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Lay Abstract  

Rheumatoid arthritis (RA) is a long-term condition that reduces quality of life. In 

RA, the immune system mistakenly attacks and damages the bone and cartilage that 

make up the joints. The immune response is due to protein modification by an overactive 

enzyme in the body (PAD). PAD changes one amino acid (arginine) into another 

(citrulline). The immune system sees this change as a threat and reacts by damaging the 

joints.  

This thesis aims to provide (1) a proof-of-concept for an RA treatment. Immune 

cells, from patient and control blood, were tested to see how they reacted to unchanged 

(arginine) and modified (citrulline) proteins, seen in RA. It was found that the immune cells 

did not have consistent responses, preventing treatment development. The second 

project (2) tried overproducing PAD in cells to study how it causes RA. Although the 

protein was produced it was non-functional and could not modify its targets. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 iv 

Abstract 

Introduction: Rheumatoid arthritis (RA) is a debilitating, autoimmune disease of the 

synovial joints, involving a complex interplay of genetic and environmental risk factors. In 

RA, an overactive peptidyl-arginine deiminase (PAD) enzyme, citrullinates ‘self-proteins’, 

converting positively charged arginine residues to neutral citrulline, generating new 

immunogenic peptides. These peptides interact favourably with a positively charged 

pocket within the binding groove of HLA-DR molecules. Peptides are subsequently 

presented to and activate autoreactive T cells, driving an inflammatory response. The 

Aims of this research were (1) to demonstrate proof-of-principal for a therapeutic mRNA 

vaccine substituting glutamine residues for citrulline (non-coded amino acid). T cell 

responses to native/citrullinated/glutamine-substituted peptides were compared, and (2) 

to overexpress the PAD4 enzyme and investigate the consequences of protein 

hypercitrullination in RA pathogenesis. 

Methods: In Aim 1, 17 RA patients and healthy controls were recruited from a local 

Rheumatology clinic. Participants’ peripheral blood mononuclear cells were isolated from 

whole blood to assess T cell responses to native, citrullinated, and glutamine-substituted 

peptides. In Aim 2, an adeno-associated virus (AAV), encoding a murine PAD4, was 

transduced into human and mouse cells. Protein hypercitrullination was investigated by 

western blotting, immunocytochemistry, flow cytometry, and ELISA.  

Results: In Aim 1, 4/17 participants demonstrated an equivalent frequency of T cell 

responses to citrulline and glutamine epitopes. Antigen-specific T cell responses to 

unmodified peptides were also detected. In Aim 2, the AAV-encoding PAD4 was 

expressed in human and mouse cells. Cytoplasmic, rather than the expected nuclear and 
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endoplasmic reticulum distribution was observed. Protein hypercitrullination was not 

detected suggesting the engineered protein was non-functional. 

Discussion/Conclusion: For Aim 1, it was apparent that glutamine was not an 

appropriate surrogate for citrulline (in vitro) in the design of a therapeutic mRNA vaccine. 

While, for Aim 2, an AAV-expression system to assess PAD4-mediated hypercitrullination 

led to production of a non-functional enzyme. 
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1.0 Introduction 

1.1 Innate and Adaptive Immunity 

The innate and adaptive arms of the immune system protect from foreign 

pathogens. Although both systems work collectively, the innate immune system responds 

upon exposure to a microorganism once it has breached the body’s physical barriers, 

such as the skin (1). Innate immune cells, including macrophages and neutrophils, try to 

contain the foreign agents by phagocytosis, secreting proinflammatory cytokines and 

recruiting more cells to the point of entry (1,2). If the innate immune system cannot 

eliminate the pathogen, antigen-presenting cells (APCs) interact with adaptive immune 

cells to initiate the second arm of the response. The adaptive arm is pathogen-specific 

and maintains immunologic memory to drive a more robust response upon re-exposure 

to the organism (1).  

1.1.1 Antigen Presentation 

The innate and adaptive immune responses are bridged by professional APCs, 

including dendritic cells (DCs), macrophages, and some B cells (1,3,4). These APCs use 

cell surface molecules, such as the major histocompatibility complex (MHC), also known 

as the human leukocyte antigen (HLA) in humans, to present epitopes (protein fragments) 

to adaptive immune cells (e.g., T and B cells) (1,3-5). A highly polymorphic gene complex 

on chromosome 6 encodes three classes of HLA molecules: I, II and III (5). The class I 

HLA-(A/B/C) or MHC-I molecules present endogenous pathogens to activate CD8+ T 

lymphocytes, while class III consists of a range of substances that mediate an immune or 

inflammatory response such as, complement proteins and tumour necrosis factor-alpha 

(TNF-α) (5). The class II (HLA-DR/DP/DQ or MHC-II) molecules are vital for exogenous 
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pathogens and have an important role in autoimmune diseases, a primary focus of the 

next chapter 1.1.2 (5).  

Professional APCs process and present epitopes to ‘prime’ corresponding T cells, 

leading to their activation and proliferation, using three signals (1,3-5). The first is the 

interaction of the MHC-II molecule loaded with the peptide fragment with a T cell receptor 

(TCR) and a second co-stimulatory signal via the CD28 receptor (T cell surface) binding 

CD80 ligand of the APC (1,3,4). Inflammatory cytokines, as secreted by mature APCs 

into the extracellular environment, provide the third signal for the differentiation of a T cell 

to provide effector function (2,3). In the absence of co-stimulation, however, T 

lymphocytes enter a state of hypo-responsiveness known as anergy, which is critical for 

immunoregulation (6,7). 

1.1.2 Tolerance and Anergy 

In response to a pathogen, the immune system may sometimes become over-

reactive. As a result, to prevent the development of autoimmune diseases there are 

mechanisms that ‘turn off’ (or tolerize) immune cells (7-10). Immunologic tolerance is the 

process of decreasing immune cell responsiveness towards specific antigens presented 

by APCs (7). There are two forms of tolerance: central and peripheral. Early in the 

development of T lymphocytes within the thymus, a primary lymphatic organ, successful 

(moderate affinity) binding between the TCR and MHC-antigen complex allows for 

positive selection of these cells (8,9). These thymocytes are initially positive for both 

clusters of differentiation (CD) 4 and 8 (8,9). Only after binding with an appropriate MHC 

or HLA class (I or II) molecules do the cells become singly positive (CD4+ and class II; 

CD8+ and class I) (8,9). Another component of central tolerance is negative selection 
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which is the removal of autoreactive T cells to host antigens (8-10). B lymphocytes also 

undergo negative selection in a different primary lymphoid organ, the bone marrow (11). 

However, the process of central tolerance is ‘incomplete’ as some of the autoreactive T 

cells may survive and persist in the periphery (7). Several potential models for escaping 

tolerance induction have been hypothesized and elucidated in the literature. These 

included the lymphocytes receiving minimal exposure to sequestered (hidden) epitopes 

or encountered less of the subdominant to immunodominant epitopes during 

development (differential tolerance) (12-14). For instance, Cibotti and colleagues 

demonstrated that transgenic mice expressing the hen egg-white lysozyme (HEL) were 

tolerant to the full protein and the immunodominant peptide (13). However, the existing T 

cell repertoire was still responsive to two subdominant epitopes of HEL, highlighting 

differential tolerance towards different antigenic determinants of the same protein (13).  

There are intrinsic and extrinsic mechanisms of peripheral tolerance, for potential 

autoreactive T cells not eliminated during central tolerance. Some example mechanisms 

are clonal deletion (apoptosis), suppression by regulatory T cells, and anergy, as 

mentioned above (15,16). Clonal deletion has one of two pathways, the first involves 

strong stimulation of the TCR with an autoantigen in the absence of a secondary signal 

(16). This prompts the upregulation and release of pro-apoptotic factors from the 

mitochondria which downstream can disrupt the cell structure and cause death (16). The 

second pathway, known as ‘activation-induced cell death’, consists of the surface 

receptor Fas binding to its ligand FasL to initiate a cascade of signalling events resulting 

in apoptosis (16-18). Although cell death is one way to maintain self-tolerance, Sakaguchi 

and colleagues previously demonstrated that CD4+CD25+ T cells, transferred to BALB/c 
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mice induced with autoimmune diseases, can suppress lymphocyte activity (19). These 

regulatory T cells (Treg) had several immunoregulatory properties from secreting inhibitory 

cytokines, such as interleukin (IL)-10, or the expression of granzyme and perforin that 

can kill target cells (20-23). Some studies, such as by Dieckmann and colleagues, 

showed that Treg cocultured with antigen-specific CD4+ and CD8+ T cells, in vitro, had a 

75% and 60% reduction in proliferation, respectively (24). In addition to Treg, another 

method of peripheral tolerance is anergy. In this reversible unresponsive state, 

lymphocytes do not proliferate or differentiate upon stimulation (15,25). To induce anergy 

involves an absence of the co-stimulatory signal through CD28 when presenting an 

epitope, along with changes in the intracellular signalling pathways that fail to produce IL-

2, a cytokine indicative of activation (15,26,27). Thus, the cells can become tolerant to a 

particular antigen and are unable to mount an autoimmune response. 

1.2 Rheumatoid Arthritis (RA) 

1.2.1 Background 

The immunoregulatory mechanisms can sometimes be dysfunctional and result in 

pathogenesis. To date, there are reports of over 100 different autoimmune diseases, from 

rheumatoid arthritis (RA) to type I diabetes (28). Despite the involvement of different 

organ systems, autoimmune diseases have overlapping similarities. For instance, the 

adaptive immune cells cannot differentiate self-antigens from non-self, and the innate 

immune cells play a critical role in presenting antigenic determinants to autoreactive T 

and B cells (28). Upon stimulation, the lymphocytes orchestrate a response against the 

body’s tissues, producing autoantibodies and inducing systemic or localized inflammation 

by secreting proinflammatory cytokines (2-4,28).  
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Systemic and local inflammation are both associated with RA (27). RA is a chronic 

autoimmune disease of the synovial joints, symmetrically targeting the hands, knees, and 

feet (polyarticular) (29). The synovial joint is an anatomical space connecting two bone 

structures and consists of the articular cartilage, synovial membrane, and synovial fluid 

(30,31). The articular cartilage is a layer of connective tissue on the surfaces of adjacent 

bone that protects against damage (30). Continuous with the articular cartilage is the 

synovial membrane containing synoviocytes that fill the joint cavity with a colourless, 

viscous fluid (30,31). This fluid helps to reduce the friction caused by the motion of the 

limbs (30,31). RA presents as a complex, multi-stage disease process with inflammation 

of the synovial lining, and destruction of bone and cartilage, leading to deformities in the 

distal upper and lower extremities (32,33). Guo and colleagues recently proposed a four-

phase model of RA pathogenesis (33). In phase I, triggering, certain genetic and 

environmental predisposition factors could make an individual susceptible to RA onset 

(33). The next phase (II), maturation, examined the activation of autoreactive immune 

cells in response to citrullinated self-proteins (33). In phase III, targeting, the pathologic 

mechanisms associated with joint damage were elucidated. While in phase IV, fulminant, 

the clinical and extra-articular manifestations of the disease were characterized (33,34).  

1.2.2 Epidemiology   

RA affects about 1% (or 350,000) of Canadians and poses a significant concern 

due to an aging population, as symptoms tend to become prominent in later adulthood 

(35,36). In multiple population-based investigations on estimates of RA prevalence and 

incidence, there was an evident rise in disease rates over time (35,37). For instance, 

Widdifield and colleagues reported a 120% increase in the total number of RA cases from 
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1996 (42,734) to 2010 (97,499) (35). Interestingly, the crude prevalence rose about two-

fold from 490 to 899 total cases per 100,000 people, whereas a stable trend was observed 

for the incidence rate as it changed from 64 (1996) to 59 (2010) cases per 100,000 

persons at risk per year (35). Although studies have reported that crude incidence rates 

tend to remain moderately stable over time, RA affects the sexes disproportionately 

(35,37-39). For example, the frequency of RA was two to three times higher in females 

than in males (39,40). These sex-based differences in RA may be partly explained by 

underlying genetic and hormonal factors (41,42). In a recent paper by Yu and colleagues, 

they found a statistically significant difference (p<0.05) and lower expression levels of the 

IL-4 gene in female compared to male RA patients (41). These findings suggested that 

lower levels of this anti-inflammatory cytokine may have profound implications in disease 

progression, especially for women (41).  

1.2.3 Etiology of Disease 

Current understanding of RA has stemmed from the complex interaction of genetic 

and environmental predisposing factors. Twin and genome-wide association studies 

(GWAS) have provided insight into the genes and their alleles that increased susceptibility 

towards RA (43-46). The results from two nationwide investigations demonstrated that 

the cumulative heritability estimate for RA was about 53% [95% CI (confidence interval): 

40-65] (United Kingdom) (43,44) and 65% [95% CI: 50-77] (Finland) (43,45), with much 

higher concordance rates in monozygotic (12.3%) than dizygotic (3.5%) twins (44). To 

date, there are over 30 susceptibility genes, such as PTPN22, encoding a tyrosine-protein 

phosphatase non-receptor type 22, responsible for regulating antigen presentation 

(47,48). More notably, however, are a subset of alleles pertaining to the HLA-DR beta 
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(β)1 gene, such as DRβ1*01:01 (DR1 subtype) or DRβ1*04:01 (DR4 subtype), found in 

over 80% of RA cases (49). The product of the HLA-DRβ1 gene is an HLA class II 

molecule that contains a positively charged five amino acid (AA) motif, known as the 

shared epitope (SE), in the binding groove of the DRβ chain (50). Gregersen and 

colleagues proposed the SE hypothesis that the HLA-DR molecule presents peptides 

favourably interacting with the binding groove to activate autoreactive T cells (50,51). In 

subsequent experimental investigations using DR1 or DR4 transgenic mice engineered 

to express the human HLA-DR complex, it became clear that this antigen-presenting 

molecule binds peptides from self-protein, such as type II collagen, with a preference 

towards citrulline-containing (neutral) sequences over arginine (positively charged; 

described further in sections 1.3 and 1.4) (51-53). The HLA-DRβ1 SE alleles are also 

implicated in associating interstitial lung disease (ILD), commonly described as an extra-

articular manifestation of RA, with cigarette smoking (described below) (54,55). Recently 

emerging evidence using Mendelian randomization analysis on pre-existing GWAS data 

has shown a bi-directional, genetic causal link between ILD and RA (56). The researchers 

selected single nucleotide polymorphisms as instrumental variables based on pre-defined 

criteria connected to the risk factor but not directly to the outcome (56). For instance, 

when the causality of RA (risk factor) on ILD (outcome) was investigated, the risk of the 

outcome increased by 9.6% (56). Notably, when the occurrence of ILD, as the risk factor, 

was assessed on RA, it raised the risk of the arthritic disease by 12.8%, with both causal 

associations being statistically significant (p<0.05) (56). Together, these findings 

illustrated that genetic predisposition has a pivotal role in RA, the risk of which is likely 

elevated with environmental factors. 
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Numerous studies have highlighted certain environmental factors that increase the 

risk of RA onset (57-64). For instance, a case-control study on Swedish participants 

reported the odds of having high birthweight (>4000 g) in adult-onset RA patients was 3.3 

times more likely than the controls (strong association) (57). Similarly, the incidence of 

RA was 40% more likely (relative risk=1.4) in both men and women of a low 

socioeconomic status (SES) (58). Though the underlying mechanisms for these two 

factors remain unknown, more extensively elucidated are the independent correlations 

that cigarette smoke and exposure to Porphyromonas gingivalis have with RA status (59). 

Smoking has a strong link to rheumatoid arthritis as evidence has shown that inhalable 

exposure increases the expression and activity of a particular peptidyl-arginine deiminase 

(PAD) enzyme (described in detail in section 1.3) implicated in the disease (60). There 

was also evidence that suggested smoking significantly elevated TNF-α, an inflammatory 

cytokine, secretion from lymphocytes over non-smokers, providing insight into one 

plausible mechanism of joint inflammation, as seen in RA (60,61). Glossop and 

colleagues also found a positive trend between the number of pack-years smoking and 

TNF-α secretion (61). This relationship was consistent with a population-based study 

which showed the risk of developing RA was over two-fold with 20 or more pack-years of 

smoking (62).  

In addition to smoking, infection, such as with P. gingivalis was associated with 

RA. This gram-negative bacterium, known to cause periodontitis and contribute to 

periodontal diseases, has two virulence factors that are targets for the host immune 

system and relevant to RA (63). These factors include a PPAD enzyme, similar to the 

human form, and gingipains (63). The overlapping similarities between the bacterial and 



M.Sc. Thesis – D. Malhotra; McMaster University – Medical Sciences 

 9 

human proteins may help explain how autoimmunity against the joints may arise. Current 

data has shown that P. gingivalis DNA was found in the synovial tissue in a significantly 

greater proportion of RA patients (33.3%) than in controls (5.9%), demonstrating that the 

oral infection may spread to the joints and play a part in the arthritic disease (64). A study 

by Kharlamova and colleagues demonstrated the ‘additive interaction’ effect of combining 

genetic and environmental risk factors in RA (59). For instance, elevated antibody levels 

to P. gingivalis’ gingipain are associated with significantly higher odds of being RA 

positive (Odds Ratio (OR)=2.96) (59). This relationship strengthened in smokers (additive 

OR=5.35), and the proportion of the outcome attributable to the combined exposure was 

48% (59). The additive effect also increased with anti-gingipain antibodies and the 

presence of the HLA-DR susceptibility genes (additive OR=16.62), with an attributable 

proportion of 47% (59). Thus, there is convincing evidence of an interaction among the 

risk factors with RA status. 

1.2.4 Etiologic Hypotheses of Disease 

Citrullination can yield new peptides (neoantigens) that although similar to their 

native counterparts, can be immunogenic. However, it remains unclear how smoking or 

infection by bacterial agents in the lungs can propel innate and adaptive immune cells to 

target the structures of the synovial joints. Two potential hypotheses to explain the 

mechanistic link between environmental exposures and RA were introduced: molecular 

mimicry and epitope spreading (65-67). The concept of molecular mimicry, first proposed 

by R. Damian in 1964 (67), suggested that the similarities between foreign antigens of 

microorganisms and the host they infect may contribute to autoimmune diseases (65, 67). 

Similarly, epitope spreading refers to the ability of dominant and subdominant (or cryptic) 
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epitopes to elicit an immune response (66). The subdominant or cryptic epitopes tend to 

be sequestered, but an event, such as an inflammatory response initiated by the primary 

epitope or tissue damage, allows APCs to present hidden sequences (secondary 

epitopes) and prime T cells (66).  

Interestingly, however, the extent of disease may vary according to the processed 

antigen, and epitope spreading can create a hierarchy based on the immunodominance 

of the epitope (66). A study by Lundberg and colleagues described the cross-reactivity of 

antibodies to alpha-enolase in humans and enolase from P. gingivalis (68). The 

immunodominant peptide of citrullinated (or modified) alpha-enolase, a protein commonly 

implicated in RA, shared 82% homology with the bacterial analog (68). The researchers 

found that the immunoglobulin (Ig) G antibody response against the human and bacterial 

forms of enolase significantly correlated (r2=0.8; p<0.01) (68). In another investigation, 

following immunization of HLA-DR1, DR4, and DR15 transgenic mice with 

immunodominant and cryptic epitopes of lethal factor (an antigen from Bacillus anthracis) 

revealed major differences in the levels of T cell activation and cytokine (e.g., interferon-

gamma [IFN-𝛾]) production (69). When T cells were stimulated with cryptic epitopes, there 

were fewer cytokine-secreting lymphocytes than seen with the immunodominant peptides 

(69). Thus, molecular mimicry and epitope spreading can improve understanding of 

environmental factors and autoimmune diseases while broadening the scope of potential 

peptide targets that may mediate the disease. 

1.2.5 Clinical Diagnosis  

The American College of Rheumatology and European League Against 

Rheumatism (ACR/EULAR) revised a classification system in 2010, to better define RA 
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(70). Their criteria evaluated patients who may be suspected of RA on a 0 to 10 scale, 

with a score equal to or above 6, indicating disease (70). When diagnosing RA, it is 

important to assess the number of joints involved (mono- versus poly-articular) and 

disease severity, in addition to the circulating serologic markers (70,71). For instance, a 

characteristic clinical feature of RA is joint swelling caused by the activities of autoreactive 

immune cells (71). Patients may present with stiff and tender joints, such as those in the 

hands and feet, which negatively impacts their mobility and overall quality of life (71). RA 

does not localize only to the small joints and may be associated with extra-articular 

manifestations, as mentioned above (71,72). For instance, ILD (pulmonary), rheumatoid 

nodules (dermatologic), and lymphoma (hematologic) are a few of the systemic 

manifestations of the disease (71). A case-control study by Baecklund and colleagues 

found that the risk of lymphoma increased almost three-fold in RA cases (73). Thus, it is 

more likely for patients to experience complications with other organ systems after 

developing chronic RA. 

Though the clinical features of RA primarily include changes to the joint 

morphology, there are specific serologic markers that aid in diagnosis, including 

rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibodies (anti-CCP; 

hereafter referred to by the more inclusive term: anti-citrullinated protein antibodies 

[ACPA]) (72). Although patients may have seronegative RA, in the absence of RF or 

ACPA, it is much less common and seen only in about 30% of cases (29). Both RF and 

ACPA are autoantibodies produced by B cells to self-molecules. More specifically, RF 

targets the constant domain of IgG, while ACPAs interact with self-protein modified in an 

enzymatic process that creates neo-peptides, which the body assumes are foreign (74). 
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Interestingly, studies have demonstrated that these serologic markers form several years 

before clinical features are completely apparent (75,76). For instance, Nielen and 

colleagues reported a median time interval of 4.5 years from the first appearance of 

autoantibodies to symptom onset, with a moderately high positive predictive value (RF: 

77% and anti-CCP: 83%) (75,77). To test for antibody status, there are commercially 

available enzyme-linked immunosorbent assays (ELISAs) and other clinical devices (78). 

Furthermore, systematic reviews and meta-analyses discovered that the accuracy of 

detecting autoantibodies was inconsistent with large ranges for sensitivity (12% to 93%) 

and specificity (63% to 100%) (79). Although specificity is generally higher for ACPA 

(95%) than RF (79%), their sensitivities are more comparable (67% versus 69%) (77-79). 

Thus, laboratory testing for these autoantibodies may provide considerable insight into 

the presence of RA. Another systemic marker indicative of inflammation is the c-reactive 

protein (CRP) (80). Biologically, CRP regulates immune responses and influences 

cytokine secretion from immune cells, thereby inducing inflammation (80). Although this 

protein is not a strong predictor of disease, some evidence has suggested that elevated 

levels of the marker (>10 mg/L) were present in RA patients and positively associated 

with disease activity (80). Nonetheless, measuring CRP levels may provide some 

indication of disease in conjunction with the autoantibody concentrations.  

1.2.6 Active Therapies and Challenges 

Current treatment options for RA are non-curative, focus on temporary symptom 

reduction, and pose significant challenges for the patient (81). Early intervention with 

corticosteroids, non-steroidal inflammatory drugs (NSAIDs), or disease-modifying anti-

rheumatic drugs (DMARDs) can help reduce some of the joint inflammation (81,82). Intra-
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articular corticosteroid injections of prednisone or NSAIDs, such as aspirin, are first-line 

therapies for managing RA symptoms as they have rapid effects and can inhibit the 

transcription of inflammatory genes, improving synovitis and the status of pain (82,83). 

However, there are also well-documented side effects with their use. For example, 

patients may experience gastrointestinal complications and even thinning of the bone 

(81). In a retrospective cohort study, almost 12% of the discontinuation rate for RA 

treatment was attributable to high risk of adverse events (84), a challenge with many of 

the current therapies available (33, 84, 85). Also, prescribing a lengthy treatment regimen 

may prompt nonadherence and worsen the disease, which is especially important with an 

aging population (29,36,81,86).  

DMARDs are second-line therapies that take longer to act but have demonstrated 

success in reducing joint destruction and achieving clinical remission (81). A common 

DMARD to treat RA is methotrexate (81). However, as an immunosuppressive agent, this 

drug increases the patient’s susceptibility to subsequent infection (81,87). In a 

randomized controlled trial (RCT) that compared the efficacy of DMARD combination 

therapy with monotherapy, there was a significant difference in the proportion of patients 

that achieved remission (24/97 (combination-DMARD) versus 11/98 (monotherapy-

DMARD); p=0.011) (86). In a separate prospective follow-up study design, researchers 

reported that the two-year remission rates were higher and significantly different (p<0.01) 

for the combination therapy group (40%) over the monotherapy (18%), with lower 

radiographic joint damage also observed in the combination-treatment group (89). 

Although these studies provide insight into the effectiveness of a combinatory approach 

to RA treatment over single therapy, it still necessitates finding a cost-effective alternative. 
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A subclass of DMARDs are biologics that are disease-specific but incur high costs to 

patients (e.g., over $15000 annually) (90). A biologic approved for RA treatment is 

abatacept, which blocks the binding of CD80 with CD28 (co-stimulation) (91). An RCT by 

Kremer and colleagues compared abatacept with a placebo and found a significantly 

higher likelihood of ACR 20 (or 20% improvement in symptoms and disease status) with 

the intervention (60%) over the placebo group (35%) (91). Nonetheless, all three 

therapies may demonstrate some success in treating RA. However, many patients are 

unresponsive to current therapies, warranting the development of a newer, life-improving 

drug (33). 

1.3 Citrullination and the Peptidyl-Arginine Deiminase (PAD) Enzyme  

An important indicator of RA is autoantibodies that target citrullinated (modified) 

versions of the self-proteins, including vimentin, fibrinogen, and type II collagen (92,93). 

Citrullination is the post-translational modification of a positively charged L-arginine 

residue to neutral L-citrulline, intra- and extracellularly (94). A family of peptidyl-arginine 

deiminase (PAD) enzymes catalyze this calcium-dependent reaction, generating new 

immunogenic peptides since citrulline is a non-coded AA (Figure 1) (95). There is growing 

evidence that suggests citrullination has a major role in RA (Figure 1) (95). For instance, 

Wang and colleagues identified 182 citrullinated peptides from 83 total autoantigens in 

the synovial fluids (SF) of RA cases (96). RA patients have elevated levels of circulating 

autoantibodies and citrullinated autoantigens in their SF (93,97,98). In a recent study, it 

was evident from serum analysis that the mean ACPA levels were significantly higher in 

the RA group over osteoarthritis patients (133.93±41.3 ng/L versus 5±13.2 ng/L; 

p=0.0001) (98). Additional support for the association of citrullination and arthritogenicity 
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comes from pre-clinical investigations (94,99). An experiment with Dark Agouti rats 

demonstrated that immunization with citrullinated (cit) rat serum albumin (RSA) could 

break tolerance, as seen by anti-(cit)RSA IgG reacting to the native peptide (94). The 

researchers also found a positive correlation between the inflammation severity and 

levels of PAD4 and citrullinated peptides (91).  

The PAD enzymes citrullinate peptides, and the two isoforms commonly implicated 

in RA are PAD2 and PAD4 (100-102). Foulquier and colleagues detected PAD2 and 

PAD4 mRNA transcripts in the synovial tissue of RA patients and found a positive 

association between enzyme expression and severity of inflammation (100). Several 

cells, such as monocytes, lymphocytes, and synoviocytes, express PAD enzymes 

intracellularly, with some PAD enzymes localizing to extracellular protein deposits 

(100,103). One source of PADs warranting further examination is neutrophils. Neutrophil-

expressed PADs citrullinated peptides extracellularly, and cell death can form neutrophil 

extracellular traps (NETs) containing the enzyme elastase (104,105). Carmona-Rivera 

and colleagues recently showed that elastase-mediated release of PAD2 from fibroblast-

like synoviocytes similarly modified proteins in the surrounding environment, developing 

autoantigens and contributing to joint damage (105). Contrarily, inhibiting the PAD 

enzyme may reduce arthritic symptoms. In a pre-clinical model of collagen-induced 

arthritis, DBA/1J mice injected with CL-amidine, an irreversible PAD inhibitor, significantly 

decreased disease activity and inflammation of the synovium (106). Thus, citrullination 

and PAD enzymes are critical contributors to RA pathogenesis.  
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1.4 Inflammation and Pathophysiology  

Rheumatoid arthritis is an inflammatory disease characterized by erythema, joint 

pain, synovial hyperplasia, and bone/cartilage loss (33,107). There is accumulating 

evidence that suggests citrullination, genetic, and environmental factors have the 

potential to trigger RA (29,81,108). For instance, citrullinated peptides, compared with 

their native sequence, can form stable complexes with the HLA-DRB1 gene-encoded 

product (29,52,81). These HLA-DR molecules contain a net positive, five AA sequence in 

the binding groove called the SE (described earlier in section 1.2.3) (52,108). Since 

citrulline (neutral AA) replaces a positively charged arginine residue, the antigenic 

sequence decreases in net charge and has a higher affinity for the SE (Figure 2) 

(109,110). Studies examining gene-environment interactions have highlighted the role of 

specific oral agents in RA onset. For example, cigarette smoke increased the expression 

of the PAD2 isoform, resulting in more citrullinated peptides (60). Furthermore, infection 

with bacterial agents, such as P. gingivalis, has helped establish a link between oral 

infection and joint destruction, emphasizing molecular mimicry and epitope spreading as 

potential explanations for targeting self-proteins (57,61-64,101,102). In a study by 

Wegner and colleagues, the group demonstrated how the P. gingivalis PAD (PPAD) 

enzyme and arginine-gingipains (proteases) worked in concert to develop autoantigens 

(or neo-epitopes) (111). The arginine-gingipains first cleaved the fibrinogen peptide right 

after an arginine residue, which PPAD then citrullinated (59,63,65,111). Similarly, 

modified peptides by human PADs are processed and presented by APCs to T 

lymphocytes in secondary lymphoid tissue that would otherwise have remained inactive 

upon binding to the native form (52,108). Once primed, these epitope-specific, 
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autoreactive CD4+ T cells elicit an autoimmune response by secreting signalling 

molecules (e.g., IFN-𝛾) to promote inflammation and stimulate B cells to produce ACPAs, 

signifying the breach of self-tolerance (29,52,81,108). 

In RA, ACPAs are found circulating and interacting with endogenous citrullinated 

proteins in the extracellular matrix or those secreted by cells of the joint tissues 

(107,112,113). Studies showed that ACPA can also interact with innate immune cells 

such as macrophages, stimulating them to produce proinflammatory cytokines (i.e., TNF-

α and IL-6) and to recruit more leukocytes to infiltrate the joint, eventually resulting in a 

thickened and swollen synovial membrane (113,114). Other key players in RA are 

fibroblast-like synoviocytes (FLS) and Type 1 T helper (Th1) cells. FLS are responsive to 

the cytokines secreted by both innate and adaptive immune cells and produce the 

receptor activator of nuclear factor-κB-ligand (RANKL) which binds to the receptor RANK 

initiating the differentiation and activation of osteoclasts (bone-resorbing cells) (107,114-

117). Osteoclasts, also stimulated by cytokines secreted from Th1 lymphocytes (e.g., 

TNF-α, IL-2, IFN-𝛾), contribute to the destruction of bone and cartilage as seen with RA 

patients (107, 115,116). In addition to macrophages, FLS have a complex interaction with 

CD4+ T Cells and B cells. FLS interact with T cells via cell-adhesion molecules (e.g., CD58 

on FLS interacts with CD2 on T cells) and secrete transforming growth factor-beta (TGF-

β), which differentiates T cells into Th17 cells (in the presence of other cytokines like IL-

6 and IL-23) that further orchestrate the immune response using IL-17 (107, 115-117). 

Several studies have reported an increase in IL-17-secreting CD4+ T cells in the synovial 

joint of RA patients (118,119). By recruiting neutrophils, promoting osteoclastogenesis, 

or increasing the level of activated collagen-specific T cells as shown in a collagen-
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induced arthritis mouse model (119), IL-17 has significant pathogenic involvement in this 

autoimmune disease (115-117,119). Moreover, FLS-secreted IL-6 or B-cell activating 

factor are critical for the survival and maturation of B lymphocytes, permitting continued 

antibody production (117). All in all, RA is a complicated autoimmune disease that is partly 

T cell-mediated, and selectively tolerizing these cells may reduce inflammation and joint 

damage. 

1.5 Adeno-Associated Viruses  

The use of adeno-associated viruses (AAVs) as a gene therapy vehicle for tackling 

genetic and autoimmune diseases in clinical medicine has gained extensive support. 

AAVs are small, non-enveloped Dependoviruses incapable of replicating in the absence 

of a helper virus (e.g., adenovirus) (120-122). These viruses contain a single strand of 

DNA, limited to approximately 4.7 kilobases, and are not known to cause human disease 

(121,122). To date, there are 13 AAV serotypes, AAV 1-13, each characterized by tissue 

tropism (123). When engineering the AAV, the desired transgene replaces the viral 

genome, developing recombinant AAV (rAAV) (120,121). As a result, these viruses have 

low immunogenicity and are non-pathogenic, serving as an ideal candidate for delivering 

therapeutic genes (120-122). In several in vivo/ex vivo examinations, it was evident that 

the virus successfully transduced liver (hepatocytes), kidney (renal), and muscle 

(myocytes) tissue (120-124). Many therapeutic modalities, such as injection-based 

treatments, are administered intramuscularly or intravenously, and the liver was 

frequently reported as the ‘default destination’ for most AAV serotypes (120-122,125-

128). Previous investigations have also demonstrated stable and long-term expression of 

the transgene in muscle and liver cells (121,122,125-129). Manno and colleagues 
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reported little to no toxicity upon infusion of an rAAV in hemophilic patients when 

transducing the liver (130). Besides the ongoing clinical trials, a few AAV-based therapies 

have received approval from the Food and Drug Administration (FDA) for managing 

neuromuscular and genetic disorders. These included ZOLGENSMA® (Novartis Gene 

Therapies, Inc.) which used an AAV9-based delivery system for treating spinal muscular 

atrophy, approved in 2019; and more recently, Roctavian™ (BioMarin Pharmaceutical, 

Inc.), approved in 2023, an AAV5 vector with the genetic instructions to make Factor VIII, 

a clotting protein deficient in severe hemophilia A patients (131,132). Furthermore, the 

AAV vector can persist as an episome and does not integrate into the host genome (122). 

Thus, the transgene will eventually be released from cells as they replicate multiple times 

or undergo cell death, thereby having a clearance mechanism (122).  

1.6 Thesis Rationale  

Existing therapies for managing RA are focused on resolving symptoms but are 

unable to cure the disease. With the potential for serious adverse events and low clinical 

remission rates, research should aim to develop a newer disease-specific and life-

improving immunotherapy for this autoimmune disease. Previously in the Larché lab, the 

group identified several potential T cell epitopes in silico using prediction software tools 

(i.e., TEPITOPE and Net-MHC) from a list of the most implicated autoantigens in RA (e.g., 

fibrinogen, vimentin, etc.) (Personal Communication, Adiga Life Sciences, Inc.). The 

binding capability to SE+ HLA-DR and solubility (e.g., water-soluble, dimethylsulfoxide 

(DMSO)-soluble) were assessed for a selection of candidate peptides (Personal 

Communication, Adiga Life Sciences, Inc.). The challenge with the epitope prediction 

software tool was the absence of the citrulline residue from the system database, as it is 
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a non-coded AA formed post-translationally from arginine. To circumvent this issue, 

citrulline was substituted with glutamine (‘Q’) for all epitope predictions as it shares a 

similar amide terminal group and neutral net charge (Figure 3). In subsequent 

investigations (in vivo), candidate peptides with binding capabilities to the SE+ HLA-DR 

(specifically those belonging to DR4 or DR1) alleles were injected into HLA-DR4 

transgenic mice for ‘induction of CD4+ T cell responses’ (133). An IFN-𝛾 ELISPOT 

(Enzyme-linked Immunospot) was used to detect positive T cell responses by comparing 

citrullinated with native peptides with harvested mouse splenocytes. Citrullinated antigens 

capable of inducing T and B cell responses were later used in developing an 

inflammatory-arthritis mouse model (133). 

The T cell response assays performed compared citrullinated and native peptides, 

which demonstrated that citrulline-containing peptides elicited a positive signal that was 

absent from their native variants. The group conducted these investigations with the goal 

of developing a physical peptide vaccine, which would deliver citrullinated peptides to 

tolerize T cells under the appropriate conditions (e.g., systemically delivered, soluble, low 

dose, adjuvant-free, etc.). However, the challenge with the physical peptide approach 

was being unable to get enough peptides into the vaccine. With the advent of nucleotide-

based (e.g., RNA) vaccines, it is now possible to encode many peptides at once, 

circumventing the initial concerns. However, finding an alternative to citrulline was crucial, 

as this AA cannot be encoded nor directly incorporated during peptide synthesis. Thus, 

the purpose of the first project (Project 1) was to conduct preliminary feasibility work to 

assess if glutamine is an appropriate substitute for citrulline by comparing T cell 

responses (ex vivo) from RA patients and healthy controls against native, citrullinated, or 
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glutamine-substituted variants of the same peptide. If citrulline-specific T cells recognize 

glutamine, this would have important implications for designing a potentially therapeutic, 

disease-specific, genetic vaccine. 

Protein hypercitrullination is a highly upregulated mechanism in RA 

pathophysiology and can serve as an important translational element in designing 

innovative solutions to treat the autoimmune disease. Some groups have tried to force 

the overexpression of the PAD enzyme but with variable success (134,135). Further, 

there is currently no direct evidence to suggest that hypercitrullination results in disease. 

Thus, the second project (Project 2) assessed the role of protein hypercitrullination in RA 

pathogenesis using an engineered adeno-associated virus serotype 6 (AAV6). The viral 

construct encodes a PAD4 enzyme and three native/un-citrullinated versions of RA 

peptides reported in the literature. Two different constructs were designed and tested, 

with the primary difference being the fusion of a green fluorescent protein (GFP) to the 

PAD4 in the first construct (AAV6-V1) and a Woodchuck Hepatitis Virus 

posttranscriptional regulatory element (WPRE) replacing GFP in the second construct 

(AAV6-V2) in order to amplify transcription of the PAD4 gene. The AAV6 construct was 

evaluated in cells of human and mouse origin (in vitro), including hepatocytes [HEPG2 

(human) and HEPA1-6 (mouse)] and human embryonic kidney cells (HEK293 cell line), 

selected based on the known tissue tropism of AAV6 (described further in section 2.3.2). 

1.6.1 Research Questions  

Project 1:  

(1) Can citrulline-specific T cells derived from RA patient blood recognize glutamine-

substituted peptides? 
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Project 2:  

(1) Can ‘forced’ PAD4 overexpression, using an AAV6 delivery system, lead to the 

generation of citrullinated proteins/peptides?  

1.6.2 Hypotheses 

Project 1:  

(1) Citrulline and glutamine variants will elicit equivalent frequencies of T cell responses 

(in vitro). 

Project 2:  

(1) The delivery of an engineered AAV6 encoding PAD4 and T cell epitopes of disease-

associated target proteins will result in the expression and secretion of citrullinated 

immunogenic peptides (in vitro). 

1.6.3 Specific Aims 

Project 1:  

(1) To compare and demonstrate T cell reactivity with native, citrulline, and glutamine 

substituted RA peptides using an ELISPOT Immunoassay. 

Project 2:  

(1) To confirm transduction of human and mouse cells by detecting the expression of 

AAV6-encoded T cell epitopes, PAD4 (and GFP with AAV6-V1), and the cellular location 

of the PAD4 enzyme, using EVOS and confocal microscopy, flow cytometry, and western 

blotting. 

(2) To validate protein hypercitrullination through the overexpression of the PAD4 enzyme 

(in vitro), by comparing the amount of citrullinated protein between untransduced and 

virally infected cells (either supplemented with or without ionomycin/calcium). 
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2.0 Methods 

2.1 Study Characteristics 

2.1.1 Study Design and Recruitment 

To examine the frequency of cytokine-producing epitope-specific T cells against 

native, citrullinated, and glutamine-substituted peptides, in this cross-sectional clinical 

investigation, peripheral blood mononuclear cells (PBMCs) were extracted from whole 

blood and used to assess immunologic responses. At the first clinic visit, participants were 

assigned an ID (e.g., RA10), provided informed consent, and 80-120 ml of whole blood 

was collected by a certified phlebotomist. Participants were only requested for an 

unscheduled visit if a repeat sample was required owing to technical issues with the assay 

or an insufficient blood draw. Information regarding demographics, medical and smoking 

history, height and weight, and vital signs were also assessed during the initial visit. The 

blood draw consisted of a sample for PBMC isolation, tissue typing, serum, complete 

blood count, inflammatory markers (i.e., c-reactive protein), and autoantibody levels (e.g., 

ACPA, RF). 

Treatment-naïve and RA-diagnosed patients on treatments (n=13), as per the 

2010 ACR/EULAR criteria, were recruited from a rheumatology clinic at the St. Joseph’s 

Healthcare Hamilton, Charlton Campus. Age-matched healthy controls (n=4) were 

recruited from the rheumatology clinic and the McMaster Immunology Research Centre 

(MIRC). These included family members of RA patients who did not have the disease but 

may have possessed the genetic susceptibility factors. This thesis only reports data from 

participants recruited from March 2022 to August 2023. This study was approved by the 

Hamilton Integrated Research Ethics Board (Project #1031).  



M.Sc. Thesis – D. Malhotra; McMaster University – Medical Sciences 

 24 

2.1.2 Inclusion and Exclusion Criteria  

Inclusion Criteria: All aspects of the study were met by enrolled participants. 

Participants, regardless of biological sex or gender, were between 18 and 65 years of 

age at the time of inclusion. Participants were capable of providing both verbal and written 

informed consent, and patients had an active diagnosis of RA according to the 2010 ACR 

classification system. 

Exclusion Criteria: If participants met the following criteria, they were ineligible to 

partake in the study. A history of drug or alcohol abuse, patients actively using 

corticosteroids (within the past three months) regardless of the mode of delivery (oral, 

intravenous, intramuscular), or women of childbearing potential were excluded from the 

study. In addition, if controls had any history of inflammatory arthritis, they were excluded. 

2.2 ELISPOT Immunoassay – Co-Culturing Target Peptides with PBMCs 

2.2.1 PBMC Isolation from Whole Blood 

This protocol was adopted from the Larché Lab, Human IFN-𝛾 ELISPOT Using 

Fresh Blood, version 1.0. The whole blood was separated to isolate PBMCs in a sterile 

environment, a biological safety cabinet (BSC), by way of Ficoll-paque density gradient 

centrifugation. In sterile 50 ml centrifuge tubes, 15 mL of Ficoll-paque (GE Healthcare, 

USA) was transferred, with 20-25 mL of whole blood layered gently on top. The 50 mL 

tubes were placed in an Allegra Centrifuge at 400 RCF (relative centrifugal force) for 30 

minutes at 25°C (SLOW acceleration, SLOW deceleration). Using a transfer pipet, the 

plasma layer at the top was carefully removed and stored at -80°C in sterile 10 mL tubes. 

The next layer, the buffy coat or PBMC layer, was isolated and transferred into a clean, 

sterile 50 mL tube, immediately followed by the addition of serum-free wash medium 



M.Sc. Thesis – D. Malhotra; McMaster University – Medical Sciences 

 25 

RPMI 1640 (Life Technologies) to the cells to bring the total solution volume to 

approximately 40 mL. The 50 mL tubes were spun at 250 RCF for 10 minutes at 25°C 

(MAX acceleration, MAX deceleration). The supernatant was immediately discarded, and 

the remining cell pellet was resuspended with 2 mL of serum-free wash media and 

pipetted up and down gently to obtain a homogenous, single-cell solution (if there were 

multiple 50 mL tubes of cell pellets, all were combined into one tube). In a clean 

microcentrifuge tube, cells were diluted 1:10 with serum-free wash media before acquiring 

the cell count using the Countess Cell Counter. The average live cell concentration was 

multiplied by 10 to account for dilution and then by the total volume of solution of 

resuspended cells to get the total number of PBMCs. Next, the volume of serum-free 

culture medium (Cellular Technology Limited (CTL)-Test Medium, Immunospot) required 

for a final concentration of 5x106 mL-1 was calculated. The 50 mL tube containing the 

resuspended cells were spun at 220 RCF for 10 minutes at 25°C (MAX acceleration, MAX 

deceleration), then the supernatant was discarded, and the cell pellet was resuspended 

in the appropriate volume of serum-free culture media as calculated. 

2.2.2 Human IFN-𝜸 T Cell Plate (ELISPOT) Preparation, Development and Reading 

Preparing the ELISPOT Plate: 

This protocol was adopted from the Larché Lab, Human IFN-𝛾 ELISpot Using 

Fresh Blood, version 1.0. The Human IFN-𝛾 ELISPOT Pro (Horseradish Peroxidase; 

HRP) Kit was purchased from Mabtech AB, Inc. The plate was removed from the sealed 

package and washed 4 times with sterile (0.2-micron (µm) filtered) Phosphate Buffered 

Saline (PBS), 200 µL/well. The plate was conditioned with serum-free culture medium by 

adding 200 µL/well and incubating for at least 30 minutes at room temperature. Following 
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the isolation of PBMCs, as described in section 2.2.1, medium was removed from the 

ELISPOT plate and 100 µL/well of medium (negative control) or peptides (60 nmol/mL) 

were added. For the positive control wells, anti-CD3 (included in the kit) was diluted 

1:1000 with culture medium, and then 100 µL/well was added. Next,100 µL cell 

suspension was added to each well, i.e. 5 x 105 PBMCs per well. The remaining cells 

were diluted 1:10 in culture medium before adding 100 µL, i.e. 5 x 104 PBMC, to each 

CD3 positive control well. The plate was wrapped in aluminum foil and placed in a 37°C 

humidified incubator with 5% CO2 and incubated for 24±2 hours.  

Developing and Reading the ELISPOT Plate: 

First, 0.2 µm filtered PBS containing 0.5% FBS was prepared. To make HRP-

conjugated detection antibody, 7-B6-HRP (included in the kit) was diluted 1:200 in PBS-

0.5% FBS and filtered using a 0.2 µm syringe filter. After 24±2 hours of incubation the 

plate was removed from the incubator. The plates contents were removed and then 

washed 5 times with filtered PBS, 200 µL/well, before 100 µL/well HRP-conjugated 

detection antibody was added, and the plate was incubated for 2 hours at room 

temperature. Prior to the completion of the incubation period, TMB (tetramethylbenzidine) 

substrate was filtered using a 0.45 µm syringe filter. The plates were emptied again and 

rinsed 5 times with filtered PBS, 200 µL/well, before adding 100 µL/well TMB. The plate 

was developed for 15 minutes and washed thoroughly with Milli-Q water to stop colour 

development. The underdrain was carefully removed from the plate to rinse the underside 

of the membrane. The plate was left to dry in the dark for 2-4 days before reading. The 

plates were read to detect the number of IFN-𝛾 producing cells using the BioReader 6000-

Fβ. 
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2.2.3 ELISPOT Assay Assessment 

To determine the suitability of glutamine as a potential surrogate for citrulline in the 

design of a vaccine, the following outcomes of the assay needed to be met: 

1. An equivalent (or approximately equivalent) immune response between a citrulline 

peptide and its glutamine-substituted variant. This translates to an equivalent 

frequency of IFN-𝛾 secreting cells across both peptide conditions. 

2. A higher magnitude of antigen-specific T cells for the peptides containing citrulline 

and glutamine, compared to the same peptide in its native/unmodified 

conformation. 

3. A positive response, as defined by the distribution-free resampling with 

equivalence [DFR(eq)] statistical tool (explained in section 2.4), for the citrulline 

and glutamine peptides in the pair. The directionality of the relationship is 

determined by comparing the mean number of spot counts in the stimulation 

condition to the negative control (cells and media alone). 

If analyzed patient samples successfully match the criteria above, these findings would 

support that glutamine-substituted peptides elicit a similar T cell response to citrulline 

containing peptides in vitro, warranting further examination. 

2.2.4 ELISPOT Assay Troubleshooting 

Over the course of assessing donor samples and after adding the TMB substrate, 

the wells immediately changed to a dark blue colour, as opposed to a gradual change 

observed with the usual development time (15 minutes). This warranted further 

investigation, as upon reading the plate, there were no detectable spots. In systematically 

addressing the posed challenge, the following questions needed exploration: (1) Were 
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too many cells plated? (2) Was the TMB substrate left in for too long? (3) Were there 

atmospheric issues responsible for the observed phenomenon? (4) What is the pH of the 

buffers? (5) Are there specific components of the wash or culture media causing the 

problem?  

First, all calculations were reviewed, and it was evident that an appropriate number 

of cells were plated. In subsequent iterations of the experiment, the development time 

was decreased from 15 to 10 minutes. However, the TMB reactions continued to occur 

quickly. To circumvent potential atmospheric issues, post-incubation, the ELISPOT plate 

was developed in a BSC as opposed to the bench. Lastly, using a pH meter, the pH of 

the PBS buffer was determined to be within the range of physiological pH near 7.4, 

aligned with the recommended value. Furthermore, serum-free media was used, and FBS 

was excluded. With this change to the wash and culture media, the TMB reactions 

occurred as expected and previously seen. It was concluded that a particular batch of 

FBS was interfering with assay activity, and its prompt removal from the media and a shift 

to CTL-Test media permitted continuation and completion of the clinical portion of this 

thesis. 

2.3 Adeno-Associated Virus (AAV) Cell Transduction and Analysis Techniques 

2.3.1 AAV Vector Designs  

An adeno-associated virus serotype 6 (AAV6) based delivery system was used for 

transduction experiments. Two separate AAV6 vector constructs were designed in 

collaboration with Dr. Sarah Wootton’s lab at Guelph University and tested in vitro. The 

major differentiating factors between the two constructs was: (a) the presence of a 

(enhanced) green fluorescent protein (eGFP or GFP) fused to the mouse PAD4 enzyme 
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with a GGSG linker in the first vector genome (referred to as AAV6-V1) (Figure 4A); and 

(b) a Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element (WPRE) 

replacing the GFP in the second vector (referred to as AAV6-V2) (Figure 4B). The 

overlapping elements, in sequential order, between the two vectors consisted of: (a) a 

CASI promoter which allows for ubiquitous transgene expression not limited to select 

tissues (136,137), a Kozak sequence important for translation initiation (138,139), and a 

signal peptide, (b) a PAD4 sequence (NM_011061.2) of mouse origin, (c) a KDEL (Lys-

Asp-Glu-Leu) sequence at the PAD4 C-terminal, to retain the synthesized product within 

the endoplasmic reticulum (ER) lumen; (d) a series of 2A peptides beginning with F2A, 

that originate from different viruses (e.g., F2A: foot-and-mouth disease virus polyprotein; 

E2A: Equine Rhinitis A virus polyprotein; P2A: Porcine teschovirus-1 polyprotein), used 

to separate encoded peptides as the eukaryotic ribosome ‘skips’ forming the peptide bond 

connecting the glycine and proline residues at the C-terminus, thereby serving as peptide 

separation elements (140); (e) after F2A was the first of three peptides commonly 

implicated in RA known as Vimentin (RAVR-42; amino acid (AA) sequence: 

SSAVRLRSSVPGVRL); (f) Vimentin was separated from the next peptide Aggrecan core 

(RAAR-54; AA sequence: GVVFHYRPGPTRYSL) by E2A; (g) lastly, Alpha-enolase 

(RAAER-93; AA sequence: AREIFDSRGNPTVEV) was the final peptide separated from 

the previous one by P2A and was followed by a stop codon (ATT). All three peptide names 

end with the letter ‘R’, which is the native configuration of peptide containing an arginine 

residue (a detailed description of peptide nomenclature was provided in Table 2), and it 

was hypothesized that all three peptides would be modified (conversion of arginine 

residue to citrulline) by the encoded PAD4 enzyme.  
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2.3.2 Tissue Tropism of Virus – Hepatic and Renal Cells 

Human embryonic kidney cells (HEK-293 cell line), and hepatoma cell lines, 

HEPG2 (human) and HEPA1-6 (mouse; provided by Dr. Gregory Steinberg’s Lab, 

McMaster University), were selected based on the tissue tropism documented for the 

AAV6 serotype (124,141-143), along with their ease of accessibility. In particular, the 

HEK-293 cell line was crucial for validating the work of the Wootton collaborator lab to 

ensure the virus performed similarly here. Moreover, HEPG2 and HEPA1-6 are highly 

secretory liver cells that model their physiologic counterpart (i.e., primary hepatocytes) 

fittingly (143,144). It was hypothesized that following citrullination with the encoded PAD4 

enzyme, modified peptides would readily be released by these cells, serving as the 

rationale for collecting and analyzing the supernatant alongside lysate. In summary, these 

cell lines continue to be commonly used for AAV investigations both in vitro and in animal 

models (141,145,146), serving as ideal targets to assess the virus’ transduction 

capabilities and transgene expression. 

2.3.3 Culturing Cells 

The complete protocols for culturing, thawing, and subculturing the cells were 

developed in the Larché lab in accordance with the published ATCC (American Type 

Culture Collection) guidelines and executed in a BSC under aseptic conditions. First, a 

stock of complete culture media was prepared that contained 500 mL of MEM (Minimum 

Essential Media) for HEPG2 or DMEM (Dulbecco’s Modified Eagle Medium) for HEK-

293/HEPA1-6, 10% fetal bovine serum (FBS), 5 mL of 2 mM glutamine and 5 mL of 

penicillin (100 units/mL)/streptomycin (100 µg/mL) (P/S). After all the reagents were 

added, the media was considered complete and abbreviated as cMEM or cDMEM. Next, 
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a vial containing 1 mL of cells, thawed by gentle agitation in a 37°C water bath for 1-2 

minutes, was transferred to a 15 mL falcon tube holding 9 mL of complete culture media 

(cMEM or cDMEM for the respective cell lines), and spun in an ultracentrifuge for 5 

minutes at 120 RCF. While the cells were being spun, a T-75 flask with 12-14 mL of 

complete culture media was placed in a humidified 37°C incubator to allow the media to 

reach a normal pH range before the vial contents were added. Then, the supernatant was 

discarded, and the cell pellet was resuspended in 2 mL of complete culture media before 

using the Countess® II FL Automated Cell Counter (Invitrogen, Thermo Fisher Scientific, 

USA) to assess viability and concentration. Lastly, the cells were seeded in multi-well 

plates (and the flask to continually passage cells) at the selected density and placed in 

an incubator at 37°C with 5% CO2 conditions. The media in the flask was replaced every 

2-3 times per week and subcultured when cells attained 70-80% confluency.  

2.3.4 Transduction of Cells using AAV (in vitro) 

 In advance of transducing the above-mentioned cell lines, three solutions were 

prepared: 1. Complete culture media (as described in section 2.3.3); 2. AAV inoculum 

and 3. AAV top-up media, as described here. The AAV inoculum media consisted of basal 

MEM or DMEM with 2 mM glutamine. While the AAV top-up media was comprised of 

cMEM or cDMEM containing 20% FBS (double the amount). The following transduction 

protocol was provided by the Wootton Lab. The cells, suspended in complete culture 

media, were first seeded at high densities (e.g., 1.1x105 cells/well for a 24-well plate) in a 

multi-well plate approximately 16 to 20 hours prior to transduction and kept in an incubator 

at 37°C with 5% CO2. Following the overnight incubation, the culture media was aspirated, 

and the cells were rinsed one time with sterile PBS without calcium (Ca2+) and magnesium 
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(Mg2+). Next, the AAV inoculum solution was prepared at varying multiplicities of infection 

(MOI) from 0 to 160,000 vector genomes per cell (e.g., 250 µL of AAV inoculum per well 

for a 24-well plate) and the transduced cells were placed back into the incubator (37°C 

and 5% CO2) for 2 to 4 hours. Finally, the wells received AAV top up media with double 

the amount of FBS (20%) in an equivalent volume to as the AAV inoculum (e.g., 250 µL 

of AAV top up media per well for a 24-well plate). The cells were observed under 

microscopy to confirm transduction prior to lysate collection and incubated for multiple 

days to provide sufficient time for the virus to uncoat and the transgene to be expressed. 

2.3.5 Harvesting Cell Supernatant and Lysate (in vitro) 

All three adherent cell lines were cultured up to 144-hours. In the preliminary 

experiments, serial MOIs were tested before one was selected for all future trials, as 

described further in the Results (section 3.2). Moreover, post-transduction, ionomycin (1 

µM), and Ca2+ (2 to 10 mM) at variable concentrations, were added directly to the virally 

infected and control cells (activation phase – to ensure sufficient calcium concentrations 

for PAD4 activation and protein citrullination) for 2-4 hours at 37°C. Following the 

activation phase, the supernatant was collected in microcentrifuge tubes and either 

immediately plated for the ELISA (enzyme-linked immunosorbent assay) or stored at -

80°C until use. Next, the adherent cells were washed once with cold sterile PBS (without 

Ca2+/Mg2+) and received 0.05% trypsin-EDTA (ethylenediaminetetraacetic acid; 0.5% 

stock) for 4-5 minutes to detach the cells from the plate’s surface before complete culture 

media was added. The wells belonging to the same condition were appropriately 

combined into 1.5 mL Eppendorf tubes and spun down at 1200 RPM (revolutions per 

minute) for 5 minutes. The supernatant was discarded, and the cell pellet was 
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resuspended in either ELISA coating buffer (in-house) or PAD buffer for the commercial 

kit. The lysis procedure consisted of freeze-thaw cycles, shifting the tubes between the -

80°C freezer for 30 minutes followed by 30 minutes in a 37°C water bath, and repeated 

three times. The cells were then spun down at 14,000 RCF for 5 minutes in a 

microcentrifuge and the lysate was collected.  

2.3.6 In-house ELISA (in vitro)  

The ELISA protocol was adapted from the Schellekens and colleagues research 

paper (147). Through an indirect ELISA system, a high-binding 96-well Costar 

polystyrene flat bottom assay plate (Corning Incorporated, Durham, NC, USA) was 

coated overnight for 16-20 hours at 4°C with cell supernatant and lysate (100 µL/well) at 

variable dilutions using the coating buffer (50 mM carbonate buffer pH9.6). Positive 

control wells received 15 µg/well of cyclic citrullinated peptide (CCP), as preliminary 

experiments demonstrated that the CCP could serve as a positive control to confirm that 

the assay was functional. After the overnight incubation, the coated substances were 

removed, and the plate was blotted against paper towel. The wells were rinsed once with 

250 µL of wash buffer (PBS (without Ca2+/Mg2+) and 0.05% v/v (volume/volume) Tween-

20), and then 200 µL per well of 2% bovine serum albumin (BSA; blocking buffer 

consisted of BSA dissolved in wash buffer) was added for 1 hour at room temperature. 

Post-incubation with BSA, the wells were washed 6 times with 250 µL of wash buffer, 

before 100 µL of the primary antibody layer was added for 2 hours at room temperature. 

The primary antibody layer consisted of either high ACPA patient (HPS) or control (CPS) 

sera. The HPS was pooled from six patients with a clinical ACPA score >124 units; while 

the CPS was a composite from three healthy individuals with a clinical ACPA score <18 
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units or in other words were ACPA negative). The HPS and CPS were diluted 200-fold 

with RIA buffer (10 mM Tris-HCl buffer pH7.6, 350 mM NaCl, 1% BSA, 1% v/v Triton X-

100, 0.5% w/v (weight/volume) sodium deoxycholate, 0.1% sodium dodecyl sulfate) 

containing 10% normal rabbit serum (RS; Gibco, Grand Island, New York, USA). The 

primary antibody layer was removed, and the wells were washed another 6 times with 

250 µL of wash buffer, before 100 µL of anti-human IgG HRP secondary antibody, diluted 

1:2000 in RIA buffer, was added to the appropriate wells and the plate was incubated for 

2 hours at room temperature. After removing the secondary antibody and repeating the 

washing step, 100 µL of TMB substrate was added and left for 15 minutes to allow the 

plate to develop. Wells used for background reading received 200 µL of PBS (without 

Ca2+/Mg2+). The reaction was stopped by adding 100 µL of 2 M sulfuric acid to each well, 

and the plate was immediately read using plate reader at 450 nm.  

2.3.7 PAD Activity Detection Kit (in vitro)  

A commercial PAD enzyme activity detection kit (SignalChem, Richmond, BC, 

Canada) was used to assess the total activity of the construct-encoded PAD4, and the 

following procedure was provided by the manufacturer. After transducing cells and 

collecting the lysate, as outlined in sections 2.3.4 and 2.3.5, all assay reagents were 

prepared. First, a NeutrAvidin-coated 96-well plate was washed 3 times with wash buffer. 

After each wash, the plate was blotted against paper towel. Next, 100 µL per well of 

substrate coating solution (a universal PAD substrate (identity undisclosed) dissolved in 

Milli-Q water and further diluted 1:1000 with wash buffer) was added and incubated for 1 

hour at room temperature. Next, the PAD substrate solution was decanted, and the plate 

was washed 4 times with wash buffer and blotted against paper towel each time. Then, 
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the wells aptly received one of the following: (a) 50 µL of sample (cell lysate); (b) 50 µL 

of PAD cocktail (positive control; a mixture of 5 PAD isoforms) diluted in PAD buffer (0.1 

M Tris-HCl pH7.4, 10 mM CaCl2, 0.5 mM DTT) to a final concentration of 100 ng/50 µL; 

or (c) PAD buffer only (negative control). The plate was covered with a plate sealer and 

placed in a 37°C incubator for 1 hour. Post-incubation, the samples and controls were 

removed, and the wells were rinsed 4 times with wash buffer. Next, 100 µL of trypsin 

buffer (50 mM Tris-HCl pH8.0, 2.5 mM EDTA) was briefly added to all the wells and 

aspirated. Then, 100 µL of trypsin digestion reagent, diluted 1000-fold in trypsin buffer, 

was loaded into to all the wells, and the covered plate was situated in a 37oC incubator 

for 1 hour. The trypsin digestion reagent was discarded, and the plate was washed again 

for 4 times with wash buffer. Next, the detection antibody was diluted 1:500 in wash buffer 

with 100 µL added to all wells, and the plate was developed for 1 hour at room 

temperature. After, the detection antibody was decanted, and the wash step was repeated 

(4 washes with wash buffer). Then 50 µL of TMB substrate was added to all wells and the 

plate was kept in the dark for 20 minutes before 25 µL of stop solution was added. The 

plate was then immediately read with the iMark™ Microplate Absorbance Reader (Bio-

Rad Laboratories, Inc.) at 450 nm and 595 nm. To account for background noise and 

optical imperfections all readings taken at 595 nm were subtracted from 450 nm. 

2.3.8 EVOS Microscopy 

Cells transduced with the AAV6-V1 encoding GFP, were imaged using the 

Invitrogen EVOS Digital Inverted Fluorescence Microscope. During incubation or before 

harvesting the cells for further experimentation, images were collected for all cell lines, 

regardless of infection status, across the different MOIs tested. First, the cells were placed 
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under transmitted light and the image was captured. Next, the channel was changed to 

green fluorescence to detect and visualize GFP-positive cells. Across the images 

captured, the settings for contrast and brightness were maintained. 

2.3.9 Immunocytochemistry and Confocal Microscopy  

The following immunocytochemistry and immunofluorescence (ICC/IF) steps, to 

prepare the cells seeded atop of sterile glass cover slips (22 mm x 22 mm; Fisher 

Scientific, Pittsburgh, PA, USA) in 6-well plates for visualization by confocal microscopy, 

were adapted from Abcam Limited. To begin, the culture media was first aspirated from 

the wells, and the cells were rinsed 2 times with PBS (without Ca2+/Mg2+). Next, a freshly 

prepared 4% paraformaldehyde-PBS pH7.4 solution was added for 15 minutes at room 

temperature before the cells were washed 3 times with cold PBS (without Ca2+/Mg2+) to 

remove any leftover fixative. Then each well received 0.1% Triton-X-100 in PBS (without 

Ca2+/Mg2+) for 20 minutes at room temperature. The cells were washed 3 times with PBS 

(without Ca2+/Mg2+) for 5 minutes each. Next, the cells were incubated for 60 minutes in 

1% BSA with 0.3 M glycine (Bioshop, Canada) in PBST (PBS (without Ca2+/Mg2+) + 0.1% 

Tween-20). After blocking the cells and decanting the solution, the primary rabbit anti-

PAD4 antibody (Abcam, Canada), diluted 1:1000 in 1% BSA in PBST, was added to the 

plate and incubated overnight at 4°C. The next day, the primary antibody was removed, 

and the cells were washed 3 times with PBS (without Ca2+/Mg2+) for 5 minutes each time. 

Then the wells received the biotinylated goat anti-rabbit IgG (secondary; Abcam, Canada) 

diluted 1:500 in 1% BSA in PBST for 1.5 hours at room temperature. Post-incubation, the 

secondary antibody was aspirated, and the wash step was repeated (3 times with PBS 

(without Ca2+/Mg2+) for 5 minutes each). Next, the cells were blocked with 10% RS in 
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PBST for 60 minutes at room temperature. The blocking solution was decanted, and the 

AlexaFluor647/AF647 rabbit anti-calreticulin antibody (Abcam, Canada) diluted 1:500 in 

1% BSA in PBST was incubated overnight at 4°C in the dark. Following the overnight 

incubation, the antibody solution was removed, and the cells were rinsed 3 times with 

PBS (without Ca2+/Mg2+) for 5 minutes each, protected from light. Lastly, streptavidin-

phycoerythrin (PE) (Agilent Technologies, Santa Clara, CA, USA) diluted 1:250 in 1% 

BSA in PBST was added to the cells for 1 hour at room temperature, and the plate was 

kept in the dark. The cells were then washed 3 times with PBS (without Ca2+/Mg2+) in the 

dark for 5 minutes each to remove any unbound streptavidin-PE. The cells were kept in 

PBS (without Ca2+/Mg2+) until the glass cover slips were transferred, one-by-one using 

pointed forceps, onto glass microscope slides (SATI International Science, Inc., St. 

Laurent) using 10 µL of Fluoromount-G (SouthernBiotech, Birmingham, AL, USA) 

mounting media provided by Dr. Joshua Koenig’s Lab, MIRC, McMaster University. The 

glass slides were left to dry, protected from light, prior to imaging. 

2.3.10 Flow Cytometry  

Sample Preparation and Running the Flow Cytometer: 

This protocol was adapted from Ad5-GFP Infectious Units assay by flow cytometry 

protocol in the Larché Lab, version 5.0. Following cell culturing and AAV transduction, as 

outlined in sections 2.3.3 and 2.3.4, respectively, the cells were observed for 6-days prior 

to collection. First, the culture media was aspirated, and the cells were rinsed 1 time with 

PBS (without Ca2+/Mg2+). Next, an appropriate volume of 0.05% trypsin-EDTA was added 

for 5 minutes, and the plate was kept in an incubator at 37°C. Then, the wells received 

complete culture media (cMEM or cDMEM) and all cell suspensions of the same condition 
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were collected in a single 15 mL falcon tube. The cells were ultracentrifuged at 120 RCF 

for 5 minutes. The supernatant was discarded, and the cells were resuspended in 

fluorescence-activated cell sorting (FACS) buffer. Then, cells were fixed with BD cytofix 

fixation buffer (BD Biosciences, San Diego, USA) and kept on ice for 15 minutes. Next, 

FACS buffer was added to increase the volume of the solution, and the cells were spun 

at 400 RCF for 5 minutes and resuspended in new FACS buffer. Then the samples were 

filtered through FACS tubes before loading into the instrument to avoid clumping or 

aggregation of cells and prevent clogging in the BD LSRFortessa Flow Cytometer. Lastly, 

analyses were conducted using the Flowjo Software version 10.10.0. The gating strategy 

applied for cells transduced with AAV6-V1 was explained in detail in Figure 5. 

2.3.11 Western Blot  

Cell lysate Preparation:  

Lysates from infected and uninfected cells were collected post-transduction in 

RIPA (Radioimmunoprecipitation assay) lysis buffer (Thermo Fisher Scientific Inc., 

Rockford IL, USA). First the media was decanted, and the cells were washed 2 times with 

ice cold PBS (without Ca2+/Mg2+) and kept on ice. After aspirating the PBS, each well 

received cold RIPA lysis buffer (25mM Tris-HCl pH7.6, 150 mM NaCl, 1% NP-40, 1% 

sodium deoxycholate, 0.1% sodium dodecyl sulfate) containing a halt protease 

phosphatase inhibitor cocktail (diluted 1:100) (Thermo Fisher Scientific Inc., Rockford IL, 

USA). The adherent cells were gently scraped using a cell scraper and solutions from the 

same condition were combined into pre-cooled Eppendorf tubes. The Eppendorf tubes 

containing single-cell suspensions in lysis buffer were kept on ice for 1 hour. After 

incubation on ice, the cells were spun in a microcentrifuge at 14,000 RCF for 5 minutes 
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and the supernatant was collected into new Eppendorf tubes and kept on ice until further 

experimentation.  

Bradford Assay, Sample Preparation and Running the Gel: 

This protocol was adopted from Dr. Carl Richard’s Lab, MIRC, McMaster 

University. Following lysate collection, protein concentration was assessed using a 

Bradford Assay. By determining the concentration of protein present, an equal amount of 

sample was used for each condition measured. Next, a molecular weight ladder (Bio-Rad 

Laboratories, Inc., USA) and 20 µL of 20 µg of sample and controls, untransduced cell 

lysate (negative control) and commercial mouse PAD4 (positive control; Cayman 

Chemicals, Michigan, USA), were loaded into wells on a 15% SDS-PAGE (sodium 

dodecyl sulfate polyacrylamide gel electrophoresis) gel at a concentration of 20 µg of 

protein per well. The sample was separated by electrophoresis at 90 V for 90 minutes 

(Mini-PROTEAN Tetra System and PowerPac™ Basic Power Supply, Bio-Rad 

Laboratories, Inc., USA). After running the gel for 1.5 hours, the protein was transferred 

from the gel to nitrocellulose membranes at 400 mA for 1 hour (PowerPac™ Basic Power 

Supply, Bio-Rad Laboratories, Inc., USA). Following the transfer, the membranes were 

blocked for 1 hour at room temperature using the Odyssey Blocking Buffer (LI-COR 

Biosciences, Lincoln, NE, USA) and kept on a rocker. Next, using an appropriate dilution 

(1:1000) the membrane was probed with the rabbit anti-PAD4 monoclonal antibody 

(Abcam, Canada) and incubated overnight on a shaking rocker at 4°C. After the overnight 

incubation, the membranes were washed 3 times with TBS + 0.15% Tween-20 buffer for 

7 minutes each. The membranes were then incubated with IRDye® donkey anti-rabbit 

secondary antibody diluted 1:5000 (LI-COR Biosciences, Lincoln, NE, USA) for 1 hour at 
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room temperature. The membranes were washed again in 3 washes of TBS + 0.15% 

Tween-20 buffer for 7 minutes each. Then using the Odyssey LI-COR Imaging System 

(Lincoln, NE, USA) the blots were imaged. 

2.4 Statistical Analyses 

All two-sided statistical analyses were conducted using the GraphPad Prism 9 

(version 9.5.1) software and The RunDFR Web Tool (https://rundfr.fredhutch.org/). To 

select the appropriate method of analysis (parametric versus non-parametric), all 

variables were tested for normality (Shapiro-Wilk: p>0.05 is indicative of a normally 

distributed data set). For datasets that were normally distributed, and samples were in at 

least triplicates, the following tests were applied as appropriate: 1. a One-way Analysis of 

Variance (ANOVA) comparing the means of independent groups, and if significant was 

followed by Dunnett’s post hoc test of multiple comparisons to determine which 

experimental groups were statistically different than the control; 2. an unpaired T-test that 

directly compared the mean of two independent groups; and 3. Pearson’s correlation 

coefficient (rp) for assessing the linear relation between two groups. For datasets that 

were not normally distributed, or normality could not be assessed as the raw data values 

were in duplicates and not triplicates (or higher), then non-parametric equivalents were 

used: 1. A Kruskal-Wallis H Test to compare three or more groups, which if significant 

was followed by Dunn’s post hoc test of multiple comparisons; 2. Mann-Whitney U Test 

comparing only two independent groups directly; and, 3. Spearman’s rank correlation 

coefficient (rs). The level of significance selected a priori was 0.05, thus all reported 

adjusted p-values below this threshold were considered statistically significant. Moreover, 

all ELISPOT data were analyzed using the distribution-free resampling with equivalence 

https://rundfr.fredhutch.org/
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[DFR(eq)] technique. The tool, based on a non-parametric statistical test rather than an 

empirical rule, calculated the mean difference in spot counts between the experimental 

and negative control wells, and generated a test statistic for all permutations (148). The 

null hypothesis was that there was no difference in the means between the groups (in 

other words they were equal). The null hypothesis was rejected if the antigen condition 

was statistically different than the control and was reported as a positive response. The 

DFR(eq) output was binary, with 1 indicating a positive response and 0 being the absence 

of a positive immune response.  

3.0 Results 

Project 1 Aim: To compare and demonstrate T cell reactivity with citrulline and glutamine 

substituted RA peptides using an ELISPOT Immunoassay. 

3.1 T Cell Responses (ELISPOT) 

 The study enrolled 17 participants, consisting of RA patients [n=13; mean (SD) 

age of 55.85 (14.87)] and healthy controls [n=4; 49.50 (21.83)], with approximately 71% 

of the sample comprised of females. A fraction of the patients were treatment-naïve 

(23%). However, the study sample also consisted of patients who previously received 

treatment for their RA before entering remission, followed by relapse. These patients 

started a new treatment cycle at the same clinic visit as their blood donation. Furthermore, 

more than 50% of patients were seropositive (ACPA and RF positive) with high mean 

autoantibody titres. Table 1 summarizes the descriptive and serologic characteristics of 

the enrolled sample. 

To assess T cell responses to specific autoantigen sequences, the number of 

peptide-specific IFN-𝛾 secreting T cells were enumerated, in response to each of three 
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versions of the sequence: the unmodified native (Nat or R; arginine-containing), modified 

citrulline (Cit) and glutamine (Glut or Q). The selected RA candidate proteins, as 

established in the literature (93,149-152), for which the three 15mer variants were 

developed, included 𝛽-fibrinogen (peptides 23 and 28), aggrecan core (peptide 54), and 

anti-thrombin III (peptides 69 and 76) with their sequences highlighted in Table 2. To 

establish whether glutamine was an appropriate surrogate for citrulline in the design of a 

potential vaccine, criteria were developed, as outlined in section 2.2.3, that would need 

to be met. A possible outcome of the experiment that would have supported glutamine 

substitution, would be an equivalent mean spot count for the citrulline-glutamine peptide 

pair (e.g., 54 and 76), and that the peptide response was positive according to the 

statistical test [DFR(eq)] applied. These findings coupled with a lower average value of 

ag-specific T cells obtained with the native counterpart, would have satisfied all three 

criteria aspects. It therefore follows that the next step would have been to assess if the 

response was consistent across RA patients and absent from controls.  

From the enrolled cohort, data from the following participants, such as RA1 and 

RA8, showed an equivalent immune response, albeit a low frequency of cytokine-

secreting cells (Figure 6). For instance, the mean (standard deviation; SD) number of 

antigen(ag)-specific cells were 4.67 (1.53) for RA1 across the citrulline and glutamine 

versions of peptide 23 (Cit23 and Glut23), and 5.67 (2.89) for Nat23. The mean spot count 

for the negative control well was 3.67 (2.34). Here, it was evident that the modified 

peptides had a higher magnitude of response relative to the negative control wells but 

less than the original peptide. Similarly, Cit28 and Glut28 variants of peptide 28, for patient 

RA8, had an equivalent mean spot count at 0.33 (0.58). The magnitude of cytokine-
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secreting cells to the antigen-stimulated Nat28 condition was the same as the citrulline 

and glutamine peptides, but all three had a lower frequency of T cell responses as 

compared to the unstimulated wells [0.67 (1.21)]. The average IFN-𝛾 secreting cells 

across each peptide, analyzed in triplicates, for both patients and controls, were displayed 

in Table 3. While, all participant response graphs were provided in Supplementary 

Figure 1. The last parameter to be assessed was whether the immune response was 

‘positive’, as measured using the web-based DFR(eq) tool (Table 4). It was determined 

that neither peptide, 23 and 28, was statistically different than the background condition 

for patients RA1 and RA8, respectively (Table 4). 

Only four (of 17) participants (i.e., patients – RA1, RA8, and RA13; and control 

RA15) demonstrated an equivalent T cell response between a citrulline-glutamine pair, 

as seen for peptides 23 and 28. Although three participants had an equivalent response 

for peptide 28, neither was significant relative to the unstimulated condition (Table 5). 

Upon assessing participants independently, data from some fulfilled a few but not all the 

parameters established for interpreting the immunoassay. In the present study, no 

participant’s ELISPOT assay data completely satisfied all three criteria. Relative to the 

healthy controls, RA patients had a greater breadth of positive responses. Notably, there 

was a higher magnitude of significant responses against the epitopes substituted with 

Q54 and Q69, as seen in five out of 13 patients and two out of four controls. For RA 

patients, at least one positive response was found to peptides 23 and 54 containing 

citrulline (e.g., Cit23, Cit54) and all five glutamine forms. Contrastingly, in the control 

group, a positive response was only observed against peptides Cit54, Cit76, Q28, and 

Q69 conditions. Holistically, these findings suggested that not only were there more 
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positive T cell responses for patients, as expected, but these responses were also 

widespread over several antigens. 

These results indicate that the frequency of ag-specific T cell responses, ex vivo, 

were not equivalent between glutamine and citrulline modified sequences. Furthermore, 

a peptide substituted with citrulline or glutamine may have demonstrated an equal 

immune response (e.g., Cit23 and Glut23), but this did not translate to a significant 

immune response. Thus, there were detectable T cell responses across an array of 

peptides tested and it was apparent that the cells from RA patients recognized both the 

unmodified and modified epitopes. However, these findings were inconsistent and did not 

support the rationale of glutamine serving as a reliable substitute for citrulline in the design 

of an RNA immunotherapy. 

Project 2 Aim 1: To confirm transduction of human and mouse cells by detecting the 

expression of AAV-encoded T cell epitopes, PAD4 and GFP, and the cellular location of 

the PAD4 enzyme, using microscopy, flow cytometry, and western blotting. 

3.2 AAV MOI Selection and Confirmation of Transduction ( in vitro) 

To determine the optimal multiplicity of infection (MOI) for experiments, human 

hepatocytes (HEPG2) and human embryonic kidney cells (HEK-293) were transduced 

with AAV6-V1 at varying MOIs (e.g., starting at 1250 and doubling to 160,000) to generate 

a dose-dependent curve and monitored and imaged over the course of 144 hours using 

an EVOS microscope. Preliminary images of the infected and uninfected cells confirmed 

viral transduction by way of detecting the fluorescing GFP. In an early experiment, in 

which cells were infected at a single MOI of 5000, there detectable fluorescing cells both 

4- and 5-days post-transduction (Figure 7A). Flow cytometry data confirmed the 
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presence of GFP in infected relative to non-infected cells (Figure 7B-C). When serial 

MOIs were tested across multiple time points, as early as 48 hours post-transduction, 

microscopy confirmed cellular GFP expression, with more detectable signals at 144 hours 

(Figure 8A). Visually, the number of fluorescing HEPG2 cells increased with higher MOI, 

as expected. Further, flow cytometry quantified the proportion of GFP-positive (GFP+) 

cells at varying MOIs (Figure 8B). It was evident that with an increasing MOI, more cells 

were expressing GFP and there was a statistically significant positive correlation between 

MOI and percentage of GFP+ cells, using Spearman’s coefficient (rs=0.996, p<0.0001), 

supporting the microscopy findings. As seen in the dose-dependent curve (Figure 8C), 

at an MOI of 160,000, there were greater than 50% of GFP+ cells and what also appears 

to be the beginning of the curve plateauing. A similar increasing trend was also observed 

with HEK-293 cells (data not shown, experiment conducted by Jing Bo Amy Wang). Thus, 

an MOI of 160,000 was selected as an appropriate experimental condition for all future 

assays and sufficient to address research aims with the resources available.  

3.3 Subcellular location of the PAD4 enzyme 

At 48 hours post-transduction, the cells were fixed for imaging at the Centre for 

Advanced Light Microscopy (CALM). Even at high magnifications (40x and 50x), with the 

EVOS microscope, the location of the fusion protein was inconclusive, as the entire cell 

fluoresced (Figure 9). In an attempt to better detect the subcellular location of the PAD4 

enzyme, cells underwent multi-colour staining with a primary non-conjugated anti-PAD4 

antibody, followed by a biotinylated secondary antibody, streptavidin-PE, and with a 

fluorophore (AlexaFluor647; AF647) conjugated anti-calreticulin antibody to outline the 

ER. Both HEPG2 and HEPA1-6 cells were infected (MOI=160,000) for 96 hours before 
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the samples were prepared for microscopy. Since the HEPA1-6 cells did not adhere well 

to the glass cover slips, only the findings for HEPG2 are presented, with the experimental 

condition consisting of infection with the AAV6-V1 construct (GFP-PAD4 fusion), and 

controls [non-infected cells (0 MOI) interrogated with all staining antibodies (Figure 10A) 

or only anti-calreticulin (Figure 10B)]. As seen in Figure 10B, the anti-calreticulin 

antibody, shown in cyan (AF647), outlined the ER of the cell. When each of the 

fluorophore channels were viewed independently, it was evident that the GFP (green), 

and streptavidin-PE (red) bound to the secondary detection antibody binding to the 

primary anti-PAD4, overlap as both recognized the same chimeric protein (Figure 10C). 

However, when all three channels were overlayed into a single image (Figure 10C), the 

GFP and PE regions did not overlap with the cyan ER section. Thus, it was concluded 

that the fusion protein did not localize to the ER, despite the presence of the KDEL 

sequence, but rather it was spread throughout the cell/cytoplasm. Interestingly, despite 

the presence of a naturally occurring nuclear localization sequence (NLS), the protein 

was not found in the nucleus. 

3.4 Western Blot 

HEPG2, HEK-293, and HEPA1-6 cells were infected with either AAV6-V1 (GFP-

PAD4 fusion) or AAV6-V2 (PAD4 + WPRE) constructs for 96 hours before collecting 

lysate to detect the PAD4 protein levels. There were four wells for each cell type: with 

untransduced cell lysate in lanes 1/5/9, lysate from cells transduced with the older AAV6-

V1 batch in lanes 2/6/10, lysate from cells transduced with the transduced with new AAV6-

V1 batch in lanes 4/8/12, and lysate from cells transduced with the transduced with AAV6-

V2 in lanes 3/7/11, with 20 μg of protein sample was loaded into each well and probed 
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with an anti-PAD4 antibody. The positive control consisted of 0.5 μg of a commercial 

recombinant mouse PAD4 protein with a band near 75 kDa, as expected. For Figure 11, 

the positive control of a separate blot was used, as supra-optimal concentrations of 

protein led to spill-over into adjacent wells and a smear that spanned the length of the 

well making the blot difficult to interpret (not shown). Western blot analysis demonstrated 

that even in the absence of viral infection (lanes 1, 5, and 9), there was a basal level of 

endogenous PAD4 expression near 75 kDa, as evident across all three cell types (Figure 

11A-C). No clear increase in 75 kDa PAD4 protein expression was observed between the 

wells containing lysate from uninfected or infected cells. For HEPA1-6 cells, a second 

band was present at an approximate molecular weight of 100 kDa. This species was more 

prominent for HEPA1-6 cells than for HEPG2 or HEK-293 (Figure 11A-B). The 100 kDa 

band was consistent with a GFP-PAD4 fusion protein (PAD4 ~76 kDa + GFP ~27 kDa), 

as encoded by AAV6-V1. As shown in Figure 11, only wells containing lysates from 

AAV6-V1 infected cells (lanes 2/4/6/8/10/12) demonstrated the 100 kDa species. 

In contrast to production of the 100 kDa fusion protein following transduction with 

the AAV6-V1 construct, western blotting failed to demonstrate increased expression of 

the 75 kDa PAD4 species following infection of cells with the AAV6-V2 construct, 

suggesting that the WPRE enhancer was non-functional. Three independent blotting 

experiments produced consistent results. In all experiments, no increase was observed 

in the intensity of the 75 kDa species following infection with either AAV6-V1 or AAV6-V2 

construct. Since AAV6-V1 encoded the larger fusion protein, this result is expected. In 

contrast, a functional AAV6-V2 construct would be expected to result in increased band 

density at 75 kDa, but this was not observed.  
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Project 2 Aim 2: To validate protein hypercitrullination through the overexpression of the 

PAD4 enzyme in vitro, by comparing the amount of citrullinated protein between 

untransduced and virally infected cells. 

3.5 Optimizing the In-House ELISA 

To validate the in-house ELISA based on the Schellekens and colleagues’ paper 

(147), the detection of a commercial cyclic citrullinated peptide (CCP) (Genscript, New 

Jersey, USA), plated at different concentrations, by donor sera of varying ACPA titres 

was conducted. Initially, three peptide concentrations ranging from 2.5 μg/well doubling 

to 10 μg/well, demonstrated a linear increase in absorbance (A). Thus, as the amount of 

coated peptide increased, it correlated positively and significantly with absorbance levels 

(rp= 0.999, p=0.014) (Figure 12A). This warranted further investigation with different 

ACPA titres and higher concentrations of peptide to determine an optimal CCP amount 

for experiments. Relative to ACPA negative (<18 units; pooled healthy control sera) or 

low (weak positive) ACPA (20-39 units) sera, a dose-dependent relationship was 

observed between CCP concentration and absorbance (A) for high (strong positive) 

ACPA sera (>124 units) (Figure 12B). As evident in Figure 12B, at 15 μg/well (or 150 

ng/μL) of CCP, the absorbance was A=2.015, which was only slightly less than that 

observed with double the amount of CCP present (A=2.168). Comparatively, the low 

ACPA (A=0.085) sera had absorbance levels below the high ACPA sera for 15 μg/well of 

CCP. These results provided additional support to the findings by the Schellekens’ group 

and affirmed CCP (15 μg/well) as a suitable assay control. Additional CCP ELISA 

optimization and testing was pursued by another member of the Larché group (Jing Bo 

Amy Wang), and their dissertation was consulted during the course of experimentation. 
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3.6 Peptidyl-Arginine Deiminase (PAD) Activity ( in vitro) 

3.6.1 Comparison of the Amount of Citrullinated Protein levels in 

Untransduced and Transduced Cells 

To assess PAD4 enzyme functionality, HEPG2 and HEK-293 cells were 

transduced at an MOI of 160,000 and incubated for 96- to 144-hours. Following the 

incubation, supernatant and cell lysate were collected, and coated on 96-well ELISA 

plates at variable dilutions. An indirect ELISA system was performed. Pooled patient and 

control sera was added to the coated samples. In the initial iterations of this experiment, 

only high titre ACPA patient sera (HPS) was used. 

As evident in Figure 13A, for HEPG2 cells harvested at the 96-hour mark, a higher 

absorbance signal [reported as mean (SD)] was observed with the supernatant collected 

from transduced cells across all four dilutions [e.g., No dilution (100%): A=0.387 (0.019)] 

compared to the untransduced (control) [A=0.157 (0.007)] condition (Table 6). Statistical 

analysis employing a one-way ANOVA (F-statistic (degrees of freedom), p-value), 

demonstrated a significant difference in the mean absorbance signals across the groups 

analyzed (F(4)=84.18, p<0.0001). To assess if the four experimental conditions were 

significantly different than the control group, Dunnett’s multiple comparison test was 

conducted, and the test statistics results were provided in Table 7. It was found that the 

absorbance signal for all four experimental conditions of supernatant were significantly 

different (p<0.0001) than the negative control. For instance, when the No dilution (100%) 

condition was compared to the Control, the mean difference (MD) was MD=-0.229 [95% 

CI: -0.267, -0.192]. The negative mean difference indicated that the control group 

absorbance signal was less than each of the experimental conditions assessed (Table 
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7). Similarly for HEK-293 cells, also incubated for the 96-hour interval, had higher mean 

absorbance signals for the experimental conditions [e.g., No dilution (100%): A=0.382 

(0.036)] than the control [A=0.171 (0.003)] (Table 8). This trend was present regardless 

of the length of incubation (96- or 144-hours) and across both cell types (Figure 13A-B). 

The results from a one-way ANOVA also indicated a significant difference among the 

means of the groups analyzed (F(4)=20.81, p<0.0001). While Dunnett’s multiple 

comparison test supported that the control group mean absorbance signal was 

significantly lower than each of the experimental conditions [e.g., No dilution (100%) 

versus Control: MD=-0.211, 95% CI [-0.278, -0.144], p<0.0001] (Table 9). 

After 144 hours of incubation (Figure 13B), the descriptive statistics of the 

absorbance signals for the supernatant of HEPG2 were described in Table 10. Statistical 

analysis employing the Kruskal-Wallis H test (since one of the groups was did not pass 

the test of normality), reported as the H-statistic (degrees of freedom) with the p-value, 

demonstrated that there was a significant difference in absorbance levels across all 

groups (H(4)=11.65, p=0.001). Further, Dunn’s post hoc multiple comparisons test 

yielded a statistically significant difference in the mean ranks (mean rank 

difference=12.000, p=0.004) between the No dilution (100%) (mean rank=14.000) and 

control condition (mean rank=2.000), indicating that absorbance signals on average from 

the experimental condition tended to be higher than the control group for cell supernatant. 

All other pairwise analyses were non-significant (p>0.05) (Table 11). Moreover, for the 

supernatant of HEK-293 cells (normally distributed dataset), the mean (SD) signal values 

were reported in Table 12. Statistical analysis employing a one-way ANOVA indicated a 

statistically significant difference among the groups (F(4)=54.87, p<0.0001), with 
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Dunnett’s multiple comparison test demonstrating that the mean absorbance of all four 

experimental conditions (supernatant) were significantly higher than the control group 

(supernatant) [e.g., No dilution (100%) versus Control: MD=-0.085, 95% CI [-0.101, -

0.068], p<0.0001] (Table 13). 

The absorbance signal also progressively declined at higher dilutions, as 

anticipated. However, there was no difference in signal when comparing cell lysate, 

except for HEPG2 at 96 hours using an unpaired (two-tailed) t test [t=4.226, p=0.013; MD 

(standard error of the mean; SEM)=0.016 (0.004)]. The Mann Whitney U test (two-tailed) 

comparing the medians of the transduced and untransduced lysate signals for HEK-293 

cells was non-significant (U statistic=0, p=0.100). Interestingly, the trend observed across 

the varying dilutions of the supernatant when comparing transduced with untransduced 

cells, was reversed for the cell lysate of both cell types at lengthier incubations (144 

hours), with a higher mean (SD) signal present for the uninfected condition [HEPG2: 

A=0.084 (0.003); HEK-293: A=0.106 (0.003)] over the infected [HEPG2: A=0.067 (0.000); 

HEK-293: A=0.097 (0.000)]. Notably, the overall absorbance levels also declined at the 

144-hour mark compared to 96 hours, which could potentially indicate diminishing 

enzyme activity over time. Thus, these ELISA experiments at the two time points, using 

only the high ACPA titre, showed that transduced cell lysate did not contain a significantly 

different and biologically meaningful amount of citrullinated peptide over uninfected cell 

lysate, with the absorbance signals less than or nearly equal to that of the control 

(supernatant). Though the significant comparisons seen for the experimental supernatant 

relative to the control, warranted further investigation.  
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In a subsequent iteration of the experiment, at only one time-point (144 hours), 

pooled sera from ACPA-negative healthy controls (CPS) with no indications of 

inflammatory arthritis, along with the media used during the AAV infection process, were 

added to understand how much of the absorbance signal was attributable to substrates 

other than citrullinated peptides/proteins contained in the supernatant and cell lysates 

between transduced and untransduced cells and to assess any potential background 

effects. As a repeat ELISA, only the supernatant was tested given its statistically 

significant outcomes in the previous experiment (Figure 13). The descriptive statistics for 

the absorbance values of HEPG2 and HEK-293 supernatant with the high titre ACPA sera 

(HPS) and pooled control sera (CPS) were reported in Tables 14 and 15, respectively. 

Across both cell types, it was clear that the median [Mdn; Interquartile Range (IQR)] 

absorbance for all four experimental conditions interrogated with HPS were higher (1) 

than the control supernatant interrogated with HPS [e.g., HEPG2: No dilution (100%) 

(HPS): Mdn A=0.202 (0.016) versus Control (HPS): Mdn A=0.118 (0.020)] (Table 14) and 

(2) each of experimental conditions with CPS [e.g., HEK-293: No dilution (100%) (HPS): 

Mdn A=0.226 (0.009) versus No dilution (100%) (CPS): Mdn A=0.061 (0.001)] (Table 15). 

Since each group was conducted in duplicates, normality could not be assessed 

(n was too small for the Shapiro-Wilk test), and non-parametric techniques were utilized. 

The Kruskal-Wallis H test (for HEPG2) demonstrated that the median absorbances of at 

least one of the different dilutions of supernatant was significantly different to the others 

(H(4)=9.528, p=0.003). While the post hoc multiple comparisons test highlighted that only 

the mean ranks difference between the No dilution (100%) (HPS) and Control (HPS) 

group was statistically significant (mean rank difference=9.000, p=0.015) (Table 16). To 
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directly compare if the signal attained by the HPS condition differed significantly from the 

CPS, independent Mann-Whitney U tests were applied. Across each of the dilutions, the 

absorbance signal under the HPS condition did not differ significantly from that with CPS 

(U statistic=0, p=0.333). For HEK-293 cells, the results of the Kruskal-Wallis H test 

(H(4)=9.958, p=0.001) followed by the post hoc analysis demonstrated that only the mean 

ranks of the No dilution (100%) (HPS) group differed significantly from the Control (HPS) 

(mean rank difference=9.000, p=0.015) (Table 17). In addition, the categories of 

supernatant from transduced cells interrogated with HPS were not statistically different 

from those interrogated with CPS (p=0.333). However, a large signal provided by the 

media alone condition (assay negative control) [HPS: Mdn A=0.098 (IQR=0.063); CPS: 

Mdn A=0.060 (IQR=0.097] demonstrated high background noise, questioning whether 

there was a ‘true’ statistically significant difference between the No dilution (100%) (HPS) 

and Control (HPS), as seen for both HEPG2 and HEK-293 (Figure 14A-B).  

3.6.2 Citrullinated Protein levels in Untransduced and Transduced Cells – 

Examining Ionomycin and Calcium Supplementation on PAD Activity 

As part of the troubleshooting process to understand the low absorbance signals 

from the in-house ELISA experiments, cells were supplemented with 1 μM of ionomycin 

and 2 mM of calcium (Ca2+) for two hours prior to harvesting (following a 144-hour 

incubation) with the aim of assisting PAD4 activation and protein citrullination. Three 

separate conditions were investigated: 1. No ionomycin and no calcium; 2. Ionomycin 

without calcium; and 3. Both ionomycin and calcium present. Similar to previous 

experiments, supernatant at four dilutions (No dilution (100%), 50% dilution, 33% dilution, 

and 10% dilution) were plated, along with lysate from both transduced (MOI=160,000) 
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and untransduced (MOI=0) cells. However, the lysate only received high titre ACPA 

(HPS). In addition, a pooled peptide mixture consisted of the three RA-peptides encoded 

by the viral constructs (AAV6-V1 and AAV6-V2) were plated to assess the assay’s ability, 

specifically the HPS, to recognize citrullinated proteins and not their native (unmodified) 

counterparts. While the signal provided by the CPS condition was expected to remain 

similar across both peptide mixtures.  

The descriptive statistics for HEPG2 and HEK-293 cells across all three conditions, 

were reported in Tables 18-23. As evident in Figure 15A, the absorbance signals for all 

four dilutions of transduced cell supernatant interrogated with HPS, were higher than 

supernatant from untransduced cells [e.g., HEPG2: No Dilution (100%) Mdn A=0.197 

(IQR=0.015) versus Control Mdn A=0.100 (IQR=0.013); HEK-293: 50% Dilution Mdn 

A=0.139 (IQR=0.005) versus Control Mdn A=0.100 (IQR=0.014)]. This trend was present 

regardless of the presence or absence of ionomycin/calcium supplementation (Figure 

15A-C). However, there was no significant difference in the absorbance levels when all 

four dilutions of supernatant of HEPG2 (no ionomycin and no calcium) were compared to 

the control supernatant (H(4)=7.309, p=0.063); and Dunn’s post hoc multiple 

comparisons test was not conducted. The transduced cell lysate compared to 

untransduced lysate from the HEPG2, no ionomycin and no calcium condition, were also 

non-significant (U statistic=1, p=0.667). 

In contrast to initial expectations, both HPS and CPS antibody sera detected the 

pooled peptide mixture (citrullinated and native), with a higher absorbance obtained with 

the native peptides than their citrullinated counterpart [e.g., pooled native (HPS) Mdn 

A=0.029 (0.002) versus pooled citrullinated (HPS) Mdn A=0.023 (0.002)]. Although there 
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was no significant difference (p=0.333) in their measures of central tendency, these 

findings highlighted the challenges posed by the ELISA assay to address the research 

questions of this project. Moreover, the results from the Kruskal-Wallis H test for HEK-

293 (no ionomycin and no calcium) suggested that the absorbance levels of one or more 

groups differed significantly (H(4)=8.588, p=0.002), which upon further investigation 

demonstrated that only the supernatant with No dilution (100%) (HPS) was statistically 

different from the Control (HPS) group (mean rank difference=8.000, p=0.032) (Table 

24). All other independent comparisons of the supernatant (CPS versus HPS), and 

untransduced versus transduced cell lysates were non-significant (p>0.05). 

In the second condition, only ionomycin was added to both cell populations (Figure 

15B). Regarding HEPG2, the median absorbance signal varied significantly across the 

different supernatant dilutions (H(4)=7.793, p=0.031). When Dunn’s post hoc test was 

applied, the Control (HPS) group was statistically different than No dilution (100%) (HPS) 

(mean rank difference=8.00, p=0.032) (Table 25). Similarly for HEK-293, the hypothesis 

that there was no difference among the diluted supernatant groups and the control from 

uninfected cells was rejected (H(4)=7.930, p=0.023). However, all pairwise comparisons 

(experimental versus control) were non-significant (Table 26). For both cell populations 

receiving ionomycin and calcium (Figure 15C), there was a statistically significant 

difference in absorbance levels across the supernatant conditions interrogated with HPS 

(HEPG2: H(4)=7.923, p=0.025, and, HEK-293: H(4)=8.780, p=0.001), specifically for the 

No dilution (100%) (HPS) - Control (HPS) pair [HEPG2: mean rank difference=8.000, 

p=0.031 (Table 27); and, HEK-293: mean rank difference=8.000, p=0.032 (Table 28)]. 

The absorbance signals did not vary significantly when comparing the type of antibody 



M.Sc. Thesis – D. Malhotra; McMaster University – Medical Sciences 

 56 

sera (HPS or CPS) used, the status of the lysate (from uninfected versus infected cells), 

or the presence of ionomycin alone or both ionomycin with calcium. 

However, to examine the potential impact of a shorter incubation time (96 hours) 

and a higher calcium concentration (10 mM), an ELISA, comparing only two conditions: 

1. No ionomycin and no calcium, and 2. Ionomycin and calcium, was repeated on HEPG2, 

HEK-293, and mouse splenocytes (Figure 16A-B). The addition of mouse cells as a third 

comparator, was intended to provide insight into the environment most appropriate for the 

encoded PAD4 enzyme, which is of mouse origin. The descriptive statistics for each cell 

type across both conditions were summarized in Tables 29-34. Importantly, although the 

Kruskal-Wallis H test for HEPG2 across both conditions was statistically significant 

(Condition 1 (No ionomycin/calcium): H(4)=7.875, p=0.026; Condition 2 (Ionomycin and 

calcium): H(4)=7.745, p=0.032), post hoc, there were no pairs [supernatant dilutions (No 

dilution (100%), 50% dilution, 33% dilution, and 10% dilution)] versus negative control 

supernatant] that differed statistically (p>0.05) (Tables 35-36). The Kruskal Wallis H test 

was non-significant for HEK-293 cell supernatant across both conditions (1. No ionomycin 

and No calcium: H(4)=4.610, p=0.393; 2. Ionomycin and calcium: H(4)=6.545, p=0.134), 

and hence, no multiple comparison test was conducted. Furthermore, the supernatant 

groups interrogated with HPS were not statistically different than their CPS counterpart, 

as was the case for both cell lines across both conditions analyzed; and the cell lysates 

(HPS) at different dilutions were also not significantly different from the negative control 

[e.g., HEPG2 (condition 1): H(4)=6.072, p=0.067; HEK-293 (condition 1): H(4)=4.833, 

p=0.171]. In fact, many of the trends observed in previous ELISAs were not repeated, 

such as, a decreasing average absorbance level with a less concentrated supernatant, 
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or the lysates from infected cells having a higher signal than the control (lysate from 

untransduced cells), as seen across all three cell lines tested.  

In contrast, to HEK-293, the absorbance signals for mouse splenocytes were not 

the same (statistically different) across all supernatant groups (Condition 1 (no 

ionomycin/calcium): H(4)=7.745, p=0.032; Condition 2 (ionomycin and calcium): 

H(4)=8.204, p=0.009), with the No dilution (100%) (HPS) (Condition 1: mean rank 

difference=8.000, p=0.033) (Table 37) and 10% dilution (Condition 2: mean rank 

difference=8.000, p=0.032) (Table 38) being significantly different than their respective 

negative control (HPS). The statistical analyses demonstrated that there was also a 

significant difference in the absorbance levels among the varying dilutions of lysate from 

mouse splenocytes (no ionomycin and no calcium) (H(4)=6.167, p=0.038). But no 

significant pairs could be identified post hoc (p>0.05) (Table 39). Therefore, the primary 

findings for this sequence of ELISA experiments, with a particular emphasis on the 

descriptive statistics were as follows:  

A) HEPG2/HEK-293/Mouse Splenocytes (no ionomycin and no calcium; Figure 

16A): although the median absorbance signal across all four dilutions of supernatant was 

greater than the control [e.g., HEPG2: No dilution (100%) (HPS): Mdn A=0.324 

(IQR=0.008) versus Control (HPS): Mdn A=0.261 (IQR=0.015)] and their CPS pair, there 

was no clear decline in absorbance signal with higher dilutions. For the cell lysate, it was 

apparent that the lysate of uninfected cells produced greater absorbance values than 

infected cells for HEPG2, potentially indicating that the observed signal was not due to 

citrullinated proteins and could be the result of interaction of another cellular substrate. 

There were no clear trends in the lysate data for HEK-293 and mouse splenocytes. 
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B) HEPG2/HEK-293 (ionomycin and calcium; Figure 16B): through visual 

inspection, the higher absorbance signals with CPS [e.g., HEK-293: 50% dilution (HPS): 

Mdn A=0.269 (IQR=0.003) versus 50% dilution (CPS): Mdn A=0.326 (IQR=0.005)] could 

possibly indicate that the assay had low sensitivity whereby it cannot distinguish the two 

signals (HPS versus CPS). All the transduced lysates performed as expected relative to 

the control, but the pairwise comparisons were non-significant (HEPG2: H(3)=4.500, 

p=0.267; HEK-293: H(3)=4.849, p=0.200). Further, the addition of ionomycin and calcium, 

likely did not increase protein citrullination and PAD activation in comparison to no 

ionomycin and no calcium supplementation. However, further investigation is warranted 

as the assay may not have been able to detect citrullinated proteins/peptides other than 

the Schellekens’ CCP peptide (described in section 3.6.3). 

C) Mouse Splenocytes (ionomycin and calcium; Figure 16B): the supernatant 

groups interrogated with HPS had a higher absorbance level than the control (e.g., No 

dilution (100%): versus Control) and their CPS pairs. Though the changes in absorbance 

based on dilution did not follow a clear dose-response. Compared to the cells of human 

origin, the mouse cells also had absorbance signals within the 0.200 to 0.400 range, 

which may indicate that the origin of the cell may not be an important factor in PAD 

functionality, though future experiments comparing human and mouse cells should be 

considered. 

D) Pooled Citrullinated and Native Peptide Mixtures (Figure 16A): the peptide 

mixtures, which as mentioned previously, consisted of the three RA-peptides encoded by 

the viral constructs AAV6-V1 and -V2, were also tested in this ELISA sequence. Although 

the absorbances were higher [e.g., pooled citrullinated peptide mixture (144 hours; Table 
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18): Mdn A=0.023 (0.002) versus pooled citrullinated peptide mixture interrogated with 

HPS (96 hours; Table 29): Mdn A=0.113 (0.044)] for both the pooled native and 

citrullinated peptide mixtures when the length of cell was reduced from 144 hours 

compared to 96 hours. However, the assay’s ability to detect these linear analytes 

remained inconclusive, given the similar response to both native and citrullinated peptide 

mixtures with both antibody sera (CPS) and (HPS) (Tables 18 and 29).  

Despite statistical significance, with the mouse splenocytes, the magnitude of the 

differences in absorbance signals between control and transduced supernatant (or lysate) 

appeared small, indicating that there was likely no strong effect from the addition of 

ionomycin and calcium. Again, these findings must be approached with caution, as a 

significant finding may not have clinical/translational relevance. 

3.6.3 Citrullinated Protein levels in Untransduced and Transduced Cells – Addition 

of CCP as an Assay Control  

A final repeat of the in-house ELISA experiments was conducted to ensure that 

the findings attained were not due to a non-functional assay. Maintaining the same cell 

types (HEPG2 and HEK-293) and conditions (1. no ionomycin and no calcium, 2. 

Ionomycin and calcium) ensured reproducibility of the experiment design and increasing 

the sample size per condition from duplicates to triplicates, strengthened the confidence 

in the conclusions drawn (Figure 17). Descriptive statistics for both cell lines were 

provided in Tables 40-43. For HEPG2 cells, there was no significant difference in 

absorbance levels across the supernatant groups (H(4)=8.020, p=0.062) (condition 1: no 

ionomycin/calcium); Dunn’s multiple comparisons test was therefore not conducted. 

However, there were specific supernatant groups, where the sample interrogated with 
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HPS was statistically different and larger than the sample with CPS (unpaired (two-tailed) 

t test), such as, 50% dilution (HPS) versus 50% dilution (CPS): t=16.09, p<0.0001; MD 

(SEM)=0.119 (0.007); and, 33% dilution (HPS) versus 33% dilution (CPS): t=7.127, 

p=0.002; MD (SEM)=0.103 (0.014). The signals from cell lysates, however, did not follow 

a clear pattern, as the lysate from untransduced cells [HPS: A=0.109 (0.001) and CPS: 

A=0.185 (0.008)] and transduced cells interrogated with CPS [A=0.198 (0.006)], had 

higher average absorbance signals than the lysate from transduced cells interrogated 

with HPS [A=0.087 (0.008)]. For the samples supplemented with ionomycin and calcium 

(condition 2), the CPS interrogated with groups signalled higher than the HPS, across 

most categories, and apparent for both cell types (Figure 17). 

Moreover, for HEK-293 cells, the absorbance levels did vary significantly across 

the dilutions of supernatant (condition 1: no ionomycin and no calcium) (H(4)=12.73, 

p<0.0001), with both the No dilution (100%) (HPS) (mean rank difference=9.667, 

p=0.032) and 10% dilution (HPS) (mean rank difference=11.33, p=0.007) significantly 

different than the negative control (HPS) (Table 44). Interestingly, the higher dilution 

condition (10%, HPS) also had a slightly greater average absorbance [Mdn A=0.193 

(IQR=0.004)] than the non-diluted group (HPS) [Mdn A=0.191 (IQR=0.003)]. This directly 

contrasts the decline in absorbance with seen with increasing dilutions, as observed 

previously, and the meaningfulness of this finding. It may also be the case of differences 

in the amount of protein collected during the harvesting phase and loaded into the wells, 

especially as the trends thus far demonstrate that the signal can be due to non-target 

antibodies binding non-target cellular substrates. Despite the supernatant from 

transduced cells interrogated with HPS differed significantly from CPS (unpaired (two-
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tailed) t test) [e.g., 50% dilution (HPS) versus 50% dilution (CPS): t=11.41, p=0.0003; MD 

(SEM)=0.101 (0.009); 33% dilution (HPS) versus 33% dilution (CPS): t=16.80, p<0.0001; 

MD (SEM)=0.097 (0.006); and, 10% dilution (HPS) versus 10% dilution (CPS): t=5.397, 

p=0.006, MD (SEM)=0.079 (0.015)] (condition 1), again the effects of diluting the 

supernatant rarely changed the absorbance (Figure 17). More importantly, this assay 

included the cyclic citrullinated peptide (CCP), a single analyte which should have served 

as an assay control across all in-house ELISAs, based on the Schellekens’ group (147) 

(Figure 17). The average (SD) absorbance signal with CCP interrogated with HPS was 

A=2.487 (0.048) [and Mdn A=2.506 (IQR=0.091)], which was several units greater than 

the peptide interrogated with CPS with a mean of A=0.186 (0.007) [and Mdn A=0.190 

(IQR=0.012)] but also all other samples examined. Thus, despite the assay being 

functional, it was unable to demonstrate if the expressed PAD enzyme was active by way 

of detecting citrullinated peptides, using patient (HPS) and control (CPS) sera, in 

supernatant/lysate. The assay was designed based on the ability of ACPA antibodies to 

detect citrullinated substrate, but it may possibly be the case that the assay was sensitive 

enough to detect CCP only with the high titre ACPA. Thus, whether there was insufficient 

PAD activation in vitro and/or non-target substrates competing with possibly 

citrullinated/target peptides for limited availability on the plate’s surface, remained elusive. 

3.7 PAD Activity using the Commercial Detection Kit  

To circumvent the challenges posed by the in-house ELISA, a commercial kit was 

used to assess the activity of the encoded mouse PAD4 from the viral constructs (AAV6-

V1 and AAV6-V2) following incubation for 96 hours. The descriptive statistics were 

provided in Table 45. When only AAV6-V1 was used for infection, it was evident that 



M.Sc. Thesis – D. Malhotra; McMaster University – Medical Sciences 

 62 

there was no significant difference in absorbance when comparing the lysates from 

transduced cells (with or without ionomycin/calcium) to untransduced (HEPG2: 

F(2)=0.188, p=0.833; HEK-293: F(2)=0.063, p=0.940) (Figure 18A). It was also noted 

that the addition of ionomycin/calcium only slightly elevated the outcome value but was 

statistically insignificant [HEPG2: t=0.333, p=0.756; MD (SEM)=0.076 (0.228); HEK-293: 

t=0.012, p=0.991; MD (SEM)=0.003 (0.254)]. However, there seemed to be high 

background noise based on how the negative control (assay buffer) [A=1.44 (0.298)] 

performed compared to the positive (PAD cocktail; 100ng) [A=1.647 (0.278)]. The mean 

(SEM) absorbance difference between the two controls was only, MD (SEM)=0.208 

(0.235), and non-significant (t=0.885, p=0.426) (unpaired (two-tailed) t test). Thus, the 

conclusions drawn from the commercial kit could not be affirmed until the controls were 

working appropriately.  

The positive control was tested at three separate concentrations (Figure 18B), 2 

ng/μL (100 ng), 3 ng/μL (150 ng), and 4 ng/μL (200 ng). The average absorbance was 

A=2.421 (0.089) for 100 ng of PAD, followed by A=2.397 (0.300) for 150 ng and A=2.469 

(0.700) for 200 ng. Despite doubling the amount of enzyme available to catalyze the 

reaction, the change in absorbance was minimal (∆A=0.048) and decreased at the 

intermediate concentration. The negative control still gave a large signal [A=1.640 

(0.114)]. In systematically addressing the high background and discussing with the 

manufacturer, there were two probable sources of error: 1. Insufficient washing after the 

use of a trypsin digestion reagent, or 2. The trypsin digestion reagent has lost enzymatic 

activity. Although the former was ruled out, the trypsin was replaced and re-tested.  
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The lysate was collected from cells (HEPG2, HEK-293, and HEPA1-6 – a mouse 

liver cell line) infected with either construct AAV6-V1 (old (A) and new (B) batch) or AAV6-

V2. Further, as a second comparator to the PAD cocktail (assay positive control), a 

commercial mouse PAD4 was assessed (Figure 19). The descriptive statistics were 

summarized in Table 46. It was found that across all three cell types, there was no 

statistical difference in absorbance levels among the untransduced and transduced cell 

lysates [HEPG2: H(4)=1.763, p=0.666; HEK-293: F(3)=0.835, p=0.511; HEPA1-6: 

F(3)=0.613, p=0.626]. Together these findings suggested that there was minimal to no 

functional PAD4 being produced by the viruses above the basal PAD levels. Since the 

average absorbance of the commercial PAD4 was only slightly below the PAD cocktail, it 

indicates that the assay is suitable for mouse PAD, and supports the conclusions drawn. 

And given the stark difference in absorbance levels between the assay controls [positive: 

A=1.461 (0.145); negative: A=0.212 (0.017)], increases confidence in the patterns 

observed and interpreted. 

4.0 Discussion 

This thesis, presented as two linked projects under the concept of citrullination, 

focused on improving the current landscape of RA treatment by laying the groundwork 

for a potential future therapeutic vaccine (project 1) and by enhancing understanding of 

protein hypercitrullination in RA pathology (project 2). More specifically, project 1, in the 

form of a clinical study, recruited RA patients and healthy controls to assess T cell 

responses against a variety of RA-implicated proteins. While project 2, used AAV 

constructs for the delivery and subsequent expression of a PAD enzyme in RA 
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pathophysiology known to modify intra- and extracellular proteins, against which an 

autoimmune response occurs. 

4.1 Project 1: Targeting Epitope Specific T Cells  

4.1.1 The frequency of T cell responses is not similar between citrulline and 

glutamine peptides. 

The first part of this thesis examined T cell responses against five different 

peptides in their unmodified/native, citrullinated, or glutamine-substituted forms following 

the recruitment of RA patients and healthy controls (n=17). This project assessed the 

suitability of glutamine, which shares functional group similarity and a neutral net charge 

with citrulline, in the potential design of a therapeutic mRNA vaccine for the amelioration 

of immunopathology in RA. The reason for assessing glutamine suitability for this purpose 

was that citrulline is not among the amino acids (AA) for which there are codons in 

humans. Thus, whilst mRNA vaccine approaches offer potential advantages for the 

development of epitope-specific immune modulation, it is not possible to generate mRNA 

vaccine payloads that encode proteins/peptides containing citrulline. As described in the 

Introduction to this thesis, the conversion of arginine residues to citrulline in certain protein 

is believed to play a key role in the immunopathology driving RA pathogenesis. In 

nucleotide-based vaccines, immunodominant epitopes can be encoded to target 

antigen(ag)-specific cells driving disease. In a recent study by Krienke and colleagues for 

the treatment of experimental autoimmune encephalomyelitis (EAE), a disease model of 

multiple sclerosis, the researchers devised a nucleoside-modified mRNA vaccine that 

reduced immunogenicity of the delivery vehicle and encoded disease autoantigens 

(153,154). Their disease model was based on an autoimmune response against a peptide 
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epitope of myelin oligodendrocyte glycoprotein (35-55) (MOG35-55). It was reported that 

following vaccination with the modified antigen-encoding mRNA, MOG35-55-specific T cells 

did not exhibit the same pro-inflammatory cytokine profile as the group immunized with 

the non-modified mRNA, along with a higher frequency of regulatory T cells and lower 

TH1 MOG35-55-specific CD4+ T cells. The clinical signs of disease also decreased which 

demonstrated the therapeutic potential of their approach. More importantly, to 

appropriately suppress autoimmune diseases, recognizing the involvement of, and 

therefore targeting autoreactive T cells is a crucial step.  

Studies focused on RA have accumulated a plethora of evidence elucidating key 

peptide epitopes for the activation of CD4+ T cells (155). These included citrullinated 

vimentin, fibrinogen, alpha-enolase, aggrecan, and anti-thrombin, shown as relevant 

disease targets (149,156-158). As mentioned in the thesis rationale, the Larché group 

had short-listed several candidate autoantigens (T cell epitopes) for ex vivo testing, 

including those mentioned above. However, it was apparent that the frequency of antigen-

specific T cells was low and is a challenge that is commonly recognized in antigen-specific 

T cell characterization given their rarity (157,159-161). For instance, James and 

colleagues quantified the overall frequency of citrulline-specific T cells per 1x106 CD4+ T 

cells [mean (SEM)], which was statistically higher for RA patients [5.4 (8.6)] than controls 

[1.9 (1.4)], p=0.007 (155). Similarly, data from another group investigating T cell 

responses for native and citrullinated alpha-enolase (ex vivo) reported frequencies 

between 1 and 10 ag-specific T cells per 1x106 CD4+ T cells (157).  

In the current study, the magnitude of T cell responses tended to be low across all 

three versions of the five tested antigens, as consistent with the literature. Responses to 
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native and substituted peptides fluctuated between patients. Further, positive immune 

responses for a peptide did not always correlate between citrulline and glutamine 

variants. In another context, technical shortcomings of the ELISPOT immunoassay did 

not permit comparing the mean frequencies of IFN-𝛾 secreting cells for each peptide 

among participants. In doing so, the effects of between-subject variability in cell viability 

would have been insufficiently considered. Along with the possibility that concomitant 

underlying infections may increase the background noise (i.e., non-specific T cell 

activation) (162). Although the chosen statistical method for analysis compared antigen-

stimulated responses with the background responses for each participant, it reportedly 

comes with a 5% false-positive rate (148,163). However, this rate tended to be less than 

some of the other approaches considered when defining a positive response in 

ELISPOTs (148,163).  

A three-point criteria list was devised to independently assess each participant’s T 

cell responses. The parameters examined included equivalent or approximately 

equivalent frequency of ag-specific T cells between the glutamine and citrulline peptides, 

a higher immune response level for the two modified peptides compared to the native 

peptide, and the two modified peptides having a significant response, as obtained by the 

DFR(eq) tool. For instance, RA1 had an equivalent mean (SD) response against peptide 

23 [4.67 (1.53)] for Cit23 and Glut23, though it was less than with Nat23 [5.67 (2.89)], 

satisfying only one of three parameters. Although it was hypothesized that responses to 

native peptides would be less than citrulline for both patients and controls, there is 

evidence suggesting that a T cell can cross-recognize both versions of the same peptide, 

which may help explain how some native peptide responses were similar in frequency to 
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their citrulline counterpart (e.g., the average cytokine-specific secreting cells for patient 

RA1 was 3.67 (2.08) for Nat.-28 and 3.67 (3.06) for Cit.-28). It is also important to note 

that the enrolled RA patients and healthy controls may have non-shared epitope class II 

HLA molecules that could potentially bind any of the three peptide variants tested and 

lead to a T cell response. A study by Kampstra and colleagues demonstrated that specific 

HLA-DQ (e.g., DQ7 and DQ8) molecules preferentially interacted with citrulline-

containing peptides over their native variant (110). Thus, it was difficult to interpret 

whether the generated responses came from the antigens binding a SE+ HLA-DR or 

another HLA molecule that was present, as some studies have shown that the HLA-DQ 

molecule was also involved in RA (110,164-166). 

Pieper and colleagues reported, using HLA-DR4 tetramers conjugated to either 

APC or PE fluorophores, on patient samples positive for HLA-DRB1*04:01, that some T 

cells cross-recognized both peptide forms (i.e., native and citrullinated) of alpha-enolase 

(157). It was proposed that the cross-reactivity observed may have been due to the 

position of the arginine residue modified to citrulline, happening at a site that was not 

critical for interacting with the binding groove of the HLA-DR molecule (157). Thus, the 

native and citrullinated alpha-enolase bound to the class II HLA molecule could similarly 

activate alpha-enolase-specific T cells. Another hypothesis put forward by the group was 

the presence of multiple types of T cell receptors (TCRs), each responding differently 

toward the antigens tested. For instance, it was suggested that one TCR would detect 

both peptides and others that would only recognize one form of the peptide (either native 

or citrullinated) (157).  
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In this thesis, the immune responses and magnitude of cytokine-secreting cells did 

not match for glutamine and citrulline peptides given their structural similarities (Figure 

3), as the T cell response for the citrulline analogue was only equivalent for the glutamine 

analogue in 23% of participants of which no T cell response was positive. It was therefore 

concluded that glutamine is not a suitable surrogate for citrulline in designing a potential 

mRNA-based therapy. If, however, there had been a clear trend in peptide response 

supporting the recognition of both citrulline and glutamine analogues, the next step would 

have been to demonstrate whether the same T cell was responding to each of the 

peptides (since this cannot be determined at the level of the polyclonal cultures conducted 

in the present study) while also exploring the possibility of cross-reactivity. The analysis 

would aim to determine whether separate T cells responded to each of the three peptide 

analogues, or whether single TCRs can respond to both the citrulline-substituted and 

glutamine-substituted epitopes. In effect, PBMCs would be isolated from RA patients who 

had demonstrated a positive one-to-one response to a peptide, followed by ex vivo 

staining with two fluorescently labelled MHC class II tetramers bound to either the 

citrulline or glutamine version of the peptide. If it was evident that both tetramers bound 

to the same T cell, then this would be foundational in designing a nucleic acid-based 

vaccine for use in an inflammatory-arthritis mouse model (previously established within 

the Larché lab) and delivered in a non-inflammatory context, similar to the Krienke group 

(154). 
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4.2 Project 2: Modelling Protein Hypercitrullination  

In project 2, two AAV constructs (AAV6-V1 and AAV6-V2) were tested to 

overexpress the PAD4 enzyme (in vitro) to attain substantial upregulation of citrullination. 

Both constructs contained a KDEL sequence, and it was necessary to investigate if the 

virus-encoded PAD4 localized to the endoplasmic reticulum (ER) or elsewhere in the cell, 

as PAD4 has an embedded nuclear localization signal. The expression of AAV-encoded 

PAD4 was confirmed by western blot, and its activity was assessed using in-house and 

commercial ELISAs. 

4.2.1 PAD4 is not localized to the endoplasmic reticulum  

To determine where the PAD4 protein localized, human and mouse cells were 

infected and stained for visualization via EVOS and confocal microscopy. The data from 

the EVOS microscope (Figures 7-9), supported by data from flow cytometry (Figures 7-

8), confirmed the successful transduction of cells using AAV6-V1 (GFP-PAD fusion 

construct), with an increasing proportion of GFP-positive cells at higher MOIs. However, 

the EVOS microscope could not confirm PAD4 localization, as the entire cell fluoresced 

green. Following the immunocytochemical staining of cells for visualization of intracellular 

structures via confocal microscopy, it was apparent that the GFP-PAD4 fusion protein did 

not localize to the ER lumen, contrary to what was envisaged due to the presence of a 

downstream KDEL sequence at the C-terminal domain (added by collaborator Dr. 

Wootton during construct design). This tetrapeptide sequence retains proteins in the ER 

lumen after they are synthesized (167,168). Given the importance of calcium to PAD 

function, it was thought that restricting the protein to the ER could provide a higher source 

of the cofactor, as Ca2+ concentrations are approximately 104-fold greater than the 
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cytoplasm (169,170). Due to the lack of overlap in signal between the GFP and PE 

channels in green and red, respectively, with AF647 in cyan, it was concluded that the 

fusion protein was present in the cytoplasm and not the ER (Figure 10). This was 

consistent across the acquired confocal images and has been described as one of the 

locations where this protein is reportedly found following physiologic expression (171). 

 The PAD4 enzyme contains an embedded NLS (nuclear localization sequence) 

signal in residues 45 to 74 (172). This motif, on the surface of the N-terminal domain, is 

believed to be recognized by nuclear transporters for passage through the nuclear pore 

complex and consists of the sequence 56PPAKKKST63 in humans, and 56PPVKKST62 in 

mice (172,173). Nakashima and colleagues compared the NLS in human and murine 

PAD4 with ‘classical monopartite’ motifs (an alpha-helix disrupting residue, i.e., proline, 

and basic AA) and found similarities in the sequence with a proline residue at position 56 

followed by double lysine residues at positions 59 and 60 (172,174-176). Previously, it 

has been shown that nuclear transport receptors recognize the basic clusters in the 

‘classical NLS’ which are complemented by electrostatic and hydrophilic interactions, and 

certain AA substitutions in the NLS can completely prevent transport (174,177-179). 

Moreover, the lack of PAD retention in the ER may be the result of competing signals as 

the engineered protein contained a C-terminal KDEL sequence in addition to the NLS 

(180). It is possible that the PAD4 may shuttle among many locations within the cell, from 

the ER to the cytoplasm and nucleus. Thus, even though nucleocytoplasmic distribution 

is common for this protein (172,173,181-183), how the ER retention signal may influence 

its subcellular destination has not been elucidated in the literature. In comparable studies, 

there is evidence that suggests certain proteins are dually dispersed among many 
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compartments of a cell (184-188). For instance, Petrova and colleagues demonstrated 

that the catalase A enzyme in yeast, responsible for neutralizing or reducing the harmful 

effects of reactive oxygen species, was found in both the peroxisome and mitochondria 

by fusing a GFP moiety at its C-terminus (186). However, having a bulky fusion partner 

or interactions among proteins could also make one or more of the signal sequences 

inaccessible (189-191). As was the case for catalase A, where GFP ‘masked’ the 

peroxisomal targeting signal near the site of fusion (186). Although PAD4 localization to 

the nucleus was not determined by the current staining procedure, a proposed model of 

the GFP-PAD4 fusion protein demonstrated the spatial proximity of the reporter to the 

NLS, as well as the KDEL motif at the C-terminus of PAD4 (Figure 20). Together these 

findings may partially explain the minimal overlap between the ER (AF647) and GFP/PE 

signals.  

4.2.2 Detection of PAD4 expression by western blotting.  

 The basal expression of the PAD4 enzyme is known to extend beyond the cells of 

the immune system (i.e., neutrophils and monocytes). There are reports demonstrating 

tonic PAD4 expression in the human and mouse cell lines used in the current study (192-

195). Thus, it was expected that in non-infected cells, there would be some detectable 

PAD4, which was indeed the case (Figure 11). These findings were also supported by 

the staining experiment, in which negative control cells had a PE-signal, which indirectly 

targeted PAD. For instance, all cell lysates generated an anti-PAD4 antibody-reactive 

band near the 75 kDa mark, as 76 kDa is the molecular weight of mouse PAD4 (Figure 

11). The data from the western blot did confirm transgene expression, especially for 

AAV6-V1, as a second band appeared close to 100 kDa which is indicative of the GFP-
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PAD4 fusion protein. However, relative to untransduced cells, the band for PAD4 from 

cells infected with AAV6-V2 containing the WPRE (Woodchuck Hepatitis Virus 

posttranscriptional regulatory element) sequence was not increased in intensity, 

suggesting a failure of the construct to boost PAD4 expression. The underlying reason 

for the lack of enhanced protein expression is currently unknown. It was thought that 

components of the vector may be incompatible, such as WPRE and the CASI promoter, 

as some studies showed no benefit of WPRE on enhancing transgene expression with 

specific promoters (196-198). Whether or not the CASI promoter would behave similarly 

has not been elucidated in the literature. Interestingly, the protein bands were more 

pronounced with mouse HEPA1-6 cells in comparison to HEK-293 or HEPG2, across 

three independent experimental repeats (Figure 11). Previous studies have 

demonstrated efficient transduction of mouse cells by AAV6, which could have allowed 

for higher protein expression (199-201). The results from the western blots support PAD 

enzyme production from AAV6-V1, though, PAD4 produced by AAV6-V2 is 

indistinguishable from endogenous PAD. 

4.2.3 Assessment of PAD Activity by ELISA. 

In addressing Aim 2 of project 2, PAD4 activation and citrullination of proteins were 

compared across infected and uninfected cells over a series of ELISA experiments, with 

troubleshooting techniques applied systematically. Several dilutions of supernatant from 

transduced cells (experimental condition) were compared to untransduced cell 

supernatant serving as a negative control. At first, only high titre ACPA sera (HPS) from 

RA patients were pooled and used as the source of antibodies to detect citrullinated 

substrates. The higher absorbance signals for transduced cell supernatant were 
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statistically different than the control (p<0.05), seen across two different cell types 

(HEPG2 and HEK-293) and two time points (96- and 144-hours). While only the lysate 

for HEPG2 at 96 hours had a significant difference between the experimental and control 

conditions (p=0.013) (Figure 13). It was also worth noting that absorbance signals for cell 

supernatant decreased by half with a longer incubation (144 hours), with the negative 

control [HEPG2: A=0.084 (0.003); HEK-293: A=0.106 (0.003)] having a higher mean 

absorbance than the experimental lysate [HEPG2: A= 0.067 (0.000); HEK-293: A=0.097 

(0.000)] (Figure 13). If the absorbance signals had increased from 96- to 144-hours, it 

would support the conclusion that the enzyme modified more substrate over time. Rather, 

it may be the case of diminishing enzyme activity and thereby less citrullinated peptides 

were detected.  

 A comparator serum (CPS) pooled from healthy controls (all ACPA negative, <18 

units) was added to observe how much of the absorbance signal was attributable to 

citrullinated proteins and background noise. Statistical analyses revealed that the wells 

the HPS was assayed in did not differ statistically from the wells interrogated with CPS 

(p=0.333). However, the absorbance signal was higher for every experimental and control 

condition with HPS than CPS. Surprisingly, supernatant from untransduced cells [Control: 

median (Mdn) A=0.118 (Interquartile range; IQR=0.020)] or the media alone resulted in 

high background noise with the HPS sera [HPS: Mdn A=0.098 (IQR=0.063)]. Absorbance 

from the wells that CPS was assayed in was relatively minimal and ranged from 0.044 to 

0.051 units for the experimental conditions of HEPG2 (Figure 14) as an example, which 

was all above the signal from untransduced cell supernatant interrogated with CPS 

[Control: Mdn A=0.039 (IQR=0.006)] (same trend observed for HEK-293). Taken 
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together, these findings suggested the following: 1. above the negative control (HPS) and 

media alone (HPS), there were substrates that the antibodies bound to, but the identity 

of these substrates is unknown and cannot be attributed to citrullinated peptides; and 2. 

overall there was a poor signal-to-noise ratio with low absorbance readings, as compared 

to the absorbance seen with the HPS bound to CCP [A=2.487 (0.048)] (Figure 17).   

In RA, PAD4 activation has been observed following cell death as the latter allows 

for an ample supply of calcium influx from the extracellular environment and the release 

of the cation from intracellular stores, which is why citrullinated autoantigens can be found 

both in an out of cells (104,202-204). As a result, it was hypothesized that intracellular 

Ca2+ concentrations in intact cells were not conducive for PAD4 activation in vitro. In 

support of this hypothesis, studies elucidating the structure and mechanisms of action of 

the PAD4 enzyme, highlight the importance of elevated calcium concentrations for its 

activity (173,205). PAD4, with its five-calcium binding sites, requires supraphysiologic 

amounts of Ca2+ for activation (up to 10 mM), which is 105-fold larger than resting state 

intracellular Ca2+concentrations (near 100 nM) (173,206-208). Andrade and colleagues 

conducted an in vitro citrullination assay co-incubating PAD4 with histone H3.1 in the 

presence of 10 mM CaCl2 and demonstrated modification of the histone protein by an 

anti-modified citrulline (AMC) antibody (209). This requirement for high calcium levels 

served as the rationale behind incorporating a KDEL sequence into AAV6-V1 and AAV6-

V2. Virally infected cells were incubated with calcium and ionomycin (a calcium 

ionophore) in an ‘activation phase’ prior to harvesting the cells. However, there was no 

apparent change in signal, especially in comparison to the cells that were not treated with 

both supplements. It may be possible that the calcium concentration used at first was too 
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low (2 mM) and the length of incubation (120 minutes) with the supplements was 

inadequate to stimulate PAD4-mediated citrullination. However, the demonstration by 

Andrade and colleagues that citrullination of protein incubated at 37oC was detected in 

as little as 5 minutes, suggests that the length of incubation in the current experiments is 

unlikely to explain the observed lack of PAD4 activity (209).  

When comparing cells with and without ionomycin/calcium supplementation, there 

were no clear trends in the data that would suggest that the calcium supported PAD4 

activation in vitro and subsequent citrullination of proteins (Figures 15-17). For example, 

directly comparing the mean (SD) [or median (IQR) which are equivalent, aside from their 

measures of spread, as the samples were in duplicates] of the supernatant from the 

HEPG2 cell culture diluted 50% with coating buffer and interrogated with the HPS sera, 

the absorbance values were: A(no ionomycin and no calcium)=0.144 (0.016); 

A(ionomycin without no calcium)=0.140 (0.011); and A(ionomycin and calcium)=0.153 

(0.013) (Tables 18,20,22). These results demonstrate very little change in absorbance 

indicative of a failure to detect citrullinated proteins, despite the modification of culture 

conditions to mimic those conducive for PAD activation through the addition of 

ionomycin/calcium. 

It is established that a high calcium concentration is important for PAD activation. 

However, the cell lines initially investigated (i.e., HEPG2 and HEK-293) in this study were 

of human origin. It was reasonable to question whether these cells lacked the appropriate 

cofactors necessary for complete activity of a murine PAD4 enzyme. Thus, ELISA assays 

were performed on samples generated from transduced murine splenocytes (Figure 16). 

With no change in the amount of ionomycin (1 M); a higher calcium concentration (10 
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mM as opposed to 2 mM); and longer incubation (4 hours as opposed to 2 hours); the 

absorbance signals remained consistent regardless of the cell type or the presence of 

ionomycin and/or Ca2+ (Figures 15-16). When the ELISA plates were coated with the 

same CCP peptide used by the Schellekens’ group, a greater absorbance signal near 2.5 

units was observed with the high titre ACPA patient sera (Figure 17). Despite the results 

remaining consistent from assay to assay demonstrating repeatability, none of the 

absorbance signals with the supernatant or lysate from virally infected cells were as high 

as the signal with CCP interrogated with HPS (Figure 17). In fact, the signals from 

experimental conditions were near the signal obtained with CCP interrogated with CPS. 

These findings provided a good indication that although the CCP substrate was detected 

by HPS, PAD4 activation by way of detecting other cellular or AAV6-encoded peptides 

was not possible using the current in-house ELISA system. 

4.2.4 Assessment of PAD Activity with a commercial kit.  

Despite several adaptations to improve the in-house ELISA, it was unable to 

confirm PAD4 activity. This led to the PAD commercial kit, where lysate from infected 

(AAV6-V1 and AAV6-V2) human and mouse cells was collected and compared with a 

PAD cocktail (positive control) and commercial mouse PAD4 (Figure 19). Across all three 

cell lines (i.e., HEPG2, HEK-293, and HEPA1-6), there was almost no change in 

absorbance signal for the virally infected lysate relative to untransduced cell lysate. All 

conditions were analogous with the assay negative control (buffer). Of importance, is to 

note the activity of the commercial mouse PAD in relation to the PAD cocktail. The cocktail 

consisted of five PAD isoforms, 1 through 4 and 6, while the mouse PAD was exclusively 

PAD4, and equivalent concentrations of both were tested in the assay at 4 ng/L. The 
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PADs contained in the mixture, were of equal amounts, and of human (PAD1/3/4/6) and 

mouse (PAD2) origin. The absorbance level from the commercial mouse PAD4 was 

slightly below but not statistically different (t=1.607, p=0.183) than the signal obtained by 

the PAD mixture (Figure 19). However, both, the commercial mouse PAD4 and PAD 

cocktail, were significantly different than the background (negative control) (Mouse PAD 

versus Negative Control: t=16.91, p<0.0001; PAD cocktail versus Negative Control: 

t=14.78, p=0.0001), as found using a two-tailed t test. These results indicated that the kit 

was functional in detecting PAD activity, however, the virally infected samples did not 

appear to contain a functional PAD4 enzyme. 

4.2.5 An exploration of the following project caveats: effects of fusion protein on 

functional activity, reading frame for PAD4, substrate specificities, detection of a 

limited array of autoantigens by RA sera, peptide conformation, and citrullination-

induced inactivation of PAD. 

For this project, two viral constructs were designed: AAV6-V1 – containing a GFP-

PAD4 fusion protein, and AAV6-V2 – replacing the GFP protein and incorporating a 

WPRE sequence downstream to enhance gene expression. In order to address factors 

that might explain the lack of enzymatic activity observed, a series of potential study 

caveats were examined. First, a complete review of the genetic sequence was conducted 

and the PAD4 sequence was found to be in the correct reading frame; hence, a frameshift 

was unlikely to be an explanation for the lack of activity observed with the in-house 

ELISAs.  

The AAV6-V1 construct encoded a fusion protein with a small four amino acid 

glycine-serine [Gly-Gly-Ser-Gly, (G-G-S-G)] linker between the C-terminus of GFP and 
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the N-terminal region of PAD4 which allowed for visual detection of the enzyme. The 

glycine-serine linker employed is flexible, given the smaller size of the residues (i.e., 

glycine) and solubility in aqueous environments (i.e., serine) (210,211). It has also been 

shown that glycine-rich linkers add stability to the fusion protein (212,213). However, as 

these inter-peptide linkers permit a certain degree of motion, there has been a report 

where a five AA [(Gly)4Ser] flexible linker used to conjugate protein G to luciferase 

resulted in a non-functional chimeric protein (214). The researchers suggested that 

potential interactions between the two moieties interfered with protein’s binding ability 

(214). In response, the group employed a rigid, alpha-helix based linker, that maintained 

spatial distance, and reduced potential interference (210,214,215). Thus, with shorter 

flexible linkers, one limitation is possible interactions between the two proteins fused 

together highlighting the importance of optimizing the design and length to meet research 

needs (212).  

With the fusion protein reported in this thesis, it is very possible that the GFP 

moiety was interfering/interrupting PAD4 enzyme activity. For instance, since the GFP 

was expressed upstream of the PAD4 enzyme, incorrect folding may have impacted the 

intensity of the fluorescence signal and resulted in the formation of an unstable protein 

complex (216-218). However, even if the protein folded correctly, it remains possible that 

the large size of the GFP (27 kDa) could sterically hinder the active site(s) of PAD 

(216,219). To address this possibility, the crystal structure of human PAD4 was examined 

(as the mouse version has not been elucidated). Four sites actively involved in catalysis, 

included D350, H471, D473, C645, which are also conserved in the mouse PAD4 

(confirmed using NCBI BLAST) (173,181). All four sites were localized in the C-terminal 
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domain of PAD4, residues 301-663 (human; 666 for mouse) (181,220). The N-terminal 

domain of PAD4 consisted of two subdomains, three out of five calcium-binding sites, and 

was comprised of residues 1-300 (181,220). By leveraging the AlphaFold2 software to 

develop a 3-D model of the chimeric protein (used in the current study) with high 

predictability (with a mean predicted local distance difference test above 90 indicative of 

very high confidence towards the residue’s spatial orientation and position; Figure 20E) 

and confirmed using three additional programs: SWISS-MODEL, ModBase, the Protein 

Data Bank (each protein independently assessed), it was evident that the GFP protein 

was visually adjacent to the N-terminal domain of PAD4 (Figure 20) (221-223). Using the 

methods currently available, it was hypothesized that with the flexible linker and/or bulkier 

substrates, GFP was likely to have some interference with the active cleft of PAD4. 

However, the extent of the interference, especially in the system reported in this thesis, 

cannot be determined. 

Furthermore, as the constructs contained the genetic information to produce a 

PAD4 enzyme of mouse origin, it was important to note that the three native-sequence 

‘substrate’ peptides (from vimentin, aggrecan core, and alpha-enolase) encoded by the 

AAV6-V1 and AAV6-V2 constructs were of human origin, and that most of the 

experiments were conducted using human cells. By conducting comparative analyses of 

the two proteins, mouse and human PAD4, using the NCBI Basic Local Alignment Search 

Tool (BLAST), it was evident that the mouse PAD4 was 73% identical to the human 

version. This indicates that the mouse PAD was not an exact match of the human, and 

by extension, this could potentially translate into slight differences in substrate 

specificities and affinities, especially for the non-conserved regions (224). However, 
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complexities arise when comparing potential cellular substrates between human and 

mouse, as they tend to be highly analogous with greater than 85% AA sequence similarity. 

For instance, mouse vimentin had 97% overlap in sequence identity with human vimentin, 

when comparing whole protein using the NCBI BLAST tool. Thus, the origin of the 

substrate on PAD4-mediated citrullination warrants further investigation. 

The substrate specificity profile for the PAD4 isoform may have important 

implications for the findings in the current study. As PAD4 tends to localize in the 

cytoplasm and is the only PAD isoform with an NLS, many of the intracellular substrates 

it deiminates are nuclear, such as histones H2A, H3 and H4 (171,172,225,226). There is 

substantial evidence that outlines the distinct substrates that PAD isoforms target and 

subsequently modify (227-229). To illustrate, Darrah and colleagues, collected lysates 

from HL-60 (human myeloid leukemia) cells and co-incubated with or without three 

different PAD isoforms, PAD2-4, and 10 mM CaCl2 for 1 hour at 37oC (228). Citrullinated 

proteins were detected using an anti-modified citrulline (AMC) antibody. It was found that 

there were differences in the protein targets for each enzyme, such as, histone H3 was 

citrullinated by PAD4 and not by PAD2 nor PAD3; or that PAD2, but not PAD3, another 

cytoplasmic enzyme, modified actin (228). Although there tended to be overlap between 

some of the substrates modified, specifically when comparing PAD2 and PAD4 (most 

prominent in RA), there are differences in the residue sites that each isoform modifies 

preferentially. For example, comparing the citrullinated sites of fibrinogen, the researchers 

reported that 9 sites were only modified by PAD2 and not PAD4, while 1 site was only 

modified by PAD4, out of the 21 sites recognized together (226). In an investigation 

comparing citrullination sites between PAD2 and PAD4 on a synthetic peptide, relative to 



M.Sc. Thesis – D. Malhotra; McMaster University – Medical Sciences 

 81 

the target arginine, AA substitutions at residue sites 1 or 3 spaces upstream were critical 

for PAD2. While, for PAD4, substitution of the glycine residue one position downstream 

of the arginine residue considerably affected substrate citrullination (227). Taken 

together, these findings affirmed that specific substrates (and residue sites) are preferred 

by various PAD isoforms. Thus, it cannot be excluded that substrate specificity 

contributed to the negative enzyme function findings in the current study.  

In RA, and well elucidated in the literature, many autoantigens have been found in 

the joint space. However, there are characteristic differences in the profile of arthritogenic 

antigens detected by patient sera, which partly explain the heterogeneity of the disease. 

For example, a study reported that RA sera detected different (and a minor subset of) 

citrullinated proteins in lysates from ionomycin-activated or control neutrophils (228). 

Similarly, another group demonstrated that out of 72 ACPA-positive RA patients, only 

61% and 60% of sera detected citrullinated vimentin or fibrinogen, respectively (230). For 

the in-house ELISA experiments detailed in this thesis, the high titre ACPA patient sera 

(HPS) was pooled from three patients with a strong positive ACPA status (>124 units). 

There still exists the possibility that the grouped patient sera did not have the specific 

autoantibodies to bind and detect a modified citrulline of a particular substrate, assuming 

that the PAD, whether virally encoded or basally expressed was active to some degree. 

It is also important to note that sera can contain antibodies to non-target proteins, such 

as against native (or non-modified) peptides which are highly likely to be contained in cell 

lysate and could potentially compete for space on the ELISA plate (231-236). Snir and 

colleagues noticed that 13% of RA patients and 5% of control sera reacted positively 

towards a native (unmodified) type-II collagen epitope (231). Although this can partly 
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explain the low signals observed for infected and non-infected cells, further evidence and 

experimentation would need to be conducted to demonstrate that this is indeed the case.  

Besides the comparable absorbance signals seen with RA patient and control 

sera, a potential explanation for the high absorbance signal obtained with HPS and 

commercial CCP, and a low signal for the peptide mixtures, may be attributable to 

differences in reactivity of autoantibodies against cyclic and linear peptides. As 

demonstrated by Schellekens and colleagues using an ELISA assay comparing two 

versions (linear and cyclic) of the same citrullinated peptide derived from filaggrin, patient 

sera were more reactive towards the cyclic variant over the linear, as seen by the higher 

optical density values (95,147). Accumulating evidence from other studies reinforced that 

a higher absorbance signal with RA patient sera is seen with cyclic as opposed to linear 

peptides (236,237). There also tends to be a greater proportion of reactivity with patient 

sera to cyclic (68%) citrullinated pro-filaggrin than linear (44%) (236). Thus, the 

conformation of the peptide can have important implications for and influence antibody 

recognition, as evident across a multitude of target antigens and studies (147,236-240). 

Some groups have shown that PADs can auto-citrullinate in a calcium-dependent manner 

and PADs can be recognized by ACPA (209,241-247). Although unsubstantiated and 

entirely speculative given that the current methods cannot conclude if PAD4 was secreted 

from the cells and present in the supernatant, a potential absorbance signal in the ELISA 

could possibly be due to ACPA reacting to PAD4 instead of the other substrates. 

Intriguingly, one group discovered that following the autocitrullination of the PAD4 enzyme 

and incubation with cell lysate containing several cellular targets, there was no detectable 

citrullinated peptides by the AMC antibody (209). The researchers described this 
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phenomenon as citrullination-induced inactivation of PAD4 (209). In contrast, other 

studies have suggested that autocitrullination of PAD4 does not inhibit its activity (241). 

There is no evidence from the findings presented in this thesis that PAD4 activity may 

have been altered as a result of autocitrullination. 

4.3 The ‘true’ meaning of statistical significance and experimental design 

limitations. 

This thesis presents qualitative data supported by quantitative measurements and 

corresponding statistical tests. As outlined in the results of Project 2, many of the analyses 

conducted, found statistically significant differences in one or more of the experimental 

groups as compared to the negative controls. For instance, the 10% dilution supernatant, 

had a higher absorbance value than the no dilution (100%) sample and was significantly 

different (p<0.05) than the negative control (Table 34 and Figure 16B). However, these 

findings must be interpreted carefully as the significant result lacks logical coherence in 

the context of this study and its aims. Further, the reported measurements were in 

technical repeats (duplicates or triplicates). With duplicates, there was no way to assess 

if the data measurement passed normality (small ‘n’), especially with the Shapiro-Wilk 

test. With such a small sample size, the challenge becomes having enough statistical 

power to detect a real (or meaningful) difference between compared groups, as seen with 

non-parametric testing; or in other words the likelihood of seeing a false positive increases 

(248-250). Thus, it is highly plausible that some of the statistical results obtained with the 

in-house and commercial ELISAs were misleading, especially when assessing their 

scientific relevance, because a small difference between two comparators could become 

statistically significant (248) without being biologically significant. A method to improve 
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confidence in the data, is to have all test samples conducted in triplicates, followed by 

multiple whole experiment repeats. This can present as a challenge, however, given the 

limited space on ELISA plates, reagents available, and total sample collected.  

In addition to the statistical limitations discussed above, there were discernable 

limitations in the experimental design. In Project 1, RA patients and healthy controls were 

recruited, with a final sample size of 17 participants (13 patients and 4 controls). As a pilot 

investigation, there were fewer controls and an overall small sample size, which could 

lead to an underpowered study. Furthermore, during PBMC isolation, the viability of the 

samples sometimes varied, with low viabilities (<75%) impacting the performance of the 

assay owing to red blood cell contamination (251). Since assay repeats were not 

conducted, it could not be determined if the spot counts remained consistent, 

demonstrating reproducibility, or changed drastically for the same subject. Another 

limitation of this project relates to the composition of the participant pool, with more than 

two thirds of the sample comprised of females. As a result, the study may be susceptible 

to sex/gender bias, which may limit its external validity. Even though sex differences in T 

cell responses were not investigated in this paper, it can be a future avenue to explore, 

especially as the prevalence of RA is higher in females (39,40).  

Moreover, in Project 2, specifically for the cell staining experiment, a multi-colour 

procedure was applied involving three different fluorophores, such as, GFP, PE, and 

AF647. As the AF647 conjugated anti-calreticulin antibody directly bound to calreticulin, 

there were instances where a signal was observed across the cell; most clearly seen in 

the negative controls (Figure 10A-B). The challenge posed by this chaperone is that it 

resides in abundance in the ER lumen but can still be found in other cellular 
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compartments, including the cytoplasm, nucleus, and vesicles (252). Therefore, targeting 

calreticulin led to widespread fluorescence signals that may not have always 

corresponded to labelling the structures of the ER. Another obstacle was being able to 

differentiate the level of media and cellular auto-fluorescence from that of the extrinsic 

fluorophores used during staining. Intracellular molecules, such as flavins in the 

mitochondria, and fluorescent tags like GFP, can both be excited with similar wavelengths 

near 490 nm and emit around 510 nm (253-256). By having overlapping absorption and 

emission spectra, it was critical comparing infected to control cells to assess background 

noise. It has been reported that certain fixatives, including paraformaldehyde, can 

increase auto-fluorescence (256,257), which could have also had a negative impact on 

the signal-to-noise ratio observed here. Although, GFP reporters, and aldehyde fixatives 

are commonly used for immunocytochemistry and immunofluorescence procedures, 

cellular auto-fluorescence can nonetheless present challenges impeding with target 

detection. Besides potential confounding of the signal, a very large MOI was required for 

infecting >50% of cells, which consumed reagents quickly, raising practicality concerns 

(258). Also, with repetitive experimentation and freeze-thaw cycles there was loss of 

vector activity, as supported by the literature and fewer fluorescent cells spotted with 

microscopy (data not shown) (259-261). AAVs have variable transduction efficiencies 

based on the tissues being infected. In a previous in vitro investigation, 46% of HEPG2 

and 76% of HEK-293 cells were GFP-positive two days post-infection with AAV6 (124). 

Although comparable transduction rates were attained and reported in this thesis using 

the same cell types, it is important to note that the researchers had a 96-hour shorter 

incubation, and while expression levels are expected to increase over time, this may 
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indicate that the virus used in this project performed relatively poorly (142). In fact, the 

AAV6-V2 construct seemed to perform no different than untransduced cells, despite 

containing a WPRE element meant to increase transgene expression, as determined by 

western blot (Figure 11). 

In relation to the activity assays, it was apparent that the use of patient and control 

sera was not specific enough to demonstrate the presence of citrullinated protein. By 

using an antibody either specifically meant to detect citrulline residues (e.g., AMC 

antibody) or against a particular autoantigen, such as one well-established as a PAD4 

substrate (e.g., an anti-histone citrulline antibody) could circumvent the issue. In addition, 

adding ionomycin and calcium to induce PAD4-mediated citrullination intracellularly was 

not effective. An alternative approach, based on the experimental evidence synthesized 

in the literature, would be to collect the cell lysate containing PAD, and then co-incubate 

the enzyme and a substrate for 2-4 hours at 37oC. A similar experiment was conducted 

but the findings were not reported in the Results section of this thesis. In brief, the 

experiment involved a commercial mouse PAD4 (1 μg/mL) incubated with human 

fibrinogen (1 mg/mL) for 60 minutes at 37oC in citrullination buffer (100 mM Tris-HCl, 10 

mM CaCl2, 1 mM dithiothreitol, pH 7.5) (262), to assess the compatibility of the literature-

supported experimental design combined with the in-house ELISA. It was found that the 

in-house ELISA was better suited for detecting CCP as opposed to linear peptides or 

whole proteins, as mentioned previously. The issue with whole proteins is that orientation 

and presentation of the epitope for linking with its target antibody may not always occur. 

Also, given the scope of this study, and in line with the arguments made above, it was 
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concluded that the patient and control sera were not an appropriate detection antibody, 

and an alternative should be explored.  

5.0 Conclusion and Future Directions 

This thesis presents and discusses the findings of two parallel investigations linked 

by the concept of PAD-mediated citrullination of peptides commonly implicated in RA. 

Despite limited success with glutamine serving as a surrogate for citrulline, it was clear 

that certain modified peptides were able to elicit positive T cell responses ex vivo as 

detected using the ELISPOT assay (Project 1). Though few responses were synonymous 

between the citrulline-glutamine pairs among RA patients and a healthy control, none 

were greater than the average spot count observed for the native/un-modified 

counterpart. As a result, the strategy, to substitute glutamine for citrulline as there are no 

naturally occurring codons for the latter, employed in the pilot investigation of co-culturing 

PBMCs with select peptides was concluded as unsuitable for targeting autoreactive T 

cells. Given the complexity of the disease however, another major player, which was not 

the focus of this paper, are the ACPA-producing B cells. As these immune cells can 

produce ACPA antibodies, which have been shown to exacerbate disease 

symptoms/severity, a potential therapeutic angle can involve neutralizing these 

autoantibodies to lay the foundation for a distinct inhibitor-based immunotherapy. 

Although not reported here, the preliminary findings seem promising. Further testing is 

required in vitro before shifting towards a preclinical inflammatory-arthritis disease model.  

In the latter portion of this thesis (Project 2), there was evidence demonstrating 

AAV6-mediated production of PAD4 with AAV6-V1 (GFP-PAD fusion) but not AAV6-V2 

(WPRE), as seen with the data from the EVOS and confocal microscope, along with flow 
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cytometry and western blots. Microscopic images and flow cytometry confirmed GFP 

signalling, and data from the western blots displayed two signals: basal PAD4 (~75 kDa) 

and the GFP-PAD4 chimeric protein (~100 kDa). However, the in-house and commercial 

ELISAs were unable to demonstrate consistent PAD4 activity above background levels 

even with ionomycin and calcium supplementation. Given the design of the ELISAs, the 

detection and citrullination of the three AAV-encoded native peptides could not be 

determined. Cumulatively, these results suggest that some of the recombinant AAV was 

able to produce some of the disease-associated targets, such as the PAD4 enzyme, 

though there were concerns surrounding if the detection systems were appropriate for 

achieving the stated research goals. For instance, high titre ACPA patient sera may be a 

more sensitive approach, but it lacks specificity, especially towards detecting the virally 

encoded peptides or other intracellular PAD4-substrates (e.g., histones). Further, many 

of the cited studies have shown that vector-encoded PADs can citrullinate proteins 

extracellularly when co-incubated in citrullination buffer (calcium-rich), while the assays 

reported in this paper primarily focused on the PAD’s ability to citrullinate intracellularly. 

Thus, it may seem logical to first demonstrate the enzyme is expressed and functional in 

cell lysate incubated with a native peptide before assessing if it also citrullinates 

substrates intracellularly. Then a specific antibody towards the modified form of the 

incubated peptide can be used to confirm enzymatic activity. Since only transduction 

experiments were conducted, it would be interesting to compare transgene expression by 

transfecting with DNA plasmids. In conclusion, glutamine and citrulline did not show 

consistent positive T cell responses, and the AAV6 infection of human and mouse cells 

validated PAD4 production but not function.  
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6.0 Figures and Tables 

Figure 1. Arginine is converted into citrulline by a calcium (Ca2+)-dependent, 
peptidyl-arginine deiminase (PAD) enzyme. The positively charged arginine (‘R’) 
residue is hydrolyzed by water (H2O), not shown, replacing the amino (-NH2) functional 
group with a keto (=O) group (bolded in red). The end products are a neutral citrulline 
residue and an ammonium cation (NH4

+; not shown). This figure was Created with 
BioRender.com. 
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Figure 2. In an inflammatory-arthritic context, antigen (neoepitope) presentation by 
dendritic cells leads to autoreactive T cell activation. In healthy individuals (A), the 
presentation of a native/unmodified peptide by MHC class II (or HLA-DR) molecules does 
not lead to T cell activation. The unmodified substrate contains arginine, a positively 
charged residue, which does not interact favourably with the shared epitope (SE) motif in 
HLA-DR molecules. Following citrullination by a peptidyl-arginine deiminase enzyme, the 
arginine is replaced by a neutral citrulline, and the SE+ HLA-DR molecules show 
enhanced affinity to bind citrullinated epitopes (B), as seen in rheumatoid arthritis 
patients. The illustrations on the left in the panel figure, provide a broadened view of the 
interaction between antigen-presenting cells and an antigen-specific T cell, while the 
images on the right, are focused on showcasing the native and citrullinated (or glutamine-
substituted – for project 1) epitopes binding with the SE+ HLA-DR groove. This figure was 
Created with BioRender.com. 
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Figure 3. Glutamine and citrulline residues share a similar terminal amide (-C(=O)-
NH2) functional group and a net neutral charge at physiologic pH. This figure was 
Created with BioRender.com. 
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(A) AAV6-V1 cartoon construct. 
 

 
 
 
 
(A) AAV6-V1 plasmid map. 

 
 
 
 
(B) AAV6-V2 cartoon construct. 
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(B) AAV6-V2 plasmid map. 
 

 
 
 
 
Figure 4. An overview of the two adeno-associated virus serotype 6 (AAV6) 
constructs developed; a cartoon depiction of the construct illustrated the key 
features of the vector, was followed by the plasmid map (SnapGene Viewer). In (A), 
the AAV6-V1 (vector 1) consisted of a green fluorescent protein (GFP) fused to the PAD4 
enzyme by a GGSG flexible linker, which was followed by a downstream KDEL sequence 
for endoplasmic reticulum retention of the fusion protein, and three native/un-modified 
peptides implicated in rheumatoid arthritis, including vimentin (RAVR-42), aggrecan core 
(RAAR-54), and alpha-enolase (RAAER-93). In (B), the AAV6-V2 consisted of the PAD4 
enzyme alone, not tagged with a fluorescent marker, followed by the same KDEL 
sequence as in AAV6-V1 and the three native/unmodified peptides. The AAV6-V2 
construct replaced the GFP with a downstream WPRE (Woodchuck Hepatitis Virus 
Posttranscriptional Regulatory Element) sequence to enhance transgene expression. 
Both vectors were flanked by inverted terminal repeats (ITRs), and included a CASI 
promoter, a Kozak sequence, and a signal peptide (from the human growth hormone).  
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Figure 5. Flow Cytometry Gating Strategy. To confirm transduction of cells by way of 
detecting GFP expression, the following three step gating strategy was applied. First, side 
scatter-area (SSC-A) was compared against forward scatter-area (FSC-A) to detect the 
live cells in the sample. As SSC-A provides insight into the granularity of cells and FSC-
A into cell size, live cells were farther along both axes. Second, FSC-A was compared 
against forward scatter-width (FSC-W) to remove any doublets. Then, using GFP 
fluorescence minus one (FMO), a sample of untransduced cells (negative control) was 
used to set the fluorescence gating boundary. Thus, when SSC-A was assessed 
alongside GFP, all cells successfully transduced with the virus and expressing GFP, were 
located within the fluorescence gate/area. The multiplicity of infection (MOI) was 5000 for 
transduced cells, and the gating strategy is shown for both HEPG2 and HEK-293 cells. 
This figure was provided by Dr. Tom Mu. 



M.Sc. Thesis – D. Malhotra; McMaster University – Medical Sciences 

 95 

Table 1. Sample Characteristics (n=17), combined for RA patients (n=13) and 
healthy controls (n=4).  

Age, mean (SD) 
              Patients 
              Healthy Controls 

54.35 (14.87) 
               55.85 (12.86) 
               49.50 (21.83) 

Biological Sex (%) 
              Male 
              Female 

 
5/17 (29.41%) 

12/17 (70.59%) 

Race (%) 
              White 
              Other 

 
13/17 (76.47%) 

4/17 (23.53%) 

CRP (%) 
              High (≥10 mg/L) 
              Low (<10 mg/L) 

 
3/16 (18.75%) 

13/16 (81.25%) 

ACPA Status (%) 
              Positive (>20 U) 
                          Weak Positive (20-39 U) 
                          Positive (40-59 U) 
                          Strong Positive (≥60 U) 
              Negative (<20 U) 

 
11/15 (73.33%) 

0/15 (0.00%) 
1/15 (6.67%) 

10/15 (66.67%) 
4/15 (26.67%) 

RF (%)  
              High/Positive (≥20 U/mL) 
              Low/Negative (<20 U/mL) 

 
9/15 (60.00%) 
6/15 (40.00%) 

CRP = c-reactive protein; ACPA = anti-citrullinated protein antibodies; RF = Rheumatoid 
Factor; mg/L = milligrams per liter; U = units; U/mL = units per milliliter. The serologic 
status (i.e., CRP, ACPA, RF) for two controls was unknown. 
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Table 2. An overview of the five peptides selected for assessing T cell responses.  

Protein Peptide 
Name* 

Abbreviated 
Form 

Region Sequence 

𝜷-fibrinogen RAFR-23 R23 or Nat23 69-83 GGYRARPAKAAATQK 

RAFC-23 Cit23 or Cit23 GGYRA{CIT}PAKAAATQK 

RAFQ-23 Q23 or Glut23 GGYRAQPAKAAATQK 

RAFR-28 R28 or Nat28 430-444 GGWWYNRCHAANPNG 

RAFC-28 Cit28 or Cit28 GGWWYN{CIT}CHAANPNG 

RAFQ-28 Q28 or Glut28 GGWWYNQCHAANPNG 

Aggrecan 
core 

RAAR-54 R54 or Nat54 477-491 GVVFHYRPGPTRYSL 

RAAC-54 Cit54 or Cit54 GVVFHY{CIT}PGPT{CIT}YSL 

RAAQ-54 Q54 or Glut54 GVVFHYQPGPTQYSL 

Anti-
thrombin III 

RAATR-69 R69 or Nat69 79-93 RVWELSKANSRFATT 

RAATC-69 Cit69 or Cit69 {CIT}VWELSKANS{CIT}FATT 

RAATQ-69 Q69 or Glut69 QVWELSKANSQFATT 

RAATR-76 R76 or Nat76 289-303 KFRYRRVAEGTQVLE 

RAATC-76 Cit76 or Cit76 KFRY{CIT}{CIT}VAEGTQVLE 

RAATQ-76 Q76 or Glut76 KFRYQQVAEGTQVLE 

The residue(s) modified among the peptides were bolded and underlined. *Decoding the 
Peptide Name: RA at the beginning stands for Rheumatoid Arthritis, which is followed by 
the specific protein (𝛽-fibrinogen= F; Aggrecan Core= A; Anti-thrombin= AT), and the last 
letter corresponds to the configuration of the peptide (native=R; citrulline=C; 
glutamine=Q). 
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Figure 6. T cell responses of RA patients RA1 and RA8 demonstrated an equivalent 
immune response. For each participant, a corresponding graph comparing the native, 
citrullinated, and glutamine-substituted peptide responses were shown in the 
Supplementary Figure 1. Here, the graph focused only on the comparison between 
glutamine and its citrulline analogue, excluding T cell responses to the arginine-containing 
peptides. Although RA1 had an equivalent response for peptide 23, and RA8 had an 
equivalent response with peptide 28, these antigen-specific T cell responses were low 
and not significant based on the DFR(eq) test. The red bars were not used for 
significance, but to associate the two peptides with an equivalent magnitude of T cell 
response. Bar graphs plotted the mean with standard deviation for each condition.  
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Table 3. The average IFN-𝜸 secreting cells across each peptide, analyzed in 
triplicates, are displayed for both RA patients (RA1-13) and controls (RA14-17). 
 
This table only presents the magnitude of T cell responses to the ‘Native’ peptide version. 
 

All responses were reported as mean (standard deviation). The short forms of the 
peptides are abbreviated as ‘R’ indicating arginine or native conformation of the peptide, 
followed by the number of the peptide (23, 28, 54, 69, and 76). (-) Ctrl.=negative control 
(cells and media alone); (+) Ctrl.=positive control (anti-CD3). 
 

ID R23 R28 R54 R69 R76 (-) Ctrl. (+) Ctrl. 

RA1 5.67 
(2.89) 

3.67 
(2.08) 

9.00 
(2.65) 

5.67 
(3.51) 

4.67 
(1.15) 

3.67 
(2.34) 

162.00 
(8.89) 

RA2 7.00 
(4.58) 

5.33 
(2.52) 

10.33 
(5.03) 

8.33 
(4.16) 

6.00 
(3.00) 

3.83 
(2.48) 

337.00 
(26.3) 

RA3 45.00 
(5.57) 

54.67 
(7.51) 

47.33 
(13.20) 

54.33 
(12.66) 

54.00 
(6.56) 

43.33 
(5.16) 

598.00 
(26.6) 

RA4 1.00 
(1.00) 

0.67 
(0.58) 

1.67 
(1.53) 

2.00 
(1.00) 

1.333 
(0.58) 

0.8333 
(1.33) 

177.70 
(24.95) 

RA5 0.00 
(0.00) 

1.67 
(0.58) 

4.00 
(1.73) 

1.33 
(0.58) 

1.33 
(1.53) 

1.17 
(0.75) 

524.00 
(25.71) 

RA6 1.67 
(2.08) 

1.00 
(1.00) 

4.33 
(5.774) 

0.33 
(0.58) 

1.33 
(0.58) 

0.50 
(0.55) 

577.70 
(31.07) 

RA7 0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

217.00 
(17.09) 

RA8 0.33 
(0.58) 

0.33 
(0.58) 

1.13 
(0.58) 

0.00 
(0.00) 

0.00 
(0.00) 

0.67 
(1.21) 

480.70 
(50.20) 

RA9 0.33 
(0.58) 

0.00 
(0.00) 

0.33 
(0.58) 

0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

413.30 
(40.10) 

RA10 0.33 
(0.58) 

0.33 
(0.58) 

0.00 
(0.00) 

0.00 
(0.00) 

0.67 
(1.15) 

1.33 
(2.81) 

159.00 
(13.23) 

RA11 1.33 
(1.53) 

0.00 
(0.00) 

0.33 
(0.58) 

0.00 
(0.00) 

0.67 
(0.58) 

0.00 
(0.00) 

24.67 
(1.53) 

RA12 0.67 
(1.15) 

2.00 
(1.73) 

2.33 
(0.58) 

0.67 
(1.15) 

2.00 
(1.00) 

1.00 
(1.09) 

393.30 
(24.09) 

RA13 1.00 
(1.00) 

0.00 
(0.00) 

2.00 
(2.00) 

0.33 
(0.58) 

1.33 
(0.58) 

0.83 
(0.98) 

140.70 
(15.31) 

RA14 1.67 
(2.08) 

0.333 
(0.58) 

1.33 
(1.15) 

2.00 
(1.73) 

1.33 
(1.53) 

1.33 
(0.52) 

173.30 
(151.20) 

RA15 1.33 
(1.15) 

1.33 
(1.53) 

1.67 
(0.58) 

3.33 
(1.53) 

1.33 
(0.58) 

1.50 
(1.38) 

41.33 
(7.51) 

RA16 5.00 
(3.46) 

4.00 
(1.73) 

11.33 
(2.31) 

4.00 
(1.73) 

3.00 
(5.20) 

6.00 
(2.28) 

348.00 
(19.29) 

RA17 2.67 
(1.15) 

0.67 
(0.58) 

1.33 
(1.15) 

0.67 
(1.15) 

1.67 
(0.58) 

1.00 
(0.63) 

53.00 
(16.82) 
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This table only presents the magnitude of T cell responses to the ‘Citrulline’ containing 
peptide version.  

All responses were reported as mean (standard deviation). The short forms of the 
peptides are abbreviated as ‘Cit’ indicating the citrulline-containing version of the peptide, 
followed by the number of the peptide (23, 28, 54, 69, and 76). (-) Ctrl.=negative control 
(cells and media alone); (+) Ctrl.=positive control (anti-CD3). 
 
 
 
 

ID Cit23 Cit28 Cit54 Cit69 Cit76 (-) Ctrl. (+) Ctrl. 

RA1 4.67 
(1.53) 

3.67 
(3.05) 

5.00 
(3.00) 

1.67 
(0.58) 

1.67 
(1.53) 

3.67 
(2.34) 

162.00 
(8.89) 

RA2 7.00 
(4.58) 

4.00 
(3.61) 

8.67 
(3.21) 

5.00 
(2.00) 

3.00 
(1.73) 

3.83 
(2.48) 

337.00 
(26.3) 

RA3 61.67 
(2.08) 

49.00 
(4.58) 

68.00 
(17.78) 

32.67 
(2.08) 

27.00 
(5.29) 

43.33 
(5.16) 

598.00 
(26.6) 

RA4 0.67 
(1.15) 

1.33 
(1.53) 

1.67 
(1.53) 

1.00 
(0.00) 

0.67 
(1.15) 

0.83 
(1.33) 

177.70 
(24.95) 

RA5 2.00 
(1.73) 

2.33 
(0.58) 

2.67 
(2.52) 

0.33 
(0.58) 

0.00 
(0.00) 

1.17 
(0.75) 

524.00 
(25.71) 

RA6 0.33 
(0.58) 

2.00 
(2.00) 

1.67 
(1.15) 

2.67 
(3.05) 

0.33 
(0.58) 

0.50 
(0.55) 

577.70 
(31.07) 

RA7 0.00 
(0.00) 

0.00 
(0.00) 

1.67 
(1.15) 

0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

217.00 
(17.09) 

RA8 0.33 
(0.578) 

0.33 
(0.58) 

1.67 
(1.15) 

3.00 
(1.00) 

3.00 
(2.65) 

0.67 
(1.21) 

480.70 
(50.20) 

RA9 0.33 
(0.58) 

0.00 
(0.00) 

0.33 
(0.58) 

0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

413.30 
(40.10) 

RA10 1.00 
(1.73) 

0.00 
(0.00) 

3.67 
(5.51) 

0.00 
(0.00) 

0.00 
(0.00) 

1.33 
(2.81) 

159.00 
(13.23) 

RA11 0.33 
(0.58) 

0.33 
(0.58) 

1.33 
(1.15) 

0.00 
(0.00) 

0.33 
(0.58) 

0.00 
(0.00) 

24.67 
(1.53) 

RA12 0.33 
(0.58) 

0.33 
(0.58) 

7.33 
(2.89) 

2.33 
(0.58) 

3.00 
(1.00) 

1.00 
(1.09) 

393.30 
(24.09) 

RA13 0.33 
(0.58) 

0.67 
(0.58) 

3.00 
(2.00) 

0.00 
(0.00) 

0.33 
(0.58) 

0.83 
(0.98) 

140.70 
(15.31) 

RA14 1.00 
(1.00) 

0.00 
(0.00) 

5.33 
(3.51) 

0.33 
(0.58) 

0.33 
(0.58) 

1.33 
(0.52) 

173.30 
(151.20) 

RA15 1.33 
(1.53) 

1.00 
(0.00) 

3.00 
(2.00) 

1.33 
(1.15) 

2.00 
(0.00) 

1.50 
(1.38) 

41.33 
(7.51) 

RA16 7.67 
(3.51) 

5.00 
(2.65) 

6.00 
(1.00) 

4.67 
(2.52) 

16.33 
(10.21) 

6.00 
(2.28) 

348.00 
(19.29) 

RA17 3.67 
(2.52) 

0.67 
(0.58) 

1.33 
(0.58) 

0.67 
(1.15) 

0.67 
(0.58) 

1.00 
(0.63) 

53.00 
(16.82) 



M.Sc. Thesis – D. Malhotra; McMaster University – Medical Sciences 

 100 

This table only presents the magnitude of T cell responses to the ‘Glutamine’ containing 
peptide version.  

All responses were reported as mean (standard deviation). The short forms of the 
peptides are abbreviated as ‘Q’ indicating the glutamine-containing version of the peptide, 
followed by the number of the peptide (23, 28, 54, 69, and 76). (-) Ctrl.=negative control 
(cells and media alone); (+) Ctrl.=positive control (anti-CD3). 
 
 
 
 

ID Q23 Q28 Q54 Q69 Q76 (-) Ctrl. (+) Ctrl. 

RA1 4.67 
(1.53) 

2.67 
(1.15) 

11.33 
(4.04) 

11.67 
(2.52) 

3.00 
(1.00) 

3.67 
(2.34) 

162.00 
(8.89) 

RA2 4.67 
(3.05) 

4.67 
(4.04) 

71.33 
(26.39) 

25.33 
(5.03) 

8.00 
(2.65) 

3.83 
(2.48) 

337.00 
(26.3) 

RA3 61.33 
(12.06) 

64.67 
(3.21) 

64.67 
(8.50) 

53.00 
(14.73) 

65.33 
(4.93) 

43.33 
(5.16) 

598.00 
(26.6) 

RA4 1.33 
(1.53) 

2.00 
(1.00) 

3.67 
(1.53) 

5.33 
(1.53) 

1.00 
(1.00) 

0.83 
(1.33) 

177.70 
(24.95) 

RA5 2.67 
(0.58) 

0.33 
(0.58) 

2.33 
(0.58) 

3.00 
(2.65) 

1.67 
(0.58) 

1.17 
(0.75) 

524.00 
(25.71) 

RA6 1.00 
(1.00) 

7.33 
(8.39) 

2.33 
(0.58) 

1.67 
(2.08) 

1.67 
(2.08) 

0.50 
(0.55) 

577.70 
(31.07) 

RA7 0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

4.00 
(4.00) 

0.00 
(0.00) 

217.00 
(17.09) 

RA8 1.33 
(1.53) 

0.33 
(0.58) 

3.00 
(1.73) 

5.33 
(0.58) 

0.33 
(0.58) 

0.67 
(1.21) 

480.70 
(50.20) 

RA9 0.00 
(0.00) 

1.00 
(1.73) 

0.67 
(1.15) 

0.33 
(0.58) 

1.33 
(1.53) 

0.00 
(0.00) 

413.30 
(40.10) 

RA10 0.00 
(0.00) 

0.33 
(0.58) 

2.67 
(3.79) 

0.67 
(0.58) 

3.33 
(1.53) 

1.33 
(2.81) 

159.00 
(13.23) 

RA11 0.00 
(0.00) 

0.00 
(0.00) 

0.33 
(0.58) 

0.00 
(0.00) 

1.33 
(2.31) 

0.00 
(0.00) 

24.67 
(1.53) 

RA12 0.00 
(0.00) 

2.33 
(1.53) 

1.00 
(1.00) 

0.33 
(0.58) 

1.67 
(0.58) 

1.00 
(1.09) 

393.30 
(24.09) 

RA13 1.00 
(1.00) 

0.67 
(1.15) 

0.00 
(0.00) 

2.00 
(1.00) 

1.67 
(1.53) 

0.83 
(0.98) 

140.70 
(15.31) 

RA14 1.67 
(0.58) 

1.67 
(0.58) 

1.33 
(0.58) 

3.67 
(1.53) 

2.33 
(1.53) 

1.33 
(0.52) 

173.30 
(151.20) 

RA15 0.33 
(0.58) 

1.00 
(1.00) 

2.00 
(1.00) 

2.00 
(1.00) 

2.33 
(1.53) 

1.50 
(1.38) 

41.33 
(7.51) 

RA16 3.33 
(3.21) 

21.67 
(3.79) 

5.00 
(2.00) 

30.67 
(7.51) 

6.33 
(5.03) 

6.00 
(2.28) 

348.00 
(19.29) 

RA17 2.00 
(1.00) 

1.33 
(1.53) 

1.00 
(1.00) 

2.00 
(1.00) 

1.33 
(2.31) 

1.00 
(0.63) 

53.00 
(16.82) 
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Table 4. Summary of all positive (or significant) T cell responses for both RA 
patients (RA1-13) and controls (RA14-17). 

ID Cit23 Cit28 Cit54 Cit69 Cit76 Q23 Q28 Q54 Q69 Q76 

RA1 - - - - - - - + + - 

RA2 - - - - - - - + + - 

RA3 + - + - - + + + - + 

RA4 - - - - - - - + + - 

RA5 - - - - - - - - - - 

RA6 - - - - - - + - - - 

RA7 - - - - - - - - - - 

RA8 - - - - - - - - + - 

RA9 - - - - - - - - - - 

RA10 - - - - - - - - - - 

RA11 - - - - - - - - - - 

RA12 - - + - - - - - - - 

RA13 - - - - - - - - - - 

RA14 - - + - - - - - + - 

RA15 - - - - - - - - - - 

RA16 - - - - + - + - + - 

RA17 - - - - - - - - - - 

The ‘+’ sign is indicative of a positive/significant immune response based on the DFR(eq) 
statistical tool. Native peptide responses were not shown: only peptide R54 for RA1, RA2, 
RA5, and RA16 was significant.  
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Table 5. A summary for all RA patients (RA1-13) and controls (RA14-17) meeting 
the parameters of the ELISPOT assay. 

ID  
Criterion 1: An 

equivalent 
response 

between the 
same citrulline 
peptide and its 

glutamine-
substituted 

variant. 
 

Met: Yes (Y) or 
No (N) 

 
 
 
 
 
 
 

Peptide Pair 
Identity 

 
Criterion 2: The 

citrulline-
glutamine 

pair(s) have a 
higher T cell 

response than 
their native 
counterpart. 

 
 

Met: Yes (Y) or 
No (N) 

 

 
Criterion 3: A 

positive 
response for 
the citrulline-

glutamine 
peptide pair(s). 

 
 

Met: Yes (Y) or 
No (N) 

RA1 Y Cit23 – Glut23 N N 

RA2 N - N N 

RA3 N - N N 

RA4 N - N N 

RA5 N - N N 

RA6 N - N N 

RA7 N - N N 

RA8 Y Cit28 – Glut28 N (equivalent) N  

RA9 N - N N 

RA10 N - N N 

RA11 N - N N 

RA12 N - N N 

RA13 Y Cit28 – Glut28 N N 

RA14 N - N N 

RA15 Y Cit28 – Glut28 N N 

RA16 N - N N 

RA17 N - N N 

The positive/significant immune response in criterion 3 was based on the results of the 
DFR(eq) statistical test. 
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a: HEPG2 cells untransduced; b: HEPG2 cells 4-days post-transduction; c: HEPG2 cells 
5-days post-transduction; d: HEK-293 cells untransduced; e: HEK-293 cells 4-days 
post-transduction; f: HEK-293 cells 5-days post-transduction. 
 
 

b 

c 

e 

f 

a d 
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B  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HEPG2 cells without AAV AAV transduced HEPG2 cells 

HEK-293 cells without AAV AAV transduced HEK-293 cells 
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C  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Detection of GFP-positive HEPG2 and HEK-293 cells. Both cell lines were 
infected at a single MOI of 5000 and (A) the EVOS microscope images (10x 
magnification) confirmed viral transduction through GFP detection (green spots) over 4 
and 5 days of incubation, as compared to the untransduced cells in image a. (B) Data 
from Flow Cytometry showed that the proportion of GFP+ cells infected with the virus was 
0.27% for HEPG2 and 1.28% for HEK-293 cells. (C) An alternative representation of the 
results from Flow Cytometry compared the percent of GFP+ cells across infected and 
uninfected cells. 
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144 Hours Post-Transduction 
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C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. The proportion of GFP-positive HEPG2 cells increased with a higher 
multiplicity of infection (MOI). In (A), images taken with the EVOS microscope (10x 
magnification) at 48-, 96-, and 144-hours post-transduction demonstrated more 
detectable green-fluorescing cells as the MOI and length of incubation increased. In (B) 
each graph of Flow Cytometry data corresponds to the different MOIs tested and imaged 
in (A). Data from Flow cytometry confirmed expression of the fluorescent protein and 
revealed that about 51% of cells were transduced at an MOI of 160,000. In (C), a dose-
dependent curve was evident for the AAV with increasing MOI that appears to begin 
plateauing near the 160,000 MOI mark. The MOI for each condition analyzed was 
provided directly above the image or the corresponding flow cytometry graph, ranging 
from 0 (no infection) to 160,000.  
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B 
 

 
Figure 9. Assessing PAD4 subcellular location using higher magnifications of the 
EVOS microscope for both HEPG2 and HEK-293 cells 48 hours post-transduction. 
As evident in (A), HEPG2 cells were GFP+ following transduction with AAV6-V1. The 
image on the left was taken at a magnification of 40x, and the image on the right was 50x. 
Despite increasing the magnification, the subcellular location of the GFP-PAD4 fusion 
protein could not be confirmed. In (B), HEK-293 cells were imaged at 40x, and with most 
of the cell fluorescing, it was difficult to conclude intracellular PAD4 localization.  
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Figure 10. HEPG2 and HEPA1-6 cells were transduced with AAV6-V1 for 96 hours 
and imaged using a confocal microscope. Only the data for HEPG2 cells was shown 
here. Each subfigure contained five panels: ALL (which overlayed all the fluorescent 
channels into a single image); GFP (only presented the GFP fluorescence signal); PE 
(displayed only the PE signal); AF647 (displayed calreticulin binding in the ER and some 
other cellular locations); TD (transmitted detector; showed the cells without any 
fluorescent channels active). Although cannot be seen in the images, the scale was 10 
μm. In (A), the negative control or untransduced cells (0 MOI) were stained with multiple 
antibodies including, an unconjugated rabbit anti-PAD4, a biotinylated anti-rabbit 
secondary, followed by a Streptavidin-PE (red) for the biotin secondary antibody, and a 
conjugated AF647 (cyan) anti-calreticulin antibody. These cells were not transduced with 
AAV6-V1, which encoded for the GFP-PAD4 fusion protein. As evident in (A), the GFP 
and PE images in the panel demonstrated a very faint signal owing to background noise 
due to cellular autofluorescence. The AF647 fluorophore demonstrated binding to the 
calreticulin protein and labelling the ER (endoplasmic reticulum). In (B), only the anti-
calreticulin antibody was used for staining on non-infected cells to further confirm 
appropriate ER labelling. The GFP and PE images showed some autofluorescence, but 
the AF647 was able to outline the ER. In (C), virally infected cells at an MOI of 160,000, 
demonstrated a higher GFP and PE signal, as expected, given that both signals were 
targeting the same fusion protein. The lack of overlap between the ER-antibody 
conjugated with AF647 (cyan), and the GFP (green) and PE (red) signal for the fusion 
protein, demonstrated a non-ER distribution of the fusion protein. 
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C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Three independent viral infection experiments confirmed basal PAD4 
expression and production of the GFP-PAD4 fusion from AAV6-V1; no enhanced 
PAD4 expression was evident with AAV6-V2.  In (A), three cell lines, HEPG2, HEK-
293, and HEPA1-6, were transduced with AAV6-V1 or AAV6-V2, with a clear PAD4 
expression band near the 75 kDa molecular weight, evident from virally infected cell lysate 
(lanes 2-4, 6-8, and 10-12, and for uninfected cell lysate (lanes 1, 5, and 9). Wells 
containing lysate from AAV6-V1 infected cells, lanes 2, 4, 6, 8, 10, and 12, demonstrated 
a second band near 100 kDa, indicative of the fusion protein (~76 kDa of the PAD4 + ~27 
kDa of the GFP). In (B) a whole repeat experiment was conducted analogous to (A) and 
confirmed both endogenous PAD4 expression and the production of the fusion protein, 
but almost no difference in band intensity for the AAV6-V2 infected cells (construct 
contains a WPRE sequence) as compared to the controls. In (C) only the HEPA1-6 cells 
were repeated given their prominent signal in the first two infection experiments. A similar 
trend as with the data in subfigures (A) and (B) was also found in (C), with endogenous 
PAD4 expression near the 75 kDa mark and the fusion protein near 100 kDa, which 
demonstrated reproducibility of the findings. 
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Figure 12. Optimizing the in-house ELISA for PAD activity detection and 
determining the optimal concentration of the cyclic citrullinated peptide (CCP) for 
experimentation. In (A) it was evident that with an increasing concentration of the CCP, 
from 2.5 μg/well to 10 μg/well, the absorbance demonstrated a linear correlation with CCP 
amounts. The 95% confidence interval bands were surrounding the line of best fit 
(Slope=0.08497 (95% CI of Slope: [0.06108, 0.1089]). In (B), absorbance signals of CCP 
plated at varying concentrations were compared with both pooled high titre ACPA (anti-
citrullinated protein antibodies) sera (from RA patients), low titre ACPA (from RA patients), 
and pooled sera from healthy controls. The magnitude of the absorbance signal was 
consistently higher with the CCP interrogated with high titre ACPA, reaching signals over 
2.00, but plateauing after 15 μg/well (150 ng/μL) of CCP, which was selected as the 
optimal amount for experimentation given the little change in signal from 15 to 30 μg/well 
of the substrate. While, CCP interrogated with low ACPA sera and pooled control sera 
had absorbances below 0.50. 
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Figure 13. Comparing the amount of citrullinated protein levels between 
untransduced (0 MOI) and transduced (160,000 MOI) HEPG2 and HEK-293 cells 
after 96- and 144-hours post-transduction. For the data presented here, only the high 
titre ACPA Patient sera was used. In (A), the supernatants of HEPG2 and HEK-293 cells 
demonstrated significantly different absorbance levels as compared to the control 
supernatant from untransduced cells. Only the lysate of the experimental condition 
(transduced cells) for HEPG2 was statistically different from the control lysate. In (B), 
supernatant across all four dilutions (No dilution (100%), 50% dilution, 33% dilution, and 
10% dilution) were significantly different than control supernatant from untransduced 
cells. In contrast to the trend observed in (A), in (B), the control lysate had a higher 
absorbance signal than the experimental lysate. The asterisks in the graphs were 
indicative of a significant difference among the two conditions compared: ****p≤0.0001; 
***p≤0.001; **p≤0.01; *p<0.05. ‘ns’ = non-significant (statistically). Bar graphs plotted the 
mean with standard deviation for each condition. 
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Table 6: A summary of the descriptive statistics for HEPG2 cells. 

 Condition Mean (SD) 
Absorbance 

95% CI of Mean 
[lower bound, 
upper bound] 

Supernatant Control 0.157 (0.007) [0.139, 0.176] 

No Dilution (100%) 0.387 (0.019) [0.338, 0.436] 

50% Dilution 0.318 (0.022) [0.262, 0.374] 

33% Dilution 0.292 (0.001) [0.289, 0.294] 

10% Dilution 0.269 (0.017) [0.226, 0.312] 

Lysate Control 0.128 (0.002) [0.123, 0.133] 

Experimental 0.144 (0.006) [0.128, 0.159] 

SD= Standard deviation; CI= confidence interval. 
 
Table 7: A summary of the Dunnett’s multiple comparison post hoc test for 
HEPG2 cells. 

Pairwise 
Comparison 

Mean Difference 
(MD) 

95% CI of MD 
[lower bound, 
upper bound]  

Adjusted p-value 

No dilution (100%) 
versus Control 

-0.229 [-0.267, -0.192] p<0.0001 

50% dilution 
versus Control 

-0.161 [-0.198, -0.124] p<0.0001 

33% dilution 
versus Control 

-0.134 [-0.172, -0.097] p<0.0001 

10% dilution 
versus Control 

-0.112 [-0.149, -0.074] p<0.0001 

CI= confidence interval. 
 
Table 8: A summary of the descriptive statistics for HEK-293 cells. 

 Condition Mean (SD) 
Absorbance 

95% CI of Mean 
[lower bound, 
upper bound] 

Supernatant Control 0.171 (0.003) [0.164, 0.177] 

No Dilution (100%) 0.382 (0.036) [0.291, 0.472] 

50% Dilution 0.296 (0.047) [0.180, 0.412] 

33% Dilution 0.292 (0.023) [0.235, 0.350] 

10% Dilution 0.282 (0.005) [0.271, 0.294] 

Lysate Control 0.146 (0.006) [0.132, 0.160] 

Experimental 0.170 (0.009) [0.148, 0.192] 

SD= Standard deviation; CI= confidence interval. 
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Table 9: A summary of the Dunnett’s multiple comparison post hoc test for HEK-
293 cells. 

Pairwise 
Comparison 

Mean Difference 
(MD) 

95% CI of MD 
[lower bound, 
upper bound]  

Adjusted p-value 

No dilution (100%) 
versus Control 

-0.211 [-0.278, -0.144] p<0.0001 

50% dilution 
versus Control 

-0.126 [-0.193, -0.058] p=0.001 

33% dilution 
versus Control 

-0.122 [-0.189, -0.054] p=0.001 

10% dilution 
versus Control 

-0.112 [-0.179, -0.044] p=0.002 

 CI= confidence interval. 
 
Table 10: A summary of the descriptive statistics for HEPG2 cells.  

 Condition Mean (SD) 
Absorbance 

95% CI of 
Mean 
[lower 
bound, 
upper 
bound] 

Median 
(IQR) 

95% CI of 
Median 
[lower 
bound, 
upper 
bound] 

Supernatant Control 0.081 
(0.005) 

[0.069, 
0.094] 

0.079 
(0.009) 
 

[0.078, 
0.087] 

No Dilution 
(100%) 

0.159 
(0.016) 

[0.120, 
0.198] 

0.161 
(0.031) 

[0.142, 
0.173] 

50% Dilution 0.130 
(0.014) 

[0.096, 
0.164] 

0.135 
(0.026) 

[0.115, 
0.141] 

33% Dilution 0.121 
(0.013) 

[0.089, 
0.154] 

0.120 
(0.026) 

[0.109, 
0.135] 

10% Dilution 0.115 
(0.006) 

[0.101, 
0.130] 

0.112 
(0.010) 

[0.112, 
0.122] 

Lysate Control 0.084 
(0.003) 

[0.053, 
0.116] 

0.084 
(0.005) 

[0.082, 
0.087] 

Experimental 0.067 
(0.000) 

- 0.067 
(0.000) 

- 

SD= Standard deviation; IQR= interquartile range; CI= confidence interval. 
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Table 11: A summary of the Dunn’s multiple comparison post hoc test for HEPG2 
cells.  

Pairwise Comparison Mean Rank Difference  Adjusted p-value 

No dilution (100%) 
versus Control 

12.000 p=0.004 

50% dilution versus 
Control 

7.833 p=0.126 

33% dilution versus 
Control 

5.500 p=0.525 

10% dilution versus 
Control 

4.667 p=0.802 

 
Table 12: A summary of the descriptive statistics for HEK-293 cells. 

 Condition Mean (SD) 
Absorbance 

95% CI of Mean 
[lower bound, 
upper bound] 

Supernatant Control 0.092 (0.005) [0.079, 0.105] 

No Dilution (100%) 0.177 (0.002) [0.170, 0.183] 

50% Dilution 0.143 (0.007); [0.124, 0.161] 

33% Dilution 0.137 (0.011); [0.108, 0.165] 

10% Dilution 0.133 (0.005) [0.120, 0.146] 

Lysate Control 0.106 (0.003) [0.075, 0.138] 

Experimental 0.097 (0.000) - 

Standard Deviation= SD; CI= confidence interval. 
 
Table 13. A summary of the Dunnett’s multiple comparison post hoc test for HEK-
293 cells. 

Pairwise 
Comparison 

Mean Difference 
(MD) 

95% CI of MD 
[lower bound, 
upper bound]  

Adjusted p-value 

No dilution (100%) 
versus Control 

-0.085 [-0.101, -0.068] p<0.0001 

50% dilution 
versus Control 

-0.051 [-0.067, -0.034] p<0.0001 

33% dilution 
versus Control 

-0.045 [-0.061, -0.028] p<0.0001 

10% dilution 
versus Control 

-0.041 [-0.056, -0.024] p=0.0001 

 
 
 



M.Sc. Thesis – D. Malhotra; McMaster University – Medical Sciences 

 124 

Table 14. A summary of the descriptive statistics for HEPG2 cells. 

 Sera Type Condition Median (IQR) 95% CI of Median 
[lower bound, 
upper bound] 

Supernatant HPS Control 0.118 (0.020) [0.114, 0.134] 

No Dilution (100%) 0.202 (0.016) [0.194, 0.210] 

50% Dilution 0.169 (0.010) [0.164, 0.174] 

33% Dilution 0.163 (0.006) [0.160, 0.166] 

10% Dilution 0.163 (0.006) [0.160, 0.166] 

CPS Control 0.039 (0.006) [0.037, 0.043] 

No Dilution (100%) 0.044 (0.001) [0.044, 0.045] 

50% Dilution 0.045 (0.001) [0.045, 0.046] 

33% Dilution 0.050 (0.003) [0.049, 0.052] 

10% Dilution 0.051 (0.002) [0.050, 0.052] 

Media Alone HPS 0.098 (0.063) [0.052, 0.115] 

CPS 0.060 (0.097) [0.040, 0.137] 

IQR= interquartile range; CI= confidence interval; HPS= High titre ACPA sera; CPS= 
Control pooled (ACPA-negative) Sera. 
 
Table 15. A summary of the descriptive statistics for HEK-293 cells. 

 Sera Type Condition Median (IQR) 95% CI of Median 
[lower bound, 
upper bound]  

Supernatant HPS Control 0.126 (0.007) [0.121, 0.128] 

No Dilution (100%) 0.226 (0.009) [0.222, 0.231] 

50% Dilution 0.186 (0.009) [0.182, 0.192] 

33% Dilution 0.183 (0.010) [0.178, 0.188] 

10% Dilution 0.178 (0.003) [0.177, 0.180] 

CPS Control 0.043 (0.009) [0.039, 0.048] 

No Dilution (100%) 0.061 (0.001) [0.061, 0.062] 

50% Dilution 0.075 (0.029) [0.061, 0.090] 

33% Dilution 0.063 (0.004) [0.061, 0.065] 

10% Dilution 0.057 (0.003) [0.056, 0.059] 

Media Alone HPS 0.0985 (0.063) [0.052, 0.115] 

CPS 0.060 (0.097) [0.040, 0.137] 

IQR= interquartile range; CI= confidence interval; HPS= High titre ACPA sera; CPS= 
Control pooled (ACPA-negative) Sera. 
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Table 16: A summary of the Dunn’s multiple comparison post hoc test for HEPG2 
cells.  

Pairwise Comparison Mean Rank Difference  Adjusted p-value 

No dilution (100%) 
versus Control 

9.000 p=0.015 

50% dilution versus 
Control 

6.000 p=0.215 

33% dilution versus 
Control 

4.500 p=0.592 

10% dilution versus 
Control 

4.500 p=0.592 

 
Table 17: A summary of the Dunn’s multiple comparison post hoc test for HEK-293 
cells.  

Pairwise Comparison Mean Rank Difference  Adjusted p-value 

No dilution (100%) 
versus Control 

9.000 p=0.015 

50% dilution versus 
Control 

6.500 p=0.148 

33% dilution versus 
Control 

5.000 p=0.435 

10% dilution versus 
Control 

3.500 p>0.999 
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Figure 14. Comparing the amount of citrullinated protein levels between 
untransduced (0 MOI) and transduced (160,000 MOI) HEPG2 and HEK-293 cells 
after 144-hours post-transduction using high titre ACPA and control sera. In (A) and 
(B) a control serum (CPS) was added as a comparator to high titre ACPA sera (HPS). For 
both HEPG2 and HEK-293 cells, only the concentrated supernatant [No Dilution (100%)] 
was significantly different from control supernatant. All other pairwise comparisons were 
non-significant. As an assay control, the media alone condition was used to analyze 
background absorbance levels. It was evident that the samples interrogated with HPS 
likely had a lower signal-to-noise ratio given the high background absorbance from the 
media alone. The asterisks in the graphs were indicative of a significant difference among 
the two conditions compared: ****p≤0.0001; ***p≤0.001; **p≤0.01; *p<0.05. ‘ns’ = non-
significant (statistically). Bar graphs plotted the median and interquartile range for each 
condition. 
 



M.Sc. Thesis – D. Malhotra; McMaster University – Medical Sciences 

 127 

Table 18. A summary of the descriptive statistics for HEPG2 cells (condition: no 
ionomycin and no calcium). 

 Sera Type Condition Median (IQR) 95% CI of Median 
[lower bound, 
upper bound] 

Supernatant HPS Control 0.100 (0.013) [0.094, 0.107] 

No Dilution (100%) 0.197 (0.015) [0.190, 0.205] 

50% Dilution 0.144 (0.022) [0.133, 0.155] 

33% Dilution 0.135 (0.008) [0.131, 0.139] 

10% Dilution 0.140 (0.011) [0.135, 0.146] 

CPS Control 0.033 (0.000) - 

No Dilution (100%) 0.055 (0.000) - 

50% Dilution 0.043 (0.011) [0.038, 0.049] 

33% Dilution 0.046 (0.010) [0.041, 0.051] 

10% Dilution 0.048 (0.003) [0.047, 0.050] 

Lysate HPS Control 0.093 (0.011) [0.088, 0.099] 

Experimental 0.102 (0.022) [0.091, 0.113] 

Peptide 
Mixtures 

HPS Pooled Nat. 0.029 (0.002) [0.028, 0.030] 

CPS 0.046 (0.008) [0.042, 0.050] 

HPS Pooled Cit. 0.023 (0.002) [0.022, 0.024] 

CPS 0.037 (0.004) [0.035, 0.039] 

IQR= interquartile range; CI= confidence interval; HPS= High titre ACPA sera; CPS= 
Control pooled (ACPA-negative) Sera; Pooled Nat.= Native (unmodified) peptides; 
Pooled Cit.= Citrullinated (modified) peptides. 
 
Table 19. A summary of the descriptive statistics for HEK-293 cells (condition: no 
ionomycin and no calcium). 

 Sera Type Condition Median (IQR) 95% CI of Median 
[lower bound, 
upper bound] 

Supernatant HPS Control 0.100 (0.014) [0.094, 0.107] 

No Dilution (100%) 0.176 (0.002) [0.175, 0.177] 

50% Dilution 0.139 (0.005) [0.137, 0.142] 

33% Dilution 0.134 (0.002) [0.133, 0.135] 

10% Dilution 0.132 (0.001) [0.132, 0.133] 

CPS Control 0.036 (0.000) [0.032, 0.041] 

No Dilution (100%) 0.045 (0.008) [0.041, 0.049] 

50% Dilution 0.037 (0.008) [0.033, 0.041] 

33% Dilution 0.048 (0.000) [0.048, 0.048] 

10% Dilution 0.047 (0.003) [0.046, 0.049] 

Lysate HPS Control 0.072 (0.010) [0.067, 0.077] 

Experimental 0.124 (0.00) [0.124, 0.124] 

HPS Pooled Nat. 0.029 (0.002) [0.028, 0.030] 
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Peptide 
Mixtures 

CPS 0.046 (0.008) [0.042, 0.050] 

HPS Pooled Cit. 0.023 (0.002) [0.022, 0.024] 

CPS 0.037 (0.004) [0.035, 0.039] 

IQR= interquartile range; CI= confidence interval; HPS= High titre ACPA sera; CPS= 
Control pooled (ACPA-negative) Sera; Pooled Nat.= Native (unmodified) peptides; 
Pooled Cit.= Citrullinated (modified) peptides. 
 
Table 20. A summary of the descriptive statistics for HEPG2 cells (condition: 
ionomycin and no calcium). 

 Sera Type Condition Median (IQR) 95% CI of Median 
[lower bound, 
upper bound] 

Supernatant HPS Control 0.098 (0.000) [0.098, 0.098] 

No Dilution (100%) 0.172 (0.009) [0.1680, 0.177] 

50% Dilution 0.140 (0.015) [0.1330, 0.148] 

33% Dilution 0.129 (0.013) [0.1230, 0.136] 

10% Dilution 0.127 (0.001) [0.1270, 0.128] 

CPS Control 0.039 (0.001) [0.039, 0.040] 

No Dilution (100%) 0.044 (0.007) [0.041, 0.048] 

50% Dilution 0.055 (0.006) [0.052, 0.058] 

33% Dilution 0.052 (0.003) [0.051, 0.054] 

10% Dilution 0.052 (0.003) [0.051, 0.054] 

Lysate HPS Control 0.104 (0.001) [0.104, 0.105] 

Experimental 0.101 (0.000) [0.101, 0.101] 

Peptide 
Mixtures 

HPS Pooled Nat. 0.029 (0.002) [0.028, 0.030] 

CPS 0.046 (0.008) [0.042, 0.050] 

HPS Pooled Cit. 0.023 (0.002) [0.022, 0.024] 

CPS 0.037 (0.004) [0.035, 0.039] 

IQR= interquartile range; CI= confidence interval; HPS= High titre ACPA sera; CPS= 
Control pooled (ACPA-negative) Sera; Pooled Nat.= Native (unmodified) peptides; 
Pooled Cit.= Citrullinated (modified) peptides. 
 
 
Table 21. A summary of the descriptive statistics for HEK-293 cells (condition: 
ionomycin and no calcium). 

 Sera Type Condition Median (IQR) 95% CI of Median 
[lower bound, 
upper bound] 

Supernatant HPS Control 0.095 (0.002) [0.094, 0.096] 

No Dilution (100%) 0.142 (0.001) [0.142, 0.143] 

50% Dilution 0.143 (0.010) [0.138, 0.148] 

33% Dilution 0.124 (0.001) [0.124, 0.125] 

10% Dilution 0.125 (0.003) [0.124, 0.127] 
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CPS Control 0.045 (0.000) [0.045, 0.045] 

No Dilution (100%) 0.048 (0.004) [0.046, 0.050] 

50% Dilution 0.043 (0.003) [0.042, 0.045] 

33% Dilution 0.044 (0.001) [0.044, 0.045] 

10% Dilution 0.049 (0.004) [0.047, 0.051] 

Lysate HPS Control 0.085 (0.000) [0.085, 0.085] 

Experimental 0.099 (0.008) [0.095, 0.103] 

Peptide 
Mixtures 

HPS Pooled Nat. 0.029 (0.002) [0.028, 0.030] 

CPS 0.046 (0.008) [0.042, 0.050] 

HPS Pooled Cit. 0.023 (0.002) [0.022, 0.024] 

CPS 0.037 (0.004) [0.035, 0.039] 

IQR= interquartile range; CI= confidence interval; HPS= High titre ACPA sera; CPS= 
Control pooled (ACPA-negative) Sera; Pooled Nat.= Native (unmodified) peptides; 
Pooled Cit.= Citrullinated (modified) peptides. 
 
Table 22. A summary of the descriptive statistics for HEPG2 cells (condition: 
ionomycin and calcium). 

 Sera Type Condition Median (IQR) 95% CI of Median 
[lower bound, 
upper bound]  

Supernatant HPS Control 0.102 (0.000) [0.102, 0.102] 

No Dilution (100%) 0.185 (0.012) [0.179, 0.191] 

50% Dilution 0.153 (0.019) [0.143, 0.162] 

33% Dilution 0.139 (0.004) [0.137, 0.141] 

10% Dilution 0.142 (0.009) [0.137, 0.146] 

CPS Control 0.042 (0.003) [0.040, 0.043] 

No Dilution (100%) 0.058 (0.011) [0.052, 0.063] 

50% Dilution 0.053 (0.001) [0.052, 0.053] 

33% Dilution 0.054 (0.010) [0.049, 0.059] 

10% Dilution 0.060 (0.006) [0.057, 0.063] 

Lysate HPS Control 0.115 (0.013) [0.108, 0.121] 

Experimental 0.105 (0.008) [0.101, 0.109] 

Peptide 
Mixtures 

HPS Pooled Nat. 0.029 (0.002) [0.028, 0.030] 

CPS 0.046 (0.008) [0.042, 0.050] 

HPS Pooled Cit. 0.023 (0.002) [0.022, 0.024] 

CPS 0.037 (0.004) [0.035, 0.039] 

IQR= interquartile range; CI= confidence interval; HPS= High titre ACPA sera; CPS= 
Control pooled (ACPA-negative) Sera; Pooled Nat.= Native (unmodified) peptides; 
Pooled Cit.= Citrullinated (modified) peptides. 
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Table 23. A summary of the descriptive statistics for HEK-293 cells (condition: 
ionomycin and calcium). 

 Sera Type Condition Median (IQR) 95% CI of Median 
[lower bound, 
upper bound] 

Supernatant HPS Control 0.103 (0.009) [0.098, 0.107] 

No Dilution (100%) 0.166 (0.003) [0.164, 0.167] 

50% Dilution 0.124 (0.000) [0.124, 0.124] 

33% Dilution 0.130 (0.007) [0.126, 0.133] 

10% Dilution 0.139 (0.006) [0.136, 0.142] 

CPS Control 0.041 (0.003) [0.039, 0.042] 

No Dilution (100%) 0.044 (0.006) [0.041, 0.047] 

50% Dilution 0.051 (0.003) [0.049, 0.052] 

33% Dilution 0.0485 (0.004) [0.046, 0.050] 

10% Dilution 0.052 (0.005) [0.049, 0.054] 

Lysate HPS Control 0.121 (0.004). [0.119, 0.123] 

Experimental 0.113 (0.001) [0.112, 0.113] 

Peptide 
Mixtures 

HPS Pooled Nat. 0.029 (0.002) [0.028, 0.030] 

CPS 0.046 (0.008) [0.042, 0.050] 

HPS Pooled Cit. 0.023 (0.002) [0.022, 0.024] 

CPS 0.037 (0.004) [0.035, 0.039] 

IQR= interquartile range; CI= confidence interval; HPS= High titre ACPA sera; CPS= 
Control pooled (ACPA-negative) Sera; Pooled Nat.= Native (unmodified) peptides; 
Pooled Cit.= Citrullinated (modified) peptides. 
 
Table 24. A summary of the Dunn’s multiple comparison post hoc test for HEK-293 
cells (condition: no ionomycin and no calcium).  

Pairwise Comparison Mean Rank Difference  Adjusted p-value 

No dilution (100%) 
versus Control 

8.000 p=0.032 

50% dilution versus 
Control 

6.000 p=0.187 

33% dilution versus 
Control 

3.750 p=0.856 

10% dilution versus 
Control 

2.250 p>0.999 
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Table 25. A summary of the Dunn’s multiple comparison post hoc test for HEPG2 
cells (condition: ionomycin and no calcium).  

Pairwise Comparison Mean Rank Difference  Adjusted p-value 

No dilution (100%) 
versus Control 

8.000 p=0.032 

50% dilution versus 
Control 

5.500 p=0.274 

33% dilution versus 
Control 

3.500 p=0.985 

10% dilution versus 
Control 

3.000 p>0.999 

 
Table 26. A summary of the Dunn’s multiple comparison post hoc test for HEK-293 
cells (condition: ionomycin and no calcium). 

Pairwise Comparison Mean Rank Difference  Adjusted p-value 

No dilution (100%) 
versus Control 

7.000 p=0.082 

50% dilution versus 
Control 

7.000 p=0.082 

33% dilution versus 
Control 

2.750 p>0.999 

10% dilution versus 
Control 

3.250 p>0.999 

 
Table 27. A summary of the Dunn’s multiple comparison post hoc test for HEPG2 
cells (condition: ionomycin and calcium).  

Pairwise Comparison Mean Rank Difference  Adjusted p-value 

No dilution (100%) 
versus Control 

8.000 p=0.031 

50% dilution versus 
Control 

5.500 p=0.270 

33% dilution versus 
Control 

2.750 p>0.999 

10% dilution versus 
Control 

3.750 p=0.851 
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Table 28. A summary of the Dunn’s multiple comparison post hoc test for HEK-
293 cells (condition: ionomycin and calcium). 

Pairwise Comparison Mean Rank Difference  Adjusted p-value 

No dilution (100%) 
versus Control 

8.000 p=0.032 

50% dilution versus 
Control 

2.000 p>0.999 

33% dilution versus 
Control 

4.000 p=0.740 

10% dilution versus 
Control 

6.000 p=0.187 
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Figure 15. Comparing the amount of citrullinated protein levels between 
untransduced (0 MOI) and transduced (160,000 MOI) cells, after supplementation 
with ionomycin (1 𝛍M) and calcium (2 mM) for 2 hours (activation phase), using 
high titre ACPA (HPS) and control sera (CPS). All cells were cultured for 144 hours 
before the activation phased was employed. In (A), HEPG2 and HEK-293 cells were not 
supplemented with ionomycin and calcium, and the absorbance signals between 
transduced cell lysate and supernatant (experimental conditions) were compared with 
respective controls. Absorbance signals for the pooled mixture of native (nat.) and 
citrullinated (cit.) peptides were compared across CPS and HPS categories. Interestingly, 
signals were higher with samples interrogated with CPS than HPS. In (B), cells received 
ionomycin but no calcium for the 2-hour incubation and there appeared to be no change 
in signal as compared to when ionomycin and calcium were absent (A). In (C), ionomycin 
and calcium were added to cells prior to lysate and supernatant collection. Again, there 
seemed to be no change in absorbance levels overall even in the presence of both 
reagents. However, the trend of decreasing in absorbance signal with higher dilutions of 
the cell supernatant was not apparent for HEK-293; and the signal for untransduced cell 
lysate was higher than transduced cell lysate interrogated with HPS. Bar graphs plotted 
the median and interquartile range for each condition. 
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Table 29: A summary of the descriptive statistics for HEPG2 cells (condition: no 
ionomycin and no calcium).  

 Sera Type Condition Median (IQR) 95% CI of Median 
[lower bound, 
upper bound] 

Supernatant HPS Control 0.261 (0.015) [0.254, 0.269] 

No Dilution (100%) 0.324 (0.008) [0.320, 0.328] 

50% Dilution 0.322 (0.006) [0.319, 0.325] 

33% Dilution 0.314 (0.005) [0.312, 0.317] 

10% Dilution 0.327 (0.001) [0.327, 0.328] 

CPS Control 0.112 (0.003) [0.108, 0.117] 

No Dilution (100%) 0.113 (0.000) [0.113, 0.113] 

50% Dilution 0.132 (0.001) [0.132, 0.133] 

33% Dilution 0.148 (0.011) [0.143, 0.154] 

10% Dilution 0.183 (0.004) [0.181, 0.185] 

Lysate HPS Control 0.228 (0.013) [0.222, 0.235] 

No Dilution (100%) 0.185 (0.000) [0.185, 0.185] 

50% Dilution 0.172 (0.009) [0.168, 0.177] 

33% Dilution 0.172 (0.003) [0.171, 0.174] 

Peptide 
Mixtures 

HPS Pooled Nat. 0.111 (0.010) [0.106, 0.116] 

CPS 0.147 (0.008) [0.143, 0.151] 

HPS Pooled Cit. 0.113 (0.044) [0.091, 0.135] 

CPS 0.108 (0.027) [0.095, 0.122] 

IQR= interquartile range; CI= confidence interval; HPS= High titre ACPA sera; CPS= 
Control pooled (ACPA-negative) Sera; Pooled Nat.= Native (unmodified) peptides; 
Pooled Cit.= Citrullinated (modified) peptides. 
 
Table 30: A summary of the descriptive statistics for HEK-293 cells (condition: no 
ionomycin and no calcium).  

 Sera Type Condition Median (IQR) 95% CI of 
Median [lower 
bound, upper 
bound] 

Supernatant HPS Control 0.262 (0.005) [0.260, 0.265] 

No Dilution (100%) 0.298 (0.000) [0.298, 0.298] 

50% Dilution 0.306 (0.019) [0.297, 0.316] 

33% Dilution 0.301 (0.018) [0.292, 0.310] 

10% Dilution 0.345 (0.107) [0.292, 0.399] 

CPS Control 0.114 (0.001) [0.114, 0.115] 

No Dilution (100%) 0.109 (0.000) [0.109, 0.109] 

50% Dilution 0.128 (0.003) [0.126, 0.130] 

33% Dilution 0.153 (0.012) [0.147, 0.159] 

10% Dilution 0.145 (0.013) [0.139, 0.152] 
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Lysate HPS Control 0.216 (0.016) [0.208, 0.224] 

No Dilution (100%) 0.235 (0.017) [0.227, 0.244] 

50% Dilution 0.244 (0.004) [0.242, 0.246] 

33% Dilution 0.230 (0.016) [0.222, 0.238] 

Peptide 
Mixtures 

HPS Pooled Nat. 0.111 (0.010) [0.106, 0.116] 

CPS 0.147 (0.008) [0.143, 0.151] 

HPS Pooled Cit. 0.113 (0.044) [0.091, 0.135] 

CPS 0.108 (0.027) [0.095, 0.122] 

IQR= interquartile range; CI= confidence interval; HPS= High titre ACPA sera; CPS= 
Control pooled (ACPA-negative) Sera; Pooled Nat.= Native (unmodified) peptides; 
Pooled Cit.= Citrullinated (modified) peptides. 
 
Table 31: A summary of the descriptive statistics for mouse splenocytes (condition: 
no ionomycin and no calcium). 

 Sera Type Condition Median (IQR) 95% CI of Median 
[lower bound, 
upper bound] 

Supernatant HPS Control 0.279 (0.015) [0.272, 0.287] 

No Dilution (100%) 0.331 (0.004) [0.329, 0.333] 

50% Dilution 0.315 (0.007) [0.312, 0.319] 

33% Dilution 0.309 (0.001) [0.309, 0.310] 

10% Dilution 0.307 (0.015) [0.300, 0.315] 

CPS Control 0.116 (0.004) [0.114, 0.118] 

No Dilution (100%) 0.124 (0.008) [0.120, 0.128] 

50% Dilution 0.130 (0.025) [0.118, 0.143] 

33% Dilution 0.121 (0.001) [0.121, 0.122] 

10% Dilution 0.139 (0.008) [0.135, 0.143] 

Lysate HPS Control 0.292 (0.004) [0.290, 0.294] 

No Dilution (100%) 0.285 (0.004) [0.283, 0.287] 

50% Dilution 0.308 (0.009) [0.304, 0.313] 

33% Dilution 0.313 (0.002) [0.312, 0.314] 

Peptide 
Mixtures 

HPS Pooled Nat. 0.111 (0.010) [0.106, 0.116] 

CPS 0.147 (0.008) [0.143, 0.151] 

HPS Pooled Cit. 0.113 (0.044) [0.091, 0.135] 

CPS 0.108 (0.027) [0.095, 0.122] 

IQR= interquartile range; CI= confidence interval; HPS= High titre ACPA sera; CPS= 
Control pooled (ACPA-negative) Sera; Pooled Nat.= Native (unmodified) peptides; 
Pooled Cit.= Citrullinated (modified) peptides. 
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Table 32: A summary of the descriptive statistics for HEPG2 (condition: ionomycin 
and calcium). 

 Sera Type Condition Median (IQR) 95% CI of Median 
[lower bound, 
upper bound] 

Supernatant HPS Control 0.181 (0.001) [0.181, 0.182] 

No Dilution (100%) 0.198 (0.005) [0.196, 0.201] 

50% Dilution 0.233 (0.031) [0.218, 0.249] 

33% Dilution 0.247 (0.016) [0.239, 0.255] 

10% Dilution 0.230 (0.007) [0.227, 0.234] 

CPS Control 0.252 (0.005) [0.250, 0.255] 

No Dilution (100%) 0.234 (0.013) [0.228, 0.241] 

50% Dilution 0.288 (0.005) [0.286, 0.291] 

33% Dilution 0.121 (0.001) [0.121, 0.122] 

10% Dilution 0.183 (0.011) [0.178, 0.189] 

Lysate HPS Control 0.253 (0.023) [0.242, 0.265] 

No Dilution (100%) 0.276 (0.003) [0.275, 0.278] 

50% Dilution 0.264 (0.003) [0.263, 0.266] 

33% Dilution 0.260 (0.007) [0.257, 0.264] 

Peptide 
Mixtures 

HPS Pooled Nat. 0.111 (0.010) [0.106, 0.116] 

CPS 0.147 (0.008) [0.143, 0.151] 

HPS Pooled Cit. 0.113 (0.044) [0.091, 0.135] 

CPS 0.108 (0.027) [0.095, 0.122] 

IQR= interquartile range; CI= confidence interval; HPS= High titre ACPA sera; CPS= 
Control pooled (ACPA-negative) Sera; Pooled Nat.= Native (unmodified) peptides; 
Pooled Cit.= Citrullinated (modified) peptides. 
 
Table 33: A summary of the descriptive statistics for HEK-293 (condition: 
ionomycin and calcium).  

 Sera Type Condition Median (IQR) 95% CI of Median 
[lower bound, 
upper bound] 

Supernatant HPS Control 0.201 (0.039) [0.182, 0.221] 

No Dilution (100%) 0.202 (0.002) [0.201, 0.203] 

50% Dilution 0.269 (0.003) [0.254, 0.284] 

33% Dilution 0.269 (0.007) [0.266, 0.273] 

10% Dilution 0.270 (0.047) [0.247, 0.294] 

CPS Control 0.276 (0.048) [0.252, 0.300] 

No Dilution (100%) 0.233 (0.043) [0.212, 0.255] 

50% Dilution 0.326 (0.005) [0.324, 0.329] 

33% Dilution 0.285 (0.032) [0.269, 0.301] 

10% Dilution 0.216 (0.005) [0.214, 0.219] 
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Lysate HPS Control 0.254 (0.007) [0.251, 0.258] 

No Dilution (100%) 0.262 (0.007) [0.259, 0.266] 

50% Dilution 0.263 (0.003) [0.262, 0.265] 

33% Dilution 0.267 (0.005) [0.265, 0.270] 

Peptide 
Mixtures 

HPS Pooled Nat. 0.111 (0.010) [0.106, 0.116] 

CPS 0.147 (0.008) [0.143, 0.151] 

HPS Pooled Cit. 0.113 (0.044) [0.091, 0.135] 

CPS 0.108 (0.027) [0.095, 0.122] 

IQR= interquartile range; CI= confidence interval; HPS= High titre ACPA sera; CPS= 
Control pooled (ACPA-negative) Sera; Pooled Nat.= Native (unmodified) peptides; 
Pooled Cit.= Citrullinated (modified) peptides 
 
Table 34: A summary of the descriptive statistics for mouse splenocytes (condition: 
ionomycin and calcium).  

 Sera Type Condition Median (IQR) 95% CI of 
Median [lower 
bound, upper 
bound] 

Supernatant HPS Control 0.233 (0.002) [0.232, 0.234] 

No Dilution (100%) 0.278 (0.008) [0.274, 0.282] 

50% Dilution 0.272 (0.004) [0.270, 0.274] 

33% Dilution 0.268 (0.005) [0.266, 0.271] 

10% Dilution 0.286 (0.001) [0.286, 0.287] 

CPS Control 0.110 (0.011) [0.105, 0.116] 

No Dilution (100%) 0.111 (0.010) [0.106, 0.116] 

50% Dilution 0.137 (0.036) [0.119, 0.155] 

33% Dilution 0.118 (0.001) [0.118, 0.119] 

10% Dilution 0.173 (0.011) [0.168, 0.179] 

Lysate HPS Control 0.261 (0.003) [0.260, 0.263] 

No Dilution (100%) 0.247 (0.016) [0.239, 0.255] 

50% Dilution 0.251 (0.003) [0.250, 0.253] 

33% Dilution 0.268 (0.004) [0.266, 0.270] 

Peptide 
Mixtures 

HPS Pooled Nat. 0.111 (0.010) [0.106, 0.116] 

CPS 0.147 (0.008) [0.143, 0.151] 

HPS Pooled Cit. 0.113 (0.044) [0.091, 0.135] 

CPS 0.108 (0.027) [0.095, 0.122] 

IQR= interquartile range; CI= confidence interval; HPS= High titre ACPA sera; CPS= 
Control pooled (ACPA-negative) Sera; Pooled Nat.= Native (unmodified) peptides; 
Pooled Cit.= Citrullinated (modified) peptides. 
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Table 35: A summary of the Dunn’s multiple comparison post hoc test for HEPG2 
cells (condition: no ionomycin and no calcium). 

Pairwise Comparison Mean Rank Difference  Adjusted p-value 

No dilution (100%) 
versus Control 

6.250 p=0.153 

50% dilution versus 
Control 

4.500 p=0.544 

33% dilution versus 
Control 

2.000 p>0.999 

10% dilution versus 
Control 

7.250 p=0.065 

 
Table 36: A summary of the Dunn’s multiple comparison post hoc test for HEPG2 
cells (condition: ionomycin and calcium).  

Pairwise Comparison Mean Rank Difference  Adjusted p-value 

No dilution (100%) 
versus Control 

2.000 p>0.999 

50% dilution versus 
Control 

5.500 p=0.277 

33% dilution versus 
Control 

7.500 p=0.053 

10% dilution versus 
Control 

5.000 p=0.395 

 
Table 37: A summary of the Dunn’s multiple comparison post hoc test for mouse 
splenocytes cells (condition: no ionomycin and no calcium).  

Pairwise Comparison Mean Rank Difference  Adjusted p-value 

No dilution (100%) 
versus Control 

8.000 p=0.033 

50% dilution versus 
Control 

5.500 p=0.277 

33% dilution versus 
Control 

3.000 p>0.999 

10% dilution versus 
Control 

3.500 p=0.991 
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Table 38: A summary of the Dunn’s multiple comparison post hoc test for mouse 
splenocytes cells (condition: ionomycin and calcium).  

Pairwise Comparison Mean Rank Difference  Adjusted p-value 

No dilution (100%) 
versus Control 

5.750 p=0.227 

50% dilution versus 
Control 

3.750 p=0.856 

33% dilution versus 
Control 

2.500 p>0.999 

10% dilution versus 
Control 

8.000 p=0.032 

 
 
Table 39: A summary of the Dunn’s multiple comparison post hoc test for mouse 
splenocytes cells (condition: no ionomycin and no calcium).  

Pairwise Comparison 
(lysate) 

Mean Rank Difference  Adjusted p-value 

No dilution (100%) 
versus Control 

2.000 p>0.999 

50% dilution versus 
Control 

-2.500 p=0.922 

33% dilution versus 
Control 

-3.500 p=0.459 
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Figure 16. Comparing the amount of citrullinated protein levels between 
untransduced (0 MOI) and transduced (160,000 MOI) cells, after supplementation 
with ionomycin (1 𝛍M) and calcium (10 mM) for 4 hours (activation phase), using 
high titre ACPA (HPS) and control sera (CPS). All cells were cultured for 96 hours 
before the activation phase was employed. In (A), HEPG2 and HEK-293 cells, and mouse 
splenocytes, not supplemented with ionomycin and calcium, demonstrated higher 
absorbance signals with transduced cell supernatant when comparing all four 
experimental dilutions with control supernatant, as well as when comparing the HPS 
interrogated experimental sample with its CPS counterpart. Only mouse splenocytes 
demonstrated a decreasing signal in absorbance (for supernatant) at higher dilutions. 
This trend was inconsistent for HEPG2 and reversed for HEK-293. Similarly, transduced 
cell lysate compared to control, did not demonstrate a clear relationship, as the control 
had a higher signal than some of the experimental samples, most prominent for HEPG2. 
Similarly, with the same peptide mixtures, as depicted in Figure 17, it was clear that the 
HPS did not detect the citrullinated peptides. In (B), cells received ionomycin and calcium 
for the 4-hour incubation, but it was evident that the samples interrogated with HPS did 
not differ from their CPS counterpart. In fact, it was unusual to see that that the samples 
detected with CPS had a higher absorbance signal. All three cell lines demonstrated that 
the addition of ionomycin and calcium did not appear to increase PAD activity and 
subsequent protein citrullination. Bar graphs plotted the median and interquartile range 
for each condition. 
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Figure 17. Examining the functionality of the in-house ELISA assay by using a 
commercial CCP peptide and comparing the amount of citrullinated protein levels 
between untransduced (0 MOI) and transduced (160,000 MOI) cells, after 
supplementation with ionomycin (1 𝛍M) and calcium (2 mM) for 2 hours (activation 
phase), using high titre ACPA (HPS) and control sera (CPS). All cells were cultured 
for 96 hours before the activation phase was employed. An assay control, the CCP 
peptide, was used to assess whether the assay was unable to detect any citrullinated 
protein. 15 μg/well of CCP was coated, and the absorbance signal with HPS was over 
2.00 units higher than the experimental conditions (transduced cell lysate and 
supernatant). Interestingly, CCP interrogated with CPS (Mdn A= 0.190) also had an 
absorbance that was comparable with the supernatant and lysate experimental samples, 
demonstrating that with or without ionomycin and calcium supplementation, the AAV-
encoded PAD was non-functional and there was little to no citrullinated protein in the 
experimental samples over the controls. Bar graphs plotted the median and interquartile 
range for each condition. 
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Table 40: A summary of the descriptive statistics for HEPG2 (condition: no 
ionomycin and no calcium). 

 Sera Type Condition Median (IQR) 95% CI of Median 
[lower bound, 
upper bound] 

Supernatant HPS Control 0.146 (0.006) [0.142, 0.148] 

No Dilution (100%) 0.206 (0.009) [0.198, 0.207] 

50% Dilution 0.193 (0.020) [0.189, 0.209] 

33% Dilution 0.182 (0.041) [0.166, 0.207] 

10% Dilution 0.182 (0.039) [0.181, 0.220] 

CPS Control 0.076 (0.007) [0.070, 0.077] 

No Dilution (100%) 0.076 (0.002) [0.075, 0.077] 

50% Dilution 0.076 (0.014) [0.072, 0.086] 

33% Dilution 0.086 (0.027) [0.066, 0.093] 

10% Dilution 0.112 (0.042) [0.073, 0.115] 

Lysate HPS Control 0.109 (0.002) [0.108, 0.110] 

Experimental 0.087 (0.012) [0.081, 0.093] 

CPS Control 0.185 (0.011) [0.179, 0.190] 

Experimental 0.198 (0.008) [0.194, 0.202] 

Assay 
control  

HPS CCP 2.506 (0.091) [2.432, 2.523] 

CPS CCP 0.190 (0.012) [0.178, 0.190] 

IQR= interquartile range; CI= confidence interval; HPS= High titre ACPA sera; CPS= 
Control pooled (ACPA-negative) Sera. 
 
Table 41: A summary of the descriptive statistics for HEPG2 (condition: ionomycin 
and calcium).  

 Sera Type Condition Median (IQR) 95% CI of Median 
[lower bound, 
upper bound] 

Supernatant HPS No Dilution (100%) 0.106 (0.004) [0.104, 0.108] 

50% Dilution 0.114 (0.007) [0.112, 0.119] 

33% Dilution 0.111 (0.005) [0.107, 0.112] 

10% Dilution 0.129 (0.002) [0.127, 0.129] 

CPS No Dilution (100%) 0.150 (0.017) [0.147, 0.164] 

50% Dilution 0.167 (0.012) [0.159, 0.171] 

33% Dilution 0.170 (0.013) [0.160, 0.173] 

10% Dilution 0.141 (0.005) [0.141, 0.146] 

Lysate HPS Experimental 0.114 (0.002) [0.113, 0.115] 

CPS Experimental 0.162 (0.003) [0.160, 0.163] 

Assay 
control  

HPS CCP 2.506 (0.091) [2.432, 2.523] 

CPS CCP 0.190 (0.012) [0.178, 0.190] 

IQR= interquartile range; CI= confidence interval; HPS= High titre ACPA sera; CPS= 
Control pooled (ACPA-negative) Sera. 
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Table 42: A summary of the descriptive statistics for HEK-293 (condition: no 
ionomycin and no calcium).  

 Sera Type Condition Median (IQR) 95% CI of Median 
[lower bound, 
upper bound] 

Supernatant HPS Control 0.146 (0.001) [0.146, 0.147] 

No Dilution (100%) 0.191 (0.003) [0.191, 0.194] 

50% Dilution 0.176 (0.017) [0.172, 0.189] 

33% Dilution 0.171 (0.007) [0.169, 0.176] 

10% Dilution 0.193 (0.004) [0.192, 0.196] 

CPS Control 0.076 (0.004) [0.072, 0.076] 

No Dilution (100%) 0.080 (0.002) [0.079, 0.081] 

50% Dilution 0.085 (0.022) [0.064, 0.086] 

33% Dilution 0.078 (0.018) [0.066, 0.083] 

10% Dilution 0.128 (0.045) [0.086, 0.131] 

Lysate HPS Control 0.127 (0.014) [0.120, 0.134] 

Experimental 0.132 (0.006) [0.129, 0.135] 

CPS Control 0.217 (0.016) [0.209, 0.225] 

Experimental 0.217 (0.020) [0.207, 0.227] 

Assay 
control  

HPS CCP 2.506 (0.091) [2.432, 2.523] 

CPS CCP 0.190 (0.012) [0.178, 0.190] 

IQR= interquartile range; CI= confidence interval; HPS= High titre ACPA sera; CPS= 
Control pooled (ACPA-negative) Sera. 
 
Table 43: A summary of the descriptive statistics for HEK-293 (condition: 
ionomycin and calcium). 

 Sera Type Condition Median (IQR) 95% CI of Median 
[lower bound, 
upper bound] 

Supernatant HPS No Dilution (100%) 0.145 (0.009) [0.141 to 0.150] 

50% Dilution 0.134 (0.006) [0.133 to 0.139] 

33% Dilution 0.144 (0.008) [0.141 to 0.149] 

10% Dilution 0.163 (0.004) [0.160 to 0.164] 

CPS No Dilution (100%) 0.164 (0.012) [0.159 to 0.171] 

50% Dilution 0.192 (0.006) [0.189 to 0.195] 

33% Dilution 0.186 (0.006) [0.184 to 0.190] 

10% Dilution 0.196 (0.015) [0.195 to 0.210] 

Lysate HPS Experimental 0.121 (0.004) [0.119, 0.123] 

CPS Experimental 0.118 (0.002) [0.117, 0.119] 

Assay 
control  

HPS CCP 2.506 (0.091) [2.432, 2.523] 

CPS CCP 0.190 (0.012) [0.178, 0.190] 

IQR= interquartile range; CI= confidence interval; HPS= High titre ACPA sera; CPS= 
Control pooled (ACPA-negative) Sera. 
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Table 44. A summary of the Dunn’s multiple comparison post hoc test for HEK-293 
cells (condition: no ionomycin and no calcium). 

Pairwise Comparison Mean Rank Difference  Adjusted p-value 

No dilution (100%) 
versus Control 

9.667 p=0.032 

50% dilution versus 
Control 

5.500 p=0.524 

33% dilution versus 
Control 

3.500 p>0.999 

10% dilution versus 
Control 

11.330 p=0.007 

 
Table 45. A summary of the descriptive statistics for the initial run of the PAD 
Activity Detection Kit. 

 Condition Mean (SD) 95% CI of Mean 
[lower bound, upper 
bound] 

Hepg2 Control (untransduced) 1.370 (0.209) [0.851 to 1.890] 

Experimental (No Ion/Ca2+) 1.423 (0.227) [0.859 to 1.987] 

Experimental (Ion/Ca2+) 1.499 (0.324) [0.694 to 2.304] 

Hek-293 Control (untransduced) 1.525 (0.355) [0.644, 2.406] 

Experimental (no Ion/Ca2+) 1.445 (0.299) [0.701, 2.188] 

Experimental (Ion/Ca2+) 1.442 (0.322) [0.643, 2.241] 

Controls Negative 1.438 (0.298) [0.698, 2.178] 

Positive 1.647 (0.278) [0.955, 2.339] 

SD= Standard deviation; CI= confidence interval; Ion/Ca2+= ionomycin/calcium; Negative 
Control= Assay buffer alone; Positive Control= PAD cocktail; Experimental= transduced 
cell lysate following infection of cells at an MOI of 160,000 with AAV6-V1 only. 
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Table 46. A summary of the descriptive statistics for the repeat run of the PAD 
Activity Detection Kit, comparing lysate from AAV6-V1 and AAV6-V2 infected cells. 

 Condition Mean (SD) 95% CI of Mean 
[lower bound, 
upper bound] 

Hepg2 Control 0.214 (0.034) [0.129, 0.300] 

AAV6-V1 (A) 0.214 (0.010) [0.189, 0.240] 

AAV6-V1 (B) 0.224 (0.006) [0.210, 0.238] 

AAV6-V2 0.210 (0.026) [0.146, 0.273] 

Hek-293 Control 0.209 (0.006) [0.193, 0.224] 

AAV6-V1 (A) 0.214 (0.025) [0.152, 0.276] 

AAV6-V1 (B) 0.203 (0.019) [0.155, 0.251] 

AAV6-V2 0.230 (0.029) [0.158, 0.302] 

Hepa1-6 Control 0.208 (0.011) [0.181, 0.234] 

AAV6-V1 (A) 0.227 (0.031) [0.150, 0.304] 

AAV6-V1 (B) 0.224 (0.040) [0.124, 0.323] 

AAV6-V2 0.246 (0.047) [0.128, 0.364] 

Controls Mouse PAD4 1.292 (0.109) [1.021, 1.553] 

Negative 0.212 (0.017) [0.168, 0.255] 

Positive 1.461 (0.145) [1.100, 1.822] 

SD= Standard deviation; CI= confidence interval; Negative Control= Assay buffer alone; 
Positive Control= PAD cocktail; (A) refers to an older batch of AAV6-V1; (B) refers to a 
newer batch of AAV6-V1. 
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Figure 18. Assessing AAV-encoded PAD4 activity using a commercial kit. Both cell 
lines were cultured for 96 hours before lysates were collected. In (A), HEPG2 and HEK-
293 cells were transduced (MOI 160,000) with only AAV6-V1 (GFP-PAD4 fusion protein) 
and lysate was collected for examining PAD functionality. Regardless of ionomycin and 
calcium supplementation, transduced cell lysate did not differ statistically from 
untransduced cell lysate. Assay negative control had an extremely high absorbance, 
comparable with the positive control, demonstrating the assay may not be working 
appropriately. In (B), the positive controls of the assay were assessed separately to 
understand the poor working conditions as seen in (A). The absorbance levels of the PAD 
cocktail (positive control) was compared across three concentrations 2 ng/μL, 3 ng/μL, 
and 4 ng/μL. The higher absorbance from the negative control led to the conclusion that 
there was a faulty reagent, which was replaced immediately. The asterisks in the graphs 
were indicative of a significant difference among the two conditions compared: 
****p≤0.0001; ***p≤0.001; **p≤0.01; *p<0.05. ‘ns’ = non-significant (statistically). Bar 
graphs plotted the mean and standard deviation for each condition. 
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Figure 19. Assessing AAV-encoded PAD4 activity using a commercial kit and 
comparing both constructs: AAV6-V1 and AAV6-V2. All three cell lines (HEPG2, HEK-
293, and HEPA1-6) were cultured for 96 hours before cells were harvested for the 
commercial kit. Cells were transduced with AAV6-V1 or AAV6-V2 at an MOI of 160,000. 
Evidently, the lysates from infected cells did not demonstrate any difference in activity 
relative to the controls, suggesting a non-functional AAV-encoded PAD enzyme. 
Interestingly, both M-PAD (commercial murine PAD4) and the assay positive control (PAD 
cocktail) at concentrations of 2 ng/μL, had significantly different absorbance levels than 
the negative control. Both AAV6-V1 (A) and AAV6-V1 (B) refer to the same constructs, 
just two different batches. The asterisks in the graphs are indicative of a significant 
difference among the two conditions compared: ****p≤0.0001; ***p≤0.001; **p≤0.01; 
*p<0.05. ‘ns’ = non-significant (statistically). Bar graphs plotted the mean and standard 
deviation for each condition.  
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Figure 20. A predicted 3-D model of the GFP-PAD4 fusion protein produced by the 
AAV6-V1 construct. In (A), an overview of the chimeric protein is provided, highlighting 
the PAD4 protein (red arrow) and the GFP (green arrow). In (B), the GGSG flexible linker 
(red box) to demonstrate the spatial proximity of the two components of the chimeric 
protein, and the closeness of GFP to the C-terminal (active site) domain of PAD4. Given 
the large size of GFP, and the flexibility of the linker, it is highly likely that the orientation 
of GFP can interfere with PAD functionality. In (C), the nuclear localization signal of the 
murine PAD4 (red box) along with GFP (green box) is shown. It was hypothesized that 
the GFP could interfere with PAD4 localization to the nucleus as well, especially at the 
level of interaction of the chimeric protein with the nuclear pore complex for translocation. 
In (D), the position of the GFP (green box) in relation to the KDEL sequence (red box) for 
ER retention is assessed and it was also thought that the lack of retention of the fusion 
protein to the ER and a widespread cytoplasmic distribution observed from confocal 
microscopy, could be due to potential hindering of the sequence by the bulky GFP tag. 
(E) a breakdown of the prediction software’s model confidence using the pLDDT 
(predicted local distance difference test), with higher scores indicating greater accuracy 
in predicting the positions of residues. 

C D 
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Supplementary Figure 1. T cell responses for all RA patients (n=13; RA1-13) and 
Healthy Controls (n=4; RA14-17). The frequency of antigen-specific T cell responses 
were assessed against three versions of five peptides which included 𝛽-fibrinogen 
(peptides 23 and 28), aggrecan core (peptide 54), and anti-thrombin III (peptides 69 and 
76). Bar graphs plotted the mean with standard deviation for each condition. Negative 
control=cells and media alone; Positive control=anti-CD3. 
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