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ABSTRACT 

Climate change is significantly impacting terrestrial ecosystems through altered environmental 

conditions and enhanced atmospheric CO2, which has increased by about 40% since the pre-

industrial period. Forests, covering about 30% of global land, play a vital role in the carbon (C) 

cycle by sequestering 15.6 billion tonnes of CO2 equivalent annually from the atmosphere. The 

agricultural sector is also a major contributor to atmospheric CO2, however, it has a net source of 

C and emits 9.3 billion tonnes of CO2 equivalent annually, which is about 11% of global emissions. 

In recent years, advanced remote sensing and eddy covariance (EC) techniques have become vital 

systems for assessing CO2 exchanges and providing real-time monitoring capabilities for both 

forest and agricultural ecosystems. Integration of these techniques would enhance our 

understanding of C exchanges and their major controls in these ecosystems. It will help to explore 

how these ecosystems may be impacted by climate change and natural and human-induced 

disturbance events and develop climate-tailored forest and agricultural management practices to 

increase their carbon sequestration capabilities.  

 

In this study, high-resolution remote sensing and EC flux measurements made in an agricultural 

field in Southern Ontario, Canada were used to determine C sequestration or loss capabilities of 

different crops in the Great Lakes region and explore how they may be impacted by extreme 

weather events. This study also explored the best forest management practices that can be adopted 

to enhance carbon sequestration in the temperature conifer plantation forests in the agricultural 

landscape of Southern Ontario. Furthermore, it determined how the native (deciduous) forest 

ecosystems of the Great Lakes region may be impacted by natural disturbances (i.e. insect 

infestation). These agricultural and forest sites are part of the Turkey Point Environmental 
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Observatory (TPEO) and associated with the Global Water Futures (GWF) program, US-Canada 

Global Centre for Climate Change and Transboundary Waters, Ameriflux and the global Fluxnet.  

 

In the agricultural site, EC fluxes were continuously measured from 2020 to 2023, when the site 

was planted with corn, sweet potato and tobacco crops. Net ecosystem production (NEP) of the 

agricultural site was 485 (corn), 249 (corn), -120 (sweet potato) and 7 (tobacco) g C m⁻² yr⁻¹, 

respectively from 2020 to 2023. The reduction in NEP for corn in 2021 can be attributed to both 

the drought conditions in May and August, where precipitation was significantly below the 30-

year normal (38 mm in May and 46 mm in August), causing stress during critical growth periods, 

and the inherent differences in carbon dynamics associated with crop types and their responses to 

climatic extremes. Corresponding annual evapotranspiration (ET) values were 680, 727, 732 and 

715 mm yr-1, which accounted for approximately 60%, 72%, 77% and 73% of the annual total 

precipitation. Study results showed that overall, the site was a net C sink when corn was planted 

in 2020 and 2021, a net source of C when sweet potatoes were planted in 2022 and C neural when 

tobacco was planted in 2023.  The grain yields (GY) were 537, 491, 118 and 124 g C m−2 in 2020, 

2021, 2022 and 2023 resulting in annual net ecosystem carbon balance (NECB) of -52 (corn), -

242 (corn), -238 (Sweet potato) and -117 (tobacco) g C m−2 year−1. 

 

High-resolution Sentinel-2 satellite (10 × 10 m²) and drone-observed remote sensing data along 

with EC fluxes were used to evaluate the effect of five different variable retention harvesting 

(VRH) treatments on the growth and C uptake of a 90-year-old red pine (Pinus resinosa Ait.) 

plantation (1931) forest, in Southern Ontario, Canada. VRH emulates natural post-disturbance 

canopy structures to enhance biodiversity and resilience. Treatments included 33% aggregate 
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(33A), 55% aggregate (55A), 33% dispersed (33D), 55% dispersed (55D), and an unharvested 

control (CN), each replicated four times in 1 ha plots. From 2010 to 2020, mean daily Normalized 

Difference Vegetation Index (NDVI) values ranged from 0.25 to 0.86, with 55D showing the 

highest NDVI values. Satellite-derived annual GPP correlated with observed annual GPP (R² = 

0.88, p = 0.032) in an adjacent white pine plantation forest. These GPP estimates indicated that 

VRH treatment with dispersed residual canopies retaining over half the initial basal area (i.e 55D) 

was the most optimized management strategy that can be deployed for forest growth and C uptake 

to mitigate climate change. Overall, the mean annual GPP for the 20-ha site was 1651 ± 89 g C m–

2 year–1, ranging from 1407 to 1864 g C m–2 year–1.  

 

Finally, high-resolution Sentinel-2 satellite remote sensing and EC observation were employed to 

investigate the impact of 2021 spongy moth (Lymantria dispar) infestation on forest productivity 

and C losses in the deciduous and mixed forests across Southern Ontario. Results showed a 

significant reduction in leaf area index (LAI) and GPP values. Growing season mean LAI values 

for deciduous (mixed) forests across the region were 3.66 (3.18), 2.74 (2.64), and 3.53 (2.94) m² 

m⁻² in 2020, 2021, and 2022, respectively, indicating approximately 24 (14)% reduction in LAI 

compared to pre- and post-infestation years. Similarly, growing season GPP values in deciduous 

(mixed) forests across the region were 1338 (1208), 868 (932), and 1367 (1175) g C m⁻², 

respectively in 2020, 2021, and 2022, showing about 35 (22)% reduction in GPP in 2021 compared 

to pre- and post-infestation years. This infestation-induced reduction in GPP of deciduous and 

mixed forests, when upscaled to the whole study area (178,000 km²), resulted in 21.1 (21.4) Mt of 

C loss compared to 2020 (2022), respectively from Sothern Ontario alone. It shows the large scale 

of C losses caused by 2021 infestation in Canadian Great Lakes region.  
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This dissertation improved our understanding of C exchanges in the forest and agriculture 

ecosystem within the Great Lakes region of North America. The methods developed in this study 

offer valuable tools to assess and quantify C uptake capabilities and natural disturbance impacts 

on the regional C balance of forest ecosystems by integrating field observations, high-resolution 

remote sensing data and models. Study results will also help in developing sustainable forest 

management practices to achieve net-zero C emission goals through nature-based climate change 

solutions. 
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PREFACE  

This doctoral dissertation includes three main chapters that has either been published as a paper in 

peer-reviewed journal or manuscripts that has either been submitted or are ready for submission 

to a journal. These papers or manuscripts used remote sensing data and EC fluxes from the Turkey 

Point Environmental Observatory (TPEO). Although there is some overlap in the information, 

such as the description of study sites and methodology, each chapter has specific objectives 

supporting main study gaol of providing the insight into carbon uptake capabilities and dynamics 

of the agricultural and forest ecosystems of the Great Lakes region. Summary of all four main 

chapters and contributions from the PhD candidate and any collaborators or co-authors are 

summarized in the following section.  

 

Chapter 2  

Title: Carbon, water and energy fluxes in an agricultural field with crop rotations in the Great 

Lakes region 

Authorship: M. Altaf Arain, Nur Hussain, Liam Kreibich, Jason Brodeur and Zoran Nesic 

Status: To be submitted to Agriculture and Forest Meteorology in Fall 2024.  

Candidate’s Contribution: As Principal Investigator (PI) of the project, M Altaf Arain secured 

funding and established this agricultural flux tower site in the summer of 2020. Nur Hussain, PhD 

candidate played a key role in flux and meteorological data collection and data analysis. The 

candidate wrote the first draft of the manuscript. Altaf Arain contributed to fieldwork and solely 

maintained the operation of this flux site during the COVID-19 pandemic. He also offered valuable 

ideas for data analysis and plotting figures and edited several versions of the draft manuscripts. 

Liam Kreibich took over field work responsibilities and helped in data collection in 2023. Jason 
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Brodeur contributed in data analysis and data quality control. Zoran Nesic helped with the 

establishment and operation of flux sites and data quality control.  

 

Chapter 3  

Title: Evaluating the effectiveness of different variable retention harvesting treatments on forest 

carbon uptake using remote sensing. 

Authorship: Nur Hussain, M. Altaf Arain, Shusen Wang, William C. Parker and Ken A. Elliott 

Status: Published. 

Full Reference: Hussain, N., Arain, M. A., Wang, S., Parker, W. C., & Elliott, K. A. (2024). 

Evaluating the effectiveness of different variable retention harvesting treatments on forest carbon 

uptake using remote sensing. Remote Sensing Applications: Society and Environment, 33, 101124. 

Candidate’s Contribution: Nur Hussain, PhD candidate, collected and analyzed remote sensing 

data and wrote first draft of the manuscript. M. Altaf Arain provided valuable ideas for data 

analysis and edited draft manuscripts. William C. Parker, Ken A. Elliott and Shusen Wang 

provided valuable suggestions to enhance the quality of the manuscript and helped in editorial 

work.  

 

Chapter 4 

Title: Assessment of spongy moth infestation impacts on forest productivity and carbon loss using 

the Sentinel-2 satellite remote sensing and eddy covariance flux data. 

Authorship: Nur Hussain, Alemu Gonsamo, Shusen Wang and M. Altaf Arain 
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Status: Published. 

Full Reference: Hussain, N., Gonsamo, A., Wang, S., & Arain, M. A. (2024). Assessment of 

spongy moth infestation impacts on forest productivity and carbon loss using the Sentinel-2 

satellite remote sensing and eddy covariance flux data. Ecological Processes, 13(1), 37. 

Candidate’s Contribution: Nur Hussain, PhD candidate, played a primary role in collecting and 

analyzing remote sensing data and wrote the first draft of the manuscript. Altaf Arain contributed 

in the collection of flux and meteorological data and provided insight in data analysis. He also 

edited draft manuscripts and provided feedback during the writing process. Alemu Gonsamo 

offered valuable suggestions and ideas to enhance the scientific contributions of the manuscript.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 Changing Climate 

In the last few decades, the global climate has changed rapidly. According to the 

Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report, the global 

temperature increased by 0.85 °C between 1880 and 2015. From 1951 to 2015, the rate of 

change was 0.12 °C per decade, which is twice as much as from 1880 to 2015 (IPCC, 2014). 

Recently, North Hampshire has experienced fast warming due to global climate change (IPCC, 

2013). The yearly average temperature in Northern Hampshire increased by almost twice the 

global average temperature increase rate (Vincent et al., 2015). In Canada, the entire country 

has seen an average increase of 1.78°C over the past 65 years, while the southern region of 

Canada has experienced an average warming of 1.68°C. These climate changes are negatively 

impacting ecosystems, especially forests and agriculture. 

 

1.2 Agricultural Ecosystem and Climate Change 

The increase in atmospheric CO2 is a major contributing factor in human-induced climate 

warming (Myhre et al., 2013; Lynch et al., 2021). CO2 levels in the air have increased by about 

40% compared to levels before the industrialization (IPCC, 2013). The agriculture systems 

contribute substantially to this increase in atmospheric CO2, releasing 9.3 billion tonnes of 

carbon dioxide equivalent (CO2eq), constituting roughly 11% of the total annual global CO2 

emissions (Gilbert, 2012; Mbow et al., 2017; Lamb et al., 2021; Lynch et al., 2021). In Canada, 

agriculture significantly contributes to the country's overall CO2 emissions, emitting 

approximately 10% of the total national emissions of 729 Mt CO2eq (Fouli et al., 2021). 
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Although, Canadian agriculture systems have acted both, a C sink and a C source, depending 

on the geographic region and crop type ( Gregorich et al., 2005; Laamrani et al., 2021), they 

have potential for playing an important role in curbing CO2 emissions and serve as substantial 

C reservoirs to mitigate climate change, if adequate climate tailored management practices are 

deployed (Horowitz and Gottlieb, 2010).  

 

1.3 Forest Ecosystem and Climate Change 

Forest ecosystems cover about 30% of the land surface and they play a vital role in the global 

C cycle (Heino et al., 2015; Ontl et al., 2016; Reichstein and Carvalhais, 2019). These 

ecosystems, actively contribute to the global C cycle through photosynthesis and ecosystem 

respiration (FAO, 2010). The balance between these major CO2 exchanges determines whether 

the forest is net C sink or a source and how efficiently photosynthesis is turned into net biomass 

growth and C uptake (DeLucia et al., 2007; Litton et al., 2007). On a larger scale, the increase 

in biomass from photosynthesis is characterize as gross primary production (GPP). Forests 

consistently show high levels of GPP, making them Earth's most substantial C absorbers and 

C reservoirs (Peters et al., 2007; Pan et al., 2011). Forests in North America are expected to 

contribute around 76% to the region's net terrestrial C storage (Hayes et al., 2012). Regarding 

Canada's forest ecosystems, their role in the C cycle varies across different time scales, ranging 

from annual to centennial. Historically, Canada's forests have demonstrated a pattern of C 

absorption, averaging 173 million metric tons of C (MtC) per year over much of the past 

century (Hengeveld et al., 2008), although this rate can be influenced by periodic disturbance 

events such as wildfires or insect infestations. 
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Global climate change poses a major challenge to terrestrial ecosystems (Gabaldón-Leal et al., 

2016; IPCC, 2014). Warming climate have led to significant changes in forest ecosystems 

(Seppälä, 2009). It has contributed to lower growth rates and increased tree mortality due to 

drought, heat, and soil moisture scarcity. These threats may be further intensified by additional 

ecological shifts, such as elevated concentrations of low-altitude ozone, the deposition of 

nitrogenous pollutants, the emergence of exotic pests and pathogens, environmental disruption, 

and heightened disturbances like fires (Keenan, 2015). The continued impacts of climate 

change could significantly contribute to the degradation of forests. Anticipated future changes 

may lead to the relocation of tree species, transformations in ecological regions, alterations in 

terrestrial ecosystem function, and the potential restructuring of ecosystems' productivity 

following disturbances related to ongoing climate change. In Canada, the composition of forest 

cover has undergone rapid changes in recent decades due to both human activities and other 

disruptions, leading to spatial and temporal variations in Canada's forested areas caused by 

anthropogenic activities. 

 

1.4 Climate Change and Extreme Weather Event 

Extreme weather events include unusually high temperatures, heavy rainfall, and prolonged 

and severe droughts. Climate warming can lead to increase in the frequency and intensity of 

extreme weather events such as storms, flooding, droughts, and wildfires, as well as insect 

outbreaks of pests and diseases (IPCC, 2014; Beach et al., 2015). It can also cause major 

changes in the spatial and temporal distribution of precipitation. These changes are likely to 

affect the future productivity of agriculture and forestry (Diffenbaugh et al., 2012). 
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However, extreme weather events are expected to become more severe in the future. They will 

cause forest degradation through multiple way such as increased wildfires and infestations. 

Both of these natural disturbances have significantly impacted C fluxes and C storage in 

Canada's forests in recent years, in particular insect infestations which has impacted large areas 

in the both western (mountain pine beetle) and eastern (Spongy moth) parts of the country 

(Kurz et al., 2002). In eastern Canada, 595 million hectares of potential areas are climatically 

suitable for the future spongy moth outbreak, which may substantially impact terrestrial C 

sequestration (Gray, 2004). However, temporary and unpredictable nature poses natural 

disturbances, particular insect infestation poses challenges for their effective monitoring and 

management (De Beurs & Townsend, 2008).  

 

Research conducted in this PhD dissertation has helped to enhance our understanding of C 

exchange processes in agricultural and forest ecosystems, develop advanced monitoring 

capabilities by integrating micrometeorology and remote sensing techniques and provide an 

assessment of the best forest management practices to enhance growth and C sequestration in 

changing climate.  

 

1.5 Novelty of the Study 

Agriculture, the primary land use in Southern Ontario, plays a crucial role in the national 

economy and is vulnerable to climate extremes (Gabriel et al., 1993; Smith, 2015; Yusa et al., 

2015; Lesk et al., 2016; Zafiriou et al., 2023). The agriculture sector contributed about 15% of 

the national net farm income (Statistics Canada, 2018). Corn is the main crop, grown on an 

average of 887,000 hectares each year (OMAFRA, 2017), which can improve the regional 

ecosystem, aid in climate change mitigation, and contribute to C sequestration. Southern 
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Ontario is an important ecological and economic (both agricultural and industrial) region of 

the country. This PhD study provided valuable insights into C flux dynamics in different crops 

in this region. Continuous monitoring of energy, water, and C fluxes, along with climatic 

variables across various crops, will provide crucial data for formulating strategies to tackle 

climate change through C sequestration in agricultural fields. Additionally, it will offer insights 

into the impacts of extreme weather events on crop ecosystems and food production and food 

security in the Great Lakes region. 

 

In addition, nature-based climate solutions, encompassing enhanced forest C uptake through 

management and conservation, are proposed as cost-effective measures to address climate 

change (Kaarakka et al., 2021; Creutzig et al., 2022; Marvin et al., 2023). In Canada, 66% of 

forests undergo active management, with variable retention harvesting (VRH) being suggested 

as a key approach to manage these forests (Natural Resources Canada (NRC), 2016). VRH, 

originally designed to reduce clearcutting and promote stand regeneration, has been extensively 

studied for its impacts on biodiversity and ecosystem processes. Remote sensing techniques 

provide a valuable opportunity for assessing changes in forest structure and evaluating the 

effectiveness of management practices in enhancing growth and C sequestration. This PhD 

dissertation have provided framework for the integration ground-based flux tower and remote 

sensing techniques to provide an assessment of the best forest management practices to enhance 

growth and C sequestration in changing climate. It also used this framework to provide a 

regional assessment of C losses due to record 2021 Spongy month infestation in southern 

Ontario, providing vital data for C budget assessments for forest managers and policy makers.   
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1.6 Objectives of the study 

Forest and agricultural ecosystems are a major player in the global carbon cycle. They face 

many challenges due to climate change and extreme weather events such as heat, drought, and 

soil moisture scarcity. The primary study objective of this study is to examine the influence of 

climate variability on C exchanges in agricultural and managed forest ecosystems in southern 

Ontario in the Great Lakes region. Specific objectives include: 

 

(1) Continuously measure C fluxes and meteorological variables in an agricultural site in 

Southern Ontario and evaluate how these C exchanges may respond to extreme weather 

conditions such as drought and heat waves. Determine major environmental controls 

and investigate seasonal and annual dynamics of crop productivity, C sequestration and 

water use efficiency. 

 

(2) Evaluate the impact of different forest management regimes or thinning patterns on the 

growth and productivity of a managed forest ecosystem. Explore the effectiveness of 

various forest management treatments such as variable retention harvesting (VRH) in 

enhancing forest C uptake and resilience to extreme weather events and climate change. 

 

(3) Determine seasonal variations and trends in the leaf area index (LAI) using high-

resolution remote sensing data. Also, determine forest photosynthetic uptake and GPP 

using observed eddy covariance flux and remote sensing data and quantify C losses 

across the region because of this widespread and severe spongy moth infestation of 

2021.  
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1.7 Study Sites 

This dissertation involved making flux and meteorological measurements at the Turkey Point 

Environmental Observatory (TPEO), located near the northern shore of Lake Erie in southern 

Ontario, Canada. Eddy covariance (EC) flux measurements of CO2, water vapor, and energy, 

were made at a newly established agricultural flux tower site known as TPAg or CA-TPAg 

(Ameriflux notation) from 2020 to 2023. Similar EC flux, meteorological, and ecological 

measurements were also made in three different ages (84-, 49-, and 21-year old as of 2023) of 

conifer forest since 2002 and a deciduous (>90-year old) forest since 2012. TPEO is one of the 

few sites in Ameriflux and global Fluxnet with long-term (>20 years) flux data availability. 

The addition of the agricultural site at TPAg has expanded the representation of TPEO to all 

major biomes in the Great Lakes region, covering coniferous and deciduous forests, as well as 

agricultural crops. The forest sites are abbreviated as TP02, TP74, TP39, and TPD, referring to 

'Turkey Point' followed by the year of stand establishment (i.e., 2002, 1974, 1939), with TPD 

(Turkey Point Deciduous) as an exception. Turkey Point Observatory is part of the Global 

Water Futures (GWF) program, Ameriflux, global Fluxnet and US-Canada Global Centre for 

Climate Change and Transboundary Waters. In the global Fluxnet archives and literature, the 

Turkey Point Observatory sites are denoted as CA-TP1, CA-TP3, CA-TP4, and CA-TPD for 

the 17-, 45-, 80-year-old pine forests, and >90-year-old deciduous forest, respectively. Detailed 

information on site characteristics, instrumentation, and measurements is provided in the 

individual chapters. 

 

1.8 Overview of Methodology 

Half-hourly measurements of CO2 flux (Fc) and energy fluxes (H, LE, G, and Rn) were 

conducted from June 2020 to December 2022 using an open-path Eddy Covariance (EC) 
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system with a sonic anemometer (model CSAT3, Campbell Scientific Inc.) and an infrared gas 

analyzer (IRGA, model LI-7500, Li-COR Inc.) in the agricultural site. Similar flux data were 

measured int the forest sites using closed-path EC system (comprising Li-7200 or Li-7000 gas 

analyzers and CSAT3 sonic anemometer), since 2023 in conifer forests and since 2012 in 

deciduous forest. Solar radiation, photosynthetically active radiation (PAR), air temperature, 

relative humidity, wind speed and direction, atmospheric pressure, precipitation and soil 

temperature and soil water content at several depths were also measure at all these sites.  

 

To determine environmental controls on daily variation of C fluxes and evapotranspiration 

(ET), the gap-filled and non-gap-filled data were used. EC flux and meteorological data were 

quality controlled by using the Biometeorological Analysis, Collection, and Organizational 

Node (BACON) software developed by our Lab (Brodeur, 2014). The marginal distribution 

sampling (MDS) method by Reichstein et al. (2005) fills gaps in NEE time series using 

covariance with meteorological variables and auto-correlation over time. It averages NEE 

measurements under similar environmental conditions within a set period, expanding the 

search if no suitable data are found. This study modified the method to estimate NEE for all 

half-hour intervals, including those with data, to create a complete time series and evaluate 

gap-filling performance comprehensively. Small gaps in meteorological data within a few 

hours were filled using linear interpolation from the same site. For larger data gaps, missing 

meteorological variables were estimated using backtracking linear regression with data from 

adjacent forest sites, based on information from the nearest flux station located approximately 

700 meters away. 
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The partitioning of net ecosystem exchange (NEE) into respiration (RE) and gross ecosystem 

productivity (GEP) was carried out using the approach described by Peichl et al. (2010). RE 

was estimated as equivalent to NEE during nighttime (PAR < 100 μmol m⁻² s⁻¹). These 

nighttime RE values were used to construct a continuous RE time series based on soil 

temperature at 5 cm (Ts5cm) and soil moisture at 0-30 cm (θ0-30cm), employing temperature 

response parameters (R10 and Q10) to describe the RE-Ts5cm relationship, adjusted by a soil 

moisture function as outlined by Brodeur (2014). 

𝑅𝐸 = 𝑅10 × 𝑄10
(𝑇𝑠5−10)

10 ×
1

[1+exp⁡(𝑎1−𝑎2⁡θ0−30𝑐𝑚)]
      (1.1) 

𝐺𝐸𝑃 =
𝛼𝑅𝐴𝑅𝑑⁡𝐴𝑚𝑎𝑥

𝛼𝑅𝐴𝑅𝑑−⁡𝐴𝑚𝑎𝑥
× 𝑓(𝑇𝑠) × 𝑉𝑃𝐷 × 𝑓(θ0−30cm)    (1.2) 

where, R10 and Q10 are fitted temperature response parameters that characterize the relationship 

between RE and soil temperature (Ts). The function θ0−30cm is a sigmoidal function 

representing the impact of soil moisture at 30 cm depth. The remaining terms account for the 

scaling effects of GEP in relation to Ts, vapor pressure deficit (VPD), and soil moisture at 0-

30 cm (θ0-30cm). 

 

Sentinel-2A and Sentinel-2B (S2), part of the COPERNICUS satellite systems, offer high-

resolution datasets for global terrestrial ecosystem monitoring (Drusch et al., 2012; Löw & 

Koukal, 2020; Li et al., 2022). The Sentinel-2 multispectral instrument (MSI) system provides 

13 spectral bands, including 10 m spatial resolution for visible and near-infrared (NIR) and 20 

m spatial resolution for Short-Wave Infrared (SWIR) spectrum (Drusch et al., 2012; Maselli et 

al., 2020; Sun et al., 2021; Bossung et al., 2022). This study used Sentinel-2 data to calculate 

vegetation indices (VIs) like NDVI and LAI for biomass estimation and GPP for C uptake. LAI 

was estimated using the PROSAIL model, a combination of PROSPECT (Jacquemoud and 
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Baret, 1990; Feret et al., 2008) and SAIL models (Verhoef, 1984). GPP was estimated using 

the Sentinel-2-based LUE model to quantify the CO2 uptake from different vegetation types. 

LUE can empirically estimate GPP (Zhang et al., 2017; Sun et al., 2019; Xie et al., 2019) using 

remote sensing data. Observed air temperature (Tair) and photosynthetic active radiation 

(PAR) data were used with satellite data in the LUE model to calculate GPP.  
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CHAPTER 2 

CARBON, WATER AND ENERGY FLUXES IN AN AGRICULTURAL FIELD IN 

THE GREAT LAKES REGION IN CANADA  

 

2.1 Abstract 

Eddy covariance (EC) flux measurements of energy, water vapor and carbon dioxide (CO2)  

were made in a newly established agricultural flux tower site, hereafter known as CA-TPAg 

(Ameriflux notation) in the Great Lakes region in Southern Ontario, Canada from 2020 and 

2023. This agriculture flux site has become part of the Turkey Point Environmental 

Observatory (TPEO), where EC flux, meteorological and ecological variables are being 

continuously made in three different ages (84-, 49- and 21-yr old as of 2023) of conifer forests 

since 2002 and a deciduous (>90-yr old) forest since 2012, enabling TPEO to become 

representative of the major biomes in the Great Lakes region. The agricultural site was planted 

with corn in 2020 and 2021, sweet potato in 2022 and tobacco in 2023. Study results showed 

that the mean daily evapotranspiration (ET) over the growing season was 3.12, 3.74, 3.78 and 

2.96 mm d-1 in 2020, 2021, 2022 and 2023 for corn, corn, sweet potato and tobacco, 

respectively. Corresponding annual ET values were 680, 727, 732 and 715 mm yr-1, which 

accounted for approximately 60%, 72%, 77% and 73% of the annual total precipitation. The 

observed annual gross ecosystem productivity (GEP) values were 1289, 1359, 705 and 885 g 

C m2 yr-1 in 2020, 2021, 2022 and 2023, respectively, while corresponding annual ecosystem 

respiration (RE) values were 804, 1110, 825 and 878 g C m2 yr-1. Overall, the site was a carbon 

(C) sink with annual NEP values of 485 and 249 g C m2 yr-1, respectively when corn was 

planted in 2020 and 2021. It was a C source with annual NEP value of –120 g C m2 yr-1 when 

sweet potato was planted in 2022 and C neutral with annual NEP of 7 g C m2 yr-1 when tobacco 

was planted in 2023. The grain yields (GY) were 537, 491, 118 and 124 g C m−2 in 2020, 2021, 

2022 and 2023 resulting in annual net ecosystem carbon balance (NECB) of -52 (corn), -242 
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(corn), -238 (Sweet potato) and -117 (tobacco) g C m−2 year−1. Air temperature (Ta), and soil 

temperature (Ts) were the dominant controls on NEP, followed by Photosynthetically active 

radiation (PAR). This study helps to enhance our understanding of C, water and energy flux 

dynamics in agricultural fields in the Great Lakes region and provides valuable data for flux 

up-scaling, remote sensing applications, and ecosystem modeling. It will help in evaluating the 

potential of agricultural fields for C sequestration to provide nature-based climate solutions.  

 

2.2 Introduction 

Atmospheric carbon dioxide (CO2) is a major contributor to human-induced climate warming 

(Myhre et al., 2017; Lynch et al., 2021; Jones et al., 2023). The concentration of CO2 in the 

atmosphere has increased by approximately 40% compared to pre-industrial levels (Lüthi et 

al., 2008; Solomon et al., 2009; IPCC, 2013; Friedlingstein et al., 2022). The agricultural sector 

is responsible for emitting 9.3 billion tonnes of CO2 equivalent (CO2eq), making up roughly 

11% of the total annual global CO2 emissions (Gilbert, 2012; Mbow et al., 2017; Lamb et al., 

2021; Lynch et al., 2021). In Canada also, the agriculture sector contributes about 10% of the 

national greenhouse gas (GHG) emissions of 729 Mt CO2eq (Fouli et al., 2021; ECCC, 2023; 

Lu et al., 2023). If managed adequately, the Canadian agricultural sector can play an important 

role in reducing national CO2 emissions (Gregorich et al., 2005; ECCC, 2016; Yildirim et al., 

2019; Laamrani et al., 2021).  

 

In recent years, numerous eddy covariance (EC) flux observation sites have been established 

in agricultural fields in Canada and across the world to study biogeochemical and hydrological 

processes and to determine their carbon (C) sink or source strength and potential contributions 

in mitigating climate change (Pattey et al., 2006; Glenn et al, 2010; Smith et al., 2010; Moravek 

et al., 2019; Liebig et al., 2022). These studies have investigated the relationship between 
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photosynthetic CO2 uptake (crop growth) and environmental controls in agricultural systems 

(Hernandez-Ramirez et al., 2011; Menefee et al., 2022). However, the influence of 

environmental factors on crop growth and C exchanges in an area may significantly vary 

among different crop types due to differences in plant species, plant phenology, canopy 

structure, spatial distribution and management practices (Hernandez-Ramirez et al., 2011; 

Quan et al., 2023). Many EC flux studies have reported agricultural fields as a net source of C 

to the atmosphere (Baker and Griffis, 2005; Liebig et al., 2022; Anthony et al., 2023; Quan et 

al., 2023), often attributing this to intensive cropping practices that compromise soil organic 

matter stability. Some research suggests that changing land use intensity and implementing 

crop rotations could enhance C sequestration and reduce soil organic matter depletion (Smith 

et al., 2015; Land et al., 2017; Lessmann et al., 2022; Thapa et al., 2023).  

 

The EC flux system is instrumental in measuring C flux between ecosystems and the 

atmosphere, significantly enhancing our understanding of how land management and 

environmental factors control agricultural C emissions and sequestration (Menefee et al., 

2022). Climatic factors and land management practices collectively determine whether 

agricultural systems contribute as C sources or sinks (Fan et al., 2019). Consequently, 

investigating cropland C dynamics across various climates and management strategies is 

essential (Browning et al., 2021). Adopting best practices such as high-yield crop varieties, 

optimized irrigation techniques, improved soil protection, increased resilience to climate 

impacts, and enhanced soil C sequestration (Pellerin et al., 2017). Higher crop productivity 

generally affects in enhanced C uptake, leading to increased C inputs in the soil from crop 

residues and root biomass (Burney et al., 2010; Smith et al., 2012; Frank et al., 2017; Fan et 

al., 2019). However, annual climate variability can obscure treatment effects in short-term 

studies (Pittelkow et al., 2015; Austin et al., 2017; Büchi et al., 2017), emphasizing the 
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necessity for long-term research across diverse climates, soils, crop rotations, and extreme 

events to better understand how climatic factors and soil residues influence ecosystems and C 

balance. 

 

For the agricultural fields which has been reported as a net C sink, there may be uncertainties 

surrounding the strength and resilience of this C sink under future climate change (Curtis and 

Gough, 2018; Laforge et al., 2021; O’sullivan et al., 2022). In the literature there is lack of 

long-term EC flux studies focusing on to evaluate the C source or sink strength of different 

crops and how they maybe impacted by changes in climate and extreme weather conditions. 

These long-term EC flux studies are very important to develop well-tested agricultural 

ecosystem models and to determine regional C budgets by integrating site-level knowledge 

with remote sensing data in major croplands such as Midwest in the USA (Wiesner et al., 2022) 

and Southern Ontario in Canada (Ashton et al., 2023). 

 

In Canada, the province of Ontario is a major contributor to Canadian agricultural sector where 

almost 25% of Canadian farms covering 7.7% of the total farm area are located (Chen, 2022). 

Soybean (31.8%), Corn (24.9), winter wheat (13%) and Alfalfa (11.2%) are major crops in 

Ontario, Canada (Statistics Canada, 2021). Other major crops include barley, tobacco, grapes 

and various vegetables such as potato, tomato, cauliflower etc. Southern Ontario, where 70% 

of the land area is utilized for agriculture contributes 15% of Canada’s net farm income 

(Statistics Canada, 2018). In addition, almost one-third of the Canadian population also lives 

in this area (Stats Canada, 2023). This region has a very conducive environment for crops due 

to the proximity of the Great Lakes (McKeown et al., 2005). Despite its significance, this area 

has only one long-term EC flux observation site at Elora focusing on productivity and C sink 

and source strength of crops (Wagner-Riddle, 2021; Wagner-Riddle et al., 2007). Continuous 
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measurements of energy, water, and C fluxes, along with climatic variables in various crops in 

the region are essential to provide valuable data for plot level and regional C balance studies 

and to develop strategies for mitigating climate change through C sequestration in agricultural 

fields.  

 

This study reports the continuous eddy covariance flux measurements in a newly established 

agricultural flux tower site in Southern Ontario, Canada from 20020 to 2023. The field was 

planted with corn in 2020 and 2021, sweet potato in 2022 and tobacco in 2023. The main 

objectives of the study are to (i) continuously measure energy, water and C fluxes in different 

agricultural crops, (ii) determine the C sink and source strength of these crops and (iii) 

investigate major environmental controls and their impact on C dynamics and water use of 

difference crops. The method and findings of this research will enhance understanding to 

improve C sequestration in agricultural ecosystems and assess the impacts of extreme weather 

events on crop productivity. 

 

2.3 Methods 

2.3.1 Site description 

The study site is located about 15 km southwest of Simcoe in southern Ontario, Canada 

(42°41'46.05''N and 80°20'55.61''W). It was planted with corn (Zea mays) in 2020 and 2021, 

sweet potato (Ipomoea batatas) in 2022 and tobacco (Nicotiana tabacum) in 2023. Site was 

planted with winter grass after the harvesting of sweet potato in 2022 and which was mowed 

back into soil in April 2023 prior to plantation of tobacco to increase soil fertility. The site is 

part of Turkey Point Environmental Observatory (TPEO), where EC flux, meteorological and 

ecological variables are being continuously made in three different ages (84-, 49- and 21-yr old 

as of 2023 known as CA-TP1, CA-TP3 and CA-TP4) of conifer forests since 2002 and a 
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deciduous (>90-yr old known as CA-TPD) forest since 2012 (Arain et al., 2022; Latifovic et 

al., 2024). TPEO is associated with the Global Water Futures Program, Ameriflux and Global 

Fluxnet. TPEO is among a handful of sites in Ameriflux and global Fluxnet with long-term 

(>20 years) flux data availability. The 84-year-old conifer forest site (CA-TP4) site is located 

in the north at 1.7 km, while 49-year-old conifer forest site (CA-TP3 is located in the northeast 

at 1.2 km from the CA-TPAg site. The establishment of the agricultural site has allowed TPEO 

to become representative of the major biomes in the Great Lakes region, encompassing 

coniferous and deciduous forests, as well as agricultural crops. The soil at this agricultural site 

is well-drained fine sandy loam.  The area has a humid continental climate and has one of the 

longest-growing seasons in Canada with at least 150–160 frost-free days in a year. The mean 

annual temperature is 8.4°C and the mean annual precipitation (P) is approximately 965 mm 

based on the Meteorological Services of Canada climate normal data record (1991-2020) at 

Delhi Weather Station, Ontario.  

 

2.3.2. Flux and meteorological data measurements, quality control and gap filling 

Half-hourly fluxes of momentum, latent heat (LE), sensible heat (H), and CO2 (Fc) were 

measured continuously from June 2020 to December 2023 using an open-path eddy covariance 

(EC) system. Flux measurements have been continuous until the writing of this paper. The EC 

system consisted of a sonic anemometer (model CSAT3, Campbell Scientific Inc. (CSI)) and 

an infrared gas analyzer, IRGA (model LI-7500; LI-COR Inc.). The IRGA and CSAT3 were 

installed at 5 m height on top of an aluminum boom. A footprint model (Kljun et al. 2004), was 

used to estimate flux footprint, determine the height of EC sensors and ensure that the majority 

(>80%) of fluxes originated within the agricultural field being measured. The CSAT3 was 

oriented facing westward (270°). Fluxes were measured at 20 Hz frequency and then half-

hourly values were calculates on the site computer using a software developed by the 
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Biometeorology & Soil Physics Group of the University of British Columbia using Matlab 

(The MathWorks Inc.). Initial data quality controls and non-stationarity checks were also 

perfumed by the UBC flux software. Because the gas analyzer provided high frequency CO2 

concentrations as mixing ratios, therefore no subsequent Webb-Pearman-Leuning (WPL) 

corrections were required (Webb et al., 1980).  Flux data originating from 70-80° East and 230-

255° West wind directions were discarded because of the existence of a surface flood-water 

drainage ditch.  Any large shrubs such as Sumac (Rhus typhina) growing along this drain were 

removed prior to flux measurements. The site is equipped with A/C power and internet 

connection for daily data checks. The high-frequency data were saved on the field 

minicomputer and manually transferred and backed up on the Lab data computer on biweekly 

or monthly basis using a data disk.  

 

Meteorological measurements were made simultaneously with EC flux measurements. These 

included the downward and upward photosynthetically active radiation (PAR; Kipp & Zonen 

Quantum Sensor, model PQS1, CSI), as well as incoming and outgoing, longwave and 

shortwave solar radiation and net radiation measured with a net radiometer  (SN500, net 

radiometer, Apogee Instruments), air temperature (Ta) and relative humidity (RH) (HC2S3, 

CSI) and soil heat flux (G) at 3 cm depth (HFT3, CSI). Soil temperature was measured at 2, 5, 

10, and 50 cm depths using soil temperature probes (model 107b, CSI). Soil volumetric water 

content (VWC) was monitored using water content reflectometers (model 616, CSI), which 

were buried at depths of 5 and 50 cm from the soil surface. The precipitation (P) was measured 

using an all-weather accumulation rain gauge (model T–200B, Geonor Inc.) in the south of the 

agricultural site at an adjacent property of the Long Point Ecoadventure Centre. All 

meteorological and soil data were recorded at half-hourly intervals using a data logger (model 



Ph.D. Thesis – Nur Hussain                     School of Earth, Environment, & Society 

24 
 

CR5000, CSI). Automated data downloads were conducted every half hour using the field 

minicomputer housed in the data logger box.  

 

Half-hourly EC fluxes and meteorological data were quality controlled in the Lab using the 

Biometeorological Analysis, Collection, and Organizational Node (BACON) software 

developed by our group (Brodeur, 2014). All half-hourly flux and meteorological data were 

automatically filtered for spikes and then manually checked to identify and remove any 

outliers. Small gaps in meteorological variables, not exceeding a few hours were filled using 

linear interpolation (6.3 % of the total observations). Large gaps in meteorological variables, 

including January to June 2020 period were filled using data from weather stations installed at 

adjacent forest sites (i.e. CA-TP3 and CA-TP4) after applying linear regression analysis where 

needed.  

 

Net ecosystem exchange (NEE) was calculated as NEE = Fc + Sc, where Sc is the rate of change 

in CO2 storage within the air column below the EC sensor, estimated from the change in the 

present and previous half-hourly CO2 response (Chan et al., 2018). Net ecosystem productivity 

(NEP) is equal to -NEE, where a positive NEP represents C fixed by the ecosystem C sink and 

a negative NEP represents C source or emission to the atmosphere. Half-hourly flux gap-filling 

and partitioning of NEP into GEP and RE was conducted using REddyProc package in R 

(Reichstein et al., 2005; Lasslop et al., 2010; Wutzler et al. 2018).  For the gap-filling of fluxes 

the marginal distribution sampling (MDS) method of the REddyProc was adopted, while the 

partitioning of NEP into GEP and Re was conducted by using u* thresholds constrained 

nighttime NEP values to estimate day-time RE (Wutzler et al., 2018). After data quality control 

of measured NEP fluxes in total 61.83%, 56.33%, 68.62%, and 67.20% of data was retained 

for 2020 (Jun-Dec), 2021, 2022 to 2023, respectively. Uncertainty in annual NEP (± STD, 
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standard deviation) was derived from the aggregated values estimated using the distribution of 

u* thresholds of 5, 50, and 95% quantiles. For ET uncertainty values u* thresholds of 50 and 

95% were used. Uncertainty associated with energy balance closure was not included in these 

uncertainty estimates and annual C fluxes were not corrected for the energy balance closure. 

Gross ecosystem productivity (GEP) was estimated as the sum of daytime NEP and RE.  

 

Net ecosystem carbon balance (NECB) was calculated as NEP minus C removed as grain. For 

NECB accounting C input through seeding was not accounted, while no organic fertilizer was 

applied. Multivariable linear regression (MLR) and principal component analysis (PCA) were 

conducted to explore relationships between climatic variables and carbon and water fluxes. In 

both analyses, PAR, Ta, Ts, VPD, and VWC were considered as independent variables, while 

GEP, NEP, RE, and ET were considered as the dependent variables.  

 

2.4 Results: 

2.4.1 Meteorological conditions 

Weather conditions during the study period were representative of typical humid continental 

climates in the Great Lake region, which has large seasonal differences in air temperature and 

well-distributed precipitation throughout the year (Figure 2.1 and Table 2.1).  The maximum 

daily PAR was observed in June, while the maximum daily Ta and Ts values were observed in 

July. The growing season (June to September) daily mean PAR values were 402 µmol m⁻² s⁻¹ 

in 2020, 429 µmol m⁻² s⁻¹ in 2021, 455 µmol m⁻² s⁻¹ in 2022 and 516 µmol m⁻² s⁻¹ in 2023. 

The growing season daily mean Ta was 19.91±3.7 °C, 20.17±2.6 °C, 20.3±2.4 °C and 

18.77±2.8°C, respectively in 2020, 2021, 2022 and 2023 whereas the respective growing 

season daily mean Ts at 5cm depth was 19.1±3.2°C, 20.7±1.9°C, 24.2±2.4°C and 21±2.5°C. 
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Similarly, the growing season daily mean VPD values were 0.37, 0.33, 0.33 and 0.31 kPa in 

2020, 2021, 2022 and 2023 respectively.   

 

Annual total precipitation (P) values were 1127, 1009, 947 and 979 mm yr-1 in 2020, 2021, 

2022 and 2023, respectively. Overall, the observed P followed typical seasonal patterns 

characteristic of a continental climate, except for May and August 2021 (38 and 46 mm) and 

May and September 2023 (25 and 42 mm), when the site experienced a significant reduction 

in monthly total P as compared to 30-year normal P (1991-2020) collected from Delhi weather 

station Ontario (Environment and natural resources, Canada) (Table 2.1). Moreover, the 

highest annual P was observed in 2020 (1127 mm), which contributed to higher soil volumetric 

water content (VWC) compared to other years. The growing season daily mean VWC was 

0.19, 0.15, 0.13 and 0.15 m3 m-3 in 2020, 2021, 2022 and 2023, respectively.  

 

2.4.2 Energy flux dynamics 

There was a good agreement between radiative (Rn + G) and turbulent (H + LE) fluxes (Figure 

2.2). Regression of daily mean radiative and turbulent fluxes for corn in 2020 (2021) had slope 

of 0.81 (0.87), intercept of 2.5 (4.9) W m-2 and R2 of 0.82 (0.81). Similarly, the regression of 

daily mean radiative and turbulent fluxes for sweet potato and tobacco in 2022 and 2023 had 

slope of 0.87 and 0.91, intercept of 17.1 and 9.9 W m-2 and R2 of 0.82 and 0.87, respectively. 

The energy balance ratio (EBR), calculated as (Rn-G)/(H+LE) was 0.82 and 0.90 for two 

consecutive corn crops in 2020 and 2021, respectively, while, EBR for sweet potato and 

tobacco was 0.93 and 0.94 in 2022 and 2023, respectively. This indicates that approximately 

82%, 90%, 93% and 94% of the available energy was transferred from the surface to the 

atmosphere through turbulent fluxes in 2020, 2021, 2022 and 2023, respectively.  
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The time series of monthly mean Rn, LE, H, and G is shown in Figure 2.3. All energy balance 

components (Rn, LE, H, and G) peaked in June and July each year. Rn values declined from 

September when the fall season started and reached about 10-20 W m-2 by the end of October 

(Figure 2.3a). A significant proportion of Rn was transferred to the atmosphere as LE during 

the peak growing season months (June-August), with (LE/Rn) ratios of 0.85 and 0.74 for corn 

in 2020 and 2021 and 0.79 for sweet potato. A slightly higher LE/Rn ratio of 0.88 was observed 

for tobacco. The variability in LE/Rn ratios is influenced by crop type and climatic conditions.  

Overall, the growing season (June to September) monthly mean Rn was 132, 127, 125 and 113 

W m-2 in 2020, 2021, 2021 and 2023, respectively, while corresponding monthly mean LE 

values were 91, 102, 95 and 84 W m-2 in 2020, 2021, 2022 and 2023, respectively. The corn 

and tobacco crops exhibited maximum LE in July, while sweet potato had its maximum LE in 

August (Figure 2.3b). A notable reduction in LE was observed in May 2021, September 2020 

and June and September 2023. Low values of H were also observed in July 2020 and June, July 

and August in 2021 (Figure 2.3c). Overall, the growing season monthly mean H values were 

20, 18, 32 and 29 W m-2 in 2020, 2021, 2022 and 2023, respectively.  

 

Compared to the other three major components of the energy balance, monthly mean G values 

remained low throughout the year, with maximum G observed in June coinciding with 

maximum radiation value (Figure 2.3d). The growing season monthly mean G values were 3.6, 

3.7, 2.4 and 4.9 Wm-2 in 2020, 2021, 2022 and 2023, respectively.   
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2.4.3 Carbon flux dynamics 

C flux dynamics showed a distinct seasonal pattern with NEP reflecting periods of dormancy, 

rapid vegetative growth, and senescence, as shown in Figure 2.4 (a-d). The specific timing of 

maximum C uptake and loss varied from year to year. For corn in 2020, the growing season 

spanned from May 23 to September 29, lasting 130 days (Figure 2.4 and 2.5). During this 

period, the mean daily NEP was 4.45 g C m⁻² d⁻¹, with the maximum NEP of 12.57 g C m⁻² 

d⁻¹ observed in July. In contrast, the corn growing season in 2021 began a half-month later on 

June 9 due to delayed planting and ended on September 21, spanning over 105 days. Hence, 

the growing season length in 2021 was 25 days less than 2020. In 2021, the mean daily NEP 

was 5.57 g C m⁻² d⁻¹, with the maximum NEP of 10.97 g C m⁻² d⁻¹ observed in August. The 

growing season for sweet potato crop in 2022 started on July 6th and ended on September 19th 

with only 76 days of active growth. It shows that in 2022 crop photosynthetic uptake started 

43 days later than in 2020 and 27 days later than in 2021, while it ended at almost similar time 

as other years. For sweet potato crop the mean daily NEP was 4 g C m⁻² d⁻¹, with the peak NEP 

of 7.2 g C m⁻² d⁻¹ occurring in August. The duration of the growing season for tobacco planted 

in 2023 was 125 days (1st July to 3rd October) when crop was harvested with the mean NEP 

values of 0.9 g C m⁻² d⁻¹. Prior to planting tobacco, the site was planted with winter grass, 

which caused an early start of photosynthesis in the spring in 2023, where daily NEP values 

became positive from mid-March to April with a total NEP of 22 g C m-2 (Figure 2.4d and 

2.5b). This winter grass was mowed back into the soil at the end of April prior to the planting 

of tobacco. After mowing daily NEP values became negative and reached up to -4 g C m⁻² 

day⁻¹. Planting of winter grass caused the site to become a net C sink over the January to April 

2023 period with a total NEP of 22 g C m⁻² (Figure 2.5). Overall, the total growing season NEP 

values were 579, 543, 304 and 113 g C m⁻² in 2020, 2021, 2022 and 2023, respectively (Table 

2.2). 
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 On the annual basis, the site was a strong C sink, with annual NEP values of 485 g C m⁻² y⁻¹ 

and 249 g C m⁻² y⁻¹, respectively when corn was planted in 2020 and 2021 (Figure 2.5, Table 

2.2). It was a C source with an annual NEP of -120 g C m⁻² y⁻¹ when sweet potato was planted 

in 2022. The site was C neutral in 2023 for tobacco with an annual NEP of 7 g C m⁻² y⁻¹. The 

annual GEP values were 1289, 1359, 705 and 885 g C m-2 y-1 in 2020, 2021, 2022 and 2023, 

respectively, while corresponding annual RE values were 804, 1110, 825, and  878 g C m-2 y-1 

(Figure 2.5, Table 2.2).  

 

Additionally, the annual NECB was -52 (corn), -241 (corn), -238 (sweet potato) and -117 

(tobacco) g C m−2 year−1 and respective grain yields (GY) was 537, 491, 118 and 124 g C m−2 

in 2020, 2021, 2022 and 2023 (Table 2.2). The maximum NECB is associated with corn crops, 

consistent with the year of the highest recorded annual NEP of 485 (2020) and 249 (2021) g C 

m−2 year−1. The minimum NECB was recorded in 2022 for sweet potatoes when the site was a 

source of C with an annual NEP value of -120 g C m−2 year−1. These findings show substantial 

changes in the site's C balance and are indicative of a shifting ecosystem response during the 

study period. 

 

The results reveal substantial variations in NEP and NECB during the growing seasons of 2020, 

2021, and 2023, reflecting their dynamic relationship with the annual C balance. In 2020, the 

corn crop with 130 days of growing season recorded NEP of 579 g C m⁻² and a positive NECB 

of 42 g C m⁻². However, the annual NEP decreased to 485 g C m⁻², suggesting C uptake losses 

from respiration during the non-growing period and/or from harvested residues. In 2021, the 

growing season NEP was 543 g C m⁻² with a positive NECB of 52 g C m⁻². However, annual 

NEP declined to 249 g C m⁻², resulting in a negative NECB of -242 g C m⁻². This decline 
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indicates that external factors, particularly drought conditions experienced in May and August, 

2021 had a significant impact on carbon dynamics. 

 

In 2022, despite a reduced growing season of 76 days for potatoes, the growing season NEP 

reached 304 g C m⁻² with a noteworthy NECB of 186 g C m⁻². However, the annual NEP 

remained negative at -120 g C m⁻², revealing that the advantages gained during the growing 

season were inadequate to offset annual losses. During the tobacco growing season, drought 

stress was observed in May and September, resulting in the growing season NEP of 113 g C 

m⁻² and an annual NEP of 7 g C m⁻², with a NECB of -117 g C m⁻². This analysis provides the 

critical interplay between growing season conditions and annual carbon dynamics, 

emphasizing how drought stress can adversely affect both immediate productivity and long-

term carbon retention in agricultural systems. 

 

2.4.3 Water flux dynamics 

ET is a major component of the water cycle in crops. Dynamics of daily ET values is shown in 

Figure 4e-h. During the initial period of the growing season, daily ET values were about 1-2 

mm d-1, while during the peak growing season in July-August daily ET values exceeded 6 mm 

d-1. In contrast to NEP, there were very small differences in peak ET values among different 

crops types. (Figure 4c-h). Overall, the growing season mean daily ET was 3.1, 3.7, 3.8 and 

2.9 mm d-1 for 2020, 2021, 2022 and 2023, respectively.  

 

On the annual basis, total ET for 2020, 2021, 2022 and 2023 was to 680, 727, 732 and  715 

mm y-1, respectively, accounting for approximately 60%, 72%, 77% and 73% of the annual 

total precipitation (Table 2.2). Furthermore, through monthly ET and precipitation 
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assessments, it was evident that the site faced water scarcity in August 2021 and September 

2023 when ET exceeded precipitation by 276% (August 2021) and 170% (September 2023).  

 

2.4.5 Water and light use efficiency  

The analysis of growing seaosn water use efficiency (WUE) in various crop types showed a 

strong to moderate correlation between ET and GEP with R2 of 0.80 for corn (2020), 0.65 for 

corn (2021), 0.70 for sweet potato (2021), and 0.57 for tobacco (2023) (Figure 6).  In 2020, the 

mean daily WUE was at 3.85 g C kg-1 H2O
-1 reflecting relatively efficient water utilization in 

biomass production. In 2021, the daily WUE decreased slightly to 3.34 g C kg-1 H2O
-1 as 

compared to the previous year's corn crops. Transitioning to sweet potato in 2022, caused a 

remarkable decrease in WUE with mean daily value of 2.18 g C kg-1 H2O
-1, indicating a less 

efficient utilization of water for biomass production in sweet potato compared to corn. Lastly, 

in 2023, during tobacco cultivation, the daily WUE further declined to 1.94 g C kg-1 H2O
-1, 

indicating the lowest efficiency in water utilization observed across this period.  

 

In addition, the analysis of the efficiency of light (PAR) utilization for photosynthesis (GEP) 

across different crops by applying Michaelis-Menten hyperbolic curve over the growing season 

from 2020 to 2023 showed significant variations in photosynthetic C uptake efficiency among 

the different crops (Figure 2.7). Corn had the highest C uptake or GEP under similar light 

conditions, followed by sweet potato in 2022, and tobacco in 2023 (Figure 2.7). At PAR level 

of about 1000 μmol m-2 s-1, GEP of corn was 20 to 22 μmol m-2 s-1, whereas sweet potato and 

tobacco absorbed only about 10 μmol m-2 s-1, respectively (Figure 2.7). While sweet potato and 

tobacco showed a plateau in GEP when PAR exceeded 1000 μmol m-2 s-1, GEP in corn 

continued to increase with increasing light levels. The highest GEP values in corn reached 
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about 28 to 31 μmol m-2 s-1.  These findings indicate that corn is more efficient in utilizing 

available light for photosynthesis, leading to higher C uptake and growth.  

 

2.4.6 Environmental controls on carbon and water fluxes 

The multivariable linear regression (MLR) and principal component analysis (PCA) revealed 

significant relationships between climatic factors with C and water fluxes across all crop types 

(Table 2.3, Figure 2.8). Table 2.3 presents the correlation coefficients of key climatic variables 

(PAR, Ta, Ts, VPD, VWC) with GEP, NEP, RE, and ET, spanning the years 2020 to 2023. 

MLR results indicated that GEP, RE, ET, and NEP were significantly influenced by climate 

factors (P < 0.0001), with R² values of 0.48, 0.17, 0.79, and 0.60, respectively, emphasizing 

the overall impact of climatic variables. Similarly, PCA results showed that temperature 

variables (Ta and Ts) primarily influenced C and water balances (Figure 2.8). 

 

The results from regression analysis further demonstrated that GEP was significantly affected 

by both Ta and Ts. Ta presents a strong positive effect on GEP, with an estimate of 0.047, an 

R² value of 0.66, and high statistical significance (P < 0.0001), while Ts had an estimate of 

0.339 and an R² value of 0.69, also highly significant (P < 0.0001). Although PAR positively 

affected GEP, its impact was substantial (P < 0.0001, R² = 0.45). VPD had a moderate effect 

on GEP (P = 0.007, R² = 0.42), while VWC had a weak effect (P = 0.009, R² = 0.17), suggesting 

that temperature and radiative energy were more influential in driving GEP. 

 

NEP showed moderate positive correlations with strong significance (P < 0.0001). Similar to 

GEP, NEP was correlated with PAR, Ta, Ts, VPD, and VWC, with respective R² values of 

0.20, 0.38, 0.40, 0.25, and 0.13. Ta and Ts had the most pronounced effects on NEP. Both 
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temperature variables also strongly influenced RE, with estimates of 0.064 for Ta and 0.185 

for Ts, and high significance (P < 0.0001). The correlation of Ta and Ts with RE had R² values 

of 0.86 and 0.88, respectively. PAR also had a significant positive impact on RE (P < 0.0001, 

R² = 0.52), indicating its key role in respiration. VPD showed a marginally significant effect 

on RE (R² = 0.54), while VWC had a weak to moderate impact (P = 0.0067), suggesting soil 

moisture was less influential than temperature and light for RE. 

 

ET was significantly driven by Ta, Ts, and PAR. Ta and Ts had significant positive effects on 

ET, with estimates of 0.022 and 0.071, and R² values of 0.72 and 0.75, respectively (P < 

0.0001). PAR also significantly influenced on ET (estimate = 0.001, P = 0.0001), explaining 

60% of the variance. VPD had a significant influence (P < 0.0001), while VWC exhibited a 

nonsignificant negative effect (estimate = -0.473, P = 0.1345, R² = 0.04). The negative 

relationship between VWC and ET contrasted with its positive effects on GEP and NEP, 

highlighting the complex interactions between soil moisture and ecosystem processes. 

 

2.5 Discussion 

2.5.1 Energy and Water Flux Dynamics 

The energy balance of agricultural fields is affected by crop type and canopy attributes 

(Duveiller et al., 2018; Dare-Idowu et al., 2021). There are usually large differences in the 

partitioning of available energy among different crop types or during various stages of crop 

development (Stöckle et al., 2009; Murchie et al., 2012). Radiation or available energy plays a 

significant role to determine the intensity of turbulent fluxes (Hernandez-Ramirez et al., 2010; 

Flores-Velazquez, 2022). In agriculture fields, a significant portion of Rn is partitioned into 

LE, which is the primary process through which water is transferred from the land surface to 
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the atmosphere, involving soil evaporation and plant transpiration (Shuttleworth, 2007; Kool 

et al., 2014). Hence, LE (or ET) is the composite flux that links both energy and water cycles, 

and its magnitude is governed by meteorological conditions, canopy structure and seasonal 

characteristics (Jasechko et al., 2013; Wang et al., 2014). Our study showed a discernible 

pattern in LE that represented the growth cycle of crops. Maximum LE or ET was observed in 

July or early August coinciding with peak growth periods and maximum temperatures. 

However, in August 2021, the site experienced drought conditions when a significant reduction 

in precipitation was observed which impacted the corn productivity in 2021. Overall, at our 

site 85%, 74%, 79% and 88% of Rn was utilized as LE in 2020, 2021, 2022 and 2023, 

respectively, corroborating to findings from other studies in the literature (e.g. Suyker and 

Verma, 2008; Hernandez-Ramirez et al., 2010; Yan et al., 2019; Dare-Idowu et al., 2021). Our 

turbulent flux observations (LE+H) were also consistent with earlier studies, including 

Hernandez-Ramirez et al. (2010), who reported that 89% of the available energy (Rn-G) was 

partitioned as LE+H fluxes in their corn field in the Midwestern USA, and Hatfield et al. 

(2007), who suggested that 80% of available energy was transferred to atmosphere as LE+H 

fluxes in their corn sites in Central Iowa, USA. In our study, we observed that 82%, 90%, 93% 

and 94% of available energy was partitioned as LE+H fluxes in 2020, 2021, 2022 and 2023, 

respectively. 

 

Our study showed annual ET values of 680 (corn), 727 (corn), 732 (sweet potato) and 715 

(tobacco) mm y-1 for 2020, 2021, 2022 and 2023, respectively. These annual ET values were 

similar to the long-term ET values reported for the US Midwest corn belt in southwest 

Michigan, USA by Abraha et al. (2020). Abraha et al. (2020) estimated mean annual ET of 584 

mm y-1 from 2010 to 2018. Furthermore, Abraha et al. (2015) reported annual ET ranging from 

480 mm y-1 to 639 mm y-1 in the same region in Michigan, USA.  
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Our findings regarding WUE in various crop types also aligned well with prior research 

demonstrating similar trends. For instance, in a study focusing on corn cultivation in Southern 

Ontario, Canada, De Haan et al. (2022) reported WUE of  3.5 g C kg-1 H2O
-1. Similar WUE 

values ranging from 3.5 to 4.5 were reported in Michigan, USA by Abraha et al. (2016) as well. 

These WUE values are consistent our observations of 3.85 and 3.34 g C kg-1 H2O
-1 for corn 

crops in 2020 and 2021. Additionally, Jiang et al. (2021) found WUE values from 1.4 to 4.3 g 

C kg-1 H2O
-1in the sweet potatoes in Atlantic Canada, which compared well with our value of  

2.18 g C kg-1 H2O
-1 in 2022. These prior studies provide valuable context and support for the 

trends observed in our research, indicating the importance of considering crop-specific WUE 

in agricultural management practices. 

 

2.5.2 Carbon flux dynamics 

Our observed annual NEP values were 485 (corn), 249 (corn), -120 (sweet potato) and 7 

(tobacco) g C m-2 y-1 for 2020, 2021, 2022 and 2023, respectively (Table 2.2). The two-year 

mean annual NEP value of 367 g C m-2 y-1 for our corn crops for 2020 and 2021 agreed well 

with carbon uptake observations made at other corn sites in North America as shown in Table 

4 (Hollinger et al., 2005; Hernandez-Ramirez et al., 2011).  Hernandez-Ramirez et al. (2011) 

reported that the annual NEP for a corn field in Iowa, USA ranged from 534 to 360 g C m-2 y-

1 from 2004 to 2007. Additionally, Hollinger et al. (2005) observed annual NEP value of 576 

g C m-2 y-1 for a corn field in Champaign, IL, USA, which is also similar to our results. The 

similarity in annual NEP values between our study site and other sites can be attributed to their 

geographic location and similar environmental conditions in the Great Lakes. In contrast, 

Glenn et al. (2010) reported annual NEP of 72 g C m-2 y-1 in Winnipeg, Manitoba, Canada, 
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indicating substantial deviation in annual NEP when compared to our site. It can be attributable 

to distinct environmental conditions in the boreal region and remarkably lower temperatures in 

Manitoba (Table 2.4).  

 

Furthermore, our observed annual RE values were 804, 1110, 825 and 878 g C m-2 y-1, for corn 

in 2020 and 2021, sweet potato in 2022 and tobacco in 2023, respectively, while corresponding 

GEP values were 1289, 1359, 705 and 885 g C m-2 y-1. Similar annual GEP and RE values have 

been reported by Suyker & Verma (2012) for a corn field in Nebraska, USA.  Mean RE/GEP 

ratio of 0.72 for our corn crops was also similar to RE/GEP ratio of 0.63 reported by Suyker & 

Verma (2012).  

 

Our study revealed a shift in carbon dynamics in 2022, as our site became a source of carbon 

with an annual NEP value of -120 g C m-2 y-1. This change was attributed to the cultivation of 

sweet potatoes, which had a shorter growing season of only 76 days as compared to corn crops 

(i.e. 130 and 105 days). The differential response of C balance budgets based on the choice of 

crop type at the same agricultural field has also been noted by Liebig et al. (2022).  

 

The GPP for tobacco indicated a moderate capacity for C assimilation, with growing season 

values of 661 g C m-². Tobacco was effective at capturing C but at a lower rate compared to 

corn. The NEP for tobacco was notably lower, with a growing season NEP of 113 g C m-². 

This disparity between GPP and NEP underscores that, despite tobacco’s effective carbon 

capture, the net carbon gain remains modest due to significant respiratory losses (Domiciano 

et al., 2020; Zhang et al., 2021).  
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The C balance in the study area is significantly influenced by crop type, climatic conditions, 

and the duration and length of the growing season. Corn, a C4 plant, was cultivated in 2020 

and 2021, with its growing season typically extending from early May to early October. During 

these periods, the dynamics of NEP, GEP, and RE were closely observed. In 2020, the 

maximum C uptake was recorded throughout the growing season, reflecting strong carbon sink 

potential, with an annual NEP of 485 g C m⁻² y⁻¹. However, in 2021, a significant reduction in 

C uptake occurred, particularly in May and August, due to drought conditions characterized by 

reduced precipitation resulting in an annual NEP of 249 g C m⁻² y⁻¹. These drought periods 

shortened the optimal growth phases, thereby reducing the effective length of the growing 

season and impacting the overall C balance. In 2023, similar drought conditions were observed 

in May and September, coinciding with critical phases of crop development. That year, 

tobacco, a C3 plant, was cultivated with a growing season from early May to mid-September. 

Under comparable reductions in precipitation, the tobacco crops experienced a more substantial 

decline in C uptake than corn did under similar conditions in 2021. The annual NEP for tobacco 

was only 7 g C m⁻² y⁻¹, indicating a low net carbon gain. This difference highlights the 

sensitivity of C3 crops like tobacco, which require more consistent water supply, to reductions 

in precipitation during key growth periods.  

 

The GPP for tobacco demonstrated a moderate capacity for carbon assimilation, with growing 

season values reaching 661 g C m⁻². Although tobacco was relatively effective at capturing C, 

its NEP was considerably lower, at 113 g C m⁻² for the growing season. This disparity between 

GPP and NEP underscores that, despite tobacco’s capacity for carbon capture, the net carbon 

gain remains modest due to significant respiratory losses, as supported by findings from 

Domiciano et al. (2020) and Zhang et al. (2021). 
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These findings suggest that the C balance feedback in agricultural ecosystems is shaped not 

only by climatic conditions, such as the occurrence and timing of droughts, but also by crop 

type, its physiological characteristics (C3 vs. C4), and the length of the growing season. C4 

crops like corn generally exhibit greater resilience to water stress and can maintain 

photosynthetic activity over longer periods under high light and temperature conditions. In 

contrast, C3 crops like tobacco are more susceptible to drought, which can shorten their 

growing season and reduce carbon uptake. Therefore, understanding these interactions is 

essential for evaluating carbon dynamics and developing strategies to enhance carbon 

sequestration in agricultural systems. 

 

Furthermore, the NECB was calculated to evaluate the net carbon loss from both corn and 

sweet potato, employing NEP and grain yield. Our findings reveal the dominant influence of 

corn crops on the carbon balance throughout the study period, demonstrated by their robust 

carbon sequestration capacity compared to sweet potato. Corn crops exhibited significantly 

higher grain yield than sweet potato, recording respective values of 537 and 491 g C m-2 for 

2020 and 2021, while sweet potato yielded merely 118 g C m-2 in 2022 and tobacco yielded 

124 g C m−2. The findings in grain yield align with results from various studies in North 

American sites; including Cates and Jackson (2019) reported a range of grain yields for corn 

crops ranging from 398 to 676 g C m-2, Verma et al. (2005) observed nearly 520 g C m-2 and 

Evans (2022) found 485 g C m-2. The substantially higher grain yield of corn significantly 

increased the NECB compared to sweet potato and tobacco crops. Annual NECB values were 

determined to be -52, -242, -238 and -117 g C m-2 y-1 for the respective year. Similar 

observations regarding NECB were recorded in North American studies; Quan et al. (2023) 

reported -271 g C m-2 for potatoes in British Columbia. The differences between annual and 

growing seasons NECB represent the site's role as a carbon source during non-growing seasons. 
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The results focus on the intricate relationship between growing season length, crop type, and 

annual C dynamics. The corn crops of 2020 and 2021 present strong C retention during their 

respective growing seasons; however, the negative annual NECB indicates that external 

factors, such as increased respiration and extreme weather events, significantly influence the 

overall C balance. This study revealed the dynamic effects of different crops on C balance and 

water use efficiency. It showed that selecting the right crop is crucial for managing C storage 

and enhancing agricultural sustainability. It will help to develop better strategies to address 

climate change and promote sustainable farming, particularly in the Great Lakes region. 

 

2.6 Conclusion 

An analysis of seasonal and annual energy, water, and C fluxes in different crops was 

conducted from 2020 to 2023 in a newly established agricultural flow tower site in Southern 

Ontario, Canada. The site was planted with corn in 2020 and 2021, sweet potato in 2022 and 

tobacco in 2023. Overall, the site was a C sink with annual NEP values of 485 and 249 g C m2 

yr-1, respectively for corn in 2020 and 2021. The site was a C source with annual NEP value of 

–120 g C m2 yr-1 for sweet potato in 2022 and it was C neutral with annual NEP of 7 g C m2 

yr-1 for tobacco in 2023. The grain yields (GY) were 537, 491, 118 and 124 g C m−2 in 2020, 

2021, 2022 and 2023 resulting in annual net ecosystem carbon balance (NECB) of -52 (corn), 

-242 (corn), -238 (Sweet potato) and -117 (tobacco) g C m−2 year−1. Annual ET values were 

680, 727, 732 mm yr-1 and 715, in 2020, 2021, 2022 and 2023, respectively, accounting for 

60%, 72%, 77% and 73% of the annual total precipitation. This study emphasizes the 

significant influence of agricultural crop choices on the C dynamics within the ecosystem. 
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Study further highlights the profound impact of environmental variables, including PAR, 

temperature, soil moisture on energy, water, and C fluxes.  

 

This research contributes to enhance our understanding of energy, water, and C fluxes within 

the Great Lakes region, offering valuable insights for the development of more sustainable and 

effective agricultural practices and policies across eastern North America. Furthermore, our 

findings contribute to the broader knowledge base in this research field, facilitating a better 

understanding of climate change's impacts on agricultural ecosystems and the formulation of 

adaptation and mitigation strategies.  
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Table 2.1. Monthly and annual total precipitation (P) values and Temperature (T) in 2020, 

2021, 2022 and 2023. Normal precipitation over 30-year period (1991-2020) is also given. 

 

Month 
2020 2021 2022 2023 1991-2020 

P T P T P T P T P T 

January 109 -0.71 44 -2.71 7 -8.43 91 -0.77 81 -5.0  

February 52 -2.92 61 -6.73 28 -4.62 76 -1.18 58  -4.5 

March 109 3.56 54 3.28 91 1.15 135 0.46 71  0.3 

April 121 5.62 80 7.98 54 6.57 104 8.43 87  6.8 

May 82 12.32 38 12.51 95 15.13 25 12.77 88  13.6 

June 75 20.00 92 21.21 89 19.01 76 18.34 82  19.0 

July 121 23.19 184 20.47 108 20.85 123 20.79 89  21.2 

August 115 20.25 46 21.76 105 20.69 97 18.74 80 20.1 

September 88 17.35 112 16.91 138 16.33 42 17.19 86  16.4 

October 83 9.12 210 13.53 91 9.55 72 11.49 86  10.0 

November 88 6.31 67 3.42 53 4.86 56 3.18 83  3.9 

December 84 -0.12 23 1.50 87 -0.49 82 2.69 76  -1.7 

Annual  1127 9.5 1009 9.43 947 8.38 979 9.34 965  8.4 
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Table 2.2. Annual and growing season (GS) total GEP, NEP, RE and ET. GEP, NEP, RE, Grain yield (GY) and net ecosystem carbon balance 

(NECB) values in g C m-2 and ET values in mm. The uncertainty is represented as ± standard deviation, derived from daily measurements. 

Year 
 

2020 (Corn) 2021 (Corn) 2022 (Potato) 2022 (Tobacco) 

Annual 
 

GS 

DOY 

144-273 

(130 days) 

Annual 
 

GS 

DOY 

160-264 

(105 days) 

Annual 
 

GS 

DOY 

187-262 

(76 days) 

Annual 

 

GS 

DOY 

152-276 

(125 days) 

GEP 1289 ±6.1 1275 ±7.1 1359 (5.7) 1255±4.1 705±3.3 589 ±2.7 885±2.8 661±2.8 

NEP 485 ±3.7 579 ±4.6 249 ±3.5 543 ±3.5 -120±2.1 304 ±2.5 7±1.6 113±2.1 

RE 804 ±2.1 696 ±2.5 1110 ±2.7 712 ±1.2 825±1.9 385 ±0.9 878±1.9 536±1.3 

ET 680 ±1.3 406 ±1.3 727 ±1.4 393 ±1.1 732 ±1.4 287 ±1.3 715±1.2 370±1.2 

GY* -- 537 -- 491 -- 118 -- 124 

NECB** -52 42 -242 52 -238 186 -117 -11 

 

* The carbon content of grain yield (GY) was 43.0% of corn (Holou & Kindomihou, 2017), 32.9% of sweet potato (Hagenimana et al., 1998), and 

36.9% of tobacco plants (Frantz et al., 2022), respectively.  

 

**Net ecosystem C balance (NECB) was calculated as NECB = (NEP – GY). Negative NECB indicates C loss from the ecosystem. 
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Table 2.3. The relationship of climatic variables (PAR, Ta, Ts, VPD, VWC) with biomass 

production (GEP), carbon uptake (NEP), respiration (RE), and water balance (ET) accumulated 

with different crops from 2020 to 2023. The significance level is indicated based on the P value, 

where * represents non-significance, ** shows weak to moderate significance, and *** 

indicates very strong significance. 

GEP 

Multivariable linear regression Simple linear regression 

 Estimate Standard Error R2 (P) R2 pValue Significance 

Intercept -1.892 0.300 

0.48 

(0.0001) 

- - - 

PAR -0.001 0.001 0.39 0.0001 *** 

Ta 0.047 0.032 0.66 0.0001 *** 

Ts 0.339 0.035 0.69 0.0001 *** 

VPD 0.664 0.514 0.42 0.007 ** 

VWC 5.234 1.458 0.17 0.009 * 

NEP 

Intercept -1.471 0.232 

0.17 

(0.0001) 

- - - 

PAR -0.001 0.001 0.20 0.0001 *** 

Ta -0.016 0.024 0.38 0.0001 *** 

Ts 0.154 0.027 0.40 0.0001 *** 

VPD 0.69 0.397 0.25 0.0001 *** 

VWC 3.247 1.127 0.13 0.0001 *** 

RE 

Intercept -0.420 0.096 

0.79 

(0.0001) 

- - - 

PAR -0.001 0.001 0.52 0.0001 *** 

Ta 0.064 0.010 0.86 0.0001 *** 

Ts 0.185 0.011 0.88 0.0001 *** 

VPD -0.034 0.165 0.54 0.0001 *** 

VWC 1.986 0.468 0.19 0.0067 ** 

ET 

Intercept 0.552 0.074 

0.60 

(0.0001 

- - - 

PAR 0.001 0.001 0.60 0.0001 *** 

Ta 0.022 0.007 0.72 0.0001 *** 

Ts 0.071 0.009 0.75 0.0001 *** 

VPD 0.340 0.128 0.56 0.0001 *** 

VWC -0.473 0.362 0.04 0.1345 * 
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Table 2.4. Annual NEP of the corn crop in different study sites of North America.  

 

Site location 
NEP 

(g C m-2 y-1) 

Mean annual 

Precipitation (mm) 

Mean annual 

Temperature (°C) 

Site-

year 
Reference 

Turkey Point, ON, CA 367 1024 9.7 2 Study Site 

Mandan, ND, USA 120 420 6 2 Liebig et al. (2022) 

Westham Island, BC, CA 70 967 10.8 2 Quan et al. (2023) 

Ames, IA, USA 466 942 9.7 4 Hernandez-Ramirez et al. (2011) 

Champaign, IL, USA 576 - - 3 Hollinger et al. (2005) 

Mead, NE, USA 441 570 11.0 3 Verma et al. (2005) 

Rosemount, MN, USA 294 956 - 2 Baker & Griffis, (2005) 

Ames, Iowa, USA 327 740 - 10 Dold et al. (2017) 

Winnipeg, MB, CA 72 292 4.7 1 Glenn et al. (2010) 



Ph.D. Thesis – Nur Hussain                     School of Earth, Environment, & Society 

59 
 

 

 
Figure 2.1. The annual course of the meteorological conditions at Turkey Point Agricultural 

site for 2020 to 2023: (a) monthly mean Photosynthetically Active Radiation (PAR), (b) 

monthly mean air temperature (Ta), (c)  monthly mean soil temperature (Ts) at 5-cm depth, (d) 

monthly mean vapor pressure deficit (VPD), (e) monthly mean volumetric water content 

(VWC) in upper 5-cm and 10-40 cm soil layers, and (f) monthly total precipitation (P).  
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Figure 2.2. Daily values of turbulent fluxes (H + LE) vs radiative fluxes (Rn - G) for (a) 2020, 

(b) 2021, (c) 2022 and (d) 2023, respectively. Data were obtained from non-gap-filled daily 

observations excluding abnormal values.   
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Figure 2.3. The monthly mean energy fluxes for 2020, 2021, 2022 and 2023. Monthly mean values of (a) net radiation (Rn), (b) latent heat flux 

(LE), (c) sensible heat flux (H), and (d) soil heat flux (G).  
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Figure 2.4. Daily values of net ecosystem productivity, NEP (a-d) and evapotranspiration, ET (e-h) values for 2020, 2021, 2022 and 2023. The 

open circle from the NEP and ET values of the figure (a) and (e) represents the gap-fill NEP and ET.  
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Figure 2.5. The cumulative values of (a) GEP and RE and (b) NEP for 2020, 2021, 2022 and 2023. The dashed lines in the cumulative lines 

indicate gap-filled data while solid lines are measured values.
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Figure 2.6. Water use efficiency (WUE) from 2020 to 2023. The GEP and ET represent the 

growing season daily values from different crop systems.  
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Figure 2.7. The relationship between Gross Primary Production (GEP) and Photosynthesis 

Active Radiation (PAR) across different crops. Non-gap-filled daytime measurements were 

conducted during the growing seasons of 2020 (corn), 2021 (corn), 2022 (sweet potato), and 

2023 (tobacco). The figure presents the bin-averaged half-hourly GEP and PAR levels from 

2020 to 2023, with a bin size for averaging set at 50 µmol m⁻² s⁻¹. The curves represent the 

relationship between GEP and PAR, fitted using by the hyperbolic model where the quantum 

yield (α) value was 0.0426, 0.0310, 0.0214 and 0.0330 mol CO2 mol−1 photons, respectively 

for 2020, 2021, 2022 and 2023 with the maximum photosynthetic capacity (Vmax) value of 

50.57, 55.47, 20.33 and 14.49 µmol m–2 s–1. R2 was 0.90. 0.95, 0.88 an0.74 for 2020, 2021, 

2022 and 2023, respectively, while corresponding   values were 14.65, 9.48, 6.79 and 8.33.  
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Figure 2.8. Principal component analysis (PCA) of environmental controls with panels: (a) 

for GEP, (b) for NEP, (c) for RE, and (d) for ET. 
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CHAPTER 3 

EVALUATING THE EFFECTIVENESS OF DIFFERENT VARIABLE RETENTION 

HARVESTING TREATMENTS ON FOREST CARBON UPTAKE USING REMOTE 

SENSING 

 

3.1 Abstract 

Variable retention harvesting (VRH) is an ecologically based forest management practice 

applied to emulate natural post-disturbance residual canopy structure and increase the 

biodiversity and resilience of a regenerating stand. The pattern and density of canopy retention 

also influences the productivity, mortality, and carbon (C) sequestration rates of residual trees. 

In this study, we used high-resolution satellite and drone remote sensing data to evaluate the 

effect of five different VRH treatments on growth and C uptake of a 90-year-old red pine (Pinus 

resinosa Ait.) plantation forest in southern Ontario, Canada. The treatments included four 

different combinations of harvesting intensity residual tree distribution including 33% 

aggregate retention (33A), 55% aggregate retention (55A), 33% dispersed retention (33D), and 

55% dispersed retention (55D) and an unharvested control (CN) each replicated four times in 

1 ha plots. Satellite- and drone-derived normal difference vegetation index (NDVI) and gross 

primary productivity (GPP) were estimated for each treatment during the growing seasons from 

2010 to 2020. Over this period, observed mean daily NDVI values ranged from 0.25 to 0.86 

among treatments, where the 55D treatment consistently showed the highest NDVI values. 

Overall, the highest mean daily GPP values were observed in the CN treatment, followed by 

the 55D, 55A, 33D, and 33A treatments. Remote sensing-derived mean annual GPP for the 

entire 20 ha study site was 1651 ± 89 g C m–2 year–1, with a range of 1407 to 1864 g C m–2 

year–1 from 2010 to 2020. Satellite-derived annual GPP values were linearly related with 

observed annual GPP (R2 = 0.88, p = 0.032) measured using the eddy covariance technique in 

an adjacent white pine plantation of similar age and height over the study period. Study results 
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suggested that VRH treatments that create a uniformly dispersed residual canopy retaining 

more than half of the initial basal area (e.g. 55D) is a viable forest management practice where 

optimizing forest growth and C uptake is a primary management objective. Our study will help 

forest managers and researchers to develop methodologies to evaluate the effectiveness of 

forest management practices, tailor them to achieve climate mitigation and adaptation goals 

and to develop forest management pathways for nature-based climate solutions.  

 

3.2 Introduction 

Forest ecosystems cover 30% of Earth’s land surface area (Heino et al., 2015) and play a major 

role in the global carbon (C) cycle (Ontl et al., 2016; Reichstein and Carvalhais, 2019). At the 

stand level, growth and C uptake of managed forests is strongly influenced by tree density, age, 

species composition, and anthropogenic disturbances such as harvesting and thinning (Mayer 

et al., 2020; Ameray et al., 2021; Park et al., 2018; Simard et al., 2020). Forest growth and C 

uptake can be monitored using remote sensing techniques. Sentinel-2A and Sentinel-2B 

satellites of the COPERNICUS system of the European Union’s Earth observation program 

(Drusch et al., 2012; Binet et al., 2022), provide new capabilities for high-resolution 

multispectral sensor-based forest ecosystem monitoring (Löw and Koukal, 2020). These 

sensors provide up to 10 m spatial resolution with an approximate five-day temporal resolution 

(Drusch et al., 2012) and are capable of continuous, long-term monitoring of forest 

characteristics and growth. Continuous forest monitoring using a single satellite can be 

complicated due to data outliers, atmospheric noise, abnormal weather, and scarcity of 

accessible data (Kogan, 1990; Lastovicka et al., 2020). Landsat-8 and Landsat-7 satellites of 

the National Aeronautics and Space Administration (NASA) and the United States Geological 

Survey (USGS) provide multispectral data sources for long-term forest monitoring (Masek et 

al., 2013). Landsat satellite data has 30 m spatial resolution and 16-day temporal resolution 
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with global coverage in visible (VIS), near-infrared (NIR), short wave infrared (SWIR), and 

thermal infrared (TIR) wavelengths (Landsat, 2011, 2019). In addition, the use of unmanned 

aerial vehicles (UAV) or drones mounted with remote sensing sensors are also rapidly 

becoming mainstream platforms for forest monitoring (Dainelli et al., 2021). 

 

The most commonly used remote sensing-derived indicators for monitoring forest growth and 

productivity are leaf area index (LAI) (Sebastiani et al., 2023; Kaplan et al., 2023; Ali et al., 

2022), the normalized difference vegetation index (NDVI) (Chen et al., 2006; Lausch et al., 

2018; Matsushita et al., 2007; Shen et al., 2018; Tucker & Sellers, 1986; Vescovo et al., 2011; 

Zhao and Chen, 2005) and gross primary productivity (GPP) (Gao et al., 2015; Mao et al., 

2012; Zhang et al., 2016, 2017). The Sentinel (10 m resolution) and Landsat-based NDVI (30 

m resolution) have shown a good correlation with forest growth and productivity (Frampton et 

al., 2013; Han et al., 2021). The MODIS-derived moderate resolution estimate of GPP (250 to 

500 m resolution) is the most widely used productivity indicator in the terrestrial ecosystem 

literature (Guo et al., 2006; Heinsch et al., 2006; Running and Zhao, 2015; Zhao et al., 2006; 

Grabska-Szwagrzyk & Tymińska-Czabańska, 2023). Some researchers have also estimated 

plot-level GPP using Sentinel (10 m resolution) and Landsat (15 to 30 m resolution) data 

(Morell-Monzó et al., 2020).  Additionally, GPP can be measured at the plot-level using the 

eddy covariance (EC) technique (Arain et al., 2022; Baldocchi, 2019, 2020; Beamesderfer et 

al., 2020; Wohlfahrt and Gu, 2015).  

 

In order to reduce greenhouse gas emissions and mitigate climate change, nature-based climate 

solutions have been suggested as cost-effective strategies to increase C sequestration in 

terrestrial ecosystems (Kaarakka et al., 2021; Creutzig et al., 2022; Marvin et al., 2023). 
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Improved forest management, conservation and restoration have been identified as key 

pathways to achieve this goal. In Canada, a large portion (~66%) of forests receive some form 

of active management to maintain economic and ecological sustainability (Natural Resources 

Canada (NRC), 2016). Among these forest management practices, variable retention 

harvesting (VRH) is an ecologically based approach that was originally developed to reduce 

reliance on clearcutting to harvest timber and to promote stand regeneration (Franklin et al., 

1997). This silvicultural approach retains a portion of living and dead trees that vary in density 

and spatial arrangement to create a post-harvest residual canopy structure that emulates that 

created by the natural disturbance regime of a given area (Franklin et al., 1997, 2007; Palik and 

D’Amato, 2019). The effects of VRH on biodiversity, growth, mortality, and other biophysical 

and ecosystem processes have been widely studied in North America over the past few decades 

(Aubry et al., 2009; Beese et al., 2019; Palik et al., 2002; Puettmann et al., 2016; Roberts and 

Harrington, 2008; Xing et al., 2018). Structural changes to the residual canopy due to VRH and 

other partial harvesting practices enhance the photosynthetic energy supply to remaining trees, 

reduce competition for water and nutrients, and consequently increase growth and C uptake 

(Philpott et al., 2018; Zugic et al., 2021). However, VRH impacts on residual tree growth vary 

depending upon the intensity and pattern of canopy retention and their effects on stand 

microclimate and energy balance and and land type (Aussenac, 2000; Roberts and Harrington, 

2008; Xing et al., 2018; Makipaa et al., 2023). In this regard, remote sensing techniques can 

help to quantify changes in forest structure, environmental conditions, growth and C uptake to 

determine the effectiveness of various practices to meet specific management objectives (Löw 

and Koukal, 2020; McRoberts and Tomppo, 2007; Pause et al., 2016; Fassnacht et al., 2023).  

 

In 2014, an 83-year-old red pine (Pinus resinosa Ait.) plantation was subjected to five different 

VRH treatments with the objective of restoring the forest stand to its native forest composition 



Ph.D. Thesis – Nur Hussain                     School of Earth, Environment, & Society 

71 
 

(Zugic et al., 2021; Bodo and Arain, 2022; Bodo et al., 2023). The treatments combined two 

levels of basal area retention with uniformly dispersed or aggregate, “patch” retention:  33% 

aggregate retention (33A), 55% aggregate retention (55A), 33% dispersed retention (33D), 

55% dispersed retention (55D) and an unharvested control (CN).  This completely randomized 

experimental design provided an opportunity to examine the effects of these five VRH 

treatments on growth and C uptake of the residual canopy utilizing multi-sensor remote sensing 

data. It also provided opportunities to explore how VRH treatments can contribute to develop 

forest management pathways for nature-based climate solutions. The specific objectives of our 

study are to (i) quantify the annual differences in NDVI among VRH treatments over the pre-

harvest (2010-2013) and post-harvest (2014-2020) periods, (ii) determine the rate of 

acclimation of growth of residual trees to the post-harvest treatment environment and (iii) 

evaluate which treatment(s) might be most effective in enhancing future residual forest canopy 

growth and C sequestration. 

 

3.3 Methods 

3.3.1 Site description 

The study site is located within the St. Williams Conservation Reserve (42.705134° N and 

80.354219°W), about 12 km southwest of the town of Simcoe in Norfolk County in southern 

Ontario, Canada (Figure 3.1).  The site is part of the Turkey Point Environmental Observatory 

(TPEO) and has been associated with the Global Water Futures program and AmeriFlux and 

global Fluxnet networks (Arain et al., 2022).  

 

The plantation was established in 1931 by planting seedlings at 2 m × 2 m spacing (2500 trees 

ha-1). It was thinned in 1959–1960 when every fourth row of trees was harvested, perhaps along 
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with light selective thinning of remaining rows. It was selectively thinned in the mid-1980s to 

remove a maximum of one-third of the remaining canopy trees (McKenzie et al., 2023). In 

February 2014, the stand was thinned a third time when five VRH treatments were randomly 

assigned to four replicate plots (20 plots, ~1 ha each).  At the time of VRH treatment, the 

plantation was almost pure red pine with an average basal area of 38.4 ± 5.5 m2 ha-1 and tree 

density of 641.3 ± 103.2 trees ha-1. Tree diameter at 1.3 m height was 28.6 ± 4.3 m, ranging 

from 17.2 to 47.2 m, with an average height of 23.8 ± 2.8 m (Bodo and Arain 2022; Zugic et 

al., 2021). The primary understory vegetation species consist of yellow mandarin (Disporum 

lanuginosum), bracken fern (Pteridium), red trillium (Trillium erectum), poison 

ivy (Toxicodendron radicans), Canada mayflower (Maianthemum canadense), Allegheny 

raspberry (Rubus allegheniensis), black cherry (Prunus serotina), red maple (Acer rubrum), 

black oak (Quercus velutina), eastern white pine (Pinus strobus), wood violet (Viola palmata), 

and several moss species (Bryophyta).  

 

The climate in the region is warm humid continental with a 30-year (1980–2010) mean annual 

air temperature (Tair) of 8.0 °C and mean annual precipitation (P) of 1036 mm, based on data 

from the Environment and Climate Change Canada weather station at Delhi, Ontario, Canada. 

Snowfall accounts for about 13% of annual P. 

 

3.3.2 Data Set 

4.3.2.1 Satellite data 

The Sentinel-2 multispectral instrument captures 13 spectral bands, including 10 m spatial 

resolution of VIS and NIR, and 20 m spatial resolution of SWIR spectrum every five days 

(Drusch et al., 2012; Sun et al., 2022). Landsat-7 and Landsat-8 satellites provide earth surface 
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imagery at 30 m resolution with 16-day temporal resolution and were used to fill the gap in 

Sentinel-2 dataset (Landsat, 2011, 2019). Both satellite datasets were obtained 

from https://earthexplorer.usgs.gov/ and used to estimate NDVI and GPP of each treatment 

plot.  Agreement between these two data sets was assessed for a day (11 June 2018) when both 

satellites passed over our site at the same time (~15 minutes). A significant (p = 0.039), positive 

linear relationship (R2 = 0.62) was observed between NDVI provided by Sentinel-2 and 

Landsat-8.  

 

3.3.2.2 Drone instrumentation and data retrieval  

We used a drone-sensor system developed by the Natural Resources Canada - Canada Center 

for Remote Sensing (Canisius et al., 2019) to estimate NDVI of VRH plots for 2019 and 2020 

and compared the drone and satellite-measured plot-level NDVI values.  The drone system 

consisted of a digital camera (Zenmuse Z3), one pyranometer, one quantum sensor, one VIS 

spectrometer, and one NIR spectrometer. A ground sub-system included a similar 

establishment of sensors. Drone flight missions were conducted on 25 June 2019 and 17 July 

2020 using the Litchi-DJI (drone mission controlling app). Drone cameras, ground and UAV 

data loggers, and ground and UAV microcomputers generated the VIS and NIR spectrometer’s 

response at millisecond intervals, including the real-time response. Retrieved data were 

temporally adjusted through mission record and sensor response time was reviewed with 

recorded video time, which was spatially adjusted using ArcMap (Esri) GIS interface 

coordinates. 
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3.3.2.3 Eddy covariance flux and meteorological measurements  

Energy, water and CO2 fluxes have been continuously measured at an adjacent eastern white 

pine plantation of similar age and height using the EC technique since 2003 (Arain et al., 2022). 

This plantation is also part of TPEO and known as CA-TP4 in global Fluxnet and TP39 (Arain 

and Restrepo-Coupe, 2005; Arain et al., 2022). Because of close proximity, both red and white 

pine plantations share similar landforms and meteorological characteristics. Meteorological 

variables, including downward and upward photosynthetically active radiation (PAR), net 

radiation, Tair, relative humidity, wind speed and direction, precipitation, and soil temperature 

and soil moisture at several (2, 5, 10, 20. 50 and 100 cm) depths at two locations were also 

continuously measured. All flux, meteorological and soil data were verified, gap-filled and 

averaged to half-hour intervals. Further details are provided in Arain et al. (2022). GPP 

measured by EC (GPPEC) was used as a reference for comparison with satellite derived GPP 

as described in section 3.3.3. 

 

3.3.3 Satellite GPP estimates 

Satellite data and observed PAR and Tair from the CA-TP4 site were used to calculate GPP 

following Zhang et al. (2016, 2017) as shown in Figure 4.2.  Sentinel-2 SWIR 20 m band and 

Landsat data available at 30 m resolution were resampled to 10 m resolution without any 

statistical transformation for spatial adjustment. Further details are described in Supplementary 

section (3.9).  

 

3.3.4 Statistical analysis 

The weighted double logistic (WDL) function described in Yang et al., (2019) was used to fit 

the time series data for mean daily NDVI and GPP values. WDL uses two logistic functions 
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according to vegetation growth activity namely, the growing part (f1) and the declining part 

(f2) to set the model parameters which can provide the daily time series as shown in the 

following equation (Yang et al., 2019).  

 

𝑦 = f1 + f2 + e                              (3.1) 

f1 =
𝑐1

1+𝑒𝑎1+𝑏1𝑡
+ 𝑑1           (3.2) 

f2 =
𝑐2

1+𝑒𝑎2+𝑏2𝑡
+ 𝑑2         (3.3) 

e = 𝑚𝑎𝑥⁡(𝑐1 + 𝑑1, 𝑐2 + 𝑑2)        (3.4) 

where y is the time series of NDVI and GPP, d and c+d denote the minimum value (min(f)) 

and maximum value (max(f)), respectively; c indicates the local amplitude; 

and a and b determine the shape and slope of the logistic function, respectively. The subscripts 

1 and 2 identify the parameters of the growing and declining parts, respectively. In the retrieval 

of these unknown parameters, the initial d and c are assigned as min(f) and max(f)-min(f), 

respectively. Thus, the principal challenge is to derive parameters a and b. Considering the 

different weights of each data point, we transformed the non-linear fitted regression into a 

linear one by a function transformation as a1+b1 t=In(c1f1−d1−1). Furthermore, the weighted 

Least Squares (WLS) method was applied to solve the analytic expression of the logistic 

function for each part (f1 and f2).  

 

Two-dimensional principal component analysis (PCA) was used to determine shifts in 

comparative monthly mean NDVI among VRH treatments that occurred seven years post-

harvest using data from seven composite images for each VRH plot for 2014 and 2020 (Jollife 
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and Cadima, 2016). We also graphically displayed the PCA results for NDVI in a biplot using 

MATLAB (Jollife and Cadima, 2016). 

 

3.4 Results  

3.4.1 Climate 

Time series of meteorological variables measured at the adjacent white pine plantation (CA-

TP4) from 2010 to 2020 are shown in Figure 3.3. Growing season and annual values of 

meteorological variables are presented in Table 3.1. Maximum mean daily PAR reached 750 

µmol m-2 s-1. Maximum (minimum) mean annual PAR of 357 (314) µmol m-2 s-1 was observed 

in 2016 (2019). The highest mean annual Tair of 11.2 °C was observed in 2012, whereas the 

lowest value of 8.1 °C was recorded in 2014. The highest (lowest) mean daily vapor pressure 

deficit (VPD) of 0.5 (0.34) kPa was recorded in 2020 (2010). Similarly, the highest annual total 

P of 1649 mm occurred in 2018, whereas the lowest annual P of 778 mm was recorded in 2016 

(Figure 3.4).  In 2014, 2016 and 2017, comparatively dry growing season conditions had a 

significant impact on forest growth. This is evident from the lower NDVI observed in 2014, 

2016, and 2017, indicating reduced photosynthetic activity during these years (Table 3.1). 

Conversely, the years 2010, 2018, 2019, and 2020 experienced comparatively higher P during 

the growing season, coinciding with maximum NDVI values.  

 

In the study region, the local climate during the winter season is significantly influenced by 

both eastern and western oscillations (Shah, et al., 2022; Thorne and Arain, 2015). Specifically, 

winter temperatures are intricately linked to the North Atlantic Oscillation (NAO), Arctic 

Oscillation (AO), and Eastern Pacific Oscillation (EPO), while the total snowfall is correlated 

with the Pacific-North American (PNA) and El Niño-Southern Oscillation (ENSO) (Thorne 
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and Arain, 2015). These oscillations play a key role in C dynamics of the forest ecosystem 

during the winter and spring seasons (Zhang eta al., 2011). However, our study is focused on 

investigating the dynamics of the forest C sequestration and growth during the summer-

dominated growing season. 

 

3.4.2 Effects of variable retention harvesting on forest growth 

The VRH treatments caused changes in stand structure and growth that are reflected in spatial 

patterns of monthly mean NDVI (Figure 3.5). These differences in NDVI are most prominent 

or clearly shown in variations from pre-harvest and post-harvest (Figure 3.5). Plot-level mean 

daily NDVI values over the growing season (April to October) were 0.57, 0.56, 0.56, 0.57, and 

0.56 in 33A, 55A, 33D, 55D, and CN plots, respectively, during the pre-harvest period from 

2010 to 2013 (Table 3.2). The mean daily NDVI values for the first growing season after 

harvest in 2014 were 0.42, 0.43, 0.45, 0.50, and 0.51 in 33A, 55A, 33D, 55D, and CN 

treatments, respectively. Similarly, mean daily NDVI values for the growing season over the 

entire post-harvesting period from 2014 to 2020 were 0.51, 0.53, 0.54, 0.60, and 0.58 in the 

33A, 55A, 33D, 55D, and CN treatments, respectively. In the post-harvesting period, 55D 

treatment had the highest NDVI value, followed by CN, 55A, 33D and 33A treatments as 

shown in time series of mean daily NDVI values for each VRH treatment in Figure 3.6a. 

  

Overall, mean daily NDVI values ranged from 0.25 to 0.86 among treatments from 2010 to 

2020 (Figure 3.6a). The lowest seasonal NDVI values for all treatments were observed in 2016, 

while the highest NDVI values were observed in 2020 (Table 3.2). Differences among 

treatments were comparatively small from 2014 to 2016. Thereafter, treatment differences 

became more prominent from 2017 to 2020. Again, the mean daily NDVI was consistently 
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highest in the 55D treatment and the lowest in the 33A treatment. These treatment differences 

were most strongly expressed in the peak growing season (July-August), with the highest 

NDVI values observed in the 55D treatment, followed by the CN, 55A, 33D and 33A 

treatments (Figure 3.6a). The seasonal trend lines fitted to mean daily NDVI values also 

showed the highest growth in the 55D treatment, followed by the CN, 55A, 33D and 33A 

treatments (Figure 3.6a).  

 

We performed two-dimensional PCA to better understand the NDVI contribution of each 

treatment for the post-harvest period from 2014 to 2020. PCA1 represents 80%, and PCA2 

includes 9% of the total monthly NDVI data from 2014 to 2020. Results of PCA analysis 

showed a positive relationship among 55D, 55A and CN treatments and negative relationships 

between 33D and 33A treatments (Figure 3.7). This analysis showed that 55D and CN 

treatments had a closer relationship and maximum forest biomass and growth followed by 55A. 

This relationship was weak between CN and 33D and 33A treatments.  

 

The box plots of NDVI values measured on 25 June 2019 and 17 July 2020 using drone also 

showed the maximum NDVI in the 55D treatment, followed by CN, 55A, 33D and 33A 

treatments (Figure 3.8a,b). We found a significant, linear relationship (p≤0.005, R2≥0.90) 

between satellite-based GPP and drone-measured NDVI (Figure 3.8c-g). We also found a 

significant, linear relationship (p≤0.005, R2≥0.80) between drone- and satellite-based NDVI 

measurements (Figure 3.8h).  
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3.4.3 Effect of variable retention harvesting treatments on forest C uptake  

We estimated forest C uptake for each treatment using satellite-derived GPP. Seasonal cycle 

of mean daily GPP values is shown in Figure 3.6b. Similarly, cumulative daily GPP values 

over the growing season are shown in Figure 3.9. These plots indicated that forest C uptake 

varied with year and treatment (Figure 3.6b, Figure 3.9). The highest growing season 

cumulative GPP occurred prior to harvest in 2010 for most treatments except for CN. The 

lowest GPP was observed in 2016 for all treatments except CN. Growing season cumulative 

GPPEC values are also shown in Figure 9f for reference, where cumulative GEPEC was the 

highest in 2014 and the lowest in 2012. Overall, the fitted trend lines to daily GPP suggested 

that C uptake in CN and 55D plots was higher than the other treatments (Figure 3.6b).   

 

Comparison of growing season mean daily GPP for all VRH treatments with EC observed daily 

GPPEC showed that C uptake was quite similar among treatment plots during the pre-harvest 

period (2010-2013) (Figure 3.10). Mean daily GPP ranged from 9.37 to 9.65 g C m-2 d-1, while 

mean daily GPPEC was 8.62 g C m-2 d-1, which was similar to the CN treatment. Large 

differences in mean daily GPP occurred among VRH treatments during the post-harvest period, 

with these differences among treatment plots becoming more stronger over time. In the post-

harvest period, the mean daily GPP values were 8.71, 8.75, 8.74, 9.31, and 9.65 g C m-2 d-1 for 

33A, 55A, 33D, 55D, and CN treatments, respectively. Pooled over all 7-growing seasons, 

daily GPP was highest in the CN treatment, followed by 55D, 55A, 33D, and 33A treatments 

(Figure 3.10, Table 3.2).   

 

From the annual basis, the highest annual GPP of the pre-harvest period was observed in 2010 

and in the post-harvesting period, the highest GPP was observed in 2020 in the CN and 55D 
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treatments (Table 3.2).  Mean annual GPP was 1700, 1695, 1687, 1703, and 1692 g C m-2 y-1 

in the 33A, 55A, 33D, 55D, and CN treatments, respectively over the pre-harvest period from 

2010 to 2013 (Table 3.2). The mean annual GPP values in the first year after harvest in 2014 

were 1492, 1473, 1489, 1506, and 1591 g C m-2 y-1 in 33A, 55A, 33D, 55D, and the CN 

treatment, respectively. Similarly, mean annual GPP values in the seventh year after harvest in 

2020 were 1569, 1575, 1574, 1675, and 1736 g C m-2 y-1 in 33A, 55A, 33D, 55D, and CN 

treatment, respectively. CN plot showed the highest annual GPP, followed by the 55D, 55A, 

33D and 33A treatments. The annual GPPEC values had a significant, positive linear 

relationship (p=0.032, R2 = 0.88) with GPP values derived from remote sensing. The highest 

annual GPPEC of 1705 g C m-2 y-1 was recorded in 2014 and the lowest annual GPPEC of 1511 

g C m-2 y-1 was observed in 2012 (Table 3.2).  

 

3.5 Discussion 

3.5.1 Effect of variable retention harvesting on forest growth and C uptake 

Partial harvesting or thinning is a well-established forest management approach applied to 

enhance forest growth and development (Ashton and Kelty, 2018). The effect of different 

spatial patterns and intensity of partial harvesting or thinning on growth in red pine (Looney et 

al., 2018; Powers et al., 2009) and other forest types (Bose et al., 2014; Palik et al., 2002; 

Roberts and Harrington 2008; Xing et al., 2018) have previously been investigated. However, 

most studies have focused on enhancing fibre or timber growth with less attention given to C 

sequestration (Zugic et al., 2021). With recent climatic warming due to increasing greenhouse 

gas emissions and land use changes, there has been a renewed focus on tree planting, forest 

management, forest ecosystem conservation to enhance biological carbon sinks and identify 

potential nature-based climate solutions. Some studies have highlighted the need to adapt forest 
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management techniques to changing climatic conditions to ensure sustained forest growth and 

resilience (D’Amato et al., 2013; Drever et al., 2006; Keenan, 2015; Magruder et al., 2013; 

Sohn et al., 2016; Wagner et al., 2014). Recent advances in high-resolution remote sensing and 

drone technologies can help to evaluate the stand level impacts of different harvesting 

treatments on forest growth and C uptake. Despite these advances, it is still challenging to 

evaluate the effectiveness of forest management practices to achieve both wood production and 

C sequestration objectives. 

 

Our study used high-resolution remote sensing data from Sentinel-2 and Landsat-8 satellites to 

explore the impact of VRH on temporal variation in forest growth and C uptake. Our results 

have shown that Sentinel-2 data is a valid approach to estimate forest biophysical properties 

and biomass productivity because of its high spatial resolution (Lima et al., 2019). Our NDVI 

results indicate that forest photosynthetic capacity and GPP was quite similar among all plots 

prior to harvesting and the establishment of VRH treatments. Any difference in GPP among 

plots were mainly driven by climate variability (Arain et al, 2022). However, after the 

harvesting and establishment of treatments in the winter of 2014, there was a consistent trend 

of increasing NDVI, specifically from 2017 to 2020, with the 55D treatment showing the 

highest NDVI values. Low NDVI values immediately after the harvesting in in 2014 and 2016 

were probably due to both acclimation of trees to new microclimate and drier summer of 2016. 

 

Forest structure has a strong influence on the exchange of energy, water and C with the 

atmosphere (Aussenac, 2000; Collalti et al., 2018; Luyssaert et al., 2007). Different partial 

harvesting intensity and pattern applied in our study created heterogeneity in the spatial 

distribution of residual forest cover and stand microclimate. These forest structural changes 
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can also affect light, nutrient and soil moisture availability (Aussenac, 2000; Boyden et al., 

2012; Palik et al., 1997; Siebers and Kruse, 2019; Zhang et al., 2021). Changes in light, soil 

moisture and other resources can impact photosynthesis and evapotranspiration, thus impacting 

forest productivity (Collalti et al., 2018; Li et al., 2020; Bodo and Arain, 2022). Our study 

results suggest that the 55D treatment had the highest growth rate based on NDVI and GPP. 

This can be attributed to the comparatively higher tree density combined with uniformly spaced 

residual trees in the 55D treatment that provides individual trees with greater light and soil 

moisture availability and a more favorable microenvironment for growth compared to the 55A 

treatment. Our study results are consistent with previous research at this site using tree ring 

growth and sapflow measurements that found the 55D treatment exhibited the highest post-

harvest tree-level growth and C sequestration rates (Zugic et al. 2021) and water use (Bodo and 

Arain, 2022).  

 

Red pine and other plantation forests are an important part of the landscape in the western Great 

Lakes region of North America, providing numerous ecosystem services and economic benefits 

(Buckman et al., 2006; Gilmore and Palik, 2006; Palik and D’Amato, 2019). Therefore, the 

results of our study have broader significance and applicability for forest managers and policy 

makers in the Great Lakes region and eastern North America. Several studies have indicated 

that partial harvesting or thinning can reduce the vulnerability of red pine plantations and 

natural stands to climatic stresses (D’Amato et al., 2013; Jones et al., 2019; Magruder et al., 

2013; Powers et al., 2010).  However, our remote sensing study results have clearly indicated 

that the application of the uniformly dispersed residual canopy retaining more than half of the 

initial basal area (such as 55D) is a viable forest management option that can enhance rates of 

both timber production and C sequestration. Application of this VRH may also help forests to 

better adapt to climate change (Zugic et al., 2021; Bodo and Arain, 2022). Our study results 
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will help in developing new forest management approaches which are tailored to enhance both 

timber production and C sequestration. It will also help in developing forest management 

pathways for nature-based climate solutions.  

 

3.5.2 Study limitations 

Our study focused on estimating forest growth and C uptake in VRH treatments using multi-

dimensional remote sensing data such as from Sentinel and Landsat sources. However, there 

are several challenges when using remote sensing techniques for forest inventories, such as 

scarcity of data, atmospheric noise, cloudy sky conditions, measurement interval differences 

among satellite data sources, and the accessibility of data processing tools. In this regards, more 

frequent drone missions may help to supplement these satellite data. Drone data can also help 

in site-level validation studies. Integration of satellite and drone data with forest C cycle models 

can help to obtain reliable forest biomass estimates.  

 

In forest ecosystems, remote sensing data mainly captures information from the canopy level, 

overlooking the contribution of understory vegetation. It is challenging to accurately quantify 

the contribution of the understory to total forest C uptake (Thrippleton et al., 2016; Landuyt et 

al., 2018). Understory tree regeneration and ground vegetation may play a significant role in 

the rapid recovery of C stocks following stand-replacing forest disturbances because the trees 

present in the understory can capitalize on increased resource availability that enhances 

photosynthetic activity and growth (Brown et al., 2010; Edburg et al., 2012; Williams et al., 

2014). We recognize the importance of understory in estimation of total forest growth and C 

uptake estimates and recommend exploring its relative contribution in future research to 

provide a more accurate evaluation of VRH impacts on forest growth and C sequestration.  
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3.6 Conclusions 

Our study examined the effect of five VRH treatments on forest growth and C sequestration in 

a red pine plantation in the Great Lakes region of southern Ontario, Canada. It presented 

quantitative estimates of GPP for all five VRH treatments and found that retention of more than 

half of the initial basal area in uniform dispersal form (e.g. 55D treatment) exhibited higher 

productivity and C uptake than lower retention levels or an aggregate spatial distribution of 

residual canopy trees. Our study will help researchers and forest managers to develop forest 

management practices tailored to enhance both wood production and C sequestration and to 

achieve climate mitigation and adaptation goals. The data capture and analytical methods 

developed in our study can also be applied to quantify the forest growth and C sequestration at 

larger spatial scales in forested regions.  

 

3.7 Acknowledgment 

This study was funded by the Global Water Futures Program (GWF) and Natural Sciences and 

Engineering Research Council (NSERC) grants awarded to M.A Arain. In kind support from 

the Ontario Ministry of Natural Resources and Forestry (OMNRF), Ontario Ministry of 

Environment, Conservation and Parks, the St. Williams Conservation Reserve Community 

Council (SWCRCC) is gratefully acknowledged. We thank Steve Williams from OMNRF for 

his help and contributions in designing and establishing the VRH experiment. Additional 

thanks to the Natural Resources Canada – Canada Centre for Remote sensing drone team 

(Francis Canisius and Sylvain G. Leblanc) for their help with the fieldwork and data collection. 

We thank our Lab group members for their contributions on flux data measurements. We 

acknowledge Dr. Alemu Gonsamo for his advice and Audrey Heagy from SWCRCC for her 



Ph.D. Thesis – Nur Hussain                     School of Earth, Environment, & Society 

85 
 

continued support for our research project. We also acknowledge to GWF Program – Southern 

Forests Water Futures Project and NSERC grants for providing research funding. 



Ph.D. Thesis – Nur Hussain                     School of Earth, Environment, & Society 

86 
 

3.8 References 

Ali, A., Imran, M., Ali, A., & Khan, M. A. (2022). Evaluating Sentinel-2 red edge through 

hyperspectral profiles for monitoring LAI & chlorophyll content of Kinnow Mandarin 

orchards. Remote Sensing Applications: Society and Environment, 26, 100719. 

Allen, R. G., Tasumi, M., Morse, A., Trezza, R., Wright, J. L., Bastiaanssen, W., Kramber, W., 

Lorite, I., & Robison, C. W. (2007). Satellite-based energy balance for mapping 

evapotranspiration with internalized calibration (METRIC)—Applications. Journal of 

Irrigation and Drainage Engineering, 133, 395–406. 

Ameray, A., Bergeron, Y., Valeria, O., Montoro Girona, M., & Cavard, X. (2021). Forest 

carbon management: A review of silvicultural practices and management strategies 

across boreal, temperate, and tropical forests. Current Forestry Reports, 7, 245–266. 

Arain, M. A., & Restrepo-Coupe, N. (2005). Net ecosystem production in a temperate pine 

plantation in southeastern Canada. Agricultural and Forest Meteorology, 128, 223–

241. 

Arain, M. A., Xu, B., Brodeur, J. J., Khomik, M., Peichl, M., Beamesderfer, E., Restrepo-

Coupe, N., & Thorne, R. (2022). Heat and drought impact on carbon exchange in an 

age-sequence of temperate pine forests. Ecological Processes, 11(7). 

Ashton, M. S., & Kelty, M. J. (2018). The practice of silviculture: Applied forest ecology. John 

Wiley & Sons, Inc. 

Aubry, K. B., Halpern, C. B., & Peterson, C. E. (2009). Variable-retention harvests in the 

Pacific Northwest: A review of short-term findings from the DEMO study. Forest 

Ecology and Management, 258, 398–408. 

Aussenac, G. (2000). Interactions between forest stands and microclimate: Ecophysiological 

aspects and consequences for silviculture. Annals of Forest Science, 57, 287–301. 

Baldocchi, D. D. (2020). How eddy covariance flux measurements have contributed to our 

understanding of global change biology. Global Change Biology, 26(1), 242–260. 

Baldocchi, D., & Penuelas, J. (2019). The physics and ecology of mining carbon dioxide from 

the atmosphere by ecosystems. Global Change Biology, 25, 1191–1197. 

Beamesderfer, E. R., Arain, M. A., & Khomik, M. (2020). The impact of seasonal and annual 

climate variations on the carbon uptake capacity of a deciduous forest within the Great 



Ph.D. Thesis – Nur Hussain                     School of Earth, Environment, & Society 

87 
 

Lakes region of Canada. Journal of Geophysical Research: Biogeosciences, 125, 

e2019JG005389. 

Beese, W. J., Deal, J., Dunsworth, B. G., Mitchell, S. J., & Philpott, T. J. (2019). Two decades 

of variable retention in British Columbia: A review of its implementation and 

effectiveness for biodiversity conservation. Ecological Processes, 8, 33. 

Binet, R., Bergsma, E., & Poulain, V. (2022). Accurate sentinel-2 inter-band time delays. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information 

Sciences, 1, 57-66. 

Bodo, A. V., & Arain, M. A. (2022). Effects of variable retention harvesting on canopy 

transpiration in a red pine plantation forest. Ecological Processes, 11, 1. 

Bodo, A. V., Parker, W. C., Elliott, K. A., & Arain, M. A. (2023). Below canopy 

evapotranspiration in four different variable retention harvesting treatments in a red 

pine plantation forest. Hydrological Processes, 37, e14789. 

Bose, A. K., Harvey, B. D., Brais, S., Beaudet, M., & Leduc, A. (2014). Constraints to partial 

cutting in the boreal forest of Canada in the context of natural disturbance-based 

management: A review. Forestry, 87, 11–28. 

Boyden, S., Montgomery, R., Reich, P. B., & Palik, B. (2012). Seeing the forest for the 

heterogeneous trees: Stand-scale resource distributions emerge from tree-scale 

structure. Ecological Applications, 22, 1578–1588. 

Brown, M., Black, T. A., Nesic, Z., Foord, V. N., Spittlehouse, D. L., Fredeen, A. L., ... & 

Trofymow, J. A. (2010). Impact of mountain pine beetle on the net ecosystem 

production of lodgepole pine stands in British Columbia. Agricultural and Forest 

Meteorology, 150, 254-264. 

Buckman, R. E., Bishaw, B., Hanson, T. J., & Benford, F. A. (2006). Growth and yield of red 

pine in the Lake States. US Department of Agriculture, Forest Service, General 

Technical Report, NC-271. 

Canisius, F., Wang, S., Croft, H., Leblanc, S. G., Russell, H. A. J., Chen, J., & Wang, R. (2019). 

A UAV-based sensor system for measuring land surface albedo: Tested over a boreal 

peatland ecosystem. Drones, 3, 27. 



Ph.D. Thesis – Nur Hussain                     School of Earth, Environment, & Society 

88 
 

Chen, X. L., Zhao, H. M., Li, P. X., & Yin, Z. Y. (2006). Remote sensing image-based analysis 

of the relationship between urban heat island and land use/cover changes. Remote 

Sensing of Environment, 104, 133-146. 

Collalti, A., Trotta, C., Keenan, T. F., Ibrom, A., Bond-Lamberty, B., Grote, R., ... & Matteucci, 

G. (2018). Thinning can reduce losses in carbon use efficiency and carbon stocks in 

managed forests under warmer climate. Journal of Advances in Modeling Earth 

Systems, 10, 2427–2452. 

Creutzig, F., Niamir, L., Bai, X., Callaghan, M., Cullen, J., Díaz-José, J., ... & Ürge-Vorsatz, 

D. (2022). Demand-side solutions to climate change mitigation consistent with high 

levels of well-being. Nature Climate Change, 12(1), 36-46. 

D’Amato, A. W., Bradford, J. B., Fraver, S., & Palik, B. J. (2013). Effects of thinning on 

drought vulnerability and climate response in north temperate forest ecosystems. 

Ecological Applications, 23, 1735–1742. 

Dainelli, R., Toscano, P., Di Gennaro, S. F., & Matese, A. (2021). Recent advances in 

unmanned aerial vehicles forest remote sensing—a systematic review. Part II: Research 

applications. Forests, 2, 397. 

Drever, C. R., Peterson, G., Messier, C., Bergeron, Y., & Flannigan, M. (2006). Can forest 

management based on natural disturbances maintain ecological resilience? Canadian 

Journal of Forest Research, 36, 2285-2299. 

Drusch, M., del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, 

C., Laberinti, P., Martimort, P., Meygret, A., & Spoto, F. (2012). Sentinel-2: ESA’s 

optical high-resolution mission for GMES operational services. Remote Sensing of 

Environment, 120, 25–36. 

Edburg, S. L., Hicke, J. A., Lawrence, D. M., & Thornton, P. E. (2011). Simulating coupled 

carbon and nitrogen dynamics following mountain pine beetle outbreaks in the western 

United States. Journal of Geophysical Research: Biogeosciences, 116, G04033. 

Fassnacht, F. E., White, J. C., Wulder, M. A., & Næsset, E. (2023). Remote sensing in forestry: 

Current challenges, considerations and directions. Forestry: An International Journal 

of Forest Research. 



Ph.D. Thesis – Nur Hussain                     School of Earth, Environment, & Society 

89 
 

Frampton, W. J., Dash, J., Watmough, G., & Milton, E. J. (2013). Evaluating the capabilities 

of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS 

Journal of Photogrammetry and Remote Sensing, 82, 83–92. 

Franklin, J. F., Berg, D. R., Thornburgh, D. A., & Tappeiner, J. C. (1997). Alternative 

silvicultural approaches to timber harvesting: Variable retention harvest systems. In K. 

A. Kohm & J. F. Franklin (Eds.), Creating a forest for the 21st century: The science of 

ecosystem management (pp. 11-139). Island Press. 

Franklin, J. F., Mitchell, R. J., & Palik, B. J. (2007). Natural disturbance and stand development 

principles for ecological forestry. US Department of Agriculture, Forest Service, 

General Technical Report, NRS-19. 

Gilmore, D. W., & Palik, B. J. (2006). A revised manager’s handbook for red pine in the North 

Central region. US Department of Agriculture, Forest Service, General Technical 

Report NC-264. 

Grabska-Szwagrzyk, E., & Tymińska-Czabańska, L. (2023). Sentinel-2 time series: A 

promising tool in monitoring temperate species spring phenology. Forestry: An 

International Journal of Forest Research. 

Guo, Y. P., Zhou, H. F., & Zhang, L. C. (2006). Photosynthetic characteristics and protective 

mechanisms against photooxidation during high temperature stress in two citrus 

species. Scientia Horticulturae, 108, 260–267. 

Han, A., Qing, S., Bao, Y., Na, L., Bao, Y., Liu, X., Zhang, J., & Wang, C. (2021). Short‐term 

effects of fire severity on vegetation based on Sentinel‐2 satellite data. Sustainability, 

13, 432. 

Heino, M., Kummu, M., Makkonen, M., Mulligan, M., Verburg, P. H., Jalava, M., & Räsänen, 

T. A. (2015). Forest loss in protected areas and intact forest landscapes: A global 

analysis. PLOS ONE, 10, e0138918. 

Heinsch, F. A., Zhao, M., Running, S. W., Kimball, J. S., Nemani, R. R., Davis, K. J., Bolstad, 

P. V., Cook, B. D., Desai, A. R., Ricciuto, D. M., Law, B. E., Oechel, W. C., Kwon, 

H., Luo, H., Wofsy, S. C., Dunn, A. L., Munger, J. W., Baldocchi, D. D., Xu, L., & 

Flanagan, L. B. (2006). Evaluation of remote sensing based terrestrial productivity from 

MODIS using regional tower eddy flux network observations. IEEE Transactions on 

Geoscience and Remote Sensing, 44, 1908–1925. 



Ph.D. Thesis – Nur Hussain                     School of Earth, Environment, & Society 

90 
 

Jollife, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent 

developments. Philosophical Transactions of the Royal Society A: Mathematical, 

Physical and Engineering Sciences, 374(2065), 20150202. 

Jones, S. M., Botttero, A., Kastendick, D. N., & Palik, B. J. (2019). Managing red pine stand 

structure to mitigate drought impacts. Dendrochronologia, 57, 125623. 

Kaarakka, L., Cornett, M., Domke, G., Ontl, T., & Dee, L. E. (2021). Improved forest 

management as a natural climate solution: A review. Ecological Solutions and 

Evidence, 2(1), e12090. 

Kaplan, G., Fine, L., Lukyanov, V., Malachy, N., Tanny, J., & Rozenstein, O. (2023). Using 

Sentinel-1 and Sentinel-2 imagery for estimating cotton crop coefficient, height, and 

leaf area index. Agricultural Water Management, 276, 108056. 

Keenan, R. J. (2015). Climate change impacts and adaptation in forest management: A review. 

Annals of Forest Science, 72(2), 145–167. 

Kogan, F. N. (1990). Remote sensing of weather impacts on vegetation in non-homogeneous 

areas. International Journal of Remote Sensing, 11(8), 1405–1419. 

Landsat Science Team. (2011, March 11). Landsat 7 Science Data Users Handbook. NASA. 

http://landsathandbook.gsfc.nasa.gov/inst_cal/prog_sect8_2.html (Accessed: 18 

October 2015). 

Landuyt, D., Perring, M. P., Seidl, R., Taubert, F., Verbeeck, H., & Verheyen, K. (2018). 

Modelling understorey dynamics in temperate forests under global change – Challenges 

and perspectives. Perspectives in Plant Ecology, Evolution and Systematics, 31, 44–54. 

Lastovicka, J., Svec, P., Paluba, D., Kobliuk, N., Svoboda, J., & Hladky, R. (2020). Sentinel-2 

data in an evaluation of the impact of disturbances on forest vegetation. Remote 

Sensing, 12(12), 1914. 

Lausch, A., Borg, E., Bumberger, J., Dietrich, P., Heurich, M., Huth, A., Jung, A., Klenke, R., 

Knapp, S., Mollenhauer, H., Paasche, H., Paulheim, H., & Schröder, B. (2018). 

Understanding forest health with remote sensing, Part III: Requirements for a scalable 

multi-source forest health monitoring network based on data science approaches. 

Remote Sensing, 10(7), 1120. 

Li, C., Barclay, H., Roitberg, B., & Lalonde, R. (2020). Forest productivity enhancement and 

compensatory growth: A review and synthesis. Frontiers in Plant Science, 11, 575211. 



Ph.D. Thesis – Nur Hussain                     School of Earth, Environment, & Society 

91 
 

Lima, T. A., Beuchle, R., Langner, A., Grecchi, R. C., Griess, V. C., & Achard, F. (2019). 

Comparing Sentinel-2 MSI and Landsat 8 OLI imagery for monitoring selective 

logging in the Brazilian Amazon. Remote Sensing, 11(8), 961. 

Looney, C. E., D’Amato, A. W., Palik, B. J., Fraver, S. W., & Kastendick, D. N. (2018). Size-

growth relationship, tree spatial patterns, and tree-tree competition influence tree 

growth and stand complexity in a 160-year red pine chronosequence. Forest Ecology 

and Management, 424, 85–94. 

Löw, M., & Koukal, T. (2020). Phenology modelling and forest disturbance mapping with 

Sentinel-2 time series in Austria. Remote Sensing, 12(24), 4191. 

Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., Papale, D., Piao, S. L., 

Schulze, E. D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., 

Bernhofer, C., Black, K. G., Bonal, D., Bonnefond, J. M., Chambers, J., Ciais, P., & 

Janssens, I. A. (2007). CO2 balance of boreal, temperate, and tropical forests derived 

from a global database. Global Change Biology, 13(12), 2509–2537. 

Magruder, M., Chhin, S., Palik, B., & Bradford, J. B. (2013). Thinning increases climatic 

resilience of red pine. Canadian Journal of Forest Research, 43(10), 878–889. 

Makipaa, R., Abramoff, R., Adamczyk, B., Baldy, V., Biryol, C., Bosela, M., ... & Lehtonen, 

A. (2023). How does management affect soil C sequestration and greenhouse gas fluxes 

in boreal and temperate forests?: A review. Forest Ecology and Management. 

Mao, J., Thornton, P. E., Shi, X., Zhao, M., & Post, W. M. (2012). Remote sensing evaluation 

of CLM4 GPP for the period 2000-09. Journal of Climate, 25(15), 5327–5342. 

Marvin, D. C., Sleeter, B. M., Cameron, D. R., Nelson, E., & Plantinga, A. J. (2023). Natural 

climate solutions provide robust carbon mitigation capacity under future climate change 

scenarios. Scientific Reports, 13(1), 19008. 

Masek, J. G., Goward, S. N., Kennedy, R. E., Cohen, W. B., Moisen, G. G., Schleeweis, K., & 

Huang, C. (2013). United States forest disturbance trends observed using Landsat time 

series. Ecosystems, 16(6), 1087–1104. 

Matsushita, B., Yang, W., Chen, J., Onda, Y., & Qiu, G. (2007). Sensitivity of the enhanced 

vegetation index (EVI) and normalized difference vegetation index (NDVI) to 

topographic effects: A case study in high-density cypress forest. Sensors, 7(11), 2636–

2651. 



Ph.D. Thesis – Nur Hussain                     School of Earth, Environment, & Society 

92 
 

Mayer, M., Prescott, C. E., Abaker, W. E., Augusto, L., Cécillon, L., Ferreira, G. W., ... & 

Viscarra Rossel, R. A. (2020). Tamm review: Influence of forest management activities 

on soil organic carbon stocks: A knowledge synthesis. Forest Ecology and 

Management, 466, 118127. 

McKenzie, S. M., Parker, W. C., & Pisaric, M. J. F. (2023). Tree-ring growth varies with 

climate and stand density in a red pine plantation forest in the Great Lakes region of 

North America. Dendrochronologia, 79, 126091. 

McRoberts, R. E., & Tomppo, E. O. (2007). Remote sensing support for national forest 

inventories. Remote Sensing of Environment, 110(4), 412–419. 

Morell-Monzó, S., Estornell, J., & Sebastiá-Frasquet, M.-T. (2020). Comparison of Sentinel-2 

and high-resolution imagery for mapping land abandonment in fragmented areas. 

Remote Sensing, 12(12), 2062. 

Natural Resources Canada. (2016). The state of Canada’s forests. Annual report 2016. 

Government of Canada. https://cfs.nrcan.gc.ca/pubwarehouse/pdfs/37265.pdf 

Olmedo, G. F., Ortega-Farías, S., de la Fuente-Sáiz, D., Fonseca-Luego, D., & Fuentes-

Peñailillo, F. (2016). Water: Tools and functions to estimate actual evapotranspiration 

using land surface energy balance models in R. The R Journal, 8(2), 352–369. 

Ontl, T. A., Janowiak, M. K., Swanston, C. W., Daley, J., Handler, S., Cornett, M., Hagenbuch, 

S., Handrick, C., McCarthy, L., & Patch, N. (2020). Forest management for carbon 

sequestration and climate adaptation. Journal of Forestry, 118(1), 86–101. 

Palik, B. J., & D’Amato, A. W. (2019). Variable retention harvesting in Great Lakes mixed-

pine forests: Emulating a natural model in managed ecosystems. Ecological Processes, 

8(1), 16. 

Palik, B. J., Mitchell, R. J., Houseal, G., & Pederson, N. (1997). Effects of canopy structure on 

resource availability and seedling responses in a longleaf pine ecosystem. Canadian 

Journal of Forest Research, 27(9), 1458–1464. 

Peng, C., Zhou, X., Zhao, S., Wang, X., Zhu, Q., Piao, S., & Fang, J. (2009). Quantifying the 

response of forest carbon balance to future climate change in northeastern China: Model 

validation and prediction. Global and Planetary Change, 66(3–4), 179–194. 



Ph.D. Thesis – Nur Hussain                     School of Earth, Environment, & Society 

93 
 

Poovey, J. (2021). Evaluating environmental impacts of red pine plantation management on 

plant and soil properties in northern Minnesota (Doctoral dissertation). Retrieved from 

ProQuest Dissertations Publishing. (28001464) 

Pugh, T. A. M., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd, V., & Calle, L. 

(2019). Role of forest regrowth in global carbon sink dynamics. Proceedings of the 

National Academy of Sciences, 116(10), 4382–4387. 

Ramachandra, T. V., Bharath, H. A., & Sowmyashree, M. V. (2019). Monitoring forest 

landscape dynamics using geoinformatics in Shimoga district, India. Journal of 

Environmental Management, 232, 1177–1193. 

Ratcliffe, S., Holzwarth, F., Nadrowski, K., Levick, S., Wirth, C., & Scherer-Lorenzen, M. 

(2015). Tree neighbourhood matters – Tree species composition drives diversity–

productivity patterns in a near-natural beech forest. Forest Ecology and Management, 

335, 225–234. 

Reyes, J. D., Acosta, J., Gallego, M., & Manjarrez, J. R. (2021). Land surface temperature and 

normalized difference vegetation index assessment using Sentinel-2 and Landsat 8 OLI 

data. International Journal of Remote Sensing, 42(7), 2535–2555. 

Reyer, C. P. O., Silveyra Gonzalez, R., Dolos, K., Hartig, F., Hauf, Y., Noack, M., Rammig, 

A., Rammig, A., & Lasch-Born, P. (2020). The PROFOUND database for evaluating 

vegetation models and simulating climate impacts on European forests. Earth System 

Science Data, 12(1), 41–64. 

Royer, A., & Poirier, S. (2010). Satellite data in situ measurements for studying snow cover 

and climate change impacts in Canada. Climate Change, 98, 151–173. 

Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., ... & Morel, 

A. (2011). Benchmark map of forest carbon stocks in tropical regions across three 

continents. Proceedings of the National Academy of Sciences, 108(24), 9899–9904. 

Sader, S. A., Bertrand, M., & Wilson, E. H. (2003). Satellite change detection of forest harvest 

patterns on an industrial forest landscape. Forest Science, 49(3), 341–353. 

Sáez-de-Cámara, E., González-Aparicio, I., Hidalgo, J., Monteiro, A., Alonso, L., Knap, W. 

H., & Lozano, J. A. (2015). Assessment of future forest fire risk in the Pyrenees based 

on ENSEMBLES regional climate projections. Forest Ecology and Management, 321, 

18–29. 



Ph.D. Thesis – Nur Hussain                     School of Earth, Environment, & Society 

94 
 

Sharma, R., Maraseni, T., Cockfield, G., & Lal, P. (2017). An analysis of the delays in REDD+ 

project approval in Indonesia. Forest Policy and Economics, 83, 56–65. 

Skakun, R. S., Franklin, S. E., & Wulder, M. A. (2003). Sensitivity of the thematic mapper 

enhanced wetness difference index to detect mountain pine beetle red attack damage. 

Remote Sensing of Environment, 86(4), 433–443. 

Song, X.P., Tan, P. Y., Edwards, P., & Richards, D. (2022). Global patterns of the contributions 

of urban greenspaces to public health and environmental quality. Environmental 

Research Letters, 17(5), 053001. 

Spring, D. A., Kennedy, M. J., Chomitz, K. M., Mourato, S., Fraser, A. S., & Cacho, O. J. 

(2008). Optimal forest rotation with carbon sequestration and carbon markets: A new 

policy for RIL logging? Ecological Economics, 65(3), 572–579. 

Stanley, T. R., Nelson, J. P., & Newmark, W. D. (2021). Effects of roads on the distribution of 

forest mammals in Tanzanian national parks. Conservation Biology, 35(2), 599–609. 

Swanson, M. E., Franklin, J. F., Beschta, R. L., Crisafulli, C. M., DellaSala, D. A., Hutto, R. 

L., Lindenmayer, D. B., & Swanson, F. J. (2011). The forgotten stage of forest 

succession: Early-successional ecosystems on forest sites. Frontiers in Ecology and the 

Environment, 9(2), 117–125. 

Thom, D., & Seidl, R. (2016). Natural disturbance impacts on ecosystem services and 

biodiversity in temperate and boreal forests. Biological Reviews, 91(3), 760–781. 

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring 

vegetation. Remote Sensing of Environment, 8(2), 127–150. 

Van der Plas, F., Manning, P., Allan, E., Scherer-Lorenzen, M., Verheyen, K., Wirth, C., 

Zavala, M. A., & Fischer, M. (2016). Jack-of-all-trades effects drive biodiversity-

ecosystem multifunctionality relationships in European forests. Nature 

Communications, 7, 11109. 

Verkerk, P. J., Mavsar, R., Giergiczny, M., Lindner, M., Edwards, D., & Schelhaas, M.-J. 

(2014). Assessing impacts of intensified biomass production and biodiversity 

protection on ecosystem services provided by European forests. Ecosystem Services, 9, 

155–165. 



Ph.D. Thesis – Nur Hussain                     School of Earth, Environment, & Society 

95 
 

Villamor, G. B., & van Noordwijk, M. (2016). Gender specific land use decisions and 

implications for ecosystem services in semi-matrilineal Sumatra. Global 

Environmental Change, 39, 69–80. 

Visser, M. D., van Breugel, M., & Bongers, F. (2020). The global importance of liana forests. 

Nature Plants, 6, 317–318. 

Vlam, M., Baker, P. J., Bunyavejchewin, S., & Zuidema, P. A. (2014). Temperature and rainfall 

strongly drive temporal growth variation in Asian tropical forest trees. Oecologia, 

174(4), 1449–1461. 

Wang, W., Qiao, X., Pan, J., Qiao, Y., Yan, C., Li, Y., & Zhao, J. (2020). Advances in high-

throughput phenotyping in forestry: Implications for forest breeding and genetic 

resource management. Forestry, 93(2), 263–272. 

Waring, R. H., & Running, S. W. (2007). Forest ecosystems: Analysis at multiple scales (3rd 

ed.). Academic Press. 

Wegner, K., & Kraft, R. (2016). How forest management strategies affect biodiversity and 

habitat structure in temperate forests. Forest Ecology and Management, 359, 206–215. 

White, J. C., Wulder, M. A., Varhola, A., Vastaranta, M., Coops, N. C., Cook, B. D., Pitt, D., 

& Woods, M. (2013). A best practices guide for generating forest inventory attributes 

from airborne laser scanning data using an area-based approach. Forestry, 86(5), 463–

479. 

Williams, C. A., Gu, H., MacLean, R., Masek, J., & Collatz, G. J. (2016). Disturbance and the 

carbon balance of US forests: A quantitative review of impacts from harvests, fires, 

insects, and droughts. Global and Planetary Change, 143, 66–80. 

Wu, J., Yu, Q., Zha, D., Yan, B., & Tian, L. (2022). Mapping annual forest cover in the Asia-

Pacific region from 2000 to 2020 using time-series Landsat images. Remote Sensing, 

14(5), 1238. 

Zhu, Z., & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat 

imagery. Remote Sensing of Environment, 118, 83–94 

  



Ph.D. Thesis – Nur Hussain                     School of Earth, Environment, & Society 

96 
 

3.9 Supplementary  

3.9.1 Remote Sensing Indices 

The NDVI was calculated using Equation 3.5 (Rouse et al., 1974),  

NDVI = (R800 – R670)/(R800+R670)     (3.5) 

where Ri is reflectance at the band centered at a given wavelength i. 

Sentinel-2 and Landsat-8 provides a potential assessment of plant ecosystems through Soil 

Adjusted Vegetation Index (SAVI) measurement at a high-resolution surface cover. SAVI was 

calculated for GPP analysis using following equation,  

 

SAVI = (1 + L) × (RNIR − Rred) / (L + RNIR + Rred)   (3.6) 

 

where RNIR is the reflectance radiance in the infrared band, and Rred is the reflectance or 

radiance in a red band; L is a soil correction factor that by default uses L=0.5 and suggested 

value of L=0.1 (Allen et al., 2007). This value varies with the amount of coverage of green 

vegetation, in very high coverage vegetation regions, L=0, and areas with no green vegetation, 

L=1 (Olmedo et al., 2016). 

 

3.9.2 Remote Sensing GPP 

Several approaches can be used to estimate GPP where the MODIS GPP data is widely applied 

on a global and regional scale. However, the MODIS-based GPP data are moderate to low-

resolution, which makes complex for plot-level application. In this circumstance, our study 

focused on a combined approach to produce plot-level GPP from satellite and eddy covariance 

flux measurements using the Vegetation Photosynthesis Model (VPM) (Zhang et al., 2016). 
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The VPM GPP product provides a satisfactory level of biomass estimation for the North 

American region (Zhang et al., 2016). Our study utilized Sentinel S2, Landsat, EC-measured 

PAR, and temperature and references GEP data from Turkey Point Flux Station (TP39 or CA-

TP4; Arain et al., 2022) using the following equations: 

GPP = APARchl × εg       (3.7) 

APARchl = PAR ×  fPARchl      (3.8) 

fPARchl = (NDVI – 0.1) × 1.25     (3.9) 

εg=  ε0 × Tscalar ×Wscalar      (3.10) 

𝑇𝑠𝑐𝑎𝑙𝑎𝑟 =
(𝑇−𝑇𝑚𝑎𝑥)×(𝑇−𝑇𝑚𝑖𝑛)

(𝑇−𝑇𝑚𝑎𝑥)×(𝑇−𝑇𝑚𝑖𝑛)−(𝑇−𝑇𝑜𝑝𝑡)
2     (3.11) 

𝑊𝑠𝑐𝑎𝑙𝑎𝑟 =
1+𝐿𝑆𝑊𝐼

1+𝐿𝑆𝑊𝐼𝑚𝑎𝑥
       (3.12) 

LSWI = (RNIR – RSWIR)/(RNIR + RSWIR)   (3.13) 

 

where, APARchl is absorbed photosynthetically active radiation (PAR); fPARchl is the 

fraction of PAR estimated by chlorophyll or linear function of NDVI, which is modified from 

Xiao et al. (2004). Here, 0.1 and 1.25 are constants to adjust for vegetated land and validated 

from Solar-induced Chlorophyll Fluorescence (SIF) (Zhang et al., 2017); εg is the light use 

efficiency (LUE), ε0 is the apparent quantum yield or maximum light use efficiency (µmol 

CO2/ µmol PAR); Tscalar, Wscalar are the downward-parameter scalars for the effects of 

temperature and water on LUE by C3/C4 photosynthetic pathways;  T, 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥,and 𝑇𝑜𝑝𝑡 

refer to the mean, maximum, minimum, and optimum temperature for photosynthesis, 

respectively (we useed 10 to 16 hours of local time measurement); LSWI is the land surface 

water index. 
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Table 3.1. Mean annual photosynthetically active radiation (PAR), air temperature (Tair), daily mean vapor pressure deficit (VPD) and total 

annual precipitation (P) and growing season (April-October) precipitation (PGS) measured at the CA-TP4 site from 2010 to 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year 

PAR (µmol m-2 s-1) 

(Minimum; 

Maximum) 

Average Tair (°C) 

(Minimum; 

Maximum) 

VPD (kPa) 

(Minimum; 

Maximum) 

P (mm) 

(Minimum; 

Maximum) 

PGS (mm) 

(Minimum; 

Maximum) 

2010 
334±206 

(19; 761) 

9.5±10 

(-14.2; 27.5) 

0.34±0.2 

(0; 1.30) 

896±6.0 

(0; 52.8) 

535±6.8 

(0; 52.8) 

2011 
317±222 

(16; 749) 

9.6±10 

(-14.3; 29.6) 

0.36±0.3 

(0; 1.46) 

1293±7.1 

(0; 39.7) 

589±7.1 

(0; 39.7) 

2012 
346±221 

(13; 768) 

11.2±9 

(-11.5; 28.6) 

0.48±0.3 

(0.02; 1.93) 

1001±6.4 

(0; 50.2) 

601±8.0 

(0; 50.2) 

2013 
336±215 

(16; 773) 

9.1±10 

(-13.7; 27.9) 

0.4±0.2 

(0.02; 1.47) 

1266±8.8 

(0; 81.8) 

614±10.2 

(0; 81.8) 

2014 
345±212 

(9; 784) 

8.1±11 

(-18.6; 25.8) 

0.38±0.2 

(0.02; 1.38) 

1429±8.6 

(0; 78.1) 

574±8.2 

(0; 60.2) 

2015 
353±209 

(20; 773) 

9.5±11 

(-20.7; 26.7) 

0.43±0.3 

(0.03; 1.52) 

811±6.5 

(0; 61.4) 

500±8.1 

(0; 61.4) 

2016 
357±219 

(27; 778) 

10±10 

(-15.8; 27.4) 

0.47±0.3 

(0.01; 1.74) 

778±4.8 

(0; 28.6) 

347±4.7 

(0; 28.6) 

2017 
330±210 

(19; 760) 

9.9±9 

(-14.6; 25.7) 

0.42±0.3 

(0; 1.59) 

1153±7.5 

(0; 80.5) 

474±8.1 

(0; 80.5) 

2018 
325±217 

(15; 764) 

9.4±10 

(-17.9; 27.1) 

0.42±0.3 

(0.03; 1.61) 

1649±7.3 

(0; 60.2) 

851±7.6 

(0; 60.2) 

2019 
314±198 

(14; 764) 

8.9±10 

(-18.6; 27.0) 

0.42±0.3 

(0.03; 1.47) 

1122±5.6 

(0; 35.9) 

554±5.3 

(0; 35.9) 

2020 
334±225 

(12; 870) 

10.2±9 

(-11.4; 27.6) 

0.5±0.3 

(0.03; 1.70) 

1127±6.8 

(0; 93.5) 

577±8.1 

(0; 93.5) 
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Table 3.2. Daily mean (a) NDVI (+ 1 SD) for the growing season and (b) annual total GPP (g C m-2 y-1) for each VRH treatment from 2010 to 

2020. VRH treatments were applied in February 2014. (c) Observed annual total GPPEC (g C m-2 y-1) using eddy covariance (EC) technique in 

the adjacent white pine plantation is also shown. 

Year 

VRH 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

(a) NDVI 

33A 0.58 ±0.07 0.56 ±0.07 0.57 ±0.08 0.56 ±0.1 0.42 ±0.10 0.53 ±0.07 0.47 ±0.07 0.48 ±0.07 0.51 ±0.11 0.56 ±0.08 0.57 

±0.12 

55A 0.58 ±0.06 0.56 ±0.07 0.57 ±0.07 0.54 ±0.08 0.43 ±0.11 0.52 ±0.07 0.50 ±0.08 0.53 ±0.08 0.54 ±0.08 0.57 ±0.08 0.59 

±0.10 

33D 0.58 ±0.07 0.56 ±0.06 0.57 ±0.08 0.55 ±0.10 0.45 ±0.12 0.52 ±0.08 0.50 ±0.06 0.54 ±0.08 0.55 ±0.10 0.59 ±0.09 0.61 

±0.11 

55D 0.57 ±0.08 0.56 ±0.07 0.57 ±0.09 0.57 ±0.11 0.50 ±0.11 0.58 ±0.08 0.55 ±0.08 0.59 ±0.11 0.62 ±0.11 0.67 ±0.13 0.69 

±0.11 

CN 0.58 ±0.08 0.56 ±0.06 0.56 ±0.08 0.54 ±0.12 0.51 ±0.13 0.57 ±0.09 0.52 ±0.09 0.57 ±0.10 0.59 ±0.09 0.67 ±0.07 0.64 

±0.11 

(b) GPP 

33A 1746 1703 1730 1622 1492 1615 1407 1642 1624 1528 1675 

55A 1742 1686 1722 1633 1473 1554 1471 1638 1773 1472 1650 

33D 1734 1690 1715 1611 1489 1570 1432 1688 1670 1529 1642 

55D 1729 1703 1721 1660 1506 1509 1554 1753 1744 1827 1834 

CN 1719 1705 1708 1636 1591 1669 1571 1864 1787 1834 1840 

Observed GPPEC 

GPPEC 1571 1521 1511 1553 1705 1663 1650 1678 1594 1603 1649 



Ph.D. Thesis – Nur Hussain                     School of Earth, Environment, & Society 

100 
 

 

 

Figure 3.1. a) Location map of Canada, b) Southern Ontario regional map and c) Aerial view 

of location of the variable retention harvesting treatment plots of the red pine plantation (1931). 

Eddy covariance flux tower in the adjacent white pine plantation (1939 known as CA-TP4 in 

global Fluxnet) is also shown. 
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Figure 3.2. Workflow of the data analysis to estimate satellite gross primary productivity 

(GPP) where PAR is photosynthetically active radiation; APARchl is absorbed 

photosynthetically active radiation; fPARchl is the fraction of PAR estimated by chlorophyll 

or linear function of normalized difference vegetation index (NDVI). εg is light use efficiency 

(LUE), ε0 is the apparent quantum yield or maximum LUE (µmol CO2/ µmol m-2 s-1 PAR); 

Tscalar, Wscalar are the downward-parameter scalars for the effects of temperature and water 

on LUE by C3/C4 photosynthetic pathways;  T, 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥, and 𝑇𝑜𝑝𝑡 refer to the mean, 

maximum, minimum, and optimum temperature for photosynthesis, respectively; LSWI is the 

land surface water index.  Data analysis follows Zhang et al., (2016 and 2017). 
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Figure 3.3. Time series of daily mean or total meteorological variables from 2010 to 2020. (a) downward photosynthesis active radiation (PAR), 

(b) air temperature above canopy at 28 m height, (c) vapor pressure deficit (VPD) and (d) daily total precipitation (P).  
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Figure 3.4. Yearly cumulative total precipitation (P) from 2010 to 2020. 
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Figure 3.5.  Spatiotemporal patterns of mean daily normalized difference vegetation index 

(NDVI) by moth over the growing season (April to October) for each variable retention 

harvesting treatment, the missing data filled from available nearest satellite observation from 

Landsat and Sentinel-2.
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Figure 3.6. (a) Time series of mean daily normalized difference vegetation index (NDVI) for each variable retention harvesting treatment over 

the growing season (April to October) from 2010 to 2020 and (b) time series of mean daily gross primary productivity (GPP) trajectory from 

2010 to 2020 for each treatment. Fitted trend lines (dashed lines) to daily mean NDVI of each treatment from 2010 to 2020 are also shown.  
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Figure 3.7. Normalized difference vegetation index (NDVI) contribution to principal component analysis (PCA) for each variable retention 

harvesting treatment from 2014 to 2020. 
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Figure 3.8. Comparison of mean daily normalized difference vegetation index (NDVI) 

values for all variable retention harvesting treatments on (a) 25 June 2019 and (b) 17 July 

2020. The linear relationship between satellite-retrieved GPP and drone-measured NDVI in 

panel c-g respectively for 33A, 55A, 33D, 55D and CN treatment.  The relationship between 

satellite and drone observation of NDVI in (h). Linear regression equation, R2 and RMSE are 

shown in each panel of c to h.
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Figure 3.9. (a-e) Satellite-derived gross primary productivity (GPP) from 2010 to 2020 for each variable retention harvesting treatment and (f) 

GPP from eddy covariance flux measurements over the entire study period.     
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Figure 3.10. (a) Mean daily gross primary productivity (GPP) for each variable retention 

harvesting treatment from remote sensing data and adjacent white pine forest using eddy 

covariance flux observations from 2010 to 2020 and (b) box plot of post-harvest daily mean 

GPP for each variable retention harvesting treatment and adjacent white pine forest from 

2014 to 2020. 
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CHAPTER 4 

ASSESSMENT OF SPONGY MOTH INFESTATION IMPACTS ON FOREST 

PRODUCTIVITY AND CARBON LOSS USING THE SENTINEL-2 SATELLITE 

REMOTE SENSING AND EDDY COVARIANCE FLUX DATA 

 

4.1 Abstract 

Deciduous forests in eastern North America experienced a widespread and intense spongy 

moth (Lymantria dispar) infestation in 2021. This study quantified the impact of this spongy 

moth infestation on carbon (C) cycle in forests across the Great Lakes region in Canada, 

utilizing high-resolution (10 × 10 m2) Sentinel-2 satellite remote sensing images and eddy 

covariance (EC) flux data. Study results showed a significant reduction in leaf area index (LAI) 

and gross primary productivity (GPP) values in deciduous and mixed forests in the region in 

2021. Remote sensing derived, growing season mean LAI values of deciduous (mixed) forests 

were 3.66 (3.18), 2.74 (2.64), and 3.53 (2.94) m2 m−2 in 2020, 2021 and 2022, respectively, 

indicating about 24 (14)% reduction in LAI, as compared to pre- and post-infestation years. 

Similarly, growing season GPP values in deciduous (mixed) forests were 1338 (1208), 868 

(932), and 1367 (1175) g C m−2, respectively in 2020, 2021 and 2022, showing about 35 (22)% 

reduction in GPP in 2021 as compared to pre- and post-infestation years. This infestation 

induced reduction in GPP of deciduous and mixed forests, when upscaled to whole study area 

(178,000 km2), resulted in 21.1 (21.4) Mt of C loss as compared to 2020 (2022), respectively. 

It shows the large scale of C losses caused by this infestation in the Canadian Great Lakes 

region. The methods developed in this study offer valuable tools to assess and quantify natural 

disturbance impacts on the regional C balance of forest ecosystems by integrating field 

observations, high-resolution remote sensing data and models. Study results will also help in 

developing sustainable forest management practices to achieve net-zero C emission goals 

through nature-based climate change solutions. 
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4.2 Introduction 

Forest ecosystems cover more than 30% of the terrestrial area and play a crucial role in the 

global carbon (C) cycle through the processes of photosynthesis and respiration (FAO, 2010; 

Ahmed, 2018). The balance between these two opposing fluxes determines whether the forest 

ecosystem is C sink or source (DeLucia et al., 2007; Litton et al., 2007; Schmid et al., 2016; 

Chi et al., 2021). Forests have consistently demonstrated higher levels of gross primary 

productivity (GPP) and established the Earth’s most substantial C pools (Peters et al., 2007). 

Forests in North America are estimated to contribute approximately 76% of the region’s net 

terrestrial C sequestration (Zhao et al., 2021). In Canada, forest ecosystems have accumulated 

on average 173 million tons of C per year over much of the past century (Gray et al., 2006; 

Hengeveld et al. 2008). However, this rate of C sequestration can be influenced by natural 

disturbances such as wildfires and insect infestations (Kurz et al., 2002; Kalamandeen et 

al., 2023). 

 

In North America, frequent outbreaks of insect infestations including mountain pine beetle 

(Dendroctonus ponderosae) infestation in western parts and spongy moth (Lymantria dispar) 

infestations in eastern regions have been the major factors impacting forest growth, health and 

C balance (Kurz et al., 2002). The spongy moth is a non-native species originally from Europe 

and Asia (Joria et al. 1991; Wang et al., 2022), that was first accidentally introduced in Boston 

area in USA in 1869 (Williams et al., 1985; Picq et al., 2023). Since then, it has expanded its 

range from New England to southward in Virginia to North Carolina and westward in 

Wisconsin, Michigan and the Great Lakes regions in USA and Canada (De Beurs and 

Townsend, 2008; Hajek et al., 2021). Spongy month causes defoliation of various deciduous 

and mixed forests, including oak (Quercus), birch (Betula), aspen (Populus), sugar maple (Acer 

saccharum), American beech (Fagus grandifolia), balsam fir (Abies balsamea), and in sever 

https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR28
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR1
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR22
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR72
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR16
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR66
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR95
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR85
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR88
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR67
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR21
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
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infestation cases eastern white pine (Pinus strobus) and Colorado blue spruce (Picea pungens). 

The spongy moth’s life cycle involves egg dispersion before April, with early-stage caterpillars 

persisting until mid-May, late-stage caterpillars emerging in June, pupae developing in mid-

July, and adult moths appearing by mid-August (Government of Ontario, 2024). Defoliation 

typically begins in the early caterpillar stage and intensifies throughout the late caterpillar stage 

from June to August. 

 

In Eastern North America, spongy moth outbreaks have occurred roughly every seven to ten 

years with the past major or significant infestations recorded in 1981, 1985, 1991, 2002, 2008 

and 2021 (ONDMNRF, 2021; OMNRF, 2024). Since 1970, it is estimated that over 30 million 

hectares of forest have experienced defoliation due to spongy moth infestation (De Beurs and 

Townsend, 2008; Hajek et al., 2021). The spongy moth outbreak of 2021 was the largest on 

record in the region where almost 1.78 million hectares of forests were impacted in the province 

of Ontario, Canada and 2.5 million hectares affected in the United States (USDA, 2023; 

OMNRF, 2024). In Ontario, 17,797 km2 forest area was severely impacted by the infestation 

(OMNRF, 2024). The large-scale 2021 spongy moth defoliation severely impacted C 

sequestration capabilities of forest ecosystems in both Canada and the USA and posed a 

considerable challenge for the health and growth of forests (Chung et al., 2021). With about 

595 million hectares of non-affected forests in North America that are climatically suitable 

habitats for spongy moth expansion, future outbreaks may potentially pose a major challenge 

for forest growth, health and C uptake in the region (Gray, 2004; Kalamandeen et al., 2023). 

Therefore, there is a need to develop effective forest monitoring and management strategies 

and develop integrated methods to quantify the loss of C caused by these infestations, which 

are expected to become more widespread, intense and frequent in future due to climate change 

(De Beurs and Townsend, 2008; Harvey et al., 2022). 

https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR21
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR82
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR17
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR21
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
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Remote sensing techniques have been effectively employed for estimating spongy moth 

defoliation areas since the mid-1980s utilizing Earth observatory satellite imagery from 

platforms such as Landsat (Williams et al., 1985; Joria et al., 1991; White et al., 2017), SPOT-

1 (Ciesla et al., 1989), and MODIS (De Beurs and Townsend, 2008). These satellite systems 

typically classify regions impacted by spongy moth infestations into different categories, 

including light, moderate, and heavy defoliation, while also identifying regions of healthy 

forests (Williams et al., 1985; Ciesla et al., 1989; Joria et al., 1991; Kovalev et al., 2023). 

However, the precise categorization of the intensity of spongy moth infestation has been 

challenging, primarily due to the shorter duration of spongy moth outbreak and low or moderate 

resolution of satellite imagery (e.g. from MODIS, SPOT, and Landsat Satellites). Recent 

advances in high-resolution remote sensing techniques have significantly improved the 

accuracy of remote sensing images, enabling not only the detection of defoliation areas but also 

providing capabilities for the precise measurements of the extent of these events and 

quantifying defoliation impacts on C sequestration (Townsend et al., 2004; Kovalev et 

al., 2023). It allows systematic assessment of the influence of spongy moth infestations on 

forest ecosystems and their C balances. 

 

Sentinel-2A and 2B satellites provide high-resolution (10 × 10 m2) images that are very 

suitable for monitoring insect infestation such as spongy moth defoliation and for quantifying 

forest C losses through the exploration of vegetation indices (VIs), and estimation of GPP 

(Hussain et al., 2024). Several studies in the literature have successfully estimated infestation 

impact on forest growth and health by utilizing VIs such as the normalized difference 

vegetation index (NDVI) and the enhanced vegetation index (EVI) (Carter and Knapp, 2001; 

Fraser & Latifovic, 2005; Eklundh et al., 2009). However, studies focusing on the 

https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR88
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR87
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR18
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR21
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR88
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR18
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR79
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR12
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR32
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR25
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quantification of the effects of insect defoliation on forest C dynamics has been limited (De 

Beurs and Townsend, 2008; Senf et al., 2017; Kovalev et al., 2023). 

 

The primary aim of this study is to determine the impact of 2021 spongy moth (Lymantria 

dispar) infestations on forest growth and productivity in the Great Lake region in Canada using 

high-resolution (10 × 10 m2) Sentinel-2 satellite remote sensing data and eddy covariance (EC) 

flux observations from 2020 to 2022. The specific objectives of this study are to: (i) estimate 

seasonal variations and trends in the leaf area index (LAI) using high resolution remote sensing 

data; (ii) determine forest photosynthetic uptake and gross primary productivity (GPP) using 

observed eddy covariance flux and remote sensing data; and (iii) quantify carbon (C) losses 

across the region because of this wide spread and server spongy moth infestation. To delineate 

distinct vegetation categories within the study area, the study employed a machine learning-

based land use/land cover (LULC) classification scheme using Sentinel-2 data in the Google 

Earth Engine (GEE) platform. An examination of the suitability of utilizing LAI to measure 

the biomass and GPP of various affected vegetation cover types across the region was also 

conducted. These assessments will contribute to the development of sustainable forest 

management strategies and help to achieve net zero carbon goals through nature-based climate 

change solutions. 

 

4.3 Materials and Methods 

4.3.1 Study area 

The study area covers a region from 75° W to 84° W longitude and 42° N to 48° N latitude, 

situated along the shores of Lake Ontario, Lake Erie, and Lake Huron, encompassing 

approximately 178,000 km2 in southern and central Ontario, Canada (Figure. 4.1). Much of this 

https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR21
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR73
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#Fig1
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area is part of Great Lakes-St. Lawrence forest is dominated by different ages of hardwood 

forests including a variety of tree species such as sugar maple (Acer saccharum), red maple 

(Acer rubrum), white oak (Quercus alba), red oak (Quercus rubra), yellow birch (Betula 

alleghaniensis), basswood (Tilia americana), white pine (Pinus strobus), red pine (Pinus 

resinosa), Eastern hemlock (Tsuga canadensis) and white cedar (Thuja occidentalis). 

Deciduous, conifer and mixed forests cover up to 62% land of this area. The southern latitudes 

of the study area are dominated by cropland such as corn, soybean, and forage for livestock 

production, as well as deciduous forests which cover about 10% of the area (OMNRF, 2024). 

The remaining land is categorized as primary wetlands or urban areas. The northern parts of 

study area is part of the Boreal forest and the Georgian Bay lowlands forest, while the central 

and southern forests are also characterized as Carolinian forests. The southern region is more 

conducive to agriculture, more densely populated, and urbanized. In contrast, the central and 

northern regions of the study areas are mountainous terrain covered with forests and have a 

relatively untouched environment (Baldwin et al., 2000; Shah et al., 2022). 

 

The climate of the study area is characterized as cool continental, which is influenced by 

regional factors due to area's proximity to the Great Lakes. The mean annual precipitation of 

786 mm year−1 based on observations recorded at the Toronto Pearson Airport Weather Station 

during the normal climate period from 1991 to 2020 (Environment and Climate Change 

Canada, 2023) where 14% of the precipitation fell as snow. The mean annual temperature 

varies across the region depending on latitude, with mean annual temperature of 8.2 °C from 

1991 to 2020 at the Toronto Pearson airport weather station (Environment and Climate Change 

Canada, 2023). Additionally, mean temperature during the growing season fluctuates between 

15 and 30 °C (Wazneh et al., 2017). 

https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR6
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR74
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR27
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR27
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR86
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4.3.2 Remote sensing and observed eddy covariance flux datasets 

Sentinel-2A and Sentinel-2B (S2) satellites of the COPERNICUS satellite systems of the 

European Union's earth observation program (Drusch et al., 2012) provide high-resolution 

datasets for terrestrial ecosystem monitoring (Löw & Koukal, 2020). The Sentinel-2 

multispectral instrument (MSI) system delivers 13 spectral bands, including 10 × 10 m2 spatial 

resolution of visible and near-infrared (NIR) and 20 × 20 m2 spatial resolution of short-wave 

infrared (SWIR) spectrum with up to five-day revisiting time (Drusch et al., 2012; Sun et 

al., 2021). This study used Sentinel-2 data to calculate vegetation indices (VIs) such as 

normalized difference vegetation index (NDVI), and leaf area index (LAI) for biomass 

estimation. Sentinel-2 satellite datasets were downloaded from https://earthexplorer.usgs.gov/. 

Sentinel-2 (S2) data was also used to estimate GPP while utilizing radiative model and 

observed eddy covariance (EC) flux data. 

 

The observed EC flux data were obtained from Turkey Point Environmental Observatory 

(Arain et al., 2022; Beamesderfer et al., 2020; Latifovic and Arain, 2024). These sites are 

known as the Canadian Turkey Point deciduous forest sites (CA-TPD) including four different 

EC flux stations (TP-Ag, TP39 TP02and TPD) and associated with the Global Water Futures 

Observatory Program, Ameriflux and Global Fluxnet network (Arain, 2018). Although EC flux 

and meteorological variables have been continuously measured at this site since 2012, 

CO2 fluxes for three years, i.e. 2020 (pre-infestation), 2021 (infestation) and 2022 (post-

infestation) were used in the analysis presented in this study. In 2021 spongy month infestation 

was quite severe at our forest site where majority of deciduous trees were defoliated as shown 

in Figure 4.2 and further discussed in Latifovic and Arain (2024). The quality control of EC 

https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR23
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR23
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR77
https://earthexplorer.usgs.gov/
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR5
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR7
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR4
https://link.springer.com/article/10.1186/s13717-024-00520-w#Fig2
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
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flux and meteorological data was conducted utilizing the Biometeorological Analysis, 

Collection, and Organizational Node (BACON) software, which was developed by our lab 

(Brodeur, 2014). Outliers within the dataset were detected and eliminated through the BACON 

software and small gaps in the dataset were filled through linear interpolation from the onsite 

data. Further details of EC fluxes and meteorological measurements, data gap filling and 

partitioning of observed CO2 flux in ecosystem respiration and GPP are given in Latifovic and 

Arain (2024). In addition, no forest management activity had taken place at the forest in recent 

years. 

 

4.3.3 Land use and land cover (LULC) classification  

The GEE platform's machine-learning approach was utilized to create cloud-free Sentinel-2 

data for the LULC analysis (Nasiri et al., 2022). The GEE cloud computing approach was 

utilized to collect images and process data for the growing season of 2020 (Figure 5.1). GEE-

based machine learning classifier, support vector machine (SVM) was used to classify six 

primary land cover categories, namely water bodies, urban areas, agricultural land, coniferous 

forest, deciduous forest and mixed forest (Sheykhmousa et al., 2020). Each land cover category 

was assessed using 650 ground point samples to extract per-band pixel values from the 

Sentinel-2 dataset, ensuring that the data used had minimum cloud cover (less than 5%). The 

evaluation of classification accuracy provided a comparison between LULC classes derived 

from the training point and data obtained during the testing phase (Nasiri et al., 2022), which 

involved a total of 3900 ground point samples. This accuracy assessment was performed using 

confusion matrices (Table 4.1). The overall accuracy based on these confusion matrices was 

95.7%. 

 

https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR10
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#Fig1
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR75
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#Tab1
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The analysis revealed that coniferous forests occupied the largest land area, covering 

43,017 km2, which represents 24.29% of the total studied area. Agriculture was the second-

largest land cover category, covering 42,294 km2, accounting for 23.88% of the total area. 

Deciduous forests covered 36,574 km2, constituting 20.64% of the total area and mixed forests 

occupied 23,936 km2, making up to 13.51% of the total area. Additionally, water bodies and 

wetlands covered 13,053 km2, covering 7.37% of the total area, while the urban areas occupied 

19,256 km2, covering 10.87% of the total area. 

 

4.3.4 Retrieval of leaf area index (LAI) 

LAI was calculated using the Sentinel-2 data and the PROSAIL model which is the 

combination of PROSPECT (Jacquemoud and Baret, 1990; Feret et al., 2008) and SAIL model 

(Verhoef, 1984). The PROSPECT model provides leaf optical properties and the SAIL model 

provides plant canopy reflectance (Sun et al., 2021). The PROSPECT model measures leaf 

hemispherical reflectance and transmittance to define leaf optical elements at 400–2500 nm 

through six input parameters: leaf structure parameter (N, unitless), leaf chlorophyll content 

(Cab), carotenoid content (Car), brown pigment content (Cbrown), equivalent water thickness (Cw) 

and dry matter content (Cm) (Xu et al., 2019). The SAIL model calculates canopy reflectance 

as a function of leaf optical elements obtained from PROSPECT and six input parameters: leaf 

inclination distribution function (LIDF), LAI, hot spot parameter (hspot), solar zenith angle 

(tts), view zenith angle (tto), relative azimuth angle (psi) (Sun et al., 2021). All input 

parameters for the PROSAIL model are shown in Table 4.2. 

 

The spectral response function for Sentinel-2 satellite data is used from band effective 

reflectance. The band reflectance was calculated based on the measured canopy hyperspectral 

https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR33
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR30
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR83
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR77
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR90
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR77
https://link.springer.com/article/10.1186/s13717-024-00520-w#Tab2
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reflectance and simulated reflectance from the PROSAIL model. The band reflectance was 

calculated by Wang et al. (2015) as follows: 

 

𝜌𝑠(𝜆) =
∫ 𝜌𝑠(𝜆𝑖)𝜓(𝜆𝑖)𝑑𝜆
𝜆𝑚𝑎𝑥
𝜆𝑚𝑖𝑛

∫ 𝜓(𝜆𝑖)𝑑𝜆
𝜆𝑚𝑎𝑥
𝜆𝑚𝑖𝑛

       (4.1) 

This derivative follows,   

𝜌𝑠(𝜆) =
∫ 𝜌𝑠(𝜆𝑖)𝜓(𝜆𝑖)𝑑𝜆
2500
400

∫ 𝜓(𝜆𝑖)𝑑𝜆
2500
400

≈
∑ 𝜌𝑠(𝜆𝑖)𝜓(𝜆𝑖)
2500
400

∑ 𝜓(𝜆𝑖)
2500
400

     (4.2) 

 

where 𝜌𝑠(𝜆) is the simulated band reflectance of the sensor,⁡𝜌𝑠(𝜆𝑖) is the simulated reflectance 

of the PROSAIL model, which is coded in MATLAB. 𝜆𝑚𝑖𝑛 is equal to 400 nm the minimum 

value of wavelength limit and 𝜆𝑚𝑎𝑥 is 2500 the maximum value of the wavelength limit,⁡𝜓(𝜆𝑖) 

is the spectral response coefficient of Sentinel-2. 

 

4.3.5 Remote sensing-based gross primary productivity (GPP) estimation 

GPP was estimated using the Sentinel-2-based light use efficiency (LUE) model to quantify 

the CO2 uptake from different vegetation cover types. LUE model has the empirical capability 

to estimate GPP (Zhang et al., 2017; Sun et al., 2019) using remote sensing data. Observed air 

temperature (Ta) and photosynthetically active radiation (PAR) data were used with satellite 

data in the LUE model to calculate GPP (Hussain et al., 2024). The following equations were 

used as part of the LUE model (Table 4.3). 

 

https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR93
https://link.springer.com/article/10.1186/s13717-024-00520-w#ref-CR76
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In Table 5.3, APARchl is absorbed photosynthetically active radiation (PAR); fPARchl is the 

fraction of PAR estimated by chlorophyll or linear function of EVI, which is modified 

following Xiao et al. (2004). 0.1 and 1.25 are constants to adjust for vegetated land and were 

validated from solar-induced chlorophyll fluorescence (SIF); εg is the light use efficiency 

(LUE), ε0 is the apparent quantum yield or maximum light use efficiency (µmol CO2 per µmol 

photosynthetic photon flux density (PPFD)); Tscalar, Wscalar are the downward-parameter scalars 

for the effects of temperature and water respectively on LUE by C3/C4 photosynthesis 

pathways; Ta, Tmin, Tmax, and Topt refer to the mean, minimum, maximum, and optimum 

temperature for photosynthesis, respectively; LSWI is the land surface water index. Model 

estimated daily GPP values were compared with the observed GPP values for 2020 and 2021 

as shown in Figure 4.3. There was a strong correlation between satellite-derived and observed 

daily GPP values for agricultural lands, conifer forests and deciduous forests, respectively 

(Figure 4.3a–c). 

 

4.3.6 Statistical analysis 

Weighted double logistic (WDL) function was used to fit the daily time series of VIs as 

described in Yang et al., (2019). WDL consists of two logistic functions based on the vegetation 

growth activity, including the growing part (f1) and the declining part (f2) to set the model 

parameters which can provide the daily time series using following equations (Yang et al., 

2019).  

 

𝑦 = f1 + f2 + e                                (4.3) 

f1 =
𝑐1

1+𝑒𝑎1+𝑏1𝑡
+ 𝑑1             (4.4) 

https://link.springer.com/article/10.1186/s13717-024-00520-w#Tab3
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f2 =
𝑐2

1+𝑒𝑎2+𝑏2𝑡
+ 𝑑2                    (4.5) 

e = 𝑚𝑎𝑥⁡(𝑐1 + 𝑑1, 𝑐2 + 𝑑2)                 (4.6) 

 

where y is the time series of variable, d and c+d denote the minimum value (min(f)) and 

maximum value (max(f)), respectively; c indicates the local amplitude; and a and b determine 

the shape and slope of the logistic function, respectively. The subscripts 1 and 2 identify the 

parameters of the growing and declining parts, respectively. In the retrieval of these unknown 

parameters, the initial d and c are assigned as min(f) and max(f)-min(f), respectively. Thus, the 

principal problem is to derive parameters a and b. Considering the different weights of each of 

the data points, we transformed the non-linear fitting problem into a linear one by a function 

transformation as a1+b1 t=In(c1f1−d1−1). Furthermore, the WLS method is applied to solve 

the analytic expression of the logistic function for each part (f1 and f2).  

 

We also utilize standardized anomalies to understand temporal variations and deviations from 

normal growth trends over the study period. We calculated these anomalies by subtracting the 

mean GPP during three growing periods from the daily GPP values and then dividing it by the 

standard deviation observed over the same periods. These calculations followed equations 5.7 

and 5.8 as shown by Zhao et al. (2022). 

𝑦𝑠𝑑 =
𝑦𝑑−𝑦𝑑̅̅ ̅̅

⁡⁡⁡⁡⁡𝜎⁡
        (4.7) 

𝑦𝑑 = 𝑥 − 𝑥̅        (4.8) 

 

where, 𝑦𝑠𝑑 is standardized anomaly, 𝑦𝑑 is daily anomaly and 𝑥 is daily GPP and 𝑥̅ is the three-

year mean GPP estimated from Sentinel-2. 
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4.4 Results 

4.4.1 Climatic conditions 

The meteorological variables measured at our site from 2020 to 2022 are shown in Figures 

4.4 and 4.5. The mean annual Ta was 10.6, 11.3, and 10.6 °C for 2020, 2021, and 2022, 

respectively. The daily maximum Ta was observed during July–August periods, while 

minimum Ta values were observed during January–February, reflecting the typical seasonal 

patterns in the Great Lakes region (Figure 4.4b). At the same time, Ts was 9.7, 10.3, and 9.6 °C. 

Temporal variability in Ts closely followed the temporal variability of Ta, with a correlation 

coefficient of 0.89 (P < 0.001). Additionally, photosynthetically active radiation (PAR) 

exhibited similar patterns to temperature variations (Figure 4.4a, b), with respective daily 

values of 317, 321, and 343 μmol m−2 d−1 for 2020, 2021, and 2022. 

 

The daily mean values of VPD were 0.37, 0.38, and 0.38 kPa for 2020, 2021, and 2022, 

respectively. The similarity between VPD values across the years indicates overall relatively 

stable atmospheric moisture conditions during the study period. Additionally, VWC during the 

same period was 0.11, 0.12, and 0.11 m3 m−3. The temporal variations in VWC reflected 

changes in soil moisture following large precipitation events throughout the year (Figure 4.4d). 

The annual total precipitation values were 1127, 1009, and 960 mm for 2020, 2021, and 2022, 

respectively (Figure 4.5). 2021 showed a dry period with low precipitation values in 2021 from 

early March to mid-June. This dry and rain-free period in the early parts of the growing season 

in 2021 may have helped the spongy moth to establish and thrive. Overall, observed 

meteorological conditions during the study period showed similarities with long-term observed 

weather conditions at this site. 

https://link.springer.com/article/10.1186/s13717-024-00520-w#Fig4
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4.4.2 Dynamics of remote sensing-based leaf area index (LAI) 

Remote sensing-based monthly mean LAI values for major land cover types including 

deciduous, conifer and mixed forests and agricultural lands over the growing season are shown 

in Figure 4.6. Deciduous forests had mean LAI values of 3.66± 1.6, 2.74 ± 1.1, and 3.53± 1.5 

m2 m−2, conifer forests had LAI value of 4.34± 1.6, 4.28± 1.6, and 4.26± 1.5 m2 m−2 and mixed 

forest had LAI value of 3.18± 1.4, 2.64± 1.1, and 2.94± 1.3 m2 m−2 for 2020, 2021, and 2022, 

respectively. Mean LAI values for agricultural lands were 3.31± 2.2, 3.25± 2.3, and 3.11± 2.2 

m2 m−2 for respective years. The highest LAI values were observed for agricultural lands and 

conifer forests in July, followed by deciduous and mixed forests. These satellite-derived LAI 

values showed a large decline for deciduous and mixed forests in 2021, when these forests 

were impacted by spongy moth infestations (Figure 4.6c, d). 

 

Mean LAI values for deciduous and mixed forests declined by 25 (22)% and 17 (10)% in 

comparison to the pre-infestation (post-infestation) values recorded in 2020 (2022). LAI values 

recovered to almost normal levels in 2022 for deciduous forests after the infestation, while LAI 

for mixed forests showed relatively lower recovery values. 

 

4.4.3 Impact of spongy moth infestation on gross primary productivity (GPP) 

The satellite-derived daily GPP values showed similar trends as observed for LAI, with much 

lower daily GPP values for deciduous and mixed forests in 2021 due to spongy moth infestation 

(Figure 4.7). In deciduous forests, photosynthetic C uptake usually started in mid-May and 

peaked in July with typical maximum daily GPP values of about 14 to 16 g C m−2 d−1. 

However, in 2021, GPP values rapidly declined at the start of June when spongy moth 
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defoliation intensified. Daily GPP values reached as low as 3.0 g C m−2 d−1 in July in 2021. 

Similar low GPP values were also observed for mixed forests. GPP saw a rebound in late July 

and August when the short-lived spongy moth infestation started to end due to the 

transformation of leaf-eating larvae (caterpillars) to pupa and adult stages. In addition, these 

decreasing trends of GPP were well aligned with the spongy moth life cycle, where the late 

caterpillar stage occurs from mid-May to the end of July, causing extensive leaf damage. 

However, after this period, daily GPP values showed some recovery but only reached up to 7 

to 8 g C m−2 d−1 before the usual autumn photosynthetic decline started to take effect in late 

September. In general, rebounded daily GPP values were even lower for mixed forests due to 

the combined effects of infestation for deciduous forests and usual seasonal low soil moisture 

from late July to August in the region, which typically causes lower GPP values in conifer 

trees. However, overall the soil moisture was sufficient for ecosystem production in 2021 

(Figure 4.4d). In 2020 and 2021, the active period of growth for deciduous forests ended by 

the end of October, while in 2022 deciduous forests experienced an earlier end of growing 

season (Figure 4.7c). 

 

In contrast, photosynthetic C uptake in coniferous forests began earlier in April as compared 

to other vegetation types and continued until the end of October. The maximum daily GPP in 

conifer forests was observed in June, with maximum daily GPP values of about 10 to 

14 g C m−2 d−1. In agricultural lands, daily GPP was almost zero in April but it started to 

increase in mid-May and peaked in July and August, with maximum daily GPP values reaching 

about 20 to 23 g C m−2 d−1 (Figure 4.7a). These trends were also clearly shown in the 

standardized daily GPP anomaly values, where GPP in deciduous and mixed forests showed a 

large decline, while GPP in conifer forests and agricultural lands were not impacted (Figure 

https://link.springer.com/article/10.1186/s13717-024-00520-w#Fig4
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4.8). In 2022, the forest appeared to be fully recovered with a notable increase in both the daily 

mean and seasonal total GPP values as compared to 2021. 

 

Overall, growing season mean daily GPP values in deciduous forests were 6.83± 4.1, 4.43± 2.5, 

and 7.77± 5.4 g C m−2 d−1 for 2020, 2021 and 2022, respectively. Corresponding GPP values 

for coniferous forests were 6.87± 3.5, 7.10± 2.7, and 6.86± 2.7 g C m−2 d−1 and for mixed 

forests were 6.45± 4.2 g C m−2 d−1, 4.81± 2.2 g C m−2 d−1, and 6.12± 2.3 g C m−2 d−1. 

Agricultural lands had growing season mean daily GPP values of 9.65± 5.4, 8.45± 6.1, and 

9.55± 6.2 g C m−2 d−1 in 2020, 2021, and 2022, respectively (Figure 4.7; Table 4.4). The 

highest cumulative GPP values over the growing season were observed in the coniferous forest 

in all three years, followed by deciduous forests, agricultural lands, and mixed forests 

(Figure 4.7e–h and Table 4.4). Maximum GPP estimates for conifer forests highlighted their 

optimum photosynthetic activity and proficiency for C uptake. Deciduous forests had total 

growing season GPP values of 1338, 869, and 1367 g C m−2 in 2020, 2021 and 2022, 

respectively, while coniferous forests photosynthesized 1443, 1475, and 1438 g C m−2 and 

mixed forests exhibited GPP values of 1208, 932, and 1175 g C m−2 for the same years (Figure 

4.7e–h and Table 4.4). Agricultural lands showed cumulative GPP values of 1235, 1266, and 

1241 g C m−2 over the same period (Figure 4.7e–h and Table 4.4). 

 

Spatial patterns of total GPP over the growing season (April–October) for 2020, 2021 and 2022 

are shown in Figure 4.9. These spatial patterns of GPP clearly showed the severely impacted 

areas and extent of decline in photosynthetic C update in the region where almost all deciduous 

and mixed forests were impacted. Southern areas which had a higher proportion of deciduous 

tree species were more severely impacted. These areas were in the north of Lake Erie and west 
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of Lake Ontario (Figure 4.9c). However, low values of GPP as shown by yellow color were 

prevalent almost all over the study region, except in the central and far northwestern parts that 

were dominated by conifer species. Overall, these results showed 35 (36)% decrease in total 

GPP over the growing season for deciduous forests in 2021 when compared to pre-infestation 

(post-infestation) years. A similar GPP decline for mixed forests was 23 (21) % in 2021 when 

compared to pre-infestation (post-infestation) years (Table 4.4). 

 

4.5 Discussion 

Remotely sensed LAI measurements have been widely used to observe the intensity and extent 

of defoliation in deciduous and mixed forests (De Beurs and Townsend, 2008). LAI 

measurements also provide direct quantification of leaf properties, photosynthetic activity, C 

uptake (Jarlan et al., 2008; Boussetta et al., 2013; Alton, 2016; Brown et al., 2020) and are 

often used to estimate vegetation biomass utilizing remote sensing-based models (Zolles et 

al., 2021). Our study results showed that the mean LAI values for deciduous forests decreased 

by about 25% in 2021 as compared to the pre-infestation LAI values in 2020, and by about 

22% as compared to the post-infestation LAI values in 2022. It provided an indication of the 

severity of the impacts of spongy moth infestation on forest growth and productivity. We used 

these LAI values as a key indicator to observe the spatial patterns and the extent of spongy 

moth infestation. It helped us to observe the trajectory and dynamics of defoliation and to 

determine the timing and extent of canopy recovery when larvae or caterpillars were 

transformed into pupa and adult moths after a few weeks (Latifovic and Arain, 2024). We also 

used these LAI values to calculate remote sensing based GPP across the region (Sun et 

al., 2021). We found a strong positive correlation between LAI and remote sensing based GPP 

values with R2 values of 0.90, 0.76, 0.86 and 0.67 for agricultural lands, coniferous forests, 

deciduous forests and mixed forests respectively and significance level (p) values of ≤ 0.005 
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(data not shown). Similar strong correlations between LAI and GPP have also been found 

by other researchers (e.g. Qu et al., 2018; Zhang et al., 2021; Chen et al., 2023). 

 

Our analysis showed the intense and widespread nature of the 2021 spongy moth infestation in 

the region where deciduous and mixed stands experienced large-scale defoliation resulting in 

35% and 22% decrease in mean daily GPP values as compared to 2020 and 2022, respectively. 

Our study not only supported the earlier inferences that 2021 infestation was as record 

disturbance event in North America (Embrey et al., 2012; CFIA, 2021; Chung et al., 2021; 

Gooderham et al., 2021; Government of Canada, 2021; MNRF, 2021; MNDMNRF, 2022; 

TRCA, 2022; Clark et al., 2022; Foster et al., 2022; Coleman and Liebhold, 2023; Latifovic 

and Arain, 2024), but it also provides quantitative assessment of the photosynthetic C uptake 

reduction across the region due to defoliation (Dymond et al., 2010; Medvigy et al., 2012; 

Kretchun et al., 2014). These C uptake reduction estimates have significance because in recent 

years most of the terrestrial C cycle studies in the literature have been reporting an increase in 

vegetation C uptake due to warmer temperatures, longer growing seasons and CO2 fertilization 

effects (Goodale et al., 2002; Harris et al., 2016; Birdsey et al., 2019; Fei et al., 2019; Ameray 

et al., 2021; Quirion et al., 2021). Our study has highlighted how C sequestration of deciduous 

and mixed forest ecosystems in eastern North America, specifically in the Great Lakes region, 

might be impacted by a major natural disturbance event. Such natural disturbance events are 

expected to increase in frequency and intensity in the future due to climate change (Pureswaran 

et al., 2018; IPCC, 2021; Harvey et al., 2022; Kalamandeen et al., 2023). They will have 

adverse consequences for biological C sinks to offset greenhouse gases (GHG) emissions to 

achieve net zero C emission goals. 
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Our study also showed that in the Great Lakes region, conifer forests have a much greater 

capacity for C sequestration as compared to deciduous and mixed forests due to their longer 

growth period and conducive environmental conditions in the region (Payne et 

al., 2019; Beamesderfer et al., 2020). Sustainable management of both deciduous and conifer 

forests may help to conserve and further enhance C uptake capacity of these forests. In this 

regard, our study provides the systematic methodology and road map to monitor and quantify 

the growth and C sequestration of all major vegetation ecosystems in the region, including 

conifer, deciduous and mixed forests as well as agricultural lands at high (10 × 10 m2) spatial 

resolution. Because most inset infestations are species-specific and some of them occur for 

short periods such as spongy moth infestations, it becomes very challenging to accurately 

quantify their impacts. Our utilization of high-resolution Sentinel-2 satellite imagery and a light 

use efficiency (LUE) model to estimate GPP for the whole region was a unique effort which 

provided a quantitative assessment of the photosynthetic C uptake loss because of the large-

scale nature of this infestation. It showed that 2021 infestation caused 4.84 and 2.6 t C 

ha−1 reduction of C uptake in deciduous and mixed forests, respectively. This was a substantial 

potential C sequestration loss, considering the mean annual GPP of 14.0 t C ha−1 for Canada 

(Gonsamo et al., 2013; Chen et al., 2020) and 12.25 t C ha−1 for the USA (Turner et al., 2003; 

Tang et al., 2010). Our estimated total C uptake loss for the whole study area of 178,000 km2 in 

2021 was 21.1 (21.4) megatons of carbon (Mt C) when compared to 2020 (2022). This C loss 

amounted to ~ 11.5 (11.7)% of Canada’s national GHG emission of 182.7 Mt C eq (670 Mt 

CO2 eq) or 52.3 (52.1)% of the Province of Ontario’s GHG emissions of 41.1 Mt C eq (150.6 

Mt CO2 eq). However, the reader is cautioned about these extrapolated results because the 

defoliation is tree species dependent and there may be areas which many have not been severely 

impacted as well as the uncertainty associated with the remote sensing derived GPP values. 

Our study has also highlighted the importance of future forest conservation and management 
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practices that should account for climatic and disturbance stresses and help to enhance the 

sustainability and resilience of forests to these stresses. 

 

4.6 Conclusion 

This study quantified the impact of a severe spongy moth infestation on C sequestration in 

deciduous and mixed forest ecosystems in the Great Lakes region in Canada. By utilizing 

remotely sensed LAI as a key indicator, the study assessed the onset and progression of spongy 

moth infestation in 2021. Study results showed a substantial decline in GPP in deciduous and 

mixed forests in 2021 when compared to pre- and post-infestation years i.e. 2020 and 2022. 

Total growing season GPP values were 1338, 868, and 1367 g C m−2 in deciduous forests over 

the study area from 2020 to 2022, respectively. Corresponding mean total growing season GPP 

values in mixed forests were 1208, 932, and 1175 g C m−2 and in coniferous forests, they were 

1443, 1475, and 1438 g C m−2 in 2020, 2021 and 2022, respectively. It showed 35 (36)% 

reduction in mean total growing season GPP in deciduous forests in 2021 as compared to pre-

infestation (post-infestation) years. Corresponding decline in mixed forests was 23 (21)% in 

2021. The whole study area (178,000 km2) experienced the total photosynthetic C uptake loss 

of 21.1 (21.4) Mt C when compared to 2020 (2022). Study results also displayed that coniferous 

forests consistently exhibited higher GPP values, indicating their efficient C sequestration 

capabilities. The methods developed in our study and their application using high resolution 

remote sensing data will help to improve our understanding of C dynamics of forest ecosystems 

in response to natural disturbances. Our results also emphasize the vulnerability of deciduous 

and mixed forests to insect infestations and signify the need to develop proactive and adaptive 

forest management practices that can enhance forest resilience to climate change. They will 

help to quantify regional-scale C balance and develop sustainable forest management practices 
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to contribute to net zero C emission goals through nature-based solutions to mitigate climate 

change. 
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Table 4.1. Confusion matrices-based accuracy assessment of land use and land cover (LULC) classification. 

Class Water Unban Agriculture Deciduous Coniferous Mixed forest Producer accuracy User accuracy 

Water 627 1 0 0 0 2 98.4% 99.4% 

Unban 1 617 0 6 2 2 96.7% 98.0% 

Agriculture 3 1 622 8 6 10 97.2% 96.2% 

Deciduous 3 9 12 606 22 12 96.4% 94.2% 

Coniferous 4 12 7 16 610 11 95.5% 94.7% 

Mixed forest 12 10 9 14 10 613 94.7% 94.1% 

Overall accuracy: 95.7% 
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Table 4.2. Input parameters set for the PROSAIL model. The fixed value is used in this study. 

Model Input Parameters Symbol Unit Range Fixed value 

PROSPECT 

Leaf structure  N dimensionless 1.5 – 3.0 1.5 

Chlorophyll content Cab µg.cm-2 10 - 80 40 

Carotenoid content Car µg.cm-2  10 

Brown pigment  Cbrown arbitrary units  0 

Equivalent water thickness Cw cm  0.01 

Dry matter content Cm g.cm-2  0.009 

SAIL 

Leaf inclination distribution 

function 

LIDF shape spherical spherical 

LIDFa slope -1 to 1 -0.35 

LIDFb Kind of distortion -1 to 1 -0.15 

Leaf Area Index LAI m2/m2 0 - 8  

Hot spot parameter hspot m/m 0.03 – 0.1 0.01 

Solar zenith angle tts (°) 20 -70 30 

View zenith angle tto (°) 0 - 30 10 

Relative azimuth angle psi (°)  0 
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Table 4.3. Equations have been used for ecosystem properties. 

Variables Equation References 

GPP GPP = APARchl × εg Monteith, 1972  

APARchl = PAR ×  fPARchl Xiao et al., 2004 

fPARchl = (EVI – 0.1) × 1.25 Zhang et al., 2017 

LUE εg= ε0 × Tscalar ×Wscalar Zhang et al., 2017 

Tscalar =
(T − Tmax) × (T − Tmin)

(T − Tmax) × (T − Tmin) − (T − Topt)2
 

Zhang et al., 2016 

Wscalar =
1 + LSWI

1 + LSWImax
 

Zhang et al., 2016 

Indices NDVI = (RNIR – RRed)/(RNIR+RRed)  Rouse et al., 1974 

 EVI = 2.5⁡ × ⁡
RNIR−RRed

RNIR+6⁡×⁡RRed−7.5⁡×⁡RBlue+1
  Huete et al., 2002 

 LSWI = (RNIR – RSWIR) / (RNIR + RSWIR) Xiao et al., 2004 
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Table 4.4. Mean daily gross primary productivity (GPP) of different vegetation types in the growing season (g C m−2) 

Vegetation Type 
2020 2021 2022 

Daily mean Seasonal Total Daily mean Seasonal Total Daily mean Seasonal Total 

Agriculture land 9.65±5.4 1235 8.45±6.1 1266 9.55±6.2 1242 

Conifer forest  6.87±3.5 1443 7.10±2.7 1475 6.86±2.7 1438 

Deciduous forest 6.83±4.1 1338 4.43 ±2.5 868 7.77±5.4 1367 

Mixed forest 6.45±4.2 1208 4.81±2.2 932 6.12±2.3 1175 

Mean 7.45 1306 6.20 1135 7.58 1305 
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Figure 4.1. Study area map. The LULC map was generated by machine learning-based Google Earth Engine (GEE) using Sentinel-2 remote sensing 

data from the composite images of the growing season of 2020. 
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Figure 4.2. Defoliated tree due to spongy moth infestation at the Turkey Point Environmental 

Observatory’s deciduous forest site on 21 June 2021
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Figure 4.3. The relationship between Satellite-derived and Eddy Covariance (EC) flux tower-based observed daily gross primary productivity 

(GPP) values for (a) agriculture areas, (b) conifer forests and (c) deciduous forests, respectively from 2020 to 2021. 

 



Ph.D. Thesis – Nur Hussain                     School of Earth, Environment, & Society 

149 
 

 
Figure 4.4. Daily mean values of (a) photosynthetically active radiation (PAR), (b) air temperature (Ta) and soil temperature (Ts) at 5cm depth, 

(c) vapor pressure deficit (VPD), (d) precipitation (P) and volumetric water content (VWC) from 2020 to 2022. 
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Figure 4.5. Daily cumulative precipitation (P) from 2020 to 2022.  
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Figure 4.6. Monthly mean leaf area index, LAI (m2m-2) values over the study area for (a) agricultural lands, (b) conifer, (c) deciduous and (d) 

mixed forests, respectively from 2020 to 2022.  
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Figure 4.7. Daily gross ecosystem productivity, GPP values (g C m-2 d-1) for (a) agricultural lands, (b) conifer, (c) deciduous and (d) mixed forests, 

respectively, from 2020 to 2022. Similarly, cumulative GPP values over the growing season for (e) agricultural lands, (f) conifer, (g) deciduous 

and (h) mixed forests, respectively from 2020 to 2022.  
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Figure 4.8. The daily standardized anomaly in gross ecosystem productivity, GPP (g C m⁻² d⁻1) for agricultural areas (a,b,c), conifers forests (d, 

e, f); deciduous forest (g, h, i) and mixed forests (j, k, l) for 2020, 2021 and 2022.  
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Figure 4.9. (a) The spongy moth outbreak areas in 2021. The spongy moth outbreak data were collected from the Ontario provincial database 

(Ontario GeoHub, 2022). The LULC map was generated by machine learning-based GEE using Sentinel-2 remote sensing data from the composite 

images of the growing season of 2020. The spatial pattern of total gross ecosystem productivity, GPP (g C m⁻²) over the growing season (April-

October) for (b) 2020, (c) 2021 and (d) 2022.  
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CHAPTER 5 

SUMMARY AND CONCLUSIONS  

 

5.1 Summary of Results and Their Significance 

This study examined the influence of climate variability, extreme weather events and natural 

and human-induced disturbances or management practices on C exchanges in agricultural and 

forest ecosystems in southern Ontario in the Great Lakes region. As part of this study 

continuous measurements of C, water and energy fluxes and meteorological variables were 

made in an agricultural site from 2020 to 2023. This agriculture flux site is part of the Turkey 

Point Environmental Observatory (TPEO), where EC flux, meteorological and ecological 

variables are being continuously made in three different ages (84-, 49- and 21-yr old as of 

2023) of conifer forest since 2002 and a deciduous (>90-yr old) forest since 2012. The 

establishment of the agricultural site has allowed TPEO to become representative of the major 

biomes in the Great Lakes region, encompassing coniferous and deciduous forests, as well as 

agricultural crops. The agricultural site was planted with corn in 2020 and 2021, sweet potato 

in 2022 and tobacco in 2023. Study results showed that annual NEP values were 485±3.7 and 

249±3.5 g C m2 yr-1 for the corn in 2020 and 2021, respectively, –120±2.1 g C m2 yr-1 for sweet 

potato in 2022 and 7 g C m2 yr-1 for tobacco in 2023. It showed that site was C sink for corn, 

C source for sweet potato and C neutral for tobacco. The grain yields (GY) were 537, 491, 90 

and 124 g C m−2 in 2020, 2021, 2022 and 2023 resulting in annual net ecosystem carbon 

balance (NECB) of -52 (corn), -242 (corn), -210 (Sweet potato) and -117 (tobacco) g C m−2 

year−1. This study helps to enhance our understanding of C and water flux dynamics in 

agricultural fields in the Great Lakes region and provides valuable data for flux up-scaling, 

remote sensing applications, and ecosystem modeling.  
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For the forest ecosystem, study utilized high resolution Sentinel-2 satellite (10 × 10 m²) and 

drone-observed remote sensing data along with EC fluxes data to evaluate the effects of five 

different variable retention harvesting (VRH) treatments on the growth and C uptake of a 90-

year-old red pine (Pinus resinosa Ait.) plantation (1931) forest, in Southern Ontario, Canada.  

CN and 55D plots consistently showed higher daily GPP values post-harvest, with CN 

exhibiting the highest annual GPP followed by 55D, 55A, 33D, and 33A treatments. Overall, 

the mean annual GPP for this 20-ha experimental site was 1651 ± 89 g C m–2 year–1, ranging 

from 1407 to 1864 g C m–2 year–1. The study indicated that VRH treatment with dispersed 

residual canopies retaining over half of the initial basal area (i.e 55D) was the most optimized 

management strategy that enhanced forest growth and C uptake. Study will help forest 

managers to develop forest management pathways to enhance forest C uptake for nature-based 

climate solutions.  

 

The study also used high-resolution satellite remote sensing and EC fluxes to investigate the 

impact of 2021 spongy moth (Lymantria dispar) infestation on forest productivity and C losses 

in the deciduous and mixed forests across Southern Ontario. Results showed significant (i.e 

24(14)%) reduction in leaf area index (LAI) for deciduous (mixed) forests across the region 

with LAI values of  3.66 (3.18), 2.74 (2.64), and 3.53 (2.94) m² m⁻² in 2020, 2021, and 2022, 

respectively. Similarly, growing season GPP values in deciduous (mixed) forests across the 

region were 1338 (1208), 868 (932), and 1367 (1175) g C m⁻², respectively in 2020, 2021, and 

2022, indicating about 35 (22)% reduction in GPP in 2021 compared to pre- and post-

infestation years. It showed the large scale of C losses caused by 2021 infestation in Canadian 

Great Lakes region. The study emphasized the severe consequences of spongy moth 

infestations on forest C budget. The methods developed in the study offer valuable tools to 
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assess and quantify natural disturbance impacts on the regional C balance of forest ecosystems 

by integrating field observations, high-resolution remote sensing data and models. Study 

results will help in developing sustainable forest management practices in changing climate 

where forest infestation may be more prevalent.  

 

5.2 Study Limitations 

This research focused on to determine how plants grow and absorb atmospheric CO2 in both 

agriculture and forest ecosystems using advanced remote sensing and EC flux measurements. 

However, there are challenges when using these techniques, like scarcity of data availability, 

atmospheric noise, cloudy conditions affecting data quality and differences in the timing of 

satellite overpasses. In forests, the accusation of understory data using both remote sensing and 

EC flux techniques is a major challenge (Zhang et al., 2016; Fratini et al., 2018; Xie et al., 

2019; Sun et al., 2021; Wang et al., 2021). Figuring out how much understory vegetation 

contributes to the total C uptake of the forest is important (Thrippleton et al., 2016; Landuyt et 

al., 2018, Kaarakka et al., 2021). EC flux data has its own limitations such as instrument and 

power failures, various corrections required to process data and the inability of the sensors to 

capture flux data under low turbulence conditions (Fratini et al., 2018; Reitz et al., 2022). It 

causes gaps in data which are filled using different gap-filling methods as described in detail 

in individual chapters. Data gap-filling introduces uncertainties, which should be accounted 

while interpreting and using study results.  

 

5.3 Suggestions for Future Research 

This study helped in advancing the understanding of C exchange processes in different crops 

and managed forest ecosystems. It provided insight into various forest management (partial 
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thinning) techniques and identified appropriate harvesting density and composition that can be 

utilized to enhance forest growth and C sequestration. It also provided regional estimates of 

net C loss from deciduous and mixed forests in southern Ontario that experienced a major 

Spongy Moth infestation in 2021. It would be interested to observed health, growth and C 

exchanges of these forests over the post infestation years. There are many questions that can 

be further explored such as (i) how quickly these forests recovered from the infestation in terms 

of their C uptake and was there any changes in the balance between photosynthetic uptakes and 

ecosystem respiration and (ii) was there any increase in the tree mortality in the post infestation 

years. It would be very important to develop a mechanism to further explore the contribution 

of forest understory in the overall C budget for both deciduous and conifer forests. It is vital 

because remote sensing data mainly captures information from the canopy level. This 

highlights the importance of the integration of ground observation and remote sensing 

techniques. There is also a need to further explore the performance of VRH treatments over 

multiple years under different extreme weather events such as heat, drought or combined 

occurrence of both heat and drought events. After the application of VRH treatments, the 

species composition and biodiversity of the forest starts to change. These changes have impact 

on the key climate controls and C, water and energy exchanges. Therefore, observation and 

documentation of these changes is also important for future forest management regimes. In the 

agriculture field long term flux and remote sensing data in replicated crops will be very 

valuable for researchers and users. It will help to explore the potential contributions of different 

crops for C sequestration as part of climate mitigation efforts.  Study results and long-term 

datasets will help in the calibration and validation of ecosystem models, remote sensing 

algorithms as well as developing sustainable forest and agricultural management practices to 

achieve net-zero C emission goals through nature-based climate change solutions. 
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5.4 Conclusions 

This study explores the critical role of forests and agricultural ecosystems in C sequestration, 

offering actionable understandings for developing climate-resilient land management strategies 

to mitigate C losses and enhance ecosystem productivity amid ongoing climate change. It 

provides a significant contribution to the understanding of C exchange dynamics in the Great 

Lakes region, focusing on the impacts of climate variability, extreme weather, and 

disturbances. By integrating advanced remote sensing with continuous EC flux measurements, 

the study identifies crop-specific C sequestration capabilities and demonstrates how VRH 

enhances forest C uptake. It also quantifies the severe C losses caused by the 2021 spongy moth 

infestation, emphasizing the vulnerability of forests to natural disturbances. 

 

The integration of high-resolution satellite and drone data with EC fluxes enables precise, real-

time monitoring, offering crucial methodologies for upscaling carbon flux measurements and 

improving ecosystem modeling. These findings are essential for designing climate-adaptive 

management practices, particularly in enhancing carbon sequestration across forest and 

agricultural landscapes and advancing net-zero carbon emission goals through nature-based 

solutions.  
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