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ABSTRACT

Climate change is significantly impacting terrestrial ecosystems through altered environmental
conditions and enhanced atmospheric CO2, which has increased by about 40% since the pre-
industrial period. Forests, covering about 30% of global land, play a vital role in the carbon (C)
cycle by sequestering 15.6 billion tonnes of CO: equivalent annually from the atmosphere. The
agricultural sector is also a major contributor to atmospheric CO2, however, it has a net source of
C and emits 9.3 billion tonnes of CO» equivalent annually, which is about 11% of global emissions.
In recent years, advanced remote sensing and eddy covariance (EC) techniques have become vital
systems for assessing CO2 exchanges and providing real-time monitoring capabilities for both
forest and agricultural ecosystems. Integration of these techniques would enhance our
understanding of C exchanges and their major controls in these ecosystems. It will help to explore
how these ecosystems may be impacted by climate change and natural and human-induced
disturbance events and develop climate-tailored forest and agricultural management practices to

increase their carbon sequestration capabilities.

In this study, high-resolution remote sensing and EC flux measurements made in an agricultural
field in Southern Ontario, Canada were used to determine C sequestration or loss capabilities of
different crops in the Great Lakes region and explore how they may be impacted by extreme
weather events. This study also explored the best forest management practices that can be adopted
to enhance carbon sequestration in the temperature conifer plantation forests in the agricultural
landscape of Southern Ontario. Furthermore, it determined how the native (deciduous) forest
ecosystems of the Great Lakes region may be impacted by natural disturbances (i.e. insect

infestation). These agricultural and forest sites are part of the Turkey Point Environmental
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Observatory (TPEO) and associated with the Global Water Futures (GWF) program, US-Canada

Global Centre for Climate Change and Transboundary Waters, Ameriflux and the global Fluxnet.

In the agricultural site, EC fluxes were continuously measured from 2020 to 2023, when the site
was planted with corn, sweet potato and tobacco crops. Net ecosystem production (NEP) of the
agricultural site was 485 (corn), 249 (corn), -120 (sweet potato) and 7 (tobacco) g C m2 yr!,
respectively from 2020 to 2023. The reduction in NEP for corn in 2021 can be attributed to both
the drought conditions in May and August, where precipitation was significantly below the 30-
year normal (38 mm in May and 46 mm in August), causing stress during critical growth periods,
and the inherent differences in carbon dynamics associated with crop types and their responses to
climatic extremes. Corresponding annual evapotranspiration (ET) values were 680, 727, 732 and
715 mm yr, which accounted for approximately 60%, 72%, 77% and 73% of the annual total
precipitation. Study results showed that overall, the site was a net C sink when corn was planted
in 2020 and 2021, a net source of C when sweet potatoes were planted in 2022 and C neural when
tobacco was planted in 2023. The grain yields (GY) were 537, 491, 118 and 124 g C m™2 in 2020,
2021, 2022 and 2023 resulting in annual net ecosystem carbon balance (NECB) of -52 (corn), -

242 (corn), -238 (Sweet potato) and -117 (tobacco) g C m2 year ™.

High-resolution Sentinel-2 satellite (10 x 10 m?) and drone-observed remote sensing data along
with EC fluxes were used to evaluate the effect of five different variable retention harvesting
(VRH) treatments on the growth and C uptake of a 90-year-old red pine (Pinus resinosa Ait.)
plantation (1931) forest, in Southern Ontario, Canada. VRH emulates natural post-disturbance

canopy structures to enhance biodiversity and resilience. Treatments included 33% aggregate
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(33A), 55% aggregate (55A), 33% dispersed (33D), 55% dispersed (55D), and an unharvested
control (CN), each replicated four times in 1 ha plots. From 2010 to 2020, mean daily Normalized
Difference Vegetation Index (NDVI) values ranged from 0.25 to 0.86, with 55D showing the
highest NDV1 values. Satellite-derived annual GPP correlated with observed annual GPP (Rz =
0.88, p = 0.032) in an adjacent white pine plantation forest. These GPP estimates indicated that
VRH treatment with dispersed residual canopies retaining over half the initial basal area (i.e 55D)
was the most optimized management strategy that can be deployed for forest growth and C uptake
to mitigate climate change. Overall, the mean annual GPP for the 20-ha site was 1651 £+89gC m~

2 year, ranging from 1407 to 1864 g C m~2 year ..

Finally, high-resolution Sentinel-2 satellite remote sensing and EC observation were employed to
investigate the impact of 2021 spongy moth (Lymantria dispar) infestation on forest productivity
and C losses in the deciduous and mixed forests across Southern Ontario. Results showed a
significant reduction in leaf area index (LAI) and GPP values. Growing season mean LAI values
for deciduous (mixed) forests across the region were 3.66 (3.18), 2.74 (2.64), and 3.53 (2.94) m?
m 2 in 2020, 2021, and 2022, respectively, indicating approximately 24 (14)% reduction in LAI
compared to pre- and post-infestation years. Similarly, growing season GPP values in deciduous
(mixed) forests across the region were 1338 (1208), 868 (932), and 1367 (1175) g C m2,
respectively in 2020, 2021, and 2022, showing about 35 (22)% reduction in GPP in 2021 compared
to pre- and post-infestation years. This infestation-induced reduction in GPP of deciduous and
mixed forests, when upscaled to the whole study area (178,000 km?), resulted in 21.1 (21.4) Mt of
C loss compared to 2020 (2022), respectively from Sothern Ontario alone. It shows the large scale

of C losses caused by 2021 infestation in Canadian Great Lakes region.

Vi
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This dissertation improved our understanding of C exchanges in the forest and agriculture
ecosystem within the Great Lakes region of North America. The methods developed in this study
offer valuable tools to assess and quantify C uptake capabilities and natural disturbance impacts
on the regional C balance of forest ecosystems by integrating field observations, high-resolution
remote sensing data and models. Study results will also help in developing sustainable forest
management practices to achieve net-zero C emission goals through nature-based climate change

solutions.
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PREFACE

This doctoral dissertation includes three main chapters that has either been published as a paper in
peer-reviewed journal or manuscripts that has either been submitted or are ready for submission
to a journal. These papers or manuscripts used remote sensing data and EC fluxes from the Turkey
Point Environmental Observatory (TPEO). Although there is some overlap in the information,
such as the description of study sites and methodology, each chapter has specific objectives
supporting main study gaol of providing the insight into carbon uptake capabilities and dynamics
of the agricultural and forest ecosystems of the Great Lakes region. Summary of all four main
chapters and contributions from the PhD candidate and any collaborators or co-authors are

summarized in the following section.

Chapter 2

Title: Carbon, water and energy fluxes in an agricultural field with crop rotations in the Great

Lakes region
Authorship: M. Altaf Arain, Nur Hussain, Liam Kreibich, Jason Brodeur and Zoran Nesic
Status: To be submitted to Agriculture and Forest Meteorology in Fall 2024.

Candidate’s Contribution: As Principal Investigator (PI) of the project, M Altaf Arain secured
funding and established this agricultural flux tower site in the summer of 2020. Nur Hussain, PhD
candidate played a key role in flux and meteorological data collection and data analysis. The
candidate wrote the first draft of the manuscript. Altaf Arain contributed to fieldwork and solely
maintained the operation of this flux site during the COVID-19 pandemic. He also offered valuable
ideas for data analysis and plotting figures and edited several versions of the draft manuscripts.
Liam Kreibich took over field work responsibilities and helped in data collection in 2023. Jason

XVi
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Brodeur contributed in data analysis and data quality control. Zoran Nesic helped with the

establishment and operation of flux sites and data quality control.

Chapter 3

Title: Evaluating the effectiveness of different variable retention harvesting treatments on forest

carbon uptake using remote sensing.
Authorship: Nur Hussain, M. Altaf Arain, Shusen Wang, William C. Parker and Ken A. Elliott
Status: Published.

Full Reference: Hussain, N., Arain, M. A., Wang, S., Parker, W. C., & Elliott, K. A. (2024).
Evaluating the effectiveness of different variable retention harvesting treatments on forest carbon

uptake using remote sensing. Remote Sensing Applications: Society and Environment, 33, 101124,

Candidate’s Contribution: Nur Hussain, PhD candidate, collected and analyzed remote sensing
data and wrote first draft of the manuscript. M. Altaf Arain provided valuable ideas for data
analysis and edited draft manuscripts. William C. Parker, Ken A. Elliott and Shusen Wang
provided valuable suggestions to enhance the quality of the manuscript and helped in editorial

work.

Chapter 4

Title: Assessment of spongy moth infestation impacts on forest productivity and carbon loss using

the Sentinel-2 satellite remote sensing and eddy covariance flux data.

Authorship: Nur Hussain, Alemu Gonsamo, Shusen Wang and M. Altaf Arain
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Status: Published.

Full Reference: Hussain, N., Gonsamo, A., Wang, S., & Arain, M. A. (2024). Assessment of
spongy moth infestation impacts on forest productivity and carbon loss using the Sentinel-2

satellite remote sensing and eddy covariance flux data. Ecological Processes, 13(1), 37.

Candidate’s Contribution: Nur Hussain, PhD candidate, played a primary role in collecting and
analyzing remote sensing data and wrote the first draft of the manuscript. Altaf Arain contributed
in the collection of flux and meteorological data and provided insight in data analysis. He also
edited draft manuscripts and provided feedback during the writing process. Alemu Gonsamo

offered valuable suggestions and ideas to enhance the scientific contributions of the manuscript.
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CHAPTER 1

INTRODUCTION

1.1 Changing Climate

In the last few decades, the global climate has changed rapidly. According to the
Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report, the global
temperature increased by 0.85 °C between 1880 and 2015. From 1951 to 2015, the rate of
change was 0.12 °C per decade, which is twice as much as from 1880 to 2015 (IPCC, 2014).
Recently, North Hampshire has experienced fast warming due to global climate change (IPCC,
2013). The yearly average temperature in Northern Hampshire increased by almost twice the
global average temperature increase rate (Vincent et al., 2015). In Canada, the entire country
has seen an average increase of 1.78°C over the past 65 years, while the southern region of
Canada has experienced an average warming of 1.68°C. These climate changes are negatively

impacting ecosystems, especially forests and agriculture.

1.2 Agricultural Ecosystem and Climate Change

The increase in atmospheric CO2 is a major contributing factor in human-induced climate
warming (Myhre et al., 2013; Lynch et al., 2021). CO; levels in the air have increased by about
40% compared to levels before the industrialization (IPCC, 2013). The agriculture systems
contribute substantially to this increase in atmospheric CO, releasing 9.3 billion tonnes of
carbon dioxide equivalent (COeq), constituting roughly 11% of the total annual global CO>
emissions (Gilbert, 2012; Mbow et al., 2017; Lamb et al., 2021; Lynch et al., 2021). In Canada,
agriculture significantly contributes to the country's overall CO> emissions, emitting

approximately 10% of the total national emissions of 729 Mt CO.eq (Fouli et al., 2021).

1
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Although, Canadian agriculture systems have acted both, a C sink and a C source, depending
on the geographic region and crop type ( Gregorich et al., 2005; Laamrani et al., 2021), they
have potential for playing an important role in curbing CO2 emissions and serve as substantial
C reservoirs to mitigate climate change, if adequate climate tailored management practices are

deployed (Horowitz and Gottlieb, 2010).

1.3 Forest Ecosystem and Climate Change

Forest ecosystems cover about 30% of the land surface and they play a vital role in the global
C cycle (Heino et al., 2015; Ontl et al., 2016; Reichstein and Carvalhais, 2019). These
ecosystems, actively contribute to the global C cycle through photosynthesis and ecosystem
respiration (FAQ, 2010). The balance between these major CO, exchanges determines whether
the forest is net C sink or a source and how efficiently photosynthesis is turned into net biomass
growth and C uptake (DeLucia et al., 2007; Litton et al., 2007). On a larger scale, the increase
in biomass from photosynthesis is characterize as gross primary production (GPP). Forests
consistently show high levels of GPP, making them Earth's most substantial C absorbers and
C reservoirs (Peters et al., 2007; Pan et al., 2011). Forests in North America are expected to
contribute around 76% to the region's net terrestrial C storage (Hayes et al., 2012). Regarding
Canada's forest ecosystems, their role in the C cycle varies across different time scales, ranging
from annual to centennial. Historically, Canada's forests have demonstrated a pattern of C
absorption, averaging 173 million metric tons of C (MtC) per year over much of the past
century (Hengeveld et al., 2008), although this rate can be influenced by periodic disturbance

events such as wildfires or insect infestations.
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Global climate change poses a major challenge to terrestrial ecosystems (Gabaldon-Leal et al.,
2016; IPCC, 2014). Warming climate have led to significant changes in forest ecosystems
(Seppéld, 2009). It has contributed to lower growth rates and increased tree mortality due to
drought, heat, and soil moisture scarcity. These threats may be further intensified by additional
ecological shifts, such as elevated concentrations of low-altitude ozone, the deposition of
nitrogenous pollutants, the emergence of exotic pests and pathogens, environmental disruption,
and heightened disturbances like fires (Keenan, 2015). The continued impacts of climate
change could significantly contribute to the degradation of forests. Anticipated future changes
may lead to the relocation of tree species, transformations in ecological regions, alterations in
terrestrial ecosystem function, and the potential restructuring of ecosystems' productivity
following disturbances related to ongoing climate change. In Canada, the composition of forest
cover has undergone rapid changes in recent decades due to both human activities and other
disruptions, leading to spatial and temporal variations in Canada's forested areas caused by

anthropogenic activities.

1.4 Climate Change and Extreme Weather Event

Extreme weather events include unusually high temperatures, heavy rainfall, and prolonged
and severe droughts. Climate warming can lead to increase in the frequency and intensity of
extreme weather events such as storms, flooding, droughts, and wildfires, as well as insect
outbreaks of pests and diseases (IPCC, 2014; Beach et al., 2015). It can also cause major
changes in the spatial and temporal distribution of precipitation. These changes are likely to

affect the future productivity of agriculture and forestry (Diffenbaugh et al., 2012).
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However, extreme weather events are expected to become more severe in the future. They will
cause forest degradation through multiple way such as increased wildfires and infestations.
Both of these natural disturbances have significantly impacted C fluxes and C storage in
Canada's forests in recent years, in particular insect infestations which has impacted large areas
in the both western (mountain pine beetle) and eastern (Spongy moth) parts of the country
(Kurz et al., 2002). In eastern Canada, 595 million hectares of potential areas are climatically
suitable for the future spongy moth outbreak, which may substantially impact terrestrial C
sequestration (Gray, 2004). However, temporary and unpredictable nature poses natural
disturbances, particular insect infestation poses challenges for their effective monitoring and

management (De Beurs & Townsend, 2008).

Research conducted in this PhD dissertation has helped to enhance our understanding of C
exchange processes in agricultural and forest ecosystems, develop advanced monitoring
capabilities by integrating micrometeorology and remote sensing techniques and provide an
assessment of the best forest management practices to enhance growth and C sequestration in

changing climate.

1.5 Novelty of the Study

Agriculture, the primary land use in Southern Ontario, plays a crucial role in the national
economy and is vulnerable to climate extremes (Gabriel et al., 1993; Smith, 2015; Yusa et al.,
2015; Lesk et al., 2016; Zafiriou et al., 2023). The agriculture sector contributed about 15% of
the national net farm income (Statistics Canada, 2018). Corn is the main crop, grown on an
average of 887,000 hectares each year (OMAFRA, 2017), which can improve the regional

ecosystem, aid in climate change mitigation, and contribute to C sequestration. Southern



Ph.D. Thesis — Nur Hussain School of Earth, Environment, & Society

Ontario is an important ecological and economic (both agricultural and industrial) region of
the country. This PhD study provided valuable insights into C flux dynamics in different crops
in this region. Continuous monitoring of energy, water, and C fluxes, along with climatic
variables across various crops, will provide crucial data for formulating strategies to tackle
climate change through C sequestration in agricultural fields. Additionally, it will offer insights
into the impacts of extreme weather events on crop ecosystems and food production and food

security in the Great Lakes region.

In addition, nature-based climate solutions, encompassing enhanced forest C uptake through
management and conservation, are proposed as cost-effective measures to address climate
change (Kaarakka et al., 2021; Creutzig et al., 2022; Marvin et al., 2023). In Canada, 66% of
forests undergo active management, with variable retention harvesting (VRH) being suggested
as a key approach to manage these forests (Natural Resources Canada (NRC), 2016). VRH,
originally designed to reduce clearcutting and promote stand regeneration, has been extensively
studied for its impacts on biodiversity and ecosystem processes. Remote sensing techniques
provide a valuable opportunity for assessing changes in forest structure and evaluating the
effectiveness of management practices in enhancing growth and C sequestration. This PhD
dissertation have provided framework for the integration ground-based flux tower and remote
sensing techniques to provide an assessment of the best forest management practices to enhance
growth and C sequestration in changing climate. It also used this framework to provide a
regional assessment of C losses due to record 2021 Spongy month infestation in southern

Ontario, providing vital data for C budget assessments for forest managers and policy makers.
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1.6 Objectives of the study

Forest and agricultural ecosystems are a major player in the global carbon cycle. They face
many challenges due to climate change and extreme weather events such as heat, drought, and
soil moisture scarcity. The primary study objective of this study is to examine the influence of
climate variability on C exchanges in agricultural and managed forest ecosystems in southern

Ontario in the Great Lakes region. Specific objectives include:

(1) Continuously measure C fluxes and meteorological variables in an agricultural site in
Southern Ontario and evaluate how these C exchanges may respond to extreme weather
conditions such as drought and heat waves. Determine major environmental controls
and investigate seasonal and annual dynamics of crop productivity, C sequestration and

water use efficiency.

(2) Evaluate the impact of different forest management regimes or thinning patterns on the
growth and productivity of a managed forest ecosystem. Explore the effectiveness of
various forest management treatments such as variable retention harvesting (VRH) in

enhancing forest C uptake and resilience to extreme weather events and climate change.

(3) Determine seasonal variations and trends in the leaf area index (LAI) using high-
resolution remote sensing data. Also, determine forest photosynthetic uptake and GPP
using observed eddy covariance flux and remote sensing data and quantify C losses
across the region because of this widespread and severe spongy moth infestation of

2021.
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1.7 Study Sites

This dissertation involved making flux and meteorological measurements at the Turkey Point
Environmental Observatory (TPEO), located near the northern shore of Lake Erie in southern
Ontario, Canada. Eddy covariance (EC) flux measurements of CO», water vapor, and energy,
were made at a newly established agricultural flux tower site known as TPAg or CA-TPAg
(Ameriflux notation) from 2020 to 2023. Similar EC flux, meteorological, and ecological
measurements were also made in three different ages (84-, 49-, and 21-year old as of 2023) of
conifer forest since 2002 and a deciduous (>90-year old) forest since 2012. TPEO is one of the
few sites in Ameriflux and global Fluxnet with long-term (>20 years) flux data availability.
The addition of the agricultural site at TPAg has expanded the representation of TPEO to all
major biomes in the Great Lakes region, covering coniferous and deciduous forests, as well as
agricultural crops. The forest sites are abbreviated as TP02, TP74, TP39, and TPD, referring to
"Turkey Point' followed by the year of stand establishment (i.e., 2002, 1974, 1939), with TPD
(Turkey Point Deciduous) as an exception. Turkey Point Observatory is part of the Global
Water Futures (GWF) program, Ameriflux, global Fluxnet and US-Canada Global Centre for
Climate Change and Transboundary Waters. In the global Fluxnet archives and literature, the
Turkey Point Observatory sites are denoted as CA-TP1, CA-TP3, CA-TP4, and CA-TPD for
the 17-, 45-, 80-year-old pine forests, and >90-year-old deciduous forest, respectively. Detailed
information on site characteristics, instrumentation, and measurements is provided in the

individual chapters.

1.8 Overview of Methodology

Half-hourly measurements of CO, flux (Fc) and energy fluxes (H, LE, G, and Rn) were

conducted from June 2020 to December 2022 using an open-path Eddy Covariance (EC)
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system with a sonic anemometer (model CSAT3, Campbell Scientific Inc.) and an infrared gas
analyzer (IRGA, model LI-7500, Li-COR Inc.) in the agricultural site. Similar flux data were
measured int the forest sites using closed-path EC system (comprising Li-7200 or Li-7000 gas
analyzers and CSAT3 sonic anemometer), since 2023 in conifer forests and since 2012 in
deciduous forest. Solar radiation, photosynthetically active radiation (PAR), air temperature,
relative humidity, wind speed and direction, atmospheric pressure, precipitation and soil

temperature and soil water content at several depths were also measure at all these sites.

To determine environmental controls on daily variation of C fluxes and evapotranspiration
(ET), the gap-filled and non-gap-filled data were used. EC flux and meteorological data were
quality controlled by using the Biometeorological Analysis, Collection, and Organizational
Node (BACON) software developed by our Lab (Brodeur, 2014). The marginal distribution
sampling (MDS) method by Reichstein et al. (2005) fills gaps in NEE time series using
covariance with meteorological variables and auto-correlation over time. It averages NEE
measurements under similar environmental conditions within a set period, expanding the
search if no suitable data are found. This study modified the method to estimate NEE for all
half-hour intervals, including those with data, to create a complete time series and evaluate
gap-filling performance comprehensively. Small gaps in meteorological data within a few
hours were filled using linear interpolation from the same site. For larger data gaps, missing
meteorological variables were estimated using backtracking linear regression with data from
adjacent forest sites, based on information from the nearest flux station located approximately

700 meters away.
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The partitioning of net ecosystem exchange (NEE) into respiration (RE) and gross ecosystem
productivity (GEP) was carried out using the approach described by Peichl et al. (2010). RE
was estimated as equivalent to NEE during nighttime (PAR < 100 pumol m™ s™'). These
nighttime RE values were used to construct a continuous RE time series based on soil
temperature at 5 cm (Tssem) and soil moisture at 0-30 cm (6o-30cm), employing temperature
response parameters (R and Qio) to describe the RE-Ts5cm relationship, adjusted by a soil

moisture function as outlined by Brodeur (2014).

(Ts5—10) 1

RE =Ri9X Q1o 10 X (1.1)

[1+exp (a1—az 69-30cm)]

GEP = S2XL28 o £(Te) X VPD X f(8-300m) (1.2)

aRARd— Amax

where, R10 and Q1o are fitted temperature response parameters that characterize the relationship
between RE and soil temperature (Ts). The function 0,_30cn IS @ sigmoidal function
representing the impact of soil moisture at 30 cm depth. The remaining terms account for the
scaling effects of GEP in relation to Ts, vapor pressure deficit (VPD), and soil moisture at 0-

30 cm (90-30cm)-

Sentinel-2A and Sentinel-2B (S2), part of the COPERNICUS satellite systems, offer high-
resolution datasets for global terrestrial ecosystem monitoring (Drusch et al., 2012; Léw &
Koukal, 2020; Li et al., 2022). The Sentinel-2 multispectral instrument (MSI) system provides
13 spectral bands, including 10 m spatial resolution for visible and near-infrared (NIR) and 20
m spatial resolution for Short-Wave Infrared (SWIR) spectrum (Drusch et al., 2012; Maselli et
al., 2020; Sun et al., 2021; Bossung et al., 2022). This study used Sentinel-2 data to calculate
vegetation indices (VIs) like NDVI and LAI for biomass estimation and GPP for C uptake. LAI

was estimated using the PROSAIL model, a combination of PROSPECT (Jacquemoud and
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Baret, 1990; Feret et al., 2008) and SAIL models (Verhoef, 1984). GPP was estimated using
the Sentinel-2-based LUE model to quantify the CO> uptake from different vegetation types.
LUE can empirically estimate GPP (Zhang et al., 2017; Sun et al., 2019; Xie et al., 2019) using
remote sensing data. Observed air temperature (Tair) and photosynthetic active radiation

(PAR) data were used with satellite data in the LUE model to calculate GPP.

10
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CHAPTER 2

CARBON, WATER AND ENERGY FLUXES IN AN AGRICULTURAL FIELD IN
THE GREAT LAKES REGION IN CANADA

2.1 Abstract

Eddy covariance (EC) flux measurements of energy, water vapor and carbon dioxide (CO>)
were made in a newly established agricultural flux tower site, hereafter known as CA-TPAg
(Ameriflux notation) in the Great Lakes region in Southern Ontario, Canada from 2020 and
2023. This agriculture flux site has become part of the Turkey Point Environmental
Observatory (TPEO), where EC flux, meteorological and ecological variables are being
continuously made in three different ages (84-, 49- and 21-yr old as of 2023) of conifer forests
since 2002 and a deciduous (>90-yr old) forest since 2012, enabling TPEO to become
representative of the major biomes in the Great Lakes region. The agricultural site was planted
with corn in 2020 and 2021, sweet potato in 2022 and tobacco in 2023. Study results showed
that the mean daily evapotranspiration (ET) over the growing season was 3.12, 3.74, 3.78 and
2.96 mm d? in 2020, 2021, 2022 and 2023 for corn, corn, sweet potato and tobacco,
respectively. Corresponding annual ET values were 680, 727, 732 and 715 mm yr?, which
accounted for approximately 60%, 72%, 77% and 73% of the annual total precipitation. The
observed annual gross ecosystem productivity (GEP) values were 1289, 1359, 705 and 885 ¢
C m? yrtin 2020, 2021, 2022 and 2023, respectively, while corresponding annual ecosystem
respiration (RE) values were 804, 1110, 825 and 878 g C m? yrX. Overall, the site was a carbon
(C) sink with annual NEP values of 485 and 249 g C m? yr?, respectively when corn was
planted in 2020 and 2021. It was a C source with annual NEP value of —120 g C m? yr* when
sweet potato was planted in 2022 and C neutral with annual NEP of 7 g C m? yr'* when tobacco
was planted in 2023. The grain yields (GY) were 537, 491, 118 and 124 g C m2 in 2020, 2021,

2022 and 2023 resulting in annual net ecosystem carbon balance (NECB) of -52 (corn), -242
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(corn), -238 (Sweet potato) and -117 (tobacco) g C m2 year *. Air temperature (Ta), and soil
temperature (Ts) were the dominant controls on NEP, followed by Photosynthetically active
radiation (PAR). This study helps to enhance our understanding of C, water and energy flux
dynamics in agricultural fields in the Great Lakes region and provides valuable data for flux
up-scaling, remote sensing applications, and ecosystem modeling. It will help in evaluating the

potential of agricultural fields for C sequestration to provide nature-based climate solutions.

2.2 Introduction

Atmospheric carbon dioxide (CO.) is a major contributor to human-induced climate warming
(Myhre et al., 2017; Lynch et al., 2021; Jones et al., 2023). The concentration of CO> in the
atmosphere has increased by approximately 40% compared to pre-industrial levels (Lthi et
al., 2008; Solomon et al., 2009; IPCC, 2013; Friedlingstein et al., 2022). The agricultural sector
is responsible for emitting 9.3 billion tonnes of CO- equivalent (CO2eq), making up roughly
11% of the total annual global CO2 emissions (Gilbert, 2012; Mbow et al., 2017; Lamb et al.,
2021; Lynch et al., 2021). In Canada also, the agriculture sector contributes about 10% of the
national greenhouse gas (GHG) emissions of 729 Mt CO2eq (Fouli et al., 2021; ECCC, 2023;
Lu et al., 2023). If managed adequately, the Canadian agricultural sector can play an important
role in reducing national CO> emissions (Gregorich et al., 2005; ECCC, 2016; Yildirim et al.,

2019; Laamrani et al., 2021).

In recent years, numerous eddy covariance (EC) flux observation sites have been established
in agricultural fields in Canada and across the world to study biogeochemical and hydrological
processes and to determine their carbon (C) sink or source strength and potential contributions
in mitigating climate change (Pattey et al., 2006; Glenn et al, 2010; Smith et al., 2010; Moravek

et al., 2019; Liebig et al., 2022). These studies have investigated the relationship between
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photosynthetic CO, uptake (crop growth) and environmental controls in agricultural systems
(Hernandez-Ramirez et al., 2011; Menefee et al., 2022). However, the influence of
environmental factors on crop growth and C exchanges in an area may significantly vary
among different crop types due to differences in plant species, plant phenology, canopy
structure, spatial distribution and management practices (Hernandez-Ramirez et al., 2011;
Quan et al., 2023). Many EC flux studies have reported agricultural fields as a net source of C
to the atmosphere (Baker and Griffis, 2005; Liebig et al., 2022; Anthony et al., 2023; Quan et
al., 2023), often attributing this to intensive cropping practices that compromise soil organic
matter stability. Some research suggests that changing land use intensity and implementing
crop rotations could enhance C sequestration and reduce soil organic matter depletion (Smith

etal., 2015; Land et al., 2017; Lessmann et al., 2022; Thapa et al., 2023).

The EC flux system is instrumental in measuring C flux between ecosystems and the
atmosphere, significantly enhancing our understanding of how land management and
environmental factors control agricultural C emissions and sequestration (Menefee et al.,
2022). Climatic factors and land management practices collectively determine whether
agricultural systems contribute as C sources or sinks (Fan et al., 2019). Consequently,
investigating cropland C dynamics across various climates and management strategies is
essential (Browning et al., 2021). Adopting best practices such as high-yield crop varieties,
optimized irrigation techniques, improved soil protection, increased resilience to climate
impacts, and enhanced soil C sequestration (Pellerin et al., 2017). Higher crop productivity
generally affects in enhanced C uptake, leading to increased C inputs in the soil from crop
residues and root biomass (Burney et al., 2010; Smith et al., 2012; Frank et al., 2017; Fan et
al., 2019). However, annual climate variability can obscure treatment effects in short-term

studies (Pittelkow et al., 2015; Austin et al., 2017; Biichi et al., 2017), emphasizing the
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necessity for long-term research across diverse climates, soils, crop rotations, and extreme
events to better understand how climatic factors and soil residues influence ecosystems and C

balance.

For the agricultural fields which has been reported as a net C sink, there may be uncertainties
surrounding the strength and resilience of this C sink under future climate change (Curtis and
Gough, 2018; Laforge et al., 2021; O’sullivan et al., 2022). In the literature there is lack of
long-term EC flux studies focusing on to evaluate the C source or sink strength of different
crops and how they maybe impacted by changes in climate and extreme weather conditions.
These long-term EC flux studies are very important to develop well-tested agricultural
ecosystem models and to determine regional C budgets by integrating site-level knowledge
with remote sensing data in major croplands such as Midwest in the USA (Wiesner et al., 2022)

and Southern Ontario in Canada (Ashton et al., 2023).

In Canada, the province of Ontario is a major contributor to Canadian agricultural sector where
almost 25% of Canadian farms covering 7.7% of the total farm area are located (Chen, 2022).
Soybean (31.8%), Corn (24.9), winter wheat (13%) and Alfalfa (11.2%) are major crops in
Ontario, Canada (Statistics Canada, 2021). Other major crops include barley, tobacco, grapes
and various vegetables such as potato, tomato, cauliflower etc. Southern Ontario, where 70%
of the land area is utilized for agriculture contributes 15% of Canada’s net farm income
(Statistics Canada, 2018). In addition, almost one-third of the Canadian population also lives
in this area (Stats Canada, 2023). This region has a very conducive environment for crops due
to the proximity of the Great Lakes (McKeown et al., 2005). Despite its significance, this area
has only one long-term EC flux observation site at Elora focusing on productivity and C sink

and source strength of crops (Wagner-Riddle, 2021; Wagner-Riddle et al., 2007). Continuous
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measurements of energy, water, and C fluxes, along with climatic variables in various crops in
the region are essential to provide valuable data for plot level and regional C balance studies
and to develop strategies for mitigating climate change through C sequestration in agricultural

fields.

This study reports the continuous eddy covariance flux measurements in a newly established
agricultural flux tower site in Southern Ontario, Canada from 20020 to 2023. The field was
planted with corn in 2020 and 2021, sweet potato in 2022 and tobacco in 2023. The main
objectives of the study are to (i) continuously measure energy, water and C fluxes in different
agricultural crops, (ii) determine the C sink and source strength of these crops and (iii)
investigate major environmental controls and their impact on C dynamics and water use of
difference crops. The method and findings of this research will enhance understanding to
improve C sequestration in agricultural ecosystems and assess the impacts of extreme weather

events on crop productivity.

2.3 Methods

2.3.1 Site description

The study site is located about 15 km southwest of Simcoe in southern Ontario, Canada
(42°41'46.05"N and 80°20'55.61"W). It was planted with corn (Zea mays) in 2020 and 2021,
sweet potato (Ipomoea batatas) in 2022 and tobacco (Nicotiana tabacum) in 2023. Site was
planted with winter grass after the harvesting of sweet potato in 2022 and which was mowed
back into soil in April 2023 prior to plantation of tobacco to increase soil fertility. The site is
part of Turkey Point Environmental Observatory (TPEO), where EC flux, meteorological and
ecological variables are being continuously made in three different ages (84-, 49- and 21-yr old

as of 2023 known as CA-TP1, CA-TP3 and CA-TP4) of conifer forests since 2002 and a
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deciduous (>90-yr old known as CA-TPD) forest since 2012 (Arain et al., 2022; Latifovic et
al., 2024). TPEO is associated with the Global Water Futures Program, Ameriflux and Global
Fluxnet. TPEO is among a handful of sites in Ameriflux and global Fluxnet with long-term
(>20 years) flux data availability. The 84-year-old conifer forest site (CA-TP4) site is located
in the north at 1.7 km, while 49-year-old conifer forest site (CA-TP3 is located in the northeast
at 1.2 km from the CA-TPAg site. The establishment of the agricultural site has allowed TPEO
to become representative of the major biomes in the Great Lakes region, encompassing
coniferous and deciduous forests, as well as agricultural crops. The soil at this agricultural site
is well-drained fine sandy loam. The area has a humid continental climate and has one of the
longest-growing seasons in Canada with at least 150-160 frost-free days in a year. The mean
annual temperature is 8.4°C and the mean annual precipitation (P) is approximately 965 mm
based on the Meteorological Services of Canada climate normal data record (1991-2020) at

Delhi Weather Station, Ontario.

2.3.2. Flux and meteorological data measurements, quality control and gap filling

Half-hourly fluxes of momentum, latent heat (LE), sensible heat (H), and CO. (Fc) were
measured continuously from June 2020 to December 2023 using an open-path eddy covariance
(EC) system. Flux measurements have been continuous until the writing of this paper. The EC
system consisted of a sonic anemometer (model CSAT3, Campbell Scientific Inc. (CSI)) and
an infrared gas analyzer, IRGA (model LI-7500; LI-COR Inc.). The IRGA and CSAT3 were
installed at 5 m height on top of an aluminum boom. A footprint model (Kljun et al. 2004), was
used to estimate flux footprint, determine the height of EC sensors and ensure that the majority
(>80%) of fluxes originated within the agricultural field being measured. The CSAT3 was
oriented facing westward (270°). Fluxes were measured at 20 Hz frequency and then half-

hourly values were calculates on the site computer using a software developed by the
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Biometeorology & Soil Physics Group of the University of British Columbia using Matlab
(The MathWorks Inc.). Initial data quality controls and non-stationarity checks were also
perfumed by the UBC flux software. Because the gas analyzer provided high frequency CO>
concentrations as mixing ratios, therefore no subsequent Webb-Pearman-Leuning (WPL)
corrections were required (Webb et al., 1980). Flux data originating from 70-80° East and 230-
255° West wind directions were discarded because of the existence of a surface flood-water
drainage ditch. Any large shrubs such as Sumac (Rhus typhina) growing along this drain were
removed prior to flux measurements. The site is equipped with A/C power and internet
connection for daily data checks. The high-frequency data were saved on the field
minicomputer and manually transferred and backed up on the Lab data computer on biweekly

or monthly basis using a data disk.

Meteorological measurements were made simultaneously with EC flux measurements. These
included the downward and upward photosynthetically active radiation (PAR; Kipp & Zonen
Quantum Sensor, model PQS1, CSI), as well as incoming and outgoing, longwave and
shortwave solar radiation and net radiation measured with a net radiometer (SN500, net
radiometer, Apogee Instruments), air temperature (Ta) and relative humidity (RH) (HC2S3,
CSI) and soil heat flux (G) at 3 cm depth (HFT3, CSI). Soil temperature was measured at 2, 5,
10, and 50 cm depths using soil temperature probes (model 107b, CSI). Soil volumetric water
content (VWC) was monitored using water content reflectometers (model 616, CSI), which
were buried at depths of 5 and 50 cm from the soil surface. The precipitation (P) was measured
using an all-weather accumulation rain gauge (model T-200B, Geonor Inc.) in the south of the
agricultural site at an adjacent property of the Long Point Ecoadventure Centre. All

meteorological and soil data were recorded at half-hourly intervals using a data logger (model
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CR5000, CSI). Automated data downloads were conducted every half hour using the field

minicomputer housed in the data logger box.

Half-hourly EC fluxes and meteorological data were quality controlled in the Lab using the
Biometeorological Analysis, Collection, and Organizational Node (BACON) software
developed by our group (Brodeur, 2014). All half-hourly flux and meteorological data were
automatically filtered for spikes and then manually checked to identify and remove any
outliers. Small gaps in meteorological variables, not exceeding a few hours were filled using
linear interpolation (6.3 % of the total observations). Large gaps in meteorological variables,
including January to June 2020 period were filled using data from weather stations installed at
adjacent forest sites (i.e. CA-TP3 and CA-TP4) after applying linear regression analysis where

needed.

Net ecosystem exchange (NEE) was calculated as NEE = F¢ + S¢, where S is the rate of change
in CO; storage within the air column below the EC sensor, estimated from the change in the
present and previous half-hourly CO> response (Chan et al., 2018). Net ecosystem productivity
(NEP) is equal to -NEE, where a positive NEP represents C fixed by the ecosystem C sink and
a negative NEP represents C source or emission to the atmosphere. Half-hourly flux gap-filling
and partitioning of NEP into GEP and RE was conducted using REddyProc package in R
(Reichstein et al., 2005; Lasslop et al., 2010; Wutzler et al. 2018). For the gap-filling of fluxes
the marginal distribution sampling (MDS) method of the REddyProc was adopted, while the
partitioning of NEP into GEP and Re was conducted by using u* thresholds constrained
nighttime NEP values to estimate day-time RE (Wutzler et al., 2018). After data quality control
of measured NEP fluxes in total 61.83%, 56.33%, 68.62%, and 67.20% of data was retained

for 2020 (Jun-Dec), 2021, 2022 to 2023, respectively. Uncertainty in annual NEP (£ STD,
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standard deviation) was derived from the aggregated values estimated using the distribution of
u* thresholds of 5, 50, and 95% quantiles. For ET uncertainty values u* thresholds of 50 and
95% were used. Uncertainty associated with energy balance closure was not included in these
uncertainty estimates and annual C fluxes were not corrected for the energy balance closure.

Gross ecosystem productivity (GEP) was estimated as the sum of daytime NEP and RE.

Net ecosystem carbon balance (NECB) was calculated as NEP minus C removed as grain. For
NECB accounting C input through seeding was not accounted, while no organic fertilizer was
applied. Multivariable linear regression (MLR) and principal component analysis (PCA) were
conducted to explore relationships between climatic variables and carbon and water fluxes. In
both analyses, PAR, Ta, Ts, VPD, and VWC were considered as independent variables, while

GEP, NEP, RE, and ET were considered as the dependent variables.

2.4 Results:
2.4.1 Meteorological conditions

Weather conditions during the study period were representative of typical humid continental
climates in the Great Lake region, which has large seasonal differences in air temperature and
well-distributed precipitation throughout the year (Figure 2.1 and Table 2.1). The maximum
daily PAR was observed in June, while the maximum daily Ta and Ts values were observed in
July. The growing season (June to September) daily mean PAR values were 402 umol m™2 s™!
in 2020, 429 pmol m™2 s in 2021, 455 pmol m2 s™" in 2022 and 516 pmol m™2 s™* in 2023.
The growing season daily mean T. was 19.91+3.7 °C, 20.17+2.6 °C, 20.3t2.4 °C and
18.77+2.8°C, respectively in 2020, 2021, 2022 and 2023 whereas the respective growing

season daily mean Ts at 5cm depth was 19.1+3.2°C, 20.7£1.9°C, 24.2+2.4°C and 21+2.5°C.

25



Ph.D. Thesis — Nur Hussain School of Earth, Environment, & Society

Similarly, the growing season daily mean VPD values were 0.37, 0.33, 0.33 and 0.31 kPa in

2020, 2021, 2022 and 2023 respectively.

Annual total precipitation (P) values were 1127, 1009, 947 and 979 mm yr?* in 2020, 2021,
2022 and 2023, respectively. Overall, the observed P followed typical seasonal patterns
characteristic of a continental climate, except for May and August 2021 (38 and 46 mm) and
May and September 2023 (25 and 42 mm), when the site experienced a significant reduction
in monthly total P as compared to 30-year normal P (1991-2020) collected from Delhi weather
station Ontario (Environment and natural resources, Canada) (Table 2.1). Moreover, the
highest annual P was observed in 2020 (1127 mm), which contributed to higher soil volumetric
water content (VWC) compared to other years. The growing season daily mean VWC was

0.19, 0.15, 0.13 and 0.15 m®* m in 2020, 2021, 2022 and 2023, respectively.

2.4.2 Energy flux dynamics

There was a good agreement between radiative (Rn + G) and turbulent (H + LE) fluxes (Figure
2.2). Regression of daily mean radiative and turbulent fluxes for corn in 2020 (2021) had slope
of 0.81 (0.87), intercept of 2.5 (4.9) W m2 and R? of 0.82 (0.81). Similarly, the regression of
daily mean radiative and turbulent fluxes for sweet potato and tobacco in 2022 and 2023 had
slope of 0.87 and 0.91, intercept of 17.1 and 9.9 W m and R? of 0.82 and 0.87, respectively.
The energy balance ratio (EBR), calculated as (Rn-G)/(H+LE) was 0.82 and 0.90 for two
consecutive corn crops in 2020 and 2021, respectively, while, EBR for sweet potato and
tobacco was 0.93 and 0.94 in 2022 and 2023, respectively. This indicates that approximately
82%, 90%, 93% and 94% of the available energy was transferred from the surface to the

atmosphere through turbulent fluxes in 2020, 2021, 2022 and 2023, respectively.
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The time series of monthly mean Rn, LE, H, and G is shown in Figure 2.3. All energy balance
components (Rn, LE, H, and G) peaked in June and July each year. Rn values declined from
September when the fall season started and reached about 10-20 W m by the end of October
(Figure 2.3a). A significant proportion of Rn was transferred to the atmosphere as LE during
the peak growing season months (June-August), with (LE/Rn) ratios of 0.85 and 0.74 for corn
in 2020 and 2021 and 0.79 for sweet potato. A slightly higher LE/Rn ratio of 0.88 was observed

for tobacco. The variability in LE/Rn ratios is influenced by crop type and climatic conditions.

Overall, the growing season (June to September) monthly mean Rn was 132, 127, 125 and 113
W m2 in 2020, 2021, 2021 and 2023, respectively, while corresponding monthly mean LE
values were 91, 102, 95 and 84 W m in 2020, 2021, 2022 and 2023, respectively. The corn
and tobacco crops exhibited maximum LE in July, while sweet potato had its maximum LE in
August (Figure 2.3b). A notable reduction in LE was observed in May 2021, September 2020
and June and September 2023. Low values of H were also observed in July 2020 and June, July
and August in 2021 (Figure 2.3c). Overall, the growing season monthly mean H values were

20, 18, 32 and 29 W m™2 in 2020, 2021, 2022 and 2023, respectively.

Compared to the other three major components of the energy balance, monthly mean G values
remained low throughout the year, with maximum G observed in June coinciding with
maximum radiation value (Figure 2.3d). The growing season monthly mean G values were 3.6,

3.7, 2.4 and 4.9 Wm™2 in 2020, 2021, 2022 and 2023, respectively.

27



Ph.D. Thesis — Nur Hussain School of Earth, Environment, & Society

2.4.3 Carbon flux dynamics

C flux dynamics showed a distinct seasonal pattern with NEP reflecting periods of dormancy,
rapid vegetative growth, and senescence, as shown in Figure 2.4 (a-d). The specific timing of
maximum C uptake and loss varied from year to year. For corn in 2020, the growing season
spanned from May 23 to September 29, lasting 130 days (Figure 2.4 and 2.5). During this
period, the mean daily NEP was 4.45 g C m2 d', with the maximum NEP of 12.57 g C m™?
d™! observed in July. In contrast, the corn growing season in 2021 began a half-month later on
June 9 due to delayed planting and ended on September 21, spanning over 105 days. Hence,
the growing season length in 2021 was 25 days less than 2020. In 2021, the mean daily NEP
was 5.57 g C m2 d', with the maximum NEP of 10.97 g C m™ d™' observed in August. The
growing season for sweet potato crop in 2022 started on July 61" and ended on September 19™
with only 76 days of active growth. It shows that in 2022 crop photosynthetic uptake started
43 days later than in 2020 and 27 days later than in 2021, while it ended at almost similar time
as other years. For sweet potato crop the mean daily NEP was 4 g C m™> d ™!, with the peak NEP
of 7.2 g Cm2d ! occurring in August. The duration of the growing season for tobacco planted
in 2023 was 125 days (1% July to 3@ October) when crop was harvested with the mean NEP
values of 0.9 g C m2 d'. Prior to planting tobacco, the site was planted with winter grass,
which caused an early start of photosynthesis in the spring in 2023, where daily NEP values
became positive from mid-March to April with a total NEP of 22 g C m (Figure 2.4d and
2.5b). This winter grass was mowed back into the soil at the end of April prior to the planting
of tobacco. After mowing daily NEP values became negative and reached up to -4 g C m2
day'. Planting of winter grass caused the site to become a net C sink over the January to April
2023 period with a total NEP of 22 g C m2 (Figure 2.5). Overall, the total growing season NEP
values were 579, 543, 304 and 113 g C m 2 in 2020, 2021, 2022 and 2023, respectively (Table

2.2).
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On the annual basis, the site was a strong C sink, with annual NEP values 0f 485 g C m2 y!
and 249 g C m 2 y !, respectively when corn was planted in 2020 and 2021 (Figure 2.5, Table
2.2). It was a C source with an annual NEP of -120 g C m™ y! when sweet potato was planted
in 2022. The site was C neutral in 2023 for tobacco with an annual NEP of 7 g C m2 y'. The
annual GEP values were 1289, 1359, 705 and 885 g C m-2 y* in 2020, 2021, 2022 and 2023,
respectively, while corresponding annual RE values were 804, 1110, 825, and 878 gC m?y!

(Figure 2.5, Table 2.2).

Additionally, the annual NECB was -52 (corn), -241 (corn), -238 (sweet potato) and -117
(tobacco) g C m~2 year ! and respective grain yields (GY) was 537, 491, 118 and 124 g C m2
in 2020, 2021, 2022 and 2023 (Table 2.2). The maximum NECB is associated with corn crops,
consistent with the year of the highest recorded annual NEP of 485 (2020) and 249 (2021) g C
m~2 year . The minimum NECB was recorded in 2022 for sweet potatoes when the site was a
source of C with an annual NEP value of -120 g C m2 year*. These findings show substantial
changes in the site's C balance and are indicative of a shifting ecosystem response during the

study period.

The results reveal substantial variations in NEP and NECB during the growing seasons of 2020,
2021, and 2023, reflecting their dynamic relationship with the annual C balance. In 2020, the
corn crop with 130 days of growing season recorded NEP of 579 g C m 2 and a positive NECB
of 42 g C m2. However, the annual NEP decreased to 485 g C m2, suggesting C uptake losses
from respiration during the non-growing period and/or from harvested residues. In 2021, the
growing season NEP was 543 g C m 2 with a positive NECB of 52 g C m 2. However, annual

NEP declined to 249 g C m™?, resulting in a negative NECB of -242 g C m™2 This decline
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indicates that external factors, particularly drought conditions experienced in May and August,

2021 had a significant impact on carbon dynamics.

In 2022, despite a reduced growing season of 76 days for potatoes, the growing season NEP
reached 304 g C m? with a noteworthy NECB of 186 g C m™2. However, the annual NEP
remained negative at -120 g C m2, revealing that the advantages gained during the growing
season were inadequate to offset annual losses. During the tobacco growing season, drought
stress was observed in May and September, resulting in the growing season NEP of 113 g C
m2 and an annual NEP of 7 g C m2, with a NECB of -117 g C m2. This analysis provides the
critical interplay between growing season conditions and annual carbon dynamics,
emphasizing how drought stress can adversely affect both immediate productivity and long-

term carbon retention in agricultural systems.

2.4.3 Water flux dynamics

ET is a major component of the water cycle in crops. Dynamics of daily ET values is shown in
Figure 4e-h. During the initial period of the growing season, daily ET values were about 1-2
mm d1, while during the peak growing season in July-August daily ET values exceeded 6 mm
dX. In contrast to NEP, there were very small differences in peak ET values among different
crops types. (Figure 4c-h). Overall, the growing season mean daily ET was 3.1, 3.7, 3.8 and

2.9 mm d* for 2020, 2021, 2022 and 2023, respectively.

On the annual basis, total ET for 2020, 2021, 2022 and 2023 was to 680, 727, 732 and 715
mm y1, respectively, accounting for approximately 60%, 72%, 77% and 73% of the annual

total precipitation (Table 2.2). Furthermore, through monthly ET and precipitation
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assessments, it was evident that the site faced water scarcity in August 2021 and September

2023 when ET exceeded precipitation by 276% (August 2021) and 170% (September 2023).

2.4.5 Water and light use efficiency

The analysis of growing seaosn water use efficiency (WUE) in various crop types showed a
strong to moderate correlation between ET and GEP with R? of 0.80 for corn (2020), 0.65 for
corn (2021), 0.70 for sweet potato (2021), and 0.57 for tobacco (2023) (Figure 6). In 2020, the
mean daily WUE was at 3.85 g C kg™ H.O™ reflecting relatively efficient water utilization in
biomass production. In 2021, the daily WUE decreased slightly to 3.34 g C kg? H20* as
compared to the previous year's corn crops. Transitioning to sweet potato in 2022, caused a
remarkable decrease in WUE with mean daily value of 2.18 g C kg H20%, indicating a less
efficient utilization of water for biomass production in sweet potato compared to corn. Lastly,
in 2023, during tobacco cultivation, the daily WUE further declined to 1.94 g C kg* H.0%,

indicating the lowest efficiency in water utilization observed across this period.

In addition, the analysis of the efficiency of light (PAR) utilization for photosynthesis (GEP)
across different crops by applying Michaelis-Menten hyperbolic curve over the growing season
from 2020 to 2023 showed significant variations in photosynthetic C uptake efficiency among
the different crops (Figure 2.7). Corn had the highest C uptake or GEP under similar light
conditions, followed by sweet potato in 2022, and tobacco in 2023 (Figure 2.7). At PAR level
of about 1000 umol m? s, GEP of corn was 20 to 22 pmol m™ s, whereas sweet potato and
tobacco absorbed only about 10 pmol m™ s, respectively (Figure 2.7). While sweet potato and
tobacco showed a plateau in GEP when PAR exceeded 1000 pmol m? s, GEP in corn

continued to increase with increasing light levels. The highest GEP values in corn reached
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about 28 to 31 umol m? s, These findings indicate that corn is more efficient in utilizing

available light for photosynthesis, leading to higher C uptake and growth.

2.4.6 Environmental controls on carbon and water fluxes

The multivariable linear regression (MLR) and principal component analysis (PCA) revealed
significant relationships between climatic factors with C and water fluxes across all crop types
(Table 2.3, Figure 2.8). Table 2.3 presents the correlation coefficients of key climatic variables
(PAR, Ta, Ts, VPD, VWC) with GEP, NEP, RE, and ET, spanning the years 2020 to 2023.
MLR results indicated that GEP, RE, ET, and NEP were significantly influenced by climate
factors (P < 0.0001), with R2 values of 0.48, 0.17, 0.79, and 0.60, respectively, emphasizing
the overall impact of climatic variables. Similarly, PCA results showed that temperature

variables (Ta and Ts) primarily influenced C and water balances (Figure 2.8).

The results from regression analysis further demonstrated that GEP was significantly affected
by both Ta and Ts. Ta presents a strong positive effect on GEP, with an estimate of 0.047, an
R2 value of 0.66, and high statistical significance (P < 0.0001), while Ts had an estimate of
0.339 and an R2 value of 0.69, also highly significant (P < 0.0001). Although PAR positively
affected GEP, its impact was substantial (P < 0.0001, R2 = 0.45). VPD had a moderate effect
on GEP (P =0.007, R2=0.42), while VWC had a weak effect (P =0.009, R2=0.17), suggesting

that temperature and radiative energy were more influential in driving GEP.

NEP showed moderate positive correlations with strong significance (P < 0.0001). Similar to
GEP, NEP was correlated with PAR, Ta, Ts, VPD, and VWC, with respective R? values of

0.20, 0.38, 0.40, 0.25, and 0.13. Ta and Ts had the most pronounced effects on NEP. Both
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temperature variables also strongly influenced RE, with estimates of 0.064 for Ta and 0.185
for Ts, and high significance (P < 0.0001). The correlation of Ta and Ts with RE had R2 values
of 0.86 and 0.88, respectively. PAR also had a significant positive impact on RE (P < 0.0001,
R2 = 0.52), indicating its key role in respiration. VPD showed a marginally significant effect
on RE (Rz = 0.54), while VWC had a weak to moderate impact (P = 0.0067), suggesting soil

moisture was less influential than temperature and light for RE.

ET was significantly driven by Ta, Ts, and PAR. Ta and Ts had significant positive effects on
ET, with estimates of 0.022 and 0.071, and R2 values of 0.72 and 0.75, respectively (P <
0.0001). PAR also significantly influenced on ET (estimate = 0.001, P = 0.0001), explaining
60% of the variance. VPD had a significant influence (P < 0.0001), while VWC exhibited a
nonsignificant negative effect (estimate = -0.473, P = 0.1345, R2 = 0.04). The negative
relationship between VWC and ET contrasted with its positive effects on GEP and NEP,

highlighting the complex interactions between soil moisture and ecosystem processes.

2.5 Discussion
2.5.1 Energy and Water Flux Dynamics

The energy balance of agricultural fields is affected by crop type and canopy attributes
(Duveiller et al., 2018; Dare-ldowu et al., 2021). There are usually large differences in the
partitioning of available energy among different crop types or during various stages of crop
development (Stockle et al., 2009; Murchie et al., 2012). Radiation or available energy plays a
significant role to determine the intensity of turbulent fluxes (Hernandez-Ramirez et al., 2010;
Flores-Velazquez, 2022). In agriculture fields, a significant portion of Rn is partitioned into

LE, which is the primary process through which water is transferred from the land surface to
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the atmosphere, involving soil evaporation and plant transpiration (Shuttleworth, 2007; Kool
et al., 2014). Hence, LE (or ET) is the composite flux that links both energy and water cycles,
and its magnitude is governed by meteorological conditions, canopy structure and seasonal
characteristics (Jasechko et al., 2013; Wang et al., 2014). Our study showed a discernible
pattern in LE that represented the growth cycle of crops. Maximum LE or ET was observed in
July or early August coinciding with peak growth periods and maximum temperatures.
However, in August 2021, the site experienced drought conditions when a significant reduction
in precipitation was observed which impacted the corn productivity in 2021. Overall, at our
site 85%, 74%, 79% and 88% of Rn was utilized as LE in 2020, 2021, 2022 and 2023,
respectively, corroborating to findings from other studies in the literature (e.g. Suyker and
Verma, 2008; Hernandez-Ramirez et al., 2010; Yan et al., 2019; Dare-Idowu et al., 2021). Our
turbulent flux observations (LE+H) were also consistent with earlier studies, including
Hernandez-Ramirez et al. (2010), who reported that 89% of the available energy (Rn-G) was
partitioned as LE+H fluxes in their corn field in the Midwestern USA, and Hatfield et al.
(2007), who suggested that 80% of available energy was transferred to atmosphere as LE+H
fluxes in their corn sites in Central lowa, USA. In our study, we observed that 82%, 90%, 93%
and 94% of available energy was partitioned as LE+H fluxes in 2020, 2021, 2022 and 2023,

respectively.

Our study showed annual ET values of 680 (corn), 727 (corn), 732 (sweet potato) and 715
(tobacco) mm y for 2020, 2021, 2022 and 2023, respectively. These annual ET values were
similar to the long-term ET values reported for the US Midwest corn belt in southwest
Michigan, USA by Abraha et al. (2020). Abraha et al. (2020) estimated mean annual ET of 584
mm y* from 2010 to 2018. Furthermore, Abraha et al. (2015) reported annual ET ranging from

480 mm y* to 639 mm y! in the same region in Michigan, USA.

34



Ph.D. Thesis — Nur Hussain School of Earth, Environment, & Society

Our findings regarding WUE in various crop types also aligned well with prior research
demonstrating similar trends. For instance, in a study focusing on corn cultivation in Southern
Ontario, Canada, De Haan et al. (2022) reported WUE of 3.5 g C kg H,O. Similar WUE
values ranging from 3.5 to 4.5 were reported in Michigan, USA by Abraha et al. (2016) as well.
These WUE values are consistent our observations of 3.85 and 3.34 g C kg™* H.O! for corn
crops in 2020 and 2021. Additionally, Jiang et al. (2021) found WUE values from 1.4 to 4.3 g
C kgt H,0in the sweet potatoes in Atlantic Canada, which compared well with our value of
2.18 g C kg H,0 in 2022. These prior studies provide valuable context and support for the
trends observed in our research, indicating the importance of considering crop-specific WUE

in agricultural management practices.

2.5.2 Carbon flux dynamics

Our observed annual NEP values were 485 (corn), 249 (corn), -120 (sweet potato) and 7
(tobacco) g C m2 y* for 2020, 2021, 2022 and 2023, respectively (Table 2.2). The two-year
mean annual NEP value of 367 g C m y for our corn crops for 2020 and 2021 agreed well
with carbon uptake observations made at other corn sites in North America as shown in Table
4 (Hollinger et al., 2005; Hernandez-Ramirez et al., 2011). Hernandez-Ramirez et al. (2011)
reported that the annual NEP for a corn field in lowa, USA ranged from 534t0 360 g C m?y-
! from 2004 to 2007. Additionally, Hollinger et al. (2005) observed annual NEP value of 576
g C m2 yfor acorn field in Champaign, IL, USA, which is also similar to our results. The
similarity in annual NEP values between our study site and other sites can be attributed to their
geographic location and similar environmental conditions in the Great Lakes. In contrast,

Glenn et al. (2010) reported annual NEP of 72 g C m y! in Winnipeg, Manitoba, Canada,
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indicating substantial deviation in annual NEP when compared to our site. It can be attributable
to distinct environmental conditions in the boreal region and remarkably lower temperatures in

Manitoba (Table 2.4).

Furthermore, our observed annual RE values were 804, 1110, 825 and 878 g C m2y%, for corn
in 2020 and 2021, sweet potato in 2022 and tobacco in 2023, respectively, while corresponding
GEP values were 1289, 1359, 705 and 885 g C m y'*. Similar annual GEP and RE values have
been reported by Suyker & Verma (2012) for a corn field in Nebraska, USA. Mean RE/GEP
ratio of 0.72 for our corn crops was also similar to RE/GEP ratio of 0.63 reported by Suyker &

Verma (2012).

Our study revealed a shift in carbon dynamics in 2022, as our site became a source of carbon
with an annual NEP value of -120 g C m y%. This change was attributed to the cultivation of
sweet potatoes, which had a shorter growing season of only 76 days as compared to corn crops
(i.e. 130 and 105 days). The differential response of C balance budgets based on the choice of

crop type at the same agricultural field has also been noted by Liebig et al. (2022).

The GPP for tobacco indicated a moderate capacity for C assimilation, with growing season
values of 661 g C m-2. Tobacco was effective at capturing C but at a lower rate compared to
corn. The NEP for tobacco was notably lower, with a growing season NEP of 113 g C m-2,
This disparity between GPP and NEP underscores that, despite tobacco’s effective carbon
capture, the net carbon gain remains modest due to significant respiratory losses (Domiciano

et al., 2020; Zhang et al., 2021).
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The C balance in the study area is significantly influenced by crop type, climatic conditions,
and the duration and length of the growing season. Corn, a C4 plant, was cultivated in 2020
and 2021, with its growing season typically extending from early May to early October. During
these periods, the dynamics of NEP, GEP, and RE were closely observed. In 2020, the
maximum C uptake was recorded throughout the growing season, reflecting strong carbon sink
potential, with an annual NEP of 485 g C m2 y'. However, in 2021, a significant reduction in
C uptake occurred, particularly in May and August, due to drought conditions characterized by
reduced precipitation resulting in an annual NEP of 249 g C m™2 y'. These drought periods
shortened the optimal growth phases, thereby reducing the effective length of the growing
season and impacting the overall C balance. In 2023, similar drought conditions were observed
in May and September, coinciding with critical phases of crop development. That year,
tobacco, a C3 plant, was cultivated with a growing season from early May to mid-September.
Under comparable reductions in precipitation, the tobacco crops experienced a more substantial
decline in C uptake than corn did under similar conditions in 2021. The annual NEP for tobacco
was only 7 g C m? y', indicating a low net carbon gain. This difference highlights the
sensitivity of C3 crops like tobacco, which require more consistent water supply, to reductions

in precipitation during key growth periods.

The GPP for tobacco demonstrated a moderate capacity for carbon assimilation, with growing
season values reaching 661 g C m2. Although tobacco was relatively effective at capturing C,
its NEP was considerably lower, at 113 g C m 2 for the growing season. This disparity between
GPP and NEP underscores that, despite tobacco’s capacity for carbon capture, the net carbon
gain remains modest due to significant respiratory losses, as supported by findings from

Domiciano et al. (2020) and Zhang et al. (2021).
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These findings suggest that the C balance feedback in agricultural ecosystems is shaped not
only by climatic conditions, such as the occurrence and timing of droughts, but also by crop
type, its physiological characteristics (C3 vs. C4), and the length of the growing season. C4
crops like corn generally exhibit greater resilience to water stress and can maintain
photosynthetic activity over longer periods under high light and temperature conditions. In
contrast, C3 crops like tobacco are more susceptible to drought, which can shorten their
growing season and reduce carbon uptake. Therefore, understanding these interactions is
essential for evaluating carbon dynamics and developing strategies to enhance carbon

sequestration in agricultural systems.

Furthermore, the NECB was calculated to evaluate the net carbon loss from both corn and
sweet potato, employing NEP and grain yield. Our findings reveal the dominant influence of
corn crops on the carbon balance throughout the study period, demonstrated by their robust
carbon sequestration capacity compared to sweet potato. Corn crops exhibited significantly
higher grain yield than sweet potato, recording respective values of 537 and 491 g C m for
2020 and 2021, while sweet potato yielded merely 118 g C m in 2022 and tobacco yielded
124 g C m™2. The findings in grain yield align with results from various studies in North
American sites; including Cates and Jackson (2019) reported a range of grain yields for corn
crops ranging from 398 to 676 g C m?, Verma et al. (2005) observed nearly 520 g C m and
Evans (2022) found 485 g C m™. The substantially higher grain yield of corn significantly
increased the NECB compared to sweet potato and tobacco crops. Annual NECB values were
determined to be -52, -242, -238 and -117 g C m™2 y* for the respective year. Similar
observations regarding NECB were recorded in North American studies; Quan et al. (2023)
reported -271 g C m for potatoes in British Columbia. The differences between annual and

growing seasons NECB represent the site's role as a carbon source during non-growing seasons.
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The results focus on the intricate relationship between growing season length, crop type, and
annual C dynamics. The corn crops of 2020 and 2021 present strong C retention during their
respective growing seasons; however, the negative annual NECB indicates that external
factors, such as increased respiration and extreme weather events, significantly influence the
overall C balance. This study revealed the dynamic effects of different crops on C balance and
water use efficiency. It showed that selecting the right crop is crucial for managing C storage
and enhancing agricultural sustainability. It will help to develop better strategies to address

climate change and promote sustainable farming, particularly in the Great Lakes region.

2.6 Conclusion

An analysis of seasonal and annual energy, water, and C fluxes in different crops was
conducted from 2020 to 2023 in a newly established agricultural flow tower site in Southern
Ontario, Canada. The site was planted with corn in 2020 and 2021, sweet potato in 2022 and
tobacco in 2023. Overall, the site was a C sink with annual NEP values of 485 and 249 g C m?
yrt, respectively for corn in 2020 and 2021. The site was a C source with annual NEP value of
—120 g C m? yr* for sweet potato in 2022 and it was C neutral with annual NEP of 7 g C m?
yr! for tobacco in 2023. The grain yields (GY) were 537, 491, 118 and 124 g C m™2 in 2020,
2021, 2022 and 2023 resulting in annual net ecosystem carbon balance (NECB) of -52 (corn),
-242 (corn), -238 (Sweet potato) and -117 (tobacco) g C m2 year X. Annual ET values were
680, 727, 732 mm yr! and 715, in 2020, 2021, 2022 and 2023, respectively, accounting for
60%, 72%, 77% and 73% of the annual total precipitation. This study emphasizes the

significant influence of agricultural crop choices on the C dynamics within the ecosystem.
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Study further highlights the profound impact of environmental variables, including PAR,

temperature, soil moisture on energy, water, and C fluxes.

This research contributes to enhance our understanding of energy, water, and C fluxes within
the Great Lakes region, offering valuable insights for the development of more sustainable and
effective agricultural practices and policies across eastern North America. Furthermore, our
findings contribute to the broader knowledge base in this research field, facilitating a better
understanding of climate change's impacts on agricultural ecosystems and the formulation of

adaptation and mitigation strategies.
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Table 2.1. Monthly and annual total precipitation (P) values and Temperature (T) in 2020,
2021, 2022 and 2023. Normal precipitation over 30-year period (1991-2020) is also given.

Month 2020 2021 2022 2023 1991-2020
P T P T P T P T P T
January 109 | -0.71 | 44 |-271| 7 |-843( 91 |-0.77| 81 |-5.0
February 52 | -292| 61 |-6.73| 28 |-462| 76 |-1.18| 58 | -4.5
March 109 | 3.56 54 328 | 91 | 1.15 | 135 | 0.46 | 71 0.3
April 121 | 5.62 80 798 | 54 | 6.57 | 104 | 8.43 | 87 6.8
May 82 1232 38 |[1251| 95 |15.13| 25 |12.77| 88 | 13.6
June 75 120.00f 92 |21.21( 89 [(19.01| 76 |18.34| 82 | 19.0
July 121 | 23.19| 184 |20.47| 108 | 20.85( 123 | 20.79| 89 | 21.2
August 115 [20.25| 46 |[21.76) 105 |20.69| 97 |[18.74| 80 | 20.1
September 88 |17.35( 112 |16.91| 138 [16.33| 42 |17.19| 86 | 16.4
October 83 9.12 | 210 (1353 91 | 955 | 72 (1149 | 86 | 10.0
November 88 6.31 67 342 | 53 | 486 | 56 | 3.18 | 83 3.9
December 84 -0.12 23 150 | 87 |-049| 82 | 269 | 76 -1.7
Annual 1127 | 95 | 1009 | 943 | 947 | 8.38 [ 979 | 9.34 | 965 | 8.4
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Table 2.2. Annual and growing season (GS) total GEP, NEP, RE and ET. GEP, NEP, RE, Grain yield (GY) and net ecosystem carbon balance
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(NECB) values in g C m2and ET values in mm. The uncertainty is represented as + standard deviation, derived from daily measurements.

2020 (Corn) 2021 (Corn) 2022 (Potato) 2022 (Tobacco)
GS GS GS GS
Year DOY DOY DOY Annual DOY
Annual Annual Annual
144-273 160-264 187-262 152-276
(130 days) (105 days) (76 days) (125 days)

GEP 1289 +6.1 1275 +£7.1 1359 (5.7) 1255+4.1 705+3.3 589 +2.7 885+2.8 661+2.8
NEP 485 +3.7 579 +4.6 249 +3.5 543 +3.5 -120+2.1 304 +2.5 7+1.6 113+2.1
RE 804 +2.1 696 +2.5 1110 £2.7 712 +1.2 825+1.9 385 0.9 878+1.9 536+1.3
ET 680 +1.3 406 +1.3 727 1.4 393+1.1 73214 287 1.3 715+1.2 370+1.2

GY” -- 537 -- 491 -- 118 -- 124

NECB™ -52 42 -242 52 -238 186 -117 -11

“ The carbon content of grain yield (GY) was 43.0% of corn (Holou & Kindomihou, 2017), 32.9% of sweet potato (Hagenimana et al., 1998), and

36.9% of tobacco plants (Frantz et al., 2022), respectively.

“Net ecosystem C balance (NECB) was calculated as NECB = (NEP — GY). Negative NECB indicates C loss from the ecosystem.
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Table 2.3. The relationship of climatic variables (PAR, Ta, Ts, VPD, VWC) with biomass
production (GEP), carbon uptake (NEP), respiration (RE), and water balance (ET) accumulated
with different crops from 2020 to 2023. The significance level is indicated based on the P value,
where * represents non-significance, ** shows weak to moderate significance, and ***
indicates very strong significance.

GEP
Multivariable linear regression Simple linear regression
Estimate | Standard Error R? (P) R? pValue | Significance
Intercept -1.892 0.300 - - -
PAR -0.001 0.001 048 0.39 0.0001 el
Ta 0.047 0.032 0.66 0.0001 ol
Ts 0.339 0.035 (0.0001) 0.69 0.0001 ol
VPD 0.664 0.514 0.42 0.007 ol
VWC 5.234 1.458 0.17 0.009 *
NEP
Intercept -1.471 0.232 - - -
PAR -0.001 0.001 0.20 | 0.0001 el
Ta -0.016 0.024 0.17 0.38 | 0.0001 o
Ts 0.154 0.027 (0.0001) 0.40 0.0001 Fkk
VPD 0.69 0.397 0.25 0.0001 el
VWC 3.247 1.127 0.13 0.0001 kool
RE
Intercept -0.420 0.096 - - -
PAR -0.001 0.001 0.52 0.0001 ool
Ta 0.064 0.010 0.79 0.86 | 0.0001 ok
Ts 0.185 0.011 (0.0001) 0.88 0.0001 el
VPD -0.034 0.165 0.54 | 0.0001 ool
VWC 1.986 0.468 0.19 0.0067 *x
ET
Intercept 0.552 0.074 - - -
PAR 0.001 0.001 0.60 | 0.0001 el
Ta 0.022 0.007 0.60 0.72 | 0.0001 ok
Ts 0.071 0.009 (0.0001 0.75 0.0001 el
VPD 0.340 0.128 0.56 0.0001 ol
VWC -0.473 0.362 0.04 | 0.1345 *
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Table 2.4. Annual NEP of the corn crop in different study sites of North America.

Site location NEP Mean annual Mean annual Site- Reference

(g Cm2y?Y) | Precipitation (mm) | Temperature (°C) | year
Turkey Point, ON, CA 367 1024 9.7 2 Study Site
Mandan, ND, USA 120 420 6 2 Liebig et al. (2022)
Westham Island, BC, CA 70 967 10.8 2 Quan et al. (2023)
Ames, IA, USA 466 942 9.7 4 Hernandez-Ramirez et al. (2011)
Champaign, IL, USA 576 - - 3 Hollinger et al. (2005)
Mead, NE, USA 441 570 11.0 3 Verma et al. (2005)
Rosemount, MN, USA 294 956 - 2 Baker & Griffis, (2005)
Ames, lowa, USA 327 740 - 10 Dold et al. (2017)
Winnipeg, MB, CA 72 292 4.7 1 Glenn et al. (2010)
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Figure 2.1. The annual course of the meteorological conditions at Turkey Point Agricultural
site for 2020 to 2023: (a) monthly mean Photosynthetically Active Radiation (PAR), (b)
monthly mean air temperature (Ta), (c) monthly mean soil temperature (Ts) at 5-cm depth, (d)
monthly mean vapor pressure deficit (VPD), (¢) monthly mean volumetric water content
(VWC) in upper 5-cm and 10-40 cm soil layers, and (f) monthly total precipitation (P).
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Figure 2.2. Daily values of turbulent fluxes (H + LE) vs radiative fluxes (Rn - G) for (a) 2020,
(b) 2021, (c) 2022 and (d) 2023, respectively. Data were obtained from non-gap-filled daily

observations excluding abnormal values.
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Figure 2.3. The monthly mean energy fluxes for 2020, 2021, 2022 and 2023. Monthly mean values of (a) net radiation (Rn), (b) latent heat flux
(LE), (c) sensible heat flux (H), and (d) soil heat flux (G).
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Figure 2.4. Daily values of net ecosystem productivity, NEP (a-d) and evapotranspiration, ET (e-h) values for 2020, 2021, 2022 and 2023. The
open circle from the NEP and ET values of the figure (a) and (e) represents the gap-fill NEP and ET.
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Figure 2.5. The cumulative values of (a) GEP and RE and (b) NEP for 2020, 2021, 2022 and 2023. The dashed lines in the cumulative lines

indicate gap-filled data while solid lines are measured values.
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Figure 2.6. Water use efficiency (WUE) from 2020 to 2023. The GEP and ET represent the
growing season daily values from different crop systems.
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Figure 2.7. The relationship between Gross Primary Production (GEP) and Photosynthesis

Active Radiation (PAR) across different crops. Non-gap-filled daytime measurements were
conducted during the growing seasons of 2020 (corn), 2021 (corn), 2022 (sweet potato), and
2023 (tobacco). The figure presents the bin-averaged half-hourly GEP and PAR levels from
2020 to 2023, with a bin size for averaging set at 50 pumol m2 s™'. The curves represent the
relationship between GEP and PAR, fitted using by the hyperbolic model where the quantum
yield (a) value was 0.0426, 0.0310, 0.0214 and 0.0330 mol CO2 mol—1 photons, respectively
for 2020, 2021, 2022 and 2023 with the maximum photosynthetic capacity (Vmax) value of
50.57, 55.47, 20.33 and 14.49 umol m-2 s-1. R2 was 0.90. 0.95, 0.88 an0.74 for 2020, 2021,
2022 and 2023, respectively, while corresponding o values were 14.65, 9.48, 6.79 and 8.33.
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Figure 2.8. Principal component analysis (PCA) of environmental controls with panels: (a)
for GEP, (b) for NEP, (c) for RE, and (d) for ET.
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CHAPTER 3
EVALUATING THE EFFECTIVENESS OF DIFFERENT VARIABLE RETENTION
HARVESTING TREATMENTS ON FOREST CARBON UPTAKE USING REMOTE
SENSING

3.1 Abstract

Variable retention harvesting (VRH) is an ecologically based forest management practice
applied to emulate natural post-disturbance residual canopy structure and increase the
biodiversity and resilience of a regenerating stand. The pattern and density of canopy retention
also influences the productivity, mortality, and carbon (C) sequestration rates of residual trees.
In this study, we used high-resolution satellite and drone remote sensing data to evaluate the
effect of five different VRH treatments on growth and C uptake of a 90-year-old red pine (Pinus
resinosa Ait.) plantation forest in southern Ontario, Canada. The treatments included four
different combinations of harvesting intensity residual tree distribution including 33%
aggregate retention (33A), 55% aggregate retention (55A), 33% dispersed retention (33D), and
55% dispersed retention (55D) and an unharvested control (CN) each replicated four times in
1 ha plots. Satellite- and drone-derived normal difference vegetation index (NDVI) and gross
primary productivity (GPP) were estimated for each treatment during the growing seasons from
2010 to 2020. Over this period, observed mean daily NDVI values ranged from 0.25 to 0.86
among treatments, where the 55D treatment consistently showed the highest NDVI values.
Overall, the highest mean daily GPP values were observed in the CN treatment, followed by
the 55D, 55A, 33D, and 33A treatments. Remote sensing-derived mean annual GPP for the
entire 20 ha study site was 1651 + 89 g C m year!, with a range of 1407 to 1864 g C m
yeart from 2010 to 2020. Satellite-derived annual GPP values were linearly related with
observed annual GPP (R? = 0.88, p = 0.032) measured using the eddy covariance technique in

an adjacent white pine plantation of similar age and height over the study period. Study results
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suggested that VRH treatments that create a uniformly dispersed residual canopy retaining
more than half of the initial basal area (e.g. 55D) is a viable forest management practice where
optimizing forest growth and C uptake is a primary management objective. Our study will help
forest managers and researchers to develop methodologies to evaluate the effectiveness of
forest management practices, tailor them to achieve climate mitigation and adaptation goals

and to develop forest management pathways for nature-based climate solutions.

3.2 Introduction

Forest ecosystems cover 30% of Earth’s land surface area (Heino et al., 2015) and play a major
role in the global carbon (C) cycle (Ontl et al., 2016; Reichstein and Carvalhais, 2019). At the
stand level, growth and C uptake of managed forests is strongly influenced by tree density, age,
species composition, and anthropogenic disturbances such as harvesting and thinning (Mayer
et al., 2020; Ameray et al., 2021; Park et al., 2018; Simard et al., 2020). Forest growth and C
uptake can be monitored using remote sensing techniques. Sentinel-2A and Sentinel-2B
satellites of the COPERNICUS system of the European Union’s Earth observation program
(Drusch et al., 2012; Binet et al., 2022), provide new capabilities for high-resolution
multispectral sensor-based forest ecosystem monitoring (Léw and Koukal, 2020). These
sensors provide up to 10 m spatial resolution with an approximate five-day temporal resolution
(Drusch et al.,, 2012) and are capable of continuous, long-term monitoring of forest
characteristics and growth. Continuous forest monitoring using a single satellite can be
complicated due to data outliers, atmospheric noise, abnormal weather, and scarcity of
accessible data (Kogan, 1990; Lastovicka et al., 2020). Landsat-8 and Landsat-7 satellites of
the National Aeronautics and Space Administration (NASA) and the United States Geological
Survey (USGS) provide multispectral data sources for long-term forest monitoring (Masek et

al., 2013). Landsat satellite data has 30 m spatial resolution and 16-day temporal resolution
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with global coverage in visible (VI1S), near-infrared (NIR), short wave infrared (SWIR), and
thermal infrared (TIR) wavelengths (Landsat, 2011, 2019). In addition, the use of unmanned
aerial vehicles (UAV) or drones mounted with remote sensing sensors are also rapidly

becoming mainstream platforms for forest monitoring (Dainelli et al., 2021).

The most commonly used remote sensing-derived indicators for monitoring forest growth and
productivity are leaf area index (LAI) (Sebastiani et al., 2023; Kaplan et al., 2023; Ali et al.,
2022), the normalized difference vegetation index (NDVI) (Chen et al., 2006; Lausch et al.,
2018; Matsushita et al., 2007; Shen et al., 2018; Tucker & Sellers, 1986; Vescovo et al., 2011,
Zhao and Chen, 2005) and gross primary productivity (GPP) (Gao et al., 2015; Mao et al.,
2012; Zhang et al., 2016, 2017). The Sentinel (10 m resolution) and Landsat-based NDVI (30
m resolution) have shown a good correlation with forest growth and productivity (Frampton et
al., 2013; Han et al., 2021). The MODIS-derived moderate resolution estimate of GPP (250 to
500 m resolution) is the most widely used productivity indicator in the terrestrial ecosystem
literature (Guo et al., 2006; Heinsch et al., 2006; Running and Zhao, 2015; Zhao et al., 2006;
Grabska-Szwagrzyk & Tyminska-Czabanska, 2023). Some researchers have also estimated
plot-level GPP using Sentinel (10 m resolution) and Landsat (15 to 30 m resolution) data
(Morell-Monz0 et al., 2020). Additionally, GPP can be measured at the plot-level using the
eddy covariance (EC) technique (Arain et al., 2022; Baldocchi, 2019, 2020; Beamesderfer et

al., 2020; Wohlfahrt and Gu, 2015).

In order to reduce greenhouse gas emissions and mitigate climate change, nature-based climate
solutions have been suggested as cost-effective strategies to increase C sequestration in

terrestrial ecosystems (Kaarakka et al., 2021; Creutzig et al., 2022; Marvin et al., 2023).
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Improved forest management, conservation and restoration have been identified as key
pathways to achieve this goal. In Canada, a large portion (~66%) of forests receive some form
of active management to maintain economic and ecological sustainability (Natural Resources
Canada (NRC), 2016). Among these forest management practices, variable retention
harvesting (VRH) is an ecologically based approach that was originally developed to reduce
reliance on clearcutting to harvest timber and to promote stand regeneration (Franklin et al.,
1997). This silvicultural approach retains a portion of living and dead trees that vary in density
and spatial arrangement to create a post-harvest residual canopy structure that emulates that
created by the natural disturbance regime of a given area (Franklin et al., 1997, 2007; Palik and
D’Amato, 2019). The effects of VRH on biodiversity, growth, mortality, and other biophysical
and ecosystem processes have been widely studied in North America over the past few decades
(Aubry et al., 2009; Beese et al., 2019; Palik et al., 2002; Puettmann et al., 2016; Roberts and
Harrington, 2008; Xing et al., 2018). Structural changes to the residual canopy due to VRH and
other partial harvesting practices enhance the photosynthetic energy supply to remaining trees,
reduce competition for water and nutrients, and consequently increase growth and C uptake
(Philpott et al., 2018; Zugic et al., 2021). However, VRH impacts on residual tree growth vary
depending upon the intensity and pattern of canopy retention and their effects on stand
microclimate and energy balance and and land type (Aussenac, 2000; Roberts and Harrington,
2008; Xing et al., 2018; Makipaa et al., 2023). In this regard, remote sensing techniques can
help to quantify changes in forest structure, environmental conditions, growth and C uptake to
determine the effectiveness of various practices to meet specific management objectives (LOw

and Koukal, 2020; McRoberts and Tomppo, 2007; Pause et al., 2016; Fassnacht et al., 2023).

In 2014, an 83-year-old red pine (Pinus resinosa Ait.) plantation was subjected to five different

VRH treatments with the objective of restoring the forest stand to its native forest composition
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(Zugic et al., 2021; Bodo and Arain, 2022; Bodo et al., 2023). The treatments combined two
levels of basal area retention with uniformly dispersed or aggregate, “patch” retention: 33%
aggregate retention (33A), 55% aggregate retention (55A), 33% dispersed retention (33D),
55% dispersed retention (55D) and an unharvested control (CN). This completely randomized
experimental design provided an opportunity to examine the effects of these five VRH
treatments on growth and C uptake of the residual canopy utilizing multi-sensor remote sensing
data. It also provided opportunities to explore how VRH treatments can contribute to develop
forest management pathways for nature-based climate solutions. The specific objectives of our
study are to (i) quantify the annual differences in NDVI among VRH treatments over the pre-
harvest (2010-2013) and post-harvest (2014-2020) periods, (ii) determine the rate of
acclimation of growth of residual trees to the post-harvest treatment environment and (iii)
evaluate which treatment(s) might be most effective in enhancing future residual forest canopy

growth and C sequestration.

3.3 Methods
3.3.1 Site description

The study site is located within the St. Williams Conservation Reserve (42.705134° N and
80.354219°W), about 12 km southwest of the town of Simcoe in Norfolk County in southern
Ontario, Canada (Figure 3.1). The site is part of the Turkey Point Environmental Observatory
(TPEO) and has been associated with the Global Water Futures program and AmeriFlux and

global Fluxnet networks (Arain et al., 2022).

The plantation was established in 1931 by planting seedlings at 2 m x 2 m spacing (2500 trees

hal). It was thinned in 1959-1960 when every fourth row of trees was harvested, perhaps along
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with light selective thinning of remaining rows. It was selectively thinned in the mid-1980s to
remove a maximum of one-third of the remaining canopy trees (McKenzie et al., 2023). In
February 2014, the stand was thinned a third time when five VRH treatments were randomly
assigned to four replicate plots (20 plots, ~1 ha each). At the time of VRH treatment, the
plantation was almost pure red pine with an average basal area of 38.4 + 5.5 m? ha* and tree
density of 641.3 + 103.2 trees ha’. Tree diameter at 1.3 m height was 28.6 + 4.3 m, ranging
from 17.2 to 47.2 m, with an average height of 23.8 + 2.8 m (Bodo and Arain 2022; Zugic et
al., 2021). The primary understory vegetation species consist of yellow mandarin (Disporum
lanuginosum), bracken fern (Pteridium), red trillium (Trillium erectum), poison
ivy (Toxicodendron radicans), Canada mayflower (Maianthemum canadense), Allegheny
raspberry (Rubus allegheniensis), black cherry (Prunus serotina), red maple (Acer rubrum),
black oak (Quercus velutina), eastern white pine (Pinus strobus), wood violet (Viola palmata),

and several moss species (Bryophyta).

The climate in the region is warm humid continental with a 30-year (1980-2010) mean annual
air temperature (Tair) of 8.0 °C and mean annual precipitation (P) of 1036 mm, based on data
from the Environment and Climate Change Canada weather station at Delhi, Ontario, Canada.

Snowfall accounts for about 13% of annual P.

3.3.2 Data Set
4.3.2.1 Satellite data

The Sentinel-2 multispectral instrument captures 13 spectral bands, including 10 m spatial
resolution of VIS and NIR, and 20 m spatial resolution of SWIR spectrum every five days

(Drusch etal., 2012; Sun et al., 2022). Landsat-7 and Landsat-8 satellites provide earth surface
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imagery at 30 m resolution with 16-day temporal resolution and were used to fill the gap in
Sentinel-2 dataset (Landsat, 2011, 2019). Both satellite datasets were obtained
from https://earthexplorer.usgs.gov/ and used to estimate NDVI and GPP of each treatment
plot. Agreement between these two data sets was assessed for a day (11 June 2018) when both
satellites passed over our site at the same time (~15 minutes). A significant (p = 0.039), positive
linear relationship (R? = 0.62) was observed between NDVI provided by Sentinel-2 and

Landsat-8.

3.3.2.2 Drone instrumentation and data retrieval

We used a drone-sensor system developed by the Natural Resources Canada - Canada Center
for Remote Sensing (Canisius et al., 2019) to estimate NDVI of VRH plots for 2019 and 2020
and compared the drone and satellite-measured plot-level NDVI values. The drone system
consisted of a digital camera (Zenmuse Z3), one pyranometer, one quantum sensor, one VIS
spectrometer, and one NIR spectrometer. A ground sub-system included a similar
establishment of sensors. Drone flight missions were conducted on 25 June 2019 and 17 July
2020 using the Litchi-DJI (drone mission controlling app). Drone cameras, ground and UAV
data loggers, and ground and UAV microcomputers generated the VIS and NIR spectrometer’s
response at millisecond intervals, including the real-time response. Retrieved data were
temporally adjusted through mission record and sensor response time was reviewed with
recorded video time, which was spatially adjusted using ArcMap (Esri) GIS interface

coordinates.
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3.3.2.3 Eddy covariance flux and meteorological measurements

Energy, water and CO> fluxes have been continuously measured at an adjacent eastern white
pine plantation of similar age and height using the EC technique since 2003 (Arain et al., 2022).
This plantation is also part of TPEO and known as CA-TP4 in global Fluxnet and TP39 (Arain
and Restrepo-Coupe, 2005; Arain et al., 2022). Because of close proximity, both red and white
pine plantations share similar landforms and meteorological characteristics. Meteorological
variables, including downward and upward photosynthetically active radiation (PAR), net
radiation, Tair, relative humidity, wind speed and direction, precipitation, and soil temperature
and soil moisture at several (2, 5, 10, 20. 50 and 100 cm) depths at two locations were also
continuously measured. All flux, meteorological and soil data were verified, gap-filled and
averaged to half-hour intervals. Further details are provided in Arain et al. (2022). GPP
measured by EC (GPPEC) was used as a reference for comparison with satellite derived GPP

as described in section 3.3.3.

3.3.3 Satellite GPP estimates

Satellite data and observed PAR and Tair from the CA-TP4 site were used to calculate GPP
following Zhang et al. (2016, 2017) as shown in Figure 4.2. Sentinel-2 SWIR 20 m band and
Landsat data available at 30 m resolution were resampled to 10 m resolution without any
statistical transformation for spatial adjustment. Further details are described in Supplementary

section (3.9).

3.3.4 Statistical analysis

The weighted double logistic (WDL) function described in Yang et al., (2019) was used to fit

the time series data for mean daily NDVI and GPP values. WDL uses two logistic functions
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according to vegetation growth activity namely, the growing part (f1) and the declining part
(f2) to set the model parameters which can provide the daily time series as shown in the

following equation (Yang et al., 2019).

y=fl+f2+e (31)

fi=—=>2 —+d, (3.2)

1+4+e@1+b1t

- C2
2 = 1+ea2+bat

+d, (3.3)

e=max (c; +dq,c; +dy) (3.4)

where y is the time series of NDVI and GPP, d and c+d denote the minimum value (min(f))
and maximum value (max(f)), respectively; cindicates the local amplitude;
and a and b determine the shape and slope of the logistic function, respectively. The subscripts
1 and 2 identify the parameters of the growing and declining parts, respectively. In the retrieval
of these unknown parameters, the initial d and c are assigned as min(f) and max(f)-min(f),
respectively. Thus, the principal challenge is to derive parameters a and b. Considering the
different weights of each data point, we transformed the non-linear fitted regression into a
linear one by a function transformation as al+b1 t=In(c1fl—d1—1). Furthermore, the weighted
Least Squares (WLS) method was applied to solve the analytic expression of the logistic

function for each part (f1 and f2).

Two-dimensional principal component analysis (PCA) was used to determine shifts in
comparative monthly mean NDVI among VRH treatments that occurred seven years post-

harvest using data from seven composite images for each VRH plot for 2014 and 2020 (Jollife
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and Cadima, 2016). We also graphically displayed the PCA results for NDVI in a biplot using

MATLAB (Jollife and Cadima, 2016).

3.4 Results
3.4.1 Climate

Time series of meteorological variables measured at the adjacent white pine plantation (CA-
TP4) from 2010 to 2020 are shown in Figure 3.3. Growing season and annual values of
meteorological variables are presented in Table 3.1. Maximum mean daily PAR reached 750
pmol m? s, Maximum (minimum) mean annual PAR of 357 (314) umol m s was observed
in 2016 (2019). The highest mean annual Tair of 11.2 °C was observed in 2012, whereas the
lowest value of 8.1 °C was recorded in 2014. The highest (lowest) mean daily vapor pressure
deficit (VPD) of 0.5 (0.34) kPa was recorded in 2020 (2010). Similarly, the highest annual total
P of 1649 mm occurred in 2018, whereas the lowest annual P of 778 mm was recorded in 2016
(Figure 3.4). In 2014, 2016 and 2017, comparatively dry growing season conditions had a
significant impact on forest growth. This is evident from the lower NDVI observed in 2014,
2016, and 2017, indicating reduced photosynthetic activity during these years (Table 3.1).
Conversely, the years 2010, 2018, 2019, and 2020 experienced comparatively higher P during

the growing season, coinciding with maximum NDV1 values.

In the study region, the local climate during the winter season is significantly influenced by
both eastern and western oscillations (Shah, et al., 2022; Thorne and Arain, 2015). Specifically,
winter temperatures are intricately linked to the North Atlantic Oscillation (NAO), Arctic
Oscillation (AO), and Eastern Pacific Oscillation (EPO), while the total snowfall is correlated

with the Pacific-North American (PNA) and EI Nifio-Southern Oscillation (ENSO) (Thorne
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and Arain, 2015). These oscillations play a key role in C dynamics of the forest ecosystem
during the winter and spring seasons (Zhang eta al., 2011). However, our study is focused on
investigating the dynamics of the forest C sequestration and growth during the summer-

dominated growing season.

3.4.2 Effects of variable retention harvesting on forest growth

The VRH treatments caused changes in stand structure and growth that are reflected in spatial
patterns of monthly mean NDVI (Figure 3.5). These differences in NDVI are most prominent
or clearly shown in variations from pre-harvest and post-harvest (Figure 3.5). Plot-level mean
daily NDVI values over the growing season (April to October) were 0.57, 0.56, 0.56, 0.57, and
0.56 in 33A, 55A, 33D, 55D, and CN plots, respectively, during the pre-harvest period from
2010 to 2013 (Table 3.2). The mean daily NDVI values for the first growing season after
harvest in 2014 were 0.42, 0.43, 0.45, 0.50, and 0.51 in 33A, 55A, 33D, 55D, and CN
treatments, respectively. Similarly, mean daily NDVI values for the growing season over the
entire post-harvesting period from 2014 to 2020 were 0.51, 0.53, 0.54, 0.60, and 0.58 in the
33A, 55A, 33D, 55D, and CN treatments, respectively. In the post-harvesting period, 55D
treatment had the highest NDVI value, followed by CN, 55A, 33D and 33A treatments as

shown in time series of mean daily NDV1 values for each VRH treatment in Figure 3.6a.

Overall, mean daily NDVI values ranged from 0.25 to 0.86 among treatments from 2010 to
2020 (Figure 3.6a). The lowest seasonal NDV I values for all treatments were observed in 2016,
while the highest NDVI values were observed in 2020 (Table 3.2). Differences among
treatments were comparatively small from 2014 to 2016. Thereafter, treatment differences

became more prominent from 2017 to 2020. Again, the mean daily NDVI was consistently
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highest in the 55D treatment and the lowest in the 33A treatment. These treatment differences
were most strongly expressed in the peak growing season (July-August), with the highest
NDVI values observed in the 55D treatment, followed by the CN, 55A, 33D and 33A
treatments (Figure 3.6a). The seasonal trend lines fitted to mean daily NDVI values also
showed the highest growth in the 55D treatment, followed by the CN, 55A, 33D and 33A

treatments (Figure 3.6a).

We performed two-dimensional PCA to better understand the NDVI contribution of each
treatment for the post-harvest period from 2014 to 2020. PCA1 represents 80%, and PCA2
includes 9% of the total monthly NDVI data from 2014 to 2020. Results of PCA analysis
showed a positive relationship among 55D, 55A and CN treatments and negative relationships
between 33D and 33A treatments (Figure 3.7). This analysis showed that 55D and CN
treatments had a closer relationship and maximum forest biomass and growth followed by 55A.

This relationship was weak between CN and 33D and 33A treatments.

The box plots of NDVI values measured on 25 June 2019 and 17 July 2020 using drone also
showed the maximum NDVI in the 55D treatment, followed by CN, 55A, 33D and 33A
treatments (Figure 3.8a,b). We found a significant, linear relationship (p<0.005, R2>0.90)
between satellite-based GPP and drone-measured NDVI (Figure 3.8c-g). We also found a
significant, linear relationship (p<0.005, R2>0.80) between drone- and satellite-based NDVI

measurements (Figure 3.8h).

78



Ph.D. Thesis — Nur Hussain School of Earth, Environment, & Society

3.4.3 Effect of variable retention harvesting treatments on forest C uptake

We estimated forest C uptake for each treatment using satellite-derived GPP. Seasonal cycle
of mean daily GPP values is shown in Figure 3.6b. Similarly, cumulative daily GPP values
over the growing season are shown in Figure 3.9. These plots indicated that forest C uptake
varied with year and treatment (Figure 3.6b, Figure 3.9). The highest growing season
cumulative GPP occurred prior to harvest in 2010 for most treatments except for CN. The
lowest GPP was observed in 2016 for all treatments except CN. Growing season cumulative
GPPEC values are also shown in Figure 9f for reference, where cumulative GEPEC was the
highest in 2014 and the lowest in 2012. Overall, the fitted trend lines to daily GPP suggested

that C uptake in CN and 55D plots was higher than the other treatments (Figure 3.6b).

Comparison of growing season mean daily GPP for all VRH treatments with EC observed daily
GPPEC showed that C uptake was quite similar among treatment plots during the pre-harvest
period (2010-2013) (Figure 3.10). Mean daily GPP ranged from 9.37 t0 9.65 g C m2 d!, while
mean daily GPPEC was 8.62 g C m* d, which was similar to the CN treatment. Large
differences in mean daily GPP occurred among VRH treatments during the post-harvest period,
with these differences among treatment plots becoming more stronger over time. In the post-
harvest period, the mean daily GPP values were 8.71, 8.75, 8.74, 9.31, and 9.65 g C m? d* for
33A, 55A, 33D, 55D, and CN treatments, respectively. Pooled over all 7-growing seasons,
daily GPP was highest in the CN treatment, followed by 55D, 55A, 33D, and 33A treatments

(Figure 3.10, Table 3.2).

From the annual basis, the highest annual GPP of the pre-harvest period was observed in 2010

and in the post-harvesting period, the highest GPP was observed in 2020 in the CN and 55D
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treatments (Table 3.2). Mean annual GPP was 1700, 1695, 1687, 1703, and 1692 g C m? y!
in the 33A, 55A, 33D, 55D, and CN treatments, respectively over the pre-harvest period from
2010 to 2013 (Table 3.2). The mean annual GPP values in the first year after harvest in 2014
were 1492, 1473, 1489, 1506, and 1591 g C m? y? in 33A, 55A, 33D, 55D, and the CN
treatment, respectively. Similarly, mean annual GPP values in the seventh year after harvest in
2020 were 1569, 1575, 1574, 1675, and 1736 g C m?2 y* in 33A, 55A, 33D, 55D, and CN
treatment, respectively. CN plot showed the highest annual GPP, followed by the 55D, 55A,
33D and 33A treatments. The annual GPPEC values had a significant, positive linear
relationship (p=0.032, R? = 0.88) with GPP values derived from remote sensing. The highest
annual GPPEC of 1705 g C m2 y* was recorded in 2014 and the lowest annual GPPEC of 1511

g C m2 y ! was observed in 2012 (Table 3.2).

3.5 Discussion
3.5.1 Effect of variable retention harvesting on forest growth and C uptake

Partial harvesting or thinning is a well-established forest management approach applied to
enhance forest growth and development (Ashton and Kelty, 2018). The effect of different
spatial patterns and intensity of partial harvesting or thinning on growth in red pine (Looney et
al., 2018; Powers et al., 2009) and other forest types (Bose et al., 2014; Palik et al., 2002;
Roberts and Harrington 2008; Xing et al., 2018) have previously been investigated. However,
most studies have focused on enhancing fibre or timber growth with less attention given to C
sequestration (Zugic et al., 2021). With recent climatic warming due to increasing greenhouse
gas emissions and land use changes, there has been a renewed focus on tree planting, forest
management, forest ecosystem conservation to enhance biological carbon sinks and identify

potential nature-based climate solutions. Some studies have highlighted the need to adapt forest
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management techniques to changing climatic conditions to ensure sustained forest growth and
resilience (D’Amato et al., 2013; Drever et al., 2006; Keenan, 2015; Magruder et al., 2013;
Sohn et al., 2016; Wagner et al., 2014). Recent advances in high-resolution remote sensing and
drone technologies can help to evaluate the stand level impacts of different harvesting
treatments on forest growth and C uptake. Despite these advances, it is still challenging to
evaluate the effectiveness of forest management practices to achieve both wood production and

C sequestration objectives.

Our study used high-resolution remote sensing data from Sentinel-2 and Landsat-8 satellites to
explore the impact of VRH on temporal variation in forest growth and C uptake. Our results
have shown that Sentinel-2 data is a valid approach to estimate forest biophysical properties
and biomass productivity because of its high spatial resolution (Lima et al., 2019). Our NDVI
results indicate that forest photosynthetic capacity and GPP was quite similar among all plots
prior to harvesting and the establishment of VRH treatments. Any difference in GPP among
plots were mainly driven by climate variability (Arain et al, 2022). However, after the
harvesting and establishment of treatments in the winter of 2014, there was a consistent trend
of increasing NDVI, specifically from 2017 to 2020, with the 55D treatment showing the
highest NDV1 values. Low NDVI values immediately after the harvesting in in 2014 and 2016

were probably due to both acclimation of trees to new microclimate and drier summer of 2016.

Forest structure has a strong influence on the exchange of energy, water and C with the
atmosphere (Aussenac, 2000; Collalti et al., 2018; Luyssaert et al., 2007). Different partial
harvesting intensity and pattern applied in our study created heterogeneity in the spatial

distribution of residual forest cover and stand microclimate. These forest structural changes
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can also affect light, nutrient and soil moisture availability (Aussenac, 2000; Boyden et al.,
2012; Palik et al., 1997; Siebers and Kruse, 2019; Zhang et al., 2021). Changes in light, soil
moisture and other resources can impact photosynthesis and evapotranspiration, thus impacting
forest productivity (Collalti et al., 2018; Li et al., 2020; Bodo and Arain, 2022). Our study
results suggest that the 55D treatment had the highest growth rate based on NDVI and GPP.
This can be attributed to the comparatively higher tree density combined with uniformly spaced
residual trees in the 55D treatment that provides individual trees with greater light and soil
moisture availability and a more favorable microenvironment for growth compared to the 55A
treatment. Our study results are consistent with previous research at this site using tree ring
growth and sapflow measurements that found the 55D treatment exhibited the highest post-
harvest tree-level growth and C sequestration rates (Zugic et al. 2021) and water use (Bodo and

Arain, 2022).

Red pine and other plantation forests are an important part of the landscape in the western Great
Lakes region of North America, providing numerous ecosystem services and economic benefits
(Buckman et al., 2006; Gilmore and Palik, 2006; Palik and D’ Amato, 2019). Therefore, the
results of our study have broader significance and applicability for forest managers and policy
makers in the Great Lakes region and eastern North America. Several studies have indicated
that partial harvesting or thinning can reduce the vulnerability of red pine plantations and
natural stands to climatic stresses (D’Amato et al., 2013; Jones et al., 2019; Magruder et al.,
2013; Powers et al., 2010). However, our remote sensing study results have clearly indicated
that the application of the uniformly dispersed residual canopy retaining more than half of the
initial basal area (such as 55D) is a viable forest management option that can enhance rates of
both timber production and C sequestration. Application of this VRH may also help forests to

better adapt to climate change (Zugic et al., 2021; Bodo and Arain, 2022). Our study results
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will help in developing new forest management approaches which are tailored to enhance both
timber production and C sequestration. It will also help in developing forest management

pathways for nature-based climate solutions.

3.5.2 Study limitations

Our study focused on estimating forest growth and C uptake in VRH treatments using multi-
dimensional remote sensing data such as from Sentinel and Landsat sources. However, there
are several challenges when using remote sensing techniques for forest inventories, such as
scarcity of data, atmospheric noise, cloudy sky conditions, measurement interval differences
among satellite data sources, and the accessibility of data processing tools. In this regards, more
frequent drone missions may help to supplement these satellite data. Drone data can also help
in site-level validation studies. Integration of satellite and drone data with forest C cycle models

can help to obtain reliable forest biomass estimates.

In forest ecosystems, remote sensing data mainly captures information from the canopy level,
overlooking the contribution of understory vegetation. It is challenging to accurately quantify
the contribution of the understory to total forest C uptake (Thrippleton et al., 2016; Landuyt et
al., 2018). Understory tree regeneration and ground vegetation may play a significant role in
the rapid recovery of C stocks following stand-replacing forest disturbances because the trees
present in the understory can capitalize on increased resource availability that enhances
photosynthetic activity and growth (Brown et al., 2010; Edburg et al., 2012; Williams et al.,
2014). We recognize the importance of understory in estimation of total forest growth and C
uptake estimates and recommend exploring its relative contribution in future research to

provide a more accurate evaluation of VRH impacts on forest growth and C sequestration.
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3.6 Conclusions

Our study examined the effect of five VRH treatments on forest growth and C sequestration in
a red pine plantation in the Great Lakes region of southern Ontario, Canada. It presented
quantitative estimates of GPP for all five VRH treatments and found that retention of more than
half of the initial basal area in uniform dispersal form (e.g. 55D treatment) exhibited higher
productivity and C uptake than lower retention levels or an aggregate spatial distribution of
residual canopy trees. Our study will help researchers and forest managers to develop forest
management practices tailored to enhance both wood production and C sequestration and to
achieve climate mitigation and adaptation goals. The data capture and analytical methods
developed in our study can also be applied to quantify the forest growth and C sequestration at

larger spatial scales in forested regions.
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3.9 Supplementary

3.9.1 Remote Sensing Indices

The NDVI1 was calculated using Equation 3.5 (Rouse et al., 1974),

NDVI = (R800 — R670)/(R800+R670) (3.5)
where Ri is reflectance at the band centered at a given wavelength i.

Sentinel-2 and Landsat-8 provides a potential assessment of plant ecosystems through Soil
Adjusted Vegetation Index (SAVI) measurement at a high-resolution surface cover. SAVI was

calculated for GPP analysis using following equation,

SAVI= (1 +L) x (RNIR — Rred) / (L + RNIR + Rred) (3.6)

where RNIR is the reflectance radiance in the infrared band, and Rred is the reflectance or
radiance in a red band; L is a soil correction factor that by default uses L=0.5 and suggested
value of L=0.1 (Allen et al., 2007). This value varies with the amount of coverage of green
vegetation, in very high coverage vegetation regions, L=0, and areas with no green vegetation,

L=1 (Olmedo et al., 2016).

3.9.2 Remote Sensing GPP

Several approaches can be used to estimate GPP where the MODIS GPP data is widely applied
on a global and regional scale. However, the MODIS-based GPP data are moderate to low-
resolution, which makes complex for plot-level application. In this circumstance, our study
focused on a combined approach to produce plot-level GPP from satellite and eddy covariance
flux measurements using the Vegetation Photosynthesis Model (VPM) (Zhang et al., 2016).
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The VPM GPP product provides a satisfactory level of biomass estimation for the North
American region (Zhang et al., 2016). Our study utilized Sentinel S2, Landsat, EC-measured
PAR, and temperature and references GEP data from Turkey Point Flux Station (TP39 or CA-

TP4; Arain et al., 2022) using the following equations:

GPP = APARCchI x gg (3.7)
APARchl = PAR x fPARchI (3.8)
fPARchl = (NDVI -0.1) x 1.25 (3.9
eg= €0 x Tscalar xWscalar (3.10)
Tycatar = ——— e Tt (3.11)

(T—Tmax) % (T—Tmin)_(T_Topt)z

1+LSWI

Wseatar = —o7— (3-12)

1+LSWinax

LSWI = (RNIR — RSWIR)/(RNIR + RSWIR) (3.13)

where, APARchI is absorbed photosynthetically active radiation (PAR); fPARchl is the
fraction of PAR estimated by chlorophyll or linear function of NDVI, which is modified from
Xiao et al. (2004). Here, 0.1 and 1.25 are constants to adjust for vegetated land and validated
from Solar-induced Chlorophyll Fluorescence (SIF) (Zhang et al., 2017); eg is the light use
efficiency (LUE), €0 is the apparent quantum yield or maximum light use efficiency (umol
CO2/ pmol PAR); Tscalar, Wscalar are the downward-parameter scalars for the effects of
temperature and water on LUE by C3/C4 photosynthetic pathways; T, Tin, Tinax,@nd Tope
refer to the mean, maximum, minimum, and optimum temperature for photosynthesis,
respectively (we useed 10 to 16 hours of local time measurement); LSWI is the land surface

water index.
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Table 3.1. Mean annual photosynthetically active radiation (PAR), air temperature (Tair), daily mean vapor pressure deficit (VPD) and total
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annual precipitation (P) and growing season (April-October) precipitation (PGS) measured at the CA-TP4 site from 2010 to 2020.

PAR (umol m?2s?) Average Tair (°C) VPD (kPa) P (mm) PGS (mm)
Year (Minimum; (Minimum; (Minimum; (Minimum; (Minimum;
Maximum) Maximum) Maximum) Maximum) Maximum)
2010 3341206 9.5£10 0.34+0.2 896+6.0 535+6.8
(19; 761) (-14.2; 27.5) (0; 1.30) (0; 52.8) (0; 52.8)
2011 3174222 9.6+10 0.36+0.3 1293+7.1 589+7.1
(16; 749) (-14.3; 29.6) (0; 1.46) (0; 39.7) (0; 39.7)
2012 3461221 11.249 0.48+0.3 1001+6.4 601+8.0
(13; 768) (-11.5; 28.6) (0.02; 1.93) (0; 50.2) (0; 50.2)
2013 3361215 9.1+10 0.440.2 1266+8.8 614+10.2
(16; 773) (-13.7; 27.9) (0.02; 1.47) (0; 81.8) (0; 81.8)
2014 3454212 8.1+11 0.38+0.2 1429+8.6 574+8.2
(9; 784) (-18.6; 25.8) (0.02; 1.38) (0; 78.1) (0; 60.2)
2015 353+209 9.5+11 0.43+0.3 811+6.5 500+8.1
(20; 773) (-20.7; 26.7) (0.03; 1.52) (0; 61.4) (0; 61.4)
2016 357219 10£10 0.47£0.3 778+4.8 347+4.7
(27; 778) (-15.8; 27.4) (0.01; 1.74) (0; 28.6) (0; 28.6)
2017 330+210 9.9+9 0.42+0.3 1153+7.5 474+8.1
(19; 760) (-14.6; 25.7) (0; 1.59) (0; 80.5) (0; 80.5)
2018 3254217 9.4+10 0.42+0.3 1649+7.3 851+7.6
(15; 764) (-17.9; 27.1) (0.03; 1.61) (0; 60.2) (0; 60.2)
2019 314+198 8.9+10 0.42+0.3 1122+5.6 554+5.3
(14; 764) (-18.6; 27.0) (0.03; 1.47) (0; 35.9) (0; 35.9)
2020 3344225 10.2+9 0.5+0.3 1127+6.8 57748.1
(12; 870) (-11.4; 27.6) (0.03; 1.70) (0; 93.5) (0; 93.5)
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Table 3.2. Daily mean (a) NDVI (+ 1 SD) for the growing season and (b) annual total GPP (g C m y™?) for each VRH treatment from 2010 to
2020. VRH treatments were applied in February 2014. (c) Observed annual total GPPEC (g C m* y1) using eddy covariance (EC) technique in
the adjacent white pine plantation is also shown.

Year
VRH 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
(@) NDVI
33A 0.58 £0.07 | 0.56 +0.07 | 0.57 +0.08 | 0.56 +0.1 |0.42 +£0.10|0.53 +0.07|0.47 +0.07 | 0.48 +0.07 | 0.51 +0.11 | 0.56 +0.08 0.57
+0.12
55A 0.58 +0.06 | 0.56 +0.07 | 0.57 +£0.07 | 0.54 +0.08 | 0.43 +£0.11 | 0.52 +0.07 | 0.50 +0.08 | 0.53 +0.08 | 0.54 +0.08 | 0.57 +0.08 0.59
+0.10
33D 0.58 +0.07 | 0.56 +0.06 | 0.57 +£0.08|0.55 +0.10 | 0.45 +0.12 | 0.52 +0.08 | 0.50 +0.06 | 0.54 +0.08 | 0.55 +0.10 | 0.59 +0.09 0.61
+0.11
55D 0.57 +0.08 | 0.56 +0.07 | 0.57 £0.09|0.57 +0.11 | 0.50 +£0.11 | 0.58 +0.08 | 0.55 +0.08 | 0.59 +0.11 | 0.62 +£0.11 | 0.67 £0.13 0.69
+0.11
CN 0.58 +0.08 | 0.56 +0.06 | 0.56 +£0.08|0.54 +0.12 | 0.51 +0.13 | 0.57 £0.09 | 0.52 +0.09 | 0.57 £0.10 | 0.59 +0.09 | 0.67 £0.07 0.64
+0.11
(b) GPP
33A 1746 1703 1730 1622 1492 1615 1407 1642 1624 1528 1675
55A 1742 1686 1722 1633 1473 1554 1471 1638 1773 1472 1650
33D 1734 1690 1715 1611 1489 1570 1432 1688 1670 1529 1642
55D 1729 1703 1721 1660 1506 1509 1554 1753 1744 1827 1834
CN 1719 1705 1708 1636 1591 1669 1571 1864 1787 1834 1840
Observed GPPEC
GPPEC 1571 1521 1511 1553 1705 1663 1650 1678 1594 1603 1649
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Figure 3.1. a) Location map of Canada, b) Southern Ontario regional map and c) Aerial view
of location of the variable retention harvesting treatment plots of the red pine plantation (1931).
Eddy covariance flux tower in the adjacent white pine plantation (1939 known as CA-TP4 in

global Fluxnet) is also shown.
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Figure 3.2. Workflow of the data analysis to estimate satellite gross primary productivity
(GPP) where PAR is photosynthetically active radiation; APARchl is absorbed
photosynthetically active radiation; fPARchl is the fraction of PAR estimated by chlorophyli
or linear function of normalized difference vegetation index (NDVI). gg is light use efficiency
(LUE), €0 is the apparent quantum yield or maximum LUE (umol CO2/ pmol m-2 s-1 PAR);
Tscalar, Wscalar are the downward-parameter scalars for the effects of temperature and water
on LUE by C3/C4 photosynthetic pathways; T, Tpnin, Tnax and T,p, refer to the mean,
maximum, minimum, and optimum temperature for photosynthesis, respectively; LSWI is the
land surface water index. Data analysis follows Zhang et al., (2016 and 2017).
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Figure 3.3. Time series of daily mean or total meteorological variables from 2010 to 2020. (a) downward photosynthesis active radiation (PAR),
(b) air temperature above canopy at 28 m height, (c) vapor pressure deficit (VPD) and (d) daily total precipitation (P).

102



Ph.D. Thesis — Nur Hussain

1,800

1,500

1,200 |

Cumulative P (mm)

300 |

School of Earth, Environment, & Society

900 |

600 |

L ]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

Figure 3.4. Yearly cumulative total precipitation (P) from 2010 to 2020.
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Figure 3.5. Spatiotemporal patterns of mean daily normalized difference vegetation index

(NDVI) by moth over the growing season (April to October) for each variable retention
harvesting treatment, the missing data filled from available nearest satellite observation from

Landsat and Sentinel-2.
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Figure 3.6. (a) Time series of mean daily normalized difference vegetation index (NDVI) for each variable retention harvesting treatment over

the growing season (April to October) from 2010 to 2020 and (b) time series of mean daily gross primary productivity (GPP) trajectory from
2010 to 2020 for each treatment. Fitted trend lines (dashed lines) to daily mean NDVI of each treatment from 2010 to 2020 are also shown.
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Figure 3.7. Normalized difference vegetation index (NDV1) contribution to principal component analysis (PCA) for each variable retention
harvesting treatment from 2014 to 2020.
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Figure 3.8. Comparison of mean daily normalized difference vegetation index (NDVI)
values for all variable retention harvesting treatments on (a) 25 June 2019 and (b) 17 July
2020. The linear relationship between satellite-retrieved GPP and drone-measured NDVI in
panel c-g respectively for 33A, 55A, 33D, 55D and CN treatment. The relationship between
satellite and drone observation of NDVI in (h). Linear regression equation, R2 and RMSE are
shown in each panel of c to h.
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Figure 3.9. (a-e) Satellite-derived gross primary productivity (GPP) from 2010 to 2020 for each variable retention harvesting treatment and (f)
GPP from eddy covariance flux measurements over the entire study period.
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Figure 3.10. (a) Mean daily gross primary productivity (GPP) for each variable retention
harvesting treatment from remote sensing data and adjacent white pine forest using eddy
covariance flux observations from 2010 to 2020 and (b) box plot of post-harvest daily mean
GPP for each variable retention harvesting treatment and adjacent white pine forest from
2014 to 2020.
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CHAPTER 4
ASSESSMENT OF SPONGY MOTH INFESTATION IMPACTS ON FOREST
PRODUCTIVITY AND CARBON LOSS USING THE SENTINEL-2 SATELLITE
REMOTE SENSING AND EDDY COVARIANCE FLUX DATA

4.1 Abstract

Deciduous forests in eastern North America experienced a widespread and intense spongy
moth (Lymantria dispar) infestation in 2021. This study quantified the impact of this spongy
moth infestation on carbon (C) cycle in forests across the Great Lakes region in Canada,
utilizing high-resolution (10 x 10 m?) Sentinel-2 satellite remote sensing images and eddy
covariance (EC) flux data. Study results showed a significant reduction in leaf area index (LAI)
and gross primary productivity (GPP) values in deciduous and mixed forests in the region in
2021. Remote sensing derived, growing season mean LAI values of deciduous (mixed) forests
were 3.66 (3.18), 2.74 (2.64), and 3.53 (2.94) m?> m2 in 2020, 2021 and 2022, respectively,
indicating about 24 (14)% reduction in LAI, as compared to pre- and post-infestation years.
Similarly, growing season GPP values in deciduous (mixed) forests were 1338 (1208), 868
(932), and 1367 (1175) g C m2, respectively in 2020, 2021 and 2022, showing about 35 (22)%
reduction in GPP in 2021 as compared to pre- and post-infestation years. This infestation
induced reduction in GPP of deciduous and mixed forests, when upscaled to whole study area
(178,000 km?), resulted in 21.1 (21.4) Mt of C loss as compared to 2020 (2022), respectively.
It shows the large scale of C losses caused by this infestation in the Canadian Great Lakes
region. The methods developed in this study offer valuable tools to assess and quantify natural
disturbance impacts on the regional C balance of forest ecosystems by integrating field
observations, high-resolution remote sensing data and models. Study results will also help in
developing sustainable forest management practices to achieve net-zero C emission goals

through nature-based climate change solutions.
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4.2 Introduction

Forest ecosystems cover more than 30% of the terrestrial area and play a crucial role in the
global carbon (C) cycle through the processes of photosynthesis and respiration (FAO, 2010;
Ahmed, 2018). The balance between these two opposing fluxes determines whether the forest
ecosystem is C sink or source (DelLucia et al., 2007; Litton et al., 2007; Schmid et al., 2016;
Chi et al., 2021). Forests have consistently demonstrated higher levels of gross primary
productivity (GPP) and established the Earth’s most substantial C pools (Peters et al., 2007).
Forests in North America are estimated to contribute approximately 76% of the region’s net
terrestrial C sequestration (Zhao et al., 2021). In Canada, forest ecosystems have accumulated
on average 173 million tons of C per year over much of the past century (Gray et al., 2006;
Hengeveld et al. 2008). However, this rate of C sequestration can be influenced by natural
disturbances such as wildfires and insect infestations (Kurz et al., 2002; Kalamandeen et

al., 2023).

In North America, frequent outbreaks of insect infestations including mountain pine beetle
(Dendroctonus ponderosae) infestation in western parts and spongy moth (Lymantria dispar)
infestations in eastern regions have been the major factors impacting forest growth, health and
C balance (Kurz et al., 2002). The spongy moth is a non-native species originally from Europe
and Asia (Joria et al. 1991; Wang et al., 2022), that was first accidentally introduced in Boston
area in USA in 1869 (Williams et al., 1985; Picq et al., 2023). Since then, it has expanded its
range from New England to southward in Virginia to North Carolina and westward in
Wisconsin, Michigan and the Great Lakes regions in USA and Canada (De Beurs and
Townsend, 2008; Hajek et al., 2021). Spongy month causes defoliation of various deciduous
and mixed forests, including oak (Quercus), birch (Betula), aspen (Populus), sugar maple (Acer

saccharum), American beech (Fagus grandifolia), balsam fir (Abies balsamea), and in sever
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infestation cases eastern white pine (Pinus strobus) and Colorado blue spruce (Picea pungens).
The spongy moth’s life cycle involves egg dispersion before April, with early-stage caterpillars
persisting until mid-May, late-stage caterpillars emerging in June, pupae developing in mid-
July, and adult moths appearing by mid-August (Government of Ontario, 2024). Defoliation
typically begins in the early caterpillar stage and intensifies throughout the late caterpillar stage

from June to August.

In Eastern North America, spongy moth outbreaks have occurred roughly every seven to ten
years with the past major or significant infestations recorded in 1981, 1985, 1991, 2002, 2008
and 2021 (ONDMNRF, 2021; OMNRF, 2024). Since 1970, it is estimated that over 30 million
hectares of forest have experienced defoliation due to spongy moth infestation (De Beurs and
Townsend, 2008; Hajek et al., 2021). The spongy moth outbreak of 2021 was the largest on
record in the region where almost 1.78 million hectares of forests were impacted in the province
of Ontario, Canada and 2.5 million hectares affected in the United States (USDA, 2023;
OMNRF, 2024). In Ontario, 17,797 km? forest area was severely impacted by the infestation
(OMNREF, 2024). The large-scale 2021 spongy moth defoliation severely impacted C
sequestration capabilities of forest ecosystems in both Canada and the USA and posed a
considerable challenge for the health and growth of forests (Chung et al., 2021). With about
595 million hectares of non-affected forests in North America that are climatically suitable
habitats for spongy moth expansion, future outbreaks may potentially pose a major challenge
for forest growth, health and C uptake in the region (Gray, 2004; Kalamandeen et al., 2023).
Therefore, there is a need to develop effective forest monitoring and management strategies
and develop integrated methods to quantify the loss of C caused by these infestations, which
are expected to become more widespread, intense and frequent in future due to climate change

(De Beurs and Townsend, 2008; Harvey et al., 2022).
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Remote sensing techniques have been effectively employed for estimating spongy moth
defoliation areas since the mid-1980s utilizing Earth observatory satellite imagery from
platforms such as Landsat (Williams et al., 1985; Joria et al., 1991; White et al., 2017), SPOT-
1 (Ciesla et al., 1989), and MODIS (De Beurs and Townsend, 2008). These satellite systems
typically classify regions impacted by spongy moth infestations into different categories,
including light, moderate, and heavy defoliation, while also identifying regions of healthy
forests (Williams et al., 1985; Ciesla et al., 1989; Joria et al., 1991; Kovalev et al., 2023).
However, the precise categorization of the intensity of spongy moth infestation has been
challenging, primarily due to the shorter duration of spongy moth outbreak and low or moderate
resolution of satellite imagery (e.g. from MODIS, SPOT, and Landsat Satellites). Recent
advances in high-resolution remote sensing techniques have significantly improved the
accuracy of remote sensing images, enabling not only the detection of defoliation areas but also
providing capabilities for the precise measurements of the extent of these events and
quantifying defoliation impacts on C sequestration (Townsend et al., 2004; Kovalev et
al., 2023). It allows systematic assessment of the influence of spongy moth infestations on

forest ecosystems and their C balances.

Sentinel-2A and 2B satellites provide high-resolution (10 x 10 m?) images that are very
suitable for monitoring insect infestation such as spongy moth defoliation and for quantifying
forest C losses through the exploration of vegetation indices (VIs), and estimation of GPP
(Hussain et al., 2024). Several studies in the literature have successfully estimated infestation
impact on forest growth and health by utilizing VIs such as the normalized difference
vegetation index (NDVI) and the enhanced vegetation index (EVI) (Carter and Knapp, 2001,

Fraser & Latifovic, 2005; Eklundh et al., 2009). However, studies focusing on the
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quantification of the effects of insect defoliation on forest C dynamics has been limited (De

Beurs and Townsend, 2008; Senf et al., 2017; Kovalev et al., 2023).

The primary aim of this study is to determine the impact of 2021 spongy moth (Lymantria
dispar) infestations on forest growth and productivity in the Great Lake region in Canada using
high-resolution (10 x 10 m?) Sentinel-2 satellite remote sensing data and eddy covariance (EC)
flux observations from 2020 to 2022. The specific objectives of this study are to: (i) estimate
seasonal variations and trends in the leaf area index (LAI) using high resolution remote sensing
data; (ii) determine forest photosynthetic uptake and gross primary productivity (GPP) using
observed eddy covariance flux and remote sensing data; and (iii) quantify carbon (C) losses
across the region because of this wide spread and server spongy moth infestation. To delineate
distinct vegetation categories within the study area, the study employed a machine learning-
based land use/land cover (LULC) classification scheme using Sentinel-2 data in the Google
Earth Engine (GEE) platform. An examination of the suitability of utilizing LAI to measure
the biomass and GPP of various affected vegetation cover types across the region was also
conducted. These assessments will contribute to the development of sustainable forest
management strategies and help to achieve net zero carbon goals through nature-based climate

change solutions.

4.3 Materials and Methods
4.3.1 Study area

The study area covers a region from 75° W to 84° W longitude and 42° N to 48° N latitude,
situated along the shores of Lake Ontario, Lake Erie, and Lake Huron, encompassing

approximately 178,000 km? in southern and central Ontario, Canada (Figure. 4.1). Much of this
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area is part of Great Lakes-St. Lawrence forest is dominated by different ages of hardwood
forests including a variety of tree species such as sugar maple (Acer saccharum), red maple
(Acer rubrum), white oak (Quercus alba), red oak (Quercus rubra), yellow birch (Betula
alleghaniensis), basswood (Tilia americana), white pine (Pinus strobus), red pine (Pinus
resinosa), Eastern hemlock (Tsuga canadensis) and white cedar (Thuja occidentalis).
Deciduous, conifer and mixed forests cover up to 62% land of this area. The southern latitudes
of the study area are dominated by cropland such as corn, soybean, and forage for livestock
production, as well as deciduous forests which cover about 10% of the area (OMNRF, 2024).
The remaining land is categorized as primary wetlands or urban areas. The northern parts of
study area is part of the Boreal forest and the Georgian Bay lowlands forest, while the central
and southern forests are also characterized as Carolinian forests. The southern region is more
conducive to agriculture, more densely populated, and urbanized. In contrast, the central and
northern regions of the study areas are mountainous terrain covered with forests and have a

relatively untouched environment (Baldwin et al., 2000; Shah et al., 2022).

The climate of the study area is characterized as cool continental, which is influenced by
regional factors due to area's proximity to the Great Lakes. The mean annual precipitation of
786 mm year~! based on observations recorded at the Toronto Pearson Airport Weather Station
during the normal climate period from 1991 to 2020 (Environment and Climate Change
Canada, 2023) where 14% of the precipitation fell as snow. The mean annual temperature
varies across the region depending on latitude, with mean annual temperature of 8.2 °C from
1991 to 2020 at the Toronto Pearson airport weather station (Environment and Climate Change
Canada, 2023). Additionally, mean temperature during the growing season fluctuates between

15 and 30 °C (Wazneh et al., 2017).
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4.3.2 Remote sensing and observed eddy covariance flux datasets

Sentinel-2A and Sentinel-2B (S2) satellites of the COPERNICUS satellite systems of the
European Union's earth observation program (Drusch et al., 2012) provide high-resolution
datasets for terrestrial ecosystem monitoring (Léw & Koukal, 2020). The Sentinel-2
multispectral instrument (MSI) system delivers 13 spectral bands, including 10 x 10 m? spatial
resolution of visible and near-infrared (NIR) and 20 x 20 m? spatial resolution of short-wave
infrared (SWIR) spectrum with up to five-day revisiting time (Drusch et al., 2012; Sun et
al., 2021). This study used Sentinel-2 data to calculate vegetation indices (VIs) such as
normalized difference vegetation index (NDVI), and leaf area index (LAI) for biomass
estimation. Sentinel-2 satellite datasets were downloaded from https://earthexplorer.usgs.gov/.
Sentinel-2 (S2) data was also used to estimate GPP while utilizing radiative model and

observed eddy covariance (EC) flux data.

The observed EC flux data were obtained from Turkey Point Environmental Observatory
(Arain et al., 2022; Beamesderfer et al., 2020; Latifovic and Arain, 2024). These sites are
known as the Canadian Turkey Point deciduous forest sites (CA-TPD) including four different
EC flux stations (TP-Ag, TP39 TP02and TPD) and associated with the Global Water Futures
Observatory Program, Ameriflux and Global Fluxnet network (Arain, 2018). Although EC flux
and meteorological variables have been continuously measured at this site since 2012,
COz fluxes for three years, i.e. 2020 (pre-infestation), 2021 (infestation) and 2022 (post-
infestation) were used in the analysis presented in this study. In 2021 spongy month infestation
was quite severe at our forest site where majority of deciduous trees were defoliated as shown

in Figure 4.2 and further discussed in Latifovic and Arain (2024). The quality control of EC
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flux and meteorological data was conducted utilizing the Biometeorological Analysis,
Collection, and Organizational Node (BACON) software, which was developed by our lab
(Brodeur, 2014). Outliers within the dataset were detected and eliminated through the BACON
software and small gaps in the dataset were filled through linear interpolation from the onsite
data. Further details of EC fluxes and meteorological measurements, data gap filling and
partitioning of observed CO- flux in ecosystem respiration and GPP are given in Latifovic and
Arain (2024). In addition, no forest management activity had taken place at the forest in recent

years.

4.3.3 Land use and land cover (LULC) classification

The GEE platform’'s machine-learning approach was utilized to create cloud-free Sentinel-2
data for the LULC analysis (Nasiri et al., 2022). The GEE cloud computing approach was
utilized to collect images and process data for the growing season of 2020 (Figure 5.1). GEE-
based machine learning classifier, support vector machine (SVM) was used to classify six
primary land cover categories, namely water bodies, urban areas, agricultural land, coniferous
forest, deciduous forest and mixed forest (Sheykhmousa et al., 2020). Each land cover category
was assessed using 650 ground point samples to extract per-band pixel values from the
Sentinel-2 dataset, ensuring that the data used had minimum cloud cover (less than 5%). The
evaluation of classification accuracy provided a comparison between LULC classes derived
from the training point and data obtained during the testing phase (Nasiri et al., 2022), which
involved a total of 3900 ground point samples. This accuracy assessment was performed using
confusion matrices (Table 4.1). The overall accuracy based on these confusion matrices was

95.7%.
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The analysis revealed that coniferous forests occupied the largest land area, covering
43,017 km?, which represents 24.29% of the total studied area. Agriculture was the second-
largest land cover category, covering 42,294 km?, accounting for 23.88% of the total area.
Deciduous forests covered 36,574 km?, constituting 20.64% of the total area and mixed forests
occupied 23,936 km?, making up to 13.51% of the total area. Additionally, water bodies and
wetlands covered 13,053 km?, covering 7.37% of the total area, while the urban areas occupied

19,256 km?, covering 10.87% of the total area.

4.3.4 Retrieval of leaf area index (LAI)

LAl was calculated using the Sentinel-2 data and the PROSAIL model which is the
combination of PROSPECT (Jacquemoud and Baret, 1990; Feret et al., 2008) and SAIL model
(Verhoef, 1984). The PROSPECT model provides leaf optical properties and the SAIL model
provides plant canopy reflectance (Sun et al., 2021). The PROSPECT model measures leaf
hemispherical reflectance and transmittance to define leaf optical elements at 400-2500 nm
through six input parameters: leaf structure parameter (N, unitless), leaf chlorophyll content
(Can), carotenoid content (Car), brown pigment content (Corown), equivalent water thickness (Cw)
and dry matter content (Cm) (Xu et al., 2019). The SAIL model calculates canopy reflectance
as a function of leaf optical elements obtained from PROSPECT and six input parameters: leaf
inclination distribution function (LIDF), LAI, hot spot parameter (hspot), solar zenith angle
(tts), view zenith angle (tto), relative azimuth angle (psi) (Sun et al., 2021). All input

parameters for the PROSAIL model are shown in Table 4.2.

The spectral response function for Sentinel-2 satellite data is used from band effective

reflectance. The band reflectance was calculated based on the measured canopy hyperspectral
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reflectance and simulated reflectance from the PROSAIL model. The band reflectance was

calculated by Wang et al. (2015) as follows:

max 5 A)w(a)da

= Zmin 4.1
P = e e “.1)

This derivative follows,

(1) =l £sCOVGOAL_ TR 050000
y J20% p(aaa 22580 9(2y)

(4.2)

where p, (1) is the simulated band reflectance of the sensor, ps(4;) is the simulated reflectance
of the PROSAIL model, which is coded in MATLAB. A,,;,, is equal to 400 nm the minimum
value of wavelength limit and 4,,,,, is 2500 the maximum value of the wavelength limit, ¥ (4;)

is the spectral response coefficient of Sentinel-2.

4.3.5 Remote sensing-based gross primary productivity (GPP) estimation

GPP was estimated using the Sentinel-2-based light use efficiency (LUE) model to quantify
the CO> uptake from different vegetation cover types. LUE model has the empirical capability
to estimate GPP (Zhang et al., 2017; Sun et al., 2019) using remote sensing data. Observed air
temperature (Ta) and photosynthetically active radiation (PAR) data were used with satellite
data in the LUE model to calculate GPP (Hussain et al., 2024). The following equations were

used as part of the LUE model (Table 4.3).
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In Table 5.3, APARcn is absorbed photosynthetically active radiation (PAR); fPARcn is the
fraction of PAR estimated by chlorophyll or linear function of EVI, which is modified
following Xiao et al. (2004). 0.1 and 1.25 are constants to adjust for vegetated land and were
validated from solar-induced chlorophyll fluorescence (SIF); &g is the light use efficiency
(LUE), &9 is the apparent quantum yield or maximum light use efficiency (umol CO2 per pumol
photosynthetic photon flux density (PPFD)); Tscatar, Wscalar are the downward-parameter scalars
for the effects of temperature and water respectively on LUE by C3/C4 photosynthesis
pathways; Ta, Tmin, Tmax, and Topt refer to the mean, minimum, maximum, and optimum
temperature for photosynthesis, respectively; LSWI is the land surface water index. Model
estimated daily GPP values were compared with the observed GPP values for 2020 and 2021
as shown in Figure 4.3. There was a strong correlation between satellite-derived and observed
daily GPP values for agricultural lands, conifer forests and deciduous forests, respectively

(Figure 4.3a-c).

4.3.6 Statistical analysis

Weighted double logistic (WDL) function was used to fit the daily time series of VIs as
described in Yang et al., (2019). WDL consists of two logistic functions based on the vegetation
growth activity, including the growing part (f1) and the declining part (f2) to set the model
parameters which can provide the daily time series using following equations (Yang et al.,

2019).

y=fi+f +e (4.3)

— ‘1
- 14e@1t+b1t

f) +d, (4.4)
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f; +d, (4.5)

e=max (c; +dq,c; +dy) (4.6)

where y is the time series of variable, d and c+d denote the minimum value (min(f)) and
maximum value (max(f)), respectively; ¢ indicates the local amplitude; and a and b determine
the shape and slope of the logistic function, respectively. The subscripts 1 and 2 identify the
parameters of the growing and declining parts, respectively. In the retrieval of these unknown
parameters, the initial d and c are assigned as min(f) and max(f)-min(f), respectively. Thus, the
principal problem is to derive parameters a and b. Considering the different weights of each of
the data points, we transformed the non-linear fitting problem into a linear one by a function
transformation as ai1+b: t=In(cifi—d1—1). Furthermore, the WLS method is applied to solve

the analytic expression of the logistic function for each part (f; and f2).

We also utilize standardized anomalies to understand temporal variations and deviations from
normal growth trends over the study period. We calculated these anomalies by subtracting the
mean GPP during three growing periods from the daily GPP values and then dividing it by the
standard deviation observed over the same periods. These calculations followed equations 5.7

and 5.8 as shown by Zhao et al. (2022).

Ysa =224 (4.7)

g

Ya=Xx—X (4.8)

where, vy, is standardized anomaly, y, is daily anomaly and x is daily GPP and x is the three-

year mean GPP estimated from Sentinel-2.
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4.4 Results
4.4.1 Climatic conditions

The meteorological variables measured at our site from 2020 to 2022 are shown in Figures
4.4 and 4.5. The mean annual Ta was 10.6, 11.3, and 10.6 °C for 2020, 2021, and 2022,
respectively. The daily maximum Ta was observed during July—August periods, while
minimum Ta values were observed during January—February, reflecting the typical seasonal
patterns in the Great Lakes region (Figure 4.4b). At the same time, Tswas 9.7, 10.3, and 9.6 °C.
Temporal variability in Ts closely followed the temporal variability of Ta, with a correlation
coefficient of 0.89 (P<0.001). Additionally, photosynthetically active radiation (PAR)
exhibited similar patterns to temperature variations (Figure 4.4a, b), with respective daily

values of 317, 321, and 343 pmol m2 d* for 2020, 2021, and 2022.

The daily mean values of VPD were 0.37, 0.38, and 0.38 kPa for 2020, 2021, and 2022,
respectively. The similarity between VPD values across the years indicates overall relatively
stable atmospheric moisture conditions during the study period. Additionally, VWC during the
same period was 0.11, 0.12, and 0.11 m®m™. The temporal variations in VWC reflected
changes in soil moisture following large precipitation events throughout the year (Figure 4.4d).
The annual total precipitation values were 1127, 1009, and 960 mm for 2020, 2021, and 2022,
respectively (Figure 4.5). 2021 showed a dry period with low precipitation values in 2021 from
early March to mid-June. This dry and rain-free period in the early parts of the growing season
in 2021 may have helped the spongy moth to establish and thrive. Overall, observed
meteorological conditions during the study period showed similarities with long-term observed

weather conditions at this site.
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4.4.2 Dynamics of remote sensing-based leaf area index (LAI)

Remote sensing-based monthly mean LAI values for major land cover types including
deciduous, conifer and mixed forests and agricultural lands over the growing season are shown
in Figure 4.6. Deciduous forests had mean LAI values of 3.66+ 1.6, 2.74 + 1.1, and 3.53+ 1.5
m? m™2, conifer forests had LAI value of 4.34+ 1.6, 4.28+ 1.6, and 4.26+ 1.5 m® m™2 and mixed
forest had LAI value of 3.18+ 1.4, 2.64+ 1.1, and 2.94+ 1.3 m® m 2 for 2020, 2021, and 2022,
respectively. Mean LAI values for agricultural lands were 3.31+2.2, 3.25+2.3, and 3.11£2.2
m? m™2 for respective years. The highest LAI values were observed for agricultural lands and
conifer forests in July, followed by deciduous and mixed forests. These satellite-derived LAI
values showed a large decline for deciduous and mixed forests in 2021, when these forests

were impacted by spongy moth infestations (Figure 4.6c¢, d).

Mean LAI values for deciduous and mixed forests declined by 25 (22)% and 17 (10)% in
comparison to the pre-infestation (post-infestation) values recorded in 2020 (2022). LAI values
recovered to almost normal levels in 2022 for deciduous forests after the infestation, while LAI

for mixed forests showed relatively lower recovery values.

4.4.3 Impact of spongy moth infestation on gross primary productivity (GPP)

The satellite-derived daily GPP values showed similar trends as observed for LAI, with much
lower daily GPP values for deciduous and mixed forests in 2021 due to spongy moth infestation
(Figure 4.7). In deciduous forests, photosynthetic C uptake usually started in mid-May and
peaked in July with typical maximum daily GPP values of about 14 to 16 gCm=2d™

However, in 2021, GPP values rapidly declined at the start of June when spongy moth
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defoliation intensified. Daily GPP values reached as low as 3.0 g C m2d*in July in 2021.
Similar low GPP values were also observed for mixed forests. GPP saw a rebound in late July
and August when the short-lived spongy moth infestation started to end due to the
transformation of leaf-eating larvae (caterpillars) to pupa and adult stages. In addition, these
decreasing trends of GPP were well aligned with the spongy moth life cycle, where the late
caterpillar stage occurs from mid-May to the end of July, causing extensive leaf damage.
However, after this period, daily GPP values showed some recovery but only reached up to 7
to 8 g C m2 d* before the usual autumn photosynthetic decline started to take effect in late
September. In general, rebounded daily GPP values were even lower for mixed forests due to
the combined effects of infestation for deciduous forests and usual seasonal low soil moisture
from late July to August in the region, which typically causes lower GPP values in conifer
trees. However, overall the soil moisture was sufficient for ecosystem production in 2021
(Figure 4.4d). In 2020 and 2021, the active period of growth for deciduous forests ended by
the end of October, while in 2022 deciduous forests experienced an earlier end of growing

season (Figure 4.7c).

In contrast, photosynthetic C uptake in coniferous forests began earlier in April as compared
to other vegetation types and continued until the end of October. The maximum daily GPP in
conifer forests was observed in June, with maximum daily GPP values of about 10 to
14gCm2d". In agricultural lands, daily GPP was almost zero in April but it started to
increase in mid-May and peaked in July and August, with maximum daily GPP values reaching
about 20 to 23gC m2d! (Figure 4.7a). These trends were also clearly shown in the
standardized daily GPP anomaly values, where GPP in deciduous and mixed forests showed a

large decline, while GPP in conifer forests and agricultural lands were not impacted (Figure
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4.8). In 2022, the forest appeared to be fully recovered with a notable increase in both the daily

mean and seasonal total GPP values as compared to 2021.

Overall, growing season mean daily GPP values in deciduous forests were 6.83+4.1,4.43+2.5,
and 7.77£5.4 g C m2d ™ for 2020, 2021 and 2022, respectively. Corresponding GPP values
for coniferous forests were 6.87+3.5, 7.10+2.7, and 6.86+2.7 g C m2d*and for mixed
forests were 6.45+42 g C m2d?%, 481+22 ¢ C m?d?, and 6.12£23 g C m?d ™
Agricultural lands had growing season mean daily GPP values of 9.65+ 5.4, 8.45+ 6.1, and
9.55+6.2 ¢ C m2dtin 2020, 2021, and 2022, respectively (Figure 4.7; Table 4.4). The
highest cumulative GPP values over the growing season were observed in the coniferous forest
in all three years, followed by deciduous forests, agricultural lands, and mixed forests
(Figure 4.7e-h and Table 4.4). Maximum GPP estimates for conifer forests highlighted their
optimum photosynthetic activity and proficiency for C uptake. Deciduous forests had total
growing season GPP values of 1338, 869, and 1367 g C m2in 2020, 2021 and 2022,
respectively, while coniferous forests photosynthesized 1443, 1475, and 1438 g C m 2 and
mixed forests exhibited GPP values of 1208, 932, and 1175 g C m? for the same years (Figure
4.7e-h and Table 4.4). Agricultural lands showed cumulative GPP values of 1235, 1266, and

1241 g C m2 over the same period (Figure 4.7e—h and Table 4.4).

Spatial patterns of total GPP over the growing season (April-October) for 2020, 2021 and 2022
are shown in Figure 4.9. These spatial patterns of GPP clearly showed the severely impacted
areas and extent of decline in photosynthetic C update in the region where almost all deciduous
and mixed forests were impacted. Southern areas which had a higher proportion of deciduous

tree species were more severely impacted. These areas were in the north of Lake Erie and west
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of Lake Ontario (Figure 4.9c). However, low values of GPP as shown by yellow color were
prevalent almost all over the study region, except in the central and far northwestern parts that
were dominated by conifer species. Overall, these results showed 35 (36)% decrease in total
GPP over the growing season for deciduous forests in 2021 when compared to pre-infestation
(post-infestation) years. A similar GPP decline for mixed forests was 23 (21) % in 2021 when

compared to pre-infestation (post-infestation) years (Table 4.4).

4.5 Discussion

Remotely sensed LAI measurements have been widely used to observe the intensity and extent
of defoliation in deciduous and mixed forests (De Beurs and Townsend, 2008). LAl
measurements also provide direct quantification of leaf properties, photosynthetic activity, C
uptake (Jarlan et al., 2008; Boussetta et al., 2013; Alton, 2016; Brown et al., 2020) and are
often used to estimate vegetation biomass utilizing remote sensing-based models (Zolles et
al., 2021). Our study results showed that the mean LAI values for deciduous forests decreased
by about 25% in 2021 as compared to the pre-infestation LAI values in 2020, and by about
22% as compared to the post-infestation LAI values in 2022. It provided an indication of the
severity of the impacts of spongy moth infestation on forest growth and productivity. We used
these LAI values as a key indicator to observe the spatial patterns and the extent of spongy
moth infestation. It helped us to observe the trajectory and dynamics of defoliation and to
determine the timing and extent of canopy recovery when larvae or caterpillars were
transformed into pupa and adult moths after a few weeks (Latifovic and Arain, 2024). We also
used these LAI values to calculate remote sensing based GPP across the region (Sun et
al., 2021). We found a strong positive correlation between LAI and remote sensing based GPP
values with R? values of 0.90, 0.76, 0.86 and 0.67 for agricultural lands, coniferous forests,

deciduous forests and mixed forests respectively and significance level (p) values of <0.005
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(data not shown). Similar strong correlations between LAI and GPP have also been found

by other researchers (e.g. Qu et al., 2018; Zhang et al., 2021; Chen et al., 2023).

Our analysis showed the intense and widespread nature of the 2021 spongy moth infestation in
the region where deciduous and mixed stands experienced large-scale defoliation resulting in
35% and 22% decrease in mean daily GPP values as compared to 2020 and 2022, respectively.
Our study not only supported the earlier inferences that 2021 infestation was as record
disturbance event in North America (Embrey et al., 2012; CFIA, 2021; Chung et al., 2021;
Gooderham et al., 2021; Government of Canada, 2021; MNRF, 2021; MNDMNREF, 2022;
TRCA, 2022; Clark et al., 2022; Foster et al., 2022; Coleman and Liebhold, 2023; Latifovic
and Arain, 2024), but it also provides quantitative assessment of the photosynthetic C uptake
reduction across the region due to defoliation (Dymond et al., 2010; Medvigy et al., 2012;
Kretchun et al., 2014). These C uptake reduction estimates have significance because in recent
years most of the terrestrial C cycle studies in the literature have been reporting an increase in
vegetation C uptake due to warmer temperatures, longer growing seasons and CO; fertilization
effects (Goodale et al., 2002; Harris et al., 2016; Birdsey et al., 2019; Fei et al., 2019; Ameray
et al., 2021; Quirion et al., 2021). Our study has highlighted how C sequestration of deciduous
and mixed forest ecosystems in eastern North America, specifically in the Great Lakes region,
might be impacted by a major natural disturbance event. Such natural disturbance events are
expected to increase in frequency and intensity in the future due to climate change (Pureswaran
et al., 2018; IPCC, 2021; Harvey et al., 2022; Kalamandeen et al., 2023). They will have
adverse consequences for biological C sinks to offset greenhouse gases (GHG) emissions to

achieve net zero C emission goals.
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Our study also showed that in the Great Lakes region, conifer forests have a much greater
capacity for C sequestration as compared to deciduous and mixed forests due to their longer
growth period and conducive environmental conditions in the region (Payne et
al., 2019; Beamesderfer et al., 2020). Sustainable management of both deciduous and conifer
forests may help to conserve and further enhance C uptake capacity of these forests. In this
regard, our study provides the systematic methodology and road map to monitor and quantify
the growth and C sequestration of all major vegetation ecosystems in the region, including
conifer, deciduous and mixed forests as well as agricultural lands at high (10 x 10 m?) spatial
resolution. Because most inset infestations are species-specific and some of them occur for
short periods such as spongy moth infestations, it becomes very challenging to accurately
quantify their impacts. Our utilization of high-resolution Sentinel-2 satellite imagery and a light
use efficiency (LUE) model to estimate GPP for the whole region was a unique effort which
provided a quantitative assessment of the photosynthetic C uptake loss because of the large-
scale nature of this infestation. It showed that 2021 infestation caused 4.84 and 2.6 t C
ha! reduction of C uptake in deciduous and mixed forests, respectively. This was a substantial
potential C sequestration loss, considering the mean annual GPP of 14.0t C ha™! for Canada
(Gonsamo et al., 2013; Chen et al., 2020) and 12.25 t C ha™! for the USA (Turner et al., 2003;
Tang et al., 2010). Our estimated total C uptake loss for the whole study area of 178,000 km? in
2021 was 21.1 (21.4) megatons of carbon (Mt C) when compared to 2020 (2022). This C loss
amounted to ~11.5 (11.7)% of Canada’s national GHG emission of 182.7 Mt C eq (670 Mt
COz2 eq) or 52.3 (52.1)% of the Province of Ontario’s GHG emissions of 41.1 Mt C eq (150.6
Mt CO2 eq). However, the reader is cautioned about these extrapolated results because the
defoliation is tree species dependent and there may be areas which many have not been severely
impacted as well as the uncertainty associated with the remote sensing derived GPP values.

Our study has also highlighted the importance of future forest conservation and management
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practices that should account for climatic and disturbance stresses and help to enhance the

sustainability and resilience of forests to these stresses.

4.6 Conclusion

This study quantified the impact of a severe spongy moth infestation on C sequestration in
deciduous and mixed forest ecosystems in the Great Lakes region in Canada. By utilizing
remotely sensed LAI as a key indicator, the study assessed the onset and progression of spongy
moth infestation in 2021. Study results showed a substantial decline in GPP in deciduous and
mixed forests in 2021 when compared to pre- and post-infestation years i.e. 2020 and 2022.
Total growing season GPP values were 1338, 868, and 1367 g C m™2 in deciduous forests over
the study area from 2020 to 2022, respectively. Corresponding mean total growing season GPP
values in mixed forests were 1208, 932, and 1175 g C m™2 and in coniferous forests, they were
1443, 1475, and 1438 g C m2in 2020, 2021 and 2022, respectively. It showed 35 (36)%
reduction in mean total growing season GPP in deciduous forests in 2021 as compared to pre-
infestation (post-infestation) years. Corresponding decline in mixed forests was 23 (21)% in
2021. The whole study area (178,000 km?) experienced the total photosynthetic C uptake loss
of 21.1 (21.4) Mt C when compared to 2020 (2022). Study results also displayed that coniferous
forests consistently exhibited higher GPP values, indicating their efficient C sequestration
capabilities. The methods developed in our study and their application using high resolution
remote sensing data will help to improve our understanding of C dynamics of forest ecosystems
in response to natural disturbances. Our results also emphasize the vulnerability of deciduous
and mixed forests to insect infestations and signify the need to develop proactive and adaptive
forest management practices that can enhance forest resilience to climate change. They will

help to quantify regional-scale C balance and develop sustainable forest management practices
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to contribute to net zero C emission goals through nature-based solutions to mitigate climate

change.
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Table 4.1. Confusion matrices-based accuracy assessment of land use and land cover (LULC) classification.

Class Water | Unban | Agriculture | Deciduous | Coniferous | Mixed forest | Producer accuracy | User accuracy
Water 627 1 0 0 0 2 98.4% 99.4%
Unban 1 617 0 6 2 2 96.7% 98.0%
Agriculture 3 1 622 8 6 10 97.2% 96.2%
Deciduous 3 9 12 606 22 12 96.4% 94.2%
Coniferous 4 12 7 16 610 11 95.5% 94.7%
Mixed forest 12 10 9 14 10 613 94.7% 94.1%

Overall accuracy:

95.7%
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Table 4.2. Input parameters set for the PROSAIL model. The fixed value is used in this study.
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Model Input Parameters Symbol Unit Range Fixed value
Leaf structure N dimensionless 1.5-3.0 1.5
Chlorophyll content Cab Hg.cm-2 10-80 40
Carotenoid content Car pg.cm-2 10
PROSPECT _ _ _
Brown pigment Cbrown arbitrary units 0
Equivalent water thickness Cw cm 0.01
Dry matter content Cm g.cm-2 0.009
LIDF shape spherical spherical
Leaf inclination distribution
LIDFa slope -1tol -0.35
function . —
LIDFb Kind of distortion -1to1l -0.15
Leaf Area Index LAI m2/m2 0-8
SAIL
Hot spot parameter hspot m/m 0.03-0.1 0.01
Solar zenith angle tts ®) 20 -70 30
View zenith angle tto °) 0-30 10
Relative azimuth angle psi ®) 0
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Table 4.3. Equations have been used for ecosystem properties.
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Variables Equation References

GPP GPP = APARCchI x &g Monteith, 1972
APARchl = PAR x fPARchI Xiao et al., 2004
fPARchl = (EVI-0.1) x 1.25 Zhang et al., 2017

LUE eg= €0 x Tscalar xWscalar Zhang et al., 2017
Toi = (T — Thax) X (T = Tmin) Zhang et al., 2016

(T = Timax) X (T = Tiin) — (T — Tope)?
W _ 1+ LSWI Zhang et al., 2016
sealar = 1 4 LSWliax
Indices NDVI = (RNIR — RRed)/(RNIR+RRed) Rouse et al., 1974

RNIR—R
EVI = 2.5 X R __Red
RNIRt6 X RRed—7.5 X Rpjyet+1

Huete et al., 2002

LSWI = (RNIR — RSWIR) / (RNIR + RSWIR)

Xiao et al., 2004
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Table 4.4. Mean daily gross primary productivity (GPP) of different vegetation types in the growing season (g C m2)

) 2020 2021 2022
Vegetation Type
Daily mean Seasonal Total | Daily mean Seasonal Total | Daily mean Seasonal Total

Agriculture land 9.65+5.4 1235 8.45+6.1 1266 9.55+6.2 1242
Conifer forest 6.87+£3.5 1443 7.10+2.7 1475 6.86+2.7 1438
Deciduous forest 6.83+4.1 1338 443 2.5 868 7.7715.4 1367
Mixed forest 6.45+4.2 1208 4.81+2.2 932 6.12+2.3 1175
Mean 7.45 1306 6.20 1135 7.58 1305
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Figure 4.1. Study area map. The LULC map was generated by machine learning-based Google Earth Engine (GEE) using Sentinel-2 remote sensing
data from the composite images of the growing season of 2020.
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Figure 4.2. Defoliated tree due to spongy moth infestation at the Turkey Point Environmental
Observatory’s deciduous forest site on 21 June 2021
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Figure 4.3. The relationship between Satellite-derived and Eddy Covariance (EC) flux tower-based observed daily gross primary productivity
(GPP) values for (a) agriculture areas, (b) conifer forests and (c) deciduous forests, respectively from 2020 to 2021.
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Figure 4.4. Daily mean values of (a) photosynthetically active radiation (PAR), (b) air temperature (Ta) and soil temperature (Ts) at 5cm depth,
(c) vapor pressure deficit (VPD), (d) precipitation (P) and volumetric water content (VWC) from 2020 to 2022.
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Figure 4.5. Daily cumulative precipitation (P) from 2020 to 2022.
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Figure 4.6. Monthly mean leaf area index, LAI (m?m) values over the study area for (a) agricultural lands, (b) conifer, (c) deciduous and (d)
mixed forests, respectively from 2020 to 2022.
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Figure 4.9. (a) The spongy moth outbreak areas in 2021. The spongy moth outbreak data were collected from the Ontario provincial database
(Ontario GeoHub, 2022). The LULC map was generated by machine learning-based GEE using Sentinel-2 remote sensing data from the composite
images of the growing season of 2020. The spatial pattern of total gross ecosystem productivity, GPP (g C m2) over the growing season (April-
October) for (b) 2020, (c) 2021 and (d) 2022.
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CHAPTER 5
SUMMARY AND CONCLUSIONS

5.1 Summary of Results and Their Significance

This study examined the influence of climate variability, extreme weather events and natural
and human-induced disturbances or management practices on C exchanges in agricultural and
forest ecosystems in southern Ontario in the Great Lakes region. As part of this study
continuous measurements of C, water and energy fluxes and meteorological variables were
made in an agricultural site from 2020 to 2023. This agriculture flux site is part of the Turkey
Point Environmental Observatory (TPEO), where EC flux, meteorological and ecological
variables are being continuously made in three different ages (84-, 49- and 21-yr old as of
2023) of conifer forest since 2002 and a deciduous (>90-yr old) forest since 2012. The
establishment of the agricultural site has allowed TPEO to become representative of the major
biomes in the Great Lakes region, encompassing coniferous and deciduous forests, as well as
agricultural crops. The agricultural site was planted with corn in 2020 and 2021, sweet potato
in 2022 and tobacco in 2023. Study results showed that annual NEP values were 485+3.7 and
249+3.5 g C m? yr! for the corn in 2020 and 2021, respectively, —120+2.1 g C m? yr! for sweet
potato in 2022 and 7 g C m? yr* for tobacco in 2023. It showed that site was C sink for corn,
C source for sweet potato and C neutral for tobacco. The grain yields (GY) were 537, 491, 90
and 124 g C m2 in 2020, 2021, 2022 and 2023 resulting in annual net ecosystem carbon
balance (NECB) of -52 (corn), -242 (corn), -210 (Sweet potato) and -117 (tobacco) g C m2
year L. This study helps to enhance our understanding of C and water flux dynamics in
agricultural fields in the Great Lakes region and provides valuable data for flux up-scaling,

remote sensing applications, and ecosystem modeling.
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For the forest ecosystem, study utilized high resolution Sentinel-2 satellite (10 x 10 m?) and
drone-observed remote sensing data along with EC fluxes data to evaluate the effects of five
different variable retention harvesting (VRH) treatments on the growth and C uptake of a 90-
year-old red pine (Pinus resinosa Ait.) plantation (1931) forest, in Southern Ontario, Canada.

CN and 55D plots consistently showed higher daily GPP values post-harvest, with CN
exhibiting the highest annual GPP followed by 55D, 55A, 33D, and 33A treatments. Overall,
the mean annual GPP for this 20-ha experimental site was 1651 + 89 g C m~2 year, ranging
from 1407 to 1864 g C m year*. The study indicated that VRH treatment with dispersed
residual canopies retaining over half of the initial basal area (i.e 55D) was the most optimized
management strategy that enhanced forest growth and C uptake. Study will help forest
managers to develop forest management pathways to enhance forest C uptake for nature-based

climate solutions.

The study also used high-resolution satellite remote sensing and EC fluxes to investigate the
impact of 2021 spongy moth (Lymantria dispar) infestation on forest productivity and C losses
in the deciduous and mixed forests across Southern Ontario. Results showed significant (i.e
24(14)%) reduction in leaf area index (LAI) for deciduous (mixed) forests across the region
with LAI values of 3.66 (3.18), 2.74 (2.64), and 3.53 (2.94) m> m2 in 2020, 2021, and 2022,
respectively. Similarly, growing season GPP values in deciduous (mixed) forests across the
region were 1338 (1208), 868 (932), and 1367 (1175) g C m2, respectively in 2020, 2021, and
2022, indicating about 35 (22)% reduction in GPP in 2021 compared to pre- and post-
infestation years. It showed the large scale of C losses caused by 2021 infestation in Canadian
Great Lakes region. The study emphasized the severe consequences of spongy moth

infestations on forest C budget. The methods developed in the study offer valuable tools to
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assess and quantify natural disturbance impacts on the regional C balance of forest ecosystems
by integrating field observations, high-resolution remote sensing data and models. Study
results will help in developing sustainable forest management practices in changing climate

where forest infestation may be more prevalent.

5.2 Study Limitations

This research focused on to determine how plants grow and absorb atmospheric CO> in both
agriculture and forest ecosystems using advanced remote sensing and EC flux measurements.
However, there are challenges when using these techniques, like scarcity of data availability,
atmospheric noise, cloudy conditions affecting data quality and differences in the timing of
satellite overpasses. In forests, the accusation of understory data using both remote sensing and
EC flux techniques is a major challenge (Zhang et al., 2016; Fratini et al., 2018; Xie et al.,
2019; Sun et al., 2021; Wang et al., 2021). Figuring out how much understory vegetation
contributes to the total C uptake of the forest is important (Thrippleton et al., 2016; Landuyt et
al., 2018, Kaarakka et al., 2021). EC flux data has its own limitations such as instrument and
power failures, various corrections required to process data and the inability of the sensors to
capture flux data under low turbulence conditions (Fratini et al., 2018; Reitz et al., 2022). It
causes gaps in data which are filled using different gap-filling methods as described in detail
in individual chapters. Data gap-filling introduces uncertainties, which should be accounted

while interpreting and using study results.

5.3 Suggestions for Future Research

This study helped in advancing the understanding of C exchange processes in different crops

and managed forest ecosystems. It provided insight into various forest management (partial
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thinning) techniques and identified appropriate harvesting density and composition that can be
utilized to enhance forest growth and C sequestration. It also provided regional estimates of
net C loss from deciduous and mixed forests in southern Ontario that experienced a major
Spongy Moth infestation in 2021. It would be interested to observed health, growth and C
exchanges of these forests over the post infestation years. There are many questions that can
be further explored such as (i) how quickly these forests recovered from the infestation in terms
of their C uptake and was there any changes in the balance between photosynthetic uptakes and
ecosystem respiration and (ii) was there any increase in the tree mortality in the post infestation
years. It would be very important to develop a mechanism to further explore the contribution
of forest understory in the overall C budget for both deciduous and conifer forests. It is vital
because remote sensing data mainly captures information from the canopy level. This
highlights the importance of the integration of ground observation and remote sensing
techniques. There is also a need to further explore the performance of VRH treatments over
multiple years under different extreme weather events such as heat, drought or combined
occurrence of both heat and drought events. After the application of VRH treatments, the
species composition and biodiversity of the forest starts to change. These changes have impact
on the key climate controls and C, water and energy exchanges. Therefore, observation and
documentation of these changes is also important for future forest management regimes. In the
agriculture field long term flux and remote sensing data in replicated crops will be very
valuable for researchers and users. It will help to explore the potential contributions of different
crops for C sequestration as part of climate mitigation efforts. Study results and long-term
datasets will help in the calibration and validation of ecosystem models, remote sensing
algorithms as well as developing sustainable forest and agricultural management practices to

achieve net-zero C emission goals through nature-based climate change solutions.
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5.4 Conclusions

This study explores the critical role of forests and agricultural ecosystems in C sequestration,
offering actionable understandings for developing climate-resilient land management strategies
to mitigate C losses and enhance ecosystem productivity amid ongoing climate change. It
provides a significant contribution to the understanding of C exchange dynamics in the Great
Lakes region, focusing on the impacts of climate variability, extreme weather, and
disturbances. By integrating advanced remote sensing with continuous EC flux measurements,
the study identifies crop-specific C sequestration capabilities and demonstrates how VRH
enhances forest C uptake. It also quantifies the severe C losses caused by the 2021 spongy moth

infestation, emphasizing the vulnerability of forests to natural disturbances.

The integration of high-resolution satellite and drone data with EC fluxes enables precise, real-
time monitoring, offering crucial methodologies for upscaling carbon flux measurements and
improving ecosystem modeling. These findings are essential for designing climate-adaptive
management practices, particularly in enhancing carbon sequestration across forest and
agricultural landscapes and advancing net-zero carbon emission goals through nature-based

solutions.
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