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Abstract
Systemic risk is a complex topic, with a large number of variables and constraints. In

this thesis we introduce an agent-based network to study the effects of financial shocks

on the financial network. The model takes into consideration the repurchase agreement

(repo) market and rehypothecation.

We introduce a financial network consisting of financial agents who are connected

through direct channels (bilateral contracts) and indirect channels (markets). Each fi-

nancial agent has a balance sheet with liquid assets (cash), collateral (bonds, shares),

reverse repo assets, fixed assets (loans and mortgages) on the asset side and repo loans,

deposits and equities on the liability side. Agents (i.e., banks) need to satisfy constraints

on (i) liquidity, which deals with financial shocks, (ii) collateral, related to repo liabil-

ities, rehypothecation, and (iii) solvency constraints, ensuring that equity is positive.

Liquidity constrain can be broken by a financial shock (e.g., a bank run), while the

collateral constraint can be broken by hoarding credit and collateral price reduction.

When liquidity and collateral constraints are broken the financial agent will try to fix

them through recalling reverse repos and firesale of fixed assets. Banks that fail to fix

their constraints by the end of the day will be considered defaulted.

We introduce netting and novation techniques to deal with defaulted banks and lower

the stress on the financial markets. In the netting step we lower the exposure of financial

agents by removing cycles in the repo liabilities between banks, while in the novation we

redistribute the ownership of bilateral contracts and settle any residuals that are left.

We also establish that, under certain conditions on the set of defaulted banks, that the

novation step is order indifferent.

Different network topologies and balance sheet compositions are tested under several

financial shocks to check the robustness of the financial network under our framework.
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Chapter 1

Introduction

1.1 Motivation and Preliminary Definitions

The financial system is a marketplace where many institutions (e.g. banks, funds, in-

surance companies) conduct different types of activities. One type of activity consists of

buying and selling of securities (e.g. stocks, bonds and options). This activity is indirect

in the sense that different institutions are buying and selling the same securities in the

market without interacting directly with each other. A second type of activity consists of

direct bilateral business with other institutions, like taking a loan and posting collateral.

The direct and indirect interaction between institutions leads to a financial network.

Studying the stability of the financial system is of great importance to the economy.

One aspect of stability is the effect of stressed individual institutions on the overall health

of the financial network and whether the stress will spread and cause the failure of the

network. Figure 1.1 shows the time series for the percentage of distressed banks in the

US and Europe, together with markers for major recessions as referenced in Montagna

et al. 2020. The figure shows a threshold of 1.5%, beyond which a systemic event is

deemed to have occurred.

There is no precise or agreed upon definition regarding what is a systemic event or

what constitutes systemic risk. Some of the definitions are as follows.

1



Doctor of Philosophy– Hassan Chehaitli; McMaster University– Computational
Science and Engineering

Figure 1.1: Left side represents USA banks and right side represents
banks in the Euro region. The vertical bars represents economic recession
and the color indicates its strength. The red line represents 1.5% level
where a systemic event is declared. Source: Lang et al. 2018

Benoit et al. 2017 states that:

“Systemic risk is often seen as a “hard-to-define-but-

you-know-it-when-you-see-it” concept”

In Diebold and Yilmaz 2015 it is mentioned that an “often cited definition” for

systemic risk is found in De Bandt and Hartmann 2000:

“A systemic crisis can be defined as a systemic event

that affects a considerable number of financial insti-

tutions or markets in a strong sense, thereby severely

impairing the general well-functioning of the finan-

cial system . . . Systemic risk goes beyond the tradi-

tional view of single banks’ vulnerability to deposi-

tor runs. At the heart of the concept is the notion

of . . . particularly strong propagation of failures from

one institution, market or system to another”

Another definition is given by European Central Bank (ECB) Bank 2009:

2
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Doctor of Philosophy– Hassan Chehaitli; McMaster University– Computational
Science and Engineering

“There is no commonly accepted definition of sys-

temic risk at present. One perspective is to describe

it as the risk of experiencing a strong systemic event.

Such an event adversely affects a number of system-

ically important intermediaries or markets. There is

no clear definition what is a systemic risk, multiple

definitions have been proposed . . . The trigger of the

event could be an exogenous shock which means from

outside the financial system. Alternatively,the event

could emerge endogenously from within the financial

system or from within the economy at large”

In Silva et al. 2017 it is stated that Abdymomunov 2013 defines systemic risk as

follows:

“In general, systemic risk is perceived as the risk of

a negative shock, severely affecting the entire finan-

cial system and the real economy. This shock can

have different causes and triggers, such as a macroe-

conomic shock, a shock caused by the failure of an

individual market participant that affects the entire

system due to tight interconnections in the system,

or a shock caused by information disruption in finan-

cial markets”

Other definitions for systemic risk are also available. Silva et al. 2017 has a collection

of definitions that are associated to the problem at hand. As we will see in the next

section, the definition of systemic risk also varies according to the criterion used to collect

and classify papers in the literature.

3
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1.2 Financial Agents and Dynamics

The financial system can be seen as an interconnected web, both on the local and global

scale, and the same is also true for the economies in which the financial system operates.

An economic crisis or a financial distress in a certain part of the world will travel through

this web to other parts of the world, contributing to systemic risk.

The subprime mortgage crisis of 2008-09 and the recent COVID-19 pandemic and

the ensuing financial crisis had global financial implications that illustrate the nature

of systemic risk in the financial system. One of the main lessons learned in these crises

is that regulating financial institutions is a complex task since a financial institution

posseses a dynamic nature. Macro and micro level regulations should be considered

with extra care as contagion channels interact in complex and sometimes unpredictable

ways. Since the subprime crisis, researchers from different disciplines are developing new

models to monitor, measure and manage systemic risk.

There are two main approaches for modelling the financial system. The first approach

is known as top-down, where we have a bird’s eye view of the system and much of the

interactions of its individual components is hidden. The second approach is known as

bottom-up, where we look at the individual components, observe their interactions and

then we can understand the aggregate effect of theses agents on the system as a whole.

1.2.1 Financial Agents and Complex Interactions

Different types of agents exist in the financial system. Some of these agents are simple

in nature while other agents are complex and composed of other sub-agents. We will

take a look at these agents with some brief description about each of them.

We have the following agents as described by Bookstaber 2019:

• Bank: Banks can be thought as the middlemen in the economy. A bank is made

of multiple departments (sub-agents).

4

http://www.mcmaster.ca/
http://cse.mcmaster.ca/
http://cse.mcmaster.ca/


Doctor of Philosophy– Hassan Chehaitli; McMaster University– Computational
Science and Engineering

– Prime Broker: this department works as a connection point between hedge

funds and cash providers/security lenders (see below). It collects collateral

from different hedge funds and tries to find a funding source (cash provider),

as well as arranges unsecured funding directly from cash providers.

– Finance Desk: this department is responsible for secured funding for both

the bank and its hedge fund clients. In order to fund bank operations, col-

lateral is passed from the bank to the cash provider. As for hedge funds,

collateral received by the prime broker is passed to the finance desk, and the

finance desk will rehypothecate that collateral in order to raise funds from

cash providers. Secured funding is usually done with repurchase agreements

(REPOs), the central topic of this thesis.

– Trading Desk: this department works as a security broker by filling orders

for the bank and clients as well as by having long positions and short positions

in the market. The trading desk also manages inventory of securities that it

holds on its own behalf and for its clients, and is therefore exposed to market

risk.

– Treasury: this department is responsible for funding bank operations, in

particular unsecured funding. Unsecured funding is used in the case it is

hard to find secured funding for certain operations

• Hedge Funds: Hedge funds are leveraged financial institution. They look for

funding sources in order to support their leverage positions. Usually, this is done

by posting the security bought on margin as a collateral to the prime broker in

return for funding to purchase the security. Hedge funds also deal with prime

brokers when they want to short-sell securities.

• Cash Provider: Cash providers encompass a wide range of agents but the impor-

tant point to keep in mind is that cash providers are short-term, secured-funding
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lenders. Since the money that is lent is short term, cash providers can recall the

money almost immediately which can affect funding liquidity to financial agents.

• Asset Markets: these include markets for different traded financial instruments,

such as options, equity and foreign exchange. In normal times these markets are

supposed to be liquid in the sense that orders that are placed in market will not

have severe effect on the asset price. During stressed times asset prices will be

affected severely due to liquidation to meet regulations and policies.

It can be seen from the financial system described above that banks play an important

role due to their diverse departments and their interaction with other financial agents

through different paths by the exchange of funds, securities and collateral. Although we

have limited types of financial agents in this thesis, the financial model is still complicated

with all these heterogeneous agents that have different heuristics and different goals.

We have mentioned earlier that banks work as the middlemen between other agents

that constitute the financial system. Their interactions with other agents is a complex

process. A bank’s job is not only to bring and pass assets around, but also introduce

transformations to assets in order to meet its client needs, which in return introduce

nonlinear relations to the system and thus leads to heterogeneous interactions of agents.

Some of the transformations cited in Bookstaber et al. 2018 are discussed below:

• Maturity transformation: this happens when a bank takes a short-term fund-

ing from depositors and money markets and turn it into a long-term funding for

its clients. This is usually referred to as maturity mismatch between assets and

liabilities. Maturity transformation is done for a fee paid by the agent who wants

to borrow funds. Maturity transformation introduce risk to the bank especially

in stressed times where short-term depositors redeem their money back and are

not willing to roll forward the funding given to the bank. On the other side, the

long-term maturity is not redeemable by the bank which affects bank liquidity and
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leverage.

• Liquidity transformation: this refers to the easiness of converting an asset into

cash in a short amount of time without incurring any significant losses due to the

short notice. Banks usually take highly liquid assets and transform them into less

liquid long-term investment options. For example, banks can take deposits in the

form of cash (a highly liquid asset) and invest in real estate property which is

fairly illiquid compared to cash as it takes time to sell the property. Selling real

estate property on a short notice can incur significant loss to the investor. An-

other example consists of a trading desk structuring debt instruments into different

tranches of collateralized debit obligation products. Just like maturity transfor-

mation, liquidity transformation introduces risk to the bank, especially in stressed

times.

• Credit transformation: this happens when funds are transferred from the cash

provider to hedge funds. Under a typical REPO contract, to be analyzed in detail

throughout this thesis, a cash provider asks for collateral in exchange of cash. This

lowers, and ideally removes, the risk of loss when the counterparty defaults, which

is why REPOs are an example of what is called secured funding, but introduces

funding costs for the party that is posting the collateral. For this reason, not

all funding is secured: sometimes a financial institution can seek funding without

posting collateral, for example through interbank loans. When a hedge fund asks

for unsecured funding from the bank and the bank has to post collateral to the

cash provider this introduces credit mismatch between the bank, the hedge fund

and cash provider. If the hedge fund defaults, the bank might not receive any

money from it, but still has to pay the cash provider.

The transformations above show the complexity introduced by the bank by interacting
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with different agents and by catering for their different needs. This leads to the well-

known phenomena called the fallacy of composition, namely the false belief that the

behaviour of the system can be explained in terms of the individual agents that constitute

the system. Rather, when we have a collection of heterogeneous agents interacting in a

complex way, we observe what is called emergent phenomena, that is, the system behaves

as a whole in an unexpected way.

1.2.2 Contagion Channels

Shocks move in the financial system through contagion channels. Contagion channels

connect agents in different ways and induce different magnitudes of stress on the financial

system. Here are the contagion channels discussed in Aymanns et al. 2018a:

• Counterparty loss: financial institutions can be related to each other through

their balance sheets by entering into bilateral contracts. A bilateral contract con-

nects financial institutions by being an asset in the balance sheet for one bank while

at the same time being a liability in the balance sheet for another bank. Multiple

banks can be linked together as a chain through their balance sheets by bilateral

contracts. A shock to the market that affects one bank and causes it to default

will make the default propagate through the chain due to the interconnectedness

of these balance sheets.

• Overlapping portfolios: in this channel, financial agents are connected through

traded securities. When different financial agents invest in the same security and

when one of the agents receives a shock and is obligated to liquidate in order to

meet some regulations and rules, the shock propagates to the other agents. Se-

curity liquidation has to happen fast regardless of the loss that can be incurred.

Liquidation will cause the price of the security to fall which will affect other fi-

nancial agents holding the same security. This price drop in one security, might

push the financial agents to liquidate even other securities they hold, which can
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potentially lead to the spread of the initial shock to all securities and all agents in

the securities market.

• Funding liquidity: this is an indirect contagion channel that is created by the

effect of counterparty loss and overlapping portfolios. At the end of every prede-

termined period the bank has to decide whether to roll forward the loans given to

other banks or not. Suppose we have two banks i and j, where bank i has lent

money to bank j. If bank j incurs a credit loss, or if its credit rating deteriorates,

then bank i might decide not to roll the loan for bank j. Bank j now will need

money and it will stop rolling its loans to other banks and this action will cascade

through the network. Conversely, when bank i is under stress itself, it will also

stop rolling loans so that it can collect money and pay its liabilities. The chain of

not rolling loans will cascade through the financial network.

The effects of different contagion channels are often combined. When a bank incurs

counterparty loss it might be required to liquidate some of it securities quickly which

will have an effect on other securities and financial agents due to portfolio overlapping.

If a security receives a shock it will lead the leverage of banks holding that security to

increase, thus forcing them to liquidate this security and other securities due to portfolio

overlapping. This might create a liquidation spiral in the assets market affecting all

agents in the financial system. Finally, even when banks stop rolling loans in order to

collect money to meet liabilities, they might still be short on money, which will require

them to liquidate some securities and, due to the portfolio overlapping channel, also lead

to a liquidation spiral.

1.2.3 Dynamics of Financial Crises

Financial crises are rare and unpredictable. There are important factors that contribute

to the crisis, like shocks (i.e. through funds and assets), and there are catalysts (leverage

and liquidity) that allow the crisis to spread fast in the financial network. The financial
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system is a highly dynamical system where feedback loops exist and actions are magnified

due to the interaction of the agents among themselves and with the environment (see

Bookstaber et al. 2018). The following leverage and liquidity catalysts are described in

Aymanns et al. 2018a:

• Leverage: leveraged investment is the use of borrowed funds in order to expand

banks’ investments. Borrowing can be either secured, where a collateral is posted,

or unsecured. Leverage is used to increase the potential return on an investment.

Nonetheless, leverage is a two-edged sword, as it can magnify both profits and

losses. The higher the leverage, the riskier it becomes for a financial agent. Highly

leveraged financial institutions are highly sensitive to small fluctuations in the

markets. Usually leverage is determined by the haircut that is required by the cash

provider (see Section 2.2 for a precise definition) and this is known as maximum

leverage available. On the other hand, there is a regulatory leverage that is imposed

on financial agents. Whenever the regulatory limit is exceeded the financial agent

is expected to lower their leverage through a liquidation process. Leverage can be

measured in different ways; frequently used form is the ratio of assets to equity, i.e.

λ = A/E, where equity is defined as the difference between assets and liabilities,

that is E = A−L. When assets approach the level of liabilities, equity approaches

zero, leverage tends to infinity, and the bank is deemed to be insolvent.

• Liquidity: liquidity is an ambiguous term that can have different meaning de-

pending on the context. In this thesis we will define three types of liquidity. The

first is asset liquidity, defined as how fast a bank can convert an asset to cash.

Usually assets are divided into different liquidity categories according to how easy

it is to convert them to cash. For example, real estate, mortgages and loans are

highly illiquid assets, in the sense that you can not demand borrowers to pay these

long term assets immediately, whereas the most liquid asset is of course cash.

The second type is funding liquidity, defined as the ease of borrowing from cash
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providers with low funding costs. Changes in funding liquidity can impose high

risk on the financial agent. A bank that cannot meet its short-term liabilities be-

cause of either asset or funding illiquidity is known as an illiquid bank. An illiquid

bank is not necessarily insolvent: a bank can have illiquid assets that cover more

than the short-term liabilities but these illiquid assets cannot be converted to cash

fast enough to meet its obligations. The last type is market liquidity and refers

to how quickly and efficiently securities can be sold in the asset market without

incurring significant costs or losses due to price fluctuations. Though related to

each other, asset and market liquidity are distinct. For example, a long-maturity

Treasury bond has low asset liquidity according to the definition above, because

the principal can only be received if the bond is held to maturity, but typically

has high market liquidity, as it can be sold in secondary markets relatively easily,

without any significant effect on its price. Conversely, an overnight reverse-REPO

has high asset liquidity, as it can be converted into cash very quickly simply by its

holder not rolling it over, but has low market liquidity, as there are no secondary

markets where it can be sold.

Leverage and liquidity (all three types) play an important role in any financial crisis. A

Financial crisis can be started by having a shock in different layers (assets or funds) and

each layer involves different players. Even though the financial crisis starts at one layer

(assets/funds) it will eventually move on to the other layer (funds/assets) since banks

have multiple layers.

The first place for a shock to happen is at the assets layer. A shock at the asset layer

will involve three agents: prime brokers (bank department), hedge funds and assets in

the market. As we have explained earlier, highly leveraged institutions are highly sen-

sitive to market fluctuations. If a shock is given into one of the assets in the market

(decreasing asset value), a moderately leveraged institution can become highly lever-

aged. As equity decreases, by definition of leverage, leverage will increase most probably
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beyond regulatory limits. Exceeding regulatory leverage limits will make financial insti-

tution liquidate assets thus depressing asset values more. Less leveraged institutions will

eventually be affected and forced to liquidate assets as well. This will then be transferred

through contagion channels thus leading to forced selling in all markets due to the fact of

overlapping portfolios, asset liquidity limitations and the need to meet regulatory limits.

This will lead to decrease in collateral value as well, since collateral usually consists of

assets bought from the market, leading to a funding shock cycle of the sort we explain

next.

The second place for a shock to happen is at the funding layer. Two agents are

involved in this cycle: the finance desk (bank department) and the cash provider. A

Funding crisis can start due to deposits being redeemed by investors or due to trust

issues where a higher funding cost is imposed. Less trustworthy financial agents will

face hardship to meet their short-term obligation and this might cause default. Finan-

cial institutions are connected through contagion channels thus leading to reduction of

funding to all institutions due to uncertainty. As institutions start holding up their

money, funding sources will dry up and the only way for banks to meet their short-term

obligations is to liquidate assets. The fast liquidation process this will introduce a shock

to the assets market and this will lead to the cycle described above.

Not only are contagion channels important in the financial crisis, the catalysts play

an important role as well. If markets are liquid and they can process large orders without

significant disruption of prices, then the markets will absorb the shock and nothing will be

transferred from one agent to the other through contagion channels. On the other hand,

leverage plays an important role as well. If financial institutions are not leveraged, they

will not be forced to deleverage which will lead to asset firesale, price depreciation and

further deleveraging. Though leveraging worsens financial crises, market liquidity plays

a more critical role than leveraging. If leverage companies are forced to liquidate into

highly liquid markets the shock will be absorbed without being transferred or affecting
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other agents.

1.3 Literature Review

As we have just explained, the financial system is composed of different interacting

components with each other and with the outer world. Interdisciplinary approaches,

techniques and tools have emerged to deal with the complexity of the subject. In this

section, before introducing in more detail the models that form the basis for this thesis,

we will look at the different classification schemes for the large and growing literature

on financial systemic risk proposed in the following papers (with the main classifying

criterion in brackets): Benoit et al. 2017 (sources of systemic risk), Accornero et al. 2020

(collateral re-use) , Aymanns et al. 2018b (contagion channels), Iori and Mantegna 2018

(network structure), Silva et al. 2017 (method or object). In addition to providing an

opportunity to highlight the main topics of interest in this area, this literature review

will allow us to better contextualize the contributions of this thesis.

1.3.1 Classification by Sources of Systemic Risk

Benoit et al. 2017 encompasses a wide umbrella of 220 papers for classification and

adopted the following definition for systemic risk:

“We define it as the risk that many market partic-

ipants are simultaneously affected by severe losses,

which then spread through the system”

Figure 1.2 shows how Benoit et al. 2017 classified the surveyed papers into four

categories according to the source of systemic risk as follows:
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Figure 1.2: The classification of papers in Benoit et al. 2017 according to
the source of systemic risk: (a) systemic risk-taking (blue/right), (b) con-
tagion (green/left), (c) amplification mechanisms (red/bottom). A fourth
category, dedicated to systemic risk measures is also shown (yellow/top).
The size of the circle indicates its popularity within the surveyed litera-
ture, while the edges shows citations.

(a) Systemic Risk-Taking

Systemic risk-taking studies why financial institutions choose to have correlated expo-

sures and how this affects their own stability and default probability, which in turn leads

to the contagion of distress associated with such event. Defaulted banks face costs and

impose stress and costs on non-defaulted banks. In order to lower such costs and distress,

for both defaulted and non-defaulted banks, it is in their best interest to either survive

or default together. The impact of too many defaulted banks is disastrous to the econ-

omy, which leads to government intervention in the form of bailouts. Benoit et al. 2017

recognizes the following channels for systemic risk-taking behavior (with representative

papers in brackets):
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• Correlated investments: institutions have overlapping portfolios through in-

vesting in same assets (Acharya 2009; Acharya and Yorulmazer 2008b; Acharya

and Yorulmazer 2008a; Farhi and Tirole 2012).

• Liquidity risk: liquidity risk arises when banks invest in illiquid assets or there

is a mismatch, in the term length, between liquidity of assets and liabilities (Bhat-

tacharya et al. 1985; Brunnermeier and Oehmke 2013).

• Tail risk: tail risk indicates how the size of the the exposure of a bank. When

banks have a big tail risk combined with correlated investments this leads to a large

number of banksbeing stressed and in turn to the amplification and contagion of

the event (Gennaioli et al. 2013; Biais et al. 2010; Freixas and Rochet 2013).

• Leverage cycles and bubbles: leverage cycles happen between good times and

bad times in financial markets. In good times, financial institutions and investors

expand on their investing and take bigger risk. In bad times, losses happen and

liquidation is inevitable (Adrian and Shin 2014; Bhattacharya et al. 2011); bubbles

happen when big investments are concentrated in a specific asset. Leverage cycles

and bubbles are linked (Allen and Gale 2000a).

(b) Contagion

Contagion in financial markets is similar to disease contagion in humans. A human gets

infected by a virus, which distresses the immune system of that person. Upon contact

between an infected person and non-infected, depending on the immunity condition of the

non-infected person, the infection will spread. A similar analogy can be used for when a

shock (virus) hits a financial institutions (human). If the financial institution is weak (i.e

over leveraged, maturity missmatch) it will become distressed/default and distress will

be passed to other institutions through direct (bilateral exposure) and indirect (financial

markets) channels. Benoit et al. 2017 recognizes the following channels for contagion:
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• Balance sheet: When banks have direct contact with each other also known

as bilateral connections. An example of a bilateral interaction is a loan from

bank i to bank j These bilateral links between banks create a complex network of

exposures between banks where a set of distressed banks can cause other bank to

be distressed. The network can be a double-edged sword: just as it can behave as

a contagious medium, it can also reduce the risk of banks default. Allen and Gale

2000b show that a complete network (i.e. one in which each bank is connected to

all others) is more robust than an incomplete network, whereas Freixas et al. 2000

show that a circular chain is less stable than a complete network. Allen et al. 2012

show that a network with disconnected clusters prevents contagion when extreme

events occur.

• Payment and clearing infrastructures: Banks can have indirect links because

of their customers. Customer operations can lead different banks to owe money

to each other. Clearing these payments can be a smooth operation in good times,

but in times of stress these operations can freeze.

• Information: As we discussed earlier, financial institutions are correlated in in-

vestments and tail risk; this correlation allows investors and depositors to draw

conclusions about others banks given some information regarding a specific bank.

This is known as contagion of information. If a well-known bank has some issues

regarding meeting its liabilities, investors and depositors will assume the same

thing regarding other banks (Chen 1999; Acharya and Thakor 2016; Cespa and

Foucault 2014).

(c) Amplification Mechanisms

Amplification deals with the reasons and mechanisms of why financial shocks on certain

banks spill over to other banks and end up stressing a large portion of the financial

network. Benoit et al. 2017 recognizes the following channels for amplification:
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• Liquidity-driven crises: liquidity refers to a bank having enough cash or highly

liquid assets to meet short term obligations like interest payments/margin calls.

When a bank has a liquidity crisis the bank is forced to liquidate assets which are

not highly liquid to cover up for its obligations. This liquidation process will cause

the asset price to drop down, thus more liquidation is required by the banks to

cover their required obligations (Allen and Gale 2004; Shleifer and Vishny 1992;

Gromb and Vayanos 2002).

• Market freezes: a simplified definition of a market freeze is that financial trans-

actions stop despite the benefits (e.g. profits, buying or paying obligations) that

result from such transactions. One example of a market freeze is observed in REPO

markets, a central topic in this thesis: in good times, investors do not acquire in-

formation about the collateral that is posted, but as market conditions change

investors start questioning the value of the collateral and information gathering

starts (see information contagion above). The asymmetry of information problems

start and investors will try to avoid certain types of collateral. This in turn leads

full chains of collateral to freeze (Heider et al. 2015; Gorton and Ordonez 2014a;

Gorton and Ordonez 2014b).

• Coordination failures and runs: In bad times, bank creditors tend to have

herd behavior. The problem is amplified by term mismatch between assets and

liabilities, especially if banks depend on short-term funding. As creditors rush to

call back their money in case of distress, this will leave the bank with big exposure

and liquidity crises (Calomiris and Kahn 1991; Martin et al. 2014; Bernardo and

Welch 2004). As we see, the sources of contagion do not behave independently but

rather interact which leads to amplification of the contagion problem.
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1.3.2 Classification by Collateral Re-use

As we will see repeatedly throughout this thesis, the main idea of repurchase agreement

(REPO) is to secure financial transactions. A REPO is accomplished when a borrower

gives the lender collateral. The collateral will be held by the lender in case the borrower

defaults. If the borrower defaults, then lender has the right to liquidate the collateral

and cover its loss. Collateral re-use (rehypothecation) happens when the lender borrows

money on a collateral that it received from a previous REPO transaction and posts it

to another lender, as shown in Figure 1.3.

Figure 1.3: This figure shows two REPOs. In the first REPO, between
banks A and B, bank A gives bank B a collateral and bank A gives a loan
to bank B. In the second REPO, between banks B and bank C, bank B
posts to bank C the same collateral it received from bank A.

According to Accornero et al. 2020, there has been a debate on whether REPOs

stabilize financial markets or not. The following ideas are noted for collateral use and

re-use:

• Collateral use links securities and credit markets thus forming a channel to transfer

systemic risk.

• Collateral re-use allows the same security to be used by multiple financial institu-

tions thus linking the financial institutions together.

• Collateral re-use allows multiple financial institutiosn to borrow on the same secu-

rity thus increasing leverage of the financial system.
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On the one hand, Accornero et al. 2020 classifies papers based on “collateral re-use

in connection with systemic fragility” according to the following mechanisms:

(a) REPO runs (coordination failure)

A REPO run is similar to bank run in the sense that financial institutions and investors

stop REPO rollover. Stopping rollover can take different forms: rejecting entering into a

new REPO transaction, increasing hair cut, modifying margin call specification, rejecting

specific collateral type and depressed collateral price (Gorton and Metrick 2012a; Martin

et al. 2010; Kuong 2015).

(b) Costly information and declining collateral quality

Costly information comes in the form that one side of the financial transaction has

valuable information that the other side lacks. For example, in the 2007-2008 mortgage

backed securities (MBS) crisis, financial institutions packaged the MBS and sold it as a

high quality security to investors. Investors did not know that many of the individual

mortgages that were packaged were owned by struggling home owners. This information

asymmetry led investors to be stuck and the financial markets to collapse. Collateral

quality is also an important aspect in a REPO market. The better the quality of a

collateral the easier is the transaction between highly rated and lowly rated financial

institutions. In good times, the requirement for high quality collateral is eased and the

quality of posted collateral starts to decline in the financial markets. In bad times, low

quality collateral will lose a large amount of its value when it is liquidated and will result

in huge losses or not being able to cover losses by defaulting banks (Gorton and Ordonez

2014c).
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(c) Margin/leverage cycles/leverage spirals

Leverage happens when financial institutions borrow money to invest. In good times,

credit is available for cheap interest and financial institutions borrow large amounts

of money to invest in financial assets. This will lead to an increase in leverage, and

consequently, because of higher demand, security prices go up. As bad times arrive and

security prices drop, this will lead to big losses for financial institutions and will further

lead to fire sales to close financial positions. After closing financial positions and losses

are realized, the leverage of the financial institution will decrease (Geanakoplos 2003;

Geanakoplos 2010; Geanakoplos and Zame 2014; Brunnermeier 2009; Brunnermeier and

Pedersen 2009; Mancini et al. 2016; Ranaldo et al. 2016; Ranaldo, Wrampelmeyer, et al.

2016).

(d) Collateral scarcity

Having high quality collateral is important in order to preserve collateral value in bad

financial times. Not having enough high quality collateral will make institutions substi-

tute lower quality collateral and subject them to fire sale exposure. Another possibility

is that many of the financial institutions will be excluded from financial transactions

(Domanski, Neumann, et al. 2001; International Settlements 2013; Heider and Hoerova

2009; Gorton and Ordonez 2022).

Additionally, Accornero et al. 2020 classifies papers based on “collateral re-use and

for the assessment of its interactions with the rest of the financial system”:

(e) Re-use, liquidity, and leverage

Collateral re-use allows more financial institutions in the financial markets if collateral

quality is an issue. More over, re-use eases market prices for collateral by stopping

competition for collateral. On the other hand, collateral re-use allows leverage to build
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up fast especially if hair cuts are low for high quality securities (Bottazzi et al. 2012;

Andolfatto et al. 2017a; Gottardi et al. 2019).

(g) Re-use, inflation, and liquidity

If cash and collateral are both available, collateral will be preferred. Inflation lowers the

value of cash with time. By limiting the number of times a collateral can be used this

will create a balance between cash and collateral demand (Andolfatto et al. 2017b).

(h) Re-use, leverage, and volatility

As we discussed earlier, collateral haircut has an inverse relation with leverage. The lower

the haircut the higher the leverage a security offers. for example, if a security requires

1% hair cut that means the investor only has to put 1% of the value of the security as

a down payment. When collateral can be used multiple times leverage is increased as

a whole in the financial system. In a leveraged financial system small fluctuations in

security price can lead to big wins or losses thus affecting security volatility as investors

react to price fluctuations by either taking profits or cutting losses (Grill et al. 2017).

1.3.3 Classification by Contagion Channels

Aymanns et al. 2018b introduces agent-based models as an alternative to the classical

models approach(equilibrium models). To encompass a behavioural approach model

(compared to classical approach) they adopted the following definition for systemic risk:
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“Systemic risk occurs when the decisions of individu-

als, which might be prudent if considered in isolation,

combine to create risks at the level of the whole sys-

tem that may be qualitatively different from the sim-

ple combination of their individual risks. By its very

nature systemic risk is an emergent phenomenon that

comes about due to the nonlinear interaction of indi-

vidual agents. To understand systemic risk we need

to understand the collective dynamics of the system

that gives rise to it.”

The classical approach deals with equilibrium models. In equilibrium models there

are many simplifications and assumptions. One of the main assumption is the rational

behaviour of the agents. One of the main criticisms of the classical approach that during

stressed times the rational behaviour and equilibrium are unattainable.

Aymanns et al. 2018b defines a contagion channel as:

“A channel of contagion is a mechanism by which

distress can spread from one financial institution to

another. Often the channel of contagion is such that

distress can only spread from one institution to a sub-

set of all institutions in the system. These susceptible

institutions are said to be linked to the stressed in-

stitution. The set of all links then forms a financial

network associated with the channel of contagion.”

Aymanns et al. 2018b classifies papers according to the following contagion channels:
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(a) Counterparty loss

Financial institutions balance sheets are linked together through direct bilateral con-

tracts. A direct loan is an example of a bilateral contract. Retrieving the loan from

a counter party depends on the default probability and recovery rate of the borrowing

financial institution. When a financial institution is hit with a shock (endogenous or

exogenous), this increases the probability of default and might affect recovery rate as

well. The change in default probability and recovery rate of the borrower will affect the

market price of the loan that is given by the lender. Lowering the loan value puts stress

on the lending financial institution and increases the lender default probability. Conta-

gion starts in the network as there are bilateral links between financial institutions in

the network (Eisenberg and Noe 2001; Gai and Kapadia 2010; May and Arinaminpathy

2010; Elliott et al. 2014; Acemoglu et al. 2015; Battiston et al. 2012; Capponi et al.

2016).

(b) Overlapping portfolios

As there are direct links (bilateral contracts), financial institutions can also be linked

indirectly. When two or more financial institution hold the same security in their balance

sheets, balance sheets will be linked together through the fire sale mechanism. Assume

we have banks A and B. Both banks hold security S. When bank A is stressed, it will

try to cover its losses by liquidating security S in the market. As the fire sale starts the

security price drops, which in turn will affect bank B’s balance sheet. Now bank B faces

losses due to bank A’s stressed situation. This stress effect will affect the entire network

through market connection (Caccioli et al. 2015; Cont and Schaanning 2017; Eisenbach,

Duarte, et al. 2014; Greenwood et al. 2015; Cont and Wagalath 2016).
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(c) Funding liquidity

This happens when the lender decides to stop rolling over its loans to its counter parties,

which can happen for many reasons: (1) the lender bank has experienced a shock and

need liquidity to cover its losses; (2) the default probability of the borrower bank has

increased which raises concerns regarding its liquidity; (3) collateral value decreased and

a new collateral type is needed (in case of secured loan); (4) interest rate increases; (5) in

stressed times, financial institution tend to hoard liquidity in case something unexpected

happens. It is worth mentioning that there is market liquidity. Market liquidity refers to

how efficiently securities can be liquidated without losing value in the market. Fire-sales

take advantage of illiquid markets. In illiquid markets selling a large amount of securities

tend to depress the security price and thus incurs losses on financial institution balance

sheets (Gai et al. 2011; Diamond and Dybvig 1983; Morris and Shin 2001; Anand et al.

2015).

(d) Contagion channel interactions

Contagion channels are not independent but rather spill-over to each other. When spill-

over happens this tend to happen in a nonlinear fashion which in turn leads to amplifying

the effects of the shocks (Chen 1999; Acharya and Thakor 2016; Cespa and Foucault

2014; Arinaminpathy et al. 2012).

1.3.4 Classification by Network Structure

Financial institutions form links between each other for many reasons. These links on the

macro scale form a financial network. Financial networks topology has been studied to

check which structures make the network weak and vulnerable to contagion, and which

structures make the network robust and resilient to financial shocks transfer between

financial institutions. Studying the location of the shock in the financial network and
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its effect on the spillover has been of great importance as well. Iori and Mantegna 2018

adopted the following classification based on network structure:

(a) Interbank Networks Connectivity and Contagion

There is a debate between academics whether highly dense networks are robust and re-

silient against financial shocks. Allen and Gale 2000b argues that highly dense networks

allows the losses occurred by a bank to be distributed over to many banks in small por-

tions. On the other hand, other academics argue that highly connected networks will

increase interaction between agents and have spillover effects (Anand et al. 2012; Lenzu

and Tedeschi 2012; Georg 2013; Roukny et al. 2013). Haldane 2013; Glasserman and

Young 2015 show that highly connected networks can be robust till a certain point where

robustness breaks down, after which spillover and other mechanisms (e.g. bankruptcy

costs, mark-to-market (MtM) losses) can amplify the financial shock on the network.

(b) Empirical Interbank Networks

Studies of interbank financial networks have been done on multiple countries. These

studies highlight the following points regarding the properties of the networks: (1) Fi-

nancial networks are not dense/complete, they rather have a fat tailed degree distri-

bution, namely one in which most nodes have few connections while few nodes have

the majority of connections (Bech and Atalay 2010; Peter 2010; Langfield et al. 2014);

(2) some studies identify the “power-law, scale-free” distribution of the form k−α (Boss

et al. 2004; Inaoka et al. 2004; Soramäki et al. 2007); (3) other studies identify structure

as “core-periphery” network (Martinez-Jaramillo et al. 2014; Fricke and Lux 2015; Van

Lelyveld et al. 2014). Observe that there is a difficulty in classifying the distribution

in empirical networks between scale-free and core periphery networks. The reason for

this is that scale-free almost surely contains a dense core and sparse peripheries which

is similar to core periphery network structure. See figure 1.4 for details.
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Figure 1.4: Interbank network structure of Austria. Different colors are
used for nodes to indicate grouping of financial institutions. Source:Boss
et al. 2004

(c) Multilayer Networks

So far our discussion was revolving around single layer networks. The financial network

describes connection of banks with respect to a certain contract (e.g. a loan). In real

life banks are connected to each other through different types of financial contracts (e.g.

loans, options, swaps), and it makes sense to have a network layer for each financial

contract. Multilayer networks can lead to a different conclusions regarding financial

stability compared to single layer network (Boccaletti et al. 2014; Kivelä et al. 2014).

For exmaple, a single layer scale-free network is more robust than a single layer Poisson

network, while a multilayer Poisson network can be more robust than a multilayer scale-

free under certain conditions (Kenett et al. 2014).
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1.3.5 Other Classification Criterions

Silva et al. 2017 uses ten categories to classify financial systemic risk. We will introduce

only two of these categories that are relevant to our research, namely:

(a) Methods used

It is evident in this classification category, from table 1.1, that computer simulations,

whether used in isolation or combined with other methods, still represent a new area of

study, one which allows us to relax some of the assumption and opens new opportunities

to understand systemic risk.

Method Used Number of Articles
Econometric/Statistical/Multivariate Analysis 134

Computational/Simulation 1
Mathematical Modelling 40

Econom./Stat./ Multivariate An. & Comput./Simulation 9
Econom./Stat./ Multivariate An. & Mathematical Model 22

Comput./Simulation & Mathematical Model 15
Econom./Stat./ Multivariate An. & Comput./Simulation & Mathematical Model 5

Not applicable 40

Table 1.1: Methods used to study financial systemic risk. Source: Silva
et al. 2017

(b) Object of Study

In this classification, articles are grouped according to channels that affect financial

systemic risk. Table 1.2 shows that these factors each have been studied thoroughly

but the table also shows that research of the effect of multiple channels is not well

represented. Table 1.2 shows these channels/factors:

Other classification categories that are used by Silva et al. 2017 are: type of study

(theoretical and empirical), approach (quantitative and qualitative), comprehensiveness

in geographic terms (one vs multiple country), context (developed vs undeveloped coun-

try), focus (bank, insurance or hedge fund), period studied (number of years used), type
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Object Number of Articles
Regulation 71
Market risk 53

Credit Risk/Default/Counterparty/Sovereign 46
Liquidity risk. 23

Contagion 55
Size of institutions. 14

Interconnectivity/Interdependence 54
Concentration/Diversification/Competition 15

Others 56

Table 1.2: Object of study for systemic risk. Source:Silva et al. 2017

of data analysed (market, balance sheet or macroeconomic) and results (comparative

study and consistency with previous literature).

1.4 Discussion of Network Models

In this section, the Eisenberg and Noe 2001 and Gai et al. 2011 models will be reviewed

and discussed, in particular with respect to their assumptions and limitations. These

models serve as the building block for the agent-based model discussed in this thesis. We

use notation that is consistent with the remainder of this thesis, which in a few instances

differs from the notation used in the original papers.

1.4.1 Eisenberg–Noe Model

This section will discuss the Eisenberg-Noe (EN) model, considered one of the pioneer

model in contagion modelling of financial networks.

Model Components: The model is made of the following parts:

• A set [N ] = {1, 2, 3, ..., N} of N financial institutions.
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• An N×N liability matrix with components Lij representing the amount that i

owes j, for i, j ∈ [N ], satisfying two conditions: (1) Lij ≥ 0, as a negative entry

would be considered as liability from j to i instead, and (2) Lii = 0, meaning that

no financial institution has liabilities to itself.

• An n × 1 vector e, where ei ≥ 0 represents the cash-flow received by institution i

from outside the financial network.

The total liability p̄i owed by bank i defined as the row sum:

p̄i :=
n∑

j=1
Lij , (1.1)

from which we define the total obligation vector p̄ = (p̄1, p̄2, ..., p̄n)T , as well as the total

payments vector p = (p1, p2, ..., pn)T with components pi ∈ [0, p̄i] to be determined.

Define the relative liabilities matrix Π as:

Πij =


Lij

p̄i
, if p̄i > 0

0, otherwise
, (1.2)

so that we have ∀i ∈ [N ],
n∑

j=1
Πij = 1. Thus the financial system in EN can be equiva-

lently defined by (Π, p̄, e).

Assumptions: The following additional assumptions are listed by Eisenberg and Noe

2001:

• Interbank debit of equal priority: allows the use of proportionality of nominal lia-

bilities to pay creditors, that is, the total cash flow received by a financial institu-

tion i is

Ai :=
n∑

j=1
ΠT

ijpj + ei, (1.3)

where 0 ≤ pj ≤ p̄j is the total amount paid by institution j.
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• Limited liability: The financial institution will never pay its creditors more than

the assets value it receives:

pi ≤ Ai (1.4)

• Absolute Priority: all available cashflows must be used to pay creditors, that is, in

the situation when Ai < p̄i, we must have

pi = Ai (1.5)

Combining the three above assumptions Eisenberg and Noe 2001 reaches the following

formula for the clearing payment vector :

pi = min [p̄i, Ai] = min

p̄i,
n∑

j=1
ΠT

ijpj + ei

 . (1.6)

In words, if the total cash flow Ai received by institution i is strictly greater than its total

obligations p̄i, then the payment made pi is equal to the original obligation p̄i and the

institution is deemed not to have defaulted. Conversely, if the total cash flow received is

less than or equal to its total obligations, then the payment made equals the total cash

flow received, and the institution is deemed to have defaulted.

If we interpret the total cash flow received as the only assets of the financial institu-

tion, we can rephrase the above in terms of the capital (or equity) for financial institution

i, defined as

Ei := Ai − pi =
n∑

j=1
ΠT

ijpj + ei − pi, (1.7)

in the sense that the institution defaults if and only if Ei = 0, which is equivalent to

pi = p̄i. This simplified balance sheet structure is represented in Figure 1.5, from which

it can be seen directly that the balance sheet of EN is rather too simple and it does not

represent the real life complexity that financial institution face.
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Figure 1.5: Bank i Balance Sheet as in EN.

It is clear from (1.6) that the payment made by institution i depends on the payments

made by all other institutions, so that the clearing payment for the financial network is

obtained as the solution to the fixed point equation

p = p̄ ∧ (ΠT p + e) = Φ(p), (1.8)

where x ∧ y = (min[x1, y1], ..., min[xn, yn]) for x, y ∈ IRn. Under certain technical

conditions, Eisenberg and Noe 2001 prove the existence and uniqueness of the clearing

vector p and use the following fictitious algorithm in order to find the fixed point in 1.8.

Clearing mechanism (fictitious algorithm): The aim of the clearing mechanism is

to determine how much each bank should pay its neighbor banks after a financial shock

and update the balance sheet accordingly. The steps in clearing process are as follows:

• in the first round, compute the payment of each bank given that it will receive its

assets value in full from other banks.

• if no bank defaults, terminate the algorithm.

• if some banks default, another round of computation starts. Rerun the algorithm

by changing the payment values of the defaulted banks. In this round some banks

who are connected to the defaulted banks will not receive full value for their assets.
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• invoke a new round of computation until the set of defaulted banks stops changing.

It is worth mentioning that since the system has N nodes, the algorithm will take

at most N iterations to terminate. On the other hand, the time point at which a bank

defaults while solving the fictitious algorithm will determine the systemic risk exposure

of the banks. Banks that default at the beginning have a higher systemic risk than banks

defaulting at the end of the fictitious algorithm.

Problems with EN model: The following issues are observed with EN model:

• Overly simplistic balance sheet: as stated above, the only liabilities in the balance

sheet of a financial institution i are the payments Lij owed to other financial

institutions in the network, whereas the only assets are payments owed from other

institutions plus the single external cash flow ei.

• e ≥ 0 is a strict condition: Elsinger et al. 2009 provides an example where the algo-

rithm breaks down if this condition is not satisfied. Consider the following financial

network (Π, p̄, e) and the output:

e =


1
3
4

−9
8

, Π =


0 0 0
1
2 0 1

2

1
4

3
4 0

, p̄ =


1

2

1


fictitious algorithm============⇒ p1 = f(p0) =


1

− 3
20

−6
5


Which clearly shows the solution is wrong since all entries of vector p should be

positive to represent liabilities. The correct answer, according to Elsinger et al.

2009, is p = (1, 3
4 , 0)T .

• No default costs: (1) assuming a defaulted bank i will receives the entire value

of its external assets ei after liquidating, and thus firesale has no effects in the

market on their ei cashflow. (2) Assuming upon default that the defaulted bank

will be able to retrieve their entire loans, represented by
n∑

j=1
ΠT

ijpj without a loss,

immediately. Rogers and Veraart 2013 suggested the following extension to EN
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model:

pi =


p̄i, if p̄i <

n∑
j=1

ΠT
ijpj + ei

β
n∑

j=1
ΠT

ijpj + αei, otherwise
(1.9)

Where α, β ∈ [0, 1] and they represent recovery rate. If α = β = 1 this will retrieve

EN model.

• Deterministic and static model: (1) EN is a deterministic in the sense that, once

the financial model (Π, p̄, e) is initiated, it has no stochastic components during

the life time of the model. In particular, there are no fluctuations in market prices

or fluctuations in cashflow e. (2) It is static in the sense that when the fixed point

problem is solved the model stops. The model starts by assuming that there is

a healthy financial network, the network receives a shock and after the shock the

fictitious algorithm finds the new value of the liabilities in the network then the

model stops. That is to say, it is a one-period model.

• Conservation of losses: Visentin et al. 2016 states that EN suffers from conservation

of losses, in the sense that the final cumulative loss cleared by the system equals

the initial cumulative financial shock received by the network. Thus EN model

lacks amplification mechanisms, and therefore low contagion levels, by design.

• Implicit assumptions: according to Visentin et al. 2016 some of the implicit assump-

tions that exist in EN model are: (1) removal of uncertainty and stochasticity by

full knowledge of exogenous shocks, financial institution balance sheets and finan-

cial network. (2) All financial institutions agree to pay what the clearing algorithm

dictates. There is no uncertainty in payments and thus there is no amplification of

losses due to further rejection of payments. (3) contagion of financial shock does

not happen when a financial institution capital reaches zero value, it only happens

when the required payments exceed the capital value.
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1.4.2 Gai-Haldane-Kapadia Model

Gai et al. 2011 is a threshold cascade model. The main idea of Gai-Haldane-Kapadia

(GHK) is adapted from the Watts 2002 model, which is a basis for many cascade models.

In Watts 2002, a randomly connected network has nodes that have binary state 0

or 1. Each node is initialized with a state, with a given probability, and a threshold

fraction ϕ, where ϕ is taken from a probability distribution on the unit interval. If a

node i has a state of 0, it checks the status of its neighbors. If a fraction of its neighbors

larger than the threshold ϕ have status 1 then node i changes its status to 1; otherwise

its status stays 0. Let pk be the degree distribution of the network, z be the average

degree of the graph and ρ0 ≪ 1 be the portion of the graph that has state 1 at t = 0.

Under certain technical conditions, a seed which is a node with initial state 1 can grow

if one of its neighbors has ϕ < 1
k , where k is number of neighbors, which is known as the

vulnerability condition. The main result of the model is that a very small fraction of

seeds in an infinite network can lead to activating a considerable fraction of the network,

which is known as a global cascade, provided z is in a range of values that indicates the

network is neither sparse nor dense. The final fraction ρ of activated nodes in the graph

can be computed through two ways: (1) tree-based method or (2) generating function

method. Figure 1.6 shows an example of a final activated fraction of the network for

different values of z, using tree-based method:

In the remainder of this section, we will discuss Gai et al. 2011 model in more detail.

Although the Watts 2002 model uses undirected graph, Gai et al. 2011 is a directed graph

and the arguments of Watts 2002 can be extended by introducing in-degree distribution

which represents the distribution of edges pointing toward a node from other nodes and

an out-degree distribution which represents the distribution of number of edges pointing

out from a node toward other nodes.

Model Components: GHK model encompasses a more sophisticated balance sheet
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Figure 1.6: This graph is generated using N = 105, ϕ = 0.18, a seed
fraction ρ = 10−4, and Poisson degree distribution, z is the mean of the
Poisson distribution. Circles represent average cascade size over 1000
runs. It can be seen that cascade fraction develops when the network is
not too sparse and not too dense. Source: Caccioli et al. 2018.

and it has more model components compared to EN model as shown in Figures 1.7 and

1.8:

Accordingly, the assets, liabilities and capital (or equity) in the GHK model are given

by1:

Ai = AL
i + AC

i + ARR
i + AIB

i + AF
i , (1.10)

Li = LR
i + LIB

i + LD
i (1.11)

Ei = Ai − Li (1.12)

It can be seen that GHK model has a more realistic representation of aggregate
1In the remainder of the thesis we use AR

i to denote the reverse-REPO assets of bank i, but decided
to leave this as ARR

i in this subsection to be consistent with Figure 1.7, reproduced from Gai et al. 2011.
Similarly, for the remainder of the thesis we use AU

i and LU
i to denote the unsecured interbank assets

and liabilities denoted by AIB
i and LIB

i in Gai et al. 2011.
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Figure 1.7: Model parameters used in GHK model. Source: Gai et al.
2011.

Figure 1.8: Bank i Balance Sheet as in GHK.

balance sheet of financial institutions than the EN model, which corresponds to the

special case where Ai = AIB
i and Li = LIB

i .

Assumptions: The following assumptions are listed by GHK:

• In-degree distribution equals out-degree distribution: In a directed graph, a joint
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bivariate in-out-degree distribution is needed. But since every lender should have

a borrower this leads to the observation that the average degree distribution of

lenders should equal the average degree distribution of borrowers. In this model,

z represent the average degree of connectivity of a node.

• Division of interbank liability: LIB of a bank will be divided equally on its counter-

parties. That means a bank will have the same exposure to its counter-parties, and

concentration of risk will be avoided. It should be noted that although the aggre-

gate value of assets in the network should equal the aggregate value of liabilities

in the network, a specific bank can still have a surplus or deficit in its inter-bank

assets/liabilities.

• Collateral type: fully liquid assets AL can be used as collateral but fixed assets AF

and inter-bank assets AIB cannot be used as collateral.

• Hair cuts (h and hi): the parameter h ∈ [0, 1] represents the risk associated with

collateral as perceived by the market and is a function of illiquidity, asymmetric

information, and increase in probability of default of underlying instrument. Any

change in these factors will lead to a change in h value. In the event of default of

the collateral giver, the collateral receiver will liquidate the collateral but might

not be able to collect the full value. Thus, h is used as a defence mechanism in case

the value of the collateral drops. On the other hand, we have hi that represent the

risk associated with a particular bank defaulting on its obligations. The maximum

value a collateral can raise in case of a secured loan is (1 − h − hi)AC .

• Collateral Rehypothecation: if a bank enters in a secured lending (reverse-REPO)

it will receive collateral that the bank can re-use in another secured lending to

collect money for itself. The maximum refunding a bank will receive in this rehy-

pothecation scenario is (1−h−hi)ARR
i

(1−h) . For example, assume that bank A borrows

from bank B using Apple shares in the amount $100 as collateral with a common
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haircut h = 0.1 and idiosyncratic haircut hA = 0. Bank B will lend A the amount

(1−h)×$100 = $90, thus B will have AR = $90 on its balance sheet, corresponding

to $100 in Apple shares pledged as collateral. Assuming that hB = 0.05, Bank B

can then use Apple shares as collateral for another REPO with bank C, for which

it will receive (1 − h − hi) × $100 = $85.

• Other assumptions: (1) No inflow or outflow of deposits; (2) new capital raising is

not allowed; (3) no favourable collateral treatment, all banks get what the market

offers; (4) are withdrawn is done in equal proportions from counterparties in order

to distribute the pressure of liquidity hoarding.

Contagion dynamics: For contagion to happen, certain conditions have to be met, so

that liquidity shocks propagate from one bank to another. Namely:

• Liquidity condition: At each period, bank i needs to have access to funding to

pay for a financial shock ϵi, REPO borrowing LR
i , and a proportion µi of its

counterparties for unsecured interbank liabilities LIB
i , each recalling an average

fraction λ, leading to the following liquidity condition:

AL
i + (1 − h − hi)AC

i + (1 − h − hi)
(1 − h) ARR

i + LN
i − LR

i − λµiL
IB
i − ϵi > 0, (1.13)

where the first four terms correspond to

– AL
i : cash assets;

– (1 − h − hi)AC
i : maximum REPO funding from collateral;

– (1−h−hi)
(1−h) ARR

i : maximum REPO funding from rehypothecated collateral;

– LN
i : new loans.

• Liquidity hoarding: when a bank recalls loans from its counterparties, this will

put pressure on the counterparties to continue their normal operation. In turn,
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these counterparties will be forced to recall loans from their counterparties and

thus the pressure moves through the network in the form of waves from one set

of banks to another. The wave of distressed banks will keep expanding until it

reaches banks that do not suffer distress, thus the wave stops expanding or all the

banks will become distressed as a result of liquidity hoarding. Assume that bank

i has ki counterparties, one of which (represented by µi = 1/ki) hoards liquidity

and recalls its interbank loans. Then the liquidity condition in 1.13 will become

negative and contagion will start to spread provided we have:

AL
i + (1 − h − hi)AC

i + (1−h−hi)
(1−h) ARR

i + LN
i − LR

i − ϵi

λLIB
i

<
1
ki

(1.14)

• Stark assumptions: to have a better understanding of the dynamics of the contagion

and in order to attain an analytical result, extra assumptions have to be made:

(1) assume ji = ki = z for all banks, which means rather than generating the

network randomly with z as average edge connection, each bank shall have exactly

z connections as a lender and z connections as a borrower; (2) no haircut based on

individual bank specifics (hi = 0) and no external financial shock (ϵi = 0); (3) full

recall of loan (λ = 1); (4) new unsecured lending is not allowed (LN
i = 0); (5) all

balance sheets are identical in banks. The last assumption will allow the removal

of subscript i from the formula. All these assumptions will lead for formula 1.14

to be written as:

z < z∗ = AIB

AL + (1 − h)AC
(1.15)

Formula 1.15 shows the “tipping point” condition that will lead to the financial shock

spreading across the financial network. If 1 ≤ z < z∗, which means there is connectivity

in the network and condition 1.15 is met, and any bank recalls loans, all its neighbors

will be forced to recall loans and liquidity hoarding happens. Liquidity hoarding will

travel the network in waves from closer neighbors to further neighbors since all banks
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now have the same “tipping point”condition. If the condition in formula 1.15 is not met,

a single financial institution hoarding liquidity will not affect the network. Moreover,

the numerator and the denominator in equation 1.15 tell us how the composition of

the balance sheet affects the spread of the contagion and which components should be

increased or decreased. Namely, in order to decrease the likelihood of contagion due

to liquidity hoarding, one should decrease the amount of interbank lending (i.e smaller

AIB) or increase the amount of liquid assets and collateral (i.e larger AL and AC).

As mentioned before, it can be seen that GHK model has a better aggregate balance

sheet compared to EN model. But GHK still share some drawbacks with EN model,

namely: (1) It is deterministic and static; (2) a financial shock wave is resolved in one

time step; (3) the simplifications of 1.15 require too many unreasonable assumptions;

(4) default resolution, in particular what happens to rehyptothecated collateral upon

default of multiple banks, is not discussed.

1.5 Scope of the thesis

As we have seen, both the Eisenberg-Noe (EN) and Gai-Haldane-Kapadia (GHK) models

have strict assumptions and they have some drawbacks and limitations. The main

purpose of this thesis is to introduce and analyze a model that addresses these limitations.

We generalize the EN model assumptions in the following way. First we overcome

the simple balance sheet in EN by adopting a GHK-type balance sheet. As for e ≥ 0

condition, we allow AL in GHK to be negative to present the possibility of a credit

line. Although we do not have default costs in our model, they can be easily added by

imposing a penalty on the assets values. As for deterministic and static features, we

have a stochastic component in our model in the form of security prices, and we can

incorporate more stochasticity by adding it to liquidation and fire sale channels. As
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for conservation of losses, our model overcomes this shortcoming by having a liquidity

function that suppresses security prices as the fire sale channel is triggered.

Similarly, we generalize the remaining GHK model assumptions, that is, beyond those

that are shared with the EN model, in the following way. The one-time-step financial

shock resolution is replaced in our model by a multi-step resolution. Moreover, agents

not only have to deal with initial financial shock, but also have to deal with market

price fluctuations (stochastic price) as well, whereas market price fluctuations are not

present in the GHK model. Moreover, whereas the GHK model does not present default

resolution for failed banks, especially for rehypothecated collateral, our model introduces

an explicit algorithm called novation that not only allows removing defaulted banks with

minimal effect to the financial network, it also allows us to tell how much each bank owns

of the rehypothecated collateral.

This thesis consists of this introduction and three other chapters. Chapter 2 intro-

duces financial agents, financial contracts and the REPO market in greater detail, as

well as the constraints and rules associated with this market. In this chapter we shall

discuss important topics that affect financial agent survival while keeping the stability of

the financial system a priority. We shall also discuss liability matrix initialization as this

process is not trivial . Chapter 3 deals with our proposed novation and auction mech-

anisms. Novation is a technique used in a default situation, whereby the ownership of

contracts that are held by defaulted banks is transferred to other, non-defaulting banks.

As we will see, provided there are no liability cycles among the banks to be removed,

novation is order-indifferent, meaning that the order in which we remove banks from

the network will have no effect on the final result of the balance sheet of the remaining

banks. When cycles are present, a netting technique is introduced as well, which is used

to lower the total exposure in multilateral contracts between counterparties, and we will

observe that netting, unlike novation, depends on the order in which we pick pairs of

banks, although the effects of this are reduced when followed by novation. As for the
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auction part, we will explain how a bank in our model might encounter a financial shock

and what the response should be to these shocks. In chapter 4 we introduce simulations

in three parts: the first part checks different netting setups and the effect they have

on the network; the second part checks different novation setups and confirms that the

order of novation does not affect the final result of removing banks from the system; the

third part deals with financial shocks and their effects on different network topologies

and balance sheet composition. We will notice that using the a hoarding metric only is

not enough and that by introducing an additional default metric we will gain a clearer

picture of the effect of the financial shocks and a better understanding of the financial

agent’s behaviour.
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Chapter 2

An Agent-Based Model for the

REPO Market

2.1 Introduction

Nowadays, banks hold intense connections worldwide. Since the beginning of 21st cen-

tury, researchers started to build models for the whole financial system, instead of focus-

ing on single or few companies. For example, in 2001, Eisenberg and Noe 2001 introduce

the network model described in the previous chapter to analyze the effect of one default

to the whole financial market. As we have seen, they use the uncollateralized liabili-

ties between two firms to construct relative liability matrices describing the connections

between firms. Based on this description, they compute the payouts of firms to their

counterparties. This model is one of the fundamental models for many subsequent pa-

pers, such as Liu and Staum 2010 and Feinstein et al. 2018, which conduct a a sensitivity

analysis of the EN model.

Instead of borrowing or lending in the regular loan market, increasingly banks borrow

or lend their money through a collateralized loan market – the sale and repurchase

(REPO) market. As briefly described in the previous chapter, a REPO agreement is

the sale of a security combined with an agreement to repurchase the same security at
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a specified price at the end of the contract1. This transaction can be also viewed as

a collateralized loan. Over the last 40 years, the size of the REPO market increased

dramatically, doubling in size from 2002 to 2007 alone.

As a result, many researchers include the collateralized loan into their research. For

example, Gai et al. 2011 construct the network model described in the previous Chapter,

which includes borrowing from a REPO market and withdrawing of the deposits. They

focus on an analysis of a shock in haircut of the collateral and its effect to the whole

network, using a mean-field approximation. As another example, Luu et al. 2021 build a

rehypothecation network model and focus on the effect of collateral hoarding in different

network topologies. Relatedly, Paddrik et al. 2018 use a fixed-point method to analyze

credit default swaps (CDS) network through central counterparties (CCP) and liquidity

buffer. They use a matrix to describe the collateral relationship and introduce a soft

default system, that is, one with delayed or partial payments.

During the 2008 financial crisis, one major channel for the spread of the subprime

financial shock was the REPO market. Severe bankruptcies of companies led to low con-

fidence in many securities. Because the trades in the REPO market use these securities

as collateral, low confidence in these securities caused adverse effects to this market. As

the REPO market froze, companies could not use it to finance their positions, which

caused liquidity issues that aggravated the ongoing crisis.

In this chapter, we want to introduce the financial concepts related to a REPO

contract and the REPO market, as well as an agent-based model that can be used to

analyze it. The structure of this chapter is as follows. Section 2.2 fully specifies the

type of overnight REPO that will be traded across the network of banks, including

the stock-flow consistent treatment of bank balance sheets. Section 2.3 describes the

need for an RSO in such a network, that plays the roles of auditor, provider of daylight
1For more information regarding regulation and usage of collateral and repurchase agreement (REPO)

check details in Gorton and Metrick 2010; Gorton and Metrick 2012b
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overdraft to banks, and oversees the removal of any banks from the REPO network

when they are identified as insolvent. In Section 2.4, we explain balance sheets of banks,

including collateralized liabilities accounts. In Section 2.4.4, we study the source of

liquidity pressure. In Section 2.5 we introduce a priority of debt resolution and priority

of liquid assets and liquidation process to meet policy constraints. In section 2.6, the full

agent-based model is described, together with a discussion regarding the initialization

of the liability matrix and balance sheets.

2.2 Repurchase Agreement (REPO) Basics

A contract in the REPO market specifies two transactions. At the beginning of the

contract, one party sells a specific security to its counterparty at a given price. At the

end of the contract, the party repurchases the same security from its counterparty at

an agreed price, which was decided by two parties during the contract’s negotiation.

Here, the specific security can be seen as a collateral in this “collateralized” borrowing

transaction, with the collateral provider seen as a borrower (or cash receiver) and the

collateral receiver seen as a lender (or cash provider). The relative increment from the

initial price to the repurchase price of the collaterl can be seen as an “interest rate”, called

the REPO rate. In order to cover the potential loss of a cash lender, the market value

of a collateral is typically larger than the cash transaction, with the relative difference

being called the haircut, which can vary from 0.5% to over 8% based on different quality

of the collateral.

More explicitly, the fundamental parameters of a REPO are:

1. the period [t1, t2], t2 = t1 + δt;

2. the market value of the collateral AC at time t1;

3. the original sale price LR at time t1, or equivalently the haircut h defined by

(1 − h)AC = LR;
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4. the repurchase price (1 + rRδt)LR at time t2, or equivalently the REPO rate rR.

Sometimes, the margin m, defined by 1+m = (1−h)−1, is quoted instead of the haircut,

so that AC = (1 + m)LR.

Drilling deeper, one finds a wide diversity across different countries and markets of

REPO specifications, the allowed collateral, the regulatory, legal and accounting rules

that are applied, and how they are used.

For example, in the most common form, REPOs are initiated by a party that seeks

cash and posts collateral. In such cases, the purchase price is less than the market value,

in other words, the haircut h is positive, and the REPO rate should be slightly higher

than the risk free rate. Moreover, the collateral, called “general collateral”, is some form

of a highly liquid, low-risk security such as a Treasury bill or government bond. The

alternative form of REPO, called a “special REPO”, is initiated by a party that seeks a

particular security, such as a stock, for the purpose of short-selling. Here, the purchase

price paid by the collateral buyer will typically be higher than both the market value

and the repurchase price, which means the haircut h is negative and the REPO rate rR

is less than the risk free rate.

Another dimension of variation is the duration of the REPO, that may range from

overnight (24 hours), to months or even years. Some REPOs are “open”, meaning they

roll over at fixed dates until one party opts to close out.

Many different REPO resolution mechanisms are used to deal with events when one

party defaults. An important design feature in some REPOs is called “safe harbour”

that exempts REPO creditors from the “automatic stay” provisions that prevent other

creditors from seizing defaulted assets. This means when the borrower defaults, the

REPO lender has priority over the collateral ahead of other creditors. This is important

to emphasize becasue, as Maclachlan 2014 explains, although the REPO conveys legal

ownership of the collateral to the collateral buyer (lender), accounting rules are such
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that the collateral seller (borrower) keeps the asset on their balance sheet and receives

any dividends or coupons delivered by the collateral.

Often special entities such as a clearing bank (intermediating in triparty REPOs) or

the central bank (acting as a liquidity provider) intermediate in the core of the REPO

market. Figures 2.1 & 2.2 shows some summary facts about the roles and size of REPO

markets in several countries.

Figure 2.1: Size of REPO market in different countries. Source: CGFS
2017.
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Figure 2.2: Functions of REPO contract. EF1:having a REPO contract
with high quality collateral reduces risk significantly. EF2:REPO allows
institution to acquires certain security that is needed in some transactions.
EF3:REPO allows market participants to engage in arbitrage opportuni-
ties when mispricing is present. This gives liquidity to the markets and
supports market efficiency. EF4:REPO allows financial institutions to
buy securities in a cheap manner to hedge their portfolio. EF5:Stressed
financial institution can engage in REPO transaction to secure liquidity.
Source: CGFS 2017.

As we will see more explicitly in the next section, for the remainder of this thesis,

we consider a market in which a single type of REPO is traded, with open roll over and

duration of 24 hours.

2.3 REPO Network with Rehypothecation

We now introduce a REPO market with full rehypothecation (RH), designed to retain

essential characteristics of the network of overnight REPOs at the core of real world

financial systems, while essentially eliminating counterparty risk. The model presented

here, henceforth called the RH REPO network, is based on use of a single standardized

type of REPO, traded across a network of N financial institutions (henceforth called

“banks”, but might also include some government agencies and large funds), subject
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Figure 2.3: The full REPO market consists of the RH REPO market
at its core, with nodes called banks and labelled by [N ] := {1, 2, . . . , N},
plus the external agents collectively labelled by “0”.

to oversight by a REPO system operator (RSO). Critically, the RSO is endowed with

the authority to organize the liquidation of REPO contracts whenever a bank’s REPO

privileges must be revoked.

The real world context is illustrated in Figure 2.3, showing that the RH REPO system

is central to a much larger network, called the full REPO market that includes money

market funds (REPO lenders), hedge funds etc. Such external agents are henceforth

denoted by the label “0”. In the full REPO market, REPOs may have a diversity of

types (special and general collateral), maturities and other characteristics not applicable

to the RH REPO system considered in this thesis. Moreover, the RSO has no direct

role or responsibility in the wider network. The focus here is exclusively on the core RH

REPO network. In particular, the question of rehypothecation in the wider market will

be ignored.

This chapter considers the state of the RH REPO market at a single moment in

time when a number of banks are suddenly determined to be insolvent. It is important,

however, to place this study into the context of a dynamical model, whose schematics

are illustrated in Figure 2.4.
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Figure 2.4: This figure shows the two scheduled daily events that the
RSO manages, with the aim to keep all banks compliant with regulatory
REPO constraints and, when necessary, to remove (or “resolve”) failed
banks. For network resolution refer to section 3.2 and for network auction
refer to section 3.3.

It can be seen from this that the RSO’s actions are focused on three events that occur

at the end of each day.The first event, called check constraints, the RSO identifies banks

that has broke the collateral or the liquidity constraints, this includes defaulted and

non-defaulted banks. Non-defaulted banks will have the chance to go to the second step

known as the auction step to fix their situation buy calling back repos, selling/buying

collateral and selling/buying fixed assets. During the auction step the collateral is con-

sidered liquid while fixed assets have liquidity constraints.. Then, comes the last step

which is known as the network resolution step, in this step the banks that defaulted at

the check constraints step and the banks that defaulted during the auction step because

they could not fix their constraints will be removed from the financial system.

2.3.1 Standard REPOs

We define a standard REPO with general collateral through the following properties:

1. Overnight nature: the contract can either be rolled-over or recalled each day. If it

is recalled during the day, it will be closed and paid at the end of the day.

2. General collateral: we assume the vector AC represents the amounts of a single

collateral asset held by each bank; the analysis extends to the case of multiple

collateral securities, but will not be pursued here.
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3. Rehypothecation: the collateral is allowed to be reused. The reuse is allowed to

happen multiple times, leading to the existence of collateral chains.

4. Haircuts: h represents haircut for a security that is posted as a collateral for the

first time, while hR is a haircut used for the security each time it is rehypothecated.

5. The original collateral holder keeps it on its balance sheet, while the lender records

a reverse-repo asset AR in its balance sheet. However, the lender retains the right,

guaranteed by the REPO System Operator, of receiving the collateral instanta-

neously (i.e. prior to bankruptcy proceedings) in any event the borrower is removed

from the network by the RSO.

We assume that all REPOs in the RH REPO market network have the same speci-

fication above. Since as we shall see, these REPOs theoretically have no counterparty

risk, counterparties will be considered “fungible”, and hence it is natural to require that

haircuts are counterparty independent.

2.4 Financial Agent Characteristics

In this section we will introduce the characteristics of financial agents, the regulator

and shocks, as well as the corresponding balance sheet items and collateral constraints.

Crucially, we describe the REPO system operator, which has the role of monitoring

the network and resolving defaults. At the end of this section we provide examples to

highlight certain characteristics of the RH REPO network.

2.4.1 Bank Balance Sheets

In this thesis, we assume that there are N banks in the financial system, labeled by

i = 1, 2, · · · , N , and denote [N ] = {1, 2, · · · , N}, each with a balance sheet as shown in

Figure 2.5. For the assets side, there are five accounts and their symbols are listed in

Table 2.1
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Figure 2.5: Bank i Balance Sheet

• Based on the notation in Table 2.1, the assets and liability from collateralized

and uncollateralized contracts are denoted as N × N matrices LR and LU , with

Lij represents what bank i owes bank j. Furthermore, we have AR = (LR)′ and

AU = (LU )′, where B′ is the transpose of the matrix B.

• Because banks cannot borrow or lend cash from themselves, the diagonal elements

in matrix LU , LR are zero.

• The collateral account AC
i of bank i includes both used collateral and unused

collateral. As mentioned before, we follow the convention that when a bank i enters

a REPO contract and provides collateral, this bank still keeps the corresponding

collateral in its balance sheet, but labels it as used collateral ARC
i .

• Considering the definition of a REPO transaction and a reverse REPO transaction,

we have the equation AR
ij = LR

ji, ∀i, j ∈ [N ].

• Following the convention in Gai et al. 2011, AF
i includes loans and mortgages.

Similarly, AL
i includes all liquid assets, such as cash and central bank reserves.

• Similarly to the setting in Hurd 2017, the value of the equity account is the dif-

ference between the sum of all accounts on the asset side and the sum of all other
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Table 2.1: Notation. We list the symbols of counts in asset side and
liability side in a balance sheet of ith bank in the financial network.

(ĀU
i )′ = (AU

i1, AU
i2, · · · , AU

iN ) assets of uncollateralized lending (N dimensional vector)

(̄AR
i )′ = (AR

i1, AR
i2, · · · , AR

iN ) Reverse REPO account (N dimensional vector)

AC
i Collateral account (include unused collateral)

AL
i Liquid assets

AF
i Fixed assets

(̄LR
i )′ = (LR

i1, LR
i2, · · · , LR

iN ) Collateralized liability account

(̄LU
i )′ = (LU

i1, LU
i2, · · · , LU

iN ) Uncollateralized liability account

Di Deposit

Ei Equity

accounts in liability side, namely

Ei =
N∑

j=1

(
AU

ij + AR
ij

)
+ AC

i + AL
i + AF

i −
N∑

j=1

(
LU

ij + LR
ij

)
− Di

=
(
AU

i + AR
i + AC

i + AL
i + AF

i

)
−
(
LU

i + LR
i + Di

)
, (2.1)

where we have used xi to denote the sum of the components of the row vector x̄′
i, for

example:

AR
i =

N∑
j=1

AR
ij , LR

i =
N∑

j=1
LR

ij . (2.2)

Besides these N banks with this balance sheet setting, which represent the RH REPO

network, one special node exists in this financial system, denoted with index 0. As

mentioned before, this node stands for all economic agents outside of the N banks that

comprise the RH REPO network, including other financial institutions, depositors, firms,
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and government agencies. In particular, this special node includes a central bank that

provides liquidity to financial institutions through “open market operations and direct

credit extension through standing lending facilities” (Bernanke 2008).

2.4.2 Collateral, Liquidity, and Solvency Constraints

The main concern for market design in a RH REPO network is to ensure that the

rehypothecated collateral is sufficient to provide fair compensation to lenders under any

conceivable market dislocation. Fundamental to controlling this issue is that all banks

must satisfy their collateral constraint. We pay particular attention to rehypothecation,

which means that reverse-REPOs on a bank’s balance sheet can be used as additional

collateral to increase the total amount of REPO funding. In the following we focus on

“full rehypothecation”, which allows collateral chains of any length.

Consider bank i holding AC
i in general collateral, plus AR

i in reverse-REPO assets,

which means they have lent this amount to other banks who in turn pledged (1−h)−1AR
i

in general collateral to bank i. Under full rehypothecation, bank i can then borrow in

the REPO market by applying a haircut h to its own collateral and a haircut hR to the

collateral associated with its reverse-REPO assets. Accordingly, the collateral constraint

associated with the LR
i in REPO liabilities is

C := (1 − h)AC
i + 1 − hR

1 − h
AR

i − LR
i ≥ 0 . (2.3)

In the special case when h = hR, this reduces to

C := (1 − h)AC
i + AR

i ≥ LR
i , (2.4)

which coincides with the collateral constraint in the GHK model described in the previous

chapter under the assumption that hi = 0, that is, the haircut on general collateral is

equal for all banks. The condition 1−hR
1−h < 1, or equivalently h < hR < 1, will make it
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impossible for a collateral to be rehypothecated unlimited times and artificially inflate

balance sheets, whereas the additional assumption 1−hR
1−h ≤ (1 − h) makes it at least as

hard to meet the collateral constraint by entering new reverse-REPOs as to purchasing

general collateral. The limit hR = 1 corresponds to the case when rehypothecation is

forbidden.

In the following, it is useful to introduce θi, the fraction of bank i’s collateral that

has been pledged to cover its REPO liabilities, defined as

θi := LR
i

(1 − h)AC
i + AR

i

.

It follows that an equivalent way to express the collateral constraint (2.4) is to require

that θi ∈ [0, 1]. Another constraint, the liquidity constraint that measures how much

cash we have, that we will see in Chapter 3 is defined as follows:

L := AL
i ≥ 0 (2.5)

Finally, we impose that all banks need to be solvent, in the sense that the value of

their assets exceed the value of their liabilities. In view of (2.1), this is equivalent to

E := Ei ≥ 0. (2.6)

2.4.3 REPO System Operator

We assume that the RH REPO network has a RSO that:

1. Certifies that stock-flow consistency is maintained, that is, that all payments be-

tween banks result in correct changes in their balance sheet entries.

2. Monitors and enforces the collateral constraint (2.3).
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3. Provides overdraft protection to all market agents. This means that any agent

may borrow cash from the RSO, to be repaid at the next reset time, in order to

instantaneously pay any REPO close-out prior to the reset time.

4. Conducts the network resolution: this algorithm, described in Section 3.2, enforces

a certain type of netting and novation of REPOs for banks being removed in the

event of a default.

5. Oversees the network auction mechanism described in Section 3.3.3

2.4.4 Financial Shocks

We now list all potential financial shocks to a bank in a financial system that are relevant

to our model:

1. Liquidity shock ∆AL < 0: where the bank has tapped into its credit line and needs

to repay it. Among other reasons, this could be caused by a sudden withdraw in

deposits ∆D < 0, that is to say, a traditional bank run.

2. Collateral haircut shock ∆h > 0: this puts pressure on the financial institution to

post more collateral.

3. Withdrawal of collateralized loans from counterparties ∆AR < 0: when a counter-

party refuses to continue a day-by-day REPO contract.

4. Defaulted banks shock: we will create defaulted banks , by giving banks large

shocks, banks that has no ability to repay any money back upon default for default

resolution.

5. Fixed assets market liquidity shock α > 0: this is the liquidity parameter, which

will cause any selling of fixed assets to suppress the price of this asset (see (3.25)).

The following shocks will not be discussed in this thesis:
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Figure 2.6: two types of collateral chains. One is open ended and the
other one is circular. Unless the collateral rehypothecation haircut is set
to hR > 0, the collateral can be reused infinitely many times in a circular
chain.

1. Withdraw of uncollateralized liability from a counterparties ∆LU < 0: refusal to

roll over a contract.

2. An increase of REPO rate rR during a rollover of a day-by-day REPO contract.

3. Requirement to increase the percentage of liquid assets, for example to a proportion

of deposits, leading to a more stringent liquidity condition than (2.5).

2.4.5 Collateral Chains and Rehypothecation

At this point it is useful to illustrate the concepts introduced thus far with a couple of

examples highlighting some of the most salient issues in a RH REPO network.

Luu et al. 2021 provide a theoretical background for such networks that emphasizes

the creation of collateral chains and studies their potential role in generating financial

systemic risk. The core assumptions of their model are similar to ours, but the interpre-

tation differs, as we now discuss. First, we illustrate how chains and cycles may appear

in the RH REPO network.

Example 1 (RH chain). Figure 2.6 illustrates the chains and cycles that arise in RH

REPO networks. Here we introduce N banks and connect them either by an open chain,

or a closed cycle.

57

http://www.mcmaster.ca/
http://cse.mcmaster.ca/
http://cse.mcmaster.ca/


Doctor of Philosophy– Hassan Chehaitli; McMaster University– Computational
Science and Engineering

In the chain example, we suppose that bank 1 originally has collateral worth AC
1 =

(1 − h)−1 and the other banks have an empty balance sheet. Bank 1 then uses the

collateral to borrow LR
1 = L12 = 1 from bank 2 and keeps the funds received in the form

of liquid assets (i.e. cash) AL
1 = 1 as shown in the first row of Table 2.2. Notice that

both before and after the REPO transaction the equity (or capital) of bank 1 is equal to

(1−h)−1. In order to lend to bank 1, bank 2 initially borrows 1 from outside the network

(or, equivalently, from the RSO), but once it has the reverse-REPO AR
2 = L12 = 1 as

its asset, it can use it as collateral in order to borrow the amount LR
2 = L23 = 1 − hR

from bank 3, so that its net position in the liquid asset is AL
2 = (1 − hR) − 1 = −hR (for

example, owed to the RSO), as shown in the second row of Table 2.2. In its turn, bank

3 initially borrows (1 − hR) from outside the network, but then uses the reverse-REPO

AR
3 = L23 = 1−hR in order to borrow LR

3 = L34 = (1−hR)2 from bank 4, so that its net

position in the liquid asset is AL
3 = (1 − hR)2 − (1 − hR) = −hR(1 − hR), as shown in the

third row of Table 2.2. The process continues in this manner until bank N , which needs

to borrow the entire amount lent to bank N − 1 from outside the network, resulting in

a net position in the liquid asset of AL
N = −(1 − hR)N−2.

We can observe from Table 2.2 that, similar to bank 1, the capital of every other

bank remains the same after the REPO chain as it was in the beginning, namely zero.

Moreover, we see that all banks except bank N saturate their collateral constraint. One

also sees that the total REPO loading is

X =
N−1∑
i=1

LR
i = 1

hR
(1 − (1 − hR)N−1),

which for N large is approximately 1−h
hR

times AC
1 . The original collateral is kept on

the books of bank 1. However, its value can be divided amongst the lending banks in

proportion to the net amount lent. Upon simultaneous default of banks, retrieval and

ownership of collateral will be a problem, as we will see below in Section 2.4.6.
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AL
i AC

i AR
i = Li−1,i LR

i = Li,i+1

i = 1 1 (1 − h)−1 0 1
i = 2 −hR 0 1 1 − hR

i = 3 −hR(1 − hR) 0 1 − hR (1 − hR)2

...
...

...
...

...
i = k −hR(1 − hR)k−2 0 (1 − hR)k−2 (1 − hR)k−1

...
...

...
...

...
i = N − 1 −hR(1 − hR)N−3 0 (1 − hR)N−3 (1 − hR)N−2

i = N −(1 − hR)N−2 0 (1 − hR)N−2 0

Table 2.2: Balance sheets after the open chain has formed, when bank
1 starts with AC

i = (1 − h)−1 and all other banks start with an empty
balance sheet.

One can now ask how robust this example is in the event of a single default. Suppose

bank 2 fails for any reason. Naive liquidation of its positions would close out both its

REPO assets and liabilities, having a gross impact of AR
2 + LR

2 = 2 − hR on other banks.

However, there is a natural “resolution” of bank 2 with much less impact. Replace

liabilities L12 = 1, L13 = 0, L23 = 1 − hR by new values L̃12 = hR, L̃13 = 1 − hR, L̃23 = 0.

Then close out the single residual REPO involving bank 2, namely L̃12 = hR. This

action is an example of “novation”, whereby two REPOs through bank 2 are rerouted

to banks 1 and 3, leaving the total REPO assets and liabilities of bank 3 unchanged and

total REPO liabilities of bank 1 reduced by only hR. We will return to this topic in the

next chapter, where the novation procedure will be analyzed in more detail.

Example 2 (RH cycle). In the cycle example, if AC
i = 1 and LR

i = AR
i = x for all

i, then all banks will satisfy the collateral constraint if (1 − h) + (1 − hR)x ≥ x. The

maximal cycle where θi = 1 has x = 1−h
hR

. Note that this maximal cycle generates a total

REPO loading X = 1−h
hR

N which is 1−h
hR

times the total collateral owned by the network.

When dealing with cycles, as we will see in Chapter 3, we will use a netting technique,

when applied to this example, allow us to open the circle and change its shape to the

linear shape like the RH chain of the previous example.
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2.4.6 REPO Settlement Examples

As further illustration of the subtleties of REPO network, consider the examples below.

The aim of these examples is twofold: first, they show that defaulted banks impose

stress on the financial network if their REPO contracts need to be resolved in the regular

way, namely by closing the contracts and recalling collateral; secondly, they show that

instantaneous defaults of multiple banks who share a collateral through rehypothecation

introduce difficulties in collateral resolution and how the collateral to split between the

defaulted banks. We start the examples with a simple setup with no rehypothecation,

then move on to a new setup that allows rehypothecation. These examples show that

upon default, there many cases to be considered, and non-trivial complications arise.

1. First scenario (Figure 2.7): Consider the setting with banks A and B, where bank

A pledges collateral to bank B and bank B gives cash to bank A. We assume that

bank A does not give the right of rehypothication of the collateral to bank B,

so that bank B has to place the collateral in a segregate account. We have two

possibilities:

(a) If bank A defaults and fails to return the cash to bank B, bank B becomes

the legal owner of the collateral and it will liquidate the collateral to offset

its loss.

(b) If bank B defaults (say because of other liabilities with other banks), the

collateral is retrieved from bank B’s segregate account and given back to

bank A, while bank A still has to fullfill its repayment duties.

2. Second scenario (Figure 2.8): assume the same setting as in the first scenario

above, but with bank B rehypothecating the collateral to bank C, while bank C

does not conduct any rehypothecate. Consider first the following cases involving

the default of one bank only:

60

http://www.mcmaster.ca/
http://cse.mcmaster.ca/
http://cse.mcmaster.ca/


Doctor of Philosophy– Hassan Chehaitli; McMaster University– Computational
Science and Engineering

Figure 2.7: Contract with no rehypothication allowed

(a) if bank A defaults and fails to return cash, Bank B becomes the legal owner

of the collateral as before. Now, if bank B is under liquidity stress, Bank B

will have to stop rolling over the REPO contract with bank C and thus will

ask for the collateral back. Bank B will seize the collateral and liquidate it

to offset its losses. This will cause stress on bank C.

(b) if bank B defaults, now the collateral (ColO) is owned by bank C as ColRH .

Bank C will liquidate the collateral to offset its losses as bank C is now the

legal owner of the collateral. Bank A will then list the excess collateral value

(ColO − CashO) (assuming the most common situation of a positive haircut

h > 0) as a loss on its capital.

(c) if Bank C defaults, this reduces to the first scenario above.

In the context of this second scenario, we can see that when more than one bank

defaults, closing REPO contracts the regular way will impose stress on counterpar-

ties of the defaulted banks, no matter in which order defaults happen. For example,

consider the situation in which bank B defaults followed by bank C, and assume

further that the collateral value is larger than Cash0. When bank B defaults, the
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usual steps to remove it from the REPO network are:

• bank A returns cash (Cash0) to bank B, and gets collateral from segregate

account;

• bank B gets cash (Cash0) from bank A, then returns cash (CashRH) to bank

C and keeps the difference (Cash0 - CashRH).

• bank C gets cash (CashRH) from bank B.

• a new REPO contract is created between bank A and bank C, namely bank

A borrows cash (CashRH) from bank C and provides collateral (ColRH) to

bank C, which is kept in segregate account. This step might cause problems

to the network, as bank A and bank C may not know each other in the REPO

market, and their tri-party (intermediary) can be different. In addition, be-

cause CashRH < Cash0, bank C maybe short of enough cash to sign a REPO

contract (Cash0) with bank A.

When bank C defaults, the usual steps to settle the REPO account between bank

A and bank C are:

• bank A returns cash (CashRH) to bank C, and gets collateral (ColRH) from

the segregate account.

• bank C gets the cash (CashRH) from bank A.

Conversely, consider the situation in which bank C defaults followed by bank B.

When bank C defaults, we try to remove this bank from the banking system

and REPO market. We try to stop all contracts in the REPO market and settle

all of them. Then we can have the similar results with previous default order.

However, this has a confusing financial meaning. When bank C defaults, only

their counterparties should be affected. Based on our setting, bank A and even
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other banks will be forced to settle their REPO market, when the REPO chain

has fourth, fifth and more banks as components. Namely:

• bank A returns cash (Cash0) to bank B, and gets collateral from segregate

account.

• bank B gets cash (Cash0) from bank A, then returns cash (CashRH) to bank

C and keeps the difference (Cash0 - CashRH).

• bank C gets cash (CashRH) from bank B.

• a new REPO contract is created between bank A and bank B: bank A borrows

cash (Cash0) from bank B and provides collateral (Col0) to bank B. Bank B

keeps the received collateral in segregate account.

When bank B defaults, we try to settle the REPO account between bank A and

bank B

• bank A: return cash (Cash0) to bank B, and get collateral (Col0) from the

segregate account.

• bank B: get the cash (Cash0) from bank A.

Similar steps can be taken for other default cases when at most two banks default,

namely only banks A and B, or only banks A and C. However, if banks A, B and C

fail, then there is no direct mechanism for clearing the obligations of the defaulted

banks in the form of retrieving collateral from one another, and typically all banks

end up in court with individual claims on the collateral.

2.5 Debt, Funding Options, and Liquidation

This section discusses options in dealing with debt, funding and liquidation situations.

These situations arise when dealing with illiquidity or insolvency. The order in which
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Figure 2.8: Contract allowing rehypothecation

assets are liquidated or liabilities are paid will have great impact on markets and in-

vestors.

2.5.1 Priority of Debt

When a bank experiences a shortage of funding to pay out its liability, we set the

following priority for liabilities to be paid out to debtors. First, deposits D have the

highest priority in this process, since this form of debt is not meant for investment, but

rather the depositors are trusting the bank with their money to keep it safe. Second,

because a collateralized borrower can provide the collateral to cover the loss of their

counterparties, the borrower would prefer to pay out their uncollateralized liability in

cash. As a result, the priority of debt during a funding pressure can be summarized in

this order:

1. Collateralized liability LR.

2. Deposits D.

3. Uncollateralized liability LU .

64

http://www.mcmaster.ca/
http://cse.mcmaster.ca/
http://cse.mcmaster.ca/


Doctor of Philosophy– Hassan Chehaitli; McMaster University– Computational
Science and Engineering

2.5.2 Funding Options

In this section we discuss funding options that a bank can use to raise cash in order to

meet its liability requirements, namely accessing cash, liquidating assets, recalling loans,

or raising more debt. The list below specify different actions that are available to banks

1. Access liquid assets AL (e.g cash).

2. Sell part of unused collateral AC − ARC .

3. Sell used collateral ARC .

4. Recall collateralized or uncollateralized loans AR and AU .

5. Sell fixed asset (sharp drop of the value).

6. Borrow money from REPO market with unused collateral asset.

7. Borrow money from REPO market with used collateral asset (rehypothecation).

8. Borrow money by uncollateral contract.

9. Borrow money from a compartment outside of this ([N ]) financial system .

It is clear that using liquid assets (say cash) should be the first choice of any bank,

so that (1) above is the preferred funding option, whereas borrowing from outside the

financial system should be the last, so that (9) above is the least preferred option.

It should also be clear that (2) is preferred to (3), as pledging collateral introduces

restrictions on the ability of the owner to sell it. It is also clear that borrowing using

unused collateral should happen before borrowing with used collateral, which in turn

should be easier than borrowing without collateral, so (6), (7), and (8) above should

be executed in this order. Apart from these obvious relations, however, there is no

clear ordering among the groups of actions above, which should instead be based on

the choice of individual banks and underlying assumptions the bank works within. In

our framework, as we will see in Chapter 3, we have certain assumptions regarding the
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markets, that is why we have such a list with the shown structure. It is important to

note that the numbering does not describe the hierarchy of importance but rather to list

and group things that are similar close to each other.

For example, let us compare two funding options: (2) selling unused collateral assets

or (6) use these collateral assets to borrow money from REPO market. When we borrow

money at REPO market, we can get (1 − h)AC cash at most. In the future, the bank

can decide to pay out these collateralized loans using liquid assets and get their collat-

eral back. Another point to mention, it is mostly desirable to stay away from market

operations. Involving in the markets in order to buy or sell large number of shares of

security will affect market price and thus in turn will affect balance sheet constraints of

the bank that initiated the transaction and other banks investing in the same market.

It is important to stay away from the markets in time of stress, as in stressed times

markets becomes too sensitive to firesale. Thus, it is wise to meet default consequences,

by focusing on the elements from the previous list of actions that involve the sale of

assets and considering the following priority of liquidation actions:

1. Sell liquid assets AL: these are equivalent to cash and experience no fluctuation in

value.

2. Sell part of unused collateral AC − ARC : because of assumed high quality of

common collateral, this should lead to minimal change in value due to sale, which

we assume to be negligible.

3. Sell fixed asset AF : we assume that this is subject to firesale effects, namemly a

sharp drop in value when attempted to be sold quickly.
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2.6 Agent-based Model

In this section we will explain the details of the agent-based model, using the definitions

and concepts introduced so far. The agent-based model we are using is rule based, where

every bank has a set of rules that it follows in order to keep its balance sheet healthy.

Notation and Nomenclature: The N banks of a network are labelled by i ∈ [N ] :=

{1, 2, . . . , N} and we use standard matrix notation for RN consistent with MATLAB:

N ×1 column vectors are denoted x̄, ȳ, . . . and N ×N square matrices by A, B, . . . ; their

transposes are x̄′, A′, . . . and satisfy the identity (AB)′ = B′A′, the identity matrix is

denoted by I, whereas ēi denotes the ith basis column vector with jth component given

by the Kronecker δij , and 1 = [1, 1, . . . , 1]′.

2.6.1 Agent-based Model Flow Chart

This section presents Figure 2.9 as flow chart for the agent-based model. Figure 2.9

presents a bird’s eye view of the model, some of the boxes in the flow chart are submodels

which are made of different components or a set of rules. Figure 2.9 shows the main

components of the model and how they interact.

The algorithm starts by setting the time variable k = 0, the prices of collateral and

fixed assets at SC
k = SF

k = 1, an empty set of defaulted banks, and the initial values

of the liability matrix L, as described below in Section 2.6.2. Next one needs to define

the remaining terms of the balance sheet taking the liability matrix L into account as

explained in Section 2.6.3.

As shown in Figure 2.9, the algorithm continues to run until one of the following four

halting conditions is met. First, if there is no balance sheet violating the constraints

at initialization phase, then the program will stop. Second, if the market conditions

did not change or there are no financial shocks, or more generally if market fluctuations

and financial shocks did not lead to any constraints to be broken by any bank, then the
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banks do not need to be involved in the market and the program halts. Third, some of

the banks have healthy balances sheet where no constraints are broken or constraints

has been fixed and other banks have defaulted. Lastly, the program shall stop if all the

bank have defaulted, meaning that all the banks have been removed from the system

and all obligations have been settled.

The functions f(·) and g(·) represent, respectively, the time evolution of the prices

SC and SF for collateral and fixed assets from one day to the next, as shown in the

fifth box in Figure 2.9, and can correspond to any stochastic or deterministic process for

price. In this thesis we will use geometric Brownian motion, whose defining dynamics

and explicit solution are provided in equations 2.7 and 2.8 below:

dSt

St
= (µ − σ2

2 )dt + σdWt (2.7)

St = St−1e(µ− σ2
2 )∆t+σ(∆Wt). (2.8)

Here Wt is a Wiener process (in particular Wt ∼ N (0, t)), µ is the mean of the com-

pounded returns and σ is the standard deviation of the compounded returns, and

∆Wt = Wt − Wt−1. Recall that geometric Brownian motion has the following prop-

erties:

E(St) = St−1eµ∆t (2.9)

V ar(St) = S2
t−1e2µ∆t(eσ2∆t − 1) (2.10)

The geometric Brownian motion is a Markov process; that is to say, its future values

depend only on its present state and not depend on previous historic states.

After asset prices evolve from one day to the next, one checks if either the collateral,

liquidity, or solvency constraints were violated as a result of the shocks or changes in asset

prices. In case this happens, it means that some of the banks will need to participate in
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the Market Operations and the Network Resolution algorithms, which are described in

detail in Chapter 3.

After that, provided not all banks have defaulted, the algorithm proceeds by moving

to the next time step.

2.6.2 Initialization of the Liability Matrix L

The liability matrix L can be seen as a random graph. Random graphs can be generated

in different ways. Some of these ways are probability distributions, generating processes

and pre-given degree sequence. Generating a liability matrix is an important step in

the program as having a liability matrix that does not represent real world networks or

scenarios can lead to wrong conclusions. In this section we will be looking at some of

the popular models of random graphs, how they are built and what are the pros and

cons of such models.

Edgar-Gilbert Model: Also known as G(n, p) model, where n is number of nodes

(or vertices) in a graph, and 0 < p < 1 is the probability of connecting two nodes. The

G(n, p) model is constructed in the following way: choose two random nodes from the n

nodes in the graph and connect them with an edge with a probability p independent of

all other edges. The number of possible edges in a graph with n nodes is
(n

2
)

= n(n−1)
2 .

The probability to generate a graph with n nodes and M edges is given by:

P (G(n, p) = G) = pM (1 − p)(
n
2)−M (2.11)

As p increases, the number of edges in the graph increases and vice versa. For p = 1
2

equation 2.11 reduces to:

P (G(n, p) = G) = p(n
2) (2.12)
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Equation 2.12 means that any graph with n nodes can be be generated with equal

probability independent of the number of edges M .

The degree distribution of a node v from the graph is given by:

P (deg(v) = k) =
(

n − 1
k

)
pk(1 − p)n−1−k (2.13)

As the network becomes bigger and the number of nodes n tends to infinity, Newman

et al. 2001 states that equation 2.13 tends to Poisson distribution:

P (deg(v) = k) −→ (np)ke−np

k! as n −→ ∞ (2.14)

Erdős–Rényi Model: Also known as G(n, M) model, where n is number of nodes

in a graph and 0 ≤ M ≤
(n

2
)

is the number of edges in the graph. The number of graphs

that can be generated with M edges from n nodes is

((n
2
)

M

)
.

from which we pick up graph uniformly, or in other words all the graphs in the set have

been assigned equal probability. Thus the probability of picking up a graph from the set

of n nodes and M edges is ((n
2
)

M

)−1

.

Consider the example of G(3, 2), where we have 3 nodes, {1, 2, 3}, and 2 edges. The

following graphs will be generated:

• G1: node 1 will be connected to nodes {2, 3} through an edge to each node.

• G2: node 2 will be connected to nodes {1, 3} through an edge to each node.

• G3: node 3 will be connected to nodes {1, 2} through an edge to each node.
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Thus, G(3, 2) will generate 3 graphs in total. We will pick up one these graphs randomly

with equal probability of 1/3.

These two models include the following two assumption:

• The probability of an edge connecting two nodes is equal among all nodes.

• The probability of of connecting, p two nodes with an edge is independent of other

edges, in other words the number of edges that already exist has no effect on p.

The above two assumptions will lead the two models to lack the following characteristics

which occur in real world networks:

• No local clustering or triadic closure: roughly speaking, local clustering measure

the degree of the connection among the neighbors of a node. Triadic closure is a

property where is a node is connected to two neighbors with strong ties, these two

neighbors should also be connected between each other with strong ties.A way to

measure triadic closure is through local clustering coefficient; as local clustering

increases, the number of triads also increases in the graph.

• No hub formation: real world networks have hubs, where a large number of nodes

should have a low number of connections, some of the nodes should have a medium

number of connections and a very small number of nodes should have a large

number of connection.

To solve the problem with local clustering and triadic closure the Watts-Strogatz

model was developed. In order to solve the hub problem, the Barabasi-Albert and the

Configuration models were developed.

In addition to the deficiencies noted above, Barabási and Pósfai 2016 states that there

are two different assumptions between random networks and real world networks:

• Growth: in real world networks, the network starts small and then grows up.

There is a growth process that takes place in building the real world network. On
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the other hand, random networks start with the final number of nodes the network

reached.

• Preferential Attachment: in real world networks, when a new node is intro-

duced to the network the new nodes prefers to get attached to the most popular

node in the network. In other words the new node prefers to get attached to node

with most connections. In random networks, the new node attaches randomly to

any node, sometimes with equal probability.

Barabasi-Albert Model: This model uses the preferential attachment method as

follows:

1. start network with m0 connected nodes, that represents graph G

2. introduce new node v to graph G

3. for node i ∈ [N ] connect node i to node v with P (i) = degree(i)∑
x∈[N ] degree(x)

4. go to step 2

Step 3 in the algorithm shows that if a node i has as twice connections as node j then

P (i) shall be twice the value of P (j) and most probably node v will connect to node i.

Barabasi-Albert model allow us to create scale-free networks by generating power law

degree distributions.

Configuration Model: Given a degree sequence, i.e a set of nodes [N] and each

node is preassigned a number of half-links known as stubs. The configuration model is

used to generate a graph the following way:

1. generate a degree sequence {ki|i ∈ [N ]} such that ∑i∈[N ] ki = 2L. The sum of the

degree sequence should be even.

2. uniformly draw two unconnected stubs and connect them. The probability of a

connection between node i and node j is given by Pij = kikj

2L−1 .
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3. if unconnected stubs still exist, go to step 2.

Given a degree sequence, the algorithm above will generate different graphs if the

order of drawing the stubs to be connected is changed. Thus, multiple graphs can be

generated from the same degree sequence and can be compared with the characteristics

that arise with them. Moreover; the algorithm allows self loops and multi-links to appear

in the generated graph. If self loops and multi-links are stopped this means stubs are not

drawn uniformly and the probability of connection is not equal among all connections.

As the number of nodes increases in a graph, self loops and multi-links will become more

difficult to form. Figure 2.10 gives an idea how the algorithm works and what type of

graphs can be generated.

Watts-Strogatz Model: This model generates random graphs that possess small-

world properties. It helps in generating high clustering and short average path lengths.

Constructing a graph following the Watts-Strogatz model by using the rewiring method

as follows:

1. N nodes are required.

2. k represents the mean degree of the graph required, it should be an even integer

and satisfying a certain technical condition.

3. create a regular ring, regular means each node has same pattern of connectivity as

other nodes. One way to achieve regular ring is to connect a node to k/2 of the

neighbors on the left side and the other k/2 neighbors should be on the right side

of the node.

4. rewire each edge(vi, vj) in the network with probability p with a node vm uniformly

chosen from the set of nodes forming the edge(vi, vm). Two conditions apply, 1)no

self looping: vi ̸= vm and 2) no link duplication: vj ̸= vm.
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Figure 2.11 shows how the value of p affects rewiring. When p = 0 we get the left

graph, if p = 1 we get a graph similar to the right graph. As p gets closer to one, the

generated graph becomes more random and it becomes similar to a graph generated by

Erdős–Rényi.

2.6.3 Initialization of the Balance Sheet

The initialization of balance sheet depends on the initialization of the liability matrix

L. For the remainder of the Thesis we will assume LU = 0 (and consequently AU =

0). Accordingly, the liability matrix L represents REPO liabilities LR, as well as the

correspoonding REPO assets AR, since AR = (LR)′ (i.e. the transposed matrix). For a

bank i ∈ [N ] recall the following identity:

Ai = Li + Ei

Expanding the above identity with our balance sheet entries we shall have:

AL
i + AC

i + AR
i + AF

i = LR
i + D + Ei

Recall as well the following identities and constraints:

LR = L ∗ 1 (represents LR
i in vector form for i ∈ [N ])

LR
i = ēi

′ ∗ L ∗ 1

LR
i = (1 − h)AC

i (collateral constraint without novation)

AR = 1′ ∗ L (represents AR
i in vector form for i ∈ [N ])

AR
i = 1′ ∗ L ∗ ēi
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Example 3 (Balance Sheet Building). We are going to build a balance sheet step-

by-step, this example is needed to make things clear. The balance sheet can be built

starting from the assets side or the liabilities side. In this example we are building the

balance sheet from the liabilities side. Assume our balance sheet value is $100. There-

fore Ai = 100. We need more variables to define liabilities side. Assume Di = 66% and

LR
i = 24%. In this example we will have all banks have the same balance sheet details

on the liabilities side. Moreover, for simplicity assume h = 0. All balance sheets will

be created to meet constraints and without haircut. Assume we have 5 banks, that is

[N ] = {1, 2, 3, 4, 5}, and we have the following variables:

L =



0 6 6 6 6

8 0 0 8 8

12 0 0 12 0

6 6 6 0 6

12 0 12 0 0


,

and

Ai = $100, LR
i = $24, Di = $66 and Ei = $10 for i ∈ [N ]

The value for AR
i (column sum of L) and AC

i (collateral constraint without haircut

and no rehypothecation, that is AC = LR with h = 0, hR = 0) are given as

AR =
[
38 12 24 26 20

]
and

AC =
[
24 24 24 24 24

]
We can see that although all banks started with the same value of LR

i , each one of them

ended with a different AR
i , which in turn will give different values on assets side to these
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banks in most entries. The remaining amount for each bank on the assets side is given

by the formula R = 100 − AC − AR:

R =
[
38 64 52 50 56

]
Now in the last step we need two more variables to determine the share of AL

i and AF
i

as a percentage of Ri, call them AL
p and AF

p respectively. All banks will have the same

percentages.

2.7 Conclusion

In this chapter we introduced the financial market, financial agents and balance sheets.

In the financial market we introduced REPO contracts, rehypothecation chains and fi-

nancial agents. We looked at the characteristics of the REPO network, REPO contracts,

financial agents and how they are all linked together from a financial network prespec-

tive and balance sheet prospective. We discussed liquidity characteristics of assets in

the balance sheet and financial shocks that can happen to both asset and liability sides.

As for balance sheets and network initialization, we saw that from a simulation point

of view it can be easily initialized but having an initialization that represents real life

financial networks characteristics is not a trivial task.

We introduced two examples that deal with REPO rehypothecated chains and the

issues that arise with them. The process of solving such issues is not trivial and it

can reach the point of ambiguity when it comes to deciding who owns how much in a

rehypothecated collateral.

In Chapter 3, we introduce a novation algorithm that deals with ambiguity that arises

from defaulting banks which gives a clear answer to which banks owns what portion of the

rehypothecated collateral. Moreover, we introduce decision rules that banks use in order

to fix their balance sheet such that it meets all the constraints required by regulations.

These rules give priority to save the collateral and pay the REPO liability, which is in
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contrast with what Gai et al. 2011 did. Gai et al. 2011 did not give any priority in debt

resolving for REPO liability. Our resolving algorithm for constraints gives clear priority

for liquidation of assets and clear priority of REPO liability payment.
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Initialize: k = 0, SC
0 = 1, SF

0 = 1, defaulted= {}, Liability matrix L

Initialize Balance Sheet

shocks0

k = k + 1

SC
k−ϵ = f

(
SC

k−1

)
, SF

k−ϵ = g
(
SF

k−1

)

C ≥ 0, L ≥ 0, E ≥ 0?

Market Auction

Network Resolution

all banks defaulted ?

Stop program Yes

No

Yes

No

Figure 2.9: Flow chart of agent-based model. Here C is collateral con-
straint, L is liquidity constraint, and E is the solvency constraint. The
functions f(·) and the g(·) represent the evolution of the prices SC and
SF for one share of general collateral and fixed asset according to a ge-
ometric Brownian motion processes. The set “defaulted” represents the
defaulted banks as the program is running.
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Figure 2.10: Configuration model building steps:
In step (a) we have 4 nodes and their associated stubs/half-links. Step (b) shows a

generated graph with no self-loops and no multi-links. step (c) show a generated graph
with self loop. While, step (d) shows a generated graph with multi-links. The graphs
on the left shows how the stubs are connected according to the algorithm, while the

graphs on the right show the final shape of the generated graphs. Source: Barabási and
Pósfai 2016.

Figure 2.11: Watts-Strogatz Model:
As p (probability of rewiring) increases, the generated graph moves from the left side

ring in the figure to the right side ring of the figure. Source: Liao et al. 2017.
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Chapter 3

Novation and Auction

3.1 Introduction

As discussed in the previous chapter, REPOs are a class of contracts that function like

collateralized lending and are used extensively for funding by primary banks at the

core of modern financial systems. The single allowed collateral type in this thesis is a

highly liquid, low risk asset such as a Treasury bill or government bond, called “general

collateral”. In this market, the collateral purchaser is free to re-use the collateral, or a

fraction of it, to borrow cash with a second REPO, which is known as rehypothecation.

This chapter shows that counterparty risk is zero in a “perfect” repurchase agreement

(REPO) market that allows fully rehypothecated general collateral, which implies in par-

ticular that chains of rehypothecated collateral are not a source of systemic risk. The

chapter presents a theoretical market design for a network of banks exchanging REPOs

that resets every 24 hours and permits full re-use (rehypothecation) of a general collat-

eral, taken to be a highly liquid government debt security. Assumptions for a “perfect”

REPO market include stock-flow consistent accounting, daily overdraft provisions and

rules for a REPO system operator. It is proved that such a REPO market possesses a

number of key properties. First, provided mandated collateral constraints hold, default

risk does not arise in the REPO network. Second, if any subset of market participants
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defaults simultaneously, there is a consistent instantaneous network-wide resolution of

all defaulted REPO contracts that can be enforced fairly and transparently immediately

prior to these banks moving into bankruptcy proceedings. Finally, this chapter explores

the degree to which real world REPO markets share these ideal properties.

The main theoretical innovation in the chapter is an algorithm called “network reso-

lution” that optimally resolves the entire network at a moment when an arbitrary subset

of agents must be removed. The key features of the network resolution algorithm are: (i)

removed banks are treated symmetrically (i.e. fairly), as are the remaining banks; (ii)

remaining banks experience a minimal impact to their balance sheets and, under ideal

conditions, they recover the full value from removed counterparties; (iii) the entire pro-

cess, by design, occurs prior to any legal proceeding, such as bankruptcy, and provides

the all-important “safe harbour” protection giving priority of claims by REPO creditors

over non-REPO creditors. We argue that, in the real world, a REPO market designed

with such a resolution algorithm would be more transparent, resilient and efficient than

traditional REPO markets.

The finance literature devoted to the properties and dangers of collateral rehypothe-

cation (RH) is extensive and made difficult by the intrinsic complexity of such a system

and the broad diversity of kinds of REPO and market agents. As the literature empha-

sizes, RH creates overlapping chains of collateral that need to be understood and then

disentangled. Finally, the lack of clarity in REPO markets can severely undermine mar-

ket sentiment during times of financial crisis. As we demonstrate, these difficulties and

ambiguities can be understood and effectively eliminated within the theoretical network

framework developed in this chapter. Consequently, the core of this chapter focuses on

assumptions and properties of an “ideal” REPO market, with the main goal to prove

that counterparty risk is zero in such networks.
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The aim of this chapter is to build a model that deals with defaults that include re-

hypothecation of collateral. It is important to create a default resolution algorithm that

removes defaulted banks without imposing stress effects on the network regardless of the

topology of the financial network, whether or not lending and borrowing creates cyclic

structures, and the length of the rehypothecation chain. The topology of the network

can be a sparse one that is characterized by a Poisson distribution, a dense topology

where the network is complete or near to complete graph, or a concentrated network,

like in core-periphery networks, characterized by a geometric distribution. Cyclical re-

hypothecation structure refers to areas in the financial network where banks involved in

lending and borrowing form a simple loop. The length of rehypothecation refers to to

the number of times a single collateral has been passed from one bank to the other in a

series of rehypothecation contracts. This chapter also considers whether rehypothecated

collateral - a feature desired by market participants because of the dramatic efficiency

gains it creates - can always be relied upon by creditors at moments of crisis when one or

more market participants fail. Such complex scenarios represent systemic risk in perhaps

its most extreme form. The aim is to demonstrate that a well-designed REPO market

with rehypothecation is fundamentally resilient to such events. Moreover, this chapter

also addresses the “static” question of network resolution that might be triggered at

any moment. The focus is exclusively on defining the network resolution algorithm, and

exploring its fundamental properties. This chapter will also explore the systemic risk

effects that may arise dynamically in an RH REPO network. Network resolution being

a static problem, henceforth in this chapter ignores a large amount of detail, including

cash flows such as interest and REPO rates, collateral flows and asset prices.

The structure of this chapter is as follows: Section 3.2 proves how the RSO can impose

three steps - netting, novation and clearing - to simultaneously remove any number of

default banks from the REPO network in a fair and consistent manner. Section 3.2.5

provides answers to the question regarding the ownership of a rehypothecated collateral.
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In Section 3.3 we introduce all the necessary components to build a model and the

order they fit into the model. Decision regions for financial agents are described and

labeled. Section 3.4 returns to the real world of REPO and discusses how the theoretical

properties of the RH network can justify market participants’ trust in real world REPO

contracts.

This chapter adopts the following terminology for REPO counterparties: borrower is

the receiver of cash and provider of collateral; lender is a cash provider and collateral

receiver. A pure borrower is a bank with no borrowing counterparties; a pure lender is a

bank no lending counterparties. A net borrower is a bank whose REPO liabilities exceed

their (reverse) REPO assets; a net lender is a bank whose REPO assets exceed their

REPO liabilities.

3.2 Network Resolution

In view of its 24 hour cycle as illustrated in Figure 2.4, a potentially devastating scenario

for the RH REPO market might start with the failure of a number of banks to successfully

manage the REPO auction at the end of a day. In such a scenario, many banks may

need to be removed simultaneously. As we now demonstrate, the REPO system operator

(RSO) can apply a clear cut algorithm to remove this subset of failed banks.

The essential characteristic of our idealized RH REPO Network is the existence of

a natural algorithm that the RSO can implement at any moment to simultaneously re-

moves any resolution subset σ ⊂ [N ] of failed banks from the network, for whatever

reason, with minimal impact for the remainder of the network. The algorithm has cer-

tain desirable properties that are guaranteed, provided each node satisfies the collateral

constraint at the moment of resolution. In the real world, where some banks may some-

times fail to satisfy the collateral constraint by a small amount, for example when the

collateral price drops rapidly, the damage to the network should be proportionally small
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when such defaulted banks are removed. In this sense we say that RH REPO networks

are “robust”.

The resolution algorithm consists of the following general steps:

1. Identification: select the set of removed banks (the resolution subset), either for

reasons or insolvency, illiquidity, or others.

2. Netting: removal of cycles in the resolution subset.

3. Novation: redistribution of REPO lending and borrowing from the resolution sub-

set to a maximal number of counterparties in the remaining network.

4. Close-out: remove the remaining liabilities to and from the resolution subset.

Note that banks might be removed by the RSO for a variety of reasons apart from

strict insolvency. For example, they might lose their overdraft privileges due to ongo-

ing liquidity difficulties. Or a bank might simply decide to exit the REPO market by

liquidating all their REPOs at the same time. As we will see, provided the collateral

constraints were satisfied prior to novation, the remaining bank do not experience any

loss. In the general case, however, the resolution algorithm might result in losses to the

remaining banks.

In order to understand the rationale for the proposed resolution algorithm, it is helpful

to consider a simple network in which a single bank must be removed.

Example 4. Figure 3.1 shows how the algorithm works in two steps when a single net-

borrowing bank, in this case Bank 5, is removed from the network. In the novation step,

15 units of the assets of Bank 5 to be received from Bank 2 are rewired to Banks 1 and 4

in proportion to Bank 5’s liabilities to these banks, while simultaneously 30 units of Bank

5’s assets to be received from Bank 3 are rewired to Banks 1 and 4, again in proportion

to Bank 5’s liabilities to these banks. As a result, Bank 5 has no remaining REPO

assets and only 15 units of REPO liabilities: it has become a pure-borrowing bank. This
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Figure 3.1: Bank 5, a net-borrowing bank, is removed from the network.

means it does not stand in the middle of any collateral chains, and as we will now see,

their remaining REPO liabilities can be unambiguously closed out. To understand the

close-out step, for simplicity we suppose haircut is zero. Then, the collateral constraint

2.3 for Bank 5 before novation was Ac
5 + 45 ≥ 60, so that AC

5 ≥ 15. That is, since the

existing collateral exceeds the residual REPO liabilities, Bank 5 can close them out fully

using collateral if it cannot find cash.

The novation step when Bank 5 is a net-borrowing bank redistributes all its REPO

assets to other counterparties j in proportion to L5j , and leaves the total REPO assets

and liabilities of bank j unchanged. One can check directly that network novation leads

to the new liability matrix with ij components given by

L̃ij = Lij + ζ5[Li5L5j − AR
5 δi5L5j − LR

5 Li5δ5j ] (3.1)

where ζ5 = (AR
5 )−1 and δij is the Kronecker delta function.The second term gives new

REPOs between remaining banks. The third term erases corresponding REPO liabilities

of Bank 5 and the fourth term erases corresponding REPO assets of Bank 5. The nova-

tion is such that the total REPO assets and liabilities of remaining banks are unchanged.

Figure 3.2 shows the opposite situation of a net-lending bank. After novation, Bank
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Figure 3.2: Bank 5, a net lending bank, is removed from the network.

5 is a pure-lending bank. The close-out of the remaining REPO assets is guaranteed

because the initial collateral constraint for banks 1 and 4, namely Ac
4 ≥ 40 and Ac

1 ≥ 20,

can now be reduced to Ac
4 ≥ 30 and Ac

1 ≥ 15, with 15 units of cash used to pay Bank 5.

One can now check that both the case when Bank 5 is a net-borrowing bank or the

case when it is a net-lending bank are described by the same formula (3.1) if we define,

in general

ζ5 = min
(

1
AR

5
,

1
LR

5

)
. (3.2)

We emphasize that the removed Bank 5 in both these examples is not assumed to be

liquid or solvent, but rather only that it satisfies the collateral constraint (2.3). Thus

we see in these examples that the REPO market is stable to removal of a single bank,

with no impact on the total REPO assets and liabilities of the remaining banks.

In the next section we develop the full algorithm for resolving the network at a

moment when an audit of the network reveals that a subset σ ⊂ [N ] of banks of any

size 1 ≤ |σ| = m ≤ N should be simultaneously removed. The algorithm takes as

input the instantaneous matrix L of REPO notional amounts and the vector AC of

collateral amounts. This algorithm can be implemented by the RSO to completely

remove this subset of banks, leading to a new liability matrix L̃ for the remaining banks,
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and corresponding adjustments to their cash and collateral amounts.

The key idea when several banks need to be removed is to apply the novation step

one bank at a time.

3.2.1 Multilateral Novation

First consider the novation step for a single bank i, following example 4. With careful

attention to matrix algebra using the notation summarized at the end of Section 1,

one can verify that equation 3.1 can be written as L̃ = f5(L), where for general i, the

non-linear function fi of the matrix L is given by

fi(L) = L + ζiQi(L, L) (3.3)

with

ζi = min
(

1
ē′

iL1
,

1
1′Lēi

)
(3.4)

and Qi the following matrix-valued bilinear function of two square matrices:

Qi(A, B) = Aēiē
′
iB − ēi1

′Aēiē
′
iB − Aēiē

′
iB1ē′

i (3.5)

It is convenient to note that (3.5) can be written two other ways:

Qi(A, B) = Aēiē
′
iB(I − 1ē′

i) − ēi1
′Aēiē

′
iB (3.6)

= (I − ēi1
′)Aēiē

′
iB − Aēiē

′
iB1ē′

i (3.7)

We being with a result establishing that, after novation, the bank to be removed is

either a pure lender or a pure borrower, depending on whether it was a net lender or net

borrower prior to novation, whereas the total REPO assets and liabilities of the other

banks remain unchanged.
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Proposition 1. Let i ∈ σ be the bank to be removed and let L̃ be the liability matrix

obtained after the novation map (3.3). Provided Lii = 0, we have that

ÃR
ij = max

[
AR

ij

(
1 − LR

i

AR
i

)
, 0
]

(3.8)

L̃R
ij = max

[
LR

ij

(
1 − AR

i

LR
i

)
, 0
]

, (3.9)

and consequently

ÃR
i = max(AR

i − LR
i , 0) , L̃R

i = max(LR
i − AR

i , 0). (3.10)

Moreover, let k ̸= i be any of the remaining banks. Then provided Lkk = 0 we have that

ÃR
k = AR

k and L̃R
k = LR

k .

Proof. Using the fact that L̃ = fi(L) and Lii = 0, we have:

ÃR
ij = ē′

jL̃ēi = ē′
j(L + ζiQi(L, L))ēi

= (ē′
jLēi) + ζi[(ē′

jLēi)(ē′
iLēi) −

ē′
j ēi(1′Lēi)(ē′

iLēi) − (ē′
jLēi)(ē′

iL1)(ē′
iēi)]

= AR
ij + ζi[AR

ijLii − ē′
j ēiA

R
i Lii − AR

ijLR
i ē′

iēi]

= AR
ij(1 − ζiL

R
i )

We have two cases to consider, namely:

1. If AR
i ≥ LR

i , then ζi = 1/AR
i and

ÃR
ij = AR

ij

(
1 − LR

i

AR
i

)
≥ 0 (3.11)
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2. If AR
i < LR

i , then ζi = 1/LR
i and

ÃR
ij = AR

ij

(
1 − LR

i

LR
i

)
= 0. (3.12)

Similar calculations establish the result of L̃R
ij . For any of the remaining banks k ̸= i,

using the fact that Lkk = 0 we obtain

ÃR
k = 1′L̃ēk = 1′(L + ζiQi(L, L))ēk

= (1′Lēk) + ζi[(1′Lēi)(ē′
iLēk) −

1′ēi(1′Lēi)(ē′
iLēk) − (1′Lēi)(ē′

iL1)(ē′
iēk)]

= AR
k + ζi[AR

i Lik − 1′ēi︸︷︷︸
1

AR
i Lik − AR

i LR
i ē′

iēk︸︷︷︸
0

] = AR
k ,

with similar calculations establishing the result for L̃R
k .

We illustrate this result using example shown in Figure 3.1, for which a direct calcu-

lation shows that

L =



0 0 0 0 0

0 0 0 0 15

0 0 0 0 30

0 0 0 0 0

20 0 0 40 0


, L̃ := f5(L) =



0 0 0 0 0

5 0 0 10 0

10 0 0 20 0

0 0 0 0 0

5 0 0 10 0


. (3.13)

Consider next the case where two banks i, j need to be removed from the network.

The most important fact about the novation map (3.3) is that, provided there is no cycle

between these two banks, that is to say, provided LijLji = 0, the order in which they

are novated does not affect the resulting liability matrix. We first need the following

technical lemma:
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Lemma 2. For any pair of banks i, j and liability matrix L satisfying Lii = 0 , we have:

1. ē′
iQj(L, L) = Lij ē′

jL[I − 1e′
j ]

2. Qi(L, L)ēj = [I − ēi1
′]LēiLij

3. 1′Qi(L, L)ēj = 0

4. ē′
jQi(L, L)1 = 0

5. Qj(Qi(L, L), L) = Qi(L, Qj(L, L))

6. If LijLji = 0 then Qj(Qi(L, L), Qi(L, L)) = 0

Proof. Using the definitions 3.3 and 3.5 , we have:

1. ē′
iQj(L, L) = ē′

iLēj︸ ︷︷ ︸
Lij

ē′
jL − ē′

iēj︸︷︷︸
0

1′Lēj ē′
jL − ē′

iLēj︸ ︷︷ ︸
Lij

ē′
jL1ē′

j = Lij ē′
jL[I − 1ē′

j ]

2. Qi(L, L)ēj = Lēi ē′
iLēj︸ ︷︷ ︸
Lij

−ēi1
′Lēi ē′

iLēj︸ ︷︷ ︸
Lij

−Lēiē
′
iL1 ē′

iēj︸︷︷︸
0

= [I − ēi1
′]LēiLij

3. 1′Qi(L, L)ēj = 1′Lēi ē′
iLēj︸ ︷︷ ︸
Lij

−1′ēi︸︷︷︸
1

1′Lēi ē′
iLēj︸ ︷︷ ︸
Lij

−1′Lēiē
′
iL1 ē′

iēj︸︷︷︸
0

= 0

4. ē′
jQi(L, L)1 = ē′

jLēi︸ ︷︷ ︸
Lji

ē′
iL1− ē′

j ēi︸︷︷︸
0

1′Lēiē
′
iL1− ē′

jLēi︸ ︷︷ ︸
Lji

ē′
iL1 ē′

i1︸︷︷︸
1

= 0
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5. Qj(Qi(L, L), L) = Qi(L, L)ēj ē′
jL − ēj 1

′Qi(L, L)ēj︸ ︷︷ ︸
=0 by item 3

ē′
jL − Qi(L, L)ēj ē′

jL1ē′
j

= Qi(L, L)ēj︸ ︷︷ ︸
by item 2

ē′
jL[I − 1ē′

j ]

=
︷ ︸︸ ︷
[I − ēi1

′]LēiLij ē′
jL[I − 1ē′

j ]

= [I − ēi1
′]Lēi Lij ē′

jL[I − 1ē′
j ]︸ ︷︷ ︸

by item 1

= [I − ēi1
′]Lēi

︷ ︸︸ ︷
ē′

iQj(L, L)

= Lēiē
′
iQj(L, L) − ēi1

′Lēiē
′
iQj(L, L) − Lēi ē′

iQj(L, L)1︸ ︷︷ ︸
=0 by item 4

ē′
i

= Qi(L, Qj(L, L))

6. Qj(Qi(L, L), Qi(L, L)) = Qi(L, L)ēj︸ ︷︷ ︸
by item 2

ē′
jQi(L, L)︸ ︷︷ ︸
by item 1

−ēj 1
′Qi(L, L)ēj︸ ︷︷ ︸
=0 by item 3

ē′
jQi(L, L)

−Qi(L, L)ēj ē′
jQi(L, L)1︸ ︷︷ ︸
=0 by item 4

ē′
j

=
︷ ︸︸ ︷
[I − ēi1

′]LēiLij

︷ ︸︸ ︷
Ljiē

′
iL[I − 1e′

i] = 0

where the last step uses the fact that LijLji = 0.

We are now ready to prove our main theorem.

Theorem 3. Let L = (Lij) be a REPO liability matrix satisfying Lii = 0 for all i ∈ [N ].

If, in addition, for a given pair i, j ∈ [N ] the liability matrix satisfies LijLji = 0, then

fi(fj(L)) = fj(fi(L)).
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Proof. Equation 3.3 is a bilinear function, thus we have:

fj(fi(L)) = fi(L) + ζjQj(fi(L), fi(L))

= L + ζiQi(L, L) + ζjQj (L + ζiQi(L, L), L + ζiQi(L, L))

= L + ζiQi(L, L) + ζjQj(L, L)

+ζiζj [ Qj(Qi(L, L), L)︸ ︷︷ ︸
=Qi(L, Qj(L, L)) by Lemma 2 (5)

+ Qj(L, Qi(L, L))︸ ︷︷ ︸
=Qi(Qj(L, L), L) by Lemma 2 (5)

]

+ζ2
i ζj Qj(Qi(L, L), Qi(L, L))︸ ︷︷ ︸

=0 by Lemma 2 (6)

= fi(fj(L)),

Consider now an arbitrary resolution subset σ ⊂ [N ] with 1 ≤ |σ| = m ≤ N . We

say that a liability matrix L is acyclic on a subset σ = {i1, . . . , im} ∈ [N ] if for each

1 ≤ l ≤ m = |σ| and any set of nodes {i1, i2, i3, . . . , il} ∈ σ we have that

Lili1

l∏
k=2

Lik−1ik
= 0. (3.14)

In other words, the liability matrix L is acyclic on σ if there are no closed loops within

the subgraph defined by the nodes in σ. As we can see, (3.14) generalizes the condition

LijLji = 0 for the case of a resolution subset with more than two banks.

Denoting by Pσ the projection onto the subspace spanned by {ēi, i ∈ σ}, observe

that the condition that L is acyclic on the subset σ, as stated in (3.14), is equivalent to

M = PσLP ′
σ being acyclic on the entire network [N ], that is to say, for each 1 ≤ l ≤ N

and any set of nodes {i1, i2, i3, . . . , il} ∈ [N ] we have that

Mili1

l∏
k=2

Mik−1ik
= 0. (3.15)
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Our next result shows that the novation map (3.3) does not introduce cycles in an

otherwise acyclic liability matrix on a given subset of nodes.

Theorem 4. Let L be a REPO liability matrix with Lii = 0 and assume that L is acyclic

on a subset of nodes σ = {i1, i2, . . . , im} ∈ [N ]. Then fi(L) is acyclic on σ, for each

i ∈ σ.

Proof. For ease of notation let P = Pσ and note that P is an orthogonal projection

matrix, that is P 2 = P = P ′, and that we also have P ēi = ēi. Then using definition

(3.3) we find

Pfi(L))P ′ = PLP ′ + ζiPQi(L, L)P ′ := M + ζiPQi(L, L)P ′ (3.16)

For the second term above, definition (3.5) gives the following:

PQi(L, L)P ′ = PLēiē
′
iLP ′ − (P ēi)1′Lēiē

′
iLP ′ − PLēiē

′
iL1(ē′

iP
′)

= PL(P ēi)(P ēi)′LP ′ − ēi(1′Lēi)ē′
iLP ′ − PLēi(ē′

iL1)ē′
i

= PLP ′ēiē
′
iPLP ′ − AR

i ēiē
′
iPLP ′ − LR

i PLP ′ēiē
′
i

= Mēiē
′
iM − AR

i ēiē
′
iM − LR

i Mēiē
′
i := T,

so that the components of the matrix T are tiy = −AR
i miy, txi = −LR

i mxi and txy =

mximiy if x, y ̸= i. We therefore need to show that U := M + ζiT with components

uxy = mxy +ζitxy is acyclic, which is a trivial task, considering that M = PLP ′ is acyclic

by assumption. For example, for x, y ̸= i we have

uxyuyx = (mxy + ζitxy)(myx + ζityx)

= mxymyx + ζimxytyx + ζitxymyx + ζ2
i txytyx

= mxymyx + ζimxymyimix + ζimximiymyx + ζ2
i mximiymyimix

= 0
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since M is acyclic. Similarly,

uxiuix = (mxi + ζitxi)(mix + ζitix)

= mximix + ζimxitix + ζitximix + ζ2
i txitix

= mxymyx − ζiA
R
i mximix − ζiL

R
i mximix + ζ2

i AR
i LR

i mximix

= 0

since M is acyclic. Similarly calculations show the products of entries of U of the form

(3.14) for arbitrary lengths all vanish.

We now define multilateral novation of a REPO liability matrix L that is acyclic an

an arbitrary resolution subset σ = {i1, . . . , im} ⊂ [N ] with 1 ≤ |σ| = m ≤ N to be the

composition of single-bank novations:

L̃ := L̃i1,i2,...,im = (fim ◦ fim−1 · · · ◦ fi1)(L) . (3.17)

Thus, provided the original liability matrix has no cycles on the resolution subset σ,

the multilateral novation defined above can be done one bank at a time in any given

order, as Theorem 4 guarantees that each step does not introduce any cycles, so that

the conditions of Theorem 3 are satisfied and the order of any two steps does not alter

the result. Moreover, because each individual step satisfies Proposition 1, we have

the following result establishing that all resolved banks will be either pure lenders or

pure borrowers, while the total REPO assets and liabilities of the remaining banks are

unchanged.
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Proposition 5. Under the conditions Theorem 4, we have that the total REPO assets

and liabilities of any bank j after novation are given by:

ÃR
j =

 AR
j j /∈ σ

max(AR
j − LR

j , 0) j ∈ σ

and

L̃R
j =

 LR
j j /∈ σ

max(LR
j − AR

j , 0) j ∈ σ
.

Proof. Let L̃ be given by (3.17). If j /∈ {ii, . . . , im}, then Proposition 1 gives that

ÃR
j := 1′L̃i1,...,im ēj

= 1′L̃i1,...,im−1 ēj

...

= 1′L̃i1 ēj

= 1′Lēj = AR
j ,

with a similar argument establishing the result for L̃R
j if j ̸= σ. On the other hand, if

j = il ∈ {ii, . . . , im}, then the same argument shows that, up to il−1 we have

1′L̃i1,...,il−1 ēj = AR
j , (3.18)

since j /∈ {i1, . . . , il−1}, whereas using Proposition 1 for step il = j gives

1′L̃i1,...,il−1,j ēj = max(AR
j − LR

j , 0). (3.19)
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Therefore, since j /∈ {il+1, . . . , im} we find

ÃR
j := 1′L̃i1,...,j,il+1...im ēj

= 1′L̃i1,...,j,il+1,...im−1 ēj

...

= 1′L̃i1,...,j,il+1 ēj

= 1′L̃i1,...,j ēj

= max(AR
j − LR

j , 0),

with a similar argument establishing the result for L̃R
j when j ∈ σ.

Thus, provided there are no cycles in the resolution subset σ, multilateral novation can

be done one bank at a time in any given order and all resolved banks will be either pure

lenders or pure borrowers, while the total REPO assets and liabilities of the remaining

banks are unchanged. Finally, the actual novations defined by the functions Qi, i ∈ σ

depend only on the rows and columns of L for the removed banks. This means that

an important confidentiality is preserved: the remaining banks need only reveal their

exposures to removed banks.

3.2.2 Close-out Step

After multilateral novation, resolved banks will be completely removed from the REPO

network when their remaining REPOs are closed out. However, since they are either

pure lenders or pure borrowers, provided they satisfy their collateral constraint, we will

now show that closing out has no negative impact one their counterparties. We recall

that, by assumption, each resolved bank i ∈ σ has lost their overdraft protection. They

may have positive or negative cash AL
i .
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In case of a pure borrowing bank i ∈ σ, that is, with ÃR
i = 0, we note that the

collateral constraint implies (1 − hi)AC
i ≥ L̃R

i . All of this banks’ REPO lenders can be

instantly “closed-out” by return of any allowed combination of cash and collateral AC
i ,

following the normal REPO rules for a defaulted bank. More precisely, since i prefers to

deliver cash as much as possible, the best i can do to settle its REPO debts is to deliver

min((AL
i )+, L̃R

i ) in cash, and any remainder in collateral, worth max((1 − hi)−1(L̃R
i −

(AL
i )+), 0).

In case of a pure lending bank, that is, with L̃R
i = 0, the borrowing counterparties may

be either remaining banks or removed banks. In the first case, the remaining bank can

either use its overdraft protection with the REPO System Operator or sell any collateral

above its revised collateral constraint and close-out their REPO in cash. In the latter

case, the removed borrowing bank settles with cash and/or collateral as described in the

previous paragraph.

3.2.3 Multilateral Netting

The combination of multilateral novation followed by the close-out is sufficient to resolve

any subset σ ⊂ [N ] provided PσLP ′
σ is an acyclic matrix. When this condition is not true,

one applies a preliminary step called multilateral netting that removes all existing cycles.

It can be argued that such REPO cycles are inefficient and economically undesirable,

and their removal by netting typically improves the REPO network. Certainly, no bank’s

collateral constraint gets worse under netting.

Let us consider first an example where the subset of removed banks is σ = {1, 2, 3},

and L12L23L31 > 0 so there is a cycle. Suppose also that L12 ≤ min(L23, L31). Then the

cycle can be removed by triparty netting which subtracts L12 from each of the edges of

the cycle, leading to a new acyclic matrix with L̃12 = 0, L̃23 = L23−L12, L̃31 = L31−L12.

Note that this triparty netting creates no additional balance sheet changes, and improves

all the banks’ collateral constraints provided haircuts are positive.
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To remove all cycles from the general liability subgraph PσLP ′
σ with nonoverlapping

cycles, one can simply remove cycles one at a time. However, if the subgraph has

overlapping cycles, the result is order-dependent. In such instances, the algorithm needs

to pick the order of removal, for example a prespecified lexicographical order.

3.2.4 Resolution Algorithm

To summarize, the following algorithm removes the specified banks from the REPO

network:

1. Input the liability matrix L and collateral vector AC and the resolution subset

σ ⊂ [N ], with elements listed in lexicographical order.

2. Multilateral Netting Step: If PσLP ′
σ is not acyclic, list all its cycles. Apply se-

quential netting in order of increasing cycle length, and lexicographically amongst

all cycles of the same size, leading to a new liability matrix Lnet which satisfies the

acyclic condition.

3. Multilateral Novation Step: Apply the mapping L̃ = (fim ◦ fim−1 · · · ◦ fi1)(Lnet) to

the result of Step 2.

4. Close-Out Step: Close out all remaining REPO assets of pure lending resolved

banks and all remaining REPO liabilities of pure borrowing resolved banks, in any

order.

Observe that, although the netting step when PσLP ′
σ has overlapping cycles has the

possibility of dependence on the ordering of the banks, in practice the novation step

tends to minimize any resultant differences, as we will see in the simulations in the next

chapter.
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3.2.5 Application: Ownership of Collateral

The REPO literature (for example Maclachlan 2014) makes it clear that REPO contracts

typically assign legal ownership of collateral to the REPO lender for the period of the

contract, even though for accounting purposes the collateral is kept as an asset on the

balance sheet of the borrower, whereas the lender records a reverse-REPO as an asset. If

the REPO lender uses the reverse-REPO to rehypothecate the original collateral, thereby

transferring ownership to a third party (while still being kept on the balance sheet of

the original borrower), the resultant chain of ownership becomes an additional thread

in a confusing web of potentially contradictory claims on the same original collateral.

We now show that the resolution algorithm of Section 3.2.4 provides a definitive

answer to the important question: given the exposure matrix L and collateral vector AC

how does one determine the percentage of the collateral posted by bank i that is owned

by bank j?

The key is to apply formulas for the resolution algorithm taking the resolution set

to be the entire network σ = [N ]. In general, the full matrix L will not be acyclic, so

the first step will be multilateral netting as defined in Section 3.2.3 leading to an acyclic

matrix Lnet. Next, the multilateral novation is applied to the full network, to produce

the matrix

L̃ = (fN ◦ fN−1 · · · ◦ f1)(Lnet) (3.20)

The resultant REPO matrix has no collateral chains. Since all banks are either pure

lenders or pure borrowers, and we continue to assume all banks satisfy the collateral

constraint, every remaining REPO contract L̃ij ̸= 0 is collateralized by assets AC
i whose

total value exceeds (1 − h)−1∑
j L̃ij .

This observation leads to the following collateral ownership rule for the original REPO

network with exposure matrix L and collateral vector AC :
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Collateral Ownership Rule: Each bank j is assigned ownership of collateral from

any other bank i with value (1 − h)−1L̃ij , where L̃ is given by 3.20 with Lnet given by

applying multilateral netting to L. Every borrowing bank i has non-negative remaining

total collateral AC − (1 − h)−1∑
j L̃ij ≥ 0.

As discussed in Section 3.2.3, in case the matrix L has overlapping cycles, there is

the potential for multilateral netting to depend on the order that cycles are removed.

Hence, the result may be non-unique. However, in every example we have investigated,

the effects of this nonuniqueness are minimized after the application of the novation

step. We conjecture, but have not proven, that the proposed Collateral Ownership Rule

algorithm always leads to a unique assignment of collateral ownership across the REPO

network.

To illustrate, consider the REPO chain of length N given as Example 2.2. Since

in this example the matrix L is acyclic, only the multilateral novation step (which can

be performed one bank at a time in any order) is needed. This produces the matrix

L̃ = (fN ◦ fN−1 · · · ◦ f1)(L) whose only non-zero entries are given by

L̃1j =

 hR(1 − hR)j−2 , 2 ≤ j < N

(1 − hR)N−2 , j = N
(3.21)

It is apparent in this example that, after novation, bank 1 becomes the only pure borrow-

ing bank. It owes L̃1j cash to the other banks, all pure lenders, which sum to AL
1 = $1.

This means that the Collateral Ownership Rule assigns to each bank j for j ≥ 2 owner-

ship of collateral with value (1 − h)−1L̃1j originally owned by bank 1, while bank 1 itself

retains ownership of zero collateral.
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3.3 Market Operations

This section discusses what operations have happen at the end of a market day in order

to deal with troubled banks.

Let day k for k ≥ 1 denote the period (k − 1, k] depicted in Figure 2.4. For k = 1,

we are assuming that some of the balance sheet constraints (2.5), (2.3) and (2.6) are

violated by at least one bank as a result of an initial shock as described in Section 2.4.4

and Figure 2.9. For the remaining days, as explained in Section 2.4.3, we assume that

the RSO provides overdraft protection to any bank that needs to close-out any REPO

contracts prior to the end of the day, so that it is possible that some banks do not

satisfy the liquidity constraint (2.5) at the end of day k. In addition, either as a result

of asset price movements or the actions of other banks, it is possible that either the

solvency constraint (2.6) or the collateral constraint (2.3), or both, are not satisfied by

some banks at the end of day k.

If a bank is insolvent at the end of day k, then it is automatically identified as a bank

to be removed from the network, as no amount of trading with its assets can increase

its total value. Among the solvent banks, however, those that fail to satisfy either the

liquidity constraint (2.5) or the collateral constraint (2.3), or both, are then given the

opportunity to trade general collateral and fixed assets in the market, as well as to recall

reverse-REPOs, in an attempt to restore these constraints, according to the auction step

described below. Any bank that fails to do so after being given the opportunity to trade

in the market is identified to be removed from the network.

To summarize, the market operations at the end of period k involve the following

steps:

1. The RSO identifies all the banks that do not satisfy either one of the liquidity,

collateral or solvency constraints (2.5), (2.3), (2.6).

101

http://www.mcmaster.ca/
http://cse.mcmaster.ca/
http://cse.mcmaster.ca/


Doctor of Philosophy– Hassan Chehaitli; McMaster University– Computational
Science and Engineering

2. Auction: among the banks identified above, those that satisfy the solvency con-

straint are allowed to act in the market to address collateral and liquidity con-

straints as described in Sections 3.3.3 and 3.3.3.

3. Shock propagation: the result of the actions of each bank in the previous step prop-

agates to other banks through reduction in value of fixed assets AF and hoarding

of reverse-REPOs AR. If this causes any bank to violate the constraints (2.5),

(2.3), (2.6), such violations are only taken into account by the RSO in the next

period.

4. Network Resolution: the banks identified in Step 1 that either: (i) were insolvent

and therefore not allowed to participate in the auction in Step 2, or (ii) did not

meet the collateral constraint in the Collateral sub-step of the auction, or (iii) did

not meet the liquidity constraint in the Liquidity sub-step of the auction become

the subset σ ∈ [N ] of banks that are then removed from the network according to

the resolution algorithm of Section 3.2.4.

Once the market operations are concluded, the system moves to day k+1, that is, the

period (k, k+1], where fixed assets and general collateral undergo a Geometric Brownian

motion (GBM) as described in Section 2.6 until the end of the day, when the steps above

are repeated.

3.3.1 Pre-auction setup

As mentioned in Section 2.6.3, in this thesis we assume for simplicity that all interbank

lending and borrowing is collateralized, that is, LU
i = AU

i = 0 for all i. The aim of this

section and the next is to figure out how a bank i will act after having been identified

as a solvent bank that does not meet either the collateral or liquidity constraint at

the end of day k − 1. Let (AL−
i , AC−

i , AR−
i , LR−

i ) denote the value of the liquid asset,

general collateral, reverse-REPO and REPO accounts at the start of the auction, namely
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t = k − ϵ, and let [Na
k ] be the subset of solvent banks (i.e satisfying (2.6)) that are either

illiquid or insufficient collateralized, that is, either AL−
i < 0 or

(1 − h)AC−
i + 1 − hR

1 − h
AR−

i − LR−
i < 0 . (3.22)

Observe now that the change in collateral that is needed for the bank to satisfy this

constraint as a strict equality is given by

δ̃Ai
C = −AC−

i + LR−
i

1 − h
− (1 − hR)AR−

i

(1 − h)2 , (3.23)

so that a bank finds itself insufficiently collateralized provided δ̃Ai
C

> 0.

As mentioned in Section 2.2, general collateral is typically a highly liquid asset, so we

assume that it is not subject to any price impact due to market operations. It is therefore

reasonable for a bank facing illiquidity to sell any excess collateral before attempting to

sell the fixed asset, for which there is a price impact as described below. Conversely,

because collateral is essential to guarantee loans between banks in the REPO network,

it also makes sense for a bank to attempt to restore the violation (3.22) by selling fixed

asset before addressing illiquidity issues. These adjustments are achieved in the collateral

sub-step of the auction. At the end of this sub-step, banks will either have satisfied the

collateral constraint (2.3) or else be identified to be removed from the network.

After the Collateral sub-step is concluded, we move to the Liquidity sub-step, whereby

banks that still owe money to the RSO attempt to restore the liquidity constraint (2.5)

by selling any remaining fixed assets, by recalling reverse-REPOs, or both. At the end

of this sub-step, banks will either have satisfied the collateral constraint (2.5) or else be

identified to be removed from the network.

We denote the total change in value of asset AX
i , for X = L, F, C (i.e liquid, fixed,

collateral), resulting from auction (either through the Collateral sub-step, the Liquidity
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sub-step, or both) by δAX
i , so that immediately after the auction (namely at t = k), we

have

AX
i = AX−

i + δAX
i , X ∈ {L, F, C, R}. (3.24)

When needed for clarity, we use the notation δcA
X
i and δℓA

X
i to denote the changes in

value of asset AX
i in each individual sub-step separately.

3.3.2 Price Impact

All banks in [Na
k ] will come to the auction at the same time and they will execute buy

or sell orders. In our algorithm, the order in which banks access the market during the

auction period is random, as this guarantees that no bank will get a better price deal,

since due to illiquidity in the market, the earlier the buying or the selling happens the

better the price.

When a bank liquidates assets to address illiquidity and collateral constraints, it will

get the prevailing market price for the required security/asset, which will in turn be

affected by such “fire sale”, in the sense that the market price will drop in relation to

the amount of shares that have been liquidated. If the security is highly liquid, as is

the case with general collateral AC and cash-like assets AL, we assume there shall be no

price impact. On the other hand, fixed assets (e.g. long maturity bonds) are assumed to

be illiquid, so that fire sale will leave an impact on their price for the next transaction.

Specifically, the following formula is used to determine the price after liquidation, but

other types of relations can be used as well:

pricenew = e−αqpriceold, (3.25)

where q ≥ 0 represents the number of shares to be liquidated and α ≥ 0 represents the

liquidity of the asset. If α = 0, this represents highly liquid market, where fire sales have
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no effect on the market price. As the value of α increases the impact of the fire sale will

become more and more noticeable.

Let us denote the moment that bank i ∈ [Na
k ] enters the market as a randomized

agent by tk,i. The following equations represent the value of fixed assets for bank i before

and after liquidation:

AF −
i = q−

i St−
k,i

(3.26)

AF
i = qiStk,i

(3.27)

where q−
i and qi represent the quantity of fixed asset that bank i has before and after

liquidation, whereas S−
tk,i

and Stk,i
represents the market price bank i sees before and

after liquidating a given quantity of fixed assets, that is,

Stk,i
= e−α(q−

i −qi)St−
k,i

. (3.28)

Observe that the total change in value of the fixed asset account can be decomposed as

δAF
i = AF

i − AF −
i = qiStk,i

− q−
i St−

k,i

= qi(Stk,i
− St−

k,i
) + (qi − q−

i )St−
k,i

(3.29)

where both terms are negative, since qi < q−
i and consequently Stk,i

< St−
k,i

on account

of (3.28). Notice further that the first term in (3.29) is a pure re-evaluation term, arising

from the change in value of the fixed asset resulting from the sale, whereas the second

term, namely

δ̃Ai
F := (qi − q−

i )St−
k,i

(3.30)

is the actual cash that is raised from the sale of the fixed asset at price St−
k,i

and that

can then be used to purchase either liquid assets or general collateral. Because we are
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assuming that the other assets are not subject to any liquidity effects, we obtain that

the following self-financing condition holds at each step of the auction:

δAL
i + δAC

i + δAR
i + δ̃Ai

F = 0 (3.31)

Moreover, the liquidation of fixed assets by bank i at time tk,i causes the value of the

fixed assets of any other bank j in the entire network to change by

δAF
j (ti) = qj(ti)(Stk,i

− St−
k,i

) < 0, (3.32)

where qj(ti) is the quantity of the fixed asset held by bank j at time tk,i. Finally, if bank

j ∈ [Na
k ] is then chosen randomly to enter the market auction to liquidate fixed assets at

moment tk,j immediately after bank i, it observes St−
k,j

= Stk,i
as the price of the fixed

asset.

3.3.3 The Collateral sub-step

For this sub-step we assume that δAR
i = 0, that is, there are no changes in the reverse-

REPO accounts of any banks. Recall that the set [Na
k ] consists of banks for which either

illiquid (AL−
i < 0) or insufficiently collateralized (δ̃Ai

C
> 0). We now consider the

following alternatives for each bank i ∈ [Na
k ], where we drop the label i for expedience

of notation.

1. Selling collateral: suppose that AL− < 0 and δ̃A
C

< 0 that is, the bank is

illiquid but has more collateral than is needed to fulfill condition (2.3). Then the

bank sells all or part of its excess collateral in order to repay the loan to the RSO,

but will not attempt to use its fixed asset until the next sub-step in the auction.
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We can formalize this by setting

δAC = max
(

AL−, δ̃A
C
)

(3.33)

δcA
L = −δAC (3.34)

δcA
F = 0. (3.35)

which corresponds to the following cases, listed from most to least favourable,

depending on the size of the liquidity shock AL− < 0:

(a) If δ̃A
C

≤ AL− < 0, then δAC = AL−, δAL = δcA
L = −AL− and δAF =

δcA
F = 0, so that

AL = AL− + δAL = 0

AF = AF − + δAF = AF −

and

(1 − hc)AC = (1 − hc)(AC− + δAC)

= (1 − hc)(AC− + AL−)

≥ (1 − hc)(AC− + δ̃A
C)

= LR − 1 − hR

1 − hc
AR,

that is, the bank clears its debt with the RSO, does not change its fixed asset

position, and still has excess collateral, in the sense that (2.3) is satisfied as

an inequality. This concludes the market operations for the bank, which does

not need to proceed to the Liquidity sub-step.
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(b) If AL− < δ̃A
C

< 0 then δAC = δ̃A
C , δcA

L = −δ̃A
C and δcA

F = 0, so that

ALc = AL− + δcA
L < 0

AFc = AF − + δcA
F = AF −

and

(1 − hc)AC = (1 − hc)(AC− + δAC)

= (1 − hc)(AC− + δ̃A
C)

= LR − 1 − hR

1 − hc
AR.

That is, the bank sells all of its extra collateral assets, so that the collateral

constraint (2.3) is satisfied as an equality, but still has some debt ALc < 0 with

the RSO, which will be dealt with in the Liquidity sub-step of the auction.

Here we used the notation ALc and AFc to indicate that these are the positions

in liquid and fixed assets immediately after the Collateral sub-step, but prior

to the Liquidity sub-step.

2. Buying collateral: conversely, suppose that the bank has insufficient collateral,

that is, δ̃A
C

> 0. In this case, it will first use any cash AL− that it holds with the

RSO in order to purchase the necessary collateral. If that is not enough (including

the situation when AL− < 0), the bank will sell some or all of its fixed assets in the

market. We assume that such “fire sale” of these assets only affects the price after

the bank has sold them, thereby impacting all banks in the network as described

in Section 3.3.2. If even after using all its cash and fixed assets the bank is still not

able to satisfy the collateral constraint, then it is identified to be removed from

108

http://www.mcmaster.ca/
http://cse.mcmaster.ca/
http://cse.mcmaster.ca/


Doctor of Philosophy– Hassan Chehaitli; McMaster University– Computational
Science and Engineering

the network. We formalize these steps by setting

δcA
L = − max

[
0, min

(
AL−, δ̃A

C
)]

(3.36)

δ̃cA
F = − max

[
0, min

(
δ̃A

C + δAL, AF −
)]

(3.37)

δAC = −δcA
L − δ̃cA

F
. (3.38)

In the expressions above, recall that, according to (3.26)-(3.28), the value of fixed

assets depend on the order in which the bank accesses the market during the

auction, that is,

AF − := AF −
i = a−

i ∗ St−
k,i

,

whereas AC− and AL− are set for each bank immediately prior to the start of the

auction.

This results in the following cases:

(a) If 0 < δ̃A
C

≤ AL− then δAL = δcA
L = −δ̃A

C , δAF = δcA
F = 0 and

δAC = δ̃A
C , so that

AL = AL− + δAL = AL− − δ̃A
C

≥ 0,

AF = AF − + δAF = AF −

and

(1 − hc)AC = (1 − hc)(AC− + δAC)

= (1 − hc)(AC− + δ̃A
C)

= LR − 1 − hR

1 − hc
AR.

That is, the bank has more than enough liquid assets AL to purchase collateral
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so that (2.3) is satisfied as an equality, without the need to liquidate any fixed

assets. Such bank does not need to proceed to the Liquidity sub-step.

(b) If 0 < AL− < δ̃A
C

≤ AL− + AF − then δAL = δcA
L = −AL−,

−AF − ≤ δ̃A
F = δ̃cA

F = −δ̃A
C + AL < 0

and δAC = δ̃A
C so that

AL = AL− + δAL = 0

0 ≤ AF = AF − + δAF < AF −

and

(1 − hc)AC = (1 − hc)(AC− + δAC)

= (1 − hc)(AC− + δ̃A
C)

= LR − 1 − hR

1 − hc
AR,

That is, the bank uses all of its liquid assets AL plus a portion of its fixed

assets to purchase collateral so that (2.3) is satisfied as an equality. Such

bank does not need to proceed to the Liquidity sub-step.

(c) If AL− > 0 and 0 < (AL− + AF −) < δ̃A
C then δAL = −AL−, δAF = −AF −

and

δAC = AL− + AF − < AC− + δAC < δ̃A
C
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so that AL = AF = 0 and

(1 − hc)AC = (1 − hc)(AC− + δAC)

= (1 − hc)(AC− + AL− + AF −)

< LR − 1 − hR

1 − hc
AR,

That is, the bank uses all of its liquid and fixed assets to purchase collateral,

but is still not able to satisfy the collateral constraint. In this case, the bank

is considered defaulted and is removed from the network.

(d) If AL− ≤ 0 and 0 < δ̃A
C

≤ AF − then δAL = 0, δ̃cA
F = −δ̃A

C and δAC =

δ̃A
C so that

ALc = AL− + δAL = AL− ≤ 0

0 ≤ AF
c = AF − + δAF < AF −

and

(1 − hc)AC = (1 − hc)(AC− + δAC)

= (1 − hc)(AC− + δ̃A
C)

= LR − 1 − hR

1 − hc
AR.

That is, the bank uses a portion of its fixed assets and is able to satisfy the

collateral constraint as an equality, but still owes money ALc ≤ 0 to the RSO,

which it will attempt to pay in the Liquidity sub-step of the auction.

(e) If AL− ≤ 0 and 0 < AF − < δ̃A
C then δAL = 0, δAF = −AF − and

δAC = AF − < δ̃A
C
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so that

ALc = AL− ≤ 0

AF = 0

and

(1 − hc)AC = (1 − hc)(AC− + δAC)

= (1 − hc)(AC− + AF −
t,i )

< LR − 1 − hR

1 − hc
AR,

That is, the bank sells all of its fixed assets and is still not able to meet the

collateral constraint, in addition to owing money to the RSO. In this case,

the bank is considered defaulted and is removed from the network.

As a result of the collateral sub-step all banks have sufficient collateral, since those

that did not meet the collateral constraint were removed from the network, although

some banks might have negative cash positions.

The Liquidity sub-step

In this section, we assume that δAC
i = 0 for all banks, that is to say, only reverse-

REPOs, fixed assets, and liquid assets AR
i , AF

i , AL
i are allowed to be adjusted, as any

adjustments to general collateral AC
i would have been done in the Collateral sub-step

explained above.

As we have just seen, a bank will arrive at this sub-step as the result of either case

1b or case 2d of the collateral sub-step above. In either case, the collateral constraint

(2.3) is satisfied as an equality but ALc < 0, meaning that the bank did not satisfy the

liquidity constraint at the end of the collateral sub-step. The only difference between the
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cases is that, if arriving at the liquidity sub-step from case 1b in the collateral sub-step,

a bank would not have liquidated any of its fixed assets yet. In both cases, however, the

value of the fixed asset account would have been impacted by any liquidation made by

other banks, so we continue to use

AF − := AF −
i = q−

i St−
k,i,ℓ

(3.39)

to denote the value of fixed assets at the time tk,i,ℓ when bank i enters the liquidity

sub-step of the action in period k.

At this point each bank faces a behavioural choice: continue to liquidate fixed assets

prior to recalling any reverse-REPO or the other way around. As we have discussed

before, either choice has the potential to propagate the shock to other banks by putting

pressure on their balance sheets. In the first case, the bank will further depress the price

of the fixed asset, potentially causing some banks in the network to violate the solvency

constraint (2.6). In the second case, the bank will find itself in violation of the collateral

constraint (2.3), which was satisfied as an equality prior to any reduction in AR, as well as

forcing other banks to repay their REPO liabilities with liquid assets, potentially causing

some of them to violate the liquidity constraint (2.5). The simulations in Chapter 4 will

address the effects of these actions for the network as a whole.

In all cases, as mentioned before, we assume that banks that fail to satisfy the sol-

vency, liquidity and collateral constraints as the result of market operations of other

banks at the end of period k are allowed by the RSO to proceed to the next period.

In particular, the RSO will continue to extend overdraft protection to any bank that

needs to close-out their REPO liabilities because of recalls from banks in the liquidity

sub-step. Accordingly, it is possible that, by the random time in which bank i enters

the liquidity sub-step, its liquid asset account will be further overdrawn than it was at

the end of the collateral sub-step. In this case, we make the additional assumption that
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this extra amount can also be dealt with in the next period. In other words, the value

of the liquid assets for bank i that needs to be repaid in the liquidity sub-step is what

it was at the end of the collateral sub-step, namely ALc
i .

As before, we omit the subscript i for expedience.

1. For a bank that prefers to recall reverse-REPOs prior to liquidating fixed assets,

we adopt the following procedure:

δAR = − min
(
AR−, −ALc

)
(3.40)

δ̃ℓA
F = − max

[
min

(
δAR − ALc , AF −

)
, 0
]

(3.41)

δℓA
L = −δAR − δ̃ℓA

F (3.42)

This results in the following possibilities:

(a) If 0 < −ALc ≤ AR−, then δAR = ALc , δ̃ℓA
F = 0 and δℓA

L = −ALc so that

AR = AR− + ALc ≥ 0

AF = AF −

AL = 0.

That is, the bank is able to repay all it owed to the RSO at the end of the

collateral sub-step by recalling a portion of its reverse-REPOs and does not

need to further liquidate fixed assets.
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(b) If 0 < AR− < −ALc ≤ AR− + AF −, then δAR = −AR−, δ̃ℓA
F = AR− + AL−

and δℓA
L = −ALc so that

AR = 0

0 ≤ AF = AF − + δAF < AF −

AL = 0.

That is, the bank is also able to repay all it owed to the RSO at the end of

the collateral sub-step, this time by recalling all of its reverse-REPOs and

liquidating a portion of its fixed assets.

(c) If 0 < AR− + AF − < −ALc , then δAR = −AR−, δ̃ℓA
F = −AF − and δℓA

L =

AR− + AF − so that

AR = 0

AF = 0

AL = ALc + AR− + AF − < 0

That is, the bank uses all of its reverse-REPOs and liquidates all of its fixed

assets but still cannot repay all it owed to the RSO at the end of the collateral

sub-step. Such bank is deemed to have defaulted and is identified to be

removed from the network.
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2. For a bank that prefers to liquidate fixed assets prior to recalling reverse-REPOs,

we adopt the following procedure:

δ̃ℓA
F = − min

(
AF −, −ALc

)
(3.43)

δAR = − max
[
min

(
δ̃ℓA

F
− ALc , AR−

)
, 0
]

(3.44)

δℓA
L = −δAR − δ̃ℓA

F (3.45)

This results in the following possibilities:

(a) If 0 < −ALc ≤ AF −, then δ̃ℓA
F = ALc , δAR = 0, and δℓA

L = −ALc so that

0 ≤ AF = AF − + δAF < AF −

AR = AR−

AL = 0.

That is, the bank is able to repay all it owed to the RSO at the end of the

collateral sub-step by liquidating a portion of its fixed assets and does not

need to recall any of its reverse-REPOs.

(b) If 0 < AF − < −ALc ≤ AR− + AF −, then δ̃ℓA
F = −AF −, δAR = AF − + ALc ,

and δℓA
L = −ALc so that

AF = 0

0 ≤ AR = AR− + AF − + ALc < AR−

AL = 0.

That is, the bank is also able to repay all it owed to the RSO at the end of the

collateral sub-step, this time by liquidating all of its fixed assets and recalling

a portion of its reverse-REPOs.
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(c) If 0 < AR− + AF − < −ALc , then δ̃ℓA
F = −AF −, δAR = −AR−, and δℓA

L =

AR− + AF − so that

AR = 0

AF = 0

AL = ALc + AR− + AF − < 0

That is, the bank uses all of its reverse-REPOs and liquidates all of its fixed

assets but still cannot repay all it owed to the RSO at the end of the collateral

sub-step. Such bank is deemed to have defaulted and is identified to be

removed from the network.

3.4 Discussion

The theoretical properties of the RH REPO network provide understanding and con-

fidence about how it can remain intact during any type of real crisis of the financial

system. For example, when a number of banks fail simultaneously, the RSO can step in

at the earliest moment (i.e. within 24 hours) and compute the new matrix L with this

collection of banks removed. The only instantaneous losses experienced by the remaining

banks occur when the received collateral from removed banks is actually worth less than

the notional loan amount: such losses will be small even during a crisis.

The second point is that netting and novation reduce the total notional REPO

amounts of the remaining banks, but do not change the net amount borrowed/lent

|LR
i − AR

i |. The only funding shock (total amount of cash to be paid to close-out) to

remaining banks is equivalent to max(0, LR
i − AR

i ).

A third point is to note that the only time the collateral constraint is needed is when

a removed borrowing bank i is closing-out the residual amount LR
i − AR

i ≥ 0, and has
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insufficient cash. At such a time, this bank must deliver cash plus collateral whose

market value is not less than this residual amount, and is able to do so provided the

collateral constraint was satisfied prior to novation. In this case, all its counterparties

are redeemed in full. For this reason, we say that a sufficiently collateralized RH REPO

network has no counterparty risk.

A fourth point is that remaining banks are required to deliver cash not exceeding AR
i

to all removed lending banks. Since such banks retain their overdraft protection until the

end of the day, in a dynamical model they will transmit funding shocks by borrowing from

the REPO Systems Operators, or alternatively liquidate excess collateral, as they seek

to refund their positions in the REPO market. This is the true spillover effect, leading

to liquidity hoarding and other systemic risk effects. The next chapter will present a

dynamical REPO market model based on the RH REPO network we have introduced

here, with the aim of understanding the systemic risks arising from the intertwining of

funding and market liquidity.

A fifth point is that timing issues may create additional stress on market agents.

Since all agents have the right to close out a REPO at the end of the day, there is a

question about whether this right conflicts with the novation step that apparently occurs

at the same moment. We have not explored this issue in detail, but clearly, the novation

step should precede by at least an instant the close-out moment at the end of the day.

The close-out right attached to the novated REPOs could then be exercised at the end

of the day.

A sixth point is the role of the haircut. Our main results work for any haircut, even

h = 0. In hindsight the role of the haircut is to limit the losses to lenders when the

removed bank fails the collateral constraint. If the haircut is too small these losses can

be large.
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Chapter 4

Simulations

4.1 Introduction

Simulations play an important part in any model or framework. Simulations can be used

to fulfill different objectives. Some of these objectives are projection into the future,

understanding dynamics and performing tests on a system. This chapter is divided into

three sections: novation, netting, and framework. In each of these sections, will develop

simulation cases to bring forward some interesting insights into our REPO model.

In the novation section we will put the claim that novation is order indifferent under

numerical simulation test. We will also how novation changes the configuration of net-

works under certain toplogies. In the netting section we will consider different network

configurations and the effect of netting on these configurations. In the Framework sec-

tion we will try to replicate some of the test cases in Gai et al. 2011 paper and introduce

some other tests we see fit for the systemic risk problem we are considering at hand.

4.2 Novation

In this section we will discuss some of the properties of the novation procedure introduced

in the previous chapter. In particular, we want to verify that the order in which these
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banks are removed and have their balance sheet items redistributed does not affect the

final result.

In the first two tests that follow, we consider the situation in which all of N banks

in the network are deemed to have defaulted and need to be removed.

We are fixing the topology of the graph, meaning that if there is an edge between

two nodes the edge will be maintained in all examples, but the weight of the edge can

change, and if there is no edge between two nodes, no edge will be introduced. In other

words, we will keep the same non-zero entries in the liability matrix L, but with varying

values, whereas the zero-valued entries in L will remain the same.

The aim of the simulation to is to create different weighted graphs for the same

graph topology and novate nodes on the same graph in all possible permutations. For

each simulation the nodes will be removed in different orders given by all possible N !

permutations of the nodes. In each simulation, for each weighted graph the final novated

matrix for each permutation order of nodes will be compared against all other novated

matrices in that simulation (each novated matrix represent a permutation case) in the

same weighted graph.

4.2.1 Novation Test 1

Consider a network in the form of the linear chain shown in Figure 4.21.

Since N = 6, there are 6! = 720 possible ways for the banks to be removed. We

run the simulation for 10,000 times to generate different weighted graphs of the same

topology. For each simulation, we will generate weights for the edges of our fixed graph

topology, which represents our liability matrix. The liability matrix in each simulation
1The reason the graph has an arbitrary shape though it is a linear chain is that graphs are generated

automatically by Python package NetworkX.
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Figure 4.1: Novation test 1: linear chain.

was then novated in 720 different ways. In this case we verified that novation is order

indifferent: for each of the 10,000 simulations, all 720 different ways to remove the banks

resulted in the same final liability matrix.

4.2.2 Novation Test 2

Consider the more complicated network topology represented by the graph in Figure

4.2. We again ran the simulation for 10,000 times to generate different weighted graphs

of the same topology and novated the liability matrix in each simulationin 720 different

ways, in each case finding the exact same final liability matrix, thus supporting that

novation is order-indifferent.

4.2.3 Novation Test 3

This test will show the effect of novation on a single graph by considering its topological

properties, namely the in-degree and out-degree distributions, before and after novation.
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Figure 4.2: Novation test 2: non-trivial graph with no cycles.

Consider the network represented by the graph in Figure 4.3

Figure 4.3: Novation test 3: star-shaped graph.

The graph in Figure 4.3 has the in-degree and out-degree distributions as shown in
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Figure 4.4, namely out of the 5 nodes with nonzero incoming links (nodes 4,5,6,7,8),

node 4 has in-degree equal to 4 and all others have in-degree 1, whereas out of the 5

nodes with nonzero outgoing links (nodes 0,1,2,3,4), node 4 has out-degree equal to 4

and all others have out-degree 1.

Figure 4.4: Degree distribution for the graph in Figure 4.3.

After applying novation on node 4 and clearing the residuals (|AR − LR|) from the

graph, we obtain the updated graph and degree distributions as shown in Figures 4.5

and 4.6, namely nodes 5,6,7,8 each have in-degree 4, whereas nodes 0,1,2,3 each have

out-degree 4.

We therefore conclude that novation can change the distribution of edges in a network,

especially if we have a fat tailed distribution network and we remove a node with in-out

degree of connections.
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Figure 4.5: New assets and liabilities after novation is applied to the
network in Figure 4.3.

Figure 4.6: Degree distribution for the graph in Figure 4.5.

4.3 Netting

In this section we will be looking at the type of cycles we might encounter in our agent

based REPO model that arise due to different topologies and the corresponding effect
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of the neeting procedure.

4.3.1 No-cycles

Consider the case where there are no loops given by the liability matrix LNE1, corre-

sponding to the graph shown in Figure 4.7. As there are no cycles in this graph, the

netting function will have no effect on the liability matrix. That is to say, neither the

matrix LNE1 nor the graph in Figure 4.7 will change as a result of netting.

LNE1 =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0



Figure 4.7: Netting Example 1: the set of cycles in the NE1 graph is
empty and netting has no effect.
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4.3.2 Simple-cycle

Consider the case where we have one cycle given by the liability matrix LNE2, corre-

sponding to the graph shown in Figure 4.8, where we can observe a single cycle connecting

all the nodes. In this test, the netting procedure will subtract the least weighted edge

from all the edges on the graph and this will break the cycle. The updated result of

LNE2 and Figure 4.8 will be reflected in Lnetted
NE2 and Figure 4.9.

LNE2 =



0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 3 0 0

0 0 0 0 4 0

0 0 0 0 0 5

6 0 0 0 0 0



Figure 4.8: Netting Example 2: the set of cycles in the NE2 graph is
cyclesNE2 = [ [0, 1, 2, 3, 4, 5] ], which is removed by netting.
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Lnetted
NE2 =



0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 3 0

0 0 0 0 0 4

5 0 0 0 0 0



Figure 4.9: Netting Example 2, Netted: as the netting step removed
the only cycle in the graph, the set of cycles in the liability matrix after
netting is empty.

4.3.3 Two simple, disjoint cycles

From this test case forward we will omit the liability matrix L, unless it is needed.

Consider the graph in Figure 4.10. In this case we have two cycles, each with a different

number of nodes and a different total weight (sum of weights of edges of the cycle). We

need an extra criterion on how to process the cycles. In our model we have three options.

Maximum option:

1. Given a graph G, find cycles and sort them according to number of nodes.
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2. Remove the cycle with the largest number of nodes.

3. Update graph.

4. Repeat steps number 1, 2 and 3 until there are no cycles left.

Minimum option:

1. Given a graph G, find cycles and sort them according to number of nodes.

2. Remove the cycle with the smallest number of nodes.

3. Update graph.

4. Repeat steps number 1, 2 and 3 until there are no cycles left.

Random option:

1. Given a graph G, find cycles.

2. Randomly pick a cycle, with equal probability, and remove it.

3. Update graph.

4. Repeat steps number 1, 2 and 3 until there are no cycles left.

In this test case, the option that is chosen to process the cycles is not important as

these cycles are disjoint. The final result of the cycle removal is shown in Figure 4.11

4.3.4 Two simple cycles with common node

Consider the graph in Figure 4.14. We again find that different approaches (maximum,

minimum, or random) in removing cycles from the graph in Figure 4.14 have no effect

on the final result, as netting only affects the edges of the cycle to which it is applied,
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Figure 4.10: Netting Example 3: the set of cycles in the NE3 graph is
cyclesNE3 = [ [4, 5, 6, 7, 8, 9] , [0, 1, 2, 3] ], that is, the cycles are disjoint.

Figure 4.11: Netting Example 3, netted: the set of cycles in the NE3
graph after netting is empty.

and in this case the cycles have no common edges, just a common node. The netted

graph is represented in Figure 4.13.
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Figure 4.12: Netting Example 4: the set of cycles in the NE4 graph is
cyclesNE4 = [ [0, 4, 5, 6, 7] , [0, 1, 2, 3] ], that is, they have 0 as a common
node.

Figure 4.13: Netting Example 4, netted using either the maximum or
minimum approaches, resulting in the same graph with no cycles.
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4.3.5 Two simple cycles with a common edge

Consider the graph in Figure 4.14. This graph is similar to graph in Figure 4.10 with one

difference:the two cycles have a common edge. Figures 4.15 and 4.16 represent different

approaches (namely maximum or minimum approach) in removing cycles from the graph

in Figure 4.14. As it is obvious from the two figures, each approach leads to a different

result. In Figure 4.15, it can be seen that all the nodes are connected to each other, and

if we start from node number one, all the other nodes can be reached. On the contrary,

Figure 4.16 shows that there are no nodes in the graph from which we can reach all

other nodes in the graph.

Figure 4.14: Netting Example 5: the set of cycles in the NE5 graph
is cyclesNE5 = [ [0, 1, 4, 5, 6] , [0, 1, 2, 3] ], that is, they have the edge
between nodes 0 and 1 in common.

This leads to the following interesting test. Suppose we build two nearly identical
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Figure 4.15: Netting Example 5, netted using maximum approach: the
set of cycles in the NE5 graph after netting is empty, but all the nodes
are still connected. In particular, all nodes are reached from node 1.

Figure 4.16: Netting Example 5, netted using the minimum approach:
the set of cycles n the NE5 graph after netting is also empty, but there
are no nodes from which all other nodes can be reached.

graphs for a large network, with the only difference between being what is shown in

Figures 4.15 and 4.16 for a subset of banks. We would like to see the effect of novation
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on the final result of the liability matrix starting from these two cases. Consider the

following example:

• let the liability matrix LEX5M represent a large network built on top of the core

graph in Figure 4.15, with entries shown in Figure 4.172.

• let the liability matrix LEX5m represent a large network built on top of the core

graph in Figure 4.16, with entries shown in Figure 4.18.

• assume that all entries in the liability matrices (LEX5M and LEX5m ) are the

same, except for the core nodes, where the entries are proportional to the weights

in Figures 4.15 and 4.16, as shown in Figure 4.19, showin the difference between

the two networks prior to novation.

• let the liability matrices Lnov
EX5M and Lnov

EX5m be the novated versions of the liability

matrices LEX5M and LEX5m, respectively.

We would like to check whether the liability matrices Lnov
EX5M and Lnov

EX5m are close

to each other, in other words if the resulting graphs are very close in shape and weights.

As we can see in Figure 4.22, the difference between the entries in the balance sheets

is very small, and we can also see in Figures 4.21 and 4.20 that the networks have a

very similar structure. In other words, the novation step smoothes and washes away the

effect of non-uniqueness introduced by netting.

2we fixed the core that is made of 7 nodes in figure 4.15, and to each node we added 100 peripheral
nodes where the in-out arrows are randomly assigned.
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Figure 4.17: Large financial network built on core graph of Figure 4.15,
corresponding to netting of the graph in Figure 4.14 using the maximal
weight removal approach.

4.4 Framework

This section will have different types of test cases. The first subsection will explain

in details what are the parameters involved in each test case. The second subsection

will introduce a benchmark test case taken from Gai et al. 2011. The third subsection

will introduce a bank run as a shock. The fourth subsection will have a bank run and

increased hair cut as a shock. The fifth subsection will introduce illiquidity to fixed

assets and rerun the third subsection test case.
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Figure 4.18: Large financial network built on core graph of Figure 4.16,
corresponding to netting of the graph in Figure 4.14 using the minimal
weight removal approach.

4.4.1 Test Case Types

In this section we will be replicating test cases from Gai et al. 2011. Table 4.1 describes

the general parameters for financial networks where different types of test cases will be

considered.

In all test cases we are going to enforce the following collateral condition:

C :(1 − h)AC
i + 1 − hR

1 − h
AR

i − LR
i = 0 (4.1)

We would like to remind the reader of the definition of liquidity constraint:

L : AL
i ≥ 0. (4.2)
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Figure 4.19: Difference Matrix for (LEX5m − LEX5M ).

In each test case type we are going to vary the average connectivity of the financial

network. The average financial connectivity is represented by variable z. For every

value of z, 1000 simulations will be run and in each simulation certain part of the balance

sheet will be shocked. The shock will propagate and statistics will be collected regarding

hoarding banks (i.e. banks that have recalled part or all of their reverse-REPO contracts

and defaulting banks (i.e. banks that have been removed from the network). Recall that,

in our framework, the crisis ends when all banks have resolved their financial conditions,

namely when either the collateral, liquidity, and solvency constraints are satisfied by all

remaining banks or all banks have been removed from the network.

According to Gai et al. 2011, a systemic hoarding event is said to have occurred

when at least 10% of the network hoards liquidity, which in their case means to recall
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Figure 4.20: Novated version of LEX5M , which resulted from netting
the core cycle showing in Figure 4.14 using maximum weight removal
approach

unsecured loans AU
i made to other banks, whereas in our framework it means recall-

ing reverse-repurchase agreement (REPO) contracts AR
i made with other banks. More

specifically, two metrics are introduced by Gai et al. 2011 as follows: SHF (systemic

hoarding frequency) defined as the fraction of simulations that experience a systemic

hoarding event and SHE (systemic hoarding extent), defined as the average fraction of

hoarding banks conditional on a systemic hoarding event. In our framework, we in-

troduce the analogous definition for a systemic default event (namely at least 10% of

banks being removed from the network), SDF (systemic default frequency: the fraction

of simulations with a systemic default event) and SDE (systemic default extent: average

fraction of removed banks, conditional on a systemic default event).

In this section we have five types of shocks:
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Figure 4.21: Novated version of LEX5m, which resulted from netting
the core cycle showing in Figure 4.14 using minimum weight removal
approach.

1. Liquidity shock: where L ≤ 0 which is equivalently AL
i ≤ 0.

2. Collateral shock: where C ≤ 0 which we can achieve by increasing h from 0.1 to

0.2.

3. Reverse REPO shock: by recalling reverse REPO contracts from counterparties.

4. Fixed assets shock: by decreasing liquidity of fixed assets and use a shock from

items 1,2, or 3.

5. Default shock: by forcing banks to default in the network.

In each of the shock types we can use some variations below and check the final result

of the contagion on the network. More specifically, we consider the following:
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Figure 4.22: Difference Matrix for (Lnov
EX4m − Lnov

EX4M ).

Node degree distribution variation: We will use two node degree distributions.

The first distribution is Poisson. In Poisson distribution every node is connected to

another node with probability p. The second distribution is geometric where most banks

in a financial network have low number of counterparties and a few nodes have a high

number of connections. As we can see in Figures 4.23 and 4.24, Poisson distribution

shows that most nodes have connectivity close to the average connectivity z, while for

Geometric distribution we can see that most nodes have very low node connectivity and

very few nodes have very high node connectivity.

Non-targeted vs targeted shocks: We can shock banks in the financial network in
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Parameter Description Value
n number of banks 250
i bank identity varies, i ∈ [0, 250)

AL
i cash 2% of balance sheet

AC
i collateral assets varies, depends on in-out

degree distribution
AR

i reverse repo assets 11% of balance sheet
AF

i fixed assets rest of balance sheet
hc collateral hair cut 0.1

LR
i repo liabilities varies, depends on in-out

degree distribution
Pc collateral price 1
µc mean of GBMcollateral 0
σc standard deviation of GBMcollateral 0
Pf fixed assets price 1
µf mean of GBM(fixedassets) 0
σf standard deviation of GBM(fixedassets) 0
α fixed assets liquidity 0 (infinite liquidity)

Table 4.1: Fixed parameters in test cases that represent financial net-
work.

Figure 4.23: Poisson Distribution with z = 5.

two ways. The first way is a non-targeted shock, where some banks are chosen randomly

in a uniform way and suffer a financial shock. The second way is targeted shock, in

which we choose the lender with highest number of connections.
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Figure 4.24: Geometric Distribution with z = 5.

4.4.2 GHK Shock

The benchmark test case in Gai et al. 2011 involves a large increase in the systematic

haircut hi for a single bank i, which causes it to violate the liquidity condition (1.13).

This bank then is forced to hoard liquidity by recalling a portion of its interbank loans

AIB
i (corresponding to AU

i in our framework) from other banks, potentially causing a

different bank j to violate (1.13) through an increase in the term −λµjLU
j , thereby

propagating the initial shock through the network.

First we will show the results that Gai et al. 2011 had and revisit them in the later

sections when we will introduce shocks and results to our own system.

Figures 4.25 and 4.26 show the result of simulations. In each z simulation only one

bank was shocked.

In Figure 4.25 we have the following 3 test cases and results as stated by Gai et al.

2011 for Poisson distributed nodes:

1. Poisson baseline: In this test case, systemic hoarding happens for value of z

between 0 and 20. The tipping point for z is 7.5. The frequency of systemic

hoarding relative to z increase first then drops around the tipping point of z. The

reason that small values of z have low frequency of systemic hoarding is because
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Figure 4.25: GHK Poisson distribution test. Source Gai et al. 2011.

the financial institutions are isolated. Although high values of z offers diversity of

counterparties and lowers shock magnitude in general, some configurations due to

randomness will still lead systemic hoarding breakout. As it can be seen in Figure

4.25 when systemic hoarding happens it affects most of the financial network, as

can be seen from the extent of systemic hoarding being close to 1 for z between 5

and 17, after which it drops to zero as the frequency itself is negligible.

2. Poisson with aggregate haircut shock: In this test case, the aggregate haircut

shock is achieved by increasing the haircut hc from 0.1 to 0.2. Increasing the haircut

requires banks to increase the collateral posted in order to satisfy the collateral

condition and achieve the equality in equation 4.1 which will put stress on their

liquid assets AL. This leads to the shift of the tipping point from the baseline at

value z = 7.5 to value 15.
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3. Poisson with targeted shock: In this test case the authors shock the bank with

highest number of out going connections. In Poisson network targeting highly

connected nodes do not make much difference, since the highly connected node in

not much different from the rest of the nodes in the network, so the result is very

close to the baseline.

Figure 4.26: GHK Geometric distribution test. Source Gai et al. 2011.

In Figure 4.26 we have the following 3 test cases and results as stated by Gai et al.

2011 for geometric distributed nodes:

1. Geometric baseline: Because the geometric networks are more sparse than in

the Poisson case, they turn out to be more resilient for low or high values of z.

There are a few dense nodes and if the shock misses them the shock will end up

hitting a sparse part of the network. For example, in geometric baseline, Figure
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4.26 the frequency peaks at 0.5 with a corresponding extent of roughly 0.65; While

in the Poisson base line, Figure 4.25, we have the frequency peaks at almost one

with a corresponding extent of roughly one as well .

2. Geometric with targeted shock: Unlike Poisson targeted shock, Geometric

targeted shock has devastating consequences, as can be seen in Figures 4.26 and

4.25, the frequency and extent of geometric reaches 1 faster than frequency and

extent of possion. The range of z for which systemic hoarding happens in geometric

is wider than Poisson targeted shocks, for Poisson systemic hoarding happens for

1 ≤ z ≤ 16 while for geometric it happens for 1 ≤ z ≤ 70.

3. Geometric with Liabilities increase: In this test case the authors increase

interbank liabilities from 15% to 25%. This shows that contagion frequency and

magnitude become bigger and more serious compared to the baseline test case.

The results associated with the 25% is due to the fact that having large liabilities

will lead to bigger amounts to be withdrawn from counterparties.

4.4.3 Liquidity Shock (AL-T1)

In this section we will be shocking deposits D in the balance sheet which will lead to

AL being negative, check table 4.2. Making AL negative means that liquidity condition

is broken and the bank has tapped into the credit line at a previous time step to fix its

financial position. Gai et al. 2011 has no test strictly equivalent to this, since idiosyn-

cratic haircut hi is set to zero in this test case, but their shock to hi can be seen as

a proxy for the more direct liquidity shock that we use here. In other words, we can

replicate something similar to experiment 1 in Gai et al. 2011 by having a bank run

(deposit run). For this test, number of banks is 100 and number of simulations is 1000.

For this test case and the following ones we will be adopting the following notation:

systemic hoarding frequency (SHF), systemic hoarding extent (SHE), systemic default
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frequency (SDF) and systemic default extent (SDE). We also refer to line A and B as

G(geometric) lines while C and D are referred as P(poisson) lines.

Test Network Distribution Targeted Shock Value #Banks Shocked

A Geometric False Dnew = 0.15Dold

AL = −0.85Dold
1

B Geometric True Dnew = 0.15Dold

AL = −0.85Dold
1

C Poisson False Dnew = 0.15Dold

AL = −0.85Dold
1

D Poisson True Dnew = 0.15Dold

AL = −0.85Dold
1

Table 4.2: Liquidity Shock Parameters.

For T1 the result for all sub-graphs SHF, SHE, SDF and SDE for AR(priority = 0)

will be zero lines. First, liquid and fixed assets will compensate for the deposit shock.

Fixed asset is a big portion of the balance sheet we can see that fixed assets and liquid

assets combined in our test can cover the deposit shock without the need to use AR please

refer to graph 4.32 for details regarding balance sheet composition for different values

of z. As for sub-graphs of AR(priority = 100), we can see there is some hoarding but

there are no defaults. We forced the network to use reverse repo’s as first line of defense,

and when reverse repo’s were depleted fixed assets compensated for the shortage. Even

when hoarding happned it was still close to 10%. The reason that systemic hoarding

and extent is low is z. When z is low that means the mean value of connection is low

and thus there will be islands in the graph which will stop systemic hoarding; on other

side, when z is high there will be many counterparties for every bank that receives a

shock and thus in return the shock shall be divided equally among the counterparties.

For example, assume each bank has on average 10 counterparties in their AR, if a bank

receives a$600 shock in their deposits. The shock will be $60 per bank. Each bank

already has $20 in their AL which lead that each bank has to pass a $40 shock to its

10 counterparties. Thus the second level of hoarding will be $4 per bank, which can be

covered again from AL. As for the systemic default, there is no systemic default since
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the amount of funds available in AR and AF will cover any deposit shock(bank run).

Figure 4.27: This Figure shows how AR value approaches LR value as
z value increases for Poisson and Geometric distributions.
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Figure 4.28: T1(Liquidity Shock): α = 0, Dnew = 0.15Dold, AL =
−0.85Dold. A and B stand for Geometric non-targeted and Geometric
targeted shocks respectively while C and D stand for Poisson non-targeted
and Poisson targeted respectively.
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4.4.4 Collateral Shock (AC-T2)

In this section we will be shocking AC in the balance sheet,check table 4.3, by increasing

required collateral haircut h on top of the deposit shock, which means banks need to

post extra collateral plus fix liquidity constraint. For this test, number of banks is 100

and number of simulations is 1000. This test is similar in spirit to experiment 2 in Gai

et al. 2011, which adds a systematic haircut increase to the setup of their experiment 1.

Test Network Distribution Targeted Shock Value1 Shock Value2 #Banks Shocked

A Geometric False h = 0.2 Dnew = 0.15Dold

AL = −0.85Dold
1

B Geometric True h = 0.2 Dnew = 0.15Dold

AL = −0.85Dold
1

C Poisson False h = 0.2 Dnew = 0.15Dold

AL = −0.85Dold
1

D Poisson True h = 0.2 Dnew = 0.15Dold

AL = −0.85Dold
1

Table 4.3: Collateral Shock Parameters.

In this test, refer to Figure 4.29, we build the balance sheets by using hc = 0.1 then

we broke collateral constraint by raising the value of collateral hair cut and we made

it hc = 0.2. We break as well the liquidity constraint as we did in T1. The break

in collateral constraint will force financial institutions to buy more collateral. Looking

into figure 4.29 we can see the following: (1) AR(priority = 100) case, where we see a

decrease in SHF compared to T1 but this decrease is accompanied by the presence of

defaults as it is shown in SDF and SDE. (2) AR(priority = 50) case, we see we have

some hoarding in SHF and SHE compared to T1 as the shock is bigger than fixed and

liquidity assets available to cover the shock very small number of cases can use hoarding

to cover the shock through using reverse repo. (3) AR(priority = 0) case, we see SDF

and SDE are zero and the reason for this we forced the agents to use fixed assets as first

line of defence, and as the required money left to cover the shock is not enough the agent

defaulted without recalling any reverse repo’s in order not to increase the stress in the
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network.

We can see through cases (1), (2) and (3) that SDF and SDE is consistent which

shows the extent of defaults is independent of the approach used as the shock is bigger

than the available assets to cover it.

The shares required for collateral can not be covered by AL, thus tapping into AF is

required. As discussed in T1 the difference between AR and AL is too big and most banks

will firesale AF and have final value AF = 0. SHF and SHE should be zero through out

the simulations and that makes perfect sense. We already broke the collateral constraint

and we need to fix it. By hoarding more liquidity and recalling AR we will only make

the collateral constraint go further away form the required value. The only way to fix

the constraint is to keep AR fixed in value and then we shall increase the value of AC

in the balance sheet until C = 0. The reason why SHF and SHE are not zero is because

of the default. When default happens non-defaulted banks still have to pay residuals to

defaulted banks and thus will tap into reverse repo.

The same line of reasoning shall be used in order to interpret as to why we see

improvement in P lines in graph 4.29 while G lines do not benefit from the increase in

z variable. Let’s perform an experiment, we will fix the value of LR = 1 for all banks,

where LR is uniformly divided among its counterparties. Then, we will create financial

networks with different values of z, for each value of z, we are going to compute mean

squared(MS) as the following:

MS = 1
n

n∑
i=1

(LR
i − AR

i )2 (4.3)

As we can see in the Figure 4.27, for Possion LR = AR is reached way earlier than the

Geometric. As LR = AR the residual will be zero.
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Figure 4.29: T2(Collateral Shock): α = 0, h = 0.2, Dnew =
0.15Dold, AL = −0.85Dold. A and B stand for Geometric non-targeted
and Geometric targeted shocks respectively while C and D stand for Pois-
son non-targeted and Poisson targeted respectively.
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4.4.5 Fixed Assets Illiquidity Shock (AF -T3)

In this section we will be shocking the network by making fixed assets AF illiquid. By

introducing illiquidity for fixed assets, banks will not be able to collect full value of this

assets as it is recorded on their balance sheet. Every time a financial institution liquidates

part of AF , the price of the fixed asset will decrease and all banks in the network will be

effected by the new price. In this section we run different tests with different parameter

value and check the effect of these parameters on the financial netowrk. Gai et al. 2011

has no test case similar to the one we are performing in this section. In this section we run

three different test cases under same initial shock conditions. First case when all agents

choose to liquidated their AR first to meet shock requirements AR(priority) = 100%.

Second case is when half agents give priority to AR liquidation and the other half chooses

to liquidate AF first, this corresponds to AR(priority) = 50%. Third case is when all

agents give priority to liquidate AF first and this corresponds to AR(priority) = 0%.

For this test, number of banks is 250 and number of simulations is 3000.

Extreme Deposit Shock

Table 4.4 shows the values for this shock. In this test we use extreme values and this is

represented by full bank run ( full deposit run) and extreme illiquidity in fixed assets.

Observations that we can see in this test case through figure 4.30 that as AR(priority)

goes from 100% to 50% then 0%, SHF and SHE decreases in value until it becomes nill.

The reason for that is the firesale channel(check explanation below for more details).

Second observation that can be seen through the mentioned graphs and priority levels is

the similarity of results in SDF and SDE. That tells us when illiquidity reaches a certain

level hoarding and non-hoarding does not play a role in the default of the banks, as the

fire sale channel will have the final say on who is going to default and this becomes a

balance sheet composition problem. Banks with high exposure to illiquid assets will end

up defaulting.
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Test Network Distribution Targeted Shock Value #Banks Shocked

A Geometric False
q=0.00075
Dnew = 0

AL = −Dold

1

B Geometric True
q=0.00075
Dnew = 0

AL = −Dold

1

C Poisson False
q=0.00075
Dnew = 0

AL = −Dold

1

D Poisson True
q=0.00075
Dnew = 0

AL = −Dold

1

Table 4.4: Fixed Assets Illiquidity Shock Parameters: N/A stands for
not-applicable

Discussion of these observations and results:

• for AR(priority) = 100% in figure 4.30 : We have the following observations:

– We can see that SDF and SDE for Poisson distribution(lines C and D) is

higher than Geometric distribution(lines A and B). For SDF and SDE, it can

be seen in figure 4.32 the Poisson distribution has AC > 0 for most values of

z, this means the collateral condition C = 0, when an agent recalls AR we will

have C < 0 thus this will lead to more usage of AF to bring C back to zero

as done by collateral sub-step. Geometric distribution show AC = 0 for most

values of z that means C > 0 and any repo calling will either result in no AF

usage or only a minor sale of fixed assets.

– We can see that SHF and SHE show activity for Geometric distribution(lines

A and B) while Poisson distribution(lines C and D) shows no activity. One

reason is that the Poisson has AC > 0 as shown in 4.32. When AR is recalled

that causes the collateral constraint C to be negative for the agent calling AR

and C to be positive for the agent paying AR. Since Poisson has AC > 0

that allows the agents paying the AR to use their C and sell AC to cover
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their AL negative credit, while this is not possible in Geometric. Another

reason, Poisson distribution does not show hoarding that is because it reaches

100% SDF and SDE very fast as explained previously. Another factor the

contributes to hoarding is the default of banks and the resolution of residuals,

as it can be seen in figure 4.32, in the LR graph, banks in Poisson distribution

will have close AR and LR while banks in Geometric distribution will have

pure lending banks AR > LR. If a bank defaults in Geometric distribution

and is removed then its counterparties will have to pay big residuals and this

will make these counterparties recall AR.

• for AR(priority) = 50% in figure 4.30: similar remarks can be taken in considera-

tion when interpreting the results of this figure as AR(priority) = 100%.

• for AR(priority) = 0% in figure 4.30: similar remarks can be taken in consideration

when interpreting the results of this figure as AR(priority) = 100%.

Varying deposit shock and illiquidity parameter

As we have seen in T1,T2 and extreme deposit shock we have systemic hoarding and

systemic default are varying but they are taking extreme values. We decided to further

investigate what should be a good combination of α(illiquidity for fixed assets) and

∆Di = −d ∗ Di(deposit shock) to get an intermediate joint occurrence for systemic

hoarding and systemic default for fixed z = 10 and AR(priority) = 100%.

Figure 4.33(a) shows that for α = 0.00075 there is no significant systemic hoarding,

regardless of the size of the initial shock for deposits, whereas SDF and SDE start to

increase at 15% initial shock all the way to 50% as they reach values of one or very close

to one. We can see that the Poisson lines have higher value than the Geometric lines, for

explanation check extreme deposit shock. As for figure 4.33(b) for initial deposit shock

of 100% we notice systemic hoarding is close to zero regardless of the value of α but for
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SDF and SDE we can see a noticeable increase in the graphs as soon alpha is not having

a value of zero.

Moving into an intermediate value for α = 0.00015, figure 4.34(a) show us that SDF

and SDE starts to increase around initial deposit shock of 70%. We can see as well a

noticable increase in SHE reaching to 30% A line and SHE of 20% for most lines. Figure

4.34(b) shows us a noticeable SHF around α = 0.00015. As a consequence of the results

in figure 4.34, we decided to fix α = 0.00015, d = 0.85 and run a test for varying values

of connectivity z as it will be discussed in

Intermediate Deposit Shock

Initial shock values for this test are presented in table 4.5.As discussed in section 4.4.5

and as expected we see a good amount of liquidity hoarding in figure 4.31.

Test Network Distribution Targeted Shock Value #Banks Shocked

A Geometric False
q = 0.00015

Dnew = 0.15Dold

AL = −0.85Dold

1

B Geometric True
q = 0.00015

Dnew = 0.15Dold

AL = −0.85Dold

1

C Poisson False
q = 0.00015

Dnew = 0.15Dold

AL = −0.85Dold

1

D Poisson True
q = 0.00015

Dnew = 0.15Dold

AL = −0.85Dold

1

Table 4.5: Fixed Assets Illiquidity Shock Parameters: N/A stands for
not-applicable

We will discuss the results of figure 4.31.The following points should be noted before

we start the discussion:

• each agent has an initial AL = $20
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• the effect of z on the propagation of the shock. When z is small we have separated

islands of banks, as z increases the connectivity in the graph increases. When z is

small the bank will have less counterparties and thus bigger shocks will be passed

to the counterparties. If z is large then most of the shocks will be absorbed by AL

in these counterparties. For example assume a bank gets $400 shock in deposits.

If the bank has 2 counterparties each counterparty will have $200 shock, each of

these counterparties has $20 in AL thus each of these counterparties will have to

deal with $180 shock. On the other hand, if a bank has 20 counterparties, for the

same deposit shock each counterparty will recieve $20 as a shock which can be

nullfied by the $20 that is found in AL.

• the effect of the distribution on the residual AR − LR. As we can see in figure 4.32

that LR in possion distribution converges to AR, while the geometric distribution

has a residual of $100.

Keeping the three upper points in mind and looking at the figures 4.31 (G1) and 4.30

(G2) the following points can be noted.

• the shock that causes systemic hoarding is the residual from defaulting banks.

As we discussed earlier when z is small we have islands and when z is large we

many counterparties that will absorb a big part of the shock by their AL. The

only option left when illiquidity hits is that if a bank fails it has either to receive

money (AR > LR) or pay money (AR < LR).As we have seen for possion AR and

LR get close to each other fast, but most banks have AR > LR for all z values

for geometric. Illiquidity makes many banks to default, defaulted banks have to

be compensated for the residual and thus systemic hoarding is forced if the first

option to deal with shock is with liquidating AR. This explains why geometric

shows hoarding while poisson does not.

• by comparing SDF,SDE, SHF and SHE in G1 and G2, we see when SDE is high and
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SHF/SHE are low and vice versa. The reason for this is that when illiquidity hits,

it affects all banks at the same time, if illiquidty factor is too high most banks(90%

to 100%) will fail at the same time and thus the shock will be absorbed(in form

of residual) by whatever banks that are left ( they are very low in number, which

will not cause systemic hoarding). If there is default( 60%) then there is enough

banks to absorb the shock in form of residual.

• as we change AR(prioterty) from 100% to 50% then to 0% in G1 and G2 we

can see that SHF decreases and this is because SDE is increasing as illiquidity

is having more effect on our financial network since we are liquidating more and

more shares.

• for G1, we can see that SDF curves converge as we lower the AR(priority) the

reason for that banks are failing fast due to illiquidity since we are liquidating more

shares.

• for G1 and G2 we see that SHE has positive values for geometric distribution that

is due to he residual affect of the failed banks.

4.5 Conclusion

Many variables control systemic risk contagion and its effect on financial institutions in

the financial network. Two important variables that have significant impact in systemic

risk have been investigated. These two variables are network topology and balance sheet

composition vs risk factors( bank run and fixed assets illiquidity). Two techniques in

resolving defaulted banks have been included in our framework. These techniques are
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Figure 4.30: T5(Fixed Assets Illiquidity Shock): alpha is 0.00075 and
deposit shock is 100%. A and B stand for Geometric non-targeted and
Geometric targeted shocks respectively while C and D stand for Poisson
non-targeted and Poisson targeted respectively.
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Figure 4.31: T5(Fixed Assets Illiquidity Shock): alpha is 0.00015 and
deposit shock is 85%. A and B stand for Geometric non-targeted and
Geometric targeted shocks respectively while C and D stand for Poisson
non-targeted and Poisson targeted respectively.
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Figure 4.32: Balance sheet entries: comparison of balance sheet entries
under different network distributions.

netting and novation. In the framework, priority of debt was given to repo liabilities in

order to insure the integrity of secured lending. It was shown through simulations that

network topology plays a role in systemic risk contagion when we have a financial shock,

but has a mild effect when it comes to defaulting banks. As the graph becomes closer

and closer to complete the balance sheets start to become similar across banks. Balance
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(a) Varying deposit
shock, α = 0.00075

(b) Varying fixed
asset illiquidity, d=1

Figure 4.33: Varying deposit call back ratio d and illiquidity of fixed
assets parameter α, extreme cases.
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(a) Varying deposit
shock, α = 0.00015

(b) Varying fixed
asset illiquidity,

d=0.85

Figure 4.34: Varying deposit call back ratio d and illiquidity of fixed
assets parameter α, intermediate cases.
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sheet composition played a role when there is a big residual between repo liabilities and

reverse repo assets. As the residuals subsidize the balance sheet, loss that incurred due

to default will be less severe to repo contract holders and it will be easier with other

entries in the balance sheet. Netting played a role in lowering the exposure of banks

by bucketing financial transaction between two banks and leaving only the difference in

these transaction to be dealt with, thus lowering the stress on the network. Novation, on

the other hand, lowered the impact of a defaulted bank by stopping the close or recall

of repo contracts and just changing the ownership of these contracts. Adding defaulted

banks to the framework and interpreting the effect of the financial shocks gave a better

explanation to what is happening in the financial network. We saw that lower hoarding

frequency and/or extent does not necessarily mean better results as this lower hoarding

rate is accompanied by higher default frequency. In this thesis we tried to make sure

that the bank uses its resources in the most efficient way for both the bank itself and

the financial network. The use of the resources tried to keep a balance between bank

survival, meeting constraints and having the lowest impact of stress in the financial

network.
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Chapter 5

Conclusion

In this thesis we study financial agents. Financial agents do not live in vacuum but rather

these agents affect each other through direct and indirect channels. Ensuring that the

financial network is stable under stressed situation is of vast importance to the economy.

Financial models allow us to understand the dynamics of interaction between financial

agents, decision making process for each financial agent and the effect of the interaction

between the financial agents and the markets. These models introduce metrics that

measure the the final effect stressed individual banks impose on the financial network as

a whole and what portion of this financial network will be affected/ruined.

In chapter 1 we introduced the two models that we used as the basis upon which

to build our own model, namely the Eisenberg-Noe (EN) model from Eisenberg and

Noe 2001 and the Gai-Haldane-Kapadia (GHK) model from Gai et al. 2011, and explain

their main limitations. For the EN model, the main issues where: (1) an overly simplistic

balance sheet, (2) the strict positive liquid assets condition, (3) absence of default cost,

(4) a deterministic and static model, and (5) conservation of losses. For GHK, we have

the following issues: (1) a deterministic and static model, (2) a financial shock that is

resolved in one time step, (3) too many restrictive assumptions (e.g 100% recall of reverse

repo, same in and out degrees of nodes) needed to justify the “tipping point” condition

1.15, and (4) an unclear default resolution mechanism (in particular what happens to
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rehyptothecated collateral upon default of multiple banks). The purpose of our model is

to address many of these issues. Specifically, our model has: (1) a more realistic balance

sheet than EN, (2) the possibility of negative liquid assets, (3) a stochastic and dynamic

structure, (4) non-conservation of losses, (5) financial shocks resolved over multiple time

steps, and lastly (6) fully specified default and collateral resolutions.

In chapter 2 we introduced our model that adopts many parts from GHK. GHK has

a good representation of a balance sheet, which solves problem (1) in EN. We switched

the model type from threshold model to agent-based model. Agent-based model allow

us to relax many of the assumptions and issues that are discussed in GHK. For example,

it allowed us to introduce priority in debt (to ensure the priority of repo contracts in

default resolution) and priority in liquidation (to keep the markets stable by assessing

markets as a last resort). By introducing stochastic prices for collateral AC and fixed

assets AF we were able to deal with issue of deterministic and static nature of EN and

GHK and by introducing illiquidity for fixed assets AF where able to solve conservation

of losses problem, namely by introducing firesale effects. The decision to switch to agent

based model allows us also to solve the financial shock in multiple time steps and it

also allows us to use any network topology as reaching an analytical answer is not a

goal in our model. We introduced examples that show issues that arise with REPO

rehypothecated chains. The main issue is how to redistribute the rehypothecated chain

collateral in the case of simultaneous defaults of multiple banks.

In chapter 3 we introduce a novation algorithm that specifies which defaulted bank

gets what part in rehypothecated collateral chain, which solves problem (4) in GHK.

Moreover, we proved that the order of novation is irrelevant. Novation makes sure it

keeps the repo market calm by stopping the recalling of repos and reverse repo that would

otherwise lead to market instability. Instead of closing down repo contracts, novation

rewires the ownership of the contracts. We introduced netting as well which lowers the

exposure of banks to each other in a loop configuration. Moreover, just like GHK, we
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have liquidity and collateral constraints that govern the balance sheet. The constraints

need to be met during the life of the financial agents, who make decisions according to

well-define regions in the AR × AF plane. These constraints guarantees the safety of the

collateral, the payment of the REPO liability and minimizes the interaction of financial

agents with the markets.

Finally in chapter 4 we run different tests and simulation for representative cases.

In the tests we run, we show that, unlike novation, netting does not always produce

a unique solution. Nevertheless, we gave an example that shows the non-uniqueness

of netting will be washed away by the effects of novation. The effect takes place since

novation changes the distribution of connection in a network. For example, novating a

star topology at the star will change the topology into Poission distribution. We also

gave examples that confirm our theorem for uniqueness of novation. Lastly, we had

test cases with benchmark test cases in Gai et al. 2011. We added another metric to

the framework which is the defaulted banks. It has been shown that lower hoarding

frequency and/or extent does not mean the financial network is healthy. Lower hoarding

frequency/extent is usually accompanied by higher default frequency.

Bank decisions does not only effect itself regarding profit and loss but it rather effect

the entire financial network through contagion channels that we discussed in previous

chapters. Our framework took three objectives into account. First objective is financial

survival, second objective is meeting balance sheet constraints and the third objective

lowering impact of stressed banks on the financial network. These objectives are met by

minimizing interaction with markets and agents.
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