z1 < z2 <

· · · < z2K−2 < z2K−1 = M + 1. If the first edge is of type 1, we set ũi = az2i−1 and

ṽj = az2j for 1 ≤ i ≤ K − 1 and 1 ≤ j ≤ K − 1. Then relations (3.1) are satisfied

with strict inequality. If the first edge is of type 2, we set ũi = az2i and ṽj = az2j−1

for 1 ≤ i ≤ K − 1 and 1 ≤ j ≤ K − 1. Then relations (3.2) are satisfied with strict

inequality. In both cases the pair ũ, ṽ corresponds to a strict SDSQ Q. Furthermore,

c′(Q) equals the weight of the path. It can be easily seen that this correspondence is

one-to-one.

The problem (4.1) can be solved using dynamic programming. In order to describe

the algorithm, for each triple (n, k, i) with 1 ≤ n ≤ M + 1, 1 ≤ k ≤ 2K − 1, and

i = 1, 2, let Ŵk,i(n) denote the minimum weight over all k-edge paths starting in 0 and

ending in n that consist of edges of alternating types starting with type i. In addition,
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let Ŵ0,i(0) = 0 for i = 1, 2. Then the following recurrence relation holds

Ŵk,i(n) = min
k−1≤m<n

Ŵk−1(m) +


w′(m,n)(k+1)%2+1 if i = 1

w′(m,n)k%2+1 if i = 2

 (4.2)

for all 1 ≤ k ≤ 2K − 1, k ≤ n ≤ M + 1, and i = 1, 2. For each i = 1, 2, the values

Ŵk,i(n) are computed in lexicographical order of the pairs (k, n). At the end, the path

achieving mini=1,2(Ŵ2K−1,1(M + 1), Ŵ2K−1,2(M + 1)) is selected.

The time complexity of the solution algorithm is O(KM2) if the weight of any edge

can be calculated in constant time. The latter requirement can be satisfied if the prepro-

cessing stage described in Section 2.4 is included.

Note that with similar reasoning as in Section 2.6, this algorithm can also be used

when only a training sequence is available.

4.3 Monge Property and Time Complexity Reduction

In this section we show that the dynamic programming algorithm introduced in the

previous section can be sped up by a factor ofM , in the case where the linear classifier is

optimal, i.e., condition OCd holds. Similar to Section 2.5, we will organize the problem

(4.2) for all nodes v as a series of matrix search problems where each matrix satisfies

the Monge property, hence, using SMAWK [1], the search will be sped up.

Proposition 4. For each k with 1 ≤ k ≤ K − 1, the problem (4.2) can be solved for all

nodes v ∈ V ′ in O(M) time.

Corollary 5. The problem (4.1) can be solved in O(KM) operations.
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FIGURE 4.1: Illustration of regions created by two pairs of vertices from
matrix G′k,s.

Proof of Proposition 4. For each edge e = (m,n) ∈ E ′, define

w′p(m,n)1 = µ(T ′(m,n)), w′p(m,n)2 = µ(T (m,n)).

For each i = 1, 2, the values Ŵk,i(n) need to be computed. For the case of i = 1,

Ŵk,1(n) = mink−1≤m<n Ŵk−1(m) + w′p(m,n)(k+1)%2+1, and at each 1 ≤ k ≤ 2K − 1,

we know exactly which type of edge w′p(m,n)(k+1)%2+1 corresponds to. With this, two

possibilities exist for Ŵk,1(n).

Ŵk,1,1(n) = min
k−1≤m<n

Ŵk−1(m) + w′p(m,n)1 if k%2 = 1, or, (4.3)

Ŵk,1,2(n) = min
k−1≤m<n

Ŵk−1(m) + w′p(m,n)2 if k%2 = 0 (4.4)

For each k, a matrix G′k,s is formed based on odd (s = 1) or even (s = 2) value of

k, where G′k,s(m,n) = Ŵk−1(m) + w′p(m,n)s, for k − 1 ≤ m < n ≤ M + 1, and

G′k,s(m,n) =∞, otherwise.
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Then,

Ŵk,1,s(n) = min
m:k−1≤m<n

G′k,s(m,n).

For the case of i = 2, similar results will be achieved. Next, it will be shown in

Lemma 10 that matrix G′k,s satisfies the Monge property and hence, the matrix search

problem can be solved in O(M) for each value of k. Note that for each value of k, there

is only one matrix to be searched as the structure is exactly known.

Lemma 10. The matrix G′k,s satisfies the Monge property.

Proof. For the Monge property to hold for this matrix, for any arbitrary m1,m2, n1, n2,

where k − 1 ≤ m1 < m2 < n1 < n2 ≤M + 1 the following should hold

G′k,s(m1, n1) +G′k,s(m2, n2) ≤ G′k,s(m1, n2) +G′k,s(m2, n1)

Regions created by these nodes are illustrated in Fig. 4.1. The above inequality reduces

to

w′p(m1, n1)s + w′p(m2, n2)s ≤ w′p(m1, n2)s + w′p(m2, n1)s. (4.5)
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Considering Fig. 4.1 and the fact that µ(A∪B) = µ(A)+µ(B), this can be rewritten

as follows

µ(R1) + µ(R2) + µ(R2) + µ(R4)

≤ µ(R1) + µ(R2) + µ(R3) + µ(R4) + µ(R2),

which simplifies to 0 ≤ µ(R3). This is true since µ(A) ≥ 0 for any measurable set

A and the proof is complete.

4.4 Design of Optimal DSQ with Identical Encoders

In this section we address the design of an optimal DSQ under the constraint that the en-

coders be identical. This constraint was considered in some prior work [9, 16, 25]. The

authors of [25] propose a design algorithm for this situation, which is globally optimal

only when the training data is separable by the classifier line L. Our contribution is to

present a solution algorithm that is globally optimal even when the data is not linearly

separable.

Let Qid(K,A) denote the set of (K,K)-level DSQs determined by all possible pairs

ũ = ṽ, where ũ = (ũ1, · · · , ũK−1), ũi ∈ A, for all i. Then the problem that we seek to

solve in this section is

min
Q∈Qid(K,A)

c(Q). (4.6)
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The above problem can be modelled as a minimum weight K-edge path problem in the

WDAG G′′ = (V ′′, E ′′, w′′) described next. Its set of vertices is V ′′ = {m : 0 ≤ m ≤

M + 1} and its set of edges is E ′′ = {(m,n) : 0 ≤ m < n ≤ M + 1}. For each edge

(m,n) its weight is w′′((m,n) = min(µ(T ′(m,n)), µ(T (m,n))). Then, the following

result holds.

Proposition 5. The problem (4.6) is equivalent to the problem of finding the minimum

path in G′ among all the paths from 0 to M + 1 that have K edges.

Proof. We will show that there is a one-to-one correspondence between the K-edge

paths in G′′ from 0 to M + 1 and the DSQs in Qid(K,A). Let (z0, z1, · · · , zK) be the

sequence of nodes on such a path. Then 0 = z0 < z1 < z2 < · · · < zK−1 < zK =

M + 1. Let ũi = ṽi = azi , for 1 ≤ i ≤ K − 1 and 1 ≤ j ≤ K − 1. Then the pair

(ũ, ṽ) determines a (K,K)-level DSQ Q in Qid(K,A). The relevant cells of the DSQ

are only the cells Si,i, for 1 ≤ i ≤ K. In addition, c(Si,i) = w′′(zi−1, zi). It follows that

the weight of the path is equal to c(Q). The fact that the correspondence is one-to-one

can be easily verified.

The problem (4.6) can be solved using dynamic programming. Before describing the

algorithm, let us introduce a few notations. For each pair (n, k) with 1 ≤ n ≤ M + 1,

1 ≤ k ≤ K, let W̃k(n) denote the minimum weight over all k-edge paths starting in

0 and ending in n. In addition, let W̃0(0) = 0. Then the following recurrence relation

holds

W̃k(n) = min
k−1≤m<n

(
W̃k−1(m) + w′′(m,n)

)
,
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for all 1 ≤ k ≤ K, k ≤ n ≤ M + 1. The quantities W̃k(n) are computed in lex-

icographical order of the pairs (k, n). At the end, the path achieving W̃K(M + 1) is

selected.

The time complexity of the solution algorithm is O(KM2) if the weight of any edge

can be calculated in constant time. The latter requirement can be satisfied if the prepro-

cessing stage described in Section 2.4 is included.

Note that with similar reasoning to the Section 2.6, this algorithm can also be used

when only a training sequence is available.

It is worth mentioning that in this case, if condition OCd holds, the above

search can be expedited by leveraging the Monge property. Since w′′((m,n) =

min(µ(T ′(m,n)), µ(T (m,n))), there are two possibilities for W̃k(n).

W̃k,1(n) = min
k−1≤m<n

(
W̃k−1(m) + µ(T ′(m,n))

)
, or,

W̃k,2(n) = min
k−1≤m<n

(
W̃k−1(m) + µ(T (m,n))

)
,

where W̃k(n) = min(W̃k,1(n), W̃k,2(n)). To find the best m for each n, and

eventually finding the best path to node n = M + 1, for each k, 1 ≤ k ≤ K,

we build two (M − k + 3) × (M − k + 2) search matrices G′k and Gk, where

G′k(m,n) = W̃k−1(m) + µ(T ′(m,n)) for m ≤< n, and G′k(m,n) = ∞ otherwise,

and where Gk(m,n) = W̃k−1(m) + µ(T (m,n)) for m ≤< n, and Gk(m,n) =∞ oth-

erwise. Hence, W̃k(n) = min(mink−1≤m<nG
′
k(m,n),mink−1≤m<nGk(m,n)). Next,

we show that Monge property holds in matrices G′k and Gk, hence the search in each of

these matrices can be sped up to O(M) operations.
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For Monge property to hold for G′k, the following should hold.

G′k(m1, n1) +G′k(m2, n2) ≤ G′k(m1, n2) +G′k(m2, n1),

for all k − 1 ≤ m1 < m2 < n1 < n2 <≤ M + 1. After replacing the values, this in-

equality simplifies to µ(T ′(m1, n1))+µ(T ′(m2, n2)) ≤ µ(T ′(m1, n2))+µ(T ′(m2, n1)).

It can be easily concluded that this inequality holds as this is exactly the inequality (4.5)

in Section 4.3, for s = 1. With similar steps, for Gk, the Monge inequality will reduce

to the inequality (4.5), for s = 2, and therefore, Monge property holds for this matrix.

Hence, the search for the shortest path can be completed in O(KM).

4.5 Experimental Results

In this chapter, we compare empirically the performance of the faster algorithm devel-

oped in Section 3.1 for the equal-rate case against two other approaches that assume

identical encoders. For the proposed algorithm in this chapter, we use the acronym

ONIE (Optimized Non-Identical Encoders). The other two approaches are 1) Uniform

Length Quantization (UL) [9], and 2) Optimized Identical Encoders (OIE). For OIE

we use the algorithm proposed in Section 4.4. For UL, the two identical encoders are

obtained by partitioning the total (finite) range into equal-size intervals. In our experi-

ments, the total range is [−25, 25].

We considered two different scenarios of symmetric and asymmetric distribu-

tions. The class-conditional distributions used in our experiments are Gaussian, i.e.,

P (x|` = −1) = N (µ1,Σ1), P (x|` = 1) = N (µ2,Σ2), and the probabilities of the
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two classes are equal. For the symmetric case we consider µ1 = −µ2 = (ξ1,−ξ1) and

Σ2 = Στ
1 , where

a11 a12

a21 a22


τ

=

a22 a12

a21 a11

.

For each scenario we employ four different distributions. Their corresponding pa-

rameters are presented in Table 4.1 for the asymmetric case and in Table 4.2 for the

symmetric case. Note that for all distributions in our study, L is the decision boundary

of the optimal linear classifier. For the symmetric case, both conditions OC and S hold

implying that the optimal equal-rate SDSQ must be staggered in view of Theorem 4.

Therefore, we expect ONIE to have a performance close to the optimum.

Asymmetric

# µT
1 µT

2 Σ1 Σ2

1
[

4
−3.6

] [
−6
6.75

] [
9 5.15

5.15 9.57

] [
14 −1.03
−1.03 14.88

]
2

[
4

−5.44

] [
−4
2.8

] [
10 −1.03
−1.03 10.63

] [
9 4.12

4.12 9.57

]
3

[
4

−2.04

] [
−4
5.51

] [
8 3.77

3.77 7.12

] [
8 −3.77

−3.77 7.12

]
4

[
3.5
−5.3

] [
−3.5
1.7

] [
17 2
2 17

] [
9 5
5 9

]

TABLE 4.1: Parameters of the data distributions considered in the asym-
metric scenario.

(A) 1 (B) 2 (C) 3 (D) 4

FIGURE 4.2: Data distributions used in the asymmetric scenario.
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Symmetric
# µT

1 Σ1

1
[

5
−5

] [
14 −1
−1 14

]
2

[
3
−3

] [
14 −1
−1 14

]
3

[
2
−2

] [
9 5
5 9

]
4

[
3
−3

] [
14 11
11 14

]

TABLE 4.2: Parameters of the data distributions considered in the sym-
metric scenario.

(A) 1 (B) 2 (C) 3 (D) 4

FIGURE 4.3: Data distributions used in the symmetric scenario.

For OIE we use training sets of size N = 10000, while for ONIE we consider two

sizes for the training sequence, namely N = 10000 (ONIE 10k) and N = 4000 (ONIE

4k). All four approaches (UL, OIE, ONIE10k, ONIE4k) are tested using test sequences

with N = 10000 examples. The graphical illustration of the 10000-size training se-

quence of each distribution in the asymmetric and symmetric scenarios is shown in Fig.

4.2 and Fig. 4.3, respectively. Different colors represents different classes.

Figs. 4.4 and 4.5 show the plot of ρ − ρu measured on the test sequence versus R

for the four compared approaches in the asymmetric and symmetric cases, respectively.

We notice that for each of UL, OIE and ONIE10k there is a threshold rate R0, which
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also depends on the distribution, after which the value of ρ − ρu becomes very close

to 0. This is because as R increases, the number of relevant cells increases and the

number of training points covered by the cost regions (i.e., the triangular regions used

in the computation of the modified cost) decreases. On the other hand, for smaller rates

we observe a significant difference in performance between UL, OIE and ONIE10k,

the latter being the best. The superiority of ONIE10k was expected in the symmetric

case, but it is pleasing to see that it also holds for the asymmetric distributions in our

study. This observation indicates that the conclusion of Theorem 2 might hold under

weaker assumptions about the data distribution. Another interesting observation is that

the perfomance of ONIE4k is very similar to that of ONIE10k in the symmetric sce-

nario. However, for two of the asymmetric distributions this conclusion holds only for

small rates, while for the larger rates the value of ρ − ρu for ONIE4k plateaus above 0

suggesting that overfitting occurs. Finally, we see that UL performs very poorly if the

rate is not sufficiently high.

4.6 Conclusion

In this chapter, we propose a faster algorithm of the DSQ design for the case of equal

quantizer rates. With the support of properties discussed in Chapter 3 for continuous

sources, we derive similar properties for the discrete sources case. Mainly, we show

that when a certain symmetry condition holds for the joint distribution of sources and

labels, the optimal staggered DSQ that minimizes the expected classification error is

also optimal among the set of all DSQs. Further, by considering the modified cost and

imposing the staggering thresholds condition, we simplify the graph model of Chapter

2 and propose a faster dynamic programming algorithm that finds the best staggered
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FIGURE 4.4: Comparison of the proposed algorithm for the asymmetric
data against OIE and UL. Results of our algorithm trained with 4000
training examples is shown in green.

DSQ minimizing the modified cost for a given distribution. Further, we show that if

the linear classifier is the optimal classifier, this algorithm can be further expedited by a

factor of source alphabet size, utilizing the Monge property. Moreover, we propose an

algorithm for the design of optimal DSQs with identical encoders. Finally, we compare

the performance of staggered DSQs with other DSQs with identical encoders, designed

using a training sequence. Experimental results for training data derived from both
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FIGURE 4.5: Comparison of the proposed algorithm for the symmetric
data against OIE and UL. Results of our algorithm trained with 4000
training examples is shown in green.

symmetric and asymmetric distributions indicate the superiority of staggered DSQs over

DSQs with identical encoders.
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Chapter 5

Application to Decentralized Detection

of Vector Sources

In this chapter we show that the theory and algorithms developed in the previous chap-

ters can be applied to certain scenarios of the more general problem of quantizer design

for the decentralized detection of two vector sources [52]. In this problem, the classifier

at the decoder is not given. The problem is to design the two encoders and the joint

decoder such that the classification error to be minimized. We show that the develop-

ments of the previous chapters can be applied to this scenario after each vector source

is subjected to an appropriate transformation. More specifically, after applying this

transformation, each source becomes scalar in the transformed domain and the optimal

classifier for the unquantized data in the transformed space is linear.

The main contribution of this chapter is the fastest globally optimal solution to date

to the problem of decentralized binary hypothesis testing with the probability of error

criterion when the vector sources are conditionally independent given the hypothesis.

For this scenario, Tsitsiklis proved that if an optimal encoding strategy exists, then there
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is an optimal encoding strategy where each encoder is a ”threshold rule” for the cor-

responding likelihood ratio. In other words, each encoder is a scalar quantizer with

convex cells in the likelihood ratio domain. He noted that when the sources are discrete,

an exhaustive search over all possible threshold rules solves the problem optimally.

This procedure requires O(NK1+K2(N +K1K2)) operations, where N is the size of the

largest alphabet of the input vectors [52]. We propose a considerably faster globally op-

timal solution with time complexityO(K1K2N
3), which is a significant improvement in

comparison to the exhaustive search algorithm. Furthermore, we show that for the case

of equal quantizer rates, by imposing the staggering structure the time complexity of

the solution can be decreased to O(KN). To achieve these improvements, we leverage

Tsitsiklis’s result regarding the optimality of the threshold rule and reduce the design

problem to a problem in a transformed domain (related to the likelihood ratio domain),

where each encoder is a scalar quantizer with convex cells. Next we show that the prob-

lem in the transformed domain is equivalent to the optimization problem addressed in

the previous chapters and therefore can be solved using the proposed algorithms.

The chapter has the following structure. We first formulate the general detection

problem and show how it relates to the problem solved in the previous chapters in Sec-

tion 5.1. In Section 5.2, we describe a particular scenario when the detection problem

can be reduced to the DSQ design problem of previous chapters. Next, in Section 5.3,

we address the case of conditionally independent sources given the class labels. In Sec-

tion 5.4, we discuss some possible real world applications for the proposed algorithms.

Finally, Section 5.5 concludes the chapter.
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5.1 Formulation of the General Detection Problem

Consider two distributed sensor nodes as in Fig. 2.1. The data collected by each node is

quantized and the message is sent to the server node. The server node jointly decodes

the two messages and outputs one of the two possible class labels, 1 or−1. For k = 1, 2,

the input to the encoder k is a vector denoted by yk taking values in a set Yk ⊂ Rdk ,

where dk ≥ 1. The encoder k is denoted by ϕk : Rdk → {1, · · · , Kk}. The joint decoder

is δ : {1, · · · , K1} × {1, · · · , K2} → {−1, 1}. This scenario accommodates both cases

when the encoder of a node operates on one sample at a time, i.e., dk = 1, (scalar

quantizer) or on blocks of samples of size dk > 1 (vector quantizer). Our framework

also covers the case when each sensor acquires data from more than one scalar source

and the encoder is applied on blocks of samples from all sources. Also note that d1 and

d2 do not need to be equal.

We will refer to the random vectors that generate y1 and y2 as being our vector

sources and will assume that the joint distribution of the two vector sources and of the

class label is known. The general problem we consider in this chapter is the problem of

quantizers design for decentralized detection, i.e., to find the optimal triple (ϕ1, ϕ2, δ)

with fixed K1 and K2, that minimizes the probability of detection error, i.e.,

min
(ϕ1,ϕ2,δ)

Pr(ˆ̀ 6= `) (5.1)

where ˆ̀= δ(ϕ1(y1), ϕ2(y2))

We will consider both the case when the two sources are discrete and the case when

the sources are continuous. In the first case, we denote by P ′(y1,y2, `) the joint pmf of

the sources and the label. In the second case, we denote by f ′(y1,y2, `) the joint pdf of
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the sources and the label.

Recall that for the problem studied so far in this thesis, the input to the encoder of

sensor k is a scalar value xk, and the joint decoder β maps each pair of indexes (i, j) to

a pair of reconstruction values, which is further fed to the fixed linear classifier γ given

below.

γ(x1, x2) =


1 if x1 ≤ x2

−1 if x1 > x2

. (5.2)

The relevant optimization problem corresponding to this scenario is to find the triple

(α1, α2, β) that minimizes the probability of classification error, i.e.,

min
(α1,α2,β)

Pr(γ(x̂) 6= `) (5.3)

where x̂ = β(α1(x1), α2(x2)) and β(i, j) ∈ α−1
1 (i) × α−1

2 (j) for all (i, j) 1. Note that

the minimization in (5.3) is over all pairs of encoders (α1, α2) without any constraint on

their structure, while in this thesis we addressed the case when the encoders’ partitions

are constrained to have convex cells.

When the inputs at the two encoders are scalars, the main difference between the

problems (5.1) and (5.3) is that in the latter it is assumed that the given linear classifier

γ is applied to the quantized output in order to detect the class label, while the problem

(5.1) does not impose such a constraint. We show in this chapter that if γ is the optimal

classifier for the unquantized scalar sources, then this constraint does not preclude the

1This is an important constraint that we imposed in the previous sections, which helped solving the
optimization problem. Without this constraint, problems (5.1) (for scalar sources) and (5.3) are equivalent
since for any decision rule δ it is possible to find an appropriate mapping β such that δ = γ ◦ β.
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FIGURE 5.1: System block diagram of the detection scenario.

optimality, i.e., if (α1, α2, β) is a solution to the problem (5.3) then (α1, α2, γ ◦ β) is a

solution to the problem (5.1). Then the algorithms developed so far to solve the problem

(5.3) within the class of encoders with convex cells, can also be used to solve the variant

of (5.1) with the corresponding restriction on the encoders’ structure. Moreover, the

results concerning the structure of the optimal partitions in the equal-rate case derived

for the restricted variant of problem (5.3) also hold for the restricted variant of problem

(5.1).

Furthermore, we show that when the inputs to the sensors (vectors or scalars) are

conditionally independent given the class, the algorithms proposed in previous chapters

can be used to solve the problem (5.1) without any constraints. This will lead to a much

faster globally optimal solution. In addition, the results about the structure of the equal-

rate DSQ at optimality can be used to derive structural optimality properties for problem

(5.1).
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5.2 Results

Let γ0 : Y1 × Y2 → {−1, 1} denote the optimal classifier for the unquantized vector

sources. In other words, in the discrete case γ0 is

γ0(y1,y2) =


1 if P ′(y1,y2, 1) ≥ P ′(y1,y2,−1)

−1 if P ′(y1,y2, 1) < P ′(y1,y2,−1)
,

while for the continuous case P ′ is replaced by f ′. Let Γ+ denote the decision region

for class 1 and let Γ− denote the decision region for class −1.

Lemma 11. If (ϕ1, ϕ2, δ) is a solution to problem (5.1), then there is a function ψ :

{1, · · · , K1} × {1, · · · , K2} → Y1 × Y2 such that

δ(i, j) = γ0(ψ(i, j)) (5.4)

and ψ(i, j) ∈ ϕ−1
1 (i)× ϕ−1

2 (j) for all (i, j).

Proof. It is known that the optimal decision rule δ must satisfy

δ(i, j) = δopt(i, j) = arg max
`
Pr(`|i, j) (5.5)

for all (i, j). Assume that the ties in the above relation are resolved in favour of class

1. Consider the case of discrete sources (for continuous sources, the proof is similar).

Then

δopt(i, j) = arg max
`
P (i, j, `) = arg max

`

∑
y1∈ϕ−1

1 (i)

∑
y2∈ϕ−1

2 (j)

P ′(y1,y2, `). (5.6)
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If δopt(i, j) = 1, it follows that ϕ−1
1 (i) × ϕ−1

2 (j) ∩ Γ+ 6= ∅. Therefore, if we choose

ψ(i, j) ∈ ϕ−1
1 (i)× ϕ−1

2 (j) ∩ Γ+, relation (5.4) is satisfied. Similarly, when δopt(i, j) =

−1, we have ϕ−1
1 (i)×ϕ−1

2 (j)∩Γ− 6= ∅. If we choose ψ(i, j) ∈ ϕ−1
1 (i)×ϕ−1

2 (j)∩ Γ−,

relation (5.4) is satisfied.

Next we introduce a property that will be used in the sequel.

Property A: There exist functions Tk : Yk →⊆ R, for k = 1, 2, and h : X1 × X2 → R,

where Xk = Tk(Yk) such that

• in the discrete case, P ′(y1,y2, `) = h(T1(y1), T2(y2), `);

• in the continuous case, f ′(y1,y2, `) = h(T1(y1), T2(y2), `)

and

• h(x1, x2, 1) > h(x1, x2,−1) if and only if x1 < x2

• h(x1, x2, 1) < h(x1, x2,−1) if and only if x1 > x2

• h(x1, x2, 1) = h(x1, x2,−1) if and only if x1 = x2.

Proposition 6. Assume that Property A is satisfied. Then there is a solution (α1, α2, β)

to problem (5.3) in the transformed domain of (T1(y1), T2(y2)) such that (α1 ◦ T1, α2 ◦

T2, γ ◦ β) is a solution to problem (5.1) in the domain of (y1,y2).

Remark 8. Property A means that the classification problem for the pair of unquantized

vector sources (y1,y2) can be converted to the classification problem for a pair of scalar

sources (x1, x2) (by applying a separate transformation to each vector) for which the

74

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/
https://www.eng.mcmaster.ca/ece/


Doctor of Philosophy– Sara ZENDEHBOODI; McMaster University– Department of
Electrical and Computer Engineering

optimal classifier is the linear classifier γ. According to Proposition 6, in such a case,

solving problem (5.1) in the original domain reduces to solving problem (5.3) in the

transformed domain.

Proof of Proposition 6. Let Xk = Tk(Yk), for k = 1, 2. We will use the following two

claims, which are proved at the end.

Claim 1. There are functions αk : Xk → {1, · · · , Kk}, k = 1, 2, and an optimal

solution (ϕ1, ϕ2, δ) to problem (5.1) such that

ϕk(yk) = αk(Tk(yk)) (5.7)

for all yk, k = 1, 2.

Claim 2. If (α1 ◦ T1, α2 ◦ T2, δ) is a solution to problem (5.1), then there is a function

β : {1, · · · , K1} × {1, · · · , K2} → X1 × X2 such that

δ(i, j) = γ(β(i, j)) (5.8)

and β(i, j) ∈ α−1
1 (i)× α−1

2 (j) for all (i, j).

According to Claims 1 and 2, there is solution (ϕ1, ϕ2, δ) to problem (5.1) and a

triple (α1, α2, β) satisfying the conditions of problem (5.3) such that

(ϕ1, ϕ2, δ) = (α1 ◦ T1, α2 ◦ T2, γ ◦ β). (5.9)
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Note that the transformation (T1, T2) incurs a probability distribution in the trans-

formed domain X = X1 × X2, where P (x, `), respectively, f(x, `), denotes the

joint pmf in the discrete case, respectively pdf in the continuous case, of x, `, for

x = (x1, x2) ∈ X1 × X2 and ` ∈ {−1, 1}. To be more specific

P (x, `) =
∑

y1∈T−1
1 (x1)

∑
y2∈T−1

2 (x2)

P ′(y1,y2, `)

f(x, `) =
∫
T−1

1 (x1)

∫
T−1

2 (x2)
f ′(y1,y2, `) dy2 dy1

for all x ∈ X1 × X2 and ` ∈ {−1, 1}.

According to (5.9), the classification error ρ2, of the DSQ (α1, α2, β) in the trans-

formed domain X = X1 × X2, satisfies

ρ2 = Pr(γ(β(α1(x1), α2(x2)) 6= `) = Pr(δ(ψ(ϕ1(y1), ϕ2(y2)))) = ρ1, (5.10)

where ρ1 denotes the probability of detection error of (ϕ1, ϕ2, δ). Since ρ1 is minimized,

it follows that ρ2 is minimized too. Therefore, (α1, α2, β) is a solution to (5.3) in the

transformed domain X = X1 × X2.

Proof of Claim 1. Consider first the discrete case. Consider an optimal triple (ϕ1, ϕ2, δ)

and define

cost1(y1, i) =
∑

j:δ(i,j)=1

∑
y2∈ϕ−1

2 (j)

P ′(y1,y2,−1) +
∑

j:δ(i,j)=−1

∑
y2∈ϕ−1

2 (j)

P ′(y1,y2, 1)

(5.11)
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Then the probability of error for (ϕ1, ϕ2, δ) equals

K1∑
i=1

 ∑
j:δ(i,j)=1

∑
y1∈ϕ−1

1 (i)

∑
y2∈ϕ−1

2 (j)

P ′(y1,y2,−1) +
∑

j:δ(i,j)=−1

∑
y1∈ϕ−1

1 (i)

∑
y2∈ϕ−1

2 (j)

P ′(y1,y2, 1)

 .
(5.12)

By interchanging the order of the summations over j and over y1, and applying (5.11),

we further obtain

Pr(δ(i, j) 6= `) =
K1∑
i=1

∑
y1∈ϕ−1

1 (i)

cost1(y1, i). (5.13)

Since (ϕ1, ϕ2, δ) is optimal, it follows that ϕ1 must satisfy

ϕ1(y1) = arg min
i
cost1(y1, i). (5.14)

Since P ′(y1,y2, `) = h(T1(y1), T2(y2), `), it follows that if T1(y1) = T1(y′1) then

cost1(y1, i) = cost1(y′1, i) for all i. Hence, if the minimum in (5.14) is achieved in a

unique value, at optimality we must have ϕ1(y1) = ϕ1(y′1). If the minimum in (5.14)

is achieved in multiple values, there are multiple encoder functions ϕ1 satisfying the

optimality condition and there is one for which ϕ1(y1)) = ϕ1(y′1) for all y1 and y′1 such

that T1(y1) = T1(y′1). This means that for each x1 ∈ X1, all vectors y1 that are mapped

by T1 to x1, are also mapped by ϕ1 to the same index i. By defining α1(x1) = i, we

obtain ϕ1(y1) = α1(T1(y1)) for all y1.

The proof of the fact that there is a function α2 : X2 → {1, · · · , K2} such that

ϕ2(y2) = α2(T2(y2)) for all y2 ∈ Y2 is similar. The continuous case can be proved

similarly by replacing the summations by integrals and the pmf P ′ by the pdf f ′.
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Proof of Claim 2. According to Lemma 11, there is a function ψ : {1, · · · , K1} ×

{1, · · · , K2} → Y1 × Y2 such that

δ(i, j) = γ0(ψ(i, j)) (5.15)

and ψ(i, j) ∈ T−1
1 (α−1

1 (i)) × T−1
2 (α−1

2 (j)) for all (i, j). Let ψk(i, j) denote the k-th

component of ψ(i, j) for k = 1, 2. In other words, ψ(i, j) = (ψ1(i, j), ψ2(i, j)). Since

Property A holds, it follows that the optimal classifier γ0 for the unquantized vector

sources satisfies

γ0(y1,y2) = γ(T1(y1), T2(y2)). (5.16)

By combining (5.15) and (5.16), we obtain

δ(i, j) = γ0(ψ1(i, j), ψ2(i, j)) = γ(T1(ψ1(i, j)), T2(ψ2(i, j))). (5.17)

Define β(i, j) = (T1(ψ1(i, j)), T2(ψ2(i, j))). Then condition (5.8) holds. In addition,

β(i, j) ∈ T1(T−1
1 (α−1

1 (i)))× T2(T−1
2 (α−1

2 (j))) = α−1
1 (i)× α−1

2 (j) for all (i, j) and the

proof is completed.
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5.3 Results for Conditionally Independent Sources

Given the Class Label

In this section we assume that the vector sources are conditionally independent given the

class label. For ` ∈ {1,−1}, let P0(`) denote the prior probability of class `. For the dis-

crete case, we denote by P ′(y1,y2, `) the joint probability mass function of y1,y2 and

of the class label `, and by Pk(yk|`) we denote the conditional probability of yk given

`. In the continuous case, f ′(y1,y2, `) denotes the joint pdf of y1,y2 and `, while by

fk(yk|`) denotes the conditional pdf of yk given `. Then the conditional independence

given the class label means that, in the discrete case we have

P ′(y1,y2, `) = P1(y1|`)P2(y2|`)P0(`),

and in the continuous case we have

f ′(y1,y2, `) = f1(y1|`)f2(y2|`)P0(`),

For k = 1, 2, let Lk(yk) denote the likelihood function, i.e., Lk(yk) = Pk(yk|−1)
Pk(yk|1) in

the discrete case andLk(yk) = fk(yk|−1)
fk(yk|1) in the continuous case. According to [52], there

is an optimal solution (ϕ1, ϕ2, δ) to problem (5.1) where each encoder ϕk is a “threshold

rule” for the corresponding likelihood ratio Lk(yk). Note that Lk(yk) takes values in the

interval [0,∞] of the extended real line, R∪{−∞,+∞}. This means that there are two

partitions of [0,∞] consisting of intervals, P′1 = {U ′i}1≤i≤K1 and P′2 = {V ′j }1≤j≤K2 ,
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such that

ϕ1(y1) = i iff L1(y1) ∈ U ′i (5.18)

ϕ2(y2) = j iff L2(y2) ∈ V ′j . (5.19)

Further, we define the transformations Tk : Yk →⊆ R, for k = 1, 2, such that

T1(y1) = P0(−1)L1(y1) (5.20)

T2(y2) = P0(1)
L2(y2) . (5.21)

Denote X1 = T1(Y1) and X2 = T2(Y2). The transformation (T1, T2) incurs a proba-

bility distribution in the transformed domain X = X1×X2, where P (x, `), respectively,

f(x, `), denotes the joint pmf, respectively, pdf, of x, `, for x = (x1, x2) ∈ X1×X2 and

` ∈ {−1, 1} defined as in the proof of Proposition 6.

Proposition 7. Assume that y1 and y2 are conditionally independent given the class

label. Then there is a solution (α1, α2, β) to problem (5.3) in the transformed domain of

(T1(y1), T2(y2)) such that for each k = 1, 2 the partition of αk is formed of convex cells

(i.e., intersections of Xk with an interval of the real line) and (α1 ◦ T1, α2 ◦ T2, γ ◦ β) is

a solution to problem (5.1) in the domain of (y1,y2).
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Proof. According to the aforementioned discussion, there is a solution to (5.1)

(ϕ1, ϕ2, δ) such that relations (5.18) and (5.19) hold. Then

ϕ1(y1) = i iff T1(y1) ∈ Ui (5.22)

ϕ2(y2) = j iff T2(y2) ∈ Vj, (5.23)

where Ui = {P0(−1)z : z ∈ U ′i} and Vj = {P0(1)/z : z ∈ V ′j }. Hence, Ui and Vj are

also intervals. Let us define the mappings αk : Xk → {1, · · · , Kk}, k = 1, 2. Then,

according to (5.22) and (5.23), we have

ϕk = αk ◦ Tk, k = 1, 2.

It is known [51] that the optimal classifier for the unquantized data is

γ0(y1,y2) = γ(T1(y1), T2(y2)) (5.24)

for all y1,y2. Then Claim 2, which was formulated in the proof of Proposition 6 also

holds here. Therefore, there is a function β : {1, · · · , K1} × {1, · · · , K2} → X1 × X2

such that

δ = γ ◦ β.

It follows that (ϕ1, ϕ2, δ) = (α1 ◦ T1, α2 ◦ T2, γ ◦ β) and hence (α1, α2, β) is a solution

to problem (5.3) in the transformed domain of (T1(y1), T2(y2)).

According to Proposition 7, problem (5.1)) reduces to the problem studied in the
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previous chapters of this thesis. Therefore, all the results established in the previous

chapters can be applied here. In conclusion, the following theorem holds.

Theorem 5. When the two vector sources are conditionally independent given the class

label, the problem (5.1) can be solved in O(K1K2N
3), where N = max{|Y1|, |Y2|}.

Note that based on (5.24), in this case, the optimal classifier in the transformed do-

main is linear. Therefore, condition OCd, respectively OCc, holds in the case of discrete,

respectively continuous, sources.

5.3.1 Equal Rate Case

For the equal rate case, i.e., where K1 = K2 = K, the following can be concluded in

virtue of Theorem 4 and Corollary 5 of Chapter 4.

Theorem 6. Assume that K1 = K2 = K, and y1 and y2 are conditionally independent

discrete vector sources. If condition Sd holds in the transformed domain, then the solu-

tion to problem (5.1) can be found in O(KN) operations, where N = max{|Y1|, |Y2|}.

Moreover, the partitions of α1 and α2 in the transformed domain must be staggered.

Additionally, the following can be concluded in virtue of Theorem 3.

Theorem 7. Assume that K1 = K2 = K, and y1 and y2 are conditionally independent

continuous vector sources. If condition Sc holds in the transformed domain, then the

partitions of the optimal α1 and α2 in the transformed domain must be strictly staggered.

Recall condition Sd.
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Condition Sd in the Transformed Domain: X1 = X2 and the following relation is

valid for all (x1, x2) ∈ X1 × X2:

P (x1, x2, 1)− P (x1, x2,−1) = P (x2, x1,−1)− P (x2, x1, 1).

The above is equivalent to

∑
y1∈T−1

1 (x1)

∑
y2∈T−1

2 (x2)

(P ′(y1,y2, 1)− P ′(y1,y2,−1))

=
∑

y′1∈T
−1
1 (x2)

∑
y′2∈T

−1
2 (x1)

(P ′(y′1,y′2,−1)− P ′(y′1,y′2, 1))

Due to conditionally independence of sources, the above is equivalent to

∑
y1∈T−1

1 (x1)

∑
y2∈T−1

2 (x2)

{P1(y1|1)P2(y2|1)P0(1)− P1(y1| − 1)P2(y2| − 1)P0(−1)}

=
∑

y′1∈T
−1
1 (x2)

∑
y′2∈T

−1
2 (x1)

{P1(y′1| − 1)P2(y′2| − 1)P0(−1)− P1(y′1|1)P2(y′2|1)P0(1).}

(5.25)

It is of interest to find a simpler form for the above condition. Next we derive a

sufficient condition, which has a simpler form and therefore it is easier to verify.

Condition SCSd: There is a bijective function g : Y1 → Y2 such that

P2(g(y1)|1) = P1(y1| − 1) & P2(g(y1)| − 1) = P1(y1|1), (5.26)

and P0(1) = P0(−1) for every y1 ∈ Y1 and y2 ∈ Y2.
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Similarly, for continuous sources, we can derive a sufficient condition for condition

Sc that has a simpler form by replacing pmfs P1 and P2 by pdfs f1 and f2.

Condition SCSc: There is a bijective function g : Y1 → Y2 such that

f2(g(y1)|1) = f1(y1| − 1) & f2(g(y1)| − 1) = f1(y1|1), (5.27)

and P0(1) = P0(−1) for every y1 ∈ Y1 and y2 ∈ Y2.

Theorem 8. Assume that K1 = K2 = K, and y1 and y2 are conditionally independent

discrete vector sources. If condition SCSd holds in the original domain, then the solu-

tion to problem (5.1) can be found in O(KN) operations, where N = max{|Y1|, |Y2|}.

Moreover, the partitions of α1 and α2 in the transformed domain must be staggered.

Theorem 9. Assume K1 = K2 = K, and y1 and y2 are conditionally independent

continuous vector sources. If condition SCSc holds in the original domain, then the

partitions of optimal α1 and α2 in the transformed domain must be strictly staggered.

The proof of Theorems 8 and 9 rely on the following lemmas.

Lemma 12. Assume that y1 and y2 are conditionally independent discrete vector

sources. If condition SCSd is satisfied, then condition Sd is satisfied in the transformed

domain of T1(y1) and T2(y2).

Lemma 13. Assume y1 and y2 are conditionally independent continuous vector

sources. If condition SCSc is satisfied, then condition Sc is satisfied in the transformed

domain of T1(y1) and T2(y2).
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Proof of Theorems 8 and 9. According to Lemma 12, if condition SCSd holds, condi-

tion Sd is satisfied in the transform domain. The claim follows in virtue of Theorem

6. Similarly, if condition SCSc holds, then condition Sc is satisfied in the transform

domain. Further, the result follows according to Theorem 7.

Next , we present the proof of Lemma 12 for discrete sources. The proof of Lemma

13 for continuous sources can be derived with similar steps, by replacing pmfs by pdfs,

and summations by integrals.

Proof of Lemma 12. Define the following set for any arbitrary x1 and x2.

B(x1, x2) = T−1
1 (x1)× T−1

2 (x2)

Moreover, denote A(y1,y2) as follows.

A(y1,y2) = P1(y1|1)P2(y2|1)P0(1)− P1(y1| − 1)P2(y2| − 1)P0(−1) (5.28)

To prove the lemma, we need the following claims which are proved at the end.

Claim 1. Let (x1, x2) ∈ X1 × X2 and (y1,y2) ∈ B(x1, x2). Then (g−1(y2), g(y1)) ∈

B(x2, x1) and A(y1,y2) = −A(g−1(y2), g(y1)).

Claim 2. Let (x1, x2) ∈ X1 × X2. The mapping Φ : B(x1, x2)→ B(x2, x1) defined by

Φ(y1,y2) = (g−1(y2), g(y1)) is bijective.
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Next we prove that (5.25) holds, which implies that condition Sd holds in the trans-

formed domain. For this, we use Claims 1 and 2 to derive the following sequence of

equalities. Denote y′1 = g−1(y2), y′2 = g(y1).

LHS of (5.25) =
∑

(y1,y2)∈B(x1,x2)
A(y1,y2)

=
∑

(y1,y2)∈B(x1,x2)
−A(Φ(y1,y2))

=
∑

Φ−1(y′1,y′2)∈B(x1,x2)
−A((y′1,y′2))

=
∑

(y′1,y′2)∈B(x2,x1)
−A((y′1,y′2))

= RHS of (5.25).

The proof of the lemma is completed.

Proof of Claim 1. Since (y1,y2) ∈ B(x1, x2), we have T1(y1) = x1 and T2(y2) = x2.

Then condition SCSd implies that

P2(y′2|1) = P1(y1| − 1) & P2(y′2| − 1) = P1(y1|1), (5.29)

which leads to

P2(y′2|1)
P2(y′2| − 1) = P1(y1| − 1)

P1(y1|1) .

Since P0(1) = P0(−1), we further obtain

P0(1) P2(y′2|1)
P2(y′2| − 1) = P0(−1)P1(y1| − 1)

P1(y1|1) ,
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which implies that

T2(y′2) = T1(y1) = x1. (5.30)

Since y′1 = g−1(y2), we have y2 = g(y′1). Then condition SCSd leads to

P2(y2|1) = P1(y′1| − 1) & P2(y2| − 1) = P1(y′1|1) (5.31)

and further to

T1(y′1) = P0(−1)P1(y′1| − 1)
P1(y′1|1) = P0(1) P2(y2|1)

P2(y2| − 1) = T2(y2) = x2. (5.32)

Relations (5.30) and (5.32) imply that (y′1,y′2) ∈ B(x2, x1) proving the first part of

Claim 1. Further, using (5.28), (5.29), (5.31) and the fact that P0(1) = P0(−1), we

obtain

−A(y′1,y′2) = P1(y′1| − 1)P2(y′2| − 1)P0(−1)− P1(y′1|1)P2(y′2|1)P0(1)

= P2(y2|1)P1(y1|1)P0(1)− P2(y2| − 1)P1(y1| − 1)P0(−1)

= A(y1,y2).

This concludes the proof of Claim 1.

Proof of Claim 2. Note that according to Claim 1, the mapping Φ is well defined. Let

us prove first that Φ is injective. Consider (y1,y2), (y′1,y′2) ∈ B(x1, x2) such that

(y1,y2) 6= (y′1,y′2). If y1 6= y′1, then since g is bijective, it follows that g(y1) 6= g(y′1)
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leading to Φ(y1,y2) 6= Φ(y′1,y′2). If y1 = y′1 then y2 6= y′2. Since g is bijective,

g−1 is also bijective, hence g−1(y2) 6= g−1(y′2), which also implies that Φ(y1,y2) 6=

Φ(y′1,y′2).

Let us prove now that Φ is surjective. Let (y′′1,y′′2) ∈ B(x2, x1). According to Claim

1, we have (g−1(y′′2), g(y′′1)) ∈ B(x1, x2). Further,

Φ(g−1(y′′2), g(y′′1)) = (g−1g(y′′1), g(g−1(y′′2))) = (y′′1,y′′2),

and the proof of Claim 2 is completed.

Note that the function g could be any one-by-one function. Some examples of such

g with scalar y1 and y2 that would lead to symmetric distribution in the transformed

domain include:

• g(y1) = y1 : In this case, based on condition SCSd, P2(y1|1) = P1(y1| − 1)

and P2(y1| − 1) = P1(y1|1). An example for this case could be Normal dis-

tributions P (y1, y2, 1) = c1e
− q2y

2
1e−

r
2y

2
2 and P (y1, y2,−1) = c1e

− r2y
2
1e−

q
2y

2
2 . An-

other example could be Poisson distributions P (y1, y2, 1) = c1
ay1e−a

y1!
by2e−b

y2! and

P (y1, y2,−1) = c2
by1e−b

y1!
ay2e−a

y2! .

• g(y1) = ay1 + b where a 6= 0 : In this case, based on condition SCSd,

P2(ay1 + b|1) = P1(y1| − 1) and P2(ay1 + b| − 1) = P1(y1|1). One example

could be Normal distributions P (y1, y2, 1) = c1e
− q2y

2
1e−

r
2y

2
2 and P (y1, y2,−1) =

c2e
− r2 (a2y2

1+2aby1+b2)e−
q

2a2 (y2
2−2by2+b2).
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• g(y1) = y3
1 : In this case, based on condition SCSd, P2(y3

1|1) = P1(y1| − 1) and

P2(y3
1| − 1) = P1(y1|1). An example could be P (y1, y2, 1) = c1e

−ay1e−by2 and

P (y1, y2,−1) = c2e
−by3

1e−ay
1
3
2 .

• g(y1) = ey1 : In this case, based on condition SCSd, P2(ey1|1) = P1(y1| − 1)

and P2(ey1| − 1) = P1(y1|1). An example could be P (y1, y2, 1) = c1e
y1lny2 and

P (y1, y2,−1) = c2y1y2.

5.4 Discussion

One possible example application to the proposed algorithms in this thesis is scenarios

where multiple sensors can be divided into two distinct groups. These sensors have

the ability to communicate internally within their respective groups, but communication

between groups is restricted. Each sensor within a group will send their captured signal

to a joint unit in close proximity in which a unified message is built from the respective

group sensors’ transmitted data. This transmission is communication constrained too,

but we assume that the encoders within each sensor is fixed, hence, we do not tend to op-

timize sensor encoders. The unified message from each group then is transmitted to the

decoder for classification to be done (Figure 5.2). This later transmission is communica-

tion constrained and we can optimize the respective encoders. Using the transformation

discussed in this chapter, assuming the two groups are conditionally independent given

class labels, the encoders can be optimized. Examples of this scenario may include

• Wireless Sensor Networks (WSNs): In WSNs deployed for environmental mon-

itoring, sensors may be divided into two groups based on their geographic loca-

tion or the type of data they collect. Each group of sensors communicates among
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themselves to aggregate data, and then a single message representing the collec-

tive information is needs to be sent to the central decoder for further processing.

• Smart Grids: In smart grid systems, sensors are deployed across the power distri-

bution network to monitor parameters like voltage, current, and power flow. These

sensors can be grouped based on the geographical regions they cover or the type of

equipment they monitor (e.g., substations, transformers). Communication within

each group enables localized monitoring and control, with aggregated data to be

sent to the central grid management system for analysis and decision-making.

• Medical Monitoring Systems: In hospitals, medical monitoring systems often

consist of numerous sensors monitoring various vital signs of patients. These

sensors may be grouped based on the type of measurements they take (e.g., heart

rate, blood pressure, oxygen saturation). Each group communicates internally to

consolidate data, and a unified message is to be transmitted to the central moni-

toring system for analysis and diagnosis.

5.5 Conclusion

In this chapter, we have explored the application of previously developed quantizer de-

sign theory and algorithms to the decentralized detection problem involving two vector

sources. We have demonstrated that in certain situations, by applying an appropriate

transformation to each vector source, we can reduce the problem to one involving scalar

quantizers in the transformed domain.

The main contribution of this chapter is a computationally efficient globally optimal

solution for the decentralized detection problem in the case when the vector sources
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FIGURE 5.2: Example application illustration.

are conditionally independent given the class label. Building upon Tsitsiklis’s results

regarding the optimality of threshold rules, we have devised an algorithm that signifi-

cantly improves the time complexity in comparison with the previously known exhaus-

tive search method. Moreover, for the special case of equal quantizer rates, we have

shown that imposing a staggering structure can further reduce the time complexity to be

linear in the source alphabet size.
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Chapter 6

Conclusion and Future Work

This thesis addresses the design of optimal distributed scalar quantizers (DSQ) for two

scalar sources tailored to a known binary linear classification task, without assuming any

specific data distribution and quantizer boundary arrangements at the encoders. The

goal is to design the quantizers such that the misclassification error of the classifier

applied to quantized outputs is minimized. Further, the design algorithm is simplified

by restricting the rates to be equal for both quantizers and the properties of this scenario

are studied. Moreover, we show how the studied setup can be applied to obtaining

the optimal DSQ when the sources are vectors and conditionally independent given the

class, and without assuming that the classification boundary is known.

in Chapter 2, our focus lies on devising an optimal (K1, K2)-level distributed scalar

quantizer (DSQ), where Kk denotes the number of quantizer regions of the encoder at

node k, for k = 1, 2, that minimizes the error of a classifier applied to the quantized

output. We make the assumptions that the classifier is binary, linear and known, and the

quantizer cells are convex, meaning each cell represents the intersection of a continuous

value interval with the source alphabet. Our exploration pertains to situations where
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the joint distribution of data within each class is discrete and known. We establish

that the problem of optimal DSQ design can be translated into a minimum weight path

problem, subject to specific constraints on the number of edges of certain types within a

designated weighted directed acyclic graph (WDAG). The proposed solution algorithm

exhibits a time complexity of O(K1K2M
4), where M represents the size of union of

the alphabet of the input sources. This is a significant improvement compared to the

existing optimal algorithms utilizing an exhaustive search. Further, we demonstrate

that the proposed dynamic programming algorithm can be sped up by a factor of M

by exploiting the so-called Monge property. Additionally, we show how this algorithm

can be applied in scenarios where the source distribution is continuous and known, as

well as in cases where the source distribution is unknown but a training sequence is

accessible.

Chapter 3 explored the characteristics of DSQ for the equal-rate scenario, where

K1 = K2 = K, with the objective of expediting the design process. Our approach

entailed an investigation into strict staggered DSQ (SDSQ) designs, aiming to minimize

an upper bound on the error of classifier applied to quantized outputs. We assumed

the joint probability distribution of sources per class is known and continuous. To sup-

port the consideration such a minimization problem, we analyzed the properties of SD-

SQs in scenarios where the optimal classifier is linear, demonstrating that the resulting

quantizers were optimal SDSQs. Moreover, we showed that the best SDSQ had to be

strict, equating minimizing the upper bound on error to minimizing the actual error.

Additionally, we established that in cases of symmetric distribution with respect to the

classification line, the globally optimal DSQ had to be strictly staggered.

In Chapter 4, with the support of Chapter 3, for the case of equal rates, we constrain
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the structure of DSQs to be staggered and assume the joint probability distribution per

class is discrete. Consequently, we utilized a modified cost, equivalent to an upper

bound on the classification error, for minimization instead of the original cost. This

strategic decision led to a significant simplification of the graph model, resulting in a

reduction of the solution algorithm’s time complexity to O(KM2). Furthermore, we

confirmed that the Monge property holds in instances of optimal classifier, resulting

in a reduction in time complexity by an order of M . Experimental results highlighted

the superiority of the designed SDSQs with this modified cost over prior work that

considered identical encoders, despite our focus on minimizing an upper bound of the

error.

Chapter 5 has examined the detection scenario involving vector input sources. For

the case of two sensors and two hypothesis with the probability of error criterion, we

showed how the problem maps to the DSQ design problem of Chapter 2, when the

sources are conditionally independent given the class label. Specifically, we showed

that by transforming the input sources into a domain related to the likelihood ratio,

each encoder becomes a scalar quantizer with convex cells, and the optimal classifier

for the unquantized data in the transformed space is linear. Therefore, the detection

problem can be solved using the algorithms designed in ChapterChapter2 with time

complexityO(K1K2N
3), whereN is the size of the largest alphabet of the input vectors.

This is a significant improvement in comparison to the only known globally optimal

solution of exhaustive search algorithm requiring O(NK1+K2(N + K1K2)) operations.

Furthermore, we showed that for the case of encoders with equal rates, results of Chapter

4 hold and by imposing the staggering structure, the time complexity of the solution can

be decreased to O(KN).
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This thesis addresses the design of DSQs only for two sources and two classes.

Therefore, the future work may involve exploring the design for more sources and

classes. One such exploration could be to study the feasibility of the staggering structure

in higher dimensions for the equal-rate scenario.

In Chapter 5, we noted that the idea of the likelihood transformation is not easily ap-

plicable for training sequences. A future work would be to explore ideas on computing

an empirical probability for the examples in the training set. For example, divide the

space into intervals, and for each interval compute a constant empirical probability for

all the points in that interval. Moreover, another possible direction for future work for

this chapter is to investigate the optimization of encoders within the sensors along with

the two distributed scalar quantizers, for the scenario involving two separate groups of

sensors. One other possibility is to explore the idea of [26] to break the dependency of

sources by using their technique to share some information between the sources, hence

opening the door for the results of Chapter 5 to be applied.

Another possibility could be to combine other techniques, such as source dimension

reduction with the quantizer design for the scenarios studied in this thesis.

Another possible future work could be the implementation and further verification of

the algorithm for the general-rate scenario which was not fully explored due to insuffi-

cient computational resources at the time of the experiment.
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Appendix A

Proof of Proposition 1

Proof of Proposition 1. Notice that the encoder of Q1 × Q2 partitions L into segment

lines. The separators of these segment lines are the points in the set W = {(auj , auj) :

0 ≤ j ≤ K1} ∪ {(avk , avk) : 0 ≤ k ≤ K2}. Note that the points in W can be ordered in

increasing order of their coordinates. Each segment determined by a pair of consecutive

points represents the intersection of L with a bin of the product quantizer. We will refer

to each such segment as an “elementary” segment of L1.

Let z = (z0, z1, · · · , zK1+K2−1) ∈ RK1+K2 , where z0 = −∞, zK1+K2−1 = ∞

and (z1, · · · , zK1+K2−2) is the sequence of integers obtained by merging the sequences

(u1, · · · , uK1−1) and (v1, · · · , vK2−1) in nondecreasing order such that vk appears before

uj whenever uj = vk. For each κ, 0 ≤ κ ≤ K1 + K2 − 2, let s(zκ, zκ+1) denote the

elementary segment with extremities in (azκ , azκ) and (azκ+1 , azκ+1). We consider that

s(zκ, zκ+1) includes (azκ , azκ), but does not include (azκ+1 , azκ+1). Note that, if zκ =

zκ+1, then s(zκ, zκ+1) = ∅. For the example in Fig. 2.2b, z = (v0, v1, u1, u2, v2, v3, vf ).

1The first and last elementary segments are actually half lines.
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Clearly, s(z0, z1) = U1 × V1 ∩ L and s(zK1+K2−2, zK1+K2−1) = UK1 × VK2 ∩ L.

Further, for κ, 1 ≤ κ ≤ K1 + K2 − 3, based on which quantizer each of the values zκ

and zκ+1 is a threshold for, one can distinguish four cases for s(zκ, zκ+1) as follows.

F1) zκ = vk, zκ+1 = uj (ex. z1 = v1 and z2 = u1 in Fig. 2.2b); then uj−1 < vk ≤

uj < vk+1 and s(zκ, zκ+1) = L ∩ Uj × Vk+1.

F2) zκ = uj , zκ+1 = vk (ex. z3 = u2 and z4 = v2 in Fig. 2.2b); then vk−1 ≤ uj <

vk ≤ uj+1 and s(zκ, zκ+1) = L ∩ Uj+1 × Vk.

F3) zκ = uj , zκ+1 = uj+1 (ex. z2 = u1 and z3 = u2 in Fig. 2.2b); then there is some

k, 1 ≤ k ≤ K2, such that vk−1 ≤ uj < uj+1 < vk and s(zκ, zκ+1) = L∩Uj+1×Vk.

F4) zκ = vk, zκ+1 = vk+1 (ex. z4 = v2 and z5 = v3 in Fig. 2.2b); then there is some

j, 1 ≤ j ≤ K1, such that uj−1 < vk < vk+1 ≤ uj and s(zκ, zκ+1) = L∩Uj×Vk+1.

We first show how to construct the mapping P. We start by assigning to each com-

ponent zκ of the sequence z a node in G, denoted by N(zκ). Then we will show that the

obtained sequence of nodes is a path and that path will be P(Q1, Q2).

Let u = (u0, · · · , uK1) be the (K1 + 1)-tuple of thresholds of Q1 and let v =

(v0, · · · , vK2) be the (K2 + 1)-tuple of thresholds of Q2. Define N(z0) = ν0 and

N(zK1+K2−1) = νf . For each j, 1 ≤ j ≤ K1 − 1, there is a unique integer k

such that 1 ≤ k ≤ K2 and vk−1 ≤ uj < vk. Let us denote this value by k(j).

Next, let N(uj) = (vk(j)−1, uj, vk(j))v. Since vk(j)−1, vk(j) ∈ M2, uj ∈ M1, and

vk(j)−1 ≤ uj < vk(j), it follows that N(uj) ∈ Vv.

For each k, 1 ≤ k ≤ K2 − 1, there is a unique integer j such that 1 ≤ j ≤ K1
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and uj−1 < vk ≤ uj . Let us denote this value by j(k). further, let N(vk) =

(uj(k)−1, vk, uj(k))h. Since uj(k)−1, uj(k) ∈ M1, vk ∈ M2 and uj(k)−1 < vk ≤ uj(k), it

follows that N(vk) ∈ Vh. Let

N̄ = (N(z0),N(z1), · · · ,N(zK1+K2−2)). (A.1)

Next we show that, for each κ, 0 ≤ κ ≤ K1 +K2− 2, there is an edge e from N(zκ)

to N(zκ+1) and moreover this is precisely the edge e satisfying R(e)∩L = s(zκ, zκ+1).

For this, let us consider first κ = 0. If v1 ≤ u1 then z1 = v1 and N(z1) = (0, v1, u1)h.

On the other hand, if u1 < v1 then z1 = u1 and N(z1) = (0, u1, v1)v. Obviously, in

both cases, there is an edge e connecting N(z0) and N(z1) and R(e) = U1 × V1, thus

R(e) ∩ L = s(z0, z1).

Assume now that κ = K1 + K2 − 2. If vK2−1 ≤ uK1−1, then zK1+K2−2 = uK1−1

and N(zK1+K2−2) = (vK2−1, uK1−1,M)v. On the other hand, if uK1−1 < vK2−1 then

zK1+K2−2 = vK2−1 and N(zK1+K2−2) = (uK1−1, vK2−1,M)h. In both cases, there is

an edge e connecting N(zK1+K2−2) and N(zK1+K2−1) and R(e) = UK1 × VK2 , thus

R(e) ∩ L = s(zK1+K2−2, zK1+K2−1).

Let us consider now an arbitrary κ, 1 ≤ κ ≤ K1 + K2 − 3. Next we distinguish

between four cases.

C1) zκ = vk and zκ+1 = uj for some 1 ≤ j ≤ K1 − 1 and 1 ≤ k ≤ K2 − 1.

Then uj−1 < vk ≤ uj < vk+1, which implies that N(vk) = (uj−1, vk, uj)h and

N(uj) = (vk, uj, vk+1)v. Then e = (uj−1, vk, uj)h → (vk, uj, vk+1)v ∈ Ehv and
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R(e) = Uj × Vk+1. Thus, w(e) = c(Uj × Vk+1). In addition, R(e) ∩ L =

s(vk, uj) = s(zκ, zκ+1). Note that if vk = uj then R(e) = ∅.

C2) zκ = uj and zκ+1 = vk for some 1 ≤ j ≤ K1 − 1 and 1 ≤ k ≤ K2 − 1.

Then vk−1 ≤ uj < vk ≤ uj+1, which implies that N(uj) = (vk−1, uj, vk)v and

N(vk) = (uj, vk, uj+1)h. Then e = (vk−1, uj, vk)v → (uj, vk, uj+1)h ∈ Evh and

R(e) = Uj+1×Vk. Thus, w(e) = c(Uj+1×Vk). Moreover, R(e)∩L = s(uj, vk) =

s(zκ, zκ+1). Note that if uj = vk then R(e) = ∅.

C3) zκ = uj and zκ+1 = uj+1 for some 1 ≤ j ≤ K1 − 2. Then for some 1 ≤ k ≤

K2 − 1, vk ≤ uj < uj+1 < vk+1, which implies that N(uj) = (vk, uj, vk+1)v and

N(uj+1) = (vk, uj+1, vk+1)v. Then e = (vk, uj, vk+1)v → (vk, uj+1, vk+1)v ∈ Evv

and R(e) = Uj+1×Vk+1. Thus, w(e) = c(Uj+1×Vk+1). In addition, R(e)∩L =

s(uj, uj+1) = s(zκ, zκ+1)

C4) zκ = vk and zκ+1 = vk+1 for some 1 ≤ k ≤ K2 − 2. Then for some 1 ≤ j ≤

K1 − 1, uj < vk < vk+1 ≤ uj+1, which implies that N(vk) = (uj, vk, uj+1)h and

N(vk+1) = (uj, vk+1, uj+1)h. Then e = (uj, vk, uj+1)h → (uj, vk+1, uj+1)h ∈

Ehh and R(e) = Uj+1 × Vk+1. Thus, w(e) = c(Uj+1 × Vk+1). Additionally,

R(e) ∩ L = s(vk, vk+1) = s(zκ, zκ+1).

From the above discussion, it follows that N̄ is a path in G and its weight equals

c(Q1, Q2). Furthermore, the path contains K1 − 1 vertical nodes and K2 − 1 horizontal

nodes.

Now we are left to prove that for any (K1 +K2−1)-edge path P withK1−1 vertical

nodes and K2 − 1 horizontal nodes from ν0 to νf , there is a DSQ (Q1, Q2) such that
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P = P(Q1, Q2).

Let us fix such a path P . For 0 ≤ κ ≤ K1 +K2 − 1, let νκ(P ) denote the κ-th node

on the path. Then ν0(P ) = ν0, νK1+K2−1(P ) = νf and for 1 ≤ κ ≤ K1 +K2 − 2,

νκ(P ) = (ξκ, ηκ, ζκ)dκ , where dκ ∈ {h, v} and

1) ξκ < ηκ ≤ ζκ, ξκ, ζκ ∈M1, ηκ ∈M2, if dκ = h;

2) ξκ ≤ ηκ < ζκ, ξκ, ζκ ∈M2, ηκ ∈M1, if dκ = v.

Since for each 1 ≤ κ ≤ K1 +K2−3, there is an edge from νκ(P ) to νκ+1(P ), it follows

that

ηκ ≤ ηκ+1 with equality only if dκ = h. (A.2)

We are ready now to define the thresholds of Q1. For 1 ≤ j ≤ K1 − 1, let uj = ηκ,

where κ is the value for which νκ(P ) is the j-th vertical node on the path P . According

to the definition of Vv, uj ∈M1. Further, according to (A.2), uj increases as j increases.

Then the sequence u defined in this manner is a valid sequence of thresholds for Q1.

The thresholds of Q2 are defined next. Namely, for 1 ≤ k ≤ K2 − 1, let vk =

ηκ, where κ is the value for which νκ(P ) is the k-th horizontal node on the path P .

According to the definition of Vh, vk ∈M2. Further, according to (A.2), vk increases as

k increases. It follows that the sequence v defined in this manner is a valid sequence of

thresholds for Q2.

It remains to prove now that P(Q1, Q2) = P . Recall that the path P(Q1, Q2) is the

sequence of nodes N̄ constructed based on u and v, as described in (A.1). We will show
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that for each j, 1 ≤ j ≤ K1 − 1, N(uj) equals the j-th vertical node in P , and for each

k, 1 ≤ k ≤ K2 − 1, N(vk) equals the k-th horizontal node in P .

Let us fix some j, 1 ≤ j ≤ K1 − 1. Recall that N(uj) = (vk(j)−1, uj, vk(j))v.

Let κ0, κ1, κ2 be integers such that νκ0(P ) is the j-th vertical node in P , νκ1(P ) is the

(k(j) − 1)-th horizontal node in P and νκ2(P ) is the (k(j))-th horizontal node in P .

Then vk(j)−1 = ηκ1 , uj = ηκ0 and vk(j) = ηκ2 . Combining the above with the fact that

vk(j)−1 ≤ uj < vk(j) and with (A.2), it follows that κ1 < κ0 < κ2.

If the nodes νκ1(P ), νκ0(P ) and νκ2(P ) are consecutive (i.e., κ2 = κ1 +2), then from

the definition of Ehv and Evh we obtain that ξκ0 = ηκ1 = vk(j)−1 and ζκ0 = ηκ2 = vk(j).

This implies that N(uj) = νκ0(P ).

If κ2 > κ1 + 2, then there are more than one node between νκ1(P ) and νκ2(P ) on

P , but all of them are vertical. According to the definition of Evv, in any sequence

of vertical nodes connected by edges, the first and the last node have the same value

for the first component and the same value for the last component. Combining this

observation with the definition of Ehv and Evh we obtain again that ξκ0 = ηκ1 = vk(j)−1

and ζκ0 = ηκ2 = vk(j), which leads to N(uj) = νκ0(P ).

The proof of the fact that N(vk) equals the k-th horizontal node in P , ∀k, 1 ≤ k ≤

K2 − 1, proceeds similarly.
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Appendix B

Lemmas Needed for the Proof of

Theorem 2

We first introduce some terminology. In a non-strict SDSQ, the points on the line L cor-

responding to equal thresholds are called superpoints. More specifically, a superpoint is

a pair (ũi, ṽj), 0 ≤ i, j ≤ K satisfying ui = vj . If i and j are both nonzero and smaller

than K, then the superpoint is called an interior superpoint.

The relevant cells of an SDSQ are naturally ordered according to the order of their

intersections with the classifier line L. Thus, the first relevant cell is S1,1 and the last is

SK,K . A portion of an SDSQ between two consecutive superpoints (i.e., the sequence

of relevant cells between the superpoints) is called a strict portion of the SDSQ. We say

that the cost region of a cell Si,j is the region that determines its cost, i.e., it is Ti,j when

µ(Ti,j) < µ(Pi,j) and it is Pi,j when µ(Ti,j) > µ(Pi,j). When µ(Ti,j) = µ(Pi,j) both

Ti,j and Pi,j can be considered cost regions.

Next we present three lemmas there are used in the proof of Theorem 2.
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Lemma 14. Assume that condition OCc is satisfied. Consider an SDSQ where in a

strict SDSQ portion we have a Pcell and either of the following scenarios hold.

a) The Pcell is followed or preceded by two consecutive Tcells that are included in

the same strict SDSQ portion.

b) The Pcell is followed or preceded by a Tcell that is included in the same strict

SDSQ portion and is adjacent to a superpoint.

c) The Pcell is between two Tcells that are included in the same strict SDSQ portion.

Then by appropriately changing just one threshold without violating the strictness of the

SDSQ portion, the cost of the SDSQ is strictly decreased.

Note that for each interior superpoint there are only two relevant cells adjacent to the

superpoint.

Lemma 15. Assume that condition OCc is satisfied. Consider a non-strict SDSQ that

has an interior superpoint that is adjacent to at least one Tcell. Then by appropriately

changing one of the thresholds involved in the superpoint, the tie at the superpoint is

broken without violating the rest of inequalities involving the thresholds, while the cost

of the SDSQ is strictly reduced.

Note that in the proofs of the two lemmas we will use extensively Lemma 2. In

addition, in order to prove Lemmas 14 and 15, we need the following auxiliary result.

Lemma 16. Assume that condition OCc holds. Let x1 ∈ R, and l > 0. For each

ε, 0 < ε < l/2, consider the following notations, which are illustrated in Fig. A2.1:
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1) R(ε) = [x1 − ε, x1]× [x1 − l, x1];

2) Rl(ε) = [x1 − l, x1]× [x1 − ε, x1];

3) Ru(ε) = [x1, x1 + ε]× [x1, x1 + l];

4) Rr(ε) = [x1, x1 + l]× [x1, x1 + ε].

Then the following claims hold.

C1) There is ε1, 0 < ε1 < l/2, such that

µ(R(ε) ∩H+) < µ(R(ε) ∩ H̆−), ∀ε, 0 < ε < ε1. (B.1)

C2) There is ε2, 0 < ε2 < l/2, such that µ(Rl(ε) ∩ H̆−) < µ(Rl(ε) ∩H+),∀ ε, 0 <

ε < ε2.

C3) There is ε3, 0 < ε3 < l/2, such that µ(Ru(ε) ∩ H̆−) < µ(Ru(ε) ∩H+), ∀ε, 0 <

ε < ε3.

C4) There is ε4, 0 < ε4 < l/2, such that µ(Rr(ε) ∩H+) < µ(Rr(ε) ∩ H̆−), ∀ε, 0 <

ε < ε4.

Proof. We only prove claim C1 since all the other claims follow by symmetry. In the

proof, we will use the following notation

g(x) =


f(x, 1)− f(x,−1) if x ∈ H+

f(x,−1)− f(x, 1) if x ∈ H̆−

. (B.2)
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Since condition OCc holds we have g(x) = 0 for x ∈ L and g(x) > 0 for x ∈ R2 \ L.

For each ε, 0 < ε < l/2, denote R1(ε) = R(ε) ∩H+, R2(ε) = [x1 − ε, x1] × [x1 −

l, x1 − l/2] (Fig. A2.2(b)). Additionally, define

cmax = max
x∈R1( 2l

5 )
g(x), cmin = min

x∈R2( 2l
5 )
g(x).

Note that the minimum and maximum defined above exist since R1(2l
5 ) and R2(2l

5 ) are

compact sets and g(x) is a continuous function. It can be easily seen that R2(2l
5 ) ⊂ H̆−,

which implies that g(x) > 0 for all x ∈ R2(2l
5 ), and further that cmin > 0. Clearly,

cmax > 0. Further, for any ε, 0 < ε < 2l
5 , we have R1(ε) ⊂ R1(2l

5 ) and R2(ε) ⊂ R2(2l
5 )

(Fig. A2.2), which lead to g(x) ≤ cmax,∀x ∈ R1(ε) and g(x) ≥ cmin,∀x ∈ R2(ε).

These relations imply that for all ε, 0 < ε < 2l
5 , we have

µ(R1(ε)) =
∫
R1(ε)

g(x) dx ≤
∫
R1(ε)

cmax dx = cmax ·
ε2

2 , (B.3)

µ(R2(ε)) =
∫
R2(ε)

g(x) dx ≥
∫
R2(ε)

cmin dx = cmin ·
ε · l
2 , (B.4)

where we have used the fact that R1(ε) is a triangular region. Note that for ε, 0 < ε < 2l
5 ,

we have R2(ε) ⊂ R(ε) ∩ H̆−, which implies that µ(R2(ε)) ≤ µ(R(ε) ∩ H̆−) in view

of Lemma 2. Thus, in order to prove (B.1), it is sufficient to show that µ(R1(ε)) <

µ(R2(ε)), which, in light of (B.3) and (B.3), holds when cmax · ε
2

2 < cmin · ε·l2 . The

previous inequality is equivalent to ε < cmin
cmax

l. Thus, by letting ε1 = cmin
cmax

l, the conclusion

follows.
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FIGURE A2.1: Illustration of the four cases of Lemma 16.

FIGURE A2.2: Illustration of notations used in the proof of claim C1 of
Lemma 16.
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FIGURE A2.3: : (a) initial SDSQ of case a1); (b) initial SDSQ of case
a2); (c) initial SDSQ of case a3); (d) initial SDSQ of case a4); the pentag-
onal cost region of the target Pcell is shown in red and other cost regions
are shown in blue; (e-h) new SDSQ for each of the cases a1)-a4), respec-
tively. The pentagonal cost region is reduced to the green triangular cost
region after adjusting one threshold.
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FIGURE A2.4: : (a) initial SDSQ of case b1); (b) initial SDSQ of case
b2); (c) initial SDSQ of case b3); (d) initial SDSQ of case b4); the pentag-
onal cost region of the target Pcell is shown in red and other cost regions
are shown in blue; (e-h) new SDSQ for each of the cases b1)-b4), respec-
tively. The pentagonal cost region is reduced to the green triangular cost
region after adjusting one threshold.
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Proof of Lemma 14

Proof. It is sufficient to prove the lemma for the case when the SDSQ has the u-first

orientation. Let Si,j be the Pcell.

We first consider situations a) and b). For case a) we have the following four sub-

cases, which are also illustrated in Fig. A2.3(a-d).

a1) j = i and the Tcells precede the Pcell, i.e., ũi−2 ≤ ṽi−2 < ũi−1 < ṽi−1 < ũi ≤

ṽi ≤ ũi+1. The Tcells are Si,i−1 and Si−1,i−1.

a2) j = i − 1 and the Tcells precede the Pcell, i.e., ṽi−3 ≤ ũi−2 < ṽi−2 < ũi−1 <

ṽi−1 ≤ ũi ≤ ṽi. The Tcells are Si−1,i−1 and Si−1,i−2.

a3) j = i and the Tcells follow the Pcell, i.e., ṽi−2 ≤ ũi−1 ≤ ṽi−1 < ũi < ṽi <

ũi+1 ≤ ṽi+1. The Tcells are Si+1,i and Si+1,i+1.

a4) j = i− 1 and the Tcells follow the Pcell, i.e., ũi−2 ≤ ṽi−2 ≤ ũi−1 < ṽi−1 < ũi <

ṽi ≤ ũi+1. The Tcells are Si,i and Si+1,i.

For the situation b) we have the following four subcases, which are depicted in Fig.

A2.4(a-d).

b1) j = i and the Tcell precedes the Pcell, i.e., ṽi−2 = ũi−1 < ṽi−1 < ũi ≤ ṽi ≤ ũi+1.

The Tcell is Si,i−1 and (ui−1, vi−2) is the superpoint.

b2) j = i − 1 and the Tcell precedes the Pcell, i.e., ũi−2 = ṽi−2 < ũi−1 < ṽi−1 ≤

ũi ≤ ṽi. The Tcell is Si−1,i−1 and (ui−2, vi−2) is the superpoint.
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b3) j = i and the Tcell follows the Pcell, i.e., ṽi−2 ≤ ũi−1 ≤ ṽi−1 < ũi < ṽi = ũi+1.

The Tcell are Si+1,i and (ui+1, vi) is the superpoint.

b4) j = i− 1 and the Tcell follows the Pcell, i.e., ũi−2 ≤ ṽi−2 ≤ ũi−1 < ṽi−1 < ũi =

ṽi. The Tcell is Si,i and (ui, vi) is the superpoint.

For all eight cases we illustrate the changes in Figs. A2.3(e-h) and A2.4(e-h), but

only provide the proof for case a1) and show how this proof is adapted for case b1). All

the other cases can be treated similarly.

Case a1). This case is depicted in Fig. A2.3(a). We will use Lemma 16 for x1 = ũi

and, l = ũi−ũi−1. Consider some ε smaller than ε2 from Lemma 16 and let ṽ′i−1 = ũi−ε.

Then ṽi−1 < ṽ′i−1 < ũi and

µ(R ∩ H̆−) < µ(R ∩H+), (B.5)

where R = Ui× [ṽ′i−1, ũi). Let us replace ṽi−1 by ṽ′i−1 in Q2, and denote by Q′2 the new

quantizer and by Q′ the new SDSQ. This change only affects the cells Vi−1 and Vi of

Q2, which will become V ′i−1 = [ṽi−2, ṽ
′
i−1) and V ′i = [ṽ′i−1, ṽi) (see Fig. A2.3(e)).

The relevant cells of the SDSQ that are affected by this change are Si−1,i−1, Si,i−1,

Si,i and Si+1,i. They are converted to S ′i−1,i−1 = Ui−1 × V ′i−1, Si,i−1 = Ui × V ′i−1,

S ′i,i = Ui × V ′i and S ′i+1,i = Ui+1 × V ′i , respectively.

We will prove that

c(S ′i+1,i) ≤ c(Si+1,i), (B.6)
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c(S ′i−1,i−1) ≤ c(Si−1,i−1), (B.7)

c(S ′i,i−1) + c(S ′i,i) < c(Si,i) + c(Si,i−1), (B.8)

which combined lead to the conclusion that c(Q′) < c(Q).

Inequality (B.6) follows since S ′i+1,i ⊂ Si+1,i using Lemma 2. Equality (B.7) is

based on the fact that T ′i−1,i−1 = Ti−1,i−1 and that Si−1,i−1 is a Tcell, which lead to

c(S ′i−1,i−1) ≤ µ(T ′i−1,i−1) = µ(Ti−1,i−1) = c(Si−1,i−1).

Let us prove now relation (B.8). Using (B.5) and the fact that R ∩H+ ⊂ P ′i,i ⊂ Pi,i

and R ∩ H̆− = T ′i,i, it can be concluded that µ(T ′i,i) < µ(P ′i,i), leading further to

c(S ′i,i) = µ(T ′i,i) = µ(R ∩ H̆−) < µ(R ∩H+). (B.9)

Denote now R′ = Ui × [ṽi−1, ṽ
′
i−1). We have the following sequence of relations

µ(R ∩H+) + µ(R′ ∩H+)
(a)
≤ µ(Pi,i)
(b)
< µ(Ti,i)
(c)= µ(R ∩H−) + µ(R′ ∩H−), (B.10)

where (a) follows from (R∩H+)∪(R′∩H+) ⊂ Pi,i and the fact that R∩H+ and R′∩H+

are disjoint, (b) holds since Si,i is a Pcell, and (c) is due to Ti,i = (R∩H−)∪ (R′∩H−)

and the fact that R∩H− and R′∩H− are disjoint. Further, combining (B.10) with (B.5)
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leads to

µ(R′ ∩H+) < µ(R′ ∩H−). (B.11)

Next we obtain the following sequence of relations

µ(T ′i,i−1) (a)= µ(R′ ∩H+) + µ(Ti,i−1)
(b)
< µ(R′ ∩H−) + µ(Pi,i−1)
(c)= µ(P ′i,i−1), (B.12)

where (a) holds since R′ ∩H+ and Ti,i−1 are disjoint and their union equals T ′i,i−1, (b)

follows from (B.11) and the fact that Si,i−1 is a Tcell, and (c) is valid since R′∩H− and

Pi,i−1 are disjoint and their union equals P ′i,i−1. Relations (B.12) imply that

c(S ′i,i−1) = µ(T ′i,i−1) = µ(R′ ∩H+) + µ(Ti,i−1).

The above together with (B.9) lead to

c(S ′i,i−1) + c(S ′i,i) < µ(R ∩H+) + µ(R′ ∩H+) + µ(Ti,i−1)

≤ µ(Pi,i) + µ(Ti,i−1)

= c(Si,i) + c(Si,i−1),

where the second inequality follows from relation (a) in (B.10). This concludes the

proof of case a1).
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FIGURE A2.5: : (a) initial SDSQ; the pentagonal cost region of the tar-
get Pcell is shown in red and other cost regions are shown in blue; (b)
new SDSQ after changing one threshold; the pentagonal cost region of
Si−1,i−1 is reduced to the green region.

The proof for case b1) is very similar with the only difference being that the cells

Si−1,i−1 and S ′i−1,i−1 are included in H+, thus their cost is 0.

Case c) In this case we have a Tcell followed by a Pcell followed by another Tcell

inside the same strict SDSQ portion. If the first or last Tcell is adjacent to a superpoint,

then we are under case b). If the first Tcell is preceded or the last Tcell is followed by

another Tcell, then we are under case a). Thus, it only remains to discuss the situation

when the first Tcell is preceded by a Pcell and the last Tcell is followed by a Pcell,

which are inside the same strict SDSQ portion. Then we have a sequence of five cells: a

Pcell, a Tcell, another Pcell, another Tcell and another Pcell, all in the same strict SDSQ

portion. Note that the cost regions of these cells are either all in H+ or all in H−. Next

we will distinguish between these two subcases.

c1) Pi,j is included in H+ and j = i, i.e., ũi−2 ≤ ṽi−2 < ũi−1 < ṽi−1 < ũi < ṽi <

ũi+1 ≤ ṽi+1. This case is illustrated in Fig. A2.5(a).
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c2) Pi,j is included in H− and j = i − 1, i.e., ṽi−3 ≤ ũi−2 < ṽi−2 < ũi−1 < ṽi−1 <

ũi < ṽi ≤ ũi+1.

We will prove case c1) since case c2) follows similarly.

Case c1). Choose ṽ′i−1 such that ũi−1 < ṽ′i−1 < ṽi−1. Replace ṽi−1 by ṽ′i−1, in Q2,

and denote by Q′2 the new quantizer and by Q′ the new SDSQ. This change only affects

the cells Vi−1 and Vi of Q2, which will become V ′i−1 = [ṽi−2, ṽ
′
i−1) and V ′i = [ṽ′i−1, ṽi).

Thus, the relevant cells of the SDSQ that are affected by this change are Si−1,i−1, Si,i−1,

Si,i and Si+1,i. They are converted to S ′i−1,i−1 = Ui−1 × V ′i−1, Si,i−1 = Ui × V ′i−1,

S ′i,i = Ui × V ′i and S ′i+1,i = Ui+1 × V ′i , respectively. We will prove the following

c(S ′i+1,i) ≤ c(Si+1,i), (B.13)

c(S ′i−1,i−1) < c(Si−1,i−1), (B.14)

c(S ′i,i−1) + c(S ′i,i) ≤ c(Si,i−1) + c(Si,i), (B.15)

which further imply that c(Q′) < c(Q).

Inequality (B.13) follows from the fact that Si+1,i is a Tcell, while T ′i+1,i = Ti+1,i,

which lead to c(S ′i+1,i) ≤ µ(T ′i+1,i) = µ(Ti+1,i) = c(Si+1,i).

In order to prove (B.14), note that since Si−1,i−1 is a Pcell, we have µ(Pi−1,i−1) <

µ(Ti−1,i−1). In addition the following hold: T ′i−1,i−1 = Ti−1,i−1, P ′i−1,i−1 ⊂ Pi−1,i−1 and
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area(Pi−1,i−1 \ P ′i−1,i−1) > 0. Therefore, µ(P ′i−1,i−1) < µ(Pi−1,i−1) < µ(Ti−1,i−1) =

µ(T ′i−1,i−1). It follows that c(S ′i−1,i−1) = µ(P ′i−1,i−1) < µ(Pi−1,i−1) = c(Si−1,i−1).

Let us prove now (B.15). Notice that the cells Si,i−1 and Si,i are decreased and

enlarged by R, respectively, where R = Ui × [ṽ′i−1, ṽi−1). In other words, S ′i,i−1 =

Si,i−1 \ R and S ′i,i = Si,i ∪ R. Since Si,i−1 is a Tcell, we have c(Si,i−1) = µ(Ti,i−1) ≤

µ(Pi,i−1) and since Si,i is a Pcell, we have c(Si,i) = µ(Pi,i) < µ(Ti,i). Note that

Ti,i−1 = T ′i,i−1 ∪ (R ∩H+) and P ′i,i = Pi,i ∪ (R ∩H+) leading further to

µ(T ′i,i−1) = µ(Ti,i−1)− µ(R ∩H+),

µ(P ′i,i) = µ(R ∩H+) + µ(Pi,i).

According to the above discussion, we conclude that

c(S ′i,i−1) + c(S ′i,i) ≤ µ(T ′i,i−1) + µ(P ′i,i)

= µ(Ti,i−1) + µ(Pi,i)

= c(Si,i−1) + c(Si,i).

This completes the proof of the lemma.
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FIGURE A2.6: : (a) initial cells of case d1); (b) the resulting cells after
replacing ṽi−1 by ṽ′i−1 for case d1); (c) initial cells of case d2); (d) the
resulting cells after replacing ṽi−1 by ṽ′i−1 for case d2. The initial cost
regions and the new cost regions are colored in dashed blue and solid
green, respectively.

Proof of Lemma 15

Proof. It is sufficient to provide the proof for an SDSQ with u-first orientation. We have

to distinguish between six possible cases based on the nature of the superpoint and the

positions of the Tcell and the Pcell. The six cases are listed next.

d1) The superpoint corresponds to ũi−1 = ṽi−1 and both adjacent cells are Tcells. In

other words, ṽi−2 < ũi−1 = ṽi−1 < ũi, and Si−1,i−1 and Si,i are Tcells. This case

is illustrated in Fig. A2.6(a).

d2) The superpoint corresponds to ũi−1 = ṽi−1 and it is preceded by a Tcell and

followed by a Pcell, i.e., ṽi−2 < ũi−1 = ṽi−1 < ũi, Si−1,i−1 is a Tcell and Si,i is a

Pcell. This case is depicted in Fig. A2.6(b).

d3) The superpoint corresponds to ũi−1 = ṽi−1 and it is preceded by a Pcell and

followed by a Tcell, i.e., ṽi−2 < ũi−1 = ṽi−1 < ũi, Si−1,i−1 is a Pcell and Si,i is a

Tcell.
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d4) The superpoint corresponds to ṽi−1 = ũi and both adjacent cells are Tcells, i.e.,

ũi−1 < ṽi−1 = ũi < ṽi, Si,i−1 and Si,i are Tcells.

d5) The superpoint corresponds to ṽi−1 = ũi and it is preceded by a Tcell and fol-

lowed by a Pcell, i.e., ũi−1 < ṽi−1 = ũi < ṽi, Si,i−1 is a Tcell and Si,i is a

Pcell.

d6) The superpoint corresponds to ṽi−1 = ũi and it is preceded by a Pcell and followed

by a Tcell, i.e., ũi−1 < ṽi−1 = ũi < ṽi, Si,i−1 is a Pcell and Si+1,i+1 is a Tcell.

It is sufficient to prove only d1) and d2) since the other cases follow similarly. The

proof for case d2) proceeds as the proof for case a1) of the previous lemma. The only

difference is that while in the previous lemma, the cell Si,i−1 was a Tcell, in the current

scenario, Si,i−1 is non-relevant. However, all conditions needed for the argument to hold

are still valid.

Next we provide the proof for case d1)

Case d1). By applying claim C4 of Lemma 16 for x1 = ũi−1 = ṽi−1 and l =

ũi − ũi−1, we conclude that there is some ε, 0 < ε < ũi − ũi−1, such that

µ(R ∩H+) < µ(R ∩ H̆−), (B.16)

where R is the rectangular region [ũi−1, ũi] × [ṽi−1, ṽ
′
i−1] for ṽ′i−1 = ṽi−1 + ε (shown

in Fig. A2.6(b)). Clearly, the inequalities ṽi−1 < ṽ′i−1 < ũi ≤ ṽi hold. Let us replace

ṽi−1 by ṽ′i−1 in Q2, and denote by Q′2 the new quantizer and by Q′ the new SDSQ. This

change only affects the cells Vi−1 and Vi of Q2 that become V ′i−1 = [ṽi−2, ṽ
′
i−1) and

V ′i = [ṽ′i−1, ṽi). Thus, the only cells of the product quantizer that are affected by this
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change and could have an impact on the cost are Si−1,i−1, Si,i−1 and Si,i, Si+1,i, which

become S ′i−1,i−1 = Ui−1×V ′i−1, S ′i,i−1 = Ui×V ′i−1 and Si,i = Ui×V ′i , S ′i+1,i = Ui+1×V ′i ,

respectively. We will prove the following

c(S ′i+1,i) ≤ c(Si+1,i), (B.17)

c(S ′i−1,i−1) ≤ c(Si−1,i−1), (B.18)

c(S ′i,i) + c(S ′i,i−1) < c(Si,i), (B.19)

which imply that c(Q′) < c(Q).

Inequality (B.17) follows from the fact that S ′i+1,i ⊂ Si+1,i. Relation (B.18) holds by

the same argument as in the proof of (B.8).

Let us prove now inequality (B.21). Notice that T ′i,i−1 = S ′i,i−1 ∩H+ = R∩H+ and

R ∩ H̆− ⊂ P ′i,i−1. Using the above relations in conjunction with (B.16) and Lemma 2,

we obtain µ(T ′i,i−1) = µ(R ∩H+) < µ(R ∩ H̆−) ≤ µ(P ′i,i−1, which lead to

c(S ′i,i−1) = µ(R ∩H+) < µ(R ∩ H̆−). (B.20)
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Next we discuss S ′i,i and we use the fact that R ∪ S ′i,i = Si,i and the fact that Si,i is a

Tcell. It follows that

µ(R ∩ H̆−) + µ(T ′i,i) = µ(Ti,i)

≤ µ(Pi,i)

= µ(R ∩H+) + µ(P ′i,i).

The above relations together with (B.16) lead to µ(T ′i,i) ≤ µ(P ′i,i), which implies that

c(S ′i,i) = µ(T ′i,i). Corroborating the above with (B.20) and with R ∪ S ′i,i = Si,i, we

obtain

c(S ′i,i) + c(S ′i,i−1) < µ(T ′i,i) + µ(R ∩ H̆−)

= µ(Ti,i) = c(Si,i). (B.21)

With this, the proof of Case d1) is completed.
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Appendix C

Proof of Theorem 2

Proof of Theorem 2. According to Lemma 15, any non-strict SDSQ that has only Tcells

cannot be optimum since another SDSQ of smaller cost can be constructed. This is

because such an SDSQ must have an interior superpoint adjacent to a Tcell, thus we can

apply Lemma 15 to reach the desired conclusion. Therefore, to complete the proof of

the theorem it is sufficient to show that any SDSQ that contains at least one Pcell cannot

be optimum. Clearly, if either condition in the hypothesis of Lemma 14 is satisfied then

the SDSQ is not optimum (since another SDSQ of smaller cost can be constructed).

Thus, there are only the following three cases left to consider:

A1) the SDSQ has only Pcells;

A2) the SDSQ has both Pcells and Tcells, and it has a strict portion that contains only

Tcells;

A3) the SDSQ has both Pcells and Tcells, any Tcell is between two Pcells that are

inside the same strict SDSQ portion and no Pcell is between two Tcells that are

inside the same strict SDSQ portion.
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A1) In this case we swap the thresholds of Q1 and Q2. The new DSQ Q′ is still

strictly stagerred, but its orientation has changed. We will show that all its relevant cells

are Tcells.

The product quantizers of the two SDSQs are illustrated in A3.1. Note that the new

sequences of thresholds are ũ′ = ṽ and ṽ′ = ũ. Further, S ′j,i (i.e., U ′j × V ′i ) is the

reflection of Si,j (i.e., Ui × Vj) across L. This implies that

Ti,j ⊆ P ′j,i, and T ′j,i ⊆ Pi,j. (C.1)

Since each relevant cell Si,j is a Pcell, we have µ(Pi,j) = c(Si,j), and further

µ(T ′j,i) ≤ µ(Pi,j) = c(Si,j) ≤ µ(Ti,j) ≤ µ(P ′j,i),

which implies that

c(S ′j,i) = µ(T ′j,i) ≤ c(Si,j). (C.2)

Further, consider the case when there is some i0 such that ui0 6= vi0 . Then for (i, j) =

(i0, j0) the inequality in (C.2) is strict. This is because area(Pi0,j0\T ′i0,j0) > 0, therefore

µ(T ′i0,j0) < µ(Pi0,j0) according to Lemma 2, which leads to c(S ′i0,j0) < c(Si0,j0). In this

case, the new SDSQ has smaller cost.

On the other hand, when ui = vi for all i, we have c(Q) = c(Q′). However, Q′ is a

non-strict SDSQ with only Tcells, therefore it cannot be optimal (by Lemma 15), which

implies that Q is not optimal either.
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FIGURE A3.1: : (a) initial cells; (b) the resulting cells after swapping all
the thresholds of Q1 and Q2. The initial cost regions and the new cost
regions, are colored in blue and green, respectively.

A2) In this case, the SDSQ has at least one interior superpoint adjacent to a Tcell.

Therefore, we can apply Lemma 15 and the conclusion follows.

A3) In this case, the necessary construction comprises two stages. In the first stage

we swap the thresholds sequences of Q1 and Q2 and obtain the SDSQ Q′. In the second

stage, we perform some adjustments to the thresholds of Q′.

The SDSQ Q′ obtained after the first stage has threshold sequences ũ′ = ṽ and

ṽ′ = ũ. This way, any cell Si,j in Q is converted to S ′j,i = U ′j×V ′i in Q′. As in case A1,

if Si,j is a Pcell, then S ′j,i is a Tcell and c(S ′j,i) ≤ c(Si,j). On the other hand, if Si,j is a

Tcell, we have two cases: 1) µ(Ti,j) ≥ µ(T ′j,i) and 2) µ(Ti,j) < µ(T ′j,i). If the first case

holds, we will say that the Tcell Si,j falls in category I, otherwise we say that it falls in

category II.

If Si,j is in Category I, then S ′j,i is also Tcell since µ(T ′j,i) ≤ µ(Ti,j) ≤ µ(P ′j,i) and

hence c(S ′j,i) ≤ c(Si,j). If Si,j is in category II, we will modify one threshold of S ′j,i

(i.e., a threshold involved in the definition of S ′j,i) such that the new cell S ′′j,i is a Tcell,
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while the status of all other cells is not affected and the sum of the costs of the cells in

the modified region is smaller than in the initial SDSQ Q. Clearly, if all Tcells are in

category I, then Q′ has only Tcells and the same argument as in case A1) can be used

to conclude the proof.

We continue the proof by distinguishing between two cases: A3a) there is only one

Tcell in category II; A3b) there are more than one Tcell in category II.

A3a) Let Si+1,j+1 be the only Tcell in category II. Thus we have

µ(Ti+1,j+1) < µ(T ′j+1,i+1) (C.3)

We further consider two subcases of A3a): A3a1) Ti+1,j+1 ⊂ H+; A3a21) Ti+1,j+1 ⊂

H̆−;

A3a1) This case is illustrated in Fig. A3.2. According to the premise of case A3, the

cells that are adjacent to Si+1,j+1, i.e., Si+1,j+2 and Si,j+1, are Pcells and are inside the

same strict SDSQ portion. Thus Si+1,j+1 is not adjacent to any superpoint and we have

ũi−1 ≤ ṽj < ũi < ṽj+1 < ũi+1 ≤ ṽj+2. (C.4)

Note that if Q has u-first orientation then i = j + 1. Otherwise, i = j. The above

implies that

ṽ′i−1 ≤ ũ′j < ṽ′i < ũ′j+1 < ṽ′i+1 ≤ ũ′j+2. (C.5)

Now we apply the claim C2 of Lemma 16 for x1 = ũ′j+1 and l = ũ′j+1 − ṽ′i, and let

ṽ′′i = ũ′j+1 − ε for some ε smaller than than the value of ε2 from the lemma. Then we
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have ṽ′i < ṽ′′i < ũ′j+1 and

µ(R ∩ H̆−) < µ(R ∩H+) (C.6)

where R = [ũi, ũ′j+1)× [ṽ′′i , ṽj+1). Now we will replace the threshold ṽ′i by ṽ′′i . The only

relevant cells of Q′ affected by this change are S ′j,i, S
′
j+1,i, S

′
j+1,i+1, and S ′j+2,i+1. They

become respectively S ′′j,i = U ′j × V ′′i , S ′′j+1,i = U ′j+1 × V ′′i , S ′′j+1,i+1 = U ′j+1 × V ′′i+1, and

S ′′j+2,i+1 = U ′j+2 × V ′′i+1, where V ′′i = [ṽ′i−1, ṽ
′′
i ) and V ′′i+1 = [ṽ′′i , ṽ′i+1). Let us analyze

the costs of the new cells.

Let us start with S ′′j,i. Note that T ′′j,i = S ′′j,i∩H̆− = S ′j,i∩H̆− = T ′j,i, while P ′′j,i ⊃ P ′j,i.

According to the specification of case A3), Si,j cannot be a Tcell. It is either non-

relevant (when ũi−1 = ṽj) or it is a Pcell. In the first case, S ′′j,i is non-relevant too and

c(S ′′j,i) = 0 = c(S ′′j,i). In the latter case, it follows that S ′j,i is a Tcell (as proved in case

A1). Therefore, µ(T ′j,i) ≤ µ(P ′j,i). We conclude that

c(S ′′j,i) = µ(T ′′j,i) = c(S ′j,i) ≤ c(Si,j). (C.7)

Consider now the cell S ′′j+2,i+1. Note that T ′′j+2,i+1 = S ′′j+2,i+1 ∩H+ ⊂ Si+1,j+2 ∩H+ =

Pi+1,j+2 and P ′′j+2,i+1 = S ′′j+2,i+1 ∩ H̆− ⊃ Si+1,j+2 ∩ H̆− = Ti+1,j+2. Combining the

above with the fact that Si+1,j+2 is a Pcell leads to

µ(T ′′j+2,i+1) ≤ µ(Pi+1,j+2) ≤ µ(Ti+1,j+2) ≤ µ(P ′′j+2,i+1),
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which further leads to the conclusion that S ′′j+2,i+1 is a Tcell and

c(S ′′j+2,i+1) ≤ c(Si+1,j+2). (C.8)

Let us discuss now S ′′j+1,i. For this denote R1 = [ũ′j, ũi) × [ṽj, ṽ′′i ) ∩ H+ and R2 =

[ũi, ũ′j+1)×[ṽ′i, ṽ′′i ). We have µ(Ti+1,j+1) = µ(R∩H̆+)+µ(R2∩H+) and µ(T ′j+1,i+1) =

µ(R ∩ H̆−) + µ(R2 ∩ H̆−). The above combined with (C.3) and (C.6) imply that

µ(R2 ∩H+) < µ(R2 ∩ H̆−). (C.9)

Further, note that T ′′j+1,i = S ′′j+1,i ∩H+ = R1 ∪ (R2 ∩H+). Since R1 and R2 ∩H+ are

disjoint, we further obtain

µ(T ′′j+1,i) = µ(R1) + µ(R2 ∩H+) (C.10)
(a)
< µ(Pi,j+1) + µ(R2 ∩ H̆−)
(b)
≤ µ(Ti,j+1) + µ(R2 ∩ H̆−)
(c)
≤ µ(S ′′j+1,i ∩ H̆−) = µ(P ′′j+1,i),

where (a) follows from R1 ⊂ Pi,j+1 and from (C.9), (b) holds since Si,j+1 is a Pcell, and

(c) is based on the fact that Ti,j+1 and R2 ∩ H̆− are disjoint and their union is included

in P ′′j+1,i. We conclude that

c(S ′′j+1,i) = µ(T ′′j+1,i). (C.11)
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Let us analyze now the cost of S ′′j+1,i+1. we have

µ(T ′′j+1,i+1) = µ(S ′′j+1,i+1 ∩ H̆−) = µ(R ∩ H̆−) < µ(R ∩H+) < µ(P ′′j+1,i+1), (C.12)

where the last inequality follows from R ∩ H+ ⊂ S ′′j+1,i+1 ∩ H+ = P ′′j+1,i+1. We

conclude that

c(S ′′j+1,i+1) = µ(T ′′j+1,i+1) = µ(R ∩ H̆−). (C.13)

Note that Ti+1,j+1 = Si+1,j+1 ∩ H+ = (R ∩ H+) ∪ (R2 ∩ H+) and R ∩ H+ and

R2 ∩H+ are disjoint. Using (C.6), we have

µ(R ∩ H̆−) + µ(R2 ∩H+) < µ(R ∩H+) + µ(R2 ∩H+) = c(Si+1,j+1). (C.14)

We obtain

c(S ′′j+1,i) + c(S ′′j+1,i+1) = µ(R1) + µ(R2 ∩H+) + µ(R ∩ H̆−)

< µ(Pi,j+1) + c(Si+1,j+1)

= c(Si,j+1) + c(Si+1,j+1).

The above relations together with (C.7) and (C.8) imply that

c(S ′′j,i) + c(S ′′j+1,i) + c(S ′′j+1,i+1) + c(S ′′j+2,i+1) < c(Si,j) + c(Si,j+1) + c(Si+1,j+1) + c(Si+1,j+2).

Since for every other cell of Q′ that was not affected by the change, its cost is no
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FIGURE A3.2: : (a) initial SDSQ with cost regions colored in blue; Tcell
Si+1,j+1 is of category II and Tcell Si−1,j is of category I; (b) resulting
SDSQ after swapping the thresholds of Q1 and Q2; the new cost regions
are shown in green; the Tcell in category II is converted to the cell shown
with red outline; (c) the resulting SDSQ after replacing ṽ′i with ṽ′′i ; the
cost regions are shown in green.

larger than the cost of its counterpart in Q, we conclude that the cost of the new SDSQ

is strictly smaller than the cost of Q. This case is depicted in Fig. A3.2.Thus, the proof

of case A3a1) is completed.

A3a2) This situation is depicted in Fig. A3.3. For convenience, let us replace i by

i − 2 and j by j − 1. In other words, the Tcell in category II is Si−1,j . Thus we have

Ti−1,j ⊂ H̆−. Note that this change does not restrict the generality. It will be clear in

the proof of case A3b) why we made this change.

Then we have

ṽj−2 ≤ ũi−2 < ṽj−1 < ũi−1 < ṽj ≤ ũi. (C.15)
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The above implies that

ũ′j−2 ≤ ṽ′i−2 < ũ′j−1 < ṽ′i−1 < ũ′j ≤ ṽ′i. (C.16)

The modification we perform is to replace ũ′j−1 by ũ′′j−1 = ṽ′i−1−ε, where ε > 0 is some

value smaller than ε1 obtained by applying the claim C1 of Lemma 16 for x1 = ṽ′i−1

and l = ṽ′i−1 − ũ′j−2. This implies that ũ′j−1 < ũ′′j−1 < ṽ′i−1.

The only relevant cells of Q′ affected by this change are S ′j−1,i−2, S ′j−1,i−1, S ′j,i−1,

and S ′j,i. They become respectively S ′′j−1,i−2, S ′′j−1,i−1, S ′′j,i−1, and S ′′j,i.

With a similar reasoning as in case A3a1) we obtain

c(S ′′j−1,i−1) + c(S ′′j,i−1) < c(Si−1,j−1) + c(Si−1,j), (C.17)

c(S ′′j−1,i−2) ≤ c(Si−2,j−1) (C.18)

c(S ′′j,i) ≤ c(Si,j). (C.19)

We conclude that the cost of the new SDSQ is strictly smaller than the cost of Q and the

proof of case A3a2) is completed.

A3b) In this case, for each Tcell Si,j in n II we can change a threshold of S ′j,i as de-

scribed in the proof of case A3a). We will prove that after performing all these changes,

the new SDSQ has a strictly smaller cost that Q.
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FIGURE A3.3: : (a) initial SDSQ with the cost regions colored in blue;
the Tcell Si+1,j+1 is of category I and the Tcell Si−1,j is of category II;
(b) the resulting SDSQ after swapping the thresholds of Q1 and Q2; the
new cost regions are shown in green; the Tcell in category II is converted
to the cell shown with red outline; (c) the resulting SDSQ after replacing
ũ′j−1 with ũ′j−1; the cost regions are colored in green.

According to the discussion in the proof of case A3a) if Si,j is a Tcell in n II, the

corresponding change in Q affects only four relevant cells, namely S ′j,i, the two cells

preceding S ′j,i and the cell following S ′j,i. We will say that the sequence formed of these

four cells is the region affected by the change.

It follows that if two Tcells in n II are separated by at least three other cells, then the

regions affected by their corresponding changes do not overlap. If all the Tcells in n II

satisfy the above condition then the impact of each change on the cost can be analyzed

independently of other changes, as in the case A3a) and the claim follows.

If there are two Tcells in n II that are closer, they still must be separated by two

Pcells in which case the regions affected by the two changes have an overlap, but this

overlap consists of only one cell. Let S ′ denote this cell. Then S ′ is the last cell in one

region and the first cell in the other region. Then similar arguments to those used in in

the proof of case A3a) can be used to conclude that c(S ′′) ≤ c(S), where S ′′ is the cell
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FIGURE A3.4: : (a) initial SDSQ with cost regions colored in blue; both
Tcells are of category II; (b) the resulting SDSQ after flipping the thresh-
olds of Q1 and Q2; the new cost regions are shown in green; the two
Tcells of category II are converted to the cells shown with red outline; (c)
the resulting SDSQ after replacing ṽ′i with ṽ′′i and ũ′j−1 with ũ′j−1. The
new cost regions are colored in green.

obtained after both changes ae performed and S is the counterpart in Q. An example is

when the two Tcells are Ti+1,j+1 discussed in case A3a1) and the other Tcell is Ti−1,j

discussed in caseA3a2) . Then S ′ = S ′j,i. Figure A3.4 illustrates this situation.

For the cells with non-overlapping regions the same analysis as in case A3a) can be

performed. According to the above discussion, the new SDSQ will have strictly smaller

cost.
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Appendix D

Proof of Theorem 3

First we state two lemmas that are used in the proof of Theorem 3. After that we prove

the theorem and proceed to proving the lemmas.

Lemma 17. Assume that conditions OCc and Sc hold. Consider a (K,K)-level DSQ

(Q1, Q2) with threshold sequences ũ and ṽ such that for some j0, 1 < j0 ≤ K − 1

ũi ≤ ṽi, for all i, 1 ≤ i ≤ j0 − 1 (D.1)

ṽi ≤ ũi+1 for all i, 1 ≤ i ≤ j0 − 1 (D.2)

ṽj0 < ũj0 . (D.3)

Then we can construct a DSQ (Q′1, Q′2) with the cost no larger than (Q1, Q2) with

threshold sequences ũ′ and ṽ′ such that

ũ′i ≤ ṽ′i, for all i, 1 ≤ i ≤ j0 (D.4)

ṽ′i ≤ ũ′i+1 for all i, 1 ≤ i ≤ j0 − 1. (D.5)
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Lemma 18. Assume that conditions OCc and Sc hold. Consider a (K,K)-level DSQ

(Q1, Q2) with threshold sequences ũ and ṽ such that for some j0, 1 < j0 ≤ K − 1,

ũi ≤ ṽi, for all i, 1 ≤ i ≤ j0, (D.6)

ṽi ≤ ũi+1 for all i, 1 ≤ i ≤ j0 − 1, (D.7)

ũj0+1 < ṽj0 . (D.8)

Then we can construct a DSQ (Q′1, Q′2) with the cost no larger than (Q1, Q2) with

threshold sequences ũ′ and ṽ′ such that

ũ′i ≤ ṽ′i, for all i, 1 ≤ i ≤ j0, (D.9)

ṽ′i ≤ ũ′i+1 for all i, 1 ≤ i ≤ j0. (D.10)

Proof of Theorem 3. Starting from any (K,K)-level DSQ that is not a u-first staggered

DSQ, by applying repeatedly Lemmas 17 and 18, we obtain a (K,K)-level u-first stag-

gered DSQ with a cost that is no larger than that of the initial DSQ. By applying further

Theorem 2, the conclusion follows.

Next we present a lemma that will be used in the proofs of Lemmas 17 and 18.

Lemma 19. Assume that conditions OCc and Sc hold. Let S = [a, b) × [c, d), where

a < b and c < d.

a) If c ≤ a ≤ d ≤ b, then c(S) = µ(S ∩H+) = c([a, d)× [a, d)).

b) If a ≤ c ≤ b ≤ d, then c(S) = µ(S ∩ H̆−) = c([c, b)× [c, b)).

132

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/
https://www.eng.mcmaster.ca/ece/


Doctor of Philosophy– Sara ZENDEHBOODI; McMaster University– Department of
Electrical and Computer Engineering

(A) First case of Lemma 19. (B) Second case of Lemma 19.

FIGURE A4.1: The region used to calculate the cost is shown in grey.

Proof. a) Fig. A4.1(a) illustrates this case. First notice that S ∩H+ is a triangular

region whose vertexes are the points (a, a), (a, d) and (d, d). The reflection of

S ∩ H+ is the triangular region with vertexes (a, a), (d, a) and (d, d), which is

included in S ∩H−. In other words σ(S ∩H+) ⊆ S ∩H−. In view of Lemmas 4

and 2, it follows that µ(S ∩H+) = µ(σ(S ∩H+)) ≤ µ(S ∩H−) = µ(S ∩ H̆−).

The proof for this case is complete.

b) Fig. A4.1(b) illustrates this case. The proof is similar to the proof for the previous

case.

Proof of Lemma 17. First let us note that we have ũj0−1 ≤ ṽj0−1 < ṽj0 < ũj0 . This can

be seen in Fig. A4.2-(a). Let us construct ũ′ and ṽ′ from ũ and ṽ by exchanging ũi and
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ṽi for all i ≥ j0. In other words, we have

ũ′j =


ũj if j ≤ j0 − 1

ṽj if j ≥ j0

(D.11)

ṽ′k =


ṽk if k ≤ j0 − 1

ũk if k ≥ j0

(D.12)

Let the cells of Q′1 be denoted U ′j = [aũ′j−1
, aũ′j), for 1 ≤ j ≤ K, and the cells of Q′2 be

denoted V ′k = [aṽ′
k−1
, aṽ′

k
), for 1 ≤ k ≤ K. Then we have

U ′j =



Uj if j ≤ j0 − 1

[aũj0−1 , aṽj0 ) if j = j0

Vj if j ≥ j0 + 1

(D.13)

V ′k =



Vk if k ≤ j0 − 1

[aṽj0−1 , aũj0 ) if k = j0

Uk if k ≥ j0 + 1

(D.14)

The new arrangement of the cells can be seen in Fig. A4.2-(a).

We will evaluate the cost of each bin U ′j×V ′k in the product quantizer of the new DSQ

in comparison with the cost of the old bins. Let us use the simplified notation α(j, k) =
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(A) New and previous arrangement

(B) Case 4: U ′j × V ′k in
blue, Uj × Vk in striped
gray.

(C) Case 5: U ′j × V ′k in
blue, Uj × Vk in striped
gray.

(D) Case 8: U ′j × V ′k in
blue, Vj×Uk in striped
gray, Uk×Vj in orange.

FIGURE A4.2: the initial thresholds that changed are shown with dashed
lines. The solid black lines indicate the thresholds that did not change.
Solid red lines indicate new thresholds.

c(Uj×Vk) and α′(j, k) = c(U ′j×V ′k), for all 1 ≤ j ≤ K−1 and 1 ≤ k ≤ K−1. Based

on (D.13) and (D.14), we distinguish between ten cases for the pairs (j, k). Next, we

will treat each case separately. We mention that for all integers 1 ≤ m < n ≤ M , we

will use the notation Sq(m,n) for the square region [am, an)× [am, an). In addition, for

any set b ⊂ R, we denote by inf(B) the infimum of B and by sup(B) the supremum

of B.

1) j ≤ j0 − 1, k ≤ j0 − 1. Then U ′j = Uj and V ′k = Vk leading to α′(j, k) = α(j, k).

2) j ≤ j0 − 1, k = j0. Then U ′j = Uj = [aũj−1 , aũj) and V ′j0 = [aṽj0−1 , aũj0 ).

Since sup(U ′j) = aũj ≤ aũj0−1 ≤ aṽj0−1 = inf(V ′j0), it follows that x1 < x2

for all (x1, x2) ∈ U ′j × V ′V . Thus, we have U ′j × V ′j0 ⊆ H+, which implies that

α′(j, j0) = 0 ≤ α(j, j0).
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3) j ≤ j0− 1, k ≥ j0 + 1. Then U ′j = Uj = [aũj−1 , aũj) and V ′k = Uk = [aũk−1 , aũk).

Since sup(U ′j) = aũj ≤ aũj0−1 < aũj0 ≤ aũk−1 = inf(V ′k), it follows that

U ′j × V ′k ⊆ H+, and further that α′(j, k) = 0 ≤ α(j, k).

4) j = j0, k ≤ j0 − 1. Then U ′j0 = [aũj0−1 , aṽj0 ) ⊆ Uj0 (since ṽj0 < ũj0) and

V ′k = Vk = [aṽk−1 , aṽk). It follows that U ′j0×V
′
k ⊆ Uj0×Vk, leading to α′(j0, k) ≤

α(j0, k) in virtue of Lemma 2. This case is illustrated in Fig. A4.2(b) for k =

j0 − 1, and in Fig. A4.2(f) for k ≤ j0 − 2 .

5) j = j0, k = j0. Then U ′j0 = [aũj0−1 , aṽj0 ) and V ′j0 = [aṽj0−1 , aũj0 ) (Fig. A4.2(c)).

Since ũj0−1 ≤ ṽj0−1 < ṽj0 < ũj0 , by applying Lemma 19, we obtain that

α′(j0, j0) = c(Sq(ṽj0−1, ṽj0)). Further, note that Sq(ṽj0−1, ṽj0) ⊆ Uj0 × Vj0 and

by Lemma 2, we obtain that c(Sq(ṽj0−1, ṽj0)) ≤ α(j0, j0). Combining the above

two inequalities leads to α′(j0, j0) ≤ α(j0, j0).

6) j = j0, k ≥ j0 + 1. Then U ′j0 = [aũj0−1 , aṽj0 ) and V ′k = Uk = [aũk−1 , aũk). Since

sup(U ′j0) = aṽj0 < aũj0 ≤ aũk−1 = inf(V ′k), it follows that U ′j0 × V ′k ⊆ H+,

which implies that α′(j0, k) = 0.

7) j ≥ j0 + 1, k ≤ j0 − 1. Then U ′j = Vj = [aṽj−1 , aṽj) and V ′k = Vk = [aṽk−1 , aṽk).

Since sup(V ′k) = aṽk ≤ aṽj0−1 < aṽj0 ≤ aṽj−1 = inf(U ′j), it follows that U ′j ×

V ′k ⊆ H̆−, yielding α′(j, k) = 0 ≤ α(j, k).

8) j = j0+1, k = j0. Then U ′j0+1 = Vj0+1 = [aṽj0 , aṽj0+1) and V ′j0 = [aṽj0−1 , aũj0 ) ⊆

Uj0 (since ũj0−1 ≤ ṽj0−1) (Fig. A4.2(d)). It follows that U ′j0+1 × V ′j0 ⊆ Vj0+1 ×

Uj0 = σ(Uj0 × Vj0+1). By applying Lemma 2 and Lemma 4, we obtain that

α′(j0 + 1, j0) ≤ α(j0, j0 + 1). Further, recall that according to case 6 we have
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α′(j0, j0 + 1) = 0. It follows that α′(j0 + 1, j0) +α′(j0, j0 + 1) ≤ α(j0 + 1, j0) +

α(j0, j0 + 1).

9) j ≥ j0 + 2, k = j0. Then U ′j = Vj = [aṽj−1 , aṽj) and V ′j0 = [aṽj0−1 , aũj0 ). Note

that sup(V ′j0) = aũj0 < aũj0+1 ≤ aṽj−1 = inf(U ′j), which leads to U ′j×V ′j0 ⊆ H̆−,

and further to α′(j, j0) = 0 ≤ α(j, j0).

10) j ≥ j0 + 1, k ≥ j0 + 1. Then U ′j = Vj = [aṽj−1 , aṽj) and V ′k = Uk = [aũk−1 , aũk).

Then U ′j × V ′k = Vj ×Uk = σ(Uk × Vk), leading to α′(j, k) = α(k, j) in virtue of

Lemma 4. By adding the costs for all bins falling in this case, we obtain

K∑
j=j0+1

K∑
k=j0+1

α′(j, k) =
K∑

k=j0+1

K∑
j=j0+1

α(k, j) =
K∑

j=j0+1

K∑
k=j0+1

α(j, k). (D.15)

Finally, by combining the results from all aforementioned ten cases, leads to

c(Q′1, Q′2) =
K∑
j=1

K∑
k=1

α′(j, k) ≤
K∑
j=1

K∑
k=1

α(j, k) = c(Q1, Q2). (D.16)

and the proof is complete.

Proof of Lemma 18. Note that ũj0−1 ≤ ṽj0−1 ≤ ũj0 < ũj0+1 < ṽj0 . Let j1 be the

smallest integer such that j0 < j1 ≤ K − 1 and ṽj1 ≤ ũj1+1. Note that such an integer

must exist since ṽK−1 < ũK = M + 1. Then ũj1 < ṽj1−1 < ṽj1 ≤ ũj1+1. We construct

ũ′ and ṽ′ by starting from ũ and ṽ and exchanging ũj0+1, · · · , ũj1 with ṽj0 , · · · , ũj1−1,
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respectively. In other words,

ũ′j =


ũj if j ≤ j0 or j ≥ j1 + 1

ṽj−1 if j0 + 1 ≤ j ≤ j1

, (D.17)

ṽ′k =


ṽk if k ≤ j0 − 1 or k ≥ j1

ũk+1 if j0 ≤ k ≤ j1 − 1
. (D.18)

It follows that

U ′j =



Uj if j ≤ j0 or j ≥ j1 + 2

Vj−1 if j0 + 2 ≤ j ≤ j1

[aũj0 , aṽj0 ) if j = j0 + 1

[aṽj1−1 , aũj1+1) if j = j1 + 1

, (D.19)

V ′k =



Vk if k ≤ j0 − 1 or k ≥ j1 + 1

Uk+1 if j0 + 1 ≤ k ≤ j1 − 1

[aṽj0−1 , aũj0+1) if k = j0

[aũj1 , aṽj1 ) if k = j1

. (D.20)

An example of this situation and the new thresholds can be seen in Fig. A4.3-(a). We

will distinguish between 20 cases for the pairs (j, k). We will consider each of them

separately.
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(A) New and previous arrangement

(B) Case 4:
U ′j × V ′k in
blue, Uj × Vk

in striped
gray.

(C) Case 19:
U ′j × V ′k in
blue, Uj × Vk

in striped
gray.

(D) Case 16:
U ′j × V ′k in
blue, Uj × Vk

in striped
gray.

(E) Case 20:
U ′j × V ′k in
blue, Uj × Vk

in striped
gray.

(F) Case 9: U ′j × V ′k
in blue, Uk+1 × Vj−1 in
striped gray.

(G) Case 11: U ′j × V ′k
in blue, Vj−1 × Uk+1 in
striped gray, and Uk+1 ×
Vj−1 in orange.

(H) Case 15: U ′j × V ′k
in blue, Vj−1 × Uk+1 in
striped gray, and Uk+1 ×
Vj−1 in orange

FIGURE A4.3: the initial thresholds that changed are shown with dashed
lines. The solid black lines indicate the thresholds that did not change.
Solid red lines indicate new thresholds.

1) j ≤ j0 or j ≥ j1 + 2, while k ≤ j0− 1 or k ≥ j1 + 1. Then U ′j = Uj and V ′k = Vk

leading to α′(j, k) = α(j, k).
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2) j ≤ j0, j0 + 1 ≤ k ≤ j1 − 1. Then U ′j = Uj = [aũj−1 , aũj) and V ′k = Uk+1 =

[aũk , aũk+1). Since sup(U ′j) = auj ≤ aũj0 < aũj0+1 ≤ aũk = inf(V ′k), it follows

that U ′j × V ′k ⊆ H+, which leads to α′(j, k) = 0.

3) j ≥ j1 + 2, j0 + 1 ≤ k ≤ j1 − 1. Then U ′j = Uj = [aũj−1 , aũj) and V ′k = Uk+1 =

[aũk , aũk+1). We have sup(V ′k) = aũk+1 ≤ aũj1 < aũj1+1 ≤ aũj−1 = inf(U ′j),

leading to U ′j × V ′k ⊆ H̆−, and further to α′(j, k) = 0.

4) j ≤ j0 or j ≥ j1 + 2, k = j0. Then U ′j = Uj = [aũj−1 , aũj) and V ′j0 =

[aṽj0−1 , aũj0+1) ⊆ Vj0 (since ũj0+1 < ṽj0). It follows that U ′j × V ′j0 ⊆ Uj × Vj0 ,

which implies that α′(j, j0) ≤ α(j, j0) by Lemma 2. An illustration of this case

can be seen in Fig. A4.3-(b).

5) j ≤ j0, k = j1. Then U ′j = Uj = [aũj−1 , aũj) and V ′j1 = [aũj1 , aṽj1 ). Note that

sup(U ′j) = aũj ≤ aũj0 < aũj1 = inf(V ′k). Thus, we have U ′j×V ′k ⊆ H+, yielding

α′(j, k) = 0.

6) j ≥ j1 + 2, k = j1. Then U ′j = Uj = [aũj−1 , aũj) and V ′j1 = [aũj1 , aṽj1 ). Since

sup(V ′j1) = aṽj1 < aṽj1+1 ≤ aũj−1 = inf(U ′j), it follows that U ′j × V ′k ⊆ H̆−,

which implies that α′(j, k) = 0.

7) j0 + 2 ≤ j ≤ j1, k ≤ j0 − 1. Then U ′j = Vj−1 = [aṽj−2 , aṽj−1) and V ′k = Vk =

[aṽk−1 , aṽk). Note that sup(V ′k) = aṽk ≤ aṽj0−1 < aṽj0 ≤ aṽj−2 = inf(U ′j), which

implies that U ′j × V ′k ⊆ H̆−, yielding α′(j, k) = 0.

8) j0 + 2 ≤ j ≤ j1, k ≥ j1 + 1. Then U ′j = Vj−1 = [aṽj−2 , aṽj−1) and V ′k = Vk =

[aṽk−1 , aṽk). We have sup(U ′j) = aṽj−1 ≤ aṽj1−1 < aṽj1 ≤ aṽk−1 = inf(V ′k),

which leads to U ′j × V ′k ⊆ H+, and further to α′(j, k) = 0.
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9) j0 + 2 ≤ j ≤ j1, j0 + 1 ≤ k ≤ j1 − 1. Then U ′j = Vj−1 = [aṽj−2 , aṽj−1)

and V ′k = Uk+1 = [aũk , aũk+1). An example of this case for j = k = j0 + 2

is shown in Fig. A4.3-(f). It follows that U ′j × V ′k = σ(Uk+1 × Vj−1), which

implies that α′(j, k) = α(k + 1, j − 1) by Lemma 4. By summing over all j and

k corresponding to this case, we obtain that

j1∑
j=j0+2

j1−1∑
k=j0+1

α′(j, k) =
j1∑

j=j0+2

j1−1∑
k=j0+1

α(k + 1, j − 1) =
j1∑

j′=j0+2

j1−1∑
k′=j0+1

α(j′, k′),

where the last equality is obtained by using the change of variables j′ = k + 1

and k′ = j − 1 and by changing the order of the two summations.

10) j0 + 2 ≤ j ≤ j1, k = j0. Then U ′j = Vj−1 = [aṽj−2 , aṽj−1) and V ′j0 =

[aṽj0−1 , aũj0+1). The fact that sup(V ′j0) = aũj0+1 < aṽj0 ≤ aṽj−2 = inf(U ′j)

implies that U ′j × V ′j0 ⊆ H̆−, further leading to α′(j, j0) = 0.

11) j0+2 ≤ j ≤ j1, k = j1. Then U ′j = Vj−1 = [aṽj−2 , aṽj−1) and V ′j1 = [aũj1 , aṽj1 ) ⊆

Uj1+1 (since ṽj1 ≤ ũj1+1). An example of this case for j = k = j1 is shown in

Fig. A4.3-(g). Then we have U ′j × V ′j1 ⊆ Vj−1 × Uj1+1 = σ(Uj1+1 × Vj−1). In

virtue of Lemma 2 and Lemma 4, we obtain that α′(j, j1) ≤ α(j1 + 1, j − 1). By

summing over all j’s, we obtain

j1∑
j=j0+2

α′(j, j1) ≤
j1∑

j=j0+2
α(j1 + 1, j − 1). (D.21)

12) j = j1 + 1, j0 + 1 ≤ k ≤ j1 − 1. Then U ′j1+1 = [aṽj1−1 , aũj1+1) and V ′k = Uk+1 =

[aũk , aũk+1). Since sup(V ′k) = aũk+1 ≤ aũj1 < aṽj1−1 = inf(U ′j), it follows that

U ′j × V ′k ⊆ H̆−, and further that α′(j1 + 1, k) = 0. By summing over all k’s, we
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obtain

j1−1∑
k=j0+1

α′(j1 + 1, k) = 0. (D.22)

After replacing k by j − 1 in (D.22), and combining with (D.21), we obtain that

j1∑
j=j0+2

(α′(j, j1) + α′(j1 + 1, j − 1)) ≤
j1∑

j=j0+2
(α(j, j1) + α(j1 + 1, j − 1)).

(D.23)

13) j = j0 + 1, k ≤ j0 − 1. Then U ′j0+1 = [aũj0 , aṽj0 ) and V ′k = Vk = [aṽk−1 , aṽk).

Then sup(V ′k) = aṽk ≤ aṽj0−1 ≤ aũj0 = inf(U ′j0+1), leading to U ′j × V ′k ⊆ H̆−,

and further to α′(j, k) = 0.

14) j = j0 + 1, k ≥ j1 + 1. Then U ′j0+1 = [aũj0 , aṽj0 ) and V ′k = Vk = [aṽk−1 , aṽk). We

have sup(U ′j0+1) = aṽj0 < aṽj1 ≤ aṽk−1 = inf(V ′k), yielding U ′j × V ′k ⊆ H+, and

further α′(j, k) = 0.

15) j = j0 + 1, j0 + 1 ≤ k ≤ j1 − 1. Then U ′j0+1 = [aũj0 , aṽj0 ) ⊆ Vj0 (since

ṽj0−1 ≤ ũj0) and V ′k = Uk+1 = [aũk , aũk+1). These imply that U ′j0+1 × V ′k ⊆

Vj0×Uk+1 = σ(Uk+1×Vj0). An example of this case for j = k = j0 +1 is shown

in Fig. A4.3-(h). According to Lemma 2 and Lemma 4, it follows that α′(j0 +

1, k) ≤ α(k + 1, j0). Recall the result of case 10, namely that α′(k + 1, j0) = 0

for all j0 + 1 ≤ k ≤ j1 − 1 (obtained after replacing j by k + 1). By combining

the two results and summing over all k’s, leads to

j1−1∑
k=j0+1

(α′(j0 + 1, k) + α′(k + 1, j0)) ≤
j1−1∑

k=j0+1
(α(j0 + 1, k) + α(k + 1, j0)).
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16) j = j0 + 1, k = j0. Then U ′j0+1 = [aũj0 , aṽj0 ) and V ′j0 = [aṽj0−1 , aũj0+1). An

illustration of this case is given in Fig. A4.3-(d). Since ṽj0−1 ≤ ũj0 < ũj0+1 < ṽj0 ,

it follows based on Lemma 19 that α′(j0 + 1, j0) = c(Sq(ũj0 , ũj0+1)). Further

note that Sq(ũj0 , ũj0+1) ⊆ Uj0+1 × Vj0 , which implies that c(Sq(ũj0 , ũj0+1)) ≤

α(j0 + 1, j0). The above two inequalities lead to α′(j0 + 1, j0) ≤ α(j0 + 1, j0).

17) j = j1 +1, k = j0. Then U ′j1+1 = [aṽj1−1 , aũj1+1) and V ′j0 = [aṽj0−1 , aũj0+1). Since

sup(V ′j0) = aũj0+1 < aṽj0 ≤ aṽj1−1 = inf(U ′j1+1), it follows that U ′j1+1 × V ′j0 ⊆

H̆−, which implies that α′(j1 + 1, j0) = 0.

18) j = j0 + 1, k = j1. Then U ′j0+1 = [aũj0 , aṽj0 ) ⊆ Vj0 (since ṽj0−1 ≤ ũj0) and

V ′j1 = [aũj1 , aṽj1 ) ⊆ Uj1+1 (since ṽj1 ≤ ũj1+1). Thus, we have U ′j0+1 × V ′j1 ⊆

Vj0 × Uj1+1 = σ(Uj1+1 × Vj0), which implies that α′(j0 + 1, j1) ≤ α(j1 + 1, j0).

Combining with the result of the previous case, we obtain α′(j0 + 1, j1) +α′(j1 +

1, j0) ≤ α(j0 + 1, j1) + α(j1 + 1, j0).

19) j = j1 +1, k ≤ j0−1 or k ≥ j1 +1. Then U ′j1+1 = [aṽj1−1 , aũj1+1) ⊆ Uj1+1 (since

ũj1 < ṽj1−1) and V ′k = Vk = [aṽk−1 , aṽk). An illustration of this case is given in

Fig. A4.3-(c). It follows U ′j1+1 × V ′k ⊆ Uj1+1 × Vk, yielding α′(j1 + 1, k) ≤

α(j1 + 1, k).

20) j = j1 + 1, k = j1. U ′j1+1 = [aṽj1−1 , aũj1+1) and V ′j1 = [aũj1 , aṽj1 ). An illustration

of this case is given in Fig. A4.3-(e).. Recall that ũj1 < ṽj1−1 < ṽj1 ≤ ũj1+1.

By applying Lemma 19, we obtain that α′(j1 + 1, j1) = c(Sq(vj1−1, vj1)). Ad-

ditionally, since Vj1 = [aṽj1−1 , aṽj1 ) ⊆ Uj1+1, it follows that Sq(ṽj1−1, ṽj1) ⊆

Uj1+1× Vj1 , which further implies that c(Sq(ṽj1−1, ṽj1)) ≤ α(j1 + 1, j1) in virtue

of Lemma 2. We conclude that α′(j1 + 1, j1) ≤ α(j1 + 1, j1).
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By summarizing the results from all the cases, we obtain that

c(Q′1, Q′2) =
K∑
j=1

K∑
k=1

α′(j, k) ≤
K∑
j=1

K∑
k=1

α(j, k) = c(Q1, Q2),

and the proof is complete.
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