
MECHANICS OF JUTSUS



THE PLAYER, THE GAME, AND THE JUTSU
MEASURING MECHANICAL EXPERIENCES OF GAMEPLAY.

BY
SASHA M. SORAINE, M.ASc., (Software Engineering)

a thesis
submitted to the department of Computing and Software

and the school of graduate studies
of mcmaster university

in partial fulfilment of the requirements
for the degree of

Doctorate of Software Engineering

© Copyright by Sasha M. Soraine, August 13, 2024
All Rights Reserved



Doctorate of Software Engineering (2024) McMaster University
(Computing and Software) Hamilton, Ontario, Canada

TITLE: The Player, the Game, and the Jutsu
Measuring mechanical experiences of gameplay.

AUTHOR: Sasha M. Soraine
M.ASc., (Software Engineering)
McMaster University, Hamilton, Canada

SUPERVISOR: Dr. Jacques Carette

NUMBER OF PAGES: xxi, 242

ii



Lay Abstract

Games entertain us both as players and spectators; but the experiences of playing and watch-
ing are vastly different. Like driving a car, playing a game requires skills, engagement with
the controls, and interaction with the environment. Watching is like being a passenger, you
can enjoy the scenery, play with the radio, and even feel road rage. But as the passenger
doesn’t know what it’s like to press the pedals, the spectator doesn’t have the same experi-
ence as the player. We want to understand both experiences; what makes them different, and
how does this difference affect their overall game experience? We develop the Experiential
Tetrad (ExperT) — an experience-type framework that highlights the influence of perspec-
tive differences. We then look closer at mechanical experiences from a player perspective,
and model its effects with jutsus — a visual measure of how a player’s skills affect their
gameplay experience. We focus our work on developing models and measurements of player
abilities and gameplay challenges. This results in three complete jutsus for button mashing
challenges. Our goal is that designers can use these as tools to explore the effects of design
decisions on experiences, both conceptually with ExperT and practically with jutsus.
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Abstract

Research on game-related experiences centres player experiences (PX). However, our under-
standing of PX is limited. At a definitional level, there is no consensus on the dimensions of
PX, its proposed constructs overlap in scope, and their specific relationships to game design
decisions can be unclear. At a functional level, PX focuses on a narrow set of positive, optimal
experiences, even though negative experiences and spectator experiences are also fundamen-
tally important to understanding games. We synthesize various works into the Experiential
Tetrad (ExperT) — a perspective-dependent theoretical framework for all game-related ex-
periences. ExperT proposes that holistic experiences are the combination of four interrelated
experiential types (mechanical, emotional, aesthetic, and socio-cultural) which are clearly
scoped to specific game elements, and timescale oriented. ExperT highlights how the user
perspective (e.g. player, spectator) influences the overall experience by changing its char-
acterising experiential type. PX is grounded during play, and so it is heavily characterised
by mechanical experiences. Spectator experiences (SX) are grounded out of play, and so are
heavily characterised by socio-cultural experiences.

Our work explores mechanical experiences (MX) through a player lens, with the goal of
modeling and measuring it. We define MX as the relationship between the player’s abilities
and the game’s challenges. We scope our work to focus on two qualities of MX: mechanical
achievability (can the player complete the challenge?) and mechanical difficulty (how design
decisions affect the mechanical achievability). This exploration results in jutsus — a knowl-
edge capture artifact that visualizes the MX of a challenge for a particular player. Jutsus
connect the challenge’s design to the MX, and so could be a useful tool for designers and
researchers in understanding a part of PX.

To arrive at jutsus, we construct:

� a Player Model, that describes players by their ability proficiencies (represented as a
player profile);

� a Challenge Model, that describes gameplay challenges by their ability requirements
(represented as a competency profile); and,

� a process of comparing player profiles and competency profiles to quantify their MX.

This thesis adds to the fundamental science of games user research (GUR) and human-
computer interaction (HCI). It establishes a new theory and opens up new avenues of future
work in experience modeling.
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To Kalel and Rhael
If you’re serious enough about games, you can turn it into a degree.
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Chapter 1

Introduction

Player experience (PX) is a multi-dimensional [4, 200, 204, 403, 415], context-dependent
[319] phenomena resulting from the complex relationship between player and game. PX en-
compasses many distinct types of experiences based on how the player and game interact
mechanically (through gameplay), emotionally (through story), aesthetically (through visu-
als and sound), and socio-culturally (through the community of players). Modeling these
interactions (i.e. mechanical, aesthetic, emotional, and socio-cultural) as experiential types
(ExpTypes), may show how these individual experiences construct a holistic PX. We focus
on understanding mechanical experience (MX) as a starting point to modeling ExpTypes
and PX.

MX comes from the player interacting with mechanically moderated elements of the game,
particularly gameplay. Using Adams [7] model of the player-game relationship (Fig. 1.1),
gameplay is the combination of challenges and in-game actions. Actions are an interpretation
of inputs made through a controller; ergo, actions are the player’s abilities mediated by the
controller. Thus, MX is the relationship between the player’s abilities and the
gameplay challenges.

Figure 1.1: [7] model of the game player relationship.

Previous work on a holistic theory of PX focuses on constructs like fun [84, 257, 261, 274],
immersion [7, 67, 127, 212], flow [87, 103, 316, 457–459], engagement [56, 353, 354, 519], and
presence [44, 205, 462, 463, 527]. However, there is no agreement on which constructs are a
part of PX, let alone their definitions, scopes, interactions, and relationship to various game
elements [51]. Consider immersion as both a formal construct and colloquial term; a player
can be “immersed” in the game environment (aesthetics), in the gameplay (mechanical), or
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in the story (emotional). While game atmosphere [393] and character interactions [50] are
shown to enhance PX, immersion models (e.g. 7, 67, 127, 212) are generally biased towards
gameplay/challenge-based immersion. The qualities often associated with immersion (e.g.
lack of time awareness, increased focus) are also commonly associated with flow, and even
at times engagement. Common constructs, like flow, immersion, fun and engagement, also
over-represent positive experiences, despite negative experiences (e.g. frustration, anxiety,
tension) enhancing PX [212, 236, 467]. Overall, the constructs we have are inherently limiting
the types of experiences we can discuss.

Despite unclear theory, many PX measurement tools (e.g. 4, 74, 110, 378, 403) capture
these constructs. Recent work highlights the convergence of these tools [109], and their lack
of validation (e.g. 109, 217, 228, 255). Without clear theory, it is hard to assess whether a
tool’s assumptions and measures are reasonable [51]. Consider widely used Player Experience
Needs Satisfaction (PENS) [403], which applies Self-Determination Theory (SDT) to PX.
We are unsure whether its constructs measure PX [486] or if SDT is suitable for all types
of experiences [109, 377]. Tools looking to assess constructs thus inherit the issues of the
constructs.

ExpTypes can be a useful bridge towards a general theory of PX. ExpTypes represent
a bounded PX, defined by the terms of the player-game interactions for that context. This
clarity of the system components means we can look for ways to measure each ExpType. We
can leverage the clear boundaries and measurements of ExpTypes to compare experiences
between games. ExpTypes integrate existing PX work through mapping elements to types;
for example, Table 1.1 maps types of fun to their related ExpTypes. This way ExpTypes
builds on existing PX work, while making clear the boundaries and limitations of individual
work and concepts.

Kind of Fun Definition of Fun Experience
Sensation Game as sense-pleasure Mechanical, Aesthetic
Fantasy Game as make-believe Aesthetic, Emotional

Narrative Game as drama Emotional
Challenge Game as obstacle course Mechanical
Fellowship Game as social framework Emotional, Socio-cultural
Discovery Game as uncharted territory Emotional, Socio-cultural
Expression Game as self-discovery Emotional, Socio-cultural
Submission Game as pastime Mechanical, Aesthetic

Table 1.1: 8 Types of Fun [261] related to the 4 Experiential Types.

Our work furthers this idea of ExpTypes by exploring MX. We particularly focus on its
two components: mechanical achievability (whether the gameplay is possible for the player
to beat), and mechanical difficulty (how the gameplay’s design affects the mechanical achiev-
ability). We start with MX because every game has one, and it overlaps with other PX
constructs. In this way, MX is a barrier to the rest of PX since not being able to engage with
a game’s MX means a player cannot engage with the game’s other ExpTypes.
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1.1 Research Questions

We want to know how a player’s cognitive and motor abilities interact with gameplay chal-
lenges to understand mechanical experience through mechanical achievability and difficulty.
To do so, we ask:

RQ1: How are cognitive and motor abilities used to interact with various challenges?
RQ2: What are the effects of cognitive and motor overloading on the mechanical achievability

of a challenge?
RQ3: How can designers use this knowledge?

1.2 Problem Statement

MX is the relationship between the player’s abilities and the gameplay challenges. MX
affects PX through playability. It determines playability through mechanical achievability
(whether the gameplay is possible for the player to beat), and mechanical difficulty (how
the gameplay’s design affects the mechanical achievability). To model MX we need to model
mechanical achievability and mechanical difficulty for different gameplay challenges.

We address RQ1 by finding the mechanical achievability for challenges. For each gameplay
challenge we create a competency profile (set of cognitive and motor abilities that char-
acterize a task [2]). Competency profiles let us compare the challenge’s ability requirements
to the player’s abilities to determine if the game is possible to beat.

We explore RQ2 through the mechanical difficulty of a challenge and its relationship to
mechanical achievability. We consider a challenge’s main source of mechanical difficulty to
be the ability with the highest proficiency requirement (i.e. its limiting ability). We adjust
the load on the main source of mechanical difficulty by tweaking its associated game element,
allowing us to test overload.

While we cannot perfectly address RQ3, we present a working representation of MX in
the form of a jutsu (expanded from 441). A jutsu visualizes the MX of a particular challenge
for a particular player profile. Jutsus can be incredibly powerful tools for designers to help...

� tailor game experiences,
� explore the effect of changes in a game’s mechanical experience,
� create new kinds of challenges,
� and explore other avenues we have yet to see.

Overview of Scoping Decisions

We need to scope this work in a way that allows us to explore the most apparent elements of
MX and highlights the potential merits of this idea. As we do not have specific existing work
on MX for various gameplay challenges, we need to further refine the scope of our problem.

We believe the study of MX needs to start at constructing and validating preliminary
competency profiles for challenges. To this end we would need to both create a hypothetical
competency profile, and have some way to test that the relationship between its abilities and
challenge success. We anticipate this could be difficult as challenges require many interacting
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abilities which are themselves affected by potentially many design decisions. Therefore it
seems prudent to scope our efforts to a challenge (or potentially set of challenges) that has a
small set of required abilities, few gameplay mechanics (ergo design decisions) and an easily
observable/apparent limiting ability that connects to those mechanics.

Scoping to button mashing challenges. For simplicity of generating competency pro-
files that can be easily validated we scope our work to studying button mashing challenges.
These are mechanically simple, motor-focused gameplay challenges that have a clear limiting
ability. We elaborate on this decision in Ch. 13.3.

1.2.1 Specific Problem

To summarize, we aim to conduct a preliminary exploration of the mechanical
experience idea by exploring the mechanical achievability and mechanical diffi-
culty of button mashing challenges as it relates to their limiting ability. We do
this by constructing competency profiles for each button mashing challenge, and comparing
them to a player profile in a jutsu. Our specific problem is creating and validating
competency profiles for button mashing challenges. To accomplish this, we will:

� construct a list of human cognitive and motor abilities (Part II),
� design and validate a game-based player profiling tool (Ch. 11),
� define a set of atomic button mashing challenges (Part III),
� validate our preliminary competency profiles for our button mashing challenges (Ch.

16),
� explore overload’s effects on our button mashing challenge competency profiles (Chapter

17), and
� construct jutsus for our button mashing challenges which reflect how changes to the

challenge design affect the ability requirements of the gameplay, particularly around
the limiting ability (Part IV),

1.3 Guide to the Thesis

1.3.1 Thesis Structure

We break down this thesis into parts which focus on building towards answering our research
questions and solving our problem statement. Each part is self-contained with its own lit-
erature review relevant to its topic, and conclusion which summarizes the part’s important
points and deliverables.

Part I explores game-related experiences, including PX. It culminates in the requirements
and design decisions behind our various models, and serves as guiding direction to the rest
of the thesis. Part II presents the construction, and validation of the Player Model. Part
III expands the Challenge Model and empirically validates the competency profiles. We also
explore the effects of ability loading on competency profiles and perceived experience in this
part. We end our thesis with Part IV, which puts together the Player and Challenge models
into a clear representation of MX for our challenges (i.e. jutsus).
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1.3.2 Novelty

While we presented the basics of jutsus in Soraine and Carette [441], we improve on the idea
through expansion and validation.

Expansion. We improve the existing player model by adding more detail to the cognitive
abilities. This makes jutsu more robust as they can interpret more complex challenges with
the inclusion of cognitive abilities. We use the expanded player model to revise the original
challenge models. We perform close readings of their gameplay to identify underlying chal-
lenges and their approximate competency profiles. This lays the groundwork for exploring
more complex challenges that are the combination of many small challenges.

Validation. We create player profiles from empirical data, and experimentally validate
the challenge competency profiles. These experiments make the jutsu comparing player and
challenge profiles more reliable as it is based on quantifiable data. We also empirically explore
the effects of changing the loading of abilities in the competency profile to get a complete
picture of the relationship between player and game.

1.3.3 Contributions

In the process of answering these questions, we create many artifacts that summarize our
understanding of different concepts and methods. As well, we produce results from our two
main studies that aim to add concrete evidence for our ideas. We separate our contributions
into conceptual, methodological, and experimental.

Conceptual contributions: These are the theoretical frameworks, and concepts that we
created for the thesis. These contributions are the result of synthesizing existing literature
or other information throughout the work. As such, while they are novel creations of our
thesis, they may not be fully explored or validated due to scoping limitations in our work.

� the presentation of the Experiential Tetrad (i.e. ExperT, Fig 3.1),
� a definition for mechanical experience (Def 3.1),
� the definition of player profiles (Def 3.2),
� the definition of challenge competency profiles (Def 3.3),
� the definition of mechanical achievability (Def 3.4),
� a model of human motor (Ch. 7) and cognitive (Ch. 8) abilities for player and compe-

tency profiles, and
� a proposed outline for a Jutsu Framework (Ch. 21.3.4).

Methodology Contributions: These are the methods we create over the thesis to produce
hypothetical and real player profiles and competency profiles. Included in these methods are
ways to visualize and interpret the profiles. These contributions are closely tied to the
experimental contributions that test the methods and validate the profiles.

� a visualization method for player profiles (Ch. 12),
� a method for finding challenge competency profiles (Ch. 13.2),
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� a visualization method for challenge descriptions and competency profiles (Ch. 19),
� a visualization method for mechanical experience resulting in the creation of three

jutsus (Ch. 20).

Experimental Contributions: These are the two major studies we conduct for our the-
sis. They are exploratory in nature, and produce preliminary evidence for our conceptual
contributions. Through these studies we aim to validate our methodology contributions and
chip away at answering our research questions.

� an empirical validation of a measurement battery for player abilities (Ch. 11),
� a study addressing our research questions, sub-divided into three specific studies:

– an empirical validation of three button mashing competency profiles (Ch. 16),
– a study on the effects of overload/underload of the limiting ability on mechanical

achievability (Ch. 17), and
– a mixed-methods study on player experience of challenges at different difficul-

ties/limiting ability loads (Ch. 18).

1.3.4 Speculating on Potential Impacts of Contributions

We believe the concepts of MX, competency profiles, and jutsus are broadly useful to games
user research (GUR) and games studies (GS), with potential effects in gamification and
other areas of game-related studies. Individually each specific contribution creates a base
from which future research can expand. ExperT’s separation of experiences sets up future
work to explore what challenges and achievability look like for different ExpTypes. Our
profiling tool adds to GUR’s growing body of work on stealth assessments, and opens up
work for integrating player modeling with dynamic difficulty methods. The button mashing
challenge models and jutsu are a starting point for further investigations into the rela-
tionship between individual mechanics and game difficulty, as well as for assessing the effect
of different controllers on experience. The whole thesis also serves as a methodology for
conducting this kind of broad modeling work.

We take a minute to highlight the two contributions we think are most important from
the thesis: ExperT and the Jutsu-modeling approach. The following are our speculations
about the impact these contributions could have on the larger domain.

ExperT: A Theoretical Framework. ExperT highlights boundaries for and connections
between ExpTypes. Adopting ExperT as a theoretical framework would make it easier for
experience-focused research to be clear about their context and limitations. It would also
allow easier integration or comparison of experience-focused research between GS and GUR.

Jutsu-modeling Approach. Under ExperT, our work acts as an outline for modeling an
individual experience in a measurable way. Exploring other ExpTypes could take a similar
approach of defining a Player and Challenge model, with the main focus being on defining the
appropriate set of skills needed to interact with that ExpType. For example, an emotional
experience (EE) derived from characters and narrative may require skills like recognizing
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emotions in characters, or understanding story structures. With a set of skills player’s need
to engage with the experience, modeling then takes the same approach as our work.
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Part I
Game-Related Experiences

Here we explore existing work on game-related experiences to flesh out our understand-
ing of mechanical experiences. We start by reviewing work on player experience, focusing
on holistic models, constructs, and measurement tools (Ch. 2). From there we explain the
Experiential Tetrad, our theoretical framework of experience types and their relationships,
and mechanical experience (Ch. 3). We also explain how the Experiential Tetrad inte-
grates existing experience-related work from different domains, and expands into non-player
experiences. We synthesize the literature and our ideas of the Experiential Tetrad into re-
quirements and design decisions for modeling mechanical experience, and formal definitions
for key components of our model (Ch. 4).



Chapter 2

Player Experience

To understand mechanical experience (MX), we need to first look at player experience (PX).
PX does not have a singular definition [51, 319], but it is generally understood to be a

multi-dimensional [4, 200, 204, 403, 415], context-dependent [319] phenomena. PX colloqui-
ally describes everything from a game’s intrinsic qualities like accessibility and difficulty, to
extrinsic qualities, like an individual’s opinion of the game. PX is a competing term against
game experience, gaming experience, and user experience, which focus on different parts of
the experiential system (i.e. player-game relationship) [51]. We incorporate all of these terms
into our search for existing PX work, and consider them equally integral parts of the tapestry
for understanding game-related experiences.

We use this chapter to summarize our literature review into PX and game-related expe-
riences. This is non-comprehensive, as we look to present a sample of works that illustrate
concepts in PX. We group our curated examples into high-level frameworks, PX constructs,
and PX measurement tools. We do not expect existing work to discuss PX through experien-
tial types (ExpTypes), let alone specifically through MX as the relationship between human
abilities and gameplay challenges. However, we aim to use this survey as a guide post for
our conceptualization of PX. We distill from this search design considerations that our own
theoretical framework should incorporate.

2.1 Models and Frameworks

Game design is generally understood and taught as the creation of “good” experiences [51,
107]. In response, many frameworks exist to guide designers through game design and analysis
in hopes of crafting “good” PX [358]. At this point we focus on frameworks that describe the
relationship between player and game, ignoring for the moment those that focus exclusively
on the player (e.g. Bartle’s Types [30], Yee’s Motivations [534])1. We organize our coverage
into game-focused frameworks which model the game as components the player interacts
with, and experience-focused frameworks which try to explore some of the phenomenological
elements.

1See the Player Profiling (Ch. 6)
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2.1.1 Game-Focused

Figure 2.1: Mechanics, Dynamics, Aesthetics Framework as presented in [200].

The Mechanics, Dynamics, Aesthetics (MDA) Framework [200] (Fig. 2.1) de-
scribes games as a medium of communication between designer and player. The game exists
at three layers: mechanics (“the components of the game at the level of data representations
and algorithms”), dynamics (“the run-time behaviour of mechanics acting on player inputs
and each other’s outputs over time”), and aesthetics (“the desirable emotional responses
evoked in the player”). The layers are organized to represent the actor’s control over the
system; designers have most control over the mechanics, while players have control over the
aesthetics (i.e. PX). As noted by many (e.g. 113, 114, 512, 525), MDA has a host of issues,
like:

� the meaning of the layers are unclear;
� game mechanics are overly emphasized compared to other design elements;
� designers are shown to have little-to-no control over the PX;
� it focuses on games for entertainment, and is not applicable to serious games or gamified

experiences.

There have been many attempts to address these problems through extended or new frame-
works (e.g. 113, 114, 512, 525). For example, the Design, Dynamics, Experience (DDE)
framework [512] attempts to address all the above issues through reframing and expanding
each layer. Notably, DDE integrates the player’s personal context into the experience process
through the player-subject (a mental persona that the player inhabits when engaging with
the game [434]). However, revisions and expansions of MDA have not received much traction
in the game design or research community.

Schell’s Elemental Tetrad [415] (Fig 2.2) models games as four basic elements: mechan-
ics (“the procedures and rules of the game”), story (“sequence of events that unfold in the
game”), aesthetics (“how the game looks, sounds, smells, tastes, and feels”), and technology
(“any materials and interactions that make your game possible”). These elements are meant
to be equally important to the game experience, with connections between them showing
how they must support each other. They are visually organized by how aware the player is
of each aspect during play (i.e. their visibility). The Elemental Tetrad considers games as a
medium for experiences, but is not clear on how its components come together to create an
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Figure 2.2: Elemental Tetrad as presented in [415].

experience. As a descriptive framework it also suffers from lack of clarity about what bound-
aries exist between the components, and lack of generalizability to non-traditional games,
such as those that tell story through emergent narratives or procedural mechanics.

Figure 2.3: MTDA+N as presented in [386].

The MTDA+N2 framework [386] address these concerns by combining the mechanics,
dynamics, aesthetics of MDA, with the technology and story (renamed narrative) from El-
emental Tetrad (Fig 2.3). It outlines three different types of game narratives: embedded
(the plot), emergent (perceived personal story created from player interactions), and inter-
preted (the player’s representation of the embedded and emergent narratives). MTDA+N
organizes itself based on which actor (player or game) controls the component; therefore the
game controls the mechanics, technology and embedded narratives while the player controls
the aesthetics and interpreted narratives. While it attempts to be more specific, MTDA+N
inherits the specificity and scope problems of MDA and the Elemental Tetrad.

Gibson’s Layered Tetrad [157] describes PX as the Elemental Tetrad interpreted through
inscribed (game on its own), dynamic (game during play), and cultural (game in relation to

2Mechanics, Technology, Dynamics, Aesthetics plus Narrative.
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Figure 2.4: Layered Tetrad as presented in [157].

community) layers (Fig 2.4). The meaning of game components changes across the layers.
For example mechanics are the rules of the game at the inscribed layer, the “procedures,
strategies, emergent game behaviour and eventually the outcome of the game” at the dy-
namic layer, and elements like game modding and the impact that the emergent dynamic
gameplay had on larger society at the cultural layer. The changing meaning across layers
makes this framework more generalizable, but boundaries between components and their in-
dividual meanings can still be unclear. For example, in the dynamic layer aesthetics covers
everything from “procedural art to the physical strain that can result from having to mash
a button repeatedly”, which makes it hard to separate from both technology and mechanics.

2.1.2 Experience Focused

Nacke, Drachen, and Göbel [319] propose that PX exists as three related gameplay expe-
riences: the game system experience, the individual PX, and a framed context experience.
Nacke and Drachen [315] further this understanding by synthesizing empirical and theoretical
work into a PX framework (Fig. 2.5). The PX framework shows how these experiences ex-
ist at different levels of abstraction (game system as concrete, and framed context as abstract)
and are impacted by time. The purpose of this framework was to help situate existing and
future work so there could be more awareness around boundaries and proper methodologies.

2.1.3 Summarizing Frameworks

The frameworks are predominantly descriptive, biased towards particular styles or types of
games (hence not generalizable), unclear in the definitions and scopes of their components,
and often do not situate the experience in a specific context (except for Layered Tetrad, and
PX Framework). While they do not capture everything we want in a framework we do think
they provide valuable insight into the multi-dimensional nature of PX, the ways that PX
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Figure 2.5: Player experience framework and levels of abstraction as presented in [315]

cannot be separated from the game elements.

2.2 Constructs of the Player Experience

Constructs scope PX down to specific universal and measurable experiences. While significant
work has been done defining and measuring constructs, there is no consensus on which are
inherent to PX. Borges et al. [51] found 70 different constructs studied by researchers, of which
only 22 appeared more than once and in those there was significant overlap in their definition
and scope. In this review we discuss fun, flow, immersion, presence, and engagement as they
are frequently studied constructs.

2.2.1 Fun

Malone [274] and Malone [275] views fun as intrinsic motivation inspired by challenge,
fantasy, and curiosity. Challenge is created through providing goals with uncertain outcomes;
it engages the player’s self esteem. Fantasy is a sensory element which engages the player’s
emotional needs. Curiosity is divided into two types: sensory and cognitive. Both serve
as vehicles for continued engagement. Malone’s view of fun is limited in scope to single
player games, and by its context in motivation for children’s education. While Malone [275]
describes what games should have, they do not explain how to create the right conditions,
or to measure fun (except for challenge).

LeBlanc [261] outline a taxonomy of fun3:

1. sensory,
2. fantasy,
3. narrative,

3This was also presented in their MDA paper [200]
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4. challenge,
5. fellowship,
6. discovery,
7. expression, and
8. submission.

These experiential categories are broad, and treated as self explanatory, but there are ques-
tions of boundaries (e.g. “what’s the distinction between Fantasy and Narrative?” [405]) and
interactions between categories (e.g. “doesn’t self discovery occur in a challenge?” [405]).

Lazzaro [257] describes four “fun keys” (i.e. desired play styles) based on player’s facial
expressions when interacting with game mechanics:

1. easy fun (“inspiring imagination, exploration, and role play”),
2. hard fun (“challenge and mastery”),
3. serious fun (“changing a player’s internal state or doing real work”), and
4. people fun (“social interaction”).

Lazzaro highlights how different mechanics can be used to guide players towards these dif-
ferent play styles/experiences (Fig. 2.6). Players regulate their overall experience by cycling
through the different play styles.

Figure 2.6: Fun Play Styles as presented in [257].

Summary. Fun is highly coupled with discussions about “good” PX in the larger gaming
culture (e.g 84) leading to ample ontological work to study it. Still it is poorly defined, and
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difficult to measure or create. Outside of issues with measurement fun as a concept is too
linked to positive experiences, and so limits the type of experiences that can be explored (e.g.
7, 200).

2.2.2 Flow and GameFlow

Flow [103] is an emotional state of total absorption into an autotelic task (i.e. a task that
was intrinsically motivating and offered few to no conventional rewards). Flow requires nine
specific conditions be met:

� There are clear goals every step of the way,
� There is immediate feedback to one’s actions,
� There is a balance between challenges and skill,
� Action and awareness are merged,
� Distractions are excluded from consciousness,
� There is no worry of failure,
� Self-consciousness disappears,
� The sense of time becomes distorted,
� The activity becomes autotelic.

However, the common takeaway is that Flow is achieved in games when a player’s skill
matches the level of difficulty in a task (see Fig. 2.7). This focus on challenge-based ex-
periences means it is not well suited to other types of PX and non-challenge-based games.

Figure 2.7: Flow state as a relationship between player abilities and difficulty as described
by Csikszentmihalyi [103], picture reproduced from [7].
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GameFlow [457] adapts Flow to games, defining an enjoyable game as requiring con-
centration, challenge, player skills, control, clear goals, feedback, immersion and social in-
teraction. However, these elements are highly genre dependent; for example, feeling a sense
of control and impact on the game world is something more relevant in role playing games
than strategy games. Sweetser et al. [458] argues all genres would improve by meeting these
GameFlow criteria. But, their argument is based on comparing GameFlow and Metacritic
scores for first-person shooter and adventure games. These genres are biased towards the cri-
teria (albeit in different ways), and the choice of comparing expert reviews to general player
reviews is questionable. Expert reviews tend to be more balanced and favourable as opposed
to player reviews (which are more polarized); experts consider game meta-properties and fo-
cus on descriptions of game elements over gameplay experiences [409]. Outside of genre-bias,
GameFlow relies on poorly defined sub-dimensions like immersion, whose criteria is a list of
qualities of Flow (altered senses of time, merging of actions and awareness, and less awareness
of “distractions”/their surroundings) and overlaps with other dimensions like concentration.
While this is somewhat addressed in Sweetser, Johnson, and Wyeth [459] it does not resolve
all the underlying problems.

Summary. Flow has been applied to games many times (e.g. 87, 316) because it aligns
closely with challenge-based PX and provides seemingly actionable design guidelines. How-
ever it is limited in the types of games it can apply to, and the types of experiences it can
describe. Despite this, it continues to be a commonly discussed construct and is incorporated
into many others.

2.2.3 Immersion

Adams [7] explores tactical, strategic, and narrative immersion. Tactical immersion (aka
“Tetris Trance”) describes “being in the groove”; it is basically Flow, where the player is
mechanically focused and their skills align with the challenge. Strategic immersion describes
cognitive involvement in the game via total concentration in planning, observing, and cal-
culating moves. Narrative immersion is engagement with the story, world, and characters.
This is a non-comprehensive, descriptive model that highlights a mechanical/challenge-based
skew to immersion.

Brown and Cairns [67] propose immersion is a process of moving from engagement,
to engrossment, and finally total immersion. Engagement is tightly coupled with accessi-
bility and gamer investment; barriers to engagement include gamer preferences, control and
feedback accessibility, and the time they put into the game. Engrossment is when the game
begins to directly influence the player’s emotions; they describe this as being less aware of
their surroundings and becoming absorbed in the visuals, plot and gameplay (like Flow).
Total immersion describes feeling Presence in the game; its barriers are empathy and atmo-
sphere. Generally this model overlaps in areas with the concept of Flow. The distinction
between each phase is fuzzy, and their examples are very sensory focused – both of which
make it difficult to figure out applying to game design.

Jennett et al. [212] model immersion with three player factors (cognitive involvement,
real world dissociation, and emotional involvement) and two gameplay factors (challenge,
control). While their findings on this work were not significant, they believe the factors
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support Brown and Cairns [67] view of emotional involvement (i.e. engrossment) as important
to immersion.

Ermi and Mäyrä [127] present three types of immersion: Sensory (i.e. audio-visual),
Challenge-based (i.e. player skills vs. gameplay), and Imaginative (i.e. narrative, world,
characters) (SCI). They propose immersion is one part of a game experience, created from
the system-level interaction between game and player, situated in social context (Fig. 2.8).
While the elements that contribute to these immersions seem more distinct, it is unclear how
much they affect each other and overlap.

Figure 2.8: Sensory-Challenge-Imaginative model as presented in [127].

Summary. Colloquially immersion is understood as “good” PX. Players and designers alike
intuitively know when they are in it, but have a hard time consistently reconstructing its
characteristics. Immersion’s scope overlaps with other constructs like Flow and Presence,
and so biases towards challenge-based and sensory-based experiences.

2.2.4 Presence

Tamborini and Skalski [463] explore three types of presence: spatial, social, and self.
Spatial presence is the sensory experience of physically inhabiting the virtual space, made
possible through immersion, and involvement [462]. Spatial presence is affected by the game’s
interactivity (the ability to influence the form and content of the virtual environment) and
vividness (the ability to produce a rich sensory environment). Social presence is the emotional
experience from perceiving virtual actors (e.g. NPCs) as social actors (i.e. real people). Social
presence has three dimensions [44]:

� copresence (awareness of spatial presence of another, sometimes including mutual aware-
ness),
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� psychological involvement (a sense of intelligence in the other agents), and
� behavioural engagement (participation in social behaviours).

Self-presence is when the player experiences their virtual avatar as if it were themselves. The
types of presence overlap, leading some to think that self-presence is just a part of spatial
presence (e.g. 205, 527). It is also unclear how specific game elements affect the different
types of presence. Intuitively avatar control and better representation should greatly impact
self-presence, but a recent meta-analysis found avatar customization/selection only resulted
in small impacts on presence, and no significant impact on self-presence [83].

Summary. Presence is about feeling “in the game”. Like Immersion, players feel pres-
ence but cannot conceptually separate or articulate it from other constructs. Internally its
dimensions overlap significantly, and its relationship to specific design choices is unclear.

2.2.5 Engagement

O’Brien and Toms [354] characterise engagement as nine attributes (challenge, aesthetic
and sensory appeal, feedback, novelty, interactivity, perceived control and time, awareness,
motivation, interest, and affect) that ebb and flow in intensity during play4. O’Brien and
Toms [353] refines this into six factors (focused attention, perceived usability, endurabil-
ity, novelty, aesthetics, and felt involvement) which were not fully supported in exploratory
factor analysis (endurability, novelty and felt involvement merged into a larger satisfaction
construct) [519].

Summary. Engagement describes investment into a game; players need to be engaged in
order to access flow, and immersion (though it can co-occur with presence) [56]. Engagement
research is split between viewing it as an experiential construct or a motivation for play, with
more work falling on the motivation side [56]. Therefore work addressing engagement as a
construct is less theory-based, and more measurement focused (e.g. 66, 403, 519) so will be
covered in the next section.

2.2.6 Summarizing Constructs

Constructs are great at speaking to common gameplay experiences, but struggle to be pre-
cise in scope, definitions, and relationship to game designs. They frequently overlap along
challenge-based biases (i.e. Flow, challenge-based Immersions) or sensory-biases (i.e. Pres-
ence, sensory-based Immersions). Constructs also prioritize positive, optimal experiences;
contemporary research is starting to push back on this focus by highlighting ordinary PX
[485], and how negative experiences like frustration, anxiety, and tension enhance PX [212,
236, 467]. Overall, constructs provide insight into representing common experiences without
overrepresenting positive or optimal PX, and the importance of clear scopes, connections to
design elements, and explanations on how dimensions interact.

4They used the threads of experience framework [287] to map the attributes to a particular stage of
experience
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2.3 Measurement Tools

Measurement tools capture the holistic PX during or right after a play session. These tools
may have their own PX models, implement a set of constructs, or apply theories from other
domains to games. These tools inherit issues of overlapping scopes and assumptions from
their theoretical roots, causing many to converge [109]. We review the Core Elements of the
Gaming Experience (CEGE), the Video Game Demand Scale (VGDS), Game Experience
Questionnaire (GEQ), Game Engagement Questionnaire (GEngQ), the Challenge Originat-
ing from Recent Gameplay Interactions (CORGIS), Player Experience Needs Satisfaction
(PENS), the Player Experience Inventory (PXI), and Ubisoft Perceived Experience Ques-
tionnaire (UPEQ). We organize this section based on the theoretical background of the
tools.

2.3.1 Independent Models

Figure 2.9: Core Elements of the Gaming Experience [74].

CEGE [74] has two “core elements”: the video game and puppetry (the interaction be-
tween the game and the player). The video game is made up of the gameplay (rules and
scenarios) and the environment (graphics and sound). Puppetry is made of control (goals,
basic controls, controllers, memory, something-to-do, and point-of-view), ownership (big ac-
tions , you-but-not-you actions, personal goals, and rewards), and facilitators (time, aesthetic
values, and previous experiences with similar games). Control represents the in-game actions
and events; ownership reflects the player agency; facilitators make it easier for players to
feel control and ownership in a game. The observable elements (square boxes Fig. 2.9) are
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measured via questionnaire, and their combination defines the latent (unobservable) proper-
ties. CEGE proposes the presence of these elements allow (but does not guarantee) positive
PX; while their absence ensures a negative PX. They derive these attributes from coding
game reviews, and interviewing five individuals (one game designer, two game reviewers, and
two players). There is inherent bias in basing most ideas off reviews considering they are
primarily a sales tool reflecting expert opinions (as previously stated).

VGDS [55] is a 26-item scale measuring the cognitive, emotional, social, and physical re-
quirements exerted by the game on the player. Cognitive demand is the engagement of mental
(predominantly attentional) faculties by the game. Emotional demand focuses on player-
centred (e.g. emotional investment, emotional responses) and context-centred emotions, pre-
dominantly via game narrative. Social demand measures game-induced and player-initiated
sociality that could be applied to both NPCs or other players.Physical demand reflects effort
put into the game as either controller demand or exertion. VGDS seems to measure player
perceptions of gameplay as opposed to their actual abilities related to gameplay [140], which
reflects how it was validated via player recall of a favoured game experience.

2.3.2 Implements Constructs

GEQ [378] is three widely used, but unvalidated [217, 255], modules:

Core GEQ: measures sensory and imaginative immersion, tension, competence, flow, neg-
ative and positive affect, and challenge while gaming;

Post-game (PGQ): measures experience (unknown factors) right after the gaming session;
and,

Social presence (SPGQ): measures empathy, negative feelings, and behavioural involve-
ment with co-players.

The method for generating questions seems open to inherent bias from the focus group,
which could affect GEQ’s ability to capture nuanced differences in PX for different games.
Consider two players looking for a relaxing experience after a busy day. One chooses to play
League of Legends [395], the other plays Animal Crossing [342] — games with very different
core gameplay loops, and intended experiences. Both end up reporting the same relaxing
experience about the game in their responses to the questionnaire (since questions involved
are high level such as “I enjoyed it” and “I felt successful”). Therefore, differences in player
preferences and gameplay design get subsumed in the larger subjective feeling, making it
difficult to trace back why the PX was good or bad.

GEngQ [66] is a 19-item questionnaire which measures a player’s potential for becoming
engaged during gameplay. GEngQ views engagement as distinct levels, specifically: immer-
sion, presence, flow, and psychological absorption. We cannnot find external support to view
these constructs as linear levels of engagement, and are unclear why the levels are ordered
this way. GEngQ builds on existing measures for immersion, presence, flow, absorption and
dissociation by refining the items via two focus groups (one with children and one with
adults). It is unclear how GEngQ differentiates between Presence items like “things seem to
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happen automatically” and Flow items like “playing seems automatic”. GEngQ also highly
correlates with the Immersive Experience Questionnaire (IEQ), which could indicate they
are actually measuring the same construct [109].

CORGIS [110] measures perceived challenge (effectively the PX of player-game interac-
tions at a particular skill level) through a 30-item questionnaire. They identify four chal-
lenges: physical (e.g. speed, reaction time, endurance, accuracy), cognitive (e.g. memory,
problem solving, reasoning), decision-making (e.g. making potentially regrettable decisions),
emotional (e.g. emotional connection, narrative tension). Through comparison study with
VGDS, CORGIS is implied to capture player opinions about their abilities in the game [140].
As a newer tool, there has not been significant work done to further validate or expand
CORGIS.

2.3.3 Theory-based

PENS [403] explores PX through self-determination theory (SDT) using four subscales:
in-game competence, in-game autonomy, relatedness, presence, intuitive controls. Compe-
tence focuses on perception of challenge and difficulty. Autonomy is the perception of op-
portunities in the game. Relatedness is how the player feels about their interactions with
other players. Presence covers physical, emotional and narrative immersion. Intuitive con-
trols measures the experience with the interface. While widely used, we are unsure whether
PENS constructs actually measure PX [486], if its factor model is valid [109, 217] or if its
underlying theory is suitable for all types of experiences [109, 377].

PXI [4] implements Means-End Theory5 to measure PX as functional and psychosocial
consequences through a 30-item questionnaire. Functional consequences are the “immediate,
tangible consequences experienced as a direct result of game design choices”. Psychosocial
consequences are “the emotional experiences, as a second order response to the game design
choices.” These consequences are measured by attributes (summarized Table 2.1).

Functional Psychosocial
ease of control mastery
progress feedback curiosity
audiovisual appeal immersion
goals and rules autonomy
challenge meaning

Table 2.1: Attributes for Functional and Psychosocial Consequences

UPEQ [20] is an industry-driven, game-focused survey, measuring Autonomy, Comep-
tence, and Relatedness from SDT. UPEQ focuses on these constructs because of their focus
on positive PX. Like PENS, UPEQ inherits the basic criticisms of SDT as applied to games.
UPEQ’s factor model was not supported in independent study using non-Ubisoft games [228].

5The idea that user product preferences are a function of whether the product attributes (means) are
likely to produce results (consequences) that align with their values (ends).
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2.3.4 Summarizing Measurement Tools

Measurement tools are highly specific, quantitative understandings of PX, which makes them
attractive to research and industry. However, they are limited by their underlying theories
(e.g. construct overlap, specific genre biases, emphasis on optimal and positive PX). As well,
a tool’s effectiveness is highly dependent on the context (temporal and experiential) in which
it is administered. Most of the tools covered are proposed as being for directly after a gaming
session. However, the validation studies frequently ask participants to recall a recent gaming
experience, or often a memorable one (often interpreted as positive, good, or “favourite”).
Reviewing these measurement tools highlights the importance of situating the experience,
as well as the inherent desire and usefulness for measurable and actionable understandings
of PX. We also particularly note VGDS and CORGIS as approaching our understanding of
MX.

2.4 Lessons from Player Experience

Reviewing this literature gave us insight into our theory-crafting, and what kind of informa-
tion we should scope into our problem or stay away from. We summarize these insights into
design goals for any theoretical framework of PX we make:

G1: must reflect the multi-dimensional nature of experience;
G2: must clearly define the dimensions and their respective scopes;
G3: dimensions should clearly relate to game elements and user interpretations;
G4: must reflect the interconnected nature of experience;
G5: should try to make it clear how the dimensions interact;
G6: must capture the various contexts of experience;
G7: should allow an unbiased description of various experiences (e.g. positive and negative,

optimal and normal);
G8: should provide a way to make apparent the position of the experience (e.g. player,

spectator);

So while we do not use these works, their ideas inform our understanding of game-related
experiences and MX, as we venture into creating our own theory in Ch. 3.
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Take home points

From this chapter we learned the following meta-lessons:

� PX is many different connected types of experience, situated in specific context.

� Constructs are good at describing common experiences, but have difficulty clearly
modeling them so we can systematically implement in games.

� PX measurement tools inherit the scoping and definition problems from under-
lying theory.

� A unifying PX framework that provides measurable and actionable information
is desirable.
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Chapter 3

Mechanical Experience of ExperT

We synthesize our understanding of player experiences (PX) and game-related experiences
(GX) into a single theoretical framework, the Experiential Tetrad (ExperT, Fig. 3.1).
ExperT outlines four base experiential types (ExpTypes): mechanical, emotional, aesthetic,
and socio-cultural. These temporally situated types interact with and influence each other
to create a holistic GX. We present two analytical lenses with ExperT, the player (pink) and
spectator (green), which represent different types of relationships a person may have with a
game and how those contextualize their GX. We use ExperT to frame our understanding of
mechanical experience (MX), and elaborate on its components, mechanical achievability and
mechanical difficulty.

Figure 3.1: The Experiential Tetrad (ExperT). A framework of experience types, their rela-
tion, scopes and analysis lenses. Mechanical, Emotional, Aesthetic, and Socio-Cultural.

We start with explaining ExperT, its construction, ExpTypes, and analytical lenses. We
present two examples that highlight use cases for ExperT. We then scope our work to focus
on MX in the player lens and define its essential components. We also outline existing work
that alludes to MX components. We end with a short summary and statement about next
steps.
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3.1 The ExperT Review

Our goal for ExperT is to integrate existing GX and PX concepts under a unified framework
that allows for at minimum:

� clear delineation between types of experiences grounded in the game-human relation-
ship,

� modeling of experiences and their interaction at different levels of abstraction, and
� equitable treatment of experiences (i.e. not favouring positive or optimal).

We draw inspiration for our process and presentation of ExperT from other conceptual frame-
works like Aarseth and Grabarczyk’s meta-ontology of games [3], Schell’s Elemental Tetrad
[415], and Wright, McCarthy, and Meekison’s experiential framework [532].

3.1.1 ExperT Methods

We construct ExperT through a reflexive and iterative process of concurrent knowledge gath-
ering and synthesis. We recognize that the curation of literature and resulting framework are
reflections of our positionality as software engineering (SE) and human-computer interaction
(HCI) researchers. We compensate by expanding our search outside our typical domain.
However, certain understandings and design decisions for ExperT are inherently biased by
our academic situation.

Knowledge Gathering. We first conduct a (non-comprehensive) narrative review of PX
and GX work to understand how it shapes game design and game research (see Ch. 2).
We cast a wide net, starting with general game design textbooks (e.g. 7, 58, 147, 157,
415) and industry-focused resources (such as GameDeveloper.com1, and Game Developers
Conference talks2), to identify concepts that transcend academia like game design frameworks
(e.g. 200, 415), player typologies (e.g. 30, 534), experience taxonomies (e.g. 257, 261),
and constructs like immersion, flow, and fun. We then search the ACM Digital Library,
IEEE Xplore, and Google Scholar (for grey literature outside of technically-geared venues)
for player experience and game experience broadly, and then again for specific concepts
from the general resources. We focus on literature exploring or applying concepts, and use
citation searching to find related work to enrich our understanding. We draw connections
between concepts by comparing their goals, related game elements, similarities/differences,
underlying assumptions and limitations. We continue this search and analysis process until
our understanding of the work stabilized (i.e. new work did not change our underlying
conceptual model of the theory or significantly innovate in its measurement or impact).

Knowledge Synthesis. We use our stabilized understanding of these concepts and existing
work to derive design considerations for a unifying framework (see Ch. 2.4). We construct
the base ExpTypes by grouping seemingly overlapping concepts, refining and analysing them
as new information was found in our knowledge gathering. We summarize ExpTypes in Table
3.1 along with the related game elements and concept keywords.

1Formerly Gamasutra
2via YouTube and the GDC Vault

25



PhD. Thesis – S. Soraine McMaster University – Software Engineering (HCI)

ExpType Resulting from... Related Concepts (Keywords)
Mechanical Gameplay (e.g. mechanics,

controls)
Mechanics, challenge, tactics, strategy,
difficulty, hard, flow, control, competence,
usability, and interactivity

Aesthetic Art Direction (e.g. audio-
visual elements in game,
concept arts)

(Visual) Aesthetics, sensual/sensory, pres-
ence (spatial), environment, immersion
(sensory), and audio-visual

Emotional Dramatic Elements (e.g.
game characters, Narra-
tives, Lore)

Stories/narratives, fantasy, expression,
imaginative/imagination, fun, emotion,
characters, and involvement

Socio-
cultural

Game’s social and cultural
impacts (e.g. fan communi-
ties, reviews, advertising)

Society, community, contexts, frames,
lenses, social interaction, presence (so-
cial), previous experiences, empathy, re-
latedness, and meaning

Table 3.1: Overview of the aspects of game-related experiences.

3.1.2 Explaining Types

ExpTypes reflect their most salient game “element”3, making them intuitive and relatable,
like:

Mechanical: Praising Celeste’s [128] movement controls (i.e. mechanics) as being “tight”;
Aesthetic: Feeling creeped out by the “vibes” of a horror game;
Emotional: Crying at the implications of putting our character’s degree under the bed in

Unpacking [528];
Socio-Cultural: Posting a TikTok compilation of our favourite character pairing.

However, we want to be clear about the meanings and implications of choosing Aesthetic,
Emotional, and Socio-Cultural as type names since these terms can be overloaded. Here,
aesthetics refers to the sensory experience derived from game audio-visual elements4. Emo-
tional captures the empathetic and reflective relationship a person may have with the dra-
matic elements of the game at an individual level5. Socio-cultural (SCX) covers both the
social elements of individual interactions (e.g. participating in online forums, stream chats,
personal communications with other members of the game community) and the cultural ele-
ments of group actions and beliefs (e.g. gamer identities and politics).

3Game elements can be internal (e.g. mechanics, characters) or external (e.g. advertisements, fan com-
munities) to the game itself.

4Aesthetics has been used in games to mean sensory phenomena, shared elements of an art form, and
emotive-expressive acts [326]. Our focus on sensory phenomena sometimes overlaps with the meaning of
aesthetics as the collective set of patterns for a particular art form but only because audio-visual elements
and style are heavily coupled with this meaning (e.g. Cyberpunk aesthetic)

5In comparison to the ways mechanical and aesthetic experiences generate visceral emotions; a gut-
response to stimuli. Emotional and socio-cultural experiences generate reflexive emotions that require context,
knowledge, and reflection.

26



PhD. Thesis – S. Soraine McMaster University – Software Engineering (HCI)

A Quick Aside...

We make a single category from social and cultural experiences as they are so inter-
linked in the literature we reviewed. However, we recognize this is an oversimplification
of these experiences and foresee future iterations of this framework splitting these up.

Connecting ExpTypes. Complex experiences arise from the interactions between Exp-
Types (lines in Fig. 3.1). Consider the mechanical-socio-cultural experience of “deforesta-
tion” in Stardew Valley [93]. In the game, players need large amounts of wood, which they
can get by chopping down trees. Players often run out of trees on their farm and turn to
logging the nearby Cindersap Forest, which also quickly runs dry for wood-hungry players.
The players are procedurally enacting deforestation. The game does not mechanically punish
this behaviour as the forest’s trees repopulate at the start of every season (except winter).
There are also no social consequences as the villager’s friendships points are unaffected by
these actions (even the environmentalist, Leah!). The importance of wood almost implies
that the player is actually encouraged to play this way. And yet, we see players on Reddit
discuss the feelings of guilt they have over this logging and the ways they self-impose limits
or offset this guilt through restorative forestry6. Some community members even suggested
there should be an “anti-deforestation event” added to the game to impose mechanical con-
sequences. As players understand and discuss the procedural rhetorics [49] of harvesting
wood from the Cindersap Forest, their personal environmentalist values begin to affect how
they understand and engage with the mechanics of the game. The player’s SCX (discussing
environmentalism in the game) changes their MX (how they interact with the mechanics).

Organizing ExpTypes. ExpTypes are naturally organized along a timescale from during
play to out of play, indicating the dominant period for each experience. For example, MX
(like building a hoverbike in Legend of Zelda: Tears of the Kingdom [346]) happen during
play, and SCX (like posting a picture of your hoverbike on Reddit) happen out of play. The
time-context of ExpType interactions are based on where they fall on the connecting line.
Recall our example of the procedural rhetorics of Stardew’s deforestation. This interaction
is happening both during play and out-of-play, where the SCX influences future MX.

3.1.3 Lenses for ExperT

While we focus on PX, individuals can interact with games in multiple ways, including as
spectators. ExperT captures the unique perspectives of games from these contexts through
the player and spectator lenses. These lenses situate GX into a role-based context with clear
timescales and characterizing experiences, thus making it easier to understand the differences
between PX and spectator experiences (SX). We leave the player and spectator as black-box
systems that bring their own personal contexts to the experience.

6Links to Reddit posts are not provided in order to preserve poster privacy.
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(a) Player lens (b) Spectator lens

Figure 3.2: Analytical lenses for ExperT showing the ExpType which characterizes the lens
experience and its dominant timescale. The colour strength proxies the abstraction of the
lens experience based on distance from the characterizing experience.

Player lens (Fig. 3.2a) forms experience “during play”, and is characterized by the game’s
MX. As the characterizing experience, MX is a barrier to engaging with other ExpTypes.
Imagine a player who cannot master the mechanics of a Souls-like game and so quits at the
first boss. Their inability to play, means they cannot engage with the complex emotional
experiences of the game’s environmental and emergent storytelling. This may even lead
them to have a negative opinion of the whole game series, which they might voice online —
a negative SCX.

Spectator lens (Fig. 3.2b) forms experience “out of play” and is characterized by the
SCX due to the inherently parasocial and community building aspects of spectating [180].
While some SX are positive (e.g. the awe of watching a professional’s skills), others can be
negative (e.g. being bullied in Twitch chat). The SCX can be a barrier to further experiences.
Consider a young woman, new to gaming, who wants to develop her fan knowledge of eSports.
She starts to watch a top-rated streamer on Twitch, and musters up the courage to ask a
question about the game, only to be met with sexist jokes about how she should be back in the
kitchen. Feeling unwelcome she turns off the stream and will not engage again. This woman
is barred from engaging with the deeper emotional and aesthetic experiences of watching
this stream. This negative SCX characterises the rest of her interactions with the gaming
community.

3.2 Uses for ExperT

We work through two examples, to show how ExperT is useful for analysing and orienting
games-related work in ways that raise new questions and highlight gaps in research.

1. Comparing work on immersion: We visually compare models (Table 3.2) by placing
them on ExperT to see which ExpTypes they cover and interact with (Fig. 3.3). This
visualization highlights that immersion as a concept is heavily based on MX, and raises an
obvious question: are there socio-cultural elements of immersion?
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Paper Immersion Components

Adams [7]
Tactical Immersion
Strategic Immersion
Narrative Immersion

Brown
and Cairns
[67]

Engagement
Engrossment
Total Immersion

Jennett
et al. [212]

Cognitive involvement
Real world dissociation
Challenge
Emotional Involvement
Control

Ermi and
Mäyrä
[127]

Sensory-based Immersion
Challenge-based Immersion
Imaginative-based Immersion

Table 3.2: Comparing different immersion
models by their components via ExperT

Figure 3.3: Colour-coded citations repre-
sent a component from the associated im-
mersion model. Citations are placed on
the Experiential Tetrad to show coverage
of different experience types by immersion
models.

2. Connected ExpTypes We place a sample of work about the interactions of ExpTypes
(Table 3.3) on ExperT (Fig. 3.4). While it is not a comprehensive view of all games-related
research, a quick glance shows an apparent mechanical bias in this sample. The empty lines
of Fig. 3.4 beg to be filled by further research.

Figure 3.4: Placement of work on colour-
coded experience lines, with reference
numbers in matching colours.

ExpType Example of Work
Mechanical-
Socio-
cultural

Accessible Play Experiences [36]
Queer mechanics [276]
Procedural rhetorics [49]

Mechanical-
Aesthetic

Procedural game design [111]
Mechanic/Aesthetic Genres [225]

Mechanical-
Emotional

Affective gaming [396]
Narrative mechanics [104]
Emotional challenges [91, 108]
Aesthetic gameplay patterns [40]
Ludonarrative dissonance [121]
Difficulty as aesthetic [468]

Emotional-
Socio-
cultural

Beyond empathy [381]

Table 3.3: Examples of work along different
connections.

From two small examples, ExperT visualizes insights and raises several questions. We
see MX are over-emphasized in individual and connection work. We can hypothesize this
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is related to an implicit player-centric focus to the work, as the player-lens leans heavily
on MX. This leads us to ask how would existing work look through a spectator lens? We
see that work connecting ExpTypes focuses at most on two types. Finding work that looks
at intersections of multiple aspects is difficult, with our effort resulting in Murphy’s work
on using ludonarrative dissonance for political commentary [314], and Thon’s case studies
of the aesthetics of horror [471]. From the sample we wonder whether this inherent two
ExpTypes scope is because of the ongoing difficulty with describing, modeling, or measuring
these interactions in a systematic way.

Quantifying experience. ExperT unifies PX and GX work into a clear framework. This
sets us up for constructing specific measurable models for ExpTypes. As stated in Ch. 1, we
scope our thesis to explore MX from the player lens. Given what we see from our examples,
MX is more frequently studied and so we have more to draw from as we set out to explore
it. We continue this chapter explicitly defining MX and setting up the theory for our work.

3.3 Mechanical Experience from a Player Lens

We propose:

Definition 3.1. Mechanical experience is the relationship between a player’s
ability profile and a challenge’s competency profile .

Where:

Definition 3.2. Player ability profiles describe the player’s proficiency level for
each of the possible human cognitive and motor abilities.

and:

Definition 3.3. Challenge competency profilesa describe the ability proficiencies
needed to complete the challenge.

aFirst mentioned in Ch. 1.2 and inspired by A. Fleishman, K. Quaintance, and A. Broedling [2].

With this understanding, we can directly measure MX by comparing player profiles to
competency profiles (i.e. gameplay requirements) in a way that reflects the interactivity-as-
demand paradigm from the Video Game Demand Scale [55].

Our measure-focused model defines two important qualities of MX: mechanical achievabil-
ity (if the player can play the game) and mechanical difficulty (which game elements affect
mechanical achievability). Understanding these two concepts would allow us to provide ac-
tionable design recommendations for specific gameplay. We expand on these concepts in the
following sections.
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3.3.1 Mechanical Achievability

Consider Guitar Hero, a game series where players “play” songs by pressing fret buttons and
strumming in time with the music and visuals. Just getting through the song (not getting
a high score) requires motor dexterity in moving between the “notes” on the fret board,
coordination to strum and move between the notes at the same time, and a sense of rhythm
and timing to keep “on the beat” (see Fig. 3.5). For a player with arthritis or other motor
issues, the gameplay may not be mechanically achievable.

Figure 3.5: Video clip of Guitar Hero gameplay from Youtuber GuitarHeroPhenom. Video
shows player getting a 100% score on Expert mode. Click image to play.

Definition 3.4. Mechanical achievability describes the degree to which a player
can succeed at a game based on comparing their ability levels (ability profile) to the
challenge’s requirements (competency profile).

Gameplay is easily achievable (maybe even boring!) when the player’s abilities are greater
than the challenge requirements (e.g. Fig. 3.6b). Gameplay is difficult to achieve (or impos-
sible) when the player’s abilities are significantly lower than the challenge requirements (e.g.
Fig. 3.6a). This reflects Flow (e.g. 87, 103) with the idea of a Goldilocks-band ability-skill
matching which creates achievable gameplay and thus positive MX (e.g. Fig. 3.6c).

(a) Difficult gameplay (b) Easy gameplay (c) Balanced gameplay

Figure 3.6: Mechanical achievability concept visualized based on the Guitar Hero example,
with challenge requirements in blue and player abilities in orange. This is not real data.
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With our MX model, we can quantify mechanical achievability as the difference between
player abilities and challenge requirements. This allows us to find the soft error bars for
achieavability, which describe the space where players with low abilities may succeed at a
challenge through extra effort, practice, or luck.

Related work. Mechanical achievability is effectively a subset of playability (for definitions
see: 130, 317, 406, 461) focused on game design through difficulty and mechanics, and so
manifests in adaptive gaming and accessibility literature (e.g. 68, 543). We focus this quick
review on dynamic difficulty adjustment (DDA) — techniques which change the game systems
in response to player behaviour evaluated by some heuristic function/metric. As covered by
Zohaib and Nakanishi [543], DDA work has explored:

� probabilistic methods for optimizing when to adjust game difficulty like probabilistic
graphs (e.g. 533), statistical distributions/models like Gaussian distributions (e.g. 424)
or Markov models (e.g. 70);

� single or multi-layered perceptron neural networks to map design parameters (e.g. place-
ment of gaps to jump in a platformer) to emotional responses (e.g. feelings of challenge,
frustration, or fun) and then generate game levels (e.g. 367, 430);

� dynamic scripting (e.g. 445), where enemy behaviours (i.e. attacks and strategies) exist
as weighted rules in a script (where the weights determine how often the rule runs) and
the weights are updated after every encounter with the player;

� Game managers which monitors and adjusts in-game resources based on player perfor-
mance metrics and behaviours(e.g. the Hamlet System 199);

� reinforcement learning where adaptive AI is given a reward function to tune the game-
play based on desired outcome characteristics like even win-loss ratios (e.g. 464);

� upper confidence bound for trees (UCT) and artificial neural networks (ANN) where the
ANN is trained by data from the UCT simulation, with the longer simulations creating
more difficult opponents as the longer a UCT simulation runs the more “optimal” the
opponents moves are — ergo the more likely the AI is to win (e.g. 265);

� affective modeling using electroencephalography (EEG), where the system measures the
player’s emotional responses (e.g. excitement levels) through biometrics, and increases
difficulty or new game events when prolonged boredom is detected (e.g. 297, 449); and

� self-organizing systems wih ANN which treat game entities like NPCs as independent
agents (hence self organizing) that each use an ANN to create their unique behaviours
and strategies (e.g. 123, 356).

Commercial examples of DDA seem to implement game managers (e.g. Difficulty Scale in
Resident Evil 4 [76], The Director in Left 4 Dead [493], Hamlet System in Half-Life 2 [491]),
and simple dynamic scripting (e.g. rubber banding in Mario Kart [328]). Overall, DDA
focuses on adjusting perceived or assumed sources of difficulty based on designer knowledge.
Existing techniques do not address why players are failing, and is not clear whether players
then receive the same designed MX. DDA work is also plagued by community views that
adapted experiences are less valid (e.g. discussions in online forums like r/truegaming [500,
502], and in specific game forums if DDA is suspected [499, 503]). Our work aims to un-
derstand why players are failing, quantify their difficulty and accounted for it at a design
level.
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3.3.2 Mechanical Difficulty

Consider Guitar Hero again; difficulty levels are set by adjusting how many notes need to be
played, and how quickly they move across the screen. The implicit dexterity requirements
correlate to how fast the icons move along the virtual fretboard and the number of buttons
needed to be pressed. This illustrates how designers craft a challenge’s mechanical achiev-
ability through choices about the structure and tuning of mechanics and game elements.

Definition 3.5. Mechanical difficulty is the relationship between challenge design de-
cisions through gameplay elements and the challenge competency profile; it shows how
changes in the former express themselves in the latter.

With our MX model, we can highlight the abilities that bottleneck player performance,
and trace them to the specific design decisions. This mapping gives us insight into why
players fail, and indicates what accommodations a player needs to succeed. It also allows
us to consider how tweaks to the bottlenecking element changes the overall shape of the
competency profile. This is useful when you have multiple abilities that are close ties for
the bottleneck; adjusting the bottleneck alone might create new sources of difficulty in other
areas.

Related work. As far as we know mechanical difficulty has not been specifically studied.
There is a lot of larger interface knowledge from HCI that provides similar guidelines (e.g.
how changing target sizes improves accuracy by reducing stress on player’s abilities by Fitt’s
Law), but it ends at the interface and interaction elements. We take an adhoc approach to
mechanical difficulty, attempting to identify it on a challenge by challenge basis, with the
intent of validating our sources of mechanical difficulty experimentally.

3.4 Conclusion

Having constructed ExperT we scoped our work to focus on MX through a player-lens. We
further refine and reframe our understanding of a player’s MX as the relationship between
mechanical difficulty and mechanical achievability. Embedded in this reframe is the idea of a
measurable model of MX based on player ability profiles and challenge competency profiles.
Moving forward, we need to further flesh out the requirements and design decisions for this
ability-based MX model.
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Take home points

From this chapter we learned the following meta-lessons:

� ExperT is useful for analysing and orienting existing work to highlight research
gaps.

� ExperT gives us clear scopes for developing quantifiable models of experience.
� MX (in the player-lens) is the relationship between player abilities and challenge

requirements, quantifiably modeled by mechanical achievability and mechanical
difficulty.
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Chapter 4

Modeling Mechanical Experience

Having defined mechanical experience (MX) and its components in Ch. 3, we start to tackle
modeling it. Since MX is the relationship between a player’s abilities (i.e. player profile) and
challenge requirements (i.e. competency profile), an MX model requires a player model and
challenge model. These three models are highly coupled, but will be somewhat independently
designed and presented. So it is important that the guiding requirements and design decisions
for this large project are clear.

For this chapter, we immediately jump into presenting the requirements for our model.
We derive these requirements from examples and case studies of game experiences our final
model should differentiate. We then specify design decisions we make about the structure
of our models. Finally, we present the design of jutsus : our knowledge capture artifact that
combines the player, challenge, and MX model.

4.1 Requirements of Our Models

While broadly we look to understand MX, mechanical achievability (MechA) and difficulty
(MechD) we specifically care about how cognitive and motor abilities are used to interact
with various challenges (RQ1). So our models must let us easily discuss the player, challenges,
and their relationship in terms of cognitive and motor abilities (formalised as R1).

Requirement 1. Models of challenge and player must allow for discussion in terms
of cognitive and motor abilities.

RQ1 specifically targets the interaction of these abilities with the challenges. Interaction
here means how these abilities are used to complete the challenge with varying degrees of
success. A model of MechA (Def. 3.4) can answer RQ1 since it relates the player model to
the challenge model. For simplicity, these three models must be be created using the same
underlying terms (formalised as R2).

Requirement 2. The model for mechanical achievability must be in the same terms
as the challenge and player models to make their relationship easier to analyse.
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We focus on requirements for the player and challenge models since they are the base of
MechA. We formalise the basic goal of our models in R3.

Requirement 3. All models should be able to differentiate between meaningfully
different instances.

For players, this means there should be a notable difference between players who have
different skill levels. This can be handled in a straightforward way through skill level mea-
surement. But how would we differentiate challenge instances (i.e. how would this model
show Challenge 1 to be different from Challenge 2?). Our natural instinct is to consider
instances as “different” when they “feel” distinct. However what does it mean to “feel”
different in the context of a video game challenge? Consider the following cases:

Case 1. We have two games, Portal [492] and Halo 3 [69]. Both games require moving
through a set level in a first-person perspective using a gun to interact with the environment.
They both heavily focus on aim-and-shoot as the main gameplay mechanic. However Portal
is a puzzle game where you are aiming your gun to place portals to solve puzzles and traverse
through the level, while Halo 3 is a combat focused game where you are aiming at moving en-
emies to clear the field and defend locations. These games use similar mechanics, mechanisms
of interaction, and camera contexts but provide very different gameplay experiences because
they are fundamentally asking you to do different things. Portal is slower and requires more
cognitive abilities related to spatial understanding, while Halo 3 requires faster reflexes and
more motor control/focus.

(a) Video clip of Portal Test Chamber 13 by
Youtuber p2wiki. Click to play.

(b) Video clip of Halo 3’s 3rd mission (Crow’s
Nest) by Youtuber Vezuvius. Click to play.

Figure 4.1: Comparison of Portal and Halo 3 gameplay to illustrate Case 1. Image shows
the aesthetic similarity between games, while clicking on the video shows the significant
differences in gameplay as described in the case study.

Case 2. Consider the Protect the Milk side quest from Legend of Zelda: Majora’s Mask
[331], and Pokémon Snap! [176]. Again, these are two games that use aim-and-shoot mechan-
ics from a first-person perspective. Both games automatically control the player’s movement
(i.e. on-rails), so the player only has to consider looking at the moving targets. However, Ma-
jora’s Mask is combat focused as you shoot arrows at your pursuers, while Pokémon Snap!
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has you taking pictures of Pokémon. Both games require strong perception and tracking
skills, and rely predominantly on reaction time. Neither requires more or different skills than
the other.

(a) Video clip of the Protect the Milk side
quest in Majora’s Mask by Youtuber Odd-
lerPro. Click to play.

(b) Video clip of Pokemon Snap’s Beach
course from Youtuber JackLiberty0 Gaming.
Click to play.

Figure 4.2: Comparison of Majora’s Mask and Pokemon Snap gameplay to illustrate Case 2.
Image shows difference in appearance between games, while clicking on the video shows the
mechanical similarities in gameplay as described in the case study.

In Case 1 (Portal/Halo 3), we have two games that look similar but the underlying
challenge is different. In Case 2 (Majora’s Mask/Snap), we have two games that look different
but the underlying challenge is the same. Our challenge model should be able to identify
cases like these to determine when challenges are the same or different based on their ability
requirements. We formalise this in R4.

Requirement 4. The challenge model should differentiate challenges based on the
competency profile regardless of the aesthetics.

But what about challenges that use the same abilities in different amounts? Consider the
following cases:

Case 3. Consider the roller coaster balloon segment in Super Mario Sunshine [329], and
the New Pokemon Snap! [28]. Both games are on-rails (the movement controlled by the
game) and require aiming and shooting at targets (shooting balloons in Sunshine, and taking
pictures of Pokemon). The games are different in their presentation (Mario is third person,
Pokemon is first person) and in speed (Mario’s roller coaster moves faster than the Neo-One
ship in Pokemon). Here the difference between these challenges are specific design context
variables: the speed of motion, and position of the camera. These differences mean the
proficiency in the underlying skills needs to be higher for Mario as the speed means there is
less time to react.
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(a) Video clip of roller coaster segment in
Super Mario Sunshine by Youtuber hyrules-
masher. Click to play.

(b) Video clip of New Pokemon Snap’s Beach
course from Youtuber FCPlaythroughs.
Click to play.

Figure 4.3: Comparison of Super Mario Sunshine and New Pokemon Snap gameplay to
illustrate Case 3.

While we can explain why the MX in these cases are different, we do not have a good
universal call on when they become different to a player. This is a question we may not be able
to incorporate as a design decision or requirement since it could be unique to each challenge
type. However, we know the relationship between gameplay elements and ability requirements
from MechD (Def. 3.5), and could use this to we decide where the line is between “same”
and “different” for specific challenges. We make including MechD information a requirement
(R5) so that we have a starting point to empirically differentiate challenge instances later.

Requirement 5. The challenge model must include mechanical difficulty information
to help differentiate between challenges.

4.2 Design Decisions for Our Models

Falling out from R1 and R2 is the understanding that MechA must also allow for the discus-
sion of cognitive and motor abilities. This means our three models (player, challenge, and
MechA) should be written in terms of human cognitive and motor abilities (our first design
decision, DD1). Therefore we will need to explore and curate a list of human cognitive and
motor ablities from research in other areas.

Design Decision 1. The player and challenge models will be built from a single set
of cognitive and motor abilities.

Considering R3, we need to define the scope and scale of the abilities in this set. Imagine
a person interacting with a computer via keyboard and mouse. While typing and clicking are
different activities with different uses, underlying them is the ability to press a button. So
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if our ability set is scoped to the level of activity we may have a lot of unnecessary overlap,
especially when you consider how many activities we could find (just look at all the verbs in
English!). This leads to another design decision formalized as DD 2.

Design Decision 2. Our models should be constructed from a set of basic abilities
that can be used in various combinations to perform different activities.

Combining R3 and R4, we must also consider how many abilities we may find that would
have no current use in a video game context. Current controllers do not capture movements
like toe wiggling or breathing as inputs, indicating they are not effective controls for gameplay.
However, the scope of abilities used in video games will change as input technology changes
(you can now play Flappy Bird with your kegels using a PeriFit). For now, we choose to
focus on current gaming contexts but want to leave this open to expansion.

Design Decision 3. The ability set should be scoped to current game playing contexts
in a way that allows other abilities to be added later.

R4 and R5 say the challenge model needs to differentiate between challenges via compe-
tency profile and MechD. Since our models are effectively subsets of the cognitive and motor
ability set, we can leverage measurable differences in the ability proficiency levels to address
these requirements:

Design Decision 4. Challenges will be considered distinct when they have a different
set of abilities or observable differences in their ability requirements.

To use ability requirements/proficiency to compare challenges (R4) we need to think
about how they will be represented. Consider the gameplay of Portal, which requires precise
controller inputs (motor abilities) and complex problem-solving (cognitive abilities). The
measurement methods, units, and scales of these abilities are inherently different and so
difficult to compare. As well, the precise controls and complex problem-solving are actually
a concurrently working set of even more basic abilities whose performance combines into
what we see on screen. It would be ideal of ability measurements to be normalized in a way
so direct comparison between abilities can be made, and any combinations of multiple ability
tests could be combined without competing units.

Design Decision 5. Ability measurements in the models will be represented through
a normalized unit to allow for multiple measurement methods and comparison between
ability proficiencies in the same model instance.

4.3 Designing Jutsus

In outlining the meta-requirements and design decisions for our work, we start to visualize
what these models will look like and how to present them. We now put our three models
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(MX, Player, and Challenge) together into one designed knowledge capture artifact: jutsus.

Definition 4.1. Jutsus are a structured representation of a specific mechanical expe-
rience made from combining a challenge model and a player profile.

Jutsus have three sections: challenge description, player profile, and mechanical experi-
ence analysis. Each captures an instance of the associated model. We outline our design for
each section below, as a preview of the models and what jutsu can be. We fully explore jutsu
in Part IV.

A Quick Aside...

In this thesis the terms model and profile are used to differentiate between the abstract
idea and a specific instance. For example, the Player Model refers to the larger idea
of the ability set which defines a player, while a Player Profile describes an individual
instance of a player model (i.e. a measured representation of a player’s abilities). Keep
this in mind as these terms may be used at different points to reference specific things.

4.3.1 Challenge Description (Challenge Model Instance)

An individual challenge is described in four parts: the definition, the mechanics, the context,
and the competency profile. Fig. 4.4 is an example of a challenge description for Single Input
Button Mashing challenges. Details about challenge construction are found in Ch. 14.

Challenge definition is a one sentence, natural language description of the challenge’s goal
and key mechanics. The purpose of this is to easily summarize the challenge, abstracted from
any individual game example or aesthetic. It also highlights key terms that are important to
understanding the challenge.

Mechanics are then described as succinctly as possible. Mechanics are the formal rules of
the challenge, and so relate specific inputs to different in game factors. Alongside the mechan-
ics we present the variable components in the game design which influence the mechanical
difficulty.

Context describes the other factors that influence a challenge’s play and feel. We specify
four elements: the mechanism of interaction, controller type, number of players, and type of
play. The (mechanism of) interaction describes the motor action that needs to be done to
complete the challenge; this is dependent on the input device. The controller type describes
the specific input device used. The same mechanism of interaction may exist across various
controller types. The number of players captures whether the game is single or multiplayer.
The type of play describes whether the game is co-operative, competitive, or mixed; it also
separates these options into whether it is team-based or solo-based for these.
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Figure 4.4: Challenge description segment of Single Input Button Mashing Jutsu. Covers
the challenge definition, mechanics, context, and competency profile.

Intrinsic Competency Profile is the graphical representation of cognitive and motor
abilities needed to successfully complete the challenge. Each ability is represented by a bar
in the graph and is assigned a normalized value between 0 and 100 (scaled down to range
0-1). The value of the ability represents proficiency needed in that ability to complete this
challenge.

As we have not yet designed the abilities or tests to measure them, we believe the relative
proficiency levels are more important than the specific value of an ability. 0 means an ability
is not used at all; 1-25 means that the ability is used, but not important; 26-50 means the
ability is noticeably used; 51-80 means the ability is the limiting factor of play. The reason
that specific values are given instead of just the range is to understand the relative importance
of abilities that fall into the same range.

4.3.2 Player Profile (Player Model Instance)

A graphical representation of the player’s ability levels, where proficiency in each ability
is measured independently, and then normalized on a scale of 0 to 1 for easy visualization
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and comparison. In our current work, these profiles represent the player in relation to their
sample population. Ideally, with larger sample sizes and normative data these profiles begin
to approximate a player relative to the general population. Fig. 4.5 is an example of an
“average” player from our empirical studies in Ch. 16. Details about how we construct
profiles can be found in Ch. 12.1.

Legend p: Button presses, c: Correct Responses, T: total number of trials, s: Seconds

Figure 4.5: Example Player Profile of “Average Player” from Competency Studies (Ch. 16).
Blue dots indicate motor abilities, purple dots indicate cognitive abilities.

4.3.3 Mechanical Experience Analysis (MX Model Instance)

The analysis section of the jutsu structure covers the mechanical achievability graph, potential
sources of difficulty, and suggested tweaks.

Analysis graph compares the challenge’s specific competency profile and player profile
(Fig. 4.6). Details about how we construct graphs are in Ch. 20. Based on the challenge
details, the graph calculates the minimum ability levels needed to reach the goal (represented
by gray dotted line) and the potential rank1 associated with each proficiency level. The player
abilities are then plotted to show whether they meet the requirements (MechA), and what
rank they would approximately receive. This visually indicates whether players will struggle
with the game (i.e. poor mechanical achievability).

1Score buckets relative to the goal
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Potential sources of difficulty are then outlined based on the particular abilities that
are likely to be a problem for the player.

Suggested tweaks are then presented based on the variable components that address the
areas of difficulty.

Figure 4.6: Single Input Button Mashing Analysis graph for Average Player from Competency
Profile Studies.

4.4 Wrapping up on Modeling Mechanical Experience

We outline four major requirements:

R1 the challenge and player models should allow for discussion of cognitive and motor abil-
ities;

R2 the models for mechanical achievability, the player and challenges must be constructed
in the same terms to make their relationship easier to analyse;

R3 the models should differentiate between meaningfully different instances;

R4 the challenge model needs to distinguish between challenges that are the same or different
based on their competency profiles; and

R5 the challenge model must include mechanical difficulty information to make the differ-
entiation easier.
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These inspire five design decisions:

DD1 the models for the challenge and player will be made from the same set of cognitive
and motor abilities;

DD2 the cognitive and motor abilities will be as atomic as possible so we have a minimal
set that can be used to describe how to complete any action;

DD3 the cognitive and motor abilities set will be scoped to those that are useful in a video
game playing context;

DD4 challenges will be considered distinct when they have a different set of abilities or
observable differences in their ability requirements; and,

DD5 proficiency levels for each of ability will be presented as a normalized unit.

We summarize their relationship in a traceability matrix (Table 4.1).

DD1 DD2 DD3 DD4 DD5
R1 ✔

R2 ✔

R3 ✔ ✔

R4 ✔ ✔

R5 ✔

Table 4.1: Traceability matrix for requirements and design decisions.

The requirements and design decisions shape the direction of our work, and lead to our
design for jutsus. Jutsus are specific models of MX for a given challenge and player. Jutus
represent a quantitative model of MX and so can address our larger research questions and
thesis goals. While we foresee many jutsus existing, our current focus is to flesh out and
prove the idea through establishing the models (Part II and III) and constructing a set of
example jutsus (Part IV).

Take home points

From this chapter we learned the following meta-lessons:

� We are constructing three models: a Player model, a Challenge model, and a
mechanical experience model.

� Our models are built from a single set of human cognitive and motor abilities
contextualized to gaming.

� Our models combine into a jutsu which can tell us a particular MX for a given
challenge and player.
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Chapter 5

Closing Remarks: The Setup

We close out Part I with a better understanding of the goals of our thesis, and an approach
for answering our research questions. We explored contemporary understandings of player
experience through a narrative review (Ch. 2) which led to the creation of the Experiential
Tetrad (Ch. 3). We use the Experiential Tetrad to scope our work to focusing on the me-
chanical experience of a game through a player-lens. We construct mechanical experience as
the combination of mechanical achievability and mechanical difficulty, which we can directly
tie to RQ1 and RQ2. We build on this understanding by creating requirements for modeling
mechanical experience and proposing a presentation of that information through jutsus (Ch.
4).

What we learned in this part:

� Game-related experiences are complex multi-dimensional phenomena, and so are
hard to define and model precisely.

� We can use the Experiential Tetrad to explore existing work on game-related
experiences and create novel work.

� The Experiential Tetrad allows us to scope our thesis to studying mechanical
experience (experience from interacting with the gameplay) through a player
lens.

� Mechanical experience can be modeled as the relationship between a player’s abil-
ities and challenge requirements using mechanical achievability and mechanical
difficulty.

� To quantifiably study mechanical experience and its components, we need a player
model and challenge model based on human cognitive and motor abilities.
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What we produced in this part:

� The Experiential Tetrad (Fig. 3.1) as a way to view different aspects of game-
related experiences;

� Working definitions of mechanical experience (3.1), mechanical achievability
(3.4), and mechanical difficulty (3.5);

� The definitions of player profiles (3.2) and challenge competency profiles (3.3);

� Requirements (4.4) and design decisions (4.4) for modeling mechanical experi-
ence; and,

� A high-level concept of Jutsus that brings the pieces together (Ch. 4.3).
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Part II
The Player Model

Here we tackle creating a player model that can be used in assessing the mechanical
experience of a gameplay challenge. To do so we explore existing player and user models in
games research and human-computer interaction to see if they fit our needs (Ch. 6). We
decide to create our own player model, and so spend the next chapters compiling lists of
relevant motor (Ch. 7) and cognitive (Ch. 8) model. Having determined the abilities in our
model, we need a way to measure them so we can construct player profiles (Def. 3.2). We
explore how our model abilities are measured (Ch. 9), and use this information to create a
battery of ability tests in the form of mini-games (Ch. 10). We attempt to show convergent
validity of our mini-games to existing measurement methods through a correlational study
(Ch. 11), though the results are mixed. We end this part by synthesizing everything we have
learned in this part to construct player profiles (Ch. 12).



Chapter 6

Player Profiling in Theory

Recall from Ch. 4, we are constructing a Player model based on cognitive and motor abilities
available in a gaming context. Before we start compiling abilities for our model, it is prudent
to explore existing work on player modeling. This way, we can see if there are existing models
that could serve our purpose. Ideally, the model we are looking for should take an ability-
based design approach, such that users are represented as an ability model which defines
context relevant abilities. However, Nolte et al. [349] note as of 2022 that this area is largely
neglected especially for a generalizable model.

Player modeling generally refers to work on player typologies, which segment potential
players into types based on their motivations and behaviours (e.g. Bartle [30] and Yee [534]).
It could also reference player trait theories, which model players along a set of standard
traits (e.g. 318). There are many analyses and criticisms about the usefulness and validity
of player types (e.g. 34, 178). For us, these models do not seem appropriate because of their
level of abstraction (predicting what a player will like/want, not specifically how they will
accomplish the gameplay). Despite their unlikelines to produce a ready-to-use model, we
broadly review user and player models to get a sense of how our work fits into the larger
domain.

This chapter presents a narrative review of models that may be applicable to interacting
with a video game. We first review basic user models from human-computer interaction
(HCI). These represent a historical look at user modeling; they are much more performance-
focused and computationally designed than player-specific models. We then turn to player
typology work from games user research (GUR) and games studies (GS). We separate these
models into psychographic models and behavioural models as per two meta-reviews: Bate-
man, Lowenhaupt, Nacke, et al. [34] and Hamari and Tuunanen [178]. However, this distinc-
tion is somewhat arbitrary as models frequently overlap or are ported between categories. We
provide more details for these models due to their player focus, and to highlight the overlaps
between models. We end with a synthesized list of takehomes from this literature review.
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A Quick Aside...

Two personality models frequently feature in this area: the Myers-Briggs Type Indi-
cator model (MBTI) [62] and the Five Factor Model (FFM, Big 5, or OCEAN) [97].
MBTI assesses people along four spectrums (Extroversion-Introversion,
Sensing-iNtuiting, Thinking-Feeling, and Judging-Perceiving) creating sixteen possi-
ble types (e.g. INTJ, ESFP)a. The Big 5 assesses people along Openness to experience,
Conscientiousness, Extraversion, Agreeableness, and Neuroticismb. MBTI is generally
criticised for poor scientific rigour, stability, and validity [450]. The Big 5 has more
empirical evidence for validity, stability, and rigor [288].

aFind your Myers-Briggs at 16personalities.com.
bFind your Big 5 traits at bigfive-test.com.

6.1 Computational User Models (HCI)

HCI user modeling focuses on predictive user behaviour and performance modeling. Broadly
HCI provides personas and user case studies as practical tools to form specific user models
for individual applications. However, we are more interested in the generalizable user models
from HCI research. These apply cognitive modeling for the purpose of task analysis. We
cover three categories: GOMS models, performance models, and cognitive architectures.

Goals, Operators, Methods, and Selection rules (GOMS). Card, Newell, and Moran
[80] present the Model Human Processor (MHP) as an underlying generic cognitive structure,
which divides a person into three independently processing subsystems: motor, cognitive,
and memory. This view of cognition supports constructing user models as a set of goals
(things to be achieved), operators (context-appropriate actions), methods (sequences of goals
and operators used to complete tasks), and selection rules (how the user chooses the right
methods) [78, 80]. This GOMS approach has been widely used in HCI work, including for
modeling games (e.g. 215), and is implemented in multiple ways. Two prominent GOMS
models are the Keystroke Level Model (KLM) [79] and CPM-GOMS (cognitive, perceptual,
and motor operators in a critical-path method) [213, 214]. GOMS limitations, as discussed
by many (e.g. 78, 357), include its:

� focus on skilled users and errorless performance,
� lack of clarity on specific cognitive processes,
� assumption of serialized tasks (though this is addressed by CPM-GOMS), and
� inability to account for individual differences, fatigue, and mental workload.

GOMS conceptually aligns with our goals (modeling ability requirements of specific game
tasks), but as it stands cannot fulfill them due to its scope-based limitations.

Predictive Performance Models. A significant body of work focuses on mathematically
modeling human performance based on information processing theory (see Wickens et al.
[518] or Ch. 8.1 for details). Card, Newell, and Moran [80] introduced two such models
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to HCI: Fitts’ Law [139] (for motor performance), and the Hick-Hyman Law [187, 201] (for
choice-reaction time). While Fitts’ Law has thrived in HCI work (e.g. 5, 270, 320, 321), Hick-
Hyman has not [427]. This could be due to Fitts Law being standardized in the ISO-9241-411
procedure1 for evaluating non-keyboard input devices [125], which has led to significant work
evaluating different interfaces that continues to this day (e.g. 399). While these models help
quantify general task performances in terms of execution times, they do not give us a holistic
model of the user.

Cognitive Architectures (CA). These are generic models of cognitive structures and
processes that can predict human behaviour and performance at any task [456]. CA are either
symbolic (top-down process using high-level symbols for information processing), emergent2

(bottom up process using low-level signals), or hybrid (combining symbolic and emergent)
[119, 160]. Games-related HCI explores CA for believable agent behaviour (e.g. 71, 89, 246,
247, 248, 494), and user modeling to test specific cognitive abilities (e.g. 154, 260). Popular
models in games-related HCI are the symbolic State, Operator and Result (SOAR) [249] (used
in 246, 247, 248, 494), and the hybrid Adaptive Control of Thought - Rational (ACT-R) [13]
(used in 154, 260). We also explore Executive Process-Interactive Control (EPIC) [229–231],
Learning Intelligent-Distribution Agent (LIDA) [143, 439], and Connectionist Learning with
Adaptive Rule Induction On-line (CLARION) [455, 456] to get a general sense of CA. CA
generally focus on memory and attentional control, with less clear models of perception and
motor control. Any CA would need significant extension to model the player in the way
we want for the purposes we want, making them less appealing than custom creating our
model.

6.2 Behavioural Player Models

In-game behaviours act as proxies for player gaming preferences and motivations. Ergo,
behavioural typologies reflect different player needs, wants, and motivations. These models
provide a useful vocabulary for designing and balancing gameplay for different player desires
and experiences. However, they are not particularly useful for modeling how players per-
form individual gameplay at an ability-level. Some quantitatively model specific gameplay
behaviours (e.g. 117), but are then highly tuned to a single game. We focus on common
typologies, including: Hardcore-Casual, Robin Laws Gamer Types, Park Associates Gamer
Types, Bartle Types, Yee’s Motivations/Gamer Motivation Profile, and Drachen’s player
types.

Hardcore and Casual are opposing gaming behaviours, demographics, and philosophies,
which represents both a play style and identity [286, p.40]3. Historical work presents the
hardcore gamer as a young, single, man who spends the majority of his freetime playing
specific types of games4 (e.g. 145, 223), despite ample contradictory academic (e.g. 170, 243,

1Previously ISO 9241-9
2Also known as connectionist
3We discuss gamer identities and its relationship to hardcore in Ch. 18.1.
4MMORPGs, FPS, RTS, and Sports games.
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509, 523) and census-based (e.g. 15, 16) evidence. Casual represents everything hardcore is
not; they approach games in a casual manner [244], play for enjoyment and are less tolerant
of difficulty and frustration [7, p. 75]. Juul [219, p.54] notes the lack of evidence for
this stereotype, and proposes instead that hardcore and casual are differentiated by their
flexibility in playstyle and preferences: casual players have inflexible time demands and so
require flexible gaming, while hardcore players are flexible in their time demands and so can
play inflexible games. Researchers and players alike generally agree that the Hardcore-Casual
dichotomy lacks clarity in meaning, and usefulness in exploring player behaviours. Recently,
Brett and Soraine [60] examine the current behavioural practices of “Hardcore” and “Casual”
and propose an extended typology of overlapping behaviours.

Laws [256] presents seven archetypes for tabletop role-playing game players. The power
gamer (i.e. min-maxer) aims to optimize their play through strict adherence to and ma-
nipulation of the rules. The butt-kicker just wants to engage in combat without significant
difficulty. The tactician focuses on strategic play within the rules. The specialist only cares
about their favourite playstyle and does not care about the rules, systems, or world outside
of it. The method actor cares about expression through their character. The storyteller cares
about the narrative and will get bored if it moves too slowly. The casual gamer cares about
socializing with the group, and do not have preferences about playstyles. Laws notes that
individuals may present traits of more than one type. Work on interactive digital storytelling
uses this typology to consider plot hooks for generative stories (e.g. 369, 472). These types
are anecdotally derived, and unvalidated.

Bartle Types [30] outlines four personalities found in a multi-user dungeon (MUD):
Achievers, Explorers, Socialisers, and Killers. These types describe players along two spec-
trums: acting vs. interacting, and players vs. the world. Achievers want to act on the world
by gathering achievements and accolades which display their mastery at the game. Explorers
want to interact with the world by discovering secrets and building a deep understanding of
the game. Socialisers want to interact with players by building communities. Killers want to
act on players by exerting control over others to induce negative experiences. This work is
explicitly for designers to show how these player types are balanced in a healthy online ecosys-
tem, and was not intended to be applied outside the context of MUDs and their descendants
(i.e. MMOs) [31].

Cai [73] and Park Associates [361] present six gamer types as a market segmentation
tool. Power gamers fit the “hardcore” stereotype. Social gamers use games as a means
of connecting with others. Leisure gamers are hobbyists who play a lot of casual games,
but prefer challenge and show more interest in new gaming services. Dormant gamers are
enthusiasts who do not have time to game; they enjoy socialising and prefer challenge. Inci-
dental gamers play to alleviate boredom, and play frequently but do not have larger defining
traits. Occasional gamers focus on puzzle, word and board games. Power, leisure, and
dormant gamers align with “hardcore” while social, incidental, and occasional gamers seem
more “casual”. While less popular than others here, this typology sees occasional mention in
literature (e.g. 235, 526). These types focus more on gaming behaviour, rather than in-game
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desires/behaviours.

Drachen, Canossa, and Yannakakis [117] extract player models from Tomb Raider:
Underworld [102] by clustering game metrics using an unsupervised learning model of self-
organizing maps. This results in four player types: Veterans (low total death count, deaths
caused by environment, fast completion time, low to average help requests), Solvers (frequent
deaths, deaths caused by falling, long completion time, help requests are minimal to none),
Pacifists (variable total deaths, deaths caused by opponents, below average completion time,
minimal help requests), and Runners (frequent deaths, death by opponents and environment,
fast completion time, varied help requests). These types show different play styles throughout
the game, and serve to show whether players are engaging with the game as intended (i.e.
expected behaviour). While quantitative and useful, it is hyper-specific to Tomb Raider and
developing further models would require significant expert knowledge of each game being
analysed and the ability to pull meaningful game metrics.

Gamer Motivation Profile [535] develops Yee Motivations [534, 536]5 further into a six
motivation model, where each motivation is supported by two specific traits. The motivations
are: action (excitement, destruction), social (collaboration, competition), mastery (strategy,
challenge), achievement (power, completion), creativity (design, discovery), and immersion
(story, fantasy). These motivations support nine archetypes (Acrobat, Gardener, Slayer,
Skirmisher, Gladiator, Ninja, Bounty Hunter, Architect, and Bard) whose descriptions, pri-
mary motivations, and example games are summarized in Fig. 6.1.

6.3 Psychographic Player Models

Psychographic types segregate players by their “attitudes, interests, values, and lifestyles”
[178], often using personality as a proxy. Like behavioural models, these are meant to capture
player wants, needs, and motivations. Psychographic models are generally too abstract for
our purposes. We focus on a sample of popular typologies: DGD1/DGD2, BrainHex, Unified
Model, and Hexad.

Demographic Game Design Model (DGD1) [33] presents four player types and their
matching MBTIs. Conquerors (TJ) are goal-oriented players who care about winning quickly
but do not care about stories. Managers (TP) are mastery-oriented players who enjoy strate-
gic and process-based challenges so long as they are not too difficult. Wanderers (FP) are
novelty-seeking players who are emotionally-invested in characters but will give up on games
they find boring. Participants (FJ) are social players who seek emotional connection with
stories and characters, and will persevere through boring or difficult gameplay to get this.
DGD1 has been tested against the Big 5 traits [294]. Bateman, Lowenhaupt, Nacke, et al.
[34] extends this work with DGD2 by comparing MBTI types and temperament theory skill
sets (logistical, strategic, tactical, diplomatic). This results in five potential player traits:

5Original work presents three components and ten-traits: achievement (advancement, mechanics, and
competition), social (socializing, relationships, and teamwork), and immersion (discovery, role-playing, cus-
tomization, and escapism). This was critiqued and expanded on with the Online Gaming Motivations Scale.
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Figure 6.1: Player type summary from Quantic Foundry Gamer Motivation Profile [535].
Figure reproduced from Quantic Foundry Gamer Types reference.

openness to imagination, preference for anger vs. avoidance of frustration, degree of tol-
erance for real-time play, preference for group vs. solo play, and degree or persistence or
obsessive play. Primary work on DGD1 and DGD2 ends here, as Bateman, Lowenhaupt,
Nacke, et al. suggests further work on BrainHex.

BrainHex [318] presents seven archetypes representing various configurations of neurobi-
ologically informed traits. The seven types (and some of their MBTIs) are: the curiosity-
focused Seeker (FP), the fear-oriented Survivor (FP), the thrill-seeking Daredevil (TP),
the strategic Mastermind (T), the challenge-seeking Conqueror (T), the people-oriented So-
cialiser (F), and goal-motivated Achiever (FJ). Further investigations with BrainHex data
indicate these seven play styles could not be supported [474]. A three motivation model (ac-
tion, esthetic, and goal orientation) was explored; however, it only had a small-to-moderate
effect for predicting player game preferences [474]. Tondello et al. [475] develop a new scale
for a five-trait BrainHex model (aesthetic, narrative, goal, social, and challenge orientation)
which they show is significantly different from the Big 5 model.

Unified Model [451] combines Bartle’s Types [30] with Kiersey’s Four Tempermants
(Artisan, Guardian, Rational, and Idealist) and DGD1 [33] (with additional Hardcore and
Casual types) to create a spectrum of player types (Fig. 6.2). This model is “validated”
through presenting examples of its usefulness, like a list of common genres with example
games and the core play style (i.e. type) they support. Stewart contends that the agreement
between these three base models (Bartle, Kiersey Tempermants, DGD1) is “remarkable”.
However, he glosses over the fact that Kiersey is based on MBTI, and DGD1 explicitly
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combines Bartle Types and MBTI - hence clear synergy due to their underlying theory. As
well, Stewart is “surprised to see how many of these other models proposed three or four
categories...[which] sounded very much like the descriptions of the core play styles in the
Keirsey/Bartle model”. However, he overlooks validated models with more than four types
(e.g. Gamer Motivation Profile [535]) and does not fully address all types in the models he
does bring up (e.g. Laws [256]). He implies this supposed pattern reveals there are four
fundamental personality types. More likely this is a case of modeling limitations due to data
collection (e.g. heterogeneous samples, limited sample sizes, imperfect measurement tools,
biased self-reporting), overlap in underlying constructs, or a design choice made to make the
model easy to communicate.

Figure 6.2: Unified Model with DGD1, reproduced from [451].

Tseng [480] proposes two motivations: exploration and aggression. These motivations
support three player types: aggressive gamers (high exploration and aggression needs), so-
cial gamers (high exploration, low aggression needs), and inactive gamers (low exploration,
moderate aggression needs).
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Hexad [277] uses self-determination theory (SDT) to match player motivations to po-
tential gamification elements. Hexad presents six player types: Philanthropists (purpose),
Socialisers (relatedness), Free Spirits (autonomy), Achievers (competence), Players (extrinsic
rewards), and Disruptors (change). The original Hexad scale was found to be unreliable; a
second scale was developed and validate [473]. Tondello et al. [473] also validate the Hexad
types’ relationships to game elements, and compare Hexad types against Big 5 traits.

6.4 Conclusion

Having not found a suitable ready-to-use ability-based model, we are clear in our choice to
make our own with the clear goal of evaluating player interactions with challenges through
a standard set of cognitive and motor requirements.

Take home points

From this chapter we learned the following meta-lessons:

� Our model should fit into the ability-based design paradigm.

� We like the HCI models’ information processing approach and can see it adapting
well to our work.

� Existing player models are typically too abstract for our purposes.
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Chapter 7

Motor Abilities

We present a succinct review of the motor abilities of our player model. This work originates
from Sasha’s Masters thesis [442], and is published in Soraine and Carette [441]; we cover it
here for completeness. 7.1 explains our scoping decision, construction process and provides
a complete motor ability list. The rest of the chapter summarizes the results of our fine and
gross motor analysis from Soraine and Carette [441]. For each ability we explain what it is,
which actions it combines, and examples of it in commercial games. We end by summarizing
key points about the motor model.

7.1 Developing Motor Model

Ch. 4.4’s requirements and design decisions scope our motor model to abilities in a current
game playing context. We interpret this to mean our model should cover mutually exclusive
abilities based on actions possible with commercial game controllers. We consider two abilities
to be mutually exclusive when they are different interactions and produce a different motor
response. For example, on a Switch Joy-Con the player can both press buttons or shake the
controller — different interactions (buttons vs accelerometers) and motor responses (pressing
with fingers vs arm-based movements). Our understanding of mutually exclusive abilities
captures how the type of motor response affects task performance [6, 27, 370], and makes
it easy to identify abilities by the controller inputs. However, we also want our mutually
exclusive abilities to “feel” different. Consider two cases on interacting with a standard
controller:

Case 1: Face Buttons and Thumbsticks. The interaction methods are technologically
distinct (different degrees of freedom, discrete vs analog signal) but the motor responses
happen on a similar scale (thumb movements). However, these actions feel different. Pressing
face buttons requires thumbs to flex and extend in an up/down motion. The movement is
discrete (pressed/not pressed) and does not require precision. Thumbsticks require thumbs
to abduct and adduct in a left/right motion. The movement is continuous, and requires
precision as small changes in the thumb’s motion are captured in the input and reflected in
the game performance.
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Case 2: Face Buttons and Trigger Buttons. The interaction methods are technolog-
ically distinct in quality of information and ergonomics. The motor responses look distinct
(pressing face buttons with your thumb vs pulling the trigger with your index finger). How-
ever, at the level of action both are pressed in discrete ways and require the same flex/extend
motions of the finger to be used. The difference in design here hides that it is the same motor
response with the same qualities being used.

As we develop our motor model, we can use qualities like speed, complexity, precision,
repetition, and direction to decide whether controller interactions create mutually exclusive
abilities. We summarize this in Design Decision (DD) 6.

Design Decision 6. The motor model abilities will capture actions possible on com-
mercial game controllers and be mutually exclusive based on the qualities of the motor
response for the interactions.

7.1.1 Scoping the Motor Domains

We initially explore the Keystroke Level Modeling (KLM) of Super Mario Bros 3 [215] since
it relates gameplay to controller-based actions. They create two GOMS models (a functional
level model, and KLM) of the game from analysing expert behaviour in the first 27 seconds
of gameplay (World 1-1), and examining the game mechanics and instruction booklet. While
the observational process and mapping of actions to gameplay align with our goals, we recall
that GOMS models are inappropriate for our work due the limitations (see Ch. 6.1) and
want to focus instead on specific abilities.

We explore kinesiology (Kin) models via undergraduate level textbooks [179, 496]. Actions
are modeled by muscle group movements (flexion, extension, abduction, adduction, supina-
tion, pronation), such that identical actions use the same group of muscles. This lens is too
low-level for our gaming context, as it would consider pressing a button with a curved fin-
ger (movement at metacarpophelangeal, proximal interphalangeal, and distal interphalangeal
joint) as different than pressing with a flat finger (movement just at metacarpophelangeal
joint).

We turn to developmental psychology (DevPsych) textbooks [149, 366, 429] which ex-
plores human acquisition and development of motor and cognitive skills. DevPsych models
motor abilities through fine and gross skills which describe scale of movement and potential
precision. There is no singular set of atomic skills, rather observable tasks are given as skill
proxies that can be assessed through motor development scales. This fine-gross skill paradigm
seems reasonable for our motor model, and its task dependent presentation means we can
define a standard set for a gaming context based on surveying controllers. The DevPsych
Fine-Gross paradigm also works with the GOMS style approach we like since both come from
a place of task analysis via ability descriptions.

7.1.2 Motor Model Method

We explain our three step model development process below, and summarize the major
results. Details can be found in Soraine [442].
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1. Controller Survey. We focus on standard controllers (e.g., Xbox One controller,
Playstation 4 controller), handheld motion controllers (e.g., Wii Remote, Playstation Move),
full body motion controllers (e.g. Kinect), smartphones/tablets, handheld consoles (e.g. Nin-
tendo 3DS, Playstation Vita, Nintendo Switch), keyboards, mice, and specialty controllers
like fight sticks (arcade style controllers made for fighting games), mat controllers (e.g. DDR
dance pad, Wii Balance Board), and “simulation” contollers (thematic controllers like Donkey
Konga Drums). For each controller type we list its interactive hardware (e.g. face buttons,
triggers, thumbsticks, gyroscopes, etc) and a natural language description of the interaction
(e.g. pressing face button, pulling trigger button). We group similarly described interactions
to minimize redundancy; for example, pressing a face button and pressing a D-Pad would
come together as examples of a more abstract “pressing” action.

2. Mutual Exclusivity. We label actions as either Fine or Gross, and organize them based
on the underlying motor system. For example, standard controllers, handheld consoles, and
mat controllers all afford “pressing” buttons. However, the standard controller and handheld
console buttons are Fine motor skills using Hands/Fingers, while the mat controller is a Gross
motor skill from stepping on it with your Legs/Feet. We summarize the abstract actions,
their hardware contexts, and general category (Fine or Gross motor) in Table 7.1.

Actions Hardware Context
Pressing SC, HMC, HC, Key, FS, MC
Bumping SC, HC
Pulling SC, HMC
Moving SC, HMC, FBM, HC, FS, M
Swiping SC, Phone
Pinch-to-zoom SC, Phone
Swinging HMC
Pointing HMC
Shaking HMC, Phone, HC
Drawing HMC, Phone, HC
Thrusting HMC
Tilting HMC, Phone, HC
Flicking HMC, Phone
Positioning FBM, Mat
Tapping Phone, HC
Speaking Phone, HC
Making facial expressions HC
Clicking M
Scrolling M
Legend: Standard Controllers (SC), Handheld Motion Controllers (HMC), Full Body Motion
Controllers (FBM), Smartphones/ Tablets (Phone), Handheld Consoles (HC), Keyboards
(Key), Mouse (M), Fight Sticks (FS), Mat Controllers (Mat)

Table 7.1: Resulting actions from controller survey, reproduced from [442]. Blue rows are
Fine motor, yellow rows are Gross motor, green rows are abilities in both.
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3. “Feel” Different. We analyse the qualities of each action via examples, focusing on
speed, complexity, precision, repetition or direction of motion between abilities. We combine
actions that are not sufficiently different, and rename the group based on the most easy to
visualize action.

Using this process we develop a model of 13 Fine and 8 Gross motor abilities based on
controller interactions (Table 7.2). Our model is biased towards Fine motor abilities because
controllers generally favour hand-based interactions (see Table 7.1). Our process produces a
working list that can be expanded when new controllers are analysed. We believe this list
provides reasonable ability coverage based on the variety of controllers examined; however,
it is not comprehensive.

Category Motor System Subsystem Ability
Pressing
SwipingFingers
Pinching
Shaking
Flicking
Pointing
Swinging
Drawing

Hands

Wrist

Tilting
Neck Moving

SpeakingHead
Face

Making facial expressions

Fine

Feet Ankle and Foot Pressing
Pushing
Swinging
Drawing
Rotating

Arms

Positioning
Moving

Legs
Positioning

Gross

Torso Positioning

Table 7.2: Final list of motor abilities for the player model. Adapted from [442].

7.2 Fine Motor Abilities

We present the results of our fine motor analysis from Soraine and Carette [441]. We organize
the abilities by their motor sub-system from Table 7.2. We find more Fine Motor abilities
because controllers tend to prioritise hand-based actions, leading to manual dexterity being
important in game performance.
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7.2.1 Fingers

Pressing: We combine pressing, clicking, tapping, pulling, and bumping. Each action de-
scribes moving or bending a finger at a knuckle for the purpose of interacting with a control.
Their main difference is their associated control element: face button for pressing, mouse
button for clicking, touchscreen for tapping, trigger button for pulling, shoulder button for
bumping. As well, the hardware context has pulling and bumping oriented differently be-
cause of the interaction position on the controller. These differences lead to minor experien-
tial differences in feedback, but overall the “feels” seem the same. As pressing buttons are
ubiquitous in games we do not give a specific example.

Swiping: We combine swiping, flicking, and scrolling1. Each action describes fluid, po-
tentially repetitive finger movements; however, they differ in time. Conceptually flicking
is a rapid movement, where swiping and scrolling can be fast or slow. At the moment we
are coarsely defining time differences in action as changing their “feel”. All three actions
take place in the same time scale (see Newell time band [325]), meaning we consider their
differences negligible.

Pinching: Coordinated two-finger movement to create a pincer-grip/pinching motion on a
touch-sensitive surface (e.g. smartphones/tablets, handheld consoles). Pinching represents a
single-task coordinated action (STCA), which has been shown to increase cognitive load for
older adults (e.g. 159, 266, 273, 360, 425). Therefore since it is measurably different from
other actions, we keep it separate.

7.2.2 Wrist

Pointing: Continuous precise lateral (Fig. 7.1a, like waving as a greeting) and vertical
(Fig. 7.1b, like fanning oneself) wrist movement. Common in pointing tasks, like Super
Mario Galaxy [339].

(a) Lateral Wrist Flexion/Extension. (b) Vertical Wrist Deviation.

Figure 7.1: Wrist pointing movements with a Handheld Motion Controller (Wii Remote).

Flicking: Fast, imprecise, short, singular lateral wrist movement. Flicking is a supporting
motion in many challenges like serving the ball in table tennis for Wii Sports Resort [336].

1Scrolling only refers to scroll-wheel interactions, as touchscreen “scrolling” is a general case of Swiping.
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Tilting: Continuous coordinated wrist and forearm movements/rotations with contextual
differences based on hold. For one-handed holds, tilting laterally involves the player twisting
their wrist and forearm as if turning a doorknob (Fig. 7.2a). Tilting vertically in this context
is the same movement as vertical pointing movements (radial and ulnar deviation). For two-
handed holds, tilting laterally requires the player’s forearms guide the movement while the
wrist keep the controller stable (Fig. 7.2b). Tilting vertically uses the same movements
as vertical pointing (radial and ulnar deviation). Examples include: steering the flying
beetle in Legend of Zelda: Skyward Sword [332] (one-hand vertical and lateral), balancing on
skateboard in Mario and Sonic at the Tokyo 2020 Olympic Games [419] (one-hand lateral),
and the Myahm Agana Shrine in Legend of Zelda: Breath of the Wild [344, 345] (two-hand
vertical and lateral).

(a) One-Handed: Wrist Supination and
Pronation.

(b) Two-Handed: Forearm Flexion and Ex-
tension.

Figure 7.2: Lateral Wrist Tilting. One-Handed with a Handheld Motion Controller (Wii
Remote); Two-Handed with a Handheld Console (Wii U).

Drawing: Controlled continuous wrist/forearm movements with contextual differences based
on the “canvas” (i.e. control space). A small “canvas” (e.g. smartphone touchscreen) em-
ploys wrist movements; a large “canvas” (e.g. the air) enables forearm movements. Examples
include the Celestial Brush mechanic in Okami! (particularly on the Wii) [90], and Kirby:
Canvas Curse [175].

Swinging: Repeated (back and forth) large lateral wrist movements. Flicking and swinging
are distinct because of their different speeds (flicking must be fast) and number of movements
(swinging needs a back and forth). Examples include: using the fishing rod and net in Animal
Crossing: City Folk [335], cracking an egg in Cooking Mama: Cook Off [96], and sword actions
in The Legend of Zelda: Skyward Sword [332].

Shaking: Fast, imprecise, short, repetitive wrist/forearm movements contextualized by the
controller hold. One-handed holds mimic a drumstick tapping on a drum, or as a jerking
forearm movement similar to the motion of shaking a cocktail shaker (Fig. 7.3). Two-
handed holds use the same forearm movements as two-handed tilting. Examples include:
ground pound using Wii Remote in Donkey Kong Country Returns [390] and Tropical Freeze
[391], asteroids in SpaceTeam [436], wheelies in Mario Kart 8 [328], and the homing hat
throw in Super Mario Odyssey [343].
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Figure 7.3: Forearm Shaking (forearm rotation) with a Handheld Motion Controller (Wii
Remote).

7.2.3 Head: Neck and Face

Neck Moving: We combine head tilting, nodding, and shaking as neck movements. These
actions are becoming more important for social AR games, like Facebook’s Asteroids Attack
[131] and VR games, which use head movements for camera controls.

Facial Expressions: Controlled coordinated movement of facial features. This can be
used for social gameplay, like Pokémon Amie in Pokémon X and Y [150, 151], or as a core
mechanics like in Snapchat’s Snappables [440].

Face Speaking: Making controlled noise directed at the control’s microphone. This is
not natural language processing, as it only concerns amount of noise and intensity of noise.
Examples include Puzzle 138 in Professor Layton and the Diabolical Box [263], which requires
players to blow into their microphone simulating a gust of wind, and Chicken Scream [373]
on smartphones, which allows the user to control how the chicken avatar moves by making
sounds.

7.2.4 Ankle and Foot

Pressing: Coordinated movement of the ankle and foot to depress a button. While there
may be other ankle/foot movements, current foot-focused controllers (i.e. mat controllers)
are limited in their use. Examples include Dance Dance Revolution [237], Shaun White
Skateboarding [487], and Mario and Sonic at the Winter Olympic Games for the Wii Balance
Board [422].

7.3 Gross Motor Abilities

We present the results of our gross motor analysis from Soraine and Carette [441], organized
by their motor systems. These abilities are significantly broader than their Fine motor
counterparts due to the controllers surveyed. This list was made circa 2018, meaning more
recent motion controls are not captured.

7.3.1 Arms

While arms have multiple parts (upper arm, forearm, elbows and shoulders) we treat them
like one unit in our model. This is an oversimplification based on the controllers surveyed

62



PhD. Thesis – S. Soraine McMaster University – Software Engineering (HCI)

and the time this list was compiled.

Pushing: We combine moving, pressing, thrusting, and pulling. These describe large coor-
dinated shoulder and elbow movements (flexion and extension) to interact with a physical
element (e.g. pushing a large button, pushing a mouse on a table) or a simulated element
(e.g. pushing a button in VR, punching in Wii Sports Boxing [333]). These movements can
be fast and imprecise or slow and controlled, as our currently studied gaming context does
not see these motor responses as “feeling” different2.

Rotating: Controlled medial and lateral shoulder rotations used for moving controls lat-
erally (e.g. moving mouse left and right) and simulating big motions like Golfing in Switch
Sports [341].

Swinging: We combine swinging, flicking, and shaking. These are fast repetitive context-
dependent shoulder and elbow movements. Vertical swinging (like chopping wood) uses a
combination of shoulder and elbow flexion/extension, while horizontal swinging uses medial
and lateral shoulder rotations. Swinging can be either precise (e.g. sword moves in Legend of
Zelda: Skyward Sword [332], Chambara in Switch Sports [341]), or imprecise (e.g. Swimming
and Discus Throw in Mario and Sonic at the Tokyo 2020 Olympics [419]).

Drawing: Precise coordinated arm movements that can be fast or slow. Examples include
tracing lines, shapes, and stars in the Trauma Center series for Wii (Second Opinion [18],
New Blood [17], and Trauma Team [19]) — see Fig. 7.4.

Figure 7.4: Video clip of Trauma Center New Blood gameplay from Youtuber roguehwz.
Video shows player in operation having to trace lines to perform actions. Click image to
play.

Positioning: We combine positioning and pointing to describe manipulating our arms into
a specific position. This is common in games like Just Dance![488], where players mimicking
the movements of on screen dancers.

2This will be different given a modern review of VR gaming
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7.3.2 Legs

Similar to arms, we oversimplify legs by treating them like a single unit due to the limited
leg-based controls at the time of our survey.

Positioning: Manipulating legs into particular positions. Examples include Wii Fit’s yoga
games[337], and Kinect Adventures! 20, 000 leaks mini-game [161] (see Fig 7.5).

Figure 7.5: Video clip of 20, 000 Leaks! gameplay from Youtuber ChuckieJ Gaming. Video
shows gameplay of player’s avatar (controlled via Kinect) positioning their body to block
leaks. Click image to play.

Moving: We combine all potential movements into one moving category. We present ex-
amples of specific types of movement in Table 7.3. At the time of creating this list, leg-based
interactions were limited by the commercial technology. Full body motion controls like Kinect
required very specific conditions to effectively track the player. Mat controllers reduced the
leg movements to a button press making the leg generally unobserved. As well, gameplay was
limited to exer-games, rhythm games, and hardware showcasing games. Since this time, more
leg-based actions have been made possible through exergames like Ring Fit Adventure [340]
and its handheld motion controller peripherals which allow for tracking squatting, walking,
thigh squeezing and more.

Action Control Example
Kicking FBM Soccer (Kinect Sports [387])

FBM River Rush (Kinect Adventures [161])
Jumping

Mat Jumps3 (Dance Dance Revolution [237])

Stepping
FBM River Rush (Kinect Adventures [161])
Mat Single step (Dance Dance Revolution [237])

Jogging FBM Sprint (Track and Field) in Kinect Sports
[387]

Table 7.3: Leg actions with in game examples

3Simultaneous two button press
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7.3.3 Torso

Positioning: Bending and twisting the torso to support other movements and positioning.
These types of movements are usually found in dance games, like Dance Central [181], and
simulation games like Yoga in Wii Fit Plus [338].

7.4 Wrapping up the Motor Model

While our proposed motor model is somewhat oversimplified and limited based on when
it was made, we do not think this will be a problem. As a first foray into this domain,
it is sufficient to focus on gameplay in fairly standard and simple contexts (e.g. standard
controllers, keyboards). So our Fine Motor Abilities are likely sufficient for our thesis goals.
Future work should focus on incorporating new controllers, especially as it relates to more
clarity in gross motor abilities.

Take home points

From this chapter we learned the following meta-lessons:

� Our motor model is built from a survey of controllers and actions used in games.

� We attempt to make the motor abilities mutually exclusive based on the qualities
of the motor interactions.

� Our final motor model has 21 abilities (Tbl. 7.2) — broken into 13 Fine and 8
Gross motor abilities.
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Chapter 8

Cognitive Abilities

This chapter outlines the cognitive component of our player model. We present our theoretical
framework, scope, and construction method in 8.1, along with a complete cognitive ability
list. The rest of the chapter explains the abilities, organized by cognitive system, and how
they manifest in existing games.

8.1 Developing Cognitive Model

We use the information-processing model (InfoProc, Fig. 8.1) to understand cognition. We
focus on Perceptual Encoding to Central Processing stages1. Cognition involves three inde-
pendent subsystems (perception, attention, memory) which interpret and process information
[518, p. 146]. We need to find the specific cognitive processes inside these subsystems.

Figure 8.1: Generic Information Processing Model reproduced from Wickens et al. [518,
p. 147]

1Responding is covered by our Motor Model (Ch. 7).
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Scoping: We look to cognitive psychology (CogPsych), Human-Computer Interaction (HCI),
and developmental psychology (DevPsych) to build our broad understanding of the processes
(i.e. abilities) of each subsystems. We include DevPsych because its focus on normative devel-
opment and ability acquisition helps us understand the expected abilities that a neuro-typical
individual will have at different points in human development.

Method: We survey Cognitive Psychology, 6th edition [129], Introduction to Human Fac-
tors Engineering, 2nd edition [518], Psychology: Themes and Variations, 6th edition [515],
and Cognitive Development: Infancy through Adolescence [149] to learn about the subsys-
tems. We supplement this base with citation searching and searching for specific abilities via
GoogleScholar. We scope the resulting abilities to a gaming context2 based on the game’s
communication modalities: audio, video, and haptic. This mainly affects the perception pro-
cesses in our model. To show how each ability fits into gaming, we provide examples of them
in gameplay. This results in 25 abilities summarized in Table 8.1.

System Subsystem Ability Textbook
Facial Recognition 129, 515
Object Recognition 129, 515, 518
Token change detection 129, 515
Type change detection 129, 515
Heading 129, 515
Steering 129, 515

Vision

Time to Contact 129, 515
Audial 129, 515

Perception

Tactile 129, 515
Auditory 129, 515

Selective Attention
Visual 129, 515Attention

Divided Attention 129, 515
Echoic 129, 515

Sensory Stores
Iconic 129, 515
Episodic Memory 129, 515, 518
Semantic Memory 129, 515, 518
Perceptual Representation 129, 515, 518

Long Term Memory

Procedural Representation 129, 515, 518
Phonological Loop 129, 515, 518
Visuo-spatial Sketchpad 129, 515, 518
Episodic Buffer 129, 515
Inhibition 129, 515
Task Shifting 129, 515
Updating 129, 515

Memory

Working Memory

Multi-tasking 129, 515

Table 8.1: List of cognitive abilities found through literature review.

2Per Ch. 4.4 requirements.
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A Quick Aside...

To help show the abilities in gameplay, framed images in this chapter are clickable links
to YouTube videos. Captions reference the particular game and the YouTube creator.

8.2 Perception

This system interprets sensory information, hence it works closely with memory. Percep-
tion abilities are separated by information modality (audial, visual, tactile). We focus on
understanding visual perception since it is the main communication mode in games. Visual
perception has two purposes: recognition (vision for perception) and action planning (vision
for action) [162, 173, 209, 210, 300–303, 352, 372].

8.2.1 Vision for Perception

Underlying processes are object recognition, facial recognition, token change detection (re-
placing an object with one of the same type), and type change detection (replacing an object
with one of a different type) [43, 120, 129, 133–135, 153, 189, 191, 278, 279, 290, 291, 295,
306, 400, 408, 465, 478, 538].

Figure 8.2: Senseless Census (Super
Mario Party) by arronmunroe.

Object recognition is a combination of recogni-
tion by feature composition with semantic memory.
It appears in visual search style gameplay like the
Abandoned House level in Donut County [38]; and
mini-games like Absent Minded (Super Mario Party
[324]) during levels where you have to identify pix-
elated characters. It usually occurs alongside choice
reaction tasks (e.g. Looking for Love, and Sorting Fun
from Super Mario Party), and it can often be a source
of difficulty in games which ask you to tell the differ-
ence between similar looking objects (e.g. Senseless
Census - Fig. 8.2).

Figure 8.3: Making Faces (Super
Mario Party) by arronmunroe.

Facial recognition covers recognizing faces, facial
expressions and their associated emotion. L.A. Noire
[466] interrogations rely on this as players deduce
whether an NPC is lying from their facial expressions
(as noted in the official strategy guides [48]). Facial
recognition is also used in Making Faces (Super Mario
Party [324]), where the player has to place parts of a
face on a blank canvas to accurately recreate either
Mario or Bowser (Fig. 8.3).
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Change detection (token and type) [105, 188, 190] combines object recognition with at-
tention.

Figure 8.4: TCD used to recognize
bomb-able wall spots.

Token change detection (TCD) is when an ob-
ject is replaced by another object of the same type.
It occurs in exploration challenges, like recognizing a
bomb-able wall in Legend of Zelda: A Link to the Past
[330] (Fig. 8.4), or as puzzles/logic challenges like find
paperwork discrepancies in Papers Please [1]. Type
change detection (TyCD) is when an object is re-
placed by another object of a different type, like swap-
ping out a Pikachu for a Charmander in a Pokémon
battle. It is used in spot-the-difference challenges (e.g.
Spot the Addtion in Fable Anniversary [267]).

8.2.2 Vision for Action

Underlying processes are heading (direction orienting), steering (direction movement), and
time to contact [39, 64, 129, 138, 174, 245, 258, 397, 410, 411, 470, 521, 522, 537, 541].

Figure 8.5: Heading/Steering in Sea
of Thieves [388] using diegetic map to
navigate the island.

Heading and Steering respectively cover orient-
ing and moving characters/avatars through the game
space. These are the basic abilities used in exploration
challenges, like Slender: The Eight Pages [363], or the
dream segments of Try to Fall Asleep [10]. Games
with diegetic maps, like Sea of Thieves [388] (Fig. 8.5)
and Firewatch [75], rely more heavily on these skills
as players have no meta-game support. Racing game
series like Mario Kart and Forza also employ these
abilities using the car in place of the player avatar.

Figure 8.6: Night Light Fright
(Mario Party Superstars) by Para-
noia’s Dungeon.

Time to contact allows us to estimate the distance
between ourselves and moving objects. In real life we
use it to help catch thrown objects, or avoid incoming
objects. We use it similarly in games like Night Light
Fright (Mario Party Superstars [323], Fig. 8.6) where
we try to stop an approaching Chain Chomp when it is
as close to us as possible, but not touching us. Time to
contact also factors into reaction time and rhythmic
challenges, like All-Star Swings (Super Mario Party
[324]) where the player tracks an incoming baseball
to be hit at the right moment.
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8.3 Attention

Under a processing model, attention is a set of resources used to engage focus on stimuli
[52, 129, 165, 184, 221, 351, 384]. We subscribe to the multi-store resource pool model which
outlines different resource pools for each sense [165, 221, 351]. In our gaming context we care
about auditory and visual resources. These resources are handled by two processes: selective
and divided attention [65, 88, 129, 254, 305, 384, 476].

Figure 8.7: Snore War (Pokemon
Stadium) by Hawlo.

Selective attention allows us to target our focus
on a specific stimulus by consuming attentional re-
sources. We can focus on multiple stimuli if they
pull from different resource pools, as we have differ-
ent limitations depending on stimulus modality [80,
211]. Selective Attention is important across game-
play. It features in combat mechanics as players must
focus on their opponent’s animations and actions to
respond appropriately. It plays a role in pattern and
rhythm challenges, like Snore War (Pokemon Stadium
[334]), where players must watch a giant swinging pen-
dulum and hit the A button exactly when the pendu-
lum reaches its equilibrium position to hypnotize their
opponents (Fig. 8.7). It is key to reaction time chal-
lenges where it works alongside time to contact to focus on the object in motion. An example
is Rock Harden (Pokemon Stadium [334]) where players must hit the A button at the right
moment to avoid taking damage from a falling rock.

Figure 8.8: Night 4 of Five Night’s at
Freddy’s by Markiplier.

Divided attention allows us to spread concentra-
tion between multiple stimuli of the same type for the
purpose of completing a singular task. It is frequently
a passive challenge in larger games like League of Leg-
ends [395] and Resident Evil 7 [77], where players are
watching for enemies around the environment. It is
also used alongside multi-tasking (a Working Memory
ability, see 8.4.2) when players must monitor multiple
resources while performing other actions. A simple
example is Five Nights At Freddy’s [418] (Fig. 8.8),
where players must survive for a set amount of time
while being accosted by four animatronics. The player

must spread their attention across in-game monitors, and doorways to track the animatronic’s
locations all while keeping an eye on the limited supply of power they have which is consumed
by checking the monitors and doors.
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8.4 Memory

Memory handles information encoding and retrieval. We understand it as a multi-store
model which separates memory into a sensory store, working memory (WM), and a long-
term memory (LTM) [24, 25].

8.4.1 Sensory Stores

Sensory information is temporarily held by echoic and iconic sensory stores [129, 251, 443,
477]. These stores are constantly engaged, taking in sensory stimuli and feeding it to the
perception system. The information only lasts from milliseconds to seconds.

8.4.2 Working Memory

WM holds information for short term processing and thinking. We use Baddeley’s model
[24], which highlights four subsystems: the phonological loop, visuo-spatial sketchpad, central
executive, and episodic buffer[21, 24–26, 98, 99, 129, 253, 308, 312, 482].

Figure 8.9: Baddeley’s Model of Working Memory [24], reproduced from Cognitive Psychol-
ogy, 6th edition[129, p. 212]

Figure 8.10: Spaceteam by TeamHy-
percube.

The phonological loop handles the processing
and creation of sounds. It has two parts: the phono-
logical store (remembers words we hear) and articu-
latory process (rehearses and repeats words) [22, 129,
186, 269, 272, 479, 490]. These parts are essential
in communicating with other players. It is the main
challenge in social games like Spaceteam! [436] (Fig.
8.10) where players have to communicate non-sensical
instructions to keep their space ship going.
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Figure 8.11: Memory Match (Mario
Party) by NintendoMovies.

The Visuo-spatial sketchpad remembers and
processes object and spatial information. It is com-
posed of the visual cache (remembers object shape
and colours), and the inner scribe (remembers object
movement and spatial layout, and transfers informa-
tion to the central executive) [129, 234, 404, 438]. The
visuo-spatial sketchpad is generally needed to inter-
act with game spaces, and is the primary ability for
matching games, like Memory Match (Mario Party
[193], Fig. 8.11).

The episodic buffer integrates information from the phonological loop and visuo-spatial
sketchpad and transfers it to long term memory [23, 42, 129, 163, 401]. It is useful for
developing game knowledge over time.

Figure 8.12: Fruit Ninja gameplay by
Neogaming.

The central executive has four major processes:
inhibition, task shifting, updating the working mem-
ory state, and multi-tasking [21, 92, 129, 144, 271,
304, 308, 454].

Inhibition stops us from responding to certain
stimuli. It is a central element in many games; one
example is Fruit Ninja [177] where the player must
avoid cutting the bombs (Fig. 8.12).

Figure 8.13: Overcooked (Co-op) by
Colin Kelly.

Task shifting refocuses attention between dif-
ferent tasks. It is used frequently as players move
between different activities during their gameplay ses-
sions. For example Overcooked! [155] requires players
to switch between preparing, cooking, running and
cleaning up after food. While they switch between
these tasks they need to watch the progress of the
other tasks so nothing burns or piles up (Fig. 8.13). In
this way, task shifting commonly occurs alongside di-
vided attention and multi-tasking to create difficulty.

Figure 8.14: Suit Yourselves (Super
Mario Party) by NintendoMovies.

Updating adjusts our working mental models
based on new stimuli and information. It is used
alongside other abilities in games like Suit Yourselves
[324], where the player is shown the location of cards
on a board and then the board is rotated (changing
the card position) before asking the player to find a
specific suit of card.
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Multi-tasking is the process of simultaneously doing tasks that have different goals.
It is used across all games; we have already seen examples of this with our examples of Five
Night’s at Freddy’s (Fig. 8.8) and Overcooked (Fig. 8.13).

8.4.3 Long Term Memory

LTM stores two types of learned information: declarative and non-declarative[129, 416, 417,
482]. LTM is built from our experience playing games, and is the foundation of our game
literacy. We use it whenever we interact with a game (as we remember the controls), and it
enables us to engage with more complex processes like problem-solving. While these higher
order processes are out of scope of our thesis, we do reference them to contextualize our LTM
game examples.

Declarative memory has two subtypes: episodic (personal events and specific episodes),
and semantic (general knowledge about the world, concepts, language, etc.)[129, 166, 224,
307, 364, 382, 444, 481, 483, 497, 498, 507, 516]. Semantic memory encodes and retrieves
learned information. For playing video games it is used to learn information about mechanics,
controls, etc. Episodic memory is an ability that encodes and retrieves memories of events
and experiences. In games this helps you remember the plots of the games, and experiences
you had during gameplay and between sessions.

Semantic and episodic memory work together to build strategies and problem solve in
games. Consider you are playing Final Fantasy X [447] and encounter a Bomb enemy. After
five moves, the Bomb explodes, damaging your party but killing itself. The next time you
encounter a Bomb you remember this fact (episodic memory) and know that it is coming.
So you wait to see if it happens after 5 moves again. It does, so now you know that Bomb
enemies explode after 5 moves. This cycle of experience and testing creates information that
then can be encoded into semantic memory about the Bomb enemy which persists between
games. So when you encounter a Bomb in Final Fantasy XII [446] you remember it explodes
after 5 moves, which guides how you approach the fight.

Non-declarative memory has two types: perceptual representation and procedural rep-
resentations [85, 129, 148, 167, 264, 379, 380, 414, 444, 520]. Perceptual representation
is the memory side of recognition; it encodes and retrieves information about the different
stimuli being perceived. It also allows for faster recognition of stimuli that has been previ-
ously encountered and is considered responsible for the priming effect. In games this helps
in the recognition of important items. Procedural representation encodes and retrieves
information about how to perform tasks and actions. In games when you practice a sequence
of controls to pull off a combo in a fighting game, you are relying on procedural representation
of the move.

8.5 Wrapping Up the Cognitive Model

Our current model focuses on very basic cognitive systems, and very functional processes.
While this is sufficient for our scope, it does inherently limit the types of games we can look
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at with this model. Future work should explore how to expand into higher-order processes
for reasoning and problem-solving. Those would enable us to model more abstract types of
gameplay, and they could be useful in modeling how player’s interact with multiple challenges
at once. It is possible that the existing processes are sufficient, as the central executive has
been found to play a large role in task planning, initiation, organization, and monitoring
[129, p. 218]3. However, we would need to explore these abilities in more detail.

Take home points

From this chapter we learned the following meta-lessons:

� We use the information processing model to guide our work, and view cognition
as three independent systems: perception, attention, and memory.

� We find 25 cognitive abilities (Tbl. 8.1) relevant to a gaming context.

� The model is currently geared towards basic, functional processes and would need
more work to address more involved cognitive tasks.

3Notably studied through impairments of executive function.
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Chapter 9

Measuring Player Abilities

Recall we aim to model players and challenges in terms of cognitive and motor abilities. By
combining the motor (Ch. 7) and cognitive models (Ch. 8) we create our full ability set
scoped to a gaming context. We now start working towards measuring these abilities (the
actual modeling of our Player Model).

Cognitive psychology (CogPsych) measures abilities through carefully designed tasks. We
explore literature on existing tasks for our abilities, paying specific attention to their designs,
metrics, and administration. From this search we aim to compile a list of tasks that we could
administer to players to construct their player profiles.

We begin by scoping our search to the abilities used in Button Mashing challenges. From
there we survey measurement methods from CogPsych and present an overview of tasks for
each ability. This list will need to be further refined for actual implementation, but that
process is covered in Ch. 10 for readability.

9.1 Scoping Ability Measurement Survey

We have 46 unique abilities (21 motor, and 25 cognitive), which makes it infeasible to explore
and implement tests for all of them in this singular thesis. Recall our larger goal is modeling
mechanical experiences of gameplay challenges through these abilities. So we choose to scope
our player profiling to the subset of abilities used in the challenge we will model. We focus
on button mashing challenges as the simplest atomic challenge, and therefore base test case
for our model1. From Ch. 14, we identify the following abilities as part of button mashing,
and therefore our current ability search scope:

1. finger pressing,
2. wrist pointing,
3. selective attention,
4. inhibition,
5. object recognition,
6. token change detection,
7. tactile perception, and
8. procedural memory.

1Full scoping rationale for button mashing challenges can be found in Ch. 13.3.
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We conduct a broad search for standardized measures with the goal of understanding
their structure, metrics, and design decisions. We start with Computerized Assessment in
Neuropsychology: A review of tests and test batteries [222], and A Compendium of Neuropsy-
chological Tests [82]. We supplement this base with experimentally-based literature found
through searching for the abilities and tests in PsycInfo (via ProQuest) and Google Scholar.
We report 24 unique test types (Table 9.1). Not all of these will be used in our model; Ch.
10.2 covers our scoping to a subset.

Ability Tests Metric
Finger pressing Finger tapping test No(P)/10s
Wrist pointing Steadiness Test No(probe touches side)

Selective attention &
Inhibition

Simple GNG RTms, No(C), No(I), ErrT
Parametric GNG RTms, No(C), No(I), ErrT
AX-CPT RTms, No(C), No(I), ErrT
Flanker CPT RTms, No(C), No(I), ErrT
TOVA No(C), No(I), ErrT
Stroop Colour-Word Test RTms, No(C), No(I), ErrT

Object recognition

Object detection No(C)
Object Decision No(C)
Object Categorization (broad) No(C), No(I), Acc
Object Identification No(C), RTms

Shape Detection No(C)
Incomplete Letters No(C)
Silhouettes No(C)
Progressive Silhouettes No(C)

Object recognition

Novel object recognition No(C), No(I)

Token change
detection

Canonical CDT No(C)
Partial Report CDT No(C)
Multiple Change CDT No(C)

Tactile perception Haptic ORT No(C), No(I), Acc, TT(feel objects)

Procedural memory

PRT ErrS, Error timestamps
SRTT RTms, No(Err), ErrT
MTT TT(Complete test), No(Err), ErrS

Tests: Go/No-go task (GNG), Continuous Performance task (CPT), Test of variables of
attention (TOVA), Change detection test (CDT), Object recognition tasks (ORT), Pursuit
rotor task (PRT), Serial reaction time (SRTT), Mirror tracing task (MTT)

Metrics: Number of X (No(X )), Presses (P), Correct responses (C), Incorrect responses
(I), Accuracy (Acc), Errors (Err)2, Types of Errors (ErrT), Size of Errors (ErrS) Total time
to X (TT(X )), Response time in X (RTX ), Seconds (s), Milliseconds (ms)

Table 9.1: List of tests for measuring the abilities used in button mashing challenges.

2Errors are treated separately from incorrect responses because it covers all types of errors.
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9.2 Survey of Ability Measurement Methods

We organize the tests by their measured ability. For easy reference, we hyperlink the section
titles (i.e. ability names) to their definitions. We note that our motor abilities are not stan-
dardized, and so there is a possibility that we cannot find specific, formalised, and validated
tests for them. In these cases, we report on tests that seem to approximate the ability. When
describing these tests, we refer to the person being assessed as the “testee” for simplicity.

9.2.1 Finger Pressing

Finger Tapping Test (FTT) (e.g. 32) has the testee press a button with their right-
hand index finger as quickly as possible for ten seconds. FTT measures motor coordination
as the average number of presses across five trials. It takes about one minute to complete
per finger being tested. FTT is predominantly analog; testees are told when to start and
stop pressing, and they use specialized measurement equipment (a box with a single button).
Computerized versions substitute the box with a keyboard or mouse, and visually indicate
when to start and end tapping. Computerized versions vary on whether miss-clicks are
counted as errors, or whether they invalidate the trial.

9.2.2 Wrist Pointing

There are no tests for this ability. We explore broad motor coordination tests, like the Trail
Making Test, Grooved Pegboard Test, and Purdue Pegboard Tests. These focus on studying
manual dexterity, but from their descriptions rely on multiple wrist abilities. The closest
approximation to wrist pointing, as we understand it, is the Steadiness Test.

Steadiness Test (e.g. 192, 435) is similar to the children’s game Operation [216]. Testees
place a probe into holes of various diameter on a steel sheet. They must hold the probe in
the hole without touching the sides for a specified amount of time (90 seconds in Simon [435];
20 seconds in Hudgens et al. [192]). Touching the sides results in a buzzer noise. The tester
records how frequently and for how long the probe touched the side (based on buzzer). The
specialized equipment makes this test exclusively analog.

9.2.3 Selective Attention and Inhibition

These abilities always appear together and so are measured via the same tests. We present
the general test structures. We focus on visual attention tests because we are working in a
gaming context, which is a predominantly visual medium. However, the test structures are
the same for other modalities, with just the stimuli changed.

Go/No-go Tests (GNG)

Testees respond to stimuli based on a specified behaviour rule (e.g. press the left button
when the target stimulus appears). GNGs record testee response times, the number of
correct/incorrect responses, and error types. Different error types (i.e. contexts) reflect
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inhibition or selective attention. Consider a task where testees must press the space bar
when an A is shown on screen, and nothing when an X is shown. Given the sequence A-A-
A-A-A-A-X, a testee who presses the space bar on X would be showing a lapse of inhibition.
By virtue of their design, GNG also measure processing speed.

GNG rules, response actions, and stimuli vary in context and complexity [252]. We can
conceptually categorise GNG as simple and parametric based on their complexity.

A simple GNG has one behaviour rule and one target. For example, in Konishi et al.
[239] a screen shows two square outlines (e.g. left and right squares). In each trial only one
square will light up either green or red. When one of the squares is green, the testee must
press the key associated to the side of the square as quickly as possible (i.e. if left square is
green, press the left key). When there is no green square the testee should not press anything.

Figure 9.1: Reproduced image of levels in Parametric
Go/No-go Task from Langenecker et al. [252].

A Parametric GNG changes
the behaviour rules and target set
during each level of the test. For
example, in Langenecker et al. [252]
a screen shows a series of letters one
at a time; the testee must do the
specified response based on the tar-
get letters (Fig. 9.1). The target
set and response become increas-
ingly complex as the testee moves
up in levels. At Level 1 the tar-
get must press the response button
whenever the screen shows X, Y, or
Z. Level 2 reduces the target set to
X and Y; the testee now must only
respond when the stimuli alternate
(i.e. if you see an x twice, do not
press it the second time). Level 3
keeps the behaviour rule the same,
but reintroduces Z as a target.

Continuous Performance Tests (CPT)

CPT are similar to a simple GNG conducted over a longer period of time. Their goal is to
force long task-engagement so that testee responses become somewhat automatic, ensuring
that errors accurately reflect inhibition and selective attention [259]. CPT record the same
metrics, and use the same error type logic to measure inhibition and selective attention. They
also measure sustained attention due to their long duration, and processing speed based on
response time. We explore three common CPT: the AX-CPT, the Flanker CPT, and the
Tests of Variables of Attention.
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The AX-CPT [428] displays letter sequences to the testee, who must press one button

Figure 9.2: Reproduced AX-CPT se-
quences from Lesh et al. [262].

(“Z” on keyboard) when they see an A-X sequence,
and a separate button (“/” on keyboard) for all other
stimuli (Fig. 9.2). There are four sequences: one tar-
get (A-X) and three distractors (A-*, *-X, *-*; where
* represents any letter not A or X). The ratio of tar-
gets to distractors varies between AX-CPT instances,
but all designs favour target sequences [29]. A single
AX-CPT session consists of 4 blocks, each with 10 to
40 trials (individual letters). At its longest, AX-CPT
instances can take up to 45 minutes to complete [29].

Flanker CPT (F-CPT) [126] displays five adjacent stimuli (Fig. 9.3), where the third

Figure 9.3: F-CPT Trial Types.

(i.e. middle) image is the target (an arrow) and the
other images are distractors (either line segments or
arrows)3. The testee must respond depending on the
direction of the target (e.g. click left mouse button
for left arrow, right mouse button for right arrow).
F-CPT sessions are 144 trials (one display) long. Tri-
als are either neutral (distractors are line segments),
congruent (distractor arrows point in the same wdi-
rection as target), or incongruent (distractor arrows
point in different directions). The trial types are ran-
domly distributed, and the experiment is not divided
into blocks.

Test of Variables of Attention (TOVA) [259] are simple GNG (one target stimulus,

Figure 9.4: TOVA target
(a) and non-target (b) stim-
uli.

one non-target stimulus, testee responds only to target) where
the stimuli appear in separate locations (Fig. 9.4). TOVA
administers two trial sets: a target-heavy trial (3.5:1 target to
non-target [259], or more than 50% target) and a non-target-
heavy trial (1:3.5 target to non-target [259], or less than 50%
target). The target-heavy set measures inhibition, while the
non-target-heavy set measures selective attention. Completing
a set takes about 11 minutes for anyone above 10 years-old
[259].

3The original test used letters, but most versions use arrows because they are culturally neutral [241].
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Stroop Colour-Word Test

Figure 9.5: Stimuli for Stroop Colour
Word Test. Image (a) is an example
of congruent stimuli, and (b) is in-
congruent stimuli.

A two-phase, predominantly analog, test where tes-
tees must read-aloud from a written list of colours,
either saying the word as written or the font-colour.
For example, if given Fig. 9.5b, and asked to read
the words, a testee should say “blue, green, red, yel-
low, gray, black”. However, if they are asked to
read the colour they should say “yellow, black, gray,
green, blue, red”. Stimuli are either congruent (word
matches the font colour) or incongruent (word does
not match font colour), though congruency can also
be measured in degrees of similarity (e.g. when the
word and its font colour do not match but begin with
the same letter like the word BLACK in blue font)
[371]. Computerized versions may substitute reading-
aloud for pressing a button for congruent stimulus,
or pressing a specific button based on the font colour
[63, 371]. Like other attention tasks, Stroop tests uses
error rates and types to measure selective attention,
and inhibition. Computerized versions also collect re-
sponse times to measure processing speed.

9.2.4 Object Recognition

We found three types of object recognition tasks (ORT): object detection, object identifi-
cation, and novel object recognition. The object detection and identification tasks come
from Grill-Spector and Kanwisher [171], and the Visual Object and Space Perception Battery
(VOSP)[514], and use real world objects. Novel object tasks are more varied following the
procedure by Richler, Wilmer, and Gauthier [394].

Figure 9.6: Reproduced
VOSP example from
Carone [82]

Object Detection (OD-ORT)

Testees identify whether the stimulus is a real object or not.
They do not have to name the object, hence the separation
from object identification tasks. For example, Grill-Spector
and Kanwisher [171] shows the testee either a target (a real
world object) or non-target (a scrambled real object covered
in textures or dots) image for a short time (max 167ms), then
removes the image and gives testees two seconds to decide and
respond via button press. OD-ORT may also present stimuli
simultaneously. For example, the VOSP Object Decision Test
has testees pick out the real object silhouette hidden beside
three fakes (Fig. 9.6). OD-ORT record correct and incorrect
responses.
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Object identification (ID-ORT)

Testees “name” the real world object they are shown (i.e. perceive and recognize the stimu-
lus). ID-ORT “naming” happens implicitly via categorization or explicitly by verbal response.
All ID-ORT collect correct and incorrect response data, which is used to calculate accuracy.
Some also collect response time as a measure of processing speed.

Categorization Tasks: Testees must quickly and correctly identify a picture to its cate-
gory. Grill-Spector and Kanwisher [171] presents two main tasks: broad categorization ,
and within-category identification . Both follow the same structure: testees are shown
a picture for up to 167 milliseconds, then the picture is obscured and testees have 2 seconds
to identify the stimulus. For broad categorization this was identifying the stimuli as ei-
ther a face, bird, dog, fish, flower, house, car, boat, guitar, trumpet. For within-category
identification the testees had to identify whether the stimuli was of a specific exemplar
of the category (Face: Harrison Ford, Bird: pigeon, Dog: German Shepard, Fish: shark,
Flower: rose, House: barn, Car: VW beetle, Boat: sailboat, and Guitar: electric guitar) or
not (“other”).

Naming the Stimulus: Testees must identify stimulus that are either obscured or in sil-
houette. VOSP presents four tests: the Shape Detection Test, Incomplete Letters, Silhouettes,
and Progressive Silhouettes. Shape Detection testees must identify if there is an “X” on
20 degraded images (Fig. 9.7a). Incomplete Letters has testees identify 20 letters that are
degraded by either 70% or 30% (Fig. 9.7b). Silhouettes has testees identify 30 increasingly
difficult silhouettes of animals or common objects photographed from unusual views (Fig.
9.7c). Progressive Silhouettes has testees identify an object (either a handgun, or a trum-
pet) from an incomplete/degraded silhouette (Fig. 9.7d). Testees who do not identify the
object are shown up to ten progressively clearer silhouettes. Progressive silhouettes stands
out as it calculates performance as the number of images needed to identify both objects
(e.g. if it took 5 images to identify the handgun, and 2 to identify the trumpet the score is
7; max score is 20).

(a) (b) (c) (d)

Figure 9.7: Example stimuli from VOSP ID-ORT, reproduced from [82].
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Novel object recognition (N-ORT)

The general structure of N-ORT is to show the testee a target image, then after a delay
present them with multiple similar options and ask them to select the one they had been
shown. The stimuli are generally Greebles [152] (Fig. 9.8a), nonsense figures which each
have four parts that systematically vary along shape (“family”) or orientation (“gender”)4.
However, there are studies that use rotated and edited images of real world objects (e.g.
385), and physical objects have been used to study OR in mice following a similar process
(e.g. 124). N-ORT collect the testee’s correct and incorrect responses to calculate accuracy,
and response times to understand processing speed.

(a) Greebles organized by gender (plok/glip)
and family (samar, osmit, galli, radok, tasio).

(b) NOMT example test using Ziggerins repro-
duced from Richler, Wilmer, and Gauthier [394].

Figure 9.8: Classical elements of a novel object recognition study.

The quintessential N-ORT is the Novel Object Memory Test (NOMT) [394]. Testees
start with a learning phase (18 trials) where they are shown three views of an object, and then
must pick which object they just saw from three options. The testees are then shown a final
view of all novel objects for 20 seconds before the real test begins. For the rest of the test (54
trials) testees must select the target object from the three options (Fig. 9.8b). Rajalingham,
Schmidt, and DiCarlo [385] run an N-ORT without Greebles. Testees do not have a learning
phase; instead they are shown the test image and are then immediately tested. The whole
process can be seen in Fig. 9.9.

Figure 9.9: Trial structure from Rajalingham, Schmidt, and DiCarlo [385]. Note: their paper
states in the body of the text that the fixation is for 500ms, but the image says 200ms.

4Not all N-ORT use Greebles as there are other similar stimuli like Ziggerins [530].
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9.2.5 Token Change Detection (TCD)

Change detection tasks (CDT) have testees identify changes between an initial scene and
second scene. Depending on the implementation, testees may be asked if there was a change
(yes/no question), or to identify the change. Feuerstahler et al. [137] identify three types
of CDT: canonical, partial report, and multiple change (Fig. 9.10). All types capture the
correct and incorrect responses which they compare to the set size, and number of changes.
Response time can also be captured, though CDTs tend to focus on accuracy.

Figure 9.10: Types of CDTs repro-
duced from Feuerstahler et al. [137].

Canonical CDT (Fig. 9.10a) makes up to one
change between scenes and asks testees if they no-
tice a change. For example, Vogel, Woodman, and
Luck [511] presents a scene of one to twelve coloured
squares for 100ms, hides the scene for 900ms and then
reveals the second scene for 2000ms. Testees indicate
a colour change via button press; about 50% of tri-
als are changes. The total test runs 30 to 45 minutes
long.

Partial report CDT (Fig. 9.10b) makes up to
one change, and asks testees if they notice a change
in a particular element. For example, Maxcey-Richard
and Hollingworth [285] show testees a workshop scene
one item at a time, with a high or low pitched tone
playing alongside each item to indicate the likelihood
of this item being the target (high pitch indicating
higher likelihood). After presenting 6 items, the test
draws a green box around an item in the scene and

testees must indicate if the item changed by pressing one of two buttons. Like Canonical
CDT, 50% of the trials had changes. Partial report CDTs minimize “decision noise”, but
could increase errors because of remembering non-cued items and potential location binding
(where the features of the object are remembered but its location is lost)[137].

Multiple change CDT (Fig. 9.10c) changes any number of elements between scenes,
but keeps the set size (total number of stimuli on screen) the same. Like Canonical CDT,
testees only indicate if they think there was a change. Gibson, Wasserman, and Luck [156]
use this to compare visual memory of humans and pigeons. Each testee sees an initial scene
of 8 objects for 1 second, followed by a delay (i.e. blank screen) for 1 second, and then a
second set of objects for 1 second. Human trials change the scene 50% of the time, with an
equal likelihood of 1, 2, 4, 6, or 8 objects changing.

83



PhD. Thesis – S. Soraine McMaster University – Software Engineering (HCI)

9.2.6 Tactile Perception

Figure 9.11: Example trial and line
drawings, reproduced from Grunwald
et al. [172].

Tactile perception provides information about the ob-
ject being held, particularly quality information (e.g.
weight, size, number, texture, firmness) and spatial
information (e.g. orientation of object, layout of ob-
ject elements, position relative to us). It is measured
through haptic ORT. Most of the these tasks emu-
late visual ORT, and other perception tasks with the
stimuli replaced with something tactile. For example,
Grunwald et al. [172] mimic a N-ORT by etching 12
abstract lines (i.e. meaningless shapes) into a metal
plate, having testees feel the shapes, wait 10 seconds
and then attempt to draw them from memory (Fig.
9.11). They record how long testees spent feeling the
shapes, and the accuracy of the drawings (i.e. how
many were correctly remembered).

9.2.7 Procedural Memory

This ability integrates many other abilities, and so is difficult to isolate. We find three types
of tasks that incorporate procedural memory: pursuit rotor tasks, choice reaction time tasks,
and mirror tracing task.

Pursuit Rotor Task (PRT)

PRT is a motor coordination task where a target circle moves along a circle track at a fixed
speed and the testee must keep their cursor on the dot [313]. There are two sets of four
trials each; the first set asks testees to use their dominant hand, while the second asks for the
non-dominant. Each trial is about 15 seconds (though implementations may vary), bringing
the whole test to be about two minutes long. The test records error magnitudes (how far
off target) and times (when errors occurred). Procedural memory is measured through the
errors; the task involves predicting the movement of the target based on recalling how it
moves and matching your motor movement to it.

Choice Reaction Time Tasks (CRTT)

CRTT are a family of tests similar to GNG, where testees perform a context-based response
action to a stimuli (e.g. choosing which button to press in responses to a target image).
CRTT vary along the number of choices presented, types of responses, and target properties
(e.g. placement, type, modality, etc). Like GNG, it measures abilities through error types
and contexts. A common CRTT is the Serial Reaction Time Task (SRTT), where testees
push one of four buttons in response to the stimulus appearing in a specific location on the
display. Target locations may be in a row (e.g. 489) or in the four cardinal directions (e.g.
426). Responses can also be tied to the target type (e.g. 233). SRTT are often divided into
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multiple trial sets; one set being randomized, with the others following repeating patterns
like GNG.

Mirror Tracing Task (MTT)

Testees trace an on-screen image with their mouse, while the controls are reversed (i.e.
moving the mouse left moves the cursor right). There are three trials: two practice trials
where testees trace a line and an L respectively, and a final trial where testees must trace
a star shape. Measures are often in the form of time taken to trace the shape, and errors
(deviations from the tracing line). Implementations vary shapes to trace and whether the
task is timed. For example, Renna et al. [389] measures persistence by limiting the trials at
60 seconds for the practice trials, and 7 minutes for the star.

9.3 Summarizing Player Ability Measurements

From this survey, we have a better understanding of how to measure each ability. However,
many of these measures are part of proprietary analog batteries. They also require specialized
equipment, or were generally only feasible in a strictly controlled lab setting.

We realise that we need to build our own test battery to gather all of these measures in
one place. This poses a challenge as some abilities may be quite difficult to measure without
specialized equipment (e.g. Steadiness test), or very long testing sessions (e.g. continuous
performance tasks). Luckily we also find that many of the task designs for cognitive abilities
overlap, and often collect the same metrics. With this understanding we move into Ch. 10
where we choose which measures to implement, and explore how to do that.

Take home points

From this chapter we learned the following meta-lessons:

� We focus on abilities specific to button mashing to make their exploration more
feasible and likely to produce a complete model.

� We identify 24 unique test types over 6 abilities (Table 9.1).

� Motor measures often require specialized equipment that may be difficult to repli-
cate digitally.

� Cognitive measures significantly overlap in task design and metrics.
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Chapter 10

Designing the Mini-Game Battery

We want to create a test battery which provides the information we need to construct a
player profile. We decide to create our own versions of the ability measures from Ch. 9. This
allows us complete control and flexibility over the task variables and outputs.

As we aim to model players in a gaming context, it seems appropriate to implement this
test battery as a game-based assessment (GBA). GBAs are games which build their core
mechanics and challenges around the measurement [250], such that players only perceive the
game and not the assessment. There has been some evidence that GBAs engage testees more
than standard digitized assessments [250, 268] and decrease test anxiety [250, 284]. Using
GBAs would encourage players to tap into their existing gameplaying schema, potentially
giving us insight into their at-home game playing behaviour and a more realistic understand-
ing of their abilities when playing games. For our test battery, we can use our knowledge of
the measurement tasks from Ch. 9 to design a series of mini-games targeting specific abilities.

This chapter covers the design of our test battery mini-games. We start by identifying
project constraints, and setting criteria for the ability measures we can implement. We
use these to prune our potential tests (Table 9.1) into a shortlist that could be reasonably
translated into games. We then explain our role in the design of the test battery. Sasha
is “project supervisor” on the design and implementation of the mini-games
and battery framework. The test battery implementation is the work of several
undergraduate level students for their Capstone project, and M.Eng student,
Vansh Pahuja. We then provide a high-level description of the mini-games, summarizing
their target ability, base test, and metrics. The design details and inspirations are in App.
A.2 to keep the body of this thesis concise.

10.1 Constraints and Criteria for Test Selection

Our survey outlines 24 tests (Table 9.1), many of which require specialized equipment, or
very long sessions. Our test battery aims to measure abilities through a series of mini-games
playable in a single session. It is unreasonable to subject a player to all of these tests
(especially multiple ones that take thirty minutes or more!). To this end we outline criteria
to refine the test list, and identify constraints on the battery implementation which further
reduce our options.
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10.1.1 Constraints

The design and development of the test battery framework occurs during the height of the
Covid-19 Pandemic. Campus closures and lockdowns impact our ability to use lab equip-
ment for developing and validating the battery. Since it is unclear how long these physical
constraints will be in place, we impose the following design constraints on the project:

� the tests will be run on computers since we cannot run something on a console; and,

� the interface will be limited to keyboards because we cannot guarantee that partic-
ipants have an external device (e.g. controller) or even an external mouse (using a
laptop trackpad will skew the results between participants because of the method of
interaction).

Essentially we can only construct tasks that are digital and use discrete, button-based
input. This means that options like the pursuit rotor and mirror tracing tasks are not
possible. Trying to replace fluid motor movements that are achieved either by joystick or
freehand with combination button movements changes the complexity of the task and is less
accurate of a measure.

A Quick Aside...

COVID-19 campus closures ended after the development of the battery framework
and initial mini-game implementations. Even though these constraints may not seem
necessary now, they significantly affected this project’s scope and how we could validate
the battery.

10.1.2 Criteria

We consider the criteria when selecting tests:

Cr.1 Tests should be directly applicable to the gameplay context we’re testing;
Cr.2 Tests should be relatively short in order to not make the overall battery excessively

long;
Cr.3 The final selection of tests should not have unnecessary redundancy (i.e. we do not

need several tests for the same ability when one test with multiple levels of difficulty
could suffice); and

Cr.4 Tests should be easily adaptable into games.

These criteria support the gaming context of our assessments, and keep the overall length of
the battery short.

Gaming context: Cr. 1 and 4 aim to strengthen the “game feel” of the battery. Cr.
1 says it is important for the task structure and goals are meaningful in a game context.
For example, the Object Detection task relies on “real” and “fake” objects; however, players
frequently encounter “fake” objects (like impossible weapons, and items) in games that are
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meaningfully real in the context of their play. Therefore it may not be a useful structure
for our work. Cr. 4 supports this by asking us if this structure exists in commercial games.
If a task seems similar to existing mini-games it means that players already have schemas
for engaging with it and we may get more reliable measures. For example, the mail sorting
mini-game in Legend of Zelda: The Wind Waker [327] and Sort of Fun in Super Mario Party
[324] both use the structure of Categorization tasks (Fig. 10.1). These criteria together
make us more inclined towards categorization tasks over detection tasks for measuring object
recognition.

(a) Mail sorting in Legend of Zelda: The Wind
Waker [327]

(b) Sort of Fun in Super Mario Party[324]

Figure 10.1: Examples of commercial gameplay that mirrors the structure and goals of cat-
egorization tasks.

Time: Cr. 2 and 3 are useful for keeping the battery length short. Given a set of tests
for an ability, these criteria lead to picking one short version of tests. For example, selective
attention and inhibition have six potential tests: two Go/No-Go (Simple GNG, Parametric
GNG), three continuous performance tasks (AX-CPT, Flanker, TOVA), and the Stroop test.
Continuous performance tasks are long (often over 20 minutes) so we can eliminate them
as options (Cr. 2). We now have three to pick from (Simple GNG, Parametric GNG, and
Stroop). Considering Cr. 3, we lean towards the Parametric GNG as its structure allows
for more variation in difficulty type and level through changing target stimuli and response
behaviours. We can also apply these to reduce overall games needed. Consider procedural
memory, a parametric GNG is incredibly similar to a choice reaction task (CRT). A game
designed as a parametric GNG could easily output information that is also applicable to
procedural memory, reducing the overall length of the battery.

10.2 Selection of Tests for Ability Battery

We use our criteria to arrive at a refined list of tests (Table 10.1). These tests serve as a
guide for the game design, and a starting point for the teams developing the mini-games.
Not every test will be implemented, as there is still some redundancy in the list.

1Errors are treated separately from incorrect responses because it covers all types of errors.
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Ability Tests Metric
Finger pressing Finger tapping test No(P)/10s

Simple GNG RTms, No(C), No(I), ErrT
Parametric GNG RTms, No(C), No(I), ErrT

Selective Attention &
Inhibition

Stroop Colour-Word Test RTms, No(C), No(I), ErrT
Object Categorization (broad) No(C), No(I), Acc
Object Identification No(C), RTms

Shape Detection No(C)
Incomplete Letters No(C)
Silhouettes No(C)

Object recognition

Progressive Silhouettes No(C)
Canonical CDT No(C)
Partial Report CDT No(C)

Token change
detection

Multiple Change CDT No(C)
Procedural memory SRTT RTms, No(Err), ErrT
Tests: Go/No-go task (GNG), Change detection test (CDT), Serial reaction time (SRTT)

Metrics: Number of X (No(X )), Presses (P), Correct responses (C), Incorrect responses (I),
Accuracy (Acc), Errors (Err)1, Types of Errors (ErrT), Response time in X (RTX ), Seconds
(s), Milliseconds (ms)

Table 10.1: Viable ability tests on which to model mini-game ability battery tests.

Explaining Cuts: All tests for wrist pointing and tactile perception, and two tests from
procedural memory (pursuit rotor and mirror tracing) are eliminated because they require
specialized equipment we could not access (i.e. Constraint reason). All continuous perfor-
mance tasks (CPT) are eliminated due to their lengths (i.e. Criteria reason - Time). Object
Detection and Object Decision tasks are eliminated because they focus on if something is
an object, which is less important in a gaming context than identifying what an object is
(i.e. Criteria reason - Gaming context). We eliminate novel object recognition tasks be-
cause, when considering their structure in a gaming context where all items may be novel,
they overlap considerably with identification tasks (i.e. Criteria reason - Gaming context &
Redundancy).

10.3 Design of Tests for Ability Battery

With a list of potential tests we could start designing the mini-games and building the battery
framework. Sasha supervises two undergraduate capstone groups in the production of the
battery framework. She also supervises one Masters of Engineering student in the creation
of several mini-games. Sasha’s contributions to these projects are:

� project scoping and direction,
� defining requirements and constraints,
� providing initial inspirations leading to game designs (particularly for Masters student),
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� making sure mini-game design reasonably follow ability measures and providing design
advice to this end,

� game design testing,
� empirical validation of games (see Ch. 11 for details)

The result is seven unique games, five of which are relevant to our research: Digger,
Stage, Cake, Recipe, and Looking. The other two (Feeder, and Rockstar) target non-button
mashing related abilities, and so do not fit our work. The five relevant mini-games emulate
various commercial mini-games modified to implement a specific ability test for one button
mashing ability. A sample of commercial gameplay that aligns with ability tests is covered
in App. A.1. Table 10.2 summarizes the gameplay, target ability, test inspiration, and a
Mario Party mini-game example for each implemented game2. Each game outputs its all
interaction events, so we know the button pressed, the event time, and trial. From these we
can calculate the appropriate metrics for each ability based on the test base. Details about
the game designs and parameters, along with links to the GitHubs can be found in App.
A.2.

10.4 Summarizing Mini-game Battery Design

In refining the list of ability tests from 24 to 14 we were able to get a better idea of how
to design games in our test battery. We pull on our game knowledge to connect existing
mini-games to ability measures, thus creating inspirations for the games we could make. Our
work here is the foundation for two capstone projects and a Masters project, the results of
which are an implementation of our test battery and seven unique mini-games. Future work
can expand on this battery to incorporate different types of tests now that we are no longer
limited by Covid-19 restrictions.

For our thesis, we now have to validate the test battery. We aim to show that it can
reasonably measure player abilities, and therefore can be used to create player profiles.

Take home points

From this chapter we learned the following meta-lessons:

� Our test battery is a game-based assessment to get a more realistic view of ability
use in gaming contexts.

� We had to refine our list of ability tests to ones that met our time (i.e. playable in
a single session) and gaming context goals, and our COVID-19 related constraints.

� We supervise the design and implementation of the testing battery framework,
and 7 unique ability-testing mini-games (the 5 relevant to thesis are presented in
App. A.2).

2Each game was inspired by many mini-games and other commercial gameplay moments. This just serves
to illustrate the various ways the games are similar.
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Game Description Ability Base Test Mario Party Examples
Digger: Mash the button to dig for treasure. FP FTT Will Flower [197]

Stage: Watch the actors walk on and off the
stage; decide if there were any changes to the
actors when they come back.

TCD C-CDT Curtain Call [195]

Looking: Select the target item from the set,
or press X if it is not there.

SelAtt &
Inhib

GNG Looking for Love [324]

Cake: Sort the food on the conveyor belt into
the correct bin.

OR OCT Sort of Fun [324]

Recipe: Sort the correct pair of candies into
the shipping box, and place all others in the
recycling.

OR, SelAtt
& Inhib

ID-ORT,
GNG

X-Ray Payday [323]

Legend: Finger Pressing (FP), Token change detection (TCD), Selective Attention (SelAtt), Inhibition (Inhib), Object recog-
nition (OR), Finger Tapping Test (FTT), Canonical Change Detection Test (C-CDT), Go/No-Go Test (GNG), Object catego-
rization task (OCT), Object Identification task (ID-ORT)

Table 10.2: Summary of games implemented for battery.
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Chapter 11

Player Profiling in Action

We aim to show that the Mini-Game Ability Battery (MGBatt) is a reasonably valid (i.e.
accurate) and reliable (i.e. precise) measure of player abilities. We run a validation-by-
correlation study to show sufficient convergent validity (i.e. evidence of measures capturing
the same constructs [81]) between MGBatt and the Psychology Experiment Building Lan-
guage (PEBL) [310] battery tests. PEBL is widely used [311], and most of its test imple-
mentations are validated (e.g 227, 374), making it sufficient for our purposes. We also test
MGBatt for test-retest reliability (i.e. consistent agreement of test-retest scores for the same
individual measured at different points [8]) as part of this study.

We start by explaining the rationale for our study, and formalizing our validation and
reliability conditions (hypotheses). We then outline the study design, procedures, and other
relevant information. We present the results of our correlations, with details in App. B.
We discuss our (mixed) results, focusing on potential explanations, study limitations, and
directions for follow-up studies. We conclude the study by deciding which mini-games will
be used to create player profiles.

A Quick Aside...

It is important to recall that the actual goal of this thesis is showing that if we
compare competency profiles to player profiles we can predict mechanical achievability
(i.e. the jutsu concept). Validating MGBatt as sufficiently measuring player abilities
is just a stepping stone to validating jutsus.

11.1 Why a correlational study?

We use a validation-by-correlation paradigm to test convergent validity between MGBatt
and PEBL, and MGBatt’s test-retest reliability. Validation-by-correlation is common across
domains for showing convergent validity between different measurements (e.g 158), and is
the basis of factor analysis which is used to validate many tools (e.g. 4, 232). We aim to
show that:

1. MGBatt scores reasonably correlate with PEBL scores (validity by correlation); and,
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2. MGBatt scores reasonably correlate between tests (test-retest reliability).

11.1.1 Measures of Correlation

In order to check for validity and reliability we need to establish how we will measure corre-
lation.

Validity: We practically consider validity to mean the participant with the best perfor-
mance (i.e. score) on the PEBL measure ought to have the best performance on the associ-
ated MGBatt game. The overlap between cognitive abilities, individual differences between
participants, and human variability between tests, can all impact the strength of a linear
correlation between measures. Given these factors, it seems more reasonable to look for rank
correlation between scores (as is common in developmental psychology [182]). To this end, we
use Spearman’s Rank Correlation (ρ) as our validity coefficient. Unlike Pearson’s
r1, Spearman’s ρ makes no assumptions about data normality, and does not try to fit the
data to a linear model, just a monotonic one [407]. We choose to also report r to get an idea
of whether any linear correlation may exist between the mini-games and existing measures.

Reliability: We practically consider reliability to mean an individual’s MGBatt scores
reasonably correlate, and the rank order of the participants is consistent. While intuitively
we would use Pearson’s r, there is documented concern about its ability to detect agreement
between measures [8, 240, 539]. Intraclass correlation (ICC), which represents the statistical
similarity of multiple ratings within individuals [8], is a common alternative but is susceptible
to bias when sample populations have little to no variability [182]. Considering our view
of reliability it seems appropriate to capture both Pearson’s r and ICC as our
reliability coefficients. We calculate r as normal to gauge general correlation between
the test and retest as an adhoc “consistency” check. ICC calculations differ depending on
whether it is capturing consistency or absolute agreement [240]. Following guidelines from
Koo and Li [240], we use IBM SPSS Statistics (SPSS version 29) to calculate ICC using
a two-way mixed effects model for absolute agreement with a 95% confidence interval. By
comparing these two values we will judge whether reliability is sufficiently met for our games.

11.1.2 What is “reasonable correlation”?

The bounds of “sufficient” or “reasonable” correlation vary between contexts [81]. Fraenkel,
Wallen, and Hyun [142, p. 334] state that generally validity coefficients should be at least
0.5, and reliability coefficients should be at least 0.7, with higher being better for both.
Hedge, Powell, and Sumner [182] note that “good” reliability reports often range from 0.6 to
0.9, and that researchers generally call any coefficient reported “adequate” or “satisfactory”.
Koo and Li [240] rule of thumb is that, given at least 30 heterogeneous samples and 3
raters (i.e. 3 separate measures), ICC values less than 0.5 indicate poor reliability, 0.5 to
0.75 indicate moderate reliability, 0.75 to 0.9 indicate good reliability, and greater than 0.9

1Pearson’s r requires the data is reasonably parametric and the relationship is linear [407].
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indicates excellent reliability. We use these base values (r and ρ: 0.7, ICC: 0.5) as target
thresholds, but rely on our context to define the lower bounds of “reasonable”.

MGBatt is for player profiling in a game design context, so we do not hold it to the same
levels of scrutiny as clinical measures. We consider our data set to be sufficient for analysis
with a minimum 30 data points per test2. We set our analysis confidence level at α =
0.053. Given this context, we deem the lower bound for “reasonable” Pearson and Spearman
correlations are their critical significance values: Pearson r > 0.349 [513] and Spearman
ρ > 0.306. We adhere to the ICC coefficient rule of thumb [240] to gauge appropriateness of
ICC values4. We summarize our goals into specific hypotheses statements:

Hypotheses:
H1 The MGBatt is valid if the participants’ MGBatt scores positively correlate to

the associated PEBL scores at ρ ≥ 0.7.
H2 The MGBatt is reliable if participants’ MGBatt scores between sessions positively

correlate at r ≥ 0.7 and ICC ≥ 0.5.

We consider correlations above critical significance values (ρ > 0.306 and r > 0.349)
to be significant (and thus worth further investigation).

11.2 Study Design

Figure 11.1: Lab setup.

We use a within-subject design
to generate two paired datasets
(MGBatt-PEBL scores, and MGBatt-
MGBatt scores).

11.2.1 Apparatus

Lab setup: The experiment is
run in the G-ScalE lab on Mc-
Master University’s main campus
(Information Technology Building,
Room 128). The room is setup to
have two participants run the
experiment at the same time (Fig. 11.1). The two testing stations are oriented such that
participants cannot see each other. The lab also has a rest area set up to emulate a living
room, with a set of couches, a coffee table and a television.

230 samples is the point where data will begin to display normal distribution qualities (i.e. Central Limit
Theorem) and so is a rule of thumb minimum for many research fields.

3Meaning that p-values ≤ 0.05 are considered significant.
4While p-values are generated for ICC values, they are considered irrelevant [8]. Instead confidence

intervals are more important in reporting [8], and they are fixed at 95% in our calculation.
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Figure 11.2: Example of
participant at a testing sta-
tion.

Hardware: Each testing station is equipped with a Windows
10 desktop (i5-4670k 3.40 GHz processor, 16 Gb RAM, Nvidia
Geforce GTX 780Ti graphics card), 30-inch monitor, a full size
wired USB keyboard (K120-TAA Logitech), wired USB mouse
(B100-TAA Logitech), and a pair of wired over-the-ear head-
phones (Beyer Dynamic DT 990). Participants are positioned
26-inches away from the monitor to maintain ergonomics. Fig.
11.2 visualizes this setup. In keeping with Covid-19 safety
guidelines, the testing stations are wiped down with disinfect-
ing wipes between participant sessions. Headphone ear muffs
are also covered with disposable caps to ensure sanitary use.

MGBatt: The mini-games descriptions are in Ch. 10 and App. A.2. Participants play
three sets of five games. Each set of games is tuned easy, medium, or hard as per Table
11.1. The increasing difficulty taxes each ability more, and captures more robust measures.
Participants always start with the easy set, then the medium, then hard. We randomize the
game order inside the set. Participant output is saved in JSON data files.

Game Variables Easy Medium Hard
Digger DigAmount 35 60 80
Looking AverageUpdateFrequency 18 6 3
Recipe AverageUpdateFrequency 18 6 3

AverageDispenseFrequency 2 1.5 1
Cake

FoodVelocity 2.5 3 3.5
Stage DiffLevel 1 2 3

Table 11.1: Configuration settings for Mini-games at different difficulty levels.

PEBL [310]: We select six PEBL tests, implemented as per the PEBL Manual [309] and
the PEBL Wiki (Table 11.2). We choose these tests because of their focus on one of our
target abilities, either by being a digital implementation of an analog measure or via task
design. To reduce overall PEBL length to match MGBatt run time, we adjust the number
of trials per segment in any task over 200 seconds — this is a cut-off of just over 3 minutes
per test. We randomize the task order for each participant.

11.2.2 Procedure

Pre-session: Potential participants complete our Pre-Study Survey on Google Forms (App.
B.2) which collects their consent, demographic information and gaming history. In this survey
participants are informed this is an unpaid study. We screen participants for eligibility on
age (18-64 years old) and gaming history (play games at least once a week). We contact
eligible participants to schedule them for an in-lab validation session.

5While this test’s response time is unlimited, we assume participants will respond within 1 second based
on our pilot testing.
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PEBL Test Abilities used Description Time
Speed tap-
ping test

Fine motor skills (Finger
pressing)

Tap a key as quickly as possible. 80s

Four choice
response time

Reaction time, Selective At-
tention, Visual Processing
(Object recognition and visu-
ospatial sketchpad)

Respond to a plus sign that appears in
one of the four corners of the screen

125s

Flanker Task Selective attention, Reac-
tion time, Inhibition

Make direction response with distrac-
tion

387s

Object Judg-
ment (Invari-
ant)

Visual Processing (Object
recognition, and visuo-
spatial sketchpad)

Determine whether two polygons are
identical while manipulating shape, ori-
entation, size.

150s5

Object Judg-
ment (Abso-
lute)

Visual Processing (Object
recognition and visuo-spatial
sketchpad)

Participants are shown a polygon, then
after a delay they are shown two more
and have to select which of the two new
polygons match the original

188s

LuckVogel Change detection (token
change detection), Working
Memory capacity

When shown two scenes with a short
delay in between, select whether the
second scene is the same or different
from the first.

480s

Table 11.2: List of PEBL tests used for our correlational study. Information in this table
comes from The PEBL Manual V2.0 [309] and the test implementation in PEBL 2.0 [310].
Bolded text indicates the main ability we are using the test to study. Time is measured in
seconds (s).

Validation Session: We greet participants and lead them to their testing stations. We
assign participants a letter-group to determine the order of their measurements (Group A:
PEBL then MGBatt, Group B: MGBatt then PEBL). After completing their first measure-
ment, participants are given a 5-minute break in the waiting area. Participants then return to
their testing station to complete the second measure. Once the session is complete, we thank
participants for their time and schedule the reliability session for one week in the future.

Reliability Session: We greet participants and set them up at the same testing station
with the same configuration file from their validation session. We treat participants as a
single group since they are only completing the MGBatt. Once the session is complete, we
thank participants again and they are free to leave.

11.2.3 Participants

31 participants (20 male; 11 female) complete our validation session; 16 are in Group A, 15 in
Group B. Three (2 male; 1 female) could not return for their reliability session. Participants
ages range from 18 to 30, with a mean of 23.0 years (σ 3.9). 5 self-identify as having some
form of disability that may impact their performance in tasks requiring attentional control
and executive functioning. 87% of participants report playing games for more than 10 years.
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Most participants play frequently during the week (42% 2-4 times a week; 48% 5 or more
times a week) for roughly an hour each session (48% 1-3 hours; 35% 0.5 - 1 hour)6. They
commonly play on computer (87%) and smartphone/tablet (65%), and report preferences
towards Action7 (65%) and Roleplaying Games8 (48%) — though Action-Adventure and
Strategy9 are close (39% each).

11.3 Study Results

We now present the results of our study. We start by explaining our analysis method and
then present the validity and reliability results. For conciseness, we present the results in
tabular form. We then discuss only the significant results and general reasons why we believe
the results look this way. Full data analysis and discussion can be found in App. B.4.

11.3.1 Analysis Method

We collect data electronically via PEBL and MGBatt. Our analysis process involves:

1. Initial preparation and cleaning,
2. Data processing,
3. Statistical analysis

Initial Preparation and Cleaning

Process raw data: We use custom Python scripts to process MGBatt’s raw event data
into accuracy and reaction time values for each trial. This matches PEBL’s data format, to
allow for easy analysis. The only exception is Digger and Tapping which report individual
button press information; we report these in press rates (presses/second).

Organize data sets: We pair MGBatt and PEBL data as per Table 11.3, such that we
have a validation dataset with every participants’ initial MGBatt and PEBL scores for all
games/tasks. We then create a second data set for reliability data, such that each partici-
pant’s initial MGBatt score is paired with their retest scores. We clean these sets by removing
pairs with missing data.

Data Processing

Selecting performance measures: We identify appropriate performance metrics for each
ability (Table 11.3). We select these based on task design. For example, in a game where like
Looking both speed (i.e. reaction time) and accuracy (i.e. correct responses) are important
to evaluating the ability, compared to a game like Cake where the speed is fixed so only
accuracy matters.

6Inspite of this only 61% of participants self-identify as gamers (70% of males; 45% of females).
7Code includes shooters, platformers, fighting games, party games, and pure rogue-likes.
8Code includes MMOs, RPGs, JRPGs, Rogue-likes/Rogue-lites with strong RPG elements.
9Code includes RTS, MOBAs, Tower Defense, and Base-building games.
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Game PEBL Test Ability Targeted Performance Measure
Digger Tapping Finger tapping/

Finger pressing
Press rate (press/ second)

Object Judgment
(Invariant)

Cake
Object Judgment
(Absolute)

Object recognition Accuracy

Flanker Inhibition
Recipe

Four Choice Selective attention
Flanker Inhibition

Looking
Four Choice Selective attention

Stage Luck Vogel Token Change De-
tection

Rate Correct Score (correct
responses/ second)

Table 11.3: Tested Mini-game and PEBL Pairings and their measurements.

A Quick Aside...

We originally analysed just accuracy measures for all cognitive abilities. However, ac-
curacy measures are only reliable for showing individual differences when participants
make sufficient errors, and the speed-accuracy trade-off is controlled for by fixing re-
action times or making them irrelevant [118]. The game/task designs make accuracy
scores not useful for games except for Battery’s Cake. We ran the accuracy analyses
anyway so details can be found in App B.3.

Transforming Data: We integrate accuracy and reaction time data into a rate correct
score (RCS) [529]:

RCS =
Accuracy

RT

=

Number correct responses∑
Trials∑
RT∑

Trials

=
Number correct responses∑

RT

This represents the number of correct responses per second in each game, and can meaning-
fully capture differences in participant choices for speed-accuracy trade-off. RCS has been
shown to be a valid way to integrate reaction time and accuracy data (e.g. 495).

Statistical Analysis

Custom Python scripts using Pandas, SciPy, Statsmodels, and Seaborn were used to perform
descriptive and correlation analysis on the cleaned data and generate graphs. SPSS version
29 was used to run ICC calculations. Given our participants could have individual differences
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which make significant deviation plausible and reasonable, we decide to handle outliers on
a per case basis and leave them in the analysis. Ad-hoc graphs and analysis were done in
Excel and SPSS version 29 when necessary. All custom Python files are available on Sasha’s
GitHub for review.

11.3.2 Validity Results

All datasets meet our minimum sampling requirements. Due to a PEBL measurement error
in Tapping, and Battery measurement error in Recipe those datasets have only 30 available
data points. Table 11.4 reports the correlation results using all 30 data points. Detailed
discussion about the data can be found in App. B.4.

Pair Validity (rounded to 2 decimals)
Game PEBL No. Obs. Spearman ρ Pearson r
Digger Tapping 30 0.77∗∗∗ 0.74∗∗∗

Looking Four Choice 31 0.38∗ 0.37∗

Looking Flanker 31 0.21 0.42∗

Cake Object Judg-
ment (Invariant)

31 0.36∗ −0.02

Cake Object Judg-
ment (Absolute)

31 −0.01 −0.09

Recipe Four Choice 30 0.40∗ 0.44∗

Recipe Flanker 30 0.34 0.30
Stage Luck Vogel 31 0.44∗ 0.56∗∗

Significance: not significant ( ), p < 0.05(∗), p < 0.005(∗∗), p < 0.0005(∗∗∗)

Table 11.4: Summarized validity results from correlation analysis of minigames and PEBL
tests. Rows highlighted in green support our validation hypothesis, rows highlighted in yellow
show positive correlation and require further discussion.

Recall we focus on the Spearman correlations, with evidence of validity at ρ ≥ 0.7 and
significant correlations worth further investigation at ρ > 0.306 (assuming p ≤ 0.05). Digger
and Tapping strongly correlate (ρ = 0.77, p < 0.0005), suggesting it is a valid measure of
Finger Pressing. The correlations for Looking-Four Choice (ρ = 0.38, p < 0.05), Recipe-Four
Choice (ρ = 0.40, p < 0.05), Cake-Object Judgment Invariant (ρ = 0.36, p < 0.05), and
Stage-Luck Vogel (ρ = 0.44, p < 0.05) cross our significance threshold. We interpret this
to mean Looking, Cake, Recipe and Stage may have a stronger relationship than we could
detect in this small-scale study, and are worth investigating further. Flanker did not correlate
with either Looking (ρ = 0.21, p = n.s) or Recipe (ρ = 0.34, p = n.s). Cake and Object
Judgment (Absolute) did not correlate (ρ = -0.01, p = n.s).

11.3.3 Reliability

We do not meet our minimum sampling requirements for reliability correlation. As well,
during data cleaning participants with measurement errors are removed, causing some pairs
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to dip below the expected 28 observations. Therefore we cannot draw any conclusions
about the reliability of the mini-games or how they compare to our hypothesis.

However, from basic looks at Pearson r, Spearman ρ, and ICC10 (summarized in Table
11.5), Digger (r = 0.83, p < 0.0005; ICC = 0.79, p < 0.005) shows promise of being reliable
(r ≥ 0.7, ICC ≥ 0.5). Looking meets the ICC threshold (ICC = 0.58, p < 0.005), but not
the Pearson threshold (r = 0.66, p < 0.0005). Cake almost meets both the Pearson (r =
0.68, p < 0.0005) and ICC (ICC = 0.49, p < 0.005) thresholds. Stage and Recipe do not
show reliability.

Game No. Obs Pearson r Spearman p ICC
Digger 27 0.83∗∗∗ 0.81∗∗∗ 0.79∗∗

Looking 26 0.66∗∗∗ 0.60∗∗ 0.58∗∗

Recipe 27 0.60∗∗ 0.68∗∗∗ 0.39∗∗

Cake 28 0.68∗∗∗ 0.49∗ 0.49∗∗

Stage 28 0.43∗∗ 0.32 0.41∗

Significance: not significant (), p <0.05 (∗), p <0.005 (∗∗), p <0.0005 (∗∗∗)

Table 11.5: Summarized reliability results from correlation analysis of mini-games vs mini-
games measured one week apart.

11.4 Discussing the Validity Data

Since we cannot draw any conclusions about reliability due to the insufficient sample size,
we focus this discussion on the validity results.

The most obvious reason for our low-correlations, and therefore mixed results, is the
limited sample size leading to low power in the study. This is an unpaid study that required
participants to come into the lab for two-sessions, one-week apart. The lack of compensation
limits the number of participants, as this commitment is unappealing without incentives. We
tried to accommodate for this by setting our sample minimums, but overall a larger sample
size could improve correlation strength and provide clearer results.

11.4.1 What about data clustering?

If we decide to take this low sample size data at face value, the low correlations could be
due to the significant data clustering we see in the scatterplots (found in App. B.4). We
think some potential reasons for this are: a fairly homogeneous sample clustered around
peak performance, the potential for priming based on task design overlap, poorly tuned task
difficulty, and ability isolation in task design.

Homogeneous Sample: Due to recruitment criteria and location we have a fairly homo-
geneous sample (relatively able-bodied, university educated, between 18 and 30, significant

10Recall ICC is calculated as an absolute agreement coefficient using SPSS via a Two-Way Mixed Effects,
Single rater paradigm. This is in accordance with guidelines for test-retest reliability [240]
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gamers). This is compounded by the participants’ general preference towards action-games
(a genre requiring quick reactions, decision making, and other abilities that overlap with
those we measure). There is evidence their gaming history could lead to higher performance
in assessments of cognitive abilities [392]. Similar abilities, leads to similar measurements,
leads to clustering.

Priming: Since MGBatt and PEBL are measuring the same abilities, participants may be
primed by the first assessment they complete and so do better in the second. While the
partitioned groups are too small to be meaningful, comparing Stage and Luck Vogel’s data
by group (Fig. 11.3) shows Group A’s correlations (ρ = 0.59, p = 0.02, r = 0.71, p = 0.003)
are stronger and more significant than Group B’s (ρ = 0.45, p = 0.083, r = 0.6, p = 0.014).
This could indicate that the PEBL-first participants in Group A performed better in Stage
because they are primed for these cognitive tests. It could also be that Group A just has
stronger participants for this task (as we note P04 is a strong outlier who should not be
removed as per App. B.4).

(a) Group A. (b) Group B.

Figure 11.3: Comparing Luck Vogel vs. Stage Rates by group.

Task Difficulty: The score distributions (Table 11.6) show us whether our measurement
tasks are well-tuned. We expect a well-tuned task’s score counts are normally distributed,
potentially skewed to the right for our sample population. Comparing MGBatt to PEBL
score distributions, we can infer their difficulty relative to each other in ways that could
explain their (lack of) correlations. Difficulty disparity between paired tasks could
create correlation coefficients that are not good representations of the measures.

Cake and Object Judgment: We see almost every participant received a perfect score
— meaning the correlation calculation is difficult because the scores are almost constant. This
suggests that Cake is too easy of a measure. In comparison, Object Judgment Absolute’s
distribution is so far from normal and fairly uniformly divided that we can tell it was hard
to the point that participants may have been guessing. This basic view tells us be wary
of any correlations we see with Cake; and contextualizes why the Spearman for
Cake-Object Invariant may be good, but the Pearson is so off.
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Looking, Recipe, Flanker and Four Choice: Looking and Recipe’s normal-like
distributions are a closer match to Four Choice’s also normal-like distribution instead of
Flanker’s heavily skewed scores.

Stage and Luck-Vogel: Stage’s distribution is steeper and more compressed than
Luck-Vogel’s distribution. As well Stage has lower scores. These elements suggest that Stage
is much harder than Luck Vogel. This may be because of how Luck-Vogel presents the
stimuli: in a central contained area so participants can more easily see all of them at once.
In comparison, Stage’s stimuli are larger, more animated, and spread out more across the
screen. These attributes could be making Stage significantly harder than PEBL even though
both are measuring the same construct.

Ability Isolation: Abilities are not mutually exclusive in task design or cognition, so mea-
sures incorporate some amount of error due to this overlap. Weak correlations between
tasks that should target the same ability may be the result of different support-
ing abilities. For example, Looking is based on a choice reaction task, so we expect higher
correlations with Four Choice Reaction Task. However, Looking asks participants to identify
the target item in spite of distractors (similar looking items), where Four Choice only asks
participants to select the quadrant where the stimulus appears. As well, Looking adds a non-
trivial fifth choice — identifying if the target item is not a part of the presented set. This
extra cognitive load from decision making could lead to weaker correlation. Knowing we
are unlikely to get strong correlations due to poor ability isolation, we are more
likely to consider correlations greater than the critical values with significant
p-values as targeting the same ability.

11.4.2 Potential Latent Variable: Perceiving MGBatt as a Game

Participant Engagement: Participants seem more engaged with MGBatt; they were
more likely to be leaning forward, talking to themselves, or nodding their head as they
played the mini-games. Many commented on the music and sound effects being “catchy”
and described mini-games as “fun”. In comparison, participants describe PEBL as “frus-
trating” and “clinical”. They look more serious and focused, sitting further back and not
moving or talking to themselves in the same way. A couple of participants expressed that the
mini-games felt like they were over quicker than the PEBL tests, and were surprised when
we showed them the timings that indicated they were exactly the same. Participants would
offer advice on how to make MGBatt more “fun” or “fair”. For example, in the Looking and
Recipe games which follow a Go/No-go structure, participants suggested that we constantly
have the “go” condition displayed so they don’t have to remember it. This would remove a
core quality of the assessment, but would align more with commercial games and decrease
difficulty. There were no suggestions offered as to how to improve PEBL, though participants
were very vocal about the tasks they felt were frustrating (Object Judgment - Absolute condi-
tion).While we have no formal data on their perception of PEBL and MGBatt, the frequency
of this kind of adhoc feedback could indicate that participants approached them differently.
The expectation that PEBL was “serious” and therefore something they needed
to pay more attention could have skewed their performance higher for PEBL
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Battery Task Score Distribution PEBL Task Score Distribution

Looking
(Reasonable)

Four Choice
(Reasonable)

Recipe
(Hard)

Flanker
(Easy)

Stage
(Hard)

Luck Vogel
(Reasonable)

Cake
(Easy)

Object Invariant
(Good)

Object Absolute
(Hard)

Table 11.6: Score distributions for each Battery game and PEBL task. Distributions are
labeled for their inferred difficulty tuning. Distributions are “good” if normally distributed,
“reasonable” if they fit our expectation of normally distributed with slightly peaked and
right-tail skew, “Easy” if they are exponential, and “Hard” if they are highly compressed.
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tasks. Similarly the view of MGBatt as “entertaining” could have caused them
to be more relaxed and error prone leading to worse performance.

Game Literacy: Perceiving MGBatt as a game could have led participants to believe they
could rely on their game literacy to carry their performance. We notice that participants
frequently skim or skip instructions to get to the game, only to realise they do not know
the controls or what they are supposed to be doing. This happened in both the validity
and reliability sessions, often resulting in input errors as participants would then press the
wrong button (e.g. pressing Right shift as “no change” in Stage instead of Left shift) or
forget options (e.g. forgetting that you can press ‘X’ to indicate the target item is not in the
set for Looking). Participants were vocal about these mistakes both to themselves during
play, and to us after their sessions. This kind of instruction skipping did not seem to happen
with PEBL tests. Modern games often forgo tutorials and written instructions to allow
participants to “figure out” the controls and how to play. It is possible MGBatt’s game-
feel gave participants the impression they would have more space to practice
or learn on-the-fly, and that the mini-games would provide more feedback and
assistance to support their learning of the mechanics and controls.

11.4.3 Controlled Variables

Fatigue: Back-to-back 20-minute assessments in the validation study means that the sec-
ondary measure could be affected by participant fatigue. We try to accommodate for this
by counterbalancing the order via groups, and providing the the 5-minute break between
segments. However we do not have a way to quantify the effects of fatigue or systematically
account for it. This could make already difficult tasks significantly harder. As well, there
could be fatigue inside each assessment as tasks are somewhat repetitive. MGBatt attempts
to alleviate this by randomizing the game instances so you are not playing the same game
consecutively; PEBL on the other hand presents all trials for a measure at once before moving
to the next randomized task.

Task Switching: Since there are no breaks between the tasks inside a testing condition
(PEBL, MGBatt) there may have been non-trivial task switching overhead. We attempt to
account for this through task randomization. This would distribute task switching effects
across the sample, which should reduce the effect of task switching on the overall data.

11.5 Conclusions from the Study

While we could only establish validity for Digger, our study results show promise for the
validity of Looking, Recipe, Cake, and Stage. Despite the small sample size reducing study
power and possible correlations, the fact that all the mini-games in MGBatt cross our signifi-
cant correlation threshold (ρ > 0.306, p > 0.05) suggests that a larger study may validate the
other games. Given this interpretation, we think it seems feasible to use MGBatt
games to measure abilities for a player profile. However, we need to be cognizant of
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the limitations of specific games (particularly Cake, Recipe, and Stage) due to their difficulty
tuning, and ability overlap.

Future Work. Generally this work could be improved with a larger sample size, and a
more diverse participant pool. Work looking to further develop this battery should focus on
improving the MGBatt games, validating the games against other measures, and expanding
the set of available games. We particularly discuss next steps for improving the games.

Better difficulty tuning: Games need to be better-tuned for measuring abilities. Dif-
ficulty needs to come from the ability-task relationship; consider Cake, the perceived difficulty
comes from the speed of the conveyor belt (i.e. time-based stress) rather than the underlying
ability. Improving its difficulty to really measure object recognition would require more com-
plex categorization. However, the trade-off between “game-feel” and assessment difficulty
needs to be further examined. For example, Looking’s differences from a classic Four Choice
task preserved its game-feel, but also introduced latent abilities that seem to obscure the
relationship between the tasks.

Player Perceptions: As MGBatt is a game-based assessment tool it is important to
capture that “game-feel”. However, we did not anticipate the ways that it may lull partic-
ipants into being more error prone. Future work should explore these implications further
and see whether other groups replicate this trend. As well, going forward, these comparison
measures should include more qualitative data about the ways participants engaged with
each measure to see if there are any other latent variables to consider.

Take home points

From this chapter we learned the following meta-lessons:

� Our Mini-game Ability Battery games can be feasibly used to measure their
associated player abilities.

� Rate scores are more reasonable and insightful than raw accuracy scores or reac-
tion times for our measurements.

� The small, homogeneous group (mostly young, able-bodied, self-reported gamers)
could be the reason we are seeing skewed data; future work would need to recreate
this with a larger, more heterogeneous sample.

� The player’s perception of the MGBatt as a “game” versus PEBL as a “test”
may influence how they approach it (and then how they perform).

� We should have collected qualitative data about player perceptions to see if we
could explain the results more.
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Chapter 12

Closing Remarks: The Player Model

We end Part II with all the tools we need to make our Player Model. We develop the cognitive
and motor ability set (Ch. 7 and 8) to describe players, and the Mini-Game Ability Battery
(Ch. 10; some validation evidence in Ch. 11) to measure their abilities. We combine these
into player profiles. Player profiles (Def. 3.2) visualize a specific Player Model instance.
They are the quantitative model that will allow us to understand mechanical achievability.

We start this chapter by explaining how we construct player profiles from player data. We
then explore the idea of a player homunculus — an imaginary player made from statistical
data. We use the player homunculus and a specific player profile to show how we can analyse
players against each other. We end this chapter with ways to improve player profiling, and
a summary of this whole part.

12.1 Constructing Player Profile

Using P30 from the validation study as an example, we construct a profile in four steps:

1. Measure player abilities via Mini-Game Ability Battery.
2. Find the minimum value, mean, and standard deviation for sample scores.
3. Scale player scores.
4. Plot player profile.

We complete steps 1 and 2 in the validation study (Table 12.1).

Sample Population
Ability P30 Scores Mean σ
Finger Pressing 90.09 77.62 12.09
Selective Attention 1.36 1.13 0.21
Inhibition 0.80 0.72 0.12
Object Recognition 1.00 0.95 0.08
Token Change Detection 0.24 0.20 0.05

Table 12.1: P30 Scores and Population Descriptive Statistics from Validation Study.

As per Design Decision 5, we normalize P30’s ability scores to the same scale using min-
max scaling, with the max and minimum values capped at ±3σ from the mean. This allows
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us to easily visualize and compare abilities, without losing the meaningful information from
the ability units. For each ability, the scaled score is calculated as:

ScoreScaled =
(Score− (Mean− 3σ))

((Mean + 3σ)− (Mean− 3σ))

We plot the scaled scores on a radar graph, and display the actual scores in callout boxes.
We indicate motor abilities with a blue circle marker, and cognitive abilities with a purple
diamond marker. Fig. 12.1 represents P30’s specific player profile. Based on the markers’
positions relative to the radar rings, we see P30 particularly is overall reasonably adept at
these skills (close to the 0.75 ring).

Figure 12.1: P30’s Player Profile from Validation Study. Legend: p: Button presses, c:
Correct Responses, T: total number of trials, s: Seconds

12.2 Player Homunculus

Figure 12.2: Player Homunculus: Average Player from
Validation Study Population

Player profiles can also represent
imaginary players based on statis-
tical distributions and values. We
call these imaginary player profiles
a player homunculus1 (PH). We
construct a PH in the same way we
would a regular profile. For exam-
ple, consider an imaginary “average
player” from our validation study,
whose abilities are set to the mean.
We present their PH in Fig. 12.2.

1After the Motor Homunculus in Penfield and Rasmussen [370].
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A PH can be useful for understanding players in relation to some persona, like the “average
player”. Imagine if we are designing a game and we tune its difficulty around the validation
study’s “Average Player” PH (Fig. 12.2). We can compare this PH to the profiles of P01
(Fig. 12.3a) and P30 (Fig. 12.3b) to get a quick idea of how significantly they differ in
abilities. From this look, we see that P01 seems to have lower abilities than the PH. This
could indicate they may struggle with the gameplay. In comparison P30 has higher abilities
than the PH, which could indicate they will be able to handle the gameplay. This quick short
hand allows us to make some hypotheses about the mechanical achievability of a game based
on the mechanical achievability of the PH (calculating mechanical achievability is covered in
Ch. 20).

(a) P01 (b) P30

Figure 12.3: Comparing Player Profiles from the Validation Study against the Player Ho-
munculus of the “Average Player”.

12.3 Improving Player Model

Future work on our ability-based player model should take two directions: expanding our
existing measures, and gathering more data.

Expanding: Our current model only captures five abilities (1 motor, 4 cognitive). Ex-
panding the Mini-Game Ability Battery to look at the other abilities in our set (20 motor, 21
cognitive) would enable us to have more complete player profiles. This expansion would need
to be robust, and so should validate both the existing and new games against other standard
measures. As well, the five abilities we currently capture should be further examined. As we
note in Ch. 11, games capture multiple abilities. Therefore finding ways to combine measures
that overlap in abilities, and adding new tasks that target these existing five abilities would
allow for more redundancy and robust understanding of the player’s actual ability levels.

More data: We currently have data about a small, fairly homogeneous sample of players.
While this is sufficient for our thesis, our player model could be more useful if we have
normative data for different player demographics. Currently we show how PH are useful for
comparing a player to the sample average. Imagine how much more useful it could be if we
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could construct PH for specific target demographics like neurotypical, able-bodied 10-year
olds, or 17 year olds with cerebral palsy. Doing so would require larger studies focusing on
finding normative data.

12.4 Wrapping Up

What we learned in this part:

� Existing models are inappropriate for our ability-based work because they are
either too abstract (e.g. player typologies) or they are not specific to gaming
contexts (e.g. GOMS).

� Our player model, inspired by the information processing model, focuses on basic
cognitive and motor processes in a gaming context.

� Abilities (especially cognitive ones) are difficult (or virtually impossible) to isolate
for measurements, so task designs often capture multiple abilities.

� Our game-based assessment of abilities are sufficient for approximately measuring
player abilities.

� Tuning measurement task difficulty to find a person’s ability limits is incredibly
hard to do.

What we produced in this part:

� A motor model of 21 abilities (Tbl. 7.2);

� A cognitive model of 25 abilities (Tbl. 8.1);

� A battery of ability testing mini-games (Tbl. 10.2) implemented by two capstone
groups and an MEng student under Sasha’s supervision;

� Evidence of convergent validity for Digger, and suggested evidence of validity for
other mini-games (Tbl 11.4) and a pilot set of reliability trends (Tbl. 11.5);

� A method for constructing player profiles (Ch. 12.1) from player data; and,

� The idea of the player homunculus (Ch. 12.2) for modeling imaginary players
from statistical values.
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Part III
The Challenge Model

We now cover the challenge model. We focus on modeling gameplay via challenge com-
petency profiles (Def. 3.3). We originally conceived this model in our Masters work [442],
and formalized it in our journal paper, “Mechanical Experience, Competency Profiles, and
Jutsu”[441]. For completeness, we quickly review existing challenge frameworks, our def-
inition of challenges, and our method for constructing challenge competency profiles, as
described in these works (Ch. 13). We build from this starting point by: expanding the
existing competency profiles to incorporate cognitive abilities from our player model (as per
Design Decision 1), and experimentally validating our competency profiles.

We scope our work to focus on Button Mashing Challenges. We review the existing Button
Mashing Challenge competency profiles and expand their cognitive abilities (Ch. 14). We
design a series of studies to validate and explore button mashing competency profiles (Ch.
15). We validate the expanded competency profiles using multiple regression modeling (Ch.
16). We explore how these competency profiles change in responses to over and underloading
limiting abilities (Ch. 17), and how player’s perceptions change as well (Ch. 18). We end
this part by presenting the final challenge models for Button Mashing games, reflecting on
the lessons we learned about gameplay challenges, and highlighting potential next steps for
this work.



Chapter 13

Background on Challenges

A Quick Aside...

The majority of this content has been presented in our paper: ‘‘Mechanical Experience,
Competency Profiles and Jutsu” [441]. Minor additions and changes have been made
for clarity.

Challenges are the unit tasks of gameplay, such that a full game is just a series of challenge
[7, 115, 136, 293]. We are interested in understanding challenges in isolation to see how they
build upon each other. To do that we need a working definition of a challenge.

The term “challenge” has been used to describe both gameplay activities and difficulty,
which can make understanding its definition confusing. We focus on the use of challenge
as a gameplay activity. Existing works from this angle (e.g. 7, 136, 505) differ on the
specific definition of challenges, but agree that a challenge is an ability contest with win/loss
conditions that are fundamentally characterized by a set of goals (i.e. what you are trying
to do) and mechanics (i.e. how you can do it). We synthesize the various definitions into our
working definition:

Definition 13.1. A gameplay challenge is any in-game activity with a success con-
dition which engages the player in a way that requires some level of proficiency in at
least one dimension (physical or cognitive).

Now that we have a working understanding of challenges, we can approach the problem of
modeling them.

We begin by succinctly covering existing frameworks for describing challenges, from which
we synthesize the components of a “good” challenge description (Def. 13.2). We then re-
hash our method for distilling atomic challenges, and analysing their required abilities. We
illustrate this method with an example. We end this chapter by scoping the rest of our work
to studying the Button Mashing family of challenges as a way to validate our method of
challenge construction and the specific button mashing competency profiles.
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13.1 Existing Challenge Frameworks

We look to identify atomic challenges –– challenges that are mutually exclusive in their goals,
context, and mechanical experience (MX). We found six frameworks for analysing gameplay
and categorizing challenges [7, 47, 115, 136, 293, 505]. To decide if we can use one of these
lists, we need criteria to judge their challenge descriptions. Ideally, a challenge description
should include the in-game mechanics and the mechanism of interaction between the player
and game (i.e. the inputs and outputs). The mechanics will let us understand the goals and
actions of the challenge. The mechanisms of interaction provide the mechanical context and
some insight into the MX. Adequate coverage of mechanics and mechanisms of interaction is
only reached when we can differentiate between two similar challenges using the framework.

While we explore the works in the follow paragraphs, we can summarize the results easily.
All frameworks covered the in-game mechanics; none included the mechanisms of
interaction. The coverage of in-game mechanics were insufficient to differentiate
similar challenges for each framework. We did not expect frameworks to discuss the
mechanisms of interaction as generally work on understanding challenges tries to focus on
the gameplay apart from the system context. However, we are surprised at the different ways
mechanics and presentation were discussed.

Kinesthetic/Non-kinesthetic challenges. Veli-Matti views challenges as either kines-
thetic (requiring non-trivial psycho-motor effort) or non-kinesthetic (requiring non-trivial
cognitive effort) [505]. They further breakdown non-kinesthetic challenges as either static
(i.e. puzzles, challenges with one singular solution) or dynamic (i.e. strategic, challenges with
potentially many solutions). While this conceptual view reflects the nature of challenges as
ability contests, it does not capture the mechanics to a sufficient level to differentiate chal-
lenges, nor does it capture the mechanisms of interactions to highlight the different types of
motor and cognitive demands of the challenge.

Gameplay patterns. Bjork and Holopainen describe common gameplay patterns, combi-
nations of which are analogous to challenges [47]. For example the pattern aim & shoot (“the
act of taking aim at something and then shooting it”) describes a common form of gameplay
in first-person shooter games. While patterns do well at describing what is happening and, to
an extent, the mechanics of the challenge, we do not get information about the mechanisms of
interaction. Even though we get a sense of the mechanics of the gameplay through patterns,
we cannot easily differentiate between similar challenges. Consider the aim & shoot pattern
again; combining it with guard (“to hinder other players or game elements from accessing a
particular area in the game or a particular game element”), characters (“abstract representa-
tions of persons in a game”), and enemies (“avatars and units that hinder the players trying
to complete the goals”) can describe gameplay as different as protecting Ashley in Resident
4 [76] (Fig. 13.1a), protecting Baby Mario in Yoshi’s Island [347] (Fig. 13.1b), or defending
Romani Ranch from aliens in The Legend of Zelda: Majora’s Mask [331] (Fig. 13.1c).

PLAY, GAME, META Bricks. Djaouti et al. create a system of “bricks” whose combi-
nations describe gameplay [115]. The “PLAY” bricks describe player actions, “GAME” bricks
describe goals, and “META” bricks are the combinations of PLAY and GAME bricks that
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(a) Resident Evil 4. (b) Yoshi’s Island. (c) Majora’s Mask.

Figure 13.1: Examples of different gameplay that all use the aim & shoot pattern.

create families of challenges. While the mechanics are covered, mechanisms of interactions
are not. As well, we run into issues of differentiating between similar challenges.

Feil and Scattergood [136] Challenge Taxonomy. Feil and Scattergood identify six
challenges: time, dexterity, endurance, memory/knowledge, cleverness/logic, and resource
control [136]. They define these challenges broadly, making it difficult to understand the
underlying mechanics. This generally makes it difficult to differentiate between similar chal-
lenges. There is no discussion about the mechanisms of interactions.

Adams [7] Challenge Taxonomy. Adams defines ten major challenges, subdivided into
thirty specific ones (Table 13.1). The specific challenges are not clearly defined, often relying
instead on a series of examples to characterise the challenge’s gameplay. The examples given
show how broad many of the challenges are; meaning we cannot easily differentiate between
similar challenges, since diverse ones are often lumped.

McMahon, Wyeth, and Johnson [293] Refined Taxonomy. McMahon, Wyeth, and
Johnson refine Adams taxonomy through an expert focus group, leading to only sixteen
challenges. The refinement grouped together multiple types of challenges, and in our opinion,
has made it more difficult to see each challenge type as describing a singular type of gameplay.
Nuance about presentation and mechanics are not covered in this refinement. There is no
discussion of the mechanism of interactions.

13.1.1 What is a good challenge description?

Having not found a suitable existing framework, we create our own taxonomy of atomic
challenges. We use Adams [7] as a starting point because it understands challenges as having
physical and cognitive requirements, and is grounded in gameplay examples. This reflects
our ability modeling goals, and makes it easier to figure out what Adams intended for the
challenges and how we can expand on them.
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Challenge Type Challenges
Speed and Reaction Time
Accuracy and Precision
Timing and Rhythm

Physical Coordination

Learning Combination Moves
Formal Logic Deduction and Decoding

Pattern Recognition
Static Patterns
Patterns of Movement and Change
Beating the Clock

Time Pressure
Achieving something before someone else

Memory and Knowledge
Trivia
Recollection of objects or patterns
Identifying spatial relationships
Finding keys (unlocking any space)
Finding hidden passages

Exploration Challenges

Mazes and Illogical spaces

Conflict

Strategy, tactics, and logistics
Survival
Reduction of enemy forces
Defending vulnerable items or units
Stealth
Accumulating resources or points (growth)
Establishing efficient production systems
Achieving balance or stability in a system

Economic

Caring for living things

Conceptual Reasoning

Sifting clues from red herrings
Detecting hidden meanings
Understanding social relationships
Lateral thinking
Aesthetic success(beauty or elegance)

Creation and Construction
Construction with a functional goal

Table 13.1: Gameplay Challenges from Adams [7, p. 19-20]

Before we dive into making our own list of atomic challenges, we want to be clear on what
our model (i.e. challenge description) must cover.

Definition 13.2. A good challenge description must delineate between similar chal-
lenges, and so includes the following:

1. the in-game mechanics associated to the challenge,

2. the mechanism of interaction between the player and the game, and

3. the intrinsic competency profile (i.e. the particular cognitive and motor abilities
used to complete the challenge).
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13.2 Refining Adams to Atomic Challenges

Recall Design Decision 4: challenges are distinct when they have different abilities or observ-
able differences in their ability requirements. With this in mind, we refine Adams taxonomy
through an iterative process.

1. Clarify Adams: Adams challenges are presented inconsistently; some explain the
mechanics, others are explained solely through examples. We look through his work for
clues about the experiences he is describing. The major challenge type hints at whether
the challenge is more physical or cognitive. Any written definitions, if provided, give us
insight into the mechanics and sometimes a mechanism of interaction. We play and observe
others play any examples and document similarities between them to try and approximate
the challenge. Through this process we arrive at a consistent, specific, definition for Adams’
challenges. However, this definition is not yet precise enough.

2. Find Support: We search across genres and systems to find other gameplay instances
that fit our new definition. This gives us insight into how a particular challenge can present
in different contexts. There is no easy way to systematically search for this information, so
we rely on our subjective knowledge of games to lead this search. Our collective gaming
experience1 spans more than 20 years, covering the third to eighth generations of home
consoles, arcade games, and home computers from MS-DOS to Windows 10, and a variety
of game genres. This part of the process would benefit from a larger pool of researchers with
different gameplaying experiences, but is a sufficient starting point.

3. Interaction Grouping: We sort the examples by mechanism of interaction, as this
is the most easily identifiable difference. We understand the mechanism of interaction by
examining the game mechanics, instructions, and controller for the instance. This first sep-
aration accounts for obvious differences in motor abilities used, even if the abstract goals
are the same. We also note down and separate examples by game mechanic variants, like
pressing two buttons at a time instead of one button.

4. Close Reading: We play the examples multiple times, and use close reading techniques2

(e.g. 46) to report on the details of our play experience. We take the role of näıve player, and
attempt to play through each instance as if it is our first time. In our first play through we
attempt to become familiar with the game mechanics, and note down our original impressions
of the gameplay. We then repeat the gameplay, and reflect on the particular abilities we
believe are being used in play. We continue this kind of näıve play mentality and experiment
with our interactions with the game to try and understand how the mechanics respond to
our different abilities. We systematically observe our performance and rank our use of each
ability as it relates to our completion of the challenge (ranks in Table 13.2). We then separate

1Myself (Sasha), Dr. Jacques Carette (supervisor), and peers in the G-ScalE lab
2We note the close reading of games can be affected by the game’s difficulty [46], but as we are particularly

trying to read information about the game difficulty we believe this is not a major problem.
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the examples into groups that all use the same abilities in the same order; these become the
new challenges we are examining.

Rank Range
Not used 0
Used, but not noticeable 1-25
Noticeably used 26 - 50
Important but not limiting 51 - 80
Limiting 81 - 100

Table 13.2: Ability rankings and their value ranges.

5. Repeat: We repeat steps 1 to 5 until we begin to see the examples stabilize into a
finite number of categories. Once stabilized, we compare the examples inside each stabilized
category to each other. We focus on the context of each example, like whether the game is
competitive or co-operative, single or multiplayer, team-based or solo, etc. We try to see if
these contexts create any differences in the way we have assessed the abilities. If there are
notable differences, we subdivide the category again and repeat the process. At the end
of this iterative process we should have groups of challenges that are notably
distinct in their abilities.

6. Hypothesize: For each group, we re-examine the examples and assign each ability a
value between 0 and 100 to represent how much we think it is used in the challenge (with
a margin of error of ±10). While unrealistically precise, this helps us express the finer
differences between abilities — especially those in the same rank or on the borders. While
this remains subjective, we have sample-tested our assignments against others’ subjective
classification (within our lab), and found our rough numbers to be uncontroversial. These
refined ability values become the competency profile for the group.

13.2.1 Refinement Example: Speed Challenges

We split Adams’ Speed and Reaction Time challenges, and apply our process to Speed Chal-
lenges in detail. This illustrates how our refinement approach leads to new distinct categories,
each with simpler descriptions. Currently our descriptions only concern an individual’s me-
chanical experience of these challenges. Thus, while we include examples of multi-player
games, we examine them when playing with or against humans, or non-player characters.

Clarify: Speed challenges “test the player’s ability to make rapid inputs on the control”
[7, p.262]. As Physical Coordination challenges they are motor-focused. Describing them
as “rapid” indicates a time limit ; “inputs on the controls” implies controller-independent
gameplay. So examples should exist using all controller types. There is no mention of
particular stimulus that would trigger this action. This is likely due to the distinction between
Speed challenges and Reaction Time challenges, where the latter relies on a specific stimulus
for a “reaction”. So gameplay instances that require players to “react” and not just “act”
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do not belong to Speed Challenges. Furthermore, these challenges should be identifiable
as small chunks of gameplay – not something that takes place over the course of hours of
a play session. Adams lists Tetris [9], Track & Field [238], and Quake [203] as examples,
without giving specific instances inside these games to pinpoint what he means. He does list
platformers, shooters, and fast puzzle games as genres where these are most readily found.
Deeper analysis reveals these are more instances of reaction time over speed challenges. We
summarize this challenge type as exclusively motor-focused, and defined by short
sessions and time limits.

Support: We find several examples of short session, time limited, and motor-focused game-
play in party games and mini-games. Nintendo games are particularly popular in this genre
and exist across multiple input mechanisms; this gave us ten examples:

1. Manic Mallets, Mario Party 5 [197];
2. Cycling, Mario and Sonic at the Olympic Games [420];
3. Mecha-Marthon, Mario Party 2 [194];
4. Pedal Power, Mario Party [193];
5. Tenderize the Meat, Cooking Mama [95];
6. Impressionism, WarioWare: Touched! [208];
7. Wash Rice, Cooking Mama [95];
8. Hammer Throw, Mario and Sonic at the Rio 2016 Olympic Games [421];
9. Candy Shakedown, Super Mario Party [324];

10. Trike Harder, Super Mario Party [324].

Interaction Grouping: These gameplay instances have different mechanisms of interac-
tion, implying different underlying motor abilities. We group these challenge into: button
mashing, rapid analog stick rotation, rapid tapping, scribbling, rapid controller rotation, and
rapid controller shaking. We now begin the iterative process of refining these, starting with
button mashing.

13.2.2 Refining Further: Button Mashing

Clarify: Button Mashing is where a player must rapidly press button(s) or key(s)
in a given time limit. From our original list button mashing appears in:

1. Manic Mallets, Mario Party 5 [197];
2. Mecha-Marthon, Mario Party 2 [194];
3. Track & Field [238].

Support: We easily find more (Nintendo) instances. The abundance of examples argues
that this is a common category of challenge in the party and mini-game genres. Expanding
outside Nintendo and party games is more difficult as instances tend to be embedded in
larger gameplay segments. Overall we list eleven additional examples (seven Nintendo, four
non-Nintendo):

1. Psychic Safari, Mario Party 2 [194];
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2. Speed Skating, Mario and Sonic at the Winter Olympic Games [423];
3. Ridiculous Relay, Mario Party 3 [195];
4. Take a Breather, Mario Party 4 [196];
5. Pump, Pump, and Away, Mario Party 3 [195];
6. Chin Up Champ, Wii Party [348];
7. Balloon Burst, Mario Party [193] and Mario Party 2 [194];
8. Torture Attacks, Bayonetta [375] and Bayonetta 2 [376];
9. Dragon’s Breath, South Park: The Stick of Truth [355];

10. Boss Knockouts, Donkey Kong Coountry: Tropical Freeze [391];
11. Colossus of Rhodes Fight, God of War 2 [412].

Close Reading: Across instances button mashing is hardware dependent, requiring phys-
ical controls to depress (ergo “buttons” to “mash”). This is different than pressing virtual
buttons like those found on a touch screen as it loses the mechanical feedback of a button.
Therefore we will not need to further group these by interaction. The time limit can be either
implicit (often being tied to the length of an animation or just not explicitly shown to the
player) or explicit (timers or gauges). However, we did not find that explicit versus implicit
time limits affected our mechanical experience. Generally, we were too focused on pressing
quickly to watch the timer when it was explicit. As well, since the goal in every instance is
to press the buttons as quickly as possible, there was no change in our play style or strategy.
This is likely because of the simplicity of this particular challenge; we believe explicit time
limits would affect cognitive-focused challenges more.

Grouping: While similar, do these examples have the same game mechanics? Consider
Manic Mallets [197], Speed Skating [423], and Mecha-Marathon [194]. In Manic Mallets
the player hits a single button as many times as possible in the time limit; Speed Skating
requires the player alternate between two buttons; Mecha-Marathon requires pressing two
buttons simultaneously as many times as possible. Manic mallets, with its single button, is a
straightforward case of button mashing, requiring no additional abilities outside of pressing
the button. Mecha-Marathon requires some coordination of button pressing, principally
focusing on the pressing but requiring some attention. Speed Skating similarly requires
finger pressing and attention, adding a small perception and memory component to keep
the alternating pattern correct. All the other examples repeat one of these three patterns.
These differences in used abilities divides button mashing based on type of input:
single, multiple, and alternating. We refine these further in Ch. 14.

13.3 Scoping Our Work

Refining Adams’ complete list of challenges is still a work-in-progress. While the Mechanical
Experience paper [441] continues to further refine and explain the different types of button
mashing, we take a moment here to pull back and talk about the scope of our thesis challenge
model.

The goal of this part of the thesis, is to show that these profiles are valid, and by extension
this method of generating them is reasonable. As such, we want to scope the rest of this
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part of the thesis to challenges we can experimentally validate. Generally we think our work
could explore one of three broad types of challenges: motor-limited, cognitive-limited, and
mixed challenges. Given the existing length of this thesis, and the time constraints for its
completion, it is unfeasible to generate and validate challenge competency profile for each
broad type. Therefore we need to scope our work to focus on one type.

13.3.1 Challenge Selection Criteria

We want the simplest version of a challenge type, meaning the fewest number of abilities to
test and the most apparent difference in ability usage. An ideal challenge then has one very
obvious limiting ability (highly correlated to performance), with all other ability types being
in the used, but unimportant or lower range (low to no effect on performance). We believe
the simplest case to test is a motor-focused challenge.

Motor-focused Scoping. The ideal motor focused challenge should have a singular limit-
ing motor ability, and little to no cognitive load. This would create a large difference between
the limiting motor ability and other abilities, making it easier to test the competency profile.
The motor ability should be simple, as complex movements make finding the limiting motor
ability hard. For example, in a game of Dance Central for the Kinect it’s difficult to tell
whether the arm movements or leg movements contribute more to your dance score. This
gets even more complicated when limited to a particular body part – for example, in Mario
and Sonic at the Olympic Games Tokyo 2020 [419], when doing the javelin throw players
must shake the Joycon to build up power as they run and then adjust the angle of their
throw with their wrist movements before launch. The shaking motion alone may consist of
shoulder and forearm movements depending on the player; differentiating the limiting ability
between shoulder, forearm, and wrist is then more complicated as we’d need to figure out
how much each segment of the javelin mini-game contributes to the final score.

Constraint. As we note in Ch. 10.1.1, COVID-19 constrains our experiments to challenges
that could easily be performed on home computers or laptops3. So our motor ability needs
to relate to keyboard inputs (e.g. finger pressing).

Considering our ideal challenge criteria and constraints, we think the best
motor-focused challenge would be the family of Button Mashing challenges. But-
ton mashing challenges have a single motor ability focus, and because they are speed chal-
lenges their cognitive load seems to only rely on sensory perception (recognizing stimuli) and
limited attention (for focusing on the game).

13.4 Summarizing Background on Challenges

With a clear scope and refinement method, we can move forward with developing our chal-
lenge model. Over the next chapters we must:

3The design and creation of the experiment and its apparatus was done during the COVID-19 pandemic.
However, in-person testing was possible by the time we had completed the designs and received ethics
approval. As such we leave this rationale to reflect the thought process at the time.
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� Clearly summarize the button mashing challenges and their competency profiles; and,
� Design and execute a study to validate their competency profile.

Take home points

From this chapter we learned the following meta-lessons:

� We review 6 existing challenge frameworks, and decide to focus on refining Adams
taxonomy of challenges [7].

� We define the elements of a “good” challenge description based on its ability to
differentiate gameplay.

� We outline an iterative method for refining Adams challenges into more precise
challenge descriptions.

� We scope our work to Button Mashing challenges.
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Chapter 14

Button Mashing

Button mashing is a speed challenge that comes in three types: single input, alternating
input, and multiple input1. Soraine and Carette [441] refine and analyse these challenges
focusing on their motor abilities. We now focus on expanding their cognitive elements.

For each challenge type, we summarize the original refinement and motor analysis re-
sults. We then present the new expanded competency profiles. We support these results by
summarizing our close readings of gameplay examples. Our analyses focus on the individual
player’s experience. So while some of our examples are multiplayer games (ergo “success”
may be inter-player dependent), we focus on the abilities and mechanics of singular players.

A Quick Aside...

To help understand our readings, we provide links to ability definitions and YouTube
videos of gameplay as framed images.

14.1 Single Input Button Mashing (SIBM)

SIBM are motor focused challenges where players “repeatedly press a specific single button
or key as fast as possible within a given time limit” [441]. SIBM are frequently a sub-challenge
of larger gameplay, but can be found as the main gameplay in Party Games like the Mario
Party series. Their main mechanics are: button pressing, and short time limits. Tunable
variables for these mechanics are: the button being pressed, the length of the time limit, and
what “counts” as a press. Fig. 14.1 summarizes our initial competency profile for a single
player competitive context on a standard controller. Finger pressing is the limiting ability
(as it determines how many presses you can make in the time limit) and some perceptional
(for knowing what button to press) and attentional (for focusing on the game) abilities are
used in a minimal capacity. The original gameplay instances used to create this competency
profile are:

� Manic Mallets, Mario Party 5 [197];
� Dragon’s Breath attack, South Park: The Stick of Truth [355];

1These types were refined from Adams [7] Speed and Reaction Time Challenges
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Figure 14.1: Competency Profile for Single Input Button Mashing as played on a standard
controller from Soraine and Carette [441]

� Torture attacks, Bayonetta [375] and Bayonetta 2 [376]; and,
� Boss Knockouts, Donkey Kong: Tropical Freeze [391].

We re-examine these SIBM examples using our game reading techniques to add cognitive
detail. We identify the following abilities, ordered by importance, as part of SIBM:

1. Finger pressing (Score: 90, Rank: Limiting),
2. Selective attention (Score: 15, Rank: Used),
3. Inhibition (Score: 15, Rank: Used),
4. Object recognition (Score: 10, Rank: Used),
5. Tactile perception (Score: 10, Rank: Used), and
6. Procedural memory (Score: 10, Rank: Used).

Recall from the design of our player profiling tool (Mini-game Ability Battery), that tactile
perception and procedural memory are captured as part of the measurements for the other
abilities. Since we aim to validate these profiles (Ch. 16) we choose to reduce the list
to measurable abilities. Fig. 14.2 graphically represents this reduced competency profile,
showing each abilities estimated use (with a ± 10 error) and rank.

14.1.1 Summary of Gameplay and Ability Close Readings

We consider Manic Mallets to be a prototypical SIBM, and so favour its distribution when
considering the abstract competency profile for this challenge type. Fig. 14.2 is a synthesis
of the information below, so we do not repeat it.

Manic Mallets [197] has teams of two players repeatedly hitting a switch with a hammer
to avoid being crushed by a bigger hammer (Fig. 14.3). Pressing A swings our little hammer
once. Each player must press A as fast as possible (therefore as many times as possible) in
the ten second time limit of the game; the team with the most cumulative presses wins.
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Figure 14.2: SIBM Competency Profile Hypothesis. Blue: Motor, Purple: Cognitive.

Figure 14.3: Manic Mallets (Mario
Party 5) by NintendoMovies.

Finger pressing is the most important ability
(Score: 90, Rank: 4), as the speed and repetition
needed for success means that any issues with that
ability would greatly affect performance. Selective
attention and inhibition are somewhat important
at keeping us focused on our performance, but not
impediments to success (Score: 15, Rank:1). The big
hammer provides visual performance feedback; if it is
pointing towards our character we are doing poorly,
but if it is pointing at our opponents we are doing
well. Paying attention to the hammer helps us decide
whether we need to change the speed, intensity, or
even our hold on the controller (all of which can influence our button throughput). However,
these attention abilities are less important because Manic Mallets is a stand-alone mini-game
and so we do not need to inhibit pressing after the time limit (so we do not need to pay
as much attention). We also use object recognition to know which button we need to
press, and tactile perception2 to know when it is pressed. This is important because there
are no visual or audio stimuli reflecting every individual button press. Tactile perception is
supported by procedural memory to reorient ourselves on the controller if our fingers slip.
Object recognition, tactile perception, and procedural memory are used (Score: 10, Rank:
1) in the playing of the game, but are largely unimportant to the player’s overall success.

The Dragon’s Breath Attack in South Park: The Stick of Truth [355] is a mage class
attack where player’s wave a lit firecracker in front of the enemy NPCs face do deal combat

2In the case of the Nintendo Gamecube controller (where the A button is larger than the other buttons),
tactile perception also supports object recognition since we can tell which button it is by feel.
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damage (Fig. 14.4). This game is available on multiple platforms affording different inputs/-
control schemes; for this instance we are looking at it on a standard controller. The control
scheme is presented by the game as “mash3 the A button”. The time limit of this challenge
is tied to the length of the attack animation which lasts for about 3 seconds.

Figure 14.4: Dragon’s Breath attack (South Park: The Stick of Truth) by The Game Cavern.

Finger pressing is the motor interaction, and limiting factor in play (Score: 90, Rank:
4). Poor motor control will slow down pressing which directly results in poor performance.
Similar to Manic Mallets, object recognition and tactile perception underlie knowing
what to press and if we have pressed it. Procedural memory becomes more important
as the button layout changes depending on the standard controller used (e.g. Xbox One,
Nintendo Switch Pro Controllers, and PlayStation DualShocks). Overall these are used but
not important (Score: 10, Rank: 1). Selective attention and inhibition keep us focused
on the gameplay for the time limit. Since this SIBM instance is a small part of a larger
combat system, the player must focus so as to stop at the appropriate time. Continuing to
mash after the animation time registers as menu inputs for another part of combat, making
stopping on time crucial to effectively engaging in combat. On reflection, when playing there
was enough time around the start and ending of the challenge that it was trivial to focus
on when pressing the button is useful, so we decided they are used, bordering on noticeable
(Score: 20, Rank: 1).

Figure 14.5: All Torture Attacks
(Bayonetta) by Catan.

Torture Attacks from the Bayonetta series [375,
376] are a triggered4 combat action which removes
players from regular combat to perform a “quick time
event” (QTE) to increase their score and deliver a cin-
ematic finishing blow. The QTE challenges are mostly
button mashing segments5 (see Fig. 14.5). This game
is released on multiple platforms; for this analysis we
considered the standard controller as the input device.
When activated, the torture attack displays a circular
gauge with a button on it corresponding to the but-
ton on the controller you must press. Therefore the
control scheme is visible at all times. The time

3Mash is interpreted to mean “quickly and repeatedly press”.
4Players initiate torture attacks by pressing Y and B when the signifier appears on screen.
5One outlier requires the player to rapidly spin their left thumbstick
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limit is implicit and tied to the length of the attack animation.
Finger pressing is still the limiting ability (Score: 90, Rank: 4), as poor motor perfor-

mance has the greatest impact on overall performance in this segment. Object recognition
is used to know what to press; this is especially obvious as the game displays the buttons
to press throughout the torture attack. Tactile perception and procedural memory are
also used to recognize whether a press has happened, and to orient ourselves around the
controller. We understand these abilities are used because of the nature of the task, but the
context of this instance (displayed inputs, outside of regular combat) makes them used but
not important (Score: 5, Rank: 1). Selective attention and inhibition are noticeably
used abilities (Score: 20, Rank: 1). Like the Dragon’s Breath attack, they are slightly more
important here than in other SIBM challenge due to existing inside the larger combat system
of the game, and being integrated into the normal gameplay.

Figure 14.6: Boss Knockout of Skowl
(Donkey Kong Country: Tropical
Freeze) by BossBattleChannel

Boss Knockouts in Donkey Kong Country: Trop-
ical Freeze [391] are boss-fight specific QTEs6 where
the player mashes a button (X or Y) to deliver “fin-
ishing blows” to the boss, thus increasing their final
score for the level. As this segment is outside of reg-
ular gameplay, and after the boss fight gameplay, it
is impossible for the player to “fail” this challenge —
rather success here is about achieving the high score.
This game is released on both the Wii U and Switch,
meaning that there are multiple control schemes that
influence which button is pressed. However as it is
always a button press, we focus on the Wii U ver-
sion with a Pro Controller (standard controller) as
it is representative of all instances. During the Boss
Knockouts, the button to be pressed is shown on the

top right corner of the screen. The challenge timer is not displayed on the screen, but every
instance lasts for about four seconds.

Finger pressing enacts the punches and remains the limiting factor in performance
(Score: 90, Rank: 4); poor motor ability leads to fewer punches and a lower score. Selective
attention and inhibition are noticeably used (Score: 15, Rank: 1) but less important here
than our previous two examples because the instance is a separate gameplay mode (with its
own camera model and control scheme, separate from the normal gameplay and boss fights)
that happens at the end of the level. As such stopping late is meaningless, and pressing
the wrong button has minimal effect on the player’s overall score. Object recognition,
tactile perception and procedural memory are abilities used to ensure we are pressing
the correct button during this gameplay segment. As the button we need to press is on screen
for the duration of this segment, and there is no significant penalty for pressing the wrong
button, we believe that these abilities are used but not important (Score: 10, Rank: 1).

6Triggered when boss’s health is reduced to zero (i.e. the player won the fight)
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14.2 Alternating Input Button Mashing (AIBM)

AIBM are motor focused challenges where players “repeatedly and rapidly pressing two or
more specific buttons in sequence” [441]. Like SIBM, they are predominantly found as part
of larger gameplay challenges, or independently in mini-games. Their main mechanics are:
button pressing, short time limits, and pattern recognition. The main variables are the length
of the sequence (which increases how much a player needs to remember), which buttons are
being pressed (as their distance may contribute to physical pressing difficulty and/or input
errors), what “counts” as a button press, and the time limit.

Fig. 14.7 summarizes our initial competency profile for a multiplayer competitive context
on a standard controller. The limiting ability is finger pressing. Attentional abilities are
significantly more important in this challenge than other button mashing instances in order
to maintain input sequencing.

Figure 14.7: Challenge Description for Alternating Input Button Mashing as played on a
standard controller from [441]

The original gameplay instances used to create this competency profile are:

� Psychic Safari, Mario Party 2 [194];
� Balloon Burst, Mario Party [193], Mario Party 2 [194], and Mario Party Superstars

[323];
� Pump, Pump, and Away, Mario Party 3 [195];
� Ridiculous Relay, Mario Party 3 [195];
� Speed Skating, Mario and Sonic DS [420]; and,
� the Colossus of Rhodes fight, God of War 3 [413].

We revisit the gameplay instances and identify AIBM’s complete competency profiles as:

1. Finger pressing (Score: 90, Rank: Limiting),
2. Inhibition (Score: 40, Rank: Noticeable),
3. Selective attention (Score: 40, Rank: Noticeable),
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4. Token change detection (Score: 20, Rank: Used),
5. Object recognition (Score: 10, Rank: Used),
6. Tactile perception (Score: 10, Rank: Used),
7. Procedural memory (Score: 10, Rank: Used)

Following the same logic as SIBM, we reduce these to measurable abilities for future validation
purposes, arriving at the reduced competency profile in Fig. 14.8.

Figure 14.8: Hypothesized AIBM Competency Profile. Motor abilities are Blue, Cognitive
abilities are Purple.

14.2.1 Gameplay-Ability Descriptions

We view Psychic Safari as the prototypical example of this challenge, and so favour its
distribution in synthesizing the above competency profile.

A Quick Aside...

During our review, we found that Balloon Burst and Pump, Pump and Away do
not fit the button mashing family. While button mashing is a reliable strategy versus
Easy and Normal CPU opponents, it was no longer effective at the Hard and Super
Hard levels where a well-timed sequence was more competitivea. This implies these
games are based more on timing, with the pumps visually indicating the “correct” pace
to make inputs. Our original analyses only looked at Normal level CPUs and against
player opponents in various configurations (e.g. human-vs-npc, human-vs-human) [441]
and so missed this game dynamic.

aAgainst human players the effectiveness of button mashing versus timing is a toss-up, depending
on the techniques your opponents use.
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Psychic Safari [194] asks players to power up an ancient relic by alternating between
pressing the A and B buttons (Fig. 14.9). The game displays which button in the sequence
the player currently needs to press above their character. There is an explicit 5 second time
limit and the player who can make the most inputs wins (and destroys the other player’s
relic).

Figure 14.9: Psychic Safari (Mario Party 2) by NintendoMovies.

Finger pressing is the most important ability (Score: 90, Rank: 4). The player’s button
pressing paces are mutually exclusive, and it is a race, so their individual speed is the biggest
determinant of success. Selective attention (visual) and inhibition are more important
in this game because of the alternating pattern. Players lose a lot of time and momentum
in this challenge if they end up pressing the wrong button. However, the short duration (5
seconds), short repeating sequence (A-B), and visual display of the pattern means that these
attention abilities are supported by perception as well and so may be noticeable, but not
excessively important (Score: 40, Rank: 2). Object recognition (Score: 10, Rank: 1) is
used to recognize which button to press, and token change detection (Score: 20, Rank:
1) is used to recognize the visuals switching between buttons during the gameplay. Since the
button that needs to be pressed is constantly on display, token change detection seems to be
more important because it clues the player into the sequence and so supports getting “back
on track” should their inhibition fail and a mistake was made. Tactile perception and
procedural memory support play through identifying whether the button is sufficiently
pressed and the orientation of the controls, making them used but not noticeable compared
to the other abilities (Score: 10, Rank: 1). Procedural memory may also help with the
patterned pressing; however, with such a short sequence accompanied by visual reminders,
this ability is overall less important.

Ridiculous Relay [195] is a 1-vs-3 player mini-game, where the solo-player races against
the three-player tag-team. The catch in this mini-game is that all the players have a different
control schemes. We focus on the first member of the three player team as an example of
AIBM7. The first teammate (Fig. 14.10) must paddle their boat by alternating pressing
A and B (corresponding to paddling left and right). The game displays which button the
player currently needs to press above the character. The game does not have a time limit;

7Fun fact: the third member (last stretch of the relay) is an example of SIBM
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instead the middle of the screen is divided with an abstracted view of the race course to see
the players’ progress and gauge who is winning. “Success” for the AIBM section is fastest
completion of the first segment, so effectively the time limit is self-determined.

Figure 14.10: Ridiculous Relay (Mario Party 3) by Nintendo64Movies.

Finger pressing (Score: 90, Rank: 4) is the most important ability as it is used to paddle
the boat. As overall progress for the 3-player team depends on the speed of each segment, the
AIBM player is incentivized to be as fast as possible. Inhibition and selective attention
are the next most important abilities. They keep the player from messing up the sequence
by pressing the same button repeatedly (which stops the player from moving and costs them
time). The short sequence length and input display means that these secondary abilities are
supported and so overall noticeable, but perhaps not as limiting (Score: 40, Rank: 2). As
with Psychic Safari, the sequence display allows for token change detection (Score: 20,
Rank: 1) and object recognition (Score: 10, Rank: 1) to support the attention abilities
by reminding the player what the next input should be if they make a mistake. Tactile
perception and procedural memory are also used, but are unimportant compared to the
other abilities (Score: 10, Rank: 1).

Speed Skating [423] has players race each other around the Olympic rink by primarily
alternating pressing the left (L) and right (R) shoulder buttons8 on their Nintendo DS. The
control scheme is displayed on the top DS screen above the player’s character, with the
button(s) being pressed highlighted in yellow (Fig. 14.11). In the race setting, the time limit
is implicit based on the other players or CPUs speed. The game displays this through the
lap time (bottom right corner of the top screen), rink mini-map to show player positions
(bottom screen), and Olympic Record (i.e. best time — bottom screen).

Finger pressing (Score: 90, Rank: 4) is important to this challenge as speed is the
focus of the game. Inhibition and selective attention (Scores: 45, Rank: 2) keeps the
player in sequence and not just “smashing” buttons. Messing up the sequence means the
player stops skating and thus takes longer to finish their lap and jeopardizes their rank.
They also keep the player from getting distracted by the multi-screen visuals which could
influence their behaviour. While this means attention is more taxed than previous examples,
these abilities are still supported by token change detection (Score: 25, Rank: 1) and

8The controls change slightly as players round corners. Then they have to hold the L button and mash
the R button.
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Figure 14.11: 500m Speed Skating (Mario and Sonic and the Olympic Winter Games 2010)
by NintenU.

object recognition (Score: 10, Rank: 1) because of the visual display of the sequence and
its current state. Token change detection also keeps us aware when the inputs change for
going around a corner, or skating on the straight track, making it slightly more necessary in
this example. Tactile perception and procedural memory are used as before (Score: 10,
Rank: 1). Procedural memory may help with the layout and expectations of the game (i.e.
knowing the change from straight to curve track). However, all of these low rank abilities are
less important because of the redundancy measures for them built into the design through
visual feedback.

Colossus of Rhodes [412] is a boss fight with many different phases and sub-challenges.
One challenge at the end of the fight’s second phase tasks the player with escaping from
Colossus’ hand by alternately mashing the L1 and R1 buttons (Fig. 14.12). The game
displays the buttons that need to be mashed on the bottom left corner of the screen. The
button that is currently pressed appears depressed on the icon, while the button that needs
to be pressed appears unpressed. The game has an implicit time limit of approximately ten
seconds; if the player does not input anything in that ten second period the Colossus will
crush the player leading to an immediate game over. The aim of the AIBM segment is to
complete it as fast as possible, with average players able to escape in three seconds

Figure 14.12: Colossus of Rhodes boss fight (God of War 2) by Boss Fight Database.

Finger pressing (Score: 90, Rank: 4) is the most important ability as quickly being
able to press the buttons in sequence is the only way to succeed. Inhibition and selective
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attention (Scores: 40, Rank: 2) keep us on sequence, and help us refrain from spamming
buttons in a way that leads to mistakes. These abilities are important because of the extreme
loss conditions. At this point in the larger boss fight, the player has finished an entire phase
as well as a whole environment/dungeon to get back to this fight. A game over screen at
this point takes you back to the beginning of this phase of the fight. The attention abilities
are supported by token change detection (Score: 20, Rank: 1) through observing which
button in the sequence is next. Object recognition, tactile perception, and procedural
memory are also used (Scores: 10, Rank: 1) to: recognize the buttons to press, under-
stand the buttons’ state (pressed/not pressed), and remember the layout of the controllers
to navigate the buttons easily. Procedural memory is slightly more used here because of the
Playstation 2 controller having two sets of shoulder buttons.

14.3 Multiple Input Button Mashing (MIBM)

MIBM are motor focused challenges where players are “pushing multiple buttons simultane-
ously, repeatedly, and rapidly” [441]. Like SIBM, their main mechanics are button pressing
and short time limits. The difference between the two categories is the increased load of
having to press multiple buttons at the same time, versus a single button repeatedly. The
main variables are number of buttons to be pressed, their location, and the time limit. In
a multiplayer individual competitive context on a standard controller the limiting factor is
finger pressing as it determines how many presses can be made in the time limit. Fig. 14.13
summarizes our initial competency profile.

Figure 14.13: Challenge Description for Multiple Input Button Mashing as played on a
standard controller from [441]

The original gameplay instances used to create this competency profile are:

� Mecha-Marathon, Mario Party 2 [194], Mario Party Superstars [323]; and,
� Chin Up Champ, Wii Party [348].
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In revisiting the gameplay instances this information was drawn from, we arrive at a new
competency profile which incorporates more specific cognitive abilities:

1. Finger pressing (Score: 90, Rank: Limiting),
2. Selective attention (Score: 35, Rank: Noticeable),
3. Inhibition (Score: 35, Rank: Noticeable),
4. Tactile perception (Score: 20, Rank: Used),
5. Object recognition (Score: 15, Rank: Used), and
6. Procedural memory (Score: 10, Rank: Used)

We reduce this list to the measurable abilities, presenting a hypothesized competency profile
in Fig. 14.14.

Figure 14.14: Hypothesized MIBM Competency Profile. Motor abilities in Blue, Cognitive
abilities in Purple.

14.3.1 Gameplay-Ability Descriptions

We consider Mecha-Marathon the prototypical example, and so favour its distribution in our
synthesis of the challenge competency profile.

Mecha-Marathon [194, 323] has players winding up Mecha Fly-Guys (Mechas) to race
them, with the winner being the Mecha that flies for the longest distance. In Mario Party 2,
the max distance is unknown, but (through tool-assisted experimentation by the speedrun-
ning community) determined to be just under 54 metres (in-game). For Mario Party Super-
stars, the max distance is 70 metres (in-game). In both games, players have 10 seconds to
wind their Mecha. The time is displayed in the top-centre of the screen (Fig. 14.15). Players
wind their Mecha by repeatedly and simultaneously pressing the A and B buttons. The
distance the Mecha travels is directly related to the number of times the player can mash the
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buttons during the time limit. The winding animation does not correlate with the number
of button presses registered (i.e. you will press the button more times than the animation
can play).

Figure 14.15: Mecha-Marathon (Mario Party 2) by NintendoMovies.

Finger pressing (Score: 90, Rank: 4) is still the most important ability for Mecha-
Marathon, but it is supported by wrist shaking and wrist pointing. On reflection, wrist
pointing and shaking are actually strategic choices on the players part and not an inherent
ability related to the challenge. Players with different strategies can successfully complete
the challenge without these abilities, and so we remove them from the competency profiles.
Selective attention and inhibition stop impulsive, incorrect behaviours. Since nothing
on screen indicates your progress and the only thing that matters is your button presses,
a player could look down at their controller the whole time and still win the game. So
these are noticeable but not very important (Scores: 35, Rank: 2). This makes tactile
perception (Score: 20, Rank: 1) more important in this challenge because the coordinated
button mashing is more complex (the game will not count a non-simultaneous press). This
means the haptic feedback of knowing we are pressing both buttons at the same time is key
to correctly playing this game. As well since the winding animation does not correlate with
our progress, this feedback is the only understanding we have of our success before scoring.
Object recognition and procedural memory are used (Scores: 10, Rank: 1) in the same
way they are for SIBM and AIBM.

Chin Up Champ [348] is a 4 person competition, where the player who does the most
chin-ups wins. The players have 10 seconds to do as many chin-ups as possible. Chin-ups are
performed by simultaneously pressing the A and B buttons on the Wii Remote. Players can
perform at most 99 chin-ups (approximately 10 presses a second). The timer is displayed in
the top-centre of the screen (Fig. 14.16).

Finger pressing (Score: 90, Rank: 4) is still the most important ability. As with
Mecha-Marathon, wrist pointing supports this by allowing for faster pressing through wrist
stability but this is inherently a strategic choice and so removed from the competency profile.
Selective attention and inhibition play a slightly greater role here as there are more
distractions on screen. While elements like the counter help make progress more obvious to
the observer, it is still fundamentally unimportant for the gameplay (Scores: 40, Rank: 2).
Tactile perception (Score: 20, Rank: 1) becomes important to know whether our input
registered so we do not need to look at the screen as an indicator of our progress. Object
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Figure 14.16: Chin-Up Champ (Wii Party) by NintendoMovies.

recognition and procedural memory are not noticeably used (Scores: 10, Rank: 1).

14.4 Summary of Button Mashing Challenges

We now have three hypothetical challenge competency profiles (SIBM, AIBM, MIBM).
Through their shape we can begin to consider the relationship between player abilities and
challenge requirements. Moving forward we need to test these hypothetical profiles to see if
our assessments of the gameplay are relatively accurate.

Take home points

From this chapter we learned the following meta-lessons:

� Our initial competency profiles from Soraine and Carette [441] reasonably capture
motor abilities.

� Extending cognitive abilities for challenges shows some deeper consideration for
how the games are played (e.g. strategies versus basic requirements).

� Some abilities in the competency profiles cannot be measured, so we use reduced
competency profiles.

� Button mashing family of challenges seem fairly stable given our closer look.
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Chapter 15

Developing Understanding of
Competency Profiles

Recall our thesis poses three specific research questions:

RQ1: How are cognitive and motor abilities used to interact with various challenges?

RQ2: What are the effects of cognitive and motor overloading on the mechanical achievability
of a challenge?

RQ3: How can designers use this knowledge?

With our player profiles (Ch. 12) and competency profiles (Ch. 14), we now have the ability
to answer these questions.

We conduct an exploratory study on player performance in, and experience of, button
mashing challenges. We divide the study into three conceptual sub-studies: the first aims to
validate our competency profiles (RQ1, Ch. 16), the second explores ability loading through
mechanical difficulty (RQ2, Ch. 17), and the third connects the mechanical experiences
(MX) to broader player experiences (PX) and player perceptions (RQ3, Ch. 18). We use
this chapter to explain the design of the sub-studies, the structure of the overall study, and
other information relevant to all three sub-studies. The data analyses and discussions for
each sub-study are presented in their own chapters.

We first explain our sub-study designs and any relevant background for our choices. We
then describe the apparatus and meta-experimental procedure. We then explain specific data
collection and general cleaning/analysis processes. We end with some general limitations of
our study and how we account for them. There are no take-home points for this chapter.

15.1 Study Designs

We design each study independently, and then combine common elements into a singular
procedural flow.
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15.1.1 Validation study design (Study 1A)

We validate our competency profiles by showing a quantifiable relationship between our
predicted challenge abilities and the player’s performance.

We create a complex correlational study, where all participants play all the challenges
tuned at the same level. We use multiple linear regression (MLR)1 [168] to find the abilities
that affect challenge performance. We regress participant challenge scores (dependent vari-
ables) on their abilities (independent variables) to create models for each challenge (Table
15.1).

Independent variables Finger Pressing, Selective Attention, Inhibition, Object
Recognition, Token Change Detection

Dependent variables SIBM Score, AIBM Score, MIBM Score

Table 15.1: Independent variables (measured abilities) and Dependent variables (in-game
performance) for our study.

15.1.2 Loading study design (Study 1B)

We explore the effect of loading on competency profiles by having participants play challenges
tuned to different difficulty levels via mechanical difficulty.

We setup a series of single-factor multi-level experiments using a between-groups design.
Our independent variable is game difficulty (i.e. a score modifier proxy for finger pressing
load), and we set it to three levels (Easy: 2, Control: 1, Hard: 0.5). We assign participants
to conditions via block randomization to ensure that each group is the same size. We com-
pare group gender distributions, ages, and abilities to identify whether these are confounding
variables. Participants play each game once, tuned to their difficulty condition. We coun-
terbalance the game orders (6 unique sequences) to distribute any ordering effects across
groups. For each condition, we regress the participant scores for each game on the abilities
identified in the validation study to create competency profiles for each loading. We draw
preliminary conclusions about the relationship between limiting ability load and performance
by comparing these models to each other and the validated baselines.

15.1.3 Experience study design (Study 1C)

We use a convergent mixed-methods research design (questionnaire variant [100]) to study
player perceptions and PX of the challenges at different difficulties. We simultaneously collect,
analyse, and integrate quantitative and qualitative data to create a more robust understand-
ing of a research question [101].

We use the Player Experience Inventory (PXI) to gather PX data (quantitative Lik-
ert data). We append open-ended questions to the PXI to gather participant opinions on
each game’s difficulty (qualitative textual data). We analyse the Likert data via One-Way

1A background on MLR can be found in App. F.
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ANOVAs and post-hoc Tukey HSD tests, and use thematic analysis for exploring the tex-
tual data. We integrate the data through a side-by-side comparison; we present the results
independently, and then compare them in a meta-discussion [101].

15.2 Apparatus

All sub-studies use the same hardware. Participants only use MGBatt in the first sub-study
(Study A: Validation), but its data is used in the analysis for both Study A (Validation)
and Study B (Loading). Different configurations of the Custom Button Mashing Games are
used in Study A (Validation), and Study B (Loading). The data from both iterations of the
Custom Button Mashing Games is used as contextual information in Study C (Experience).
The data collection tools are predominantly used in Study C (Experience).

15.2.1 Hardware

The testing stations are identical to the ones from Ch. 11 (see Fig. 11.2). Each station has:

� A Windows 10 desktop computer (i5-4670k 3.40 GHz processor, 16 Gb RAM, Nvidia
Geforce GTX 780Ti graphics card);

� A single 30-inch monitor;
� A K120-TAA Logitech full size wired USB keyboard;
� A B100-TAA Logitech wired USB mouse; and,
� A pair of Beyer Dynamic DT 990 over the ear headphones.

Participants sit 26-inches away from the monitor to maintain ergonomics.

A Quick Aside...

For these studies, we must define what it means to “push a button”. Depending on the
keyboard type, a “press” could mean anything from a light touch or a full hard slam.
We consider one button press to require a complete depress of the button. Therefore
we use membrane keyboards which require a complete depress to register a “press”
signal. This forces participants to be consistent with each other about what it means
to “press a button”, and therefore what “counts” towards their score.

15.2.2 Software

This experiment uses two custom built softwares: the Mini-game Ability Battery, and three
custom button mashing mini-games.

Mini-game Ability Battery (MGBatt)

MGBatt (details in App. A.2) consists of 5 mini-games that test finger pressing (FP), selective
attention, inhibition, object recognition, and token change detection, as mapped in Table
15.2. Participants play each mini-game three times, at increasing difficulty levels. Table
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11.1 from the previous study describes the configurations for the difficulty conditions. The
mini-game order is randomized. We measure a player’s ability levels in the units from Table
15.2. We use the player’s performance measures in the regression modeling.

Game Ability Measurement
Digger Finger Pressing (P/S) × 10
Looking Selective Attention* /Inhibition C/S
Recipe Selective Attention /Inhibition* C/S
Cake Object Recognition C/T
Stage Token Change Detection C/S
Legend: Total presses of correct input across conditions (P), total response

time across all conditions in seconds (S), Total correct responses
across conditions (C), Total trials across conditions (T)

Note: In cases where a mini-game measures multiple abilities, we have
starred (*) the ability it is named in the data.

Table 15.2: Ability measurement games summarized.

Custom button mashing games:

(a) Fire Starter (b) Fly Away (c) Potion Master

Figure 15.1: Three custom button mashing games designed to test the button mashing
competency profiles.

We create three mini-games, representing each type of button mashing challenge2: Fire
Starter (SIBM, Fig. 15.1a), Fly Away (MIBM, Fig. 15.1b), and Potion Master(AIBM, Fig.
15.1c). In these mini-games the player is a young witch practicing her magic skills. Each
game operates abstractly in the same way: participants must press the correct inputs as
many times as possible within the given time limit. Each game calculates the player’s score
as the number of correct inputs multiplied by a score modifier (to represent the “difficulty
level”). The game then ranks players by comparing their performance to a target/goal value
(see Table 15.3). The ranks are irrelevant for validating or exploring competency profiles, but
they incentivize players to put in reasonable effort and promote “game” feel. We use the
player’s score to represent their challenge performance in regression modeling.

2All challenges are developed in Unity 2022.3.0f1 using the C# scripting language. The source code for
the games, along with an executable, are available on GitHub.
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Rank Player final score Effect Meaning
F < 0.5∗Goal Really bad
D 0.5∗Goal ≥ Score < 0.75∗Goal Bad
C 0.75∗Goal ≥ Score < Goal Low Average
B Goal ≥ Score < 1.25∗Goal High Average
A 1.25∗Goal ≥ Score < 1.5∗Goal Good
S ≥ 1.5∗Goal Really good

Table 15.3: List of ranks and their interpretation based on player final score relative to the
goal number.

The mini-games are configurable; details about their design decisions and variable param-
eters are covered in Appendix D. We present the configurations for this study in Table 15.4.
We use the average FP rate in the previous study (Ch. 11) and play testing done on the
games to set the goal values. We adjust load on FP by changing what “counts” as correct
input via the score modifiers. “Easy” underloads FP (reducing load by factor 2), and “Hard”
overloads FP (increasing load by factor of 2).

Buttons
Time limit Goal

Score Modifiers
1 2 Base Easy Hard

Fire Starter → – 10s 77 1 2 0.5
Potion Master → ← 10s 503 1 2 0.5
Fly Away → ← 10s 77 1 2 0.5

Table 15.4: Configuration parameters for all button mashing challenges.

15.2.3 Data Collection Tools

Pre-study Survey (App. E.2): We ask 15 questions broken into demographics, gamer
identity, and gaming history sections. For demographics, we collect the participant’s self-
identified gender, age, education, self-identified disability status, and if applicable any impacts
on abilities and assistive devices used. We focus on gender instead of sex as we consider how
self-identity impacts a participant’s relationship with gamer identities and gaming generally.
We use “self-identified” language for gender and ability questions to reflect that participants
may have barriers to accessing formal labels and diagnoses, or may not be comfortable re-
porting and presenting this information in a lab setting. Gamer identity is either Yes, No,
or a write-in “Other” response. Through the “other” option, we capture more complex rela-
tionships to the gamer identity, such as being unsure if they are a gamer or feeling like they
used to be a gamer. For gaming history we gather how long they have been playing games,
their frequency and length of their gaming sessions, the devices they commonly use to play
games, their familiarity with a keyboard and mouse control scheme, and the types of games
they currently or previously used to play. We leave the types of games question (Q12) as a

3This is the number of correct sequences of Button 1 - Button 2 presses.
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write-in allowing for participants to either list genres, or games that we can then interpret
during data processing.

Player Experience Inventory (PXI) [4]: We ask 24 questions, covering all constructs
except Autonomy and Curiosity (see Table 15.5). We recognize the PXI is designed for
gathering experience around more complex games and longer gaming sessions. However,
there are no validated inventories for experiences with mini-games specifically, so we aim to
use PXI but are aware these results will be affected by the lack of nuance.

We left out Autonomy and Curiosity due to the fact we were testing mini-games. Given
the simplicity of the mechanics, short gameplay, and lack of larger game, questions like “I felt
a sense of freedom about how I wanted to play this game.” (Autonomy), and “I felt eager to
discover how the game continued” (Curiosity) did not seem applicable to the context of our
study. The other constructs have a stronger theoretical overlap with MX and are possible
to inspire in a short session like a mini-game, so we include them in case there were any
interesting results.

Open-ended Questions: We append four, write-in responses questions to the end of the
PXI. The first three ask participants to self-reflect on their experience for each game and
communicate the elements they found particularly difficult (e.g. “What did you feel was the
hardest part of the fire-starting game?” to ask about SIBM). The final question explicitly
asks participants “Are there any comments you would like to leave the researchers about
your experience with the games?” This question gives participants an open forum to note
down thoughts that may contextualize their responses/experience, and an outlet to describe
any feelings not related to the specific button mashing challenges.

Observational Notes: We capture participant behaviour during the custom mini-games
in informal notes. We particularly focus on their strategy choice (one-hand vs. two-hand
strategy, particular holds for the keyboard, where on their body the movement was hap-
pening), seeming emotional response to the baseline and experimental conditions, and any
notable comments or behaviours they made during gameplay or directly after.
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Meaning
Mean1 Playing the game was meaningful to me.
Mean2 The game felt relevant to me.
Mean3 Playing this game was valuable to me.
Mastery
Mast1 I felt I was good at playing this game.
Mast2 I felt capable while playing this game.
Mast3 I felt a sense of mastery playing this game.
Immersion
Imm1 I was no longer aware of my surroundings while I was playing.
Imm2 I was immersed in the game.
Imm3 I was fully focused on the game.
Progress Feedback
Prog1 The game informed me of my progress in the game.
Prog2 I could easily assess how I was performing in the game.
Prog3 The game gave clear feedback on my progress towards the goals.
Audiovisual Appeal
AV1 I enjoyed the way the game was styled.
AV2 I liked the look and feel of the game.
AV3 I appreciated the aesthetics of the game.
Challenge
Cha1 The game was not too easy and not too hard to play.
Cha2 The game was challenging but not too challenging.
Cha3 The challenges in the game were at the right level of difficulty for me.
Ease of Control
Con1 It was easy to know how to perform actions in the game.
Con2 The actions to control the game were clear to me.
Con3 I thought the game was easy to control.
Goals and Rules
Goal1 I grasped the overall goal of the game.
Goal2 The goals of the game were clear to me.
Goal3 I understood the objectives of the game.

Table 15.5: Subset of Player Experience Inventory questions for our study.

15.3 Procedure

Fig. 15.2 shows our meta-procedure. We indicate the different studies using labeled, coloured
blocks.

Pre-study: We first collect the participant’s written informed consent. We lead the par-
ticipant to a testing stations where they complete our pre-study survey (App. E.2). If both
testing stations are in use, the survey is available on a laptop at the waiting area (couches
in Fig. 11.1).
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15.3.1 Study 1A: Validation Study

Figure 15.2: Overall study procedure. Study
1A (Validation) is the blue block, Study 1B
(Loading) is the pink block, and Study 1C (Ex-
perience) is the green block.

Ability Measurements: After complet-
ing the survey, we start participants on the
MGBatt. We inform them of the approx-
imate time it will take, what to expect of
the games, and how to indicate if there is
a technical issue. We allow the participant
to ask us any questions if the tasks are un-
clear. Once the participant completes their
MGBatt, we lead them in a series of hand
and wrist stretches to warm up for button
mashing and give their eyes some rest from
the screen.

Baseline Button Mashing: We start the
custom mini-games. We allow participants
to practice each mini-games “until they feel
ready to do the baseline measurement”. We
advise them that practice games use the
same mechanics as the baseline, but are
slightly easier than the real measure4 and
do not provide a clear rank. We explain
this is so the participant does not fatigue
themselves in the practice. Participants may
ask us any clarifying questions about how
to play, the game mechanics, or how to in-
terpret their feedback. Once the participant
feels they understand the games and how to
play, they start the real measure. Partici-
pants play the button mashing games back-
to-back with the parameters from Table 15.4.
After completing the games, the participant
takes a five-minute break.

15.3.2 Study 1B: Loading

Experimental Condition: We assign participants a letter-group to determine their condi-
tion (A: Easy, B: Control, C: Hard). We do not give participants practice time in the adjusted
condition, as they already understand the mechanics from the baseline. Participants play
the games in a random order, which could be different from their baseline order.

4The practice games use the default values for goals and modifiers as outlined in App. D.
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15.3.3 Study 1C: Experience

Post-Study: Participants immediately complete the post-study survey of: 24 PXI ques-
tions, 3 additional Likert-items explicitly asking whether players enjoyed the game, 3 write-in
questions about what they found difficult about each game, and an open-ended question that
allowed them to give us any feedback. On average participants complete the survey in six
minutes and twenty seconds. We then compensate participants $20, pro-rated at $10 per half
hour, for participating in this study5.

15.4 Data Collection and Analysis

75 participants complete our experimental session. Table 15.6 summarizes the data we collect
and its formats. The anonymized cleaned data for each study, custom Python files, Matlab
files and Matlab outputs are available at Sasha’s GitHub for review/use.

Data Captured via... Automatic/Manual Output
Ability measures Ability Battery Automatic JSON
Game performance Mini-games Automatic JSON
Pre-study Survey Microsoft Forms Manual Excel
Post-study Survey Microsoft Forms Manual Excel
Observational Notes Sasha’s notes Manual Excel

Table 15.6: Data collected during the experimental session.

Processing Data: We use custom Python scripts to process and convert the JSON files
into Excel workbooks. We merge all the Excel workbooks into a single dataset containing
each participant’s ability data, experimental condition, pre-study data, post-study data, and
strategy (one vs. two handed) from observational notes.

Cleaning Data: For each study we manually clean the dataset based on the study’s spe-
cific needs. This involves removing incomplete or irrelevant participant data, not removing
outliers. Outliers are not removed because individual differences between participants could
make significant deviation from the mean plausible and reasonable.

Analysing Data: We analyse participant demographic data in Excel. We use the Matlab
2024a [283] Statistics and Machine Learning Toolbox [282] to calculate descriptive statistics
and perform regressions. We use IBM SPSS v29 [207] to calculate One-way ANOVAs and
Tukey HSD Tests for PXI responses.

15.5 Common Limitations

We summarize some meta-elements that limit our study (Table 15.7).

5All participants completed their sessions so no pro-rated payments were made.
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Potential limit Study it affects
Participant homogeneity 1, 2
Human variability All
Fatigue All
Gaming experience All
Modulating effort 1, 2
Ability Battery uncertainty 1,2
Difficulty scaling uncertainty 2,3
Small sample size 1, 2
Validating study (1), Loading study (2), Perceived experience (3)

Table 15.7: Potential limitations and the studies they affect.

Participant Homogeneity. We recruit participants age 18+ around McMaster Campus.
While we did not explicitly recruit gamers, our study about games attracted more gamers
than not. This makes our sample more homogeneous than expected, and so our
data may be more peaked than normal, or skewed to reflect this.

Human variability. Humans are not precise performers, and so across multiple measure-
ments we expect a degree of variability caused by individual differences and envi-
ronmental factors. As well, we cannot control the participants lives around the study; for
example, one participant came to the session directly from working out at the gym, which
could affect their performance. We account for some of this variability by taking baseline
and experimental measures in the same session to reduce differences between environmental
factors.

Fatigue. Participant could experience fatigue from the length of the experimental session,
and the repetitive nature of the tasks. We account for some of this by:

� incorporating stretches in between the Ability Battery and Baseline measure;
� randomizing the game orders inside the MGBatt and experimental games; and,
� including a 5 minute break between the Baseline and Experimental condition.

Gaming experience. Button mashing as a challenge (as opposed to a strategy) was com-
mon during the early 2000s as part of quick-time events and other mini-games, however it is
not as common in popular gameplay post-2010. Given the average age of our participants,
those who have been playing for 10 years were gaming in this post-button mashing challenge
era. We see this reflected in the commonly cited genres and games (e.g. Minecraft, Valorant)
which prioritize cognitive-focused gameplay challenges. Experienced (i.e. literate) play-
ers (e.g. gamers) develop a sort-of “professional vision” (effectively being able
to ignore other stimuli irrelevant to the task [164]) for games [61, 218] which
can improve their performance. For button mashing challenges, literate players may
ignore on-screen feedback and cues, choosing to focus exclusively on the input device as the
only relevant component in task success. Illiterate participants, like those only familiar with
button-mashing-as-a-strategy, are more likely to focus on visual feedback since that reflects
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what they think is important to the task. This experience also affects the partici-
pants’ strategies, as they believe different grips and holds (e.g. one handed or
two handed), afford optimal performance. While minor differences may create outliers
in the data, sufficient splits based on strategies would create bimodal data. Since we cannot
control any groups that form because of strategy we may not have enough participants in
each group to run a reasonable regression. We try to offset the personal experience,
and strategy impact by allowing for open-ended practice before attempting the
baseline challenge. Through this practice we anticipate players can try out different strate-
gies and become familiar with the mechanics such that they are more consistent in approach
between baseline and experimental condition.

Modulating Effort. Participants modulate their effort in a game based on their expecta-
tions about its difficulty and their performance. It is possible that participants can deduce
their difficulty level (i.e. condition) during the experiment by comparing their baseline and
experimental ranks. This could impact whether they hold back in their effort or
double-down. Future work could try and account for this by dynamically adapting the
difficulty based on the participant’s measured ability score. However, this could actually
exacerbate effort modulation. Consider a participant in the Easy condition who realises the
game is trivial and so reduces their effort. Our current fixed difficulty conditions mean that
even inside the “Easy” condition some participants may perceive it as significantly easier or
harder due to their personal ability. So while our imaginary participant reduces their effort,
another group member may increase their effort because they find it more challenging. If the
game was dynamically adjusted, it is possible that all Easy condition players will respond
the same way and reduce their efforts.

Ability Battery Uncertainty. We measure the participants abilities through MGBatt’s
mini-games. While the measurements seem reasonable, inherently they are trying to ap-
proximate an ability level through a proxy mini-game. There is an inherent level of
uncertainty in these measurements that we accept as part of the measurement
process.

Uncertainty from difficulty scaling. We change difficulty by scaling the participant’s
number of correct button presses (i.e. score modifier). This also scales any latent noise
from human variability and participant gaming experience as well. We expect the
uncertainty between conditions is relatively scaled with each other, and can check this against
the prediction intervals for each condition’s regression models.

Small Sample Size. Our small sample size could affect the normality of our data,
increase the effect of noise, reduce the power of our regressions, mislead us
about correlations between predictors and the dependent variable, and make
it difficult to meet the regression assumptions. This is less likely to affect the
validation study as we have more than 10 observations per predictor, which is a commonly
cited (though frequently debated) rule of thumb [368]. It is more problematic for the
loading study since each condition has fewer than 30 data points and multiple predictors.
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Considering this is an exploratory study, we believe that the power is less important as seeing
general trends and changes. We also assess the underlying regression assumptions for each
resulting regression to discuss their appropriateness on a case-by-case basis.

15.6 Heading into studies...

We now head into the study results for RQ1 (Ch. 16), RQ2 (Ch. 17) and RQ3 (Ch. 18).
Each chapter introduces its study and has a short background on literature relevant to the
study design and procedures. Since the data subsets are different for each study, each chapter
has its own participants section to outline whose data is used.

146



Chapter 16

Validating Challenge Competency
Profiles (Study 1A)

We conduct an exploratory study to validate our competency profiles by comparing them
against regression models for player scores using player abilities. This gives us a sense of
how successful our close reading method is at identifying the general competency profile of a
challenge, and provides us with answers to RQ1.

We begin this chapter explaining why multiple linear regression is appropriate, and ele-
ments of the process we must consider for our analysis to be reasonable. We explicitly lay
out our hypotheses regarding our competency profiles and the regression models. We then
summarize our study design, and participant information. Having laid this groundwork we
present our data and resulting models. We discuss whether the models meet regression as-
sumptions, and factors that impact their performance. From there we compare our regression
models to our competency profiles and discuss the ways in which they align and differ.

16.1 Background: Multiple Regression

For button mashing challenges, we think that a player’s score, S, can be expressed as a linear
combination of some subset of Finger Pressing (FP), Selective Attention (SelAtt), Inhibition
(Inhib), Object Recognition (OR), and Token Change Detection (TCD), such that:

S ∼ 1 + BFP × FP + BSelAtt × SelAtt + BInhib × Inhib + BOR ×OR + BTCD × TCD

where BAbility is a scalar coefficient associated with the ability variable, 1 is a placeholder for
a constant valued intercept, and ability units are game dependent (summary in Table 16.1).
A linear model seems reasonable given the history of its use in performance-based games
research (e.g. 116, 132), and our lack of theoretical reasons to look at a non-linear model.

We construct the models through multiple linear regression (MLR), using a stepwise
process to find an optimal subset of predictors [168]1. While criticised, stepwise regressions
are considered acceptable for small, exploratory studies like ours, where little-to-no theory
exists or where researchers are looking for insight into a hypothesized theory [185]. We

1Details about MLR and Stepwise regression can be found in App. F.
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start with an empty model (i.e. just a constant), and add/remove predictors at every step to
optimize for a small sum of squared error (SSE)2 as determined by a significant F-Test at p <
0.05 between model iterations. We select SSE over R2 because R2 will generally increase with
more predictors, thus biasing the resulting model. The resulting reduced model is checked
against the assumptions and diagnostics for MLR to determine if it is “reasonable” (details
in Sec. F.0.2).

16.1.1 Assumptions of Regression Modeling

A reasonable MLR model needs to meet the following assumptions:

1. Each independent variable (IV) correlates to the dependent variable (DV);
2. The IVs are not collinear with each other;
3. The errors follow a normal distribution;
4. The errors are independent; and,
5. The errors are homoscedastic.

Correlation. Only IVs that correlate to the DV should be in the final model. Given the
exploratory nature of this work, we do not set a threshold for sufficient correlation. We
instead focus on significance at p ≤ 0.05, as a stricter α did not seem necessary.

Collinearity. Highly correlated IVs should not be in the same model. We use a pairwise
correlation matrix and variance inflation factors (VIF) to check for collinearity. So long as
the IVs in the final model are not unreasonably correlated (r < 0.5) and the VIFs are less
than 3, we consider the collinearity to be non-problematic. We choose these looser constraints
because human abilities overlap and so we do not have perfectly orthogonal ability measures
(see Ch. 11).

Residuals (i.e. errors) are normally distributed. We visually check residual normality
through histograms, probability (P-P) plots, and quantile-quantile (Q-Q) plots. While we
generally expect a normal distribution of errors, skew in the raw data due to participant
demographics (age) and variable gaming history could cause tailing in the normality plots.
So long as the normality plots do not deviate in unexpected ways, we say the normality
assumption is met.

Residuals are Independent and Homoscedastic. We visually check these through a
residuals versus fitted values plot. For these plots, we are looking for the data points to be
randomly distributed with no specific patterns (independent) and for the data points to be
relatively symmetrical around the 0-line (homoscedastic). We expect that the same skew
from particularly “skilled” participants will cause some extreme outliers, but so long as no
obvious pattern exists we believe these are acceptable.

2The SSE is a measure of the model’s estimation power based on the difference between the real values
and model’s predicted values. A smaller SSE means the regression fits the data better, and gets us closer to
a more precise model.
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16.2 Hypotheses

Hypotheses:
Our competency profiles are “good enough” if...
H1: The reduced model uses all abilities which are listed above the threshold of “No-

ticeably used, but not important (Rank 2)”;
H2: The abilities in the reduced model preserve the general order of importance for

the abilities.

H1 is easy to evaluate by comparing the terms in the regression model to the abilities in the
competency profile. We evaluate H2 by proxy through comparing the model’s standardized
coefficients, and the order abilities are added to the model via the stepwise process (details
in 16.1). Our actual models use non-standardized coefficients to preserve the ability units,
making them easier to discuss in a meaningful way. However, we calculate the standardized
coefficients for the purpose of H2.

16.3 Study Design

We conduct a complex correlational study with one-group design; therefore every participant
will have one set of results from the ability measures, and one score from each of the three
button mashing games. Details about the study design, procedures, and apparatus are in
Ch. 15.

16.3.1 Participants

We remove seven participants due to technical errors in the measurement process dropping
some of their data (N= 68; 42 men, 22 women, and 4 queer3)4. Participants are between 18
to 37 years-old (Age: 21.9 years, σ: 4.2), and the majority report having some undergraduate
education (74%). 63% self-identify as gamers (32 men, 8 women, 3 queer), and the majority
(63%) report playing games for over 10 years5. They play frequently during the week (43
% play 5+ times a week; 34% play 2-4 times a week) commonly for 1-3 hours per session
(50%)6. They predominantly play on their computers (84%) and phones (59%), and seem
to focus on Action (38%) games or Action-Adventure (17%) — the most commonly named
ones being Minecraft (16%), FIFA (16%) and Valorant (15%)7.

3Queer is used as shorthand for participants who identify as non-binary, trans, queer, or unidentified.
4Gender was recorded as opposed to sex in order to see whether gender identity affected player experience

in secondary study.
5The second largest group was 5 to 9 years at 21%
6The second most commonly reported session is 30 minutes to 1 hour at 25%
7The next three by name are League of Legends, Fortnite, and Call of Duty. “Battle games” are listed as

a genre by players, which describes multiplayer action games centred around combat.
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16.4 Study Results

All statistical processes are done via Matlab 2024a[283] using the Statistics and Machine
Learning Toolbox[282] (see documentation [281]), except for VIFs which we calculate using
Daniel Vasilaky’s vif function [504].

16.4.1 Descriptive Statistics

Table 16.1 summarizes descriptive statistics and histograms for the participant’s abilities
(IVs). With the exception of OR8, the ability measures seem reasonably normally distributed
on visual inspection of the histogram — as we would expect in a general population. The data
shows some “peaking”, and SelAtt and Inhib skew right. Both could be due to our somewhat
homogeneous sample (i.e. young, highly-educated, able-bodied, gamers) performing well and
relatively similarly.

Looking at the game scores (DVs) descriptive statistics (Table 16.2) we see the distribu-
tions are reasonably normal on visual inspection of the histogram. SIBM has more of a left
skew and is heavily tailed, but this could be an artifact of our sample having more practice
and being at peak ability age. The central tendencies are similar between SIBM, MIBM, and
Finger Pressing, indicating that the performance in those games may be similar.

16.4.2 Results of Multiple Regression Modeling

We run stepwise MLR between each button mashing game’s score (SIBM, AIBM, MIBM)
and the measured abilities (FP, SelAtt, Inhib, OR, and TCD) resulting in three statistically
significant models:

� SIBM Score = 26.70 + 0.68× FP

� AIBM Score = 20.75 + 0.28× FP + 11.38× SelAtt11

� MIBM Score = 28.38 + 0.55× FP

Our models use unstandardized coefficients so they retain their units making dis-
cussion of the coefficients more meaningful. The intercept of our models does not
depict the score when a player’s ability is 0. Our measures are a proxy for the un-
derlying ability, and so the concept of a 0 score is fuzzy. Consider that even a baby would
have some amount of FP ability (hence being able to flex fingers), and so a “0” measure is
likely impossible. If it was possible, we do not know if the increase in score between 0 and

8From mini-game battery, the game may be too easy even at this tuned level and so the measures have
almost everyone getting perfect.

9Recall this represents the score from the Looking mini-game. Looking measures both selective attention
and inhibition. It was labeled selective attention for ease of data exploration.

10Recall this represents the score from the Recipe mini-game. Recipe measures both selective attention
and inhibition. It was labeled inhibition for ease of data exploration.

11A reminder that Selective Attention refers to the score generated from the Looking mini-game in the
Ability Battery. Looking measures both Selective Attention and Inhibition since they are highly coupled
abilities, and this value should be thought of as representing both abilities.
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Histogram Information Take-away
Ability: Finger Pressing
Measure: Presses / 10 seconds
Mean: 73.87
Std. Dev: 13.04
Median: 73.43

� Reasonably normal
� Mean matches

expectations
� High performing

outlier

Ability: Selective Attention9

Measure: Correct responses / second
Mean: 1.08
Std. Dev: 0.23
Median: 1.14

� Reasonably normal

Ability: Inhibition10

Measure: Correct responses / second
Mean: 0.73
Std. Dev: 0.12
Median: 0.74

� Skewed right; could
be because of
participant
demographics

� Still reasonably
normal

Ability: Object Recognition
Measure: Accuracy (correct responses)
Mean: 0.96
Std. Dev: 0.05
Median: 0.98

� Skewed right
� Not normal

Ability: Token Change Detection
Measure: Correct responses / second
Mean: 0.21
Std. Dev: 0.04
Median: 0.20

� Reasonably normal

Table 16.1: Summarized information about the independent variables (ability measures).
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Histogram Information Take-away
Game: SIBM

� Left skew

� Heavy tail

Mean: 77.06
Std. Dev: 12.06
Median: 75

Game: AIBM
Mean: 53.47
Std. Dev: 9.46
Median: 54

� Reasonably normal

� Missing right tail

Game: MIBM

� Reasonably normal

� Peaking at the centre

Mean: 69.35
Std. Dev: 14.48
Median: 69.5

Table 16.2: Summarized descriptive statistics for dependent variables.

1 is linear, or if scores react linearly below the data points we see. The intercept is an
artifact of the regression that captures some of the noise and error in our data,
but nothing more.

Regression Modeling:: SIBM Score = 26.70 + 0.68× FP

Variable Coefficient CI (95%) Std. Error t-stat

Finger Pressing 0.68**** [0.53, 0.84] 0.08 8.87

Intercept 26.70**** [15.19, 38.20] 5.76 4.63

R2 = 0.54 F(1,66) = 78.7****

Significance: not significant ( ), p < 0.05(∗), p < 0.01(∗∗), p < 0.005(∗∗∗),p < 0.001(∗∗∗∗)

Table 16.3: Stepwise regression model for SIBM.

The SIBM regression produces a significant model, F(1,66) = 78.7, p < 0.0001, R2=0.54
(details in Table 16.3). FP is a significant predictor (t(66) = 8.87, p < 0.0001 ) with a strong
positive effect on Score. Each additional press per 10 seconds increases the player’s score by
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0.68 units. Plotting the regression line against the data we see it reasonably approximates a
linear looking trend (Fig. 16.1).

Figure 16.1: SIBM regression model plotted with the raw data.

Regression Modeling:: AIBM Score = 20.75 + 0.28× FP + 11.38× SelAtt

Variable Coefficient CI (95%) Std. Error t-stat

Finger Pressing 0.28**** [0.12, 0.43] 0.08 3.52

Selective Attention 11.38* [2.59, 20.17] 4.40 2.59

Intercept 20.75*** [7.33, 34.16] 6.72 3.09

R2 = 0.27 F(2,65) = 12.1**** Durbin-Watson = 1.98

Significance: not significant ( ), p < 0.05(∗), p < 0.01(∗∗), p < 0.005(∗∗∗),p < 0.001(∗∗∗∗)

Table 16.4: Stepwise regression model for AIBM.

The AIBM regression produces a significant model, F(2,65) = 12.1, p < 0.0001, R2=0.27
(details in Table 16.4). FP (t(65) = 3.52, p < 0.001 ) and SelAtt (t(65) = 2.59, p = 0.011955 )
are significant predictors with positive effects on Score. For each additional press per 10
seconds, the player’s score increases by 0.28 units; each additional correct response per second,
increases the player’s score by 11.38 units.

We plot the model-plane against the data (Fig. 16.2), and see that Score grows steeply
in line with FP. Based on the SSE Criterion, FP seems to have a stronger influence on the
Score (F = 16.19, p < 0.001 ), where SelAtt’s effective change in the model was smaller (F =
6.69, p = 0.011955 ). The score’s growth relative to each predictor is more visually apparent
when looking at the slices of the plane at fixed predictor values (Fig. 16.3).
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Figure 16.2: AIBM regression model plotted with the raw data.

(a) Data (red dots) on a slice of the AIBM
model plane where SelAtt = 0 (blue line).

(b) Data (red dots) on a slice of the AIBM
model plane where FP = 0 (blue line).

Figure 16.3: Slices of AIBM Model plane where the predictor variables are held at 0 to
compare their relationship to the data.

Regression Modeling:: MIBM Score = 28.38 + 0.55× FP

The MIBM regression model is significant: F(1,66) = 21.96, p < 0.0001, R2 = 0.25 (details
in Table 16.5). FP is a significant predictor (t(66) = 4.69, p < 0.0001 ) with each additional
press per 10 seconds increasing the player’s score by 0.55 units.

154



PhD. Thesis – S. Soraine McMaster University – Software Engineering (HCI)

Variable Coefficient CI (95%) Std. Error t-stat

Finger Pressing 0.55**** [0.32, 0.79] 0.12 4.69

Intercept 28.38*** [10.65, 46.10] 8.88 3.20

R2 = 0.25 F(1,66) = 21.96****

Significance: not significant ( ), p < 0.05(∗), p < 0.01(∗∗), p < 0.005(∗∗∗),p < 0.001(∗∗∗∗)

Table 16.5: Stepwise regression model for MIBM.

Plotting the regression line against the data we see a handful of data points that seem
quite far below the model (Fig. 16.4). Based on their location, these data points seem to
represent participants who are greatly underperforming for their ability level. This is likely
to have a strong effect in the residuals that would warrant further investigation.

Figure 16.4: MIBM regression model plotted with the raw data.

16.5 Checking Model Assumptions

Table 16.6 summarizes our comparison of the models to assumptions from Sec. F.0.2.

Assumptions

Model Correlation Collinear Normality Homoscedastic

SIBM ✔ ✔ ✔ ✔

AIBM ✔ ✔ ✔ ✔

MIBM ✔ ✔ ✖ ✖

✔ indicates meets assumptions, ✖ indicates not meeting assumptions

Table 16.6: Summary of whether models meet the regression assumptions.
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16.5.1 Correlation and Collinearity

Correlation: Table 16.7 summarizes correlations between variables. Our resulting mod-
els only contain IVs that are significantly correlated with DVs, and so they all meet this
assumption.

Correlation Coefficients for Performance in...

Ability SIBM AIBM MIBM

Finger Pressing 0.74*** 0.44*** 0.50***

Selective Attention 0.15 0.37** 0.1095

Inhibition 0.15 0.11 0.04

Object Recognition 0.10 0.30* 0.17

Token Change Detection -0.10 0.04 0.002

Significance: not significant ( ), p < 0.05(∗), p < 0.005(∗∗), p < 0.0005(∗∗∗)

Table 16.7: Correlational Coefficients (Pearson r) for Abilities and Performance Score in the
three challenges.

Collinearity: Table 16.8 summarizes the correlations between the IVs and their VIFs
(in the diagonal). SIBM and MIBM meet this assumption as they do not have multiple
predictors. AIBM also meets this assumption as its two variables (FP and SelAtt) are not
significantly correlated (0.22, p = n.s.), and their VIFs are low (≤ 3).

FP SelAtt Inhib OR TCD

FP (1.08) 0.22 0.19 0.14 -0.05

SelAtt (1.82) 0.45*** 0.55*** 0.25*

Inhib (1.29) 0.20 0.19

OR (1.44) 0.15

TCD (1.10)

Legend: Finger Pressing (FP), Selective Attention (SelAtt), Inhi-
bition (Inhib), Object Recognition (OR), Token Change
Detection (TCD)

Significance: not significant ( ), p < 0.05(∗), p < 0.005(∗∗), p <
0.0005(∗∗∗)

Table 16.8: Pairwise correlation matrix for independent variables with VIF values in the
diagonal.
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16.5.2 Normality and Homoscedasticity

We evaluate these assumptions through interpreting plots. Since this is interpretive, we are
conservative in saying the models meet assumptions. We find SIBM and AIBM meet the
normality and homoscedasticity assumptions, but MIBM does not.

SIBM

Figure 16.5: Standardized Residuals
vs. Fitted Values Plot for SIBM.

Homoscedastic: We plot standardized residuals
versus the fitted values (Fig. 16.5). We see the data is
randomly distributed around the 0-line, with no ob-
vious patterns. We notice at least three significant
outliers which we keep in the dataset as they do not
seem unreasonable in their values considering human
variation. Overall this implies residual independence
and homoscedasticity.

Normality: The P-P Plot (Fig. 16.6a) shows the
data looks normal around the centre of the distribu-
tion12, with some slight bulging that could indicate
the data is more peaked than normal. Checking the
Q-Q Plot (Fig. 16.6b) we see that the data curves
upwards indicating that it may be heavily-tailed. Both of these could be the result of the
homogeneous participant sample (able-bodied, young, gamers). This demographic is likely
to be high performers in ability measures and game scores, and so would exist at the peak
of a proper normal distribution or towards the right-tail in the raw scores. With many data
points falling close together, a well fit model would end up with peaky residuals, and likely
underestimate any data points that fall significantly far above the mean causing tailing.

(a) P-P Plot (b) Q-Q Plot

Figure 16.6: Probability plots for SIBM Standardized Residuals with Normal reference.

12P-P Plots have more power around the centre and are fuzzy near the edges.
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Figure 16.7: SIBM His-
togram with normal distri-
bution reference.

The histogram of standardized residuals (Fig. 16.7) con-
firms the strong peaking and tail on the right side. This implies
we are on the right track with the demographic explanation.
Given this sampling information, it seems like the normality
does not deviate significantly from our expectations to make
us question the validity of the regression.

AIBM

Figure 16.8: Standaradized Residuals
vs. Fitted Values Plot for AIBM.

Homoscedastic: The standardized residuals versus
fitted values plot (Fig. 16.8) shows a random scatter-
ing around the 0-line. No points stand out as ob-
vious outliers, and the points are quite distributed
(no obvious banding). The residuals do not seem to
be autocorrelated (Durbin-Watson = 1.98 ). Overall
this implies that the residuals are independent and
homoscedastic.

Normality: The P-P Plot (Fig. 16.9a) is fairly con-
sistent with the reference line around the centre. The
Q-Q Plot (Fig. 16.9b) similarly shows the edges are
fairly consistent with the reference line. Looking
closer at both plots we see some interesting jumps/ gaps in the data that are almost unno-
ticeable at first glance. It is possible these gaps are due to noise in the data, or a latent
variable. However, the fact these plots are so close to the normal reference line implies that
even if this is the case it does not have a significant effect to make the data bimodal.

(a) P-P Plot (b) Q-Q Plot

Figure 16.9: Probability plots for AIBM Standardized Residuals with Normal reference.
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Figure 16.10: AIBM His-
togram with normal distri-
bution reference.

Confirming with the histogram (Fig. 16.10) shows a fairly
normal distribution, with mild peaking around the centre and
at some points in the tails. However, as a whole it is fairly bal-
anced (no strong tails). As such we are not concerned about
the data, and believe the residuals meet the assumption of nor-
mality well.

MIBM

Figure 16.11: Standaradized Residu-
als vs. Fitted Values Plot for MIBM.

Homoscedastic: The standardized residuals versus
the fitted values (Fig. 16.11) seem to have patterns,
though not singular or cohesive enough to indicate
a non-linear model. There are obvious outliers sig-
nificantly above and below the 0-line. We do see
more points above the 0-line, which could indicate the
model is underestimating performance. The outliers
on the positive residual side seem to increase linearly,
but their meaning is unclear as the rest of the posi-
tive side residuals are fairly random. Many points on
the negative side group around -2 or lower, indicat-
ing model overestimation. Overall we cannot say the
residuals meet independence and homoscedasticity.

Normality: The normal probability plots (Fig. 16.12) show significant deviation from the
normal reference around the tails. The P-P Plot (Fig. 16.12a) shows the data around the
centre seems to fit a normal distribution (no significant deviations from reference). The line
begins to significantly diverge on the left side (< 0) and in the tail on the right side (>
1). The Q-Q Plot (Fig. 16.12b) indicates the data may be heavy-tailed from the shape.
The way the data is bunched in the positive residuals and quantiles implies the model is
underestimating performance (since most points exist in positive residual). From the Q-Q
Plot there seems to be a gap in density around Normal Quantile -1, and a significant number
of values in the lower tail. In this case, it seems like the model is significantly overestimating
these participant’s performance.
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(a) P-P Plot (b) Q-Q Plot

Figure 16.12: Probability plots for MIBM Standardized Residuals with Normal Distribution
reference line.

Figure 16.13: MIBM His-
togram with normal distri-
bution reference.

Looking at the histogram of standardized residuals (Fig.
16.13) we see some peaking between 0 and 1. We also notice
the difference between the distribution and frequencies on the
left side of the histogram, and strong left-tail. This seems con-
sistent with what we are seeing in the normality plots. Consid-
ering the model against the data (Fig. 16.4) it seems like there
was a group of significantly underperforming participants. This
would explain the issues with the residuals and normality, as
the model would be trying to fit all these points in the same
regression and so would be significantly affected by these un-
derperformers. It is unclear at this time why this occurred and
so it does not make sense to remove them from the model.

16.6 Discussing Model Performance

The goal of our study is to validate our competency profiles. The regression models repre-
sent the “real” relationship between abilities and button mashing scores which we loosely
compare our competency profiles against. Hence the estimation/predictive power of specific
regression models is not sufficiently important at this time. Our models are currently quite
uncertain, as indicated by their prediction intervals and R2 values (AIBM, MIBM < 30%,
SIBM 54%)13. However, the elements that affect our model’s fits could represent
latent variables in this relationship. We discuss two potential impacts across all models:
human variability and participant strategy. We also discuss two more impacts specific to
MIBM: the combination of handedness and movement, and latent abilities.

13While the R2 is low, the statistical power is high. Given the sample size (N=68), p < 0.05, and their
respective R2’s, their statistical powers are: SIBM = 1.0 (1 predictor) AIBM = 0.9957 (2 predictors), MIBM
= 0.9971 (1 predictor).
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Human variability: Natural variation between tests, and fatigue could explain why we
had sudden underperformers in MIBM, or the varied number of outliers in each game. Though
each mini-game is only ten seconds, the repetitive button mashing is extremely fatiguing on
hands and joints. While we randomized the order of presentation, fatigue affects every player
differently and so the results may be more noticeable in some areas (i.e. through significant
underperforming outliers).

Strategy: We notice participants use different action strategies during play (Table 16.9).
One-hand participants use two fingers on the same hand, frequently moving at the metacar-
pophalangeal joint (first knuckle). Two-hand participants use a finger from each hand, and
move either at the finger joint, wrist, elbow or shoulder. Looking at the distributions for
AIBM and MIBM, this may explain deviations. We see a gap in AIBM’s probability plots
(Fig. 16.9) which could indicate bimodality in the data; could handedness be this separa-
tion? If this is the case, it seems to not affect the overall residual distributions enough to have
large effects on the model. Looking at MIBM’s data (Fig. 16.4), we see 16 “underperform-
ers” (points below the confidence bounds) which coincidentally is the number of two-handed
participants. However, our observational notes state that these underpeforming participants
use a mixture of one and two handed approaches, making it unlikely this gap is exclusively
to do with handedness. Our observational notes indicate these underperformers seem to use
a variety of movements (e.g. moving at shoulder, vs finger).

N = 67* SIBM AIBM MIBM

One-handed 65 (96%) 39 (57%) 51 (75%)

Two-handed 2 (3%) 28 (41%) 16 (24%)

*Note: We were unable to note the handedness of one participant during their baseline
measure due to managing multiple participants.

Table 16.9: Handedness distribution per button mashing game.

Handedness and Movements: For MIBM specifically, a combination of handedness and
movement location could create circumstances where participants with “good” FP levels
would receive “bad” scores because they are not adequately synchronizing their presses.
The experimental software is forgiving in what counts as “simultaneous” so long as the
player is not accidentally alternating. It is possible that some of the underperformers were
releasing the first button before the second was fully depressed (creating an alternating
motion). Participants using certain two-handed strategies may be prone to falling out of
sync with themselves in this way. Since we measure FP as a single button input skill, it
could be the case that techniques and movements that create “good” FP lead to bad habits
in the simultaneous pressing games which creates a “bad” MIBM score.

Latent ability: MIBM’s poor fit and probability plot gaps imply there is a missing vari-
able from the model that cannot be reasonably explained with strategy. This makes sense
considering our close readings identified a cognitive ability would be necessary to synchronize
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movements. It is possible our cognitive measures for SelAtt and Inhib (which we hypothe-
sized as part of MIBM) are not detailed or granular enough to show up as part of this model.
This is a reasonable concern given the mini-games used to measure these abilities were not
clearly validated in Ch. 11. It is also possible that an unknown ability we did not measure
is at play here.

16.7 Comparing Models to Competency Profiles

Table 16.10 summarizes our comparison of competency profiles to models via H1 and H2.

Competency Profiles

Game Model H1 (Abilities) H2 (Importance)

SIBM 26.70 + 0.68× FP ✔ ✔

AIBM 20.75 + 0.28× FP + 11.38× SelAtt ✔ ✔

MIBM 28.38 + 0.55× FP ✖ ✖

Legend: Finger Pressing (FP), Selective Attention(SelAtt)

Table 16.10: Comparing Regression Models to Competency Profiles Summary

We can visually assess the hypotheses by plotting the model’s standardized coefficients as
a competency profile and comparing the two plots. We calculate each model’s standardized
coefficients from their unstandardized coefficient, using the equation:

βX = BX ×
σX

σY

Where X is an ability, Y is the game score, BX is the X’s unstandardized coefficient, σX is
the standard deviation of X’s raw values, and σY is the standard deviation of Y’s raw values.

A Quick Aside...

Recall the competency profiles combine SelAtt and Inhib since they are highly coupled
abilities. The Mini-game Ability Battery’s Looking and Recipe game both measure
combined SelAtt and Inhib. For the purposes of modeling, each game was assigned
one of these abilities (Looking: SelAtt, Recipe: Inhib). Therefore when either of these
abilities show up in the regression models, they should be thought of as both abilities.
The regression model will be considered to have met the SelAtt/Inhib abilities if either
of those are in the model.

16.7.1 SIBM

From Fig. 16.14 we see that the only ability that needed to be in the regression model was
FP (Rank 4). Since it includes FP and by default preserves the order of importance the
SIBM competency profile and model meet H1 and H2.
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26.70 + 0.68× FP

Ability B β

FP 0.68 0.74

Figure 16.14: Comparing SIBM Regression Model to Hypothesized Competency Profile.

16.7.2 AIBM

From Fig. 16.15 we see FP and SelAtt are in the model, so H1 is met. From the shape (i.e.
standard coefficients) the order seems preserved. We double check this against the regression
steps: FP enters the model first (F = 16.19, p < 0.001), then SelAtt (F = 6.69, p = 0.011955).
This aligns with what we expect from the competency profile, and so H2 is met.

16.7.3 MIBM

MIBM does not meet either hypothesis. This may be because the MIBM does not meet
our reasonable regression assumptions. From analysing the model, we suspect MIBM to
have a latent variable. Considering our competency profile proposes SelAtt/Inhib as being
borderline between Rank 1 and 2, it is possible this is the variable and our existing measures
were not sufficient to pick up on it.

16.8 Conclusion from the Study

Our results show that our competency profiles are reasonable approximations for ability
requirements of button mashing challenges. The single input button mashing (SIBM) and
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20.75 + 0.28× FP + 11.38× SelAtt

Ability B β

FP 0.28 0.38

SelAtt 11.38 0.28

Figure 16.15: Comparing AIBM Regression Model to Hypothesized Competency Profile

alternating input button mashing (AIBM) models aligned well with our competency profiles
and met our hypotheses. AIBM surprisingly shows a significantly smaller finger pressing
importance than we anticipated, though this could be due to our overestimation in the
competency profile or our small sample size in this study. The multiple input button mashing
(MIBM) model was not reasonable, and did not match our competency profile. However,
its diagnostics seemed to indicate that it was missing a variable which aligns with what we
hypothesized in our competency profile. Overall these results suggest our competency profile
construction process is sufficient, and that with a larger more focused study we could pinpoint
the issues with MIBM.

This is an exploratory study subject to limitations outlined in Sec. 15.5. To get a more
robust idea of which abilities are used in button mashing games a larger scale experiment
with a factor analysis method would be more appropriate. Moving forward from this point
we need to consider how to compare these regression models to player profiles.
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28.38 + 0.55× FP

Ability B β

FP 0.55 0.50

Figure 16.16: Comparing MIBM Regression Model to Hypothesized Competency Profile.

Take home points

From this chapter we learned the following meta-lessons:

� Competency profile construction method seems reasonable given 2 competency
profiles (SIBM and AIBM) seem to be accurate; 1 competency profile (MIBM)
seems reasonable, but could not be confirmed.

� Limitations in Ability Battery measurements could be hiding relationships with
dependent variables.

� Participant strategies and gaming experience may play a larger role in perfor-
mance at atomic challenges than anticipated.

� Regressions (and data) suffer from not being more strict in the participant sample
and their approaches to the games.
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Chapter 17

(Over)Loading and Competency
Profiles (Study 1B)

We conduct an exploratory study to understand how under and over-loading limiting abilities
via mechanical difficulty affects a challenge’s competency profile. In this process we provide
more evidence for our baseline models (Ch. 16), and address RQ2.

We begin this chapter explaining the relationship between load and performance. We lay
out our hypotheses and connect them to the button mashing challenges. We summarize our
study design, participant information (for the set and each group), and data analysis process.
We then present our results, which are the majority of this chapter’s content. We conclude
by discussing how the competency profiles change given the adjusted mechanical difficulty,
and how future work could further explore this topic.

17.1 Loading and Performance

“Mental workload” describes the demand a task places on a person’s cognitive resources
[242]1, though it can encompass motor responses as part of the information-processing model.
Low-demand tasks (i.e. underload) are easy to complete, but high-demand tasks (i.e. over-
load) cause performance break down [517]. Wicken’s Multiple Resource Theory models over-
all workload as the sum of individual ability loadings [517]. Challenge competency pro-
files are effectively workload representations, as they quantify each ability’s loading
and identify the limiting ability2.

To explore the relationship between competency profiles (workload as individual ability
loadings) and challenge achievability (RQ2) we need to manipulate task demand. Bowman
and Tamborini [54] adjust task demand via changing the number of actions required to play
the game. We take a similar approach by manipulating mechanical difficulty to change the
load of the limiting ability. Mechanical difficulty allows us to map challenge variables to
abilities, such that we can manipulate a game mechanic to affect specific abilities in the
competency profile. For our button mashing games, we manipulate load for the limiting

1Kosch et al. [242] note that this is a common understanding of workload in HCI, though it is often mixed
with the idea of “cognitive load” from cognitive load theory[460].

2Ability which contributes most to the player’s performance in the game.
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ability via score modifiers (see Custom Games in Ch. 15.2). The score modifier is a source of
mechanical difficulty that changes what “counts” as a correct input. As a proxy for Finger
Pressing (FP), the relationship between the score modifier and FP load is inverted: a higher
score modifier underloads FP (fewer presses needed), while a lower score modifier overloads
FP (more presses needed).

17.1.1 Hypotheses

Hypotheses:
Since we are scaling limiting ability load via score modifier, we expect...
H1: Performance in the games will scale constantly based on the score modifier.
H2: Competency profiles that rely only on the limiting ability will scale constantly

from their baseline model by the score modifier.
H3: Competency profiles that rely on more than the limiting ability will see their

limiting ability scale by the modifier, but their secondary abilities will not scale
neatly.

Since the score modifier constantly changes what “counts”, we expect that performance
in all games will be constantly scaled up or down based on the condition (H1). We expect
Single Input Button Mashing (SIBM) and Multiple Input Button Mashing (MIBM) will fit
H2, such that underloading produces scores twice as large for half as much FP as the baseline
and overloading produces scores half as large but requires almost twice as much FP. However,
we acknowledge that the MIBM competency profile from the baseline study was inconclusive
and so the changes may be different than we expect. We think Alternating Input Button
Mashing (AIBM) fits H3: performance will be scaled with the score modifier, so the limiting
ability load will change accordingly. However, we think selective attention (SelAtt) will
become more important when FP is overloaded, and less important when FP is underloaded,
due to its supporting role in the task. We expect this to show up in the competency profile
as dramatic differences in SelAtt importance between conditions.

17.2 Study Design

We conduct a single-factor, multi-level experiment with between-groups design to view each
difficulty condition separately and compare them against each other. We have three condi-
tions: Easy, Hard, and Control (i.e. baseline model tuning). Details for the study design,
procedures, apparatus are in Ch. 15.

17.2.1 Participants

We remove two participants (P05 and P62) due to technical errors in capturing their FP data
(N= 73; 46 men, 23 women, 4 queer3). We assign participants to experimental conditions
via block randomization, leading to three groups similar in size, age, gender distribution, and
ability scores (see Table 17.1).

3Queer is used as shorthand for participants who identify as non-binary, trans, queer, or unidentified.
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N Age M:W:Q FP SelAtt

Easy 23 22.0 14:8:1 76.52 (σ 17.63) 1.02 (σ 0.20)

Control 25 21.6 14:8:3 74.81 (σ 11.22) 1.13 (σ 0.22)

Hard 25 22.1 18:7:0 73.85 (σ 12.46) 1.08 (σ 0.28)

Legend : X: the mean of X, N: number of participants, M: Man, W: Woman, Q: Queer,
FP: Finger Pressing, SelAtt: Selective Attention

Table 17.1: Descriptive information for each condition.

17.2.2 Analysis Method

Figure 17.1: Data Analysis Procedure for
Loading Study.

All statistical processes and visualization are
done via Matlab 2024a [283] using the Statis-
tics and Machine Learning Toolbox [282].
We summarize our analysis processes in Fig.
17.1. We have two goals in this study: val-
idate the baseline models from Ch. 16, and
explore the competency profiles for different
loadings. We approach both goals by first
checking data distributions, and then run-
ning appropriate regressions.

Data Distributions: We use box-and-
whisker plots to compare predicted and
actual score distributions. This explores
whether player performances were roughly
“the same” between the baseline and experi-
ment. For each condition, we expect the par-
ticipant’s actual score is roughly their base-
line score multiplied by the condition’s score
modifier. Small differences from noise like
human variation may occur. We decide a
mean difference within ±10 points is small
enough to be considered the effect of human
variation.

Regressions: We run regressions for two
purposes: finding models for different load-
ings, and comparing loading models. We
compare conditions, and predicted vs. ac-
tual models, by running regressions with the
condition (either Easy/Control/Hard or Pre-
dicted/Actual) as a categorical variable.
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The models are “different” if the interaction terms between the predictors and categorical
variables are significant. We have a small number of observations per condition (Table
17.1). For SIBM and MIBM regressions which only use a single predictor, these numbers
may be sufficient (though it is possible we may see deviations from normality caused by
this smaller sample size). However, AIBM’s low numbers are just sufficient for regression
with two predictors. While our work is exploratory and so will proceed under this view, we
want to make it clear that these limitations may come into play. We report the regression
assumptions and diagnostics for the results in App. G.1.

A Quick Aside...

The analysis for this study uses both statistical tests and visual inspections/interpre-
tations of plots. The language surrounding visual interpretations may be less precise
than the language used to describe results of statistical tests. We make sure to clarify
in the body when we are drawing a result from visual data inspection, so as to prime
readers for our interpretive language. Where possible, we present statistical data along-
side the interpretive description to give the reader more context. We also make sure to
reference the figures being discussed, such that readers can make their own judgment
on whether they agree with our interpretation.

17.3 Results: Validating Baseline Models

We use the Control condition (N= 25) to test our baseline regression models from Ch. 16.
Validated baseline models allow for more meaningful comparison of the Easy and Hard condi-
tions to the Baseline. Overall we find the baseline models reasonably fit the control
data for SIBM and AIBM. MIBMs distributions imply a reasonable fit, but
checking via regression suggests otherwise. We decide to continue with using MIBM
for comparisons, even though they are unlikely to produce meaningful results.

17.3.1 Comparing Raw Experimental Scores to Raw Baseline Scores

(a) SIBM (b) AIBM (c) MIBM

Figure 17.2: Comparison of Predicted Scores to Actual Scores for Control Condition.
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The box-and-whisker plots for SIBM (Fig. 17.2a), AIBM (Fig. 17.2b), and MIBM (Fig.
17.2c) imply the control condition’s performance was almost identical between their exper-
imental and baseline measures. There is some slight shifting into lower scores in the actual
measure. The median lines are approximately the same, and the means (and their confidence
intervals) overlap.

Figure 17.3: Score Differences for
Control Condition.

On visual inspection, the distribution of the dif-
ferences between actual and predicted values for each
game further suggests the baseline and control sets
are effectively the “same” (Fig. 17.3). The confidence
intervals for each conditions’ mean difference all in-
clude 0 in their range (SIBM: [-0.40, 6.08], MIBM:
[-0.23, 7.75], AIBM: [-1.92, 0.88]), implying no signifi-
cant difference between the groups. The experimental
scores for AIBM and MIBM are within 10-points from
their respective baseline scores (indicated by the dot-
ted reference lines). We see some larger variability in
SIBM’s differences in the positive direction, which in-
dicates the actual score is higher than the predicted
score for some participants.

17.3.2 Checking Control Scores Against Baseline Model

(a) SIBM (b) MIBM

Figure 17.4: Control Data plotted against Baseline Regression Models

We plot the 95% simultaneous observation prediction intervals for the baseline model to
see whether the control data fits into the range we would expect. For both SIBM (Fig. 17.4a)
and MIBM (Fig. 17.4b), many data points lie above the regression line, but fall within the
prediction intervals implying the model reasonably fits the new data. AIBM data points
seem to be dispersed both above and below the regression plane (Fig. 17.5). Similar to the
other games, all new observations fall between the predicted intervals.

We generate Baseline predictions for the group. We regress the Baseline and Control data
on the appropriate abilities (SIBM: FP, MIBM: FP, AIBM: FP, SelAtt) with the data source
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Figure 17.5: AIBM Control Data plotted against Baseline Regression Model.

(Experimental or Baseline-generated) as a categorical variable. Visually, SIBM’s regression
lines are close (Fig. 17.6a), and an ANOVA shows no statistically significant interaction
between FP and the data source (F(1,46)=0.36, p=0.55 ). MIBM’s lines look significantly
different (Fig. 17.6b). An ANOVA shows significant interaction between FP and data source
(F(1,46)=4.13, p=0.048 ), though just barely. This suggests that MIBM’s control regression
and Baseline model are incompatible, even though the control data fits within the prediction
intervals.

(a) SIBM (b) MIBM

Figure 17.6: Comparing Baseline and Control Regressions.

The AIBM planes (Fig. 17.7) look reasonably similar. An ANOVA shows no signifi-
cant interaction between the data source and either FP (F(1,44)=1.71, p=0.20 ) or SelAtt
(F(1,44)=0.65, p=0.43 ), suggesting our baseline model is not significantly different from the
control regression model.

17.4 Results: Regression Models for Loads

We produce regression models for the Easy (N= 23) and Hard (N= 25) conditions. All mod-
els are significant, but MIBM’s Overload (Hard) model, and AIBM’s Underload
(Easy) model do not reasonably meet regression assumptions.
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Figure 17.7: Comparing Baseline and Control Regressions - AIBM.

17.4.1 SIBM

Model 59.29 + 1.15 × Finger Pressing

Variable Coefficient CI (95%) Std. Error t-stat

Finger Pressing 1.15**** [0.70, 1.61] 0.22 5.25

Intercept 59.29*** [23.46, 95.11] 17.23 3.44

R2 = 0.57 Adj.R2 = 0.55 F(1,21) = 27.6****

Significance: not significant ( ), p < 0.05(∗), p < 0.01(∗∗), p < 0.005(∗∗∗),p < 0.001(∗∗∗∗)

Table 17.2: Regression model for SIBM Easy Condition.

Figure 17.8: Plotted SIBM Regression
Model for Easy Condition.

Easy (N=23). The regression results in a sig-
nificant model, F(1,21) = 27.6, p < 0.0001, R2

= 0.57 (details in Table 17.2). FP is a signifi-
cant predictor (t(22) = 5.25, p < 0.0001 ). Plot-
ting the regression we see a positive linear trend
(Fig. 17.8). There is a cluster of points above the
confidence intervals of the regression line, how-
ever they fall within the prediction interval. This
model seems to meet all regression assumptions
(G.1.1) indicating it is a reasonable model for this
game and condition.

4p=0.014503
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Model 11.87 + 0.37 × Finger Pressing

Variable Coefficient CI (95%) Std. Error t-stat

Finger Pressing 0.37**** [0.24, 0.49] 0.06 6.13

Intercept 11.87*4 [2.58, 21.16] 4.49 2.64

R2 = 0.62 F(1,23) = 37.5****

Significance: not significant ( ), p < 0.05(∗), p < 0.01(∗∗), p < 0.005(∗∗∗),p < 0.001(∗∗∗∗)

Table 17.3: Regression model for SIBM Hard Condition.

Figure 17.9: Plotted SIBM Regression Model
for Hard Condition.

Hard (N=25). The regression results in a
significant model, F(1,23) = 37.5, p < 0.0001,
R2 = 0.62 (details in Table 17.3). FP is
a significant predictor (t(23) = 6.13, p <
0.0001 ). Plotting the regression we see a
reasonably linear trend (Fig. 17.9). While
most points fall inside the regression’s confi-
dence intervals, those outside seem to fall be-
low the regression line more frequently than
above. This model meets the correlation and
auto-correlation assumptions, but tenuously
meets the assumptions of residual normality,
and homoscedasticity (see G.1.2 for details).
For the purposes of this study we consider
it as a reasonable model for this game and
condition.

17.4.2 MIBM

Model 62.87 + 0.94 × Finger Pressing

Variable Coefficient CI (95%) Std. Error t-stat

Finger Pressing 0.94*** [0.35, 1.53] 0.29 3.30

Intercept 62.87*5 [16.33, 109.41] 22.38 2.81

R2 = 0.34 Adj.R2 = 0.31 F(1,21) = 10.9***

Significance: not significant ( ), p < 0.05(∗), p < 0.01(∗∗), p < 0.005(∗∗∗),p < 0.001(∗∗∗∗)

Table 17.4: Regression model for MIBM Easy Condition.

5p=0.010514
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Figure 17.10: MIBM Regression Model for
Easy Condition.

Easy (N=23). The regression results in a
significant model, F(1,21) = 10.9, p < 0.0056,
R2 = 0.34 (details in Table 17.4). FP is
a significant predictor (t(22) = 3.30, p <
0.005 ). Plotting the regression (Fig. 17.10)
we see a spread of data points on the right
which fall below the regression line (although
they are within the prediction interval). In-
vestigating the regression assumptions for
this model there seem to be some minor vi-
olations that may be explained by the small
sample size (G.1.1). To this end we tenta-
tively consider this model reasonable.

Model 16.03 + 0.27 × Finger Pressing

Variable Coefficient CI (95%) Std. Error t-stat

Finger Pressing 0.27**** [0.13, 0.41] 0.07 4.01

Intercept 16.03*** [5.67, 26.38] 5.00 3.20

R2 = 0.41 F(1,23) = 16****

Significance: not significant ( ), p < 0.05(∗), p < 0.01(∗∗), p < 0.005(∗∗∗),p < 0.001(∗∗∗∗)

Table 17.5: Regression model for MIBM Hard Condition.

Figure 17.11: Plotted MIBM Regression
Model for Hard Condition.

Hard (N=25). The regression results in a
significant model, F(1,23) = 16, p < 0.001, R2

= 0.41 (details in Table 17.5). FP is a sig-
nificant predictor (t(23) = 4.01, p < 0.001 ).
Plotting the regression we see more curve-
like trends than a linear one (Fig. 17.11).
There are an almost equal number of points
above and below the regression’s confidence
intervals. The model does not reasonably
meet the assumption of residual normality
and homoscedasticity (G.1.2).

6p = 0.00343
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17.4.3 AIBM

Model 36.09 + 0.68 × Finger Pressing + 16.45 × SelAtt

Variable Coefficient CI (95%) Std. Error t-stat

Finger Pressing 0.68** [0.21, 1.15] 0.23 3.00

Selective Attention 16.45 [-24.77, 57.67] 19.76 0.83

Intercept 36.10 [-23.38, 95.56] 28.51 1.27

R2 = 0.32 Adj.R2 = 0.25 F(2,20) = 4.59*

Significance: not significant ( ), p < 0.05(∗), p < 0.01(∗∗), p < 0.005(∗∗∗),p < 0.001(∗∗∗∗)

Table 17.6: Regression model for AIBM Easy Condition.

Figure 17.12: AIBM Regression Plots for Easy
Condition

Easy (N=23). The regression results in a
significant model, F(2,20) = 4.59, p < 0.057,
R2 = 0.32 (details in Table 17.6). FP is
a significant predictor (t(22) = 3.00, p <
0.01 ), however SelAtt is not (t(22) = 0.83,
p = 0.414 ). The regression plane increases
steeply along the FP axis, with a shallower
slope in the SelAtt axis (Fig. 17.12). The
data falls between the prediction intervals,
with many lying directly on or close to the
main plane. This model is unreasonable as
SelAtt and Scores do not significantly corre-
late, the residuals are heavily tailed, and the
residuals-vs-fitted plot seems to have some clear patterning (G.1.1).

AIBM 9.28 + 0.22 × Finger Pressing + 2.23 × SelAtt

Variable Coefficient CI (95%) Std. Error t-stat

Finger Pressing 0.22*8 [0.03, 0.41] 0.09 2.36

Selective Attention 2.23 [-6.36, 10.82] 4.14 0.54

Intercept 9.28 [-3.30, 21.86] 6.06 1.53

R2 = 0.30 F(2,22) = 4.78*9

Significance: not significant ( ), p < 0.05(∗), p < 0.01(∗∗), p < 0.005(∗∗∗),p < 0.001(∗∗∗∗)

Table 17.7: Regression model for AIBM Hard Condition.

7p = 0.0229
8p=0.0279
9p=0.019
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Figure 17.13: AIBM Regression Plot for Hard
Condition.

Hard (N=25). The regression results in a
significant model, F(2,22) = 4.78, p < 0.0510,
R2 = 0.30 (details in Table 17.7). FP is
a significant predictor (t(22) = 2.36, p <
0.0511), but SelAtt is not (t(22) = 0.54, p
= 0.595 ). We see most of the datapoints
are below the regression plane (Fig. 17.13).
The model’s residuals show minor violations
in normality and homoscedasticity (G.1.2).
However, we will cautiously consider this a
reasonable exploratory model that could be
improved with a larger sample size.

17.5 Discussing Challenge Models

17.5.1 SIBM

Model Performance

Easy (Fig. 17.8). On visual inspection, the model seems to reasonably estimate player
performance (supported by R2 = 0.57). Minor over and under estimation seems reasonable
given human variability, and the influence of outliers on the model. Three notable outliers
fall below the regression line — these participants have high FP measures but very low scores.
We do not believe that strategy plays a role in our under performing participants as there is
only one person who used 2-hands in this condition. It is possible that participants in this
condition were not “trying their hardest” and so we see unexpected variation. Alternatively
these players could be succumbing to the effects of fatigue in their play.

Hard (Fig. 17.9). Visually, the model seems to estimate the player performance relatively
well (supported by R2 = 0.61), with most data points falling on or under the line. It is possible
that participants scoring below the regression line are reaching their performance limit, either
through fatigue or bio-mechanical speed limits. We also see interesting jumps in the data,
where it appears there are multiple groupings of linear looking points. These jumps could
indicate there is an latent variable. We do not think that strategy is the latent variable
as all of the participants use a one-hand approach. However, there is the potential that
the “strategy” is not how many hands, but rather the part of the body being moved (e.g.
wrist, elbow, or shoulder). It could be that the latent variable is related to game literacy or
experience in this way as well. The jumps that we see here are likely why the residuals for
this regression were not perfectly normal, however it is hard to know whether this would go
away with a larger sample size.
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Control 24.06 + 0.80 × Finger Pressing

Easy 59.29 + 1.15 × Finger Pressing

Hard 11.87 + 0.37 × Finger Pressing

Variable Coeff. t-stat p-value SS DF MS F-Stat p-value

Finger Pressing 0.80 3.59 0.0006 10058 1 10058 66.46 < 0.0001

Condition – – – 135110 2 67554 446.38 < 0.0001

(Easy) 35.22 1.71 0.09 – – – – –

(Hard) -12.19 -0.54 0.59 – – – – –

FP x Condition – – – 1503.9 2 751.96 4.97 0.01

(Easy) 0.35 1.30 0.20 – – – – –

(Hard) -0.44 -1.45 0.15 – – – – –

Model: R2 = 0.94, Adj. R2 = 0.93, F(5,67) = 203, p < 0.00001

Table 17.8: Regression and ANOVA results showing effects of model type for SIBM.

Comparing Regression Models

Are the conditions different? We regress the entire experimental dataset on FP with
the condition as a categorical value. We use the Control condition as our reference point for
interaction terms because we verify it is not statistically different from our baseline model.
This results in a significant model (F(2,67)=203, p < 0.00001, R2=0.94 ), with the regression
equation:

SIBM = 24.06 + 0.80× FingerPressing + 35.22× Easy− 12.19× Hard

+ 0.35× FingerPressing× Easy− 0.44× FingerPressing× Hard

Where Easy and Hard are mutually exclusive boolean values indicating the difficulty condition
of the challenge. Table 17.8 summarizes the details, and lays out the equations for each
condition. The Easy and Hard models match the regressions from Ch. 17.4.1 which we had
deemed were reasonable. The Control model is slightly different than our baseline model12,
but they are similar considering the different data being tested and how reasonably well our
baseline model performed in Ch. 17.3. The regression ANOVA (Table 17.8) shows both
FP and Condition significantly contribute to the SIBM Score. There is also a significant
interaction between FP and Condition (F(2,67) = 4.97, p = 0.01 ), indicating the conditions
are significantly different from the Control.

Is performance constantly scaled? Looking at the ratios of each condition’s regression
coefficients, using Control/Baseline as reference, we see Easy is generally twice as large
(Control: 1.43, Baseline: 1.69) and Hard is about half as large (Control: 0.46, Baseline:

10p = 0.019
11p = 0.028
12SIBM = 26.70 + 0.68 × Finger Pressing
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0.54). This leads us to think that the relationship between the participant’s performance is
just constantly scaled from the baseline with FP as we would expect. We investigate further
by comparing the Easy and Hard conditions to constantly scaled baseline models.

(a) Easy (N=23) (b) Hard (N=25)

Figure 17.14: Comparing Predicted Scores to Actual Scores for SIBM.

Figure 17.15: Score Differences for SIBM
Across Conditions.

Data Distributions: Participants perform
relatively as expected in both conditions based
on comparing predicted and actual scores (Fig.
17.14). The means and confidence intervals over-
lap in the predicted and actual values for both
conditions. The median lines are visually simi-
lar between the predicted and actuals and they
falls close to the respective means. The range
of values is fairly similar as well. However, the
distribution of differences between predicted and
actual scores (Fig. 17.15) suggests the opposite.
Only the Control condition’s mean confidence in-
tervals encompasses 0 (Easy: [-11.34, -0.14], Con-
trol: [-0.40, 6.08], Hard: [0.52, 2.61]). The Easy
differences are largely variable; its mean and me-
dian imply the predicted values are overestimat-
ing participant performance. The Hard differ-
ences seem well-estimated and have a tighter distribution, but its mean and median imply
our predictions underestimate performance.

Easy vs. Upscaled Baseline. We multiply the baseline model by 2, and generate
upscaled baseline predictions. We regress the Easy data and upscaled baseline predic-
tions on FP with data source as a categorical variable. The regression ANOVA (Table
17.9) shows the Easy model is not significantly different from the upscaled baseline model,
FFingerPressing:Model(1,42) = 0.91, p = 0.34.
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Figure 17.16: Easy vs. 2 x Baseline

Looking at the Easy regression plot (Fig. 17.16)
the slopes of the lines look different, but the scaled-
baseline model seems to be relatively close to the cal-
culated model. The two seem to diverge more as FP
increases, making it seem like participants are under-
performing in this condition.

Exp. Model 59.29 + 1.15 × Finger Pressing

2 x Baseline 53.39 + 1.36 × Finger Pressing

Variable Coeff. t-stat p-value SS DF MS F-Stat p-value

Intercept 59.29 4.87 < 0.0001 – – – – –

Finger Pressing 1.15 7.43 < 0.00001 21675 1 21675 131.42 < 0.0001

Model (Baseline) -5.89 -0.34 0.73 1190.8 1 1190.8 7.22 0.01

FP x Model 0.21 0.96 0.34 150.82 1 150.82 0.91 0.34

Error – – – 6927 42 164.93 – –

Model: R2 = 0.94, Adj. R2 = 0.93, F(5,67) = 203, p < 0.00001

Table 17.9: Regression and ANOVA results showing effects of model type for Easy.

Figure 17.17: Hard vs. 0.5 x Baseline

Hard vs. Downscaled Baseline. We scale
the baseline model by 0.5 and generate downscaled
predictions. We regress the Hard data and these
downscaled predictions on FP with data source as a
categorical variable. The Hard model is not signifi-
cantly different from the down-scaled baseline model,
FFingerPressing:Model(1,46) = 0.20, p= 0.661 (see Table
17.10). Looking at the Hard plot, the lines almost
overlap (Fig. 17.16). While the experimental regres-
sion seems to be under and overestimating its data
points, it lines up with the down-scaled baseline al-
most exactly from about FP 50 to FP 80, which is
where the average FP score lies. The lack of statisti-
cal difference between these regressions and a linear-
scaling of the baseline model implies that differences we see in the data could be misleading
because of human variability. However, it is also possible that our samples are just too small
to detect the nuanced ways these models are different.
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Exp. Model 11.87 + 0.37 × Finger Pressing

0.5 x Baseline 13.35 + 0.34 × Finger Pressing

Variable Coeff. t-stat p-value SS DF MS F-Stat p-value

Intercept 11.87 3.74 0.0005 – – – – –

Finger Pressing 0.37 8.66 < 0.0001 935.03 1 935.03 139.46 < 0.0001

Model (Baseline) 1.478 0.33 0.74 2.83 1 2.83 0.42 0.52

FP x Model -0.03 -0.44 0.66 1.31 1 1.31 0.20 0.66

Error – – – 308.41 46 6.71 – –

Model: R2 = 0.94, Adj. R2 = 0.93, F(5,67) = 203, p < 0.00001

Table 17.10: Regression and ANOVA results showing effects of model type for Hard.

17.5.2 MIBM

Model Performance

Easy. The model’s performance is not great visually (poor R2 = 0.34), with clusters of
under performing participants (high FP, low score) implying a latent variable. The clusters
could represent strategy, as six participants used two-hands (one finger on each key) to
approach this challenge. As previously noted this could create a big difference in scores if
participants were not paying attention to press the buttons at the same time. Notably in
this group, three participants switched from using a two-handed strategy in the baseline to a
one-handed strategy, so these participants may have felt this way and aimed to change their
approach. It could also be a secondary ability at play, as mentioned in Ch. 16.

Hard. The values for the data are quite tight around the regression line. However, there
are some clusters that could imply a latent variable. We do not think strategy is the un-
derlying variable, as the dominant strategy was one-handed play (92% of participants in the
group), with 3 participants switching from a two-handed to one-handed approach between
the baseline and experimental conditions. It is more likely this represents another ability, as
we proposed in Ch. 16. We believe that SelAtt may be this ability, as its correlation with
score was unexpectedly large and positive, but not quite significant. It is possible that in
this harder condition the use of cognitive abilities is more obvious and could be found more
clearly with a larger sample size.

Comparing Regression Models

Are the conditions different? We regress the entire experimental dataset on FP with
the condition as a categorical value. We use the Control condition as our reference point for
interaction terms. This results in a significant model (F(2,67)= 115, p < 0.00001, R2= 0.90 ),
with the regression equation:

MIBM = 6.89 + 0.96× FingerPressing + 55.98× Easy + 9.14× Hard

− 0.01× FingerPressing× Easy− 0.69× FingerPressing× Hard
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Control 6.89 + 0.96 × Finger Pressing

Easy 62.87 + 0.94 × Finger Pressing

Hard 16.03 + 0.27 × Finger Pressing

Variable Coeff. t-stat p-value SS DF MS F-Stat p-value

Intercept 6.89 0.34 0.74 – – – – –

Finger Pressing 0.96 3.54 0.001 7835.6 1 7835.6 35.55 < 0.0001

Condition – – – 112450 2 56227 255.11 < 0.0001

(Easy) 55.98 2.26 0.03 – – – – –

(Hard) 9.14 0.33 0.74 – – – – –

FP x Condition – – – 1241.9 2 620.93 2.82 0.07

(Easy) -0.01 -0.04 0.97 – – – – –

(Hard) -0.69 -1.89 0.06 – – – – –

Error – – – 14767 67 220.4 – –

Model: R2 = 0.90, Adj. R2 = 0.89, F(3,67) = 115, p < 0.0001

Table 17.11: Regression and ANOVA results showing effects of model type.

Where Easy and Hard are mutually exclusive boolean values indicating the difficulty condition
of the challenge. Table 17.11 summarizes the details, and lays out the equations for each
condition. The Easy and Hard models match the ones we found in Ch. 17.4.2. The Control
model is quite different than our baseline13, as we noted in Ch. 17.3. The ANOVA (Table
17.11) shows both FP and Condition significantly contribute to the MIBM Score. There is
no significant interaction between FP and Condition (F(2,67) = 2.82, p = 0.07 ), meaning the
conditions may not be distinct enough from the control.

Is performance constantly scaled? The ratios of each condition’s regression coefficients
against the Control/Baseline do not align with our expectations. Easy’s coefficient is 0.99
times the size of Control, but 1.7 times the size of Baseline. Hard’s coefficient is 0.28 times
the size of Control, but 0.48 times the size of Baseline. Considering the size of the intercepts
and the odd fluctuations in the FP coefficients, this could be further evidence there is a
latent predictor variable that is missing from the MIBM predictors. We further investigate
this by checking the experimental regressions for the Easy and Hard conditions versus scaled
baseline models.

Data Distribution: Participants performance seem to visually match our expecta-
tions in both conditions (Fig. 17.18). Their means and confidence intervals overlap be-
tween the distributions, and their medians are within their respective confidence intervals.
However, the Hard condition’s predicted median is just on the edge of the actual mea-
sure’s bounding box (Fig. 17.18b), which could indicate the distributions are different.

13MIBM = 28.38 + 0.55 × Finger Pressing.
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(a) Easy (N = 23) (b) Hard (N = 25)

Figure 17.18: Comparison of Predicted Scores to Actual Scores for Multiple Input Button
Mashing Games.

Figure 17.19: Score Differences for
MIBM Across Conditions.

Comparing the differences between actual and pre-
dicted scores, all the means are positive suggesting
predictions are underperforming (Fig. 17.19). The
confidence intervals for all conditions include 0 in their
range, indicating the predicted and actual values’ dis-
tributions are not significantly different (Easy: [-6.17,
11.04], Control: [-0.23, 7.75], Hard: [-0.32, 4.52]).
However, the confidence intervals stretch further than
their respective quantile box, indicating that perhaps
there is a significant pull from outliers.

Figure 17.20: Easy vs. 2 x Baseline.

Easy vs. Upscaled Baseline. We multiply the
baseline model by 2 and generate upscaled baseline
predictions. We regress the Easy data and upscaled
baseline predictions on FP with the data source as a
categorical variable. The regression ANOVA (Table.
17.12) shows the models are not significantly different
(FFingerPressing:Model(1,42) = 0.59, p = 0.56 ). We see the
regression lines intersect, but overall look close to each
other (Fig. 17.20).
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Easy 62.87 + 0.94 × Finger Pressing

2 x Baseline 56.75 + 1.11 × Finger Pressing

Variable Coeff. t-stat p-value SS DF MS F-Stat p-value

Intercept 62.87 3.97 0.0003 – – – – –

Finger Pressing 0.94 4.66 < 0.0001 14381 1 14381 51.65 < 0.0001

Model -6.12 -0.27 0.79 529.19 1 529.19 1.90 0.175

FP x Model 0.17 0.59 0.56 97.20 1 97.20 0.35 0.56

Error – – – 11694 42 278.42 – –

Model: R2 = 0.56, Adj. R2 = 0.53, F(2,42) = 18, p < 0.0001

Table 17.12: Regression and ANOVA results showing effects of model type (Easy).

Figure 17.21: Hard vs. 0.5 x Base-
line.

Hard vs. Downscaled Baseline. We scale the
baseline model by 0.5 and generate downscaled predic-
tions. We regress the Hard data and these downscaled
predictions on FP with the data source as a categorical
variable (details in Table 17.13). The models are not
significantly different (FFingerPressing:Model(1,46) = 0.02,
p = 0.89 ). The regression lines begin to converge as
FP increases (Fig. 17.21). The measured scores seem
to differ from the predicted values more than we would
expect.

Exp. Model 16.03 + 0.27 × Finger Pressing

0.5 x Baseline 14.19 + 0.28 × Finger Pressing

Variable Coeff. t-stat p-value SS DF MS F-Stat p-value

Intercept 16.03 4.53 < 0.0001 – – – – –

Finger Pressing 0.27 5.66 < 0.0001 553.9 1 553.9 66.49 < 0.0001

Model -1.84 -0.37 0.72 15.9 1 15.9 1.91 0.17

FP x Model 0.0114 0.14 0.89 0.17 1 0.17 0.02 0.89

Error – – – 383.24 46 8.33 – –

Model: R2 = 0.60, Adj. R2 = 0.57, F(2,46) = 22.8, p < 0.0001

Table 17.13: Regression and ANOVA results showing effects of model type (Hard).

14FP x Model = 0.0096218

183



PhD. Thesis – S. Soraine McMaster University – Software Engineering (HCI)

17.5.3 AIBM

Model Performance

Easy. The model does not reasonably meet regression assumptions, likely due to the sample
size being small. The primary issue is, in spite of our established theory (i.e. baseline models),
SelAtt does not correlate to the scores. This could indicate that at the easy level, SelAtt is
not as important enough to influence scores. Despite this, the model seems to perform well
visually (though R2 = 0. 32 is poor) with some minor clustering that could indicate a latent
variable. Strategy could be the variable as 12 participants (52%) used a one-handed strategy
alternating between fingers, while 11 participants (48%) used a two-handed strategy with
one finger on each key. It is possible that the choice of strategy affects the SelAtt used in
this challenge, since it may require more robust SelAtt skills to maintain the pattern with
two hands versus one. Comparing participant strategies to their baselines we see that 2
participants switched from a two-handed approach in the baseline to a one-handed approach
in the experimental condition. While there is a good even split between strategies in this
group, we would not be able to meaningfully regress using strategy as a predictor because
each group falls so far below the minimum size threshold.

Hard. This model was deemed reasonable, and generally seems to perform reasonably well
visually (but R2=0.30). Minor violations of the regression assumptions seem to come from
the small sample size. There is some clustering in the data, which could indicate a latent
variable. While strategy is a possible option, the split between strategy is smaller in this
condition (17 one-handed, 8 two-handed), leading us to believe it is less likely the culprit.

Comparing Regression Models

Are the conditions different? We regress the entire experimental dataset on FP and
SelAtt using the condition as a categorical value (details in Table 17.14). This results in a
significant model (F(6,73)= 69, p < 0.00001, R2=0.90 ), with the regression equation:

AIBM = 11.11 + 0.50× FingerPressing + 4.20× SelectiveAttention

+ 24.98× Easy− 1.83× Hard

+ 0.18× FingerPressing× Easy + 12.26× SelectiveAttention× Easy

− 0.28× FingerPressing× Hard− 1.96× SelectiveAttention× Hard

Where Easy and Hard are mutually exclusive boolean values indicating the difficulty condition
of the challenge. The Easy and Hard regressions match what we found in Ch. 17.4.3. The
Control model looks quite different than our actual model from the baseline study15, but
matches what we found in Ch. 17.3 which was determined to be not statistically different.
The regression ANOVA shows both FP and the Condition significantly contribute to the
AIBM Score. SelAtt was not found to contribute (F(1,73)= 1.03, p= 0.31 ). There is no
significant interaction between the Condition and either FP (F(2,73)= 1.50, p= 0.24 ) or

15AIBM = 20.75 + 0.28 × Finger Pressing + 11.38 × Selective Attention
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SelAtt (F(2,73)= 0.42, p= 0.66 ). This suggests the conditions may not be distinct enough
from the control.

Control 11.11 + 0.50 × Finger Pressing + 4.20 × Selective Attention

Easy 36.09 + 0.68 × Finger Pressing + 16.45 × Selective Attention

Hard 9.28 + 0.22 × Finger Pressing + 2.23 × Selective Attention

Variable Coeff. t-stat p-value SS DF MS F-Stat p-value

Finger Pressing 0.50 2.07 0.04 3402.9 1 3402.9 24.28 < 0.0001

Selective Attention 4.20 0.33 0.74 144.31 1 144.31 1.03 0.31

Condition – – – 68791 2 34396 245.43 < 0.0001

(Easy) 24.98 1.00 0.32 – – – –

(Hard) -1.83 -0.08 0.94 – – – –

FP x Condition – – – 419.49 2 209.74 1.50 0.23

(Easy) 0.18 0.62 0.54 – – – – –

(Hard) -0.28 -0.86 0.39 – – – – –

SelAtt x Condition – – – 117.07 2 28.54 0.42 0.66

(Easy) 12.26 0.69 0.49 – – – – –

(Hard) -1.96 -0.12 0.90 – – – – –

Error – – – 8969.3 64 140.15 – –

Model R2: 0.90, Adj. R2: 0.88, F(6,73)= 69, p < 0.00001

Table 17.14: Regression and ANOVA results showing effects of model type.

Is performance scaled with the score modifier? Looking at the ratios of each con-
dition’s coefficients against Control/Baseline, Easy is larger across both FP (Control: 1.35,
Baseline: 2.45) and SelAtt (Control: 3.92, Baseline: 1.45). Hard is smaller across both FP
(Control: 0.43, Baseline: 0.79) and SelAtt (Control: 0.53, Baseline: 0.20). The Control and
Baseline ratios for each condition seem quite different; this could be due to the small sample
sizes leading to inaccurate experimental models. More interesting is the difference in scaling
between FP and SelAtt is not the same. Looking at the Control ratios, SelAtt offers signifi-
cant performance advantages in the Easy condition (despite not being well correlated), but
scales more like FP in the Hard condition. In the Baseline ratios, SelAtt offers advantages
in the Easy condition, but is significantly lower than we would expect in the Hard condition.
The Hard condition’s Baseline ratio for SelAtt suggests that players performance is severely
punished for not being good at paying attention (i.e. having a low SelAtt measure to start).
It is not clear from the ratios of the coefficients whether the conditions are simply constantly
scaled from the baseline. We further investigate this by checking the experimental regressions
for the Easy and Hard conditions versus scaled baseline models.
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(a) Easy (N = 23) (b) Hard (N = 25)

Figure 17.22: Comparison of Predicted Scores to Actual Scores for Alternating Input Button
Mashing Games.

Figure 17.23: Score Differences for
AIBM Across Conditions.

Data Distributions: Participants performance
between conditions is similar (Fig. 17.22). The means
and confidence intervals overlap between the predicted
and actual values. The medians are reasonably close
to their respective means and between distributions.
The differences distributions are well behaved across
the conditions (Fig. 17.23). The Easy condition seems
to be pulled downwards by its two low outliers, but
outside of this skew seems to be quite reasonable.
Each condition’s mean confidence intervals include 0
(Easy: [-7.31, 0.87], Control: [-1.92, 0.88], Hard: [-
0.62, 0.90]), which implies the predictions are not sig-
nificantly different than the actual values.

(a) (b)

Figure 17.24: AIBM Regression Model for Easy Condition.

Easy vs. Upscaled Baseline. We scale the baseline model up by 2 and generate
upscaled predictions. We regress the Easy data and upscaled predictions on FP and SelAtt
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with the data source as a categorical variable. The ANOVA shows the Easy and upscaled
baseline models are not significantly different (Table 17.15). There was no significant inter-
action between the data source and FP (F(1,46) = 0.30, p = 0.59 ) or SelAtt (F(1,46) = 0.10, p
= 0.75 ). The Easy plot shows the planes that are relatively close to each other even though
they are intersecting (Fig. 17.24).

Exp. Model 36.09 + 0.68 × Finger Pressing + 16.45 × SelAtt

2 x Baseline 41.50 + 0.55 × Finger Pressing + 22.76 × SelAtt

Variable SS DF MS F-Stat p-value

Finger Pressing 176.03 1 176.03 29.60 < 0.0001

Selective Attention 43.43 1 43.43 3.94 0.05

Model (Baseline) 12.98 1 12.98 0.37 0.55

FP x Model 8.74 1 8.74 0.30 0.59

SelAtt x Model 8.26 1 8.26 0.10 0.75

Error 522.21 44 11.87

Table 17.15: ANOVA results showing effects of model type (Easy vs. Baseline).

(a) (b)

Figure 17.25: AIBM Regression Model for Hard Condition.

Hard vs. Downscaled Baseline. We scale the baseline model by 0.5 and generate
downscaled predictions. We regress the Hard data and downscaled predictions on FP and
SelAtt using data source as a categorical variable. The ANOVA shows the hard and down-
scaled baseline models are not significantly different (Table 17.16). There was no significant
interaction between the model type and FP (F(1,50) = 0.74, p = 0.40 ) or SelAtt (F(1,50) =
0.70, p = 0.41 ). The Hard plots (Fig. 17.25) show the actual performance seems to be better
than the predicted performance. Looking at where the planes intersect we get a sense that
the effect of SelAtt is not being well displayed here, since that seems to be the variable that
misaligns these planes.
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Exp. Model 9.28 + 0.22 × Finger Pressing + 2.23 × SelAtt

0.5 x Baseline 10.37 + 0.14 × Finger Pressing + 5.69 × SelAtt

Variable SS DF MS F-Stat p-value

Finger Pressing 176.03 1 176.03 14.83 0.0004

Selective Attention 43.43 1 43.43 3.66 0.006

Model (Baseline) 12.98 1 12.98 1.09 0.30

FP x Model 8.74 1 8.74 0.74 0.40

SelAtt x Model 8.26 1 8.26 0.70 0.41

Error 522.21 44 11.87 – –

Table 17.16: ANOVA results showing effects of model type (Hard vs. Baseline).

17.6 Relationship between Challenges and Loads

After exploring the relationships between the experimental models and their relationships
with baseline models, we synthesize this information to assess our hypotheses directly (Table
17.17). Overall, performance scales as expected for all conditions; competency
profile loads change in the right direction, but not as much as we expected. The
following sections focus on explicitly explaining the performance-score modifier relationship
(H1) and the competency profile changes (H2, H3).

SIBM MIBM AIBM

Overload Underload Overload Underload Overload Underload

H1 ✔ ✔ ✔ ✔ ✔ ✔

H2 ✖ ✖ ✖ ✖ – –

H3 – – – – ✖ ✖

Table 17.17: Hypotheses Results Comparing Under and Overload models to Baselines.

17.6.1 SIBM

Figure 17.26: Comparison of all SIBM Regres-
sion Models vs. Experimental Data

Performance and Score Modifiers:
From our investigations, it seems like the
SIBM performance scales in step with
the score modifier. Fig. 17.26 shows the
models, their confidence and prediction in-
tervals, and experimental data for each con-
dition. We include reference lines for the
average FP rate for the entire participant
sample, and one standard deviation around
it. Easy and Baseline’s prediction intervals
overlap left of FP = 80. This is likely due
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to Easy’s large uncertainty because of the difficulty scaling amplifying any noise in the data.
We see the high performing Control participants are in Easy’s prediction intervals, suggesting
the low Easy participants are significantly under performing and could be doing so because
they are not “trying their best”. It seems when tuned trivially easy, players may reserve
their energy and purposefully under perform knowing they are safely able to
complete the challenge. In comparison, it seems like participants in the overloaded
conditions are more consistent in their performance because they are giving it their
all.

Competency Profiles and Score Modifiers: We calculate the standardized coefficients
for the Easy (0.56) and Hard (0.82) model to compare against the Baseline (0.74). We graph
the Underload (i.e. Easy), Baseline, and Overload (i.e. Hard) competency profiles (Fig.
17.27). We see that even though the performance was linearly scaled, Hard’s FP load is only
1.12 times the size of Baseline, and Easy is only about 0.76 times the size Baseline. While
there was load scaling in the expected directions, these do not strictly meet our hypotheses.
Using these points we approximate the relationship between changes in the score modifier
and FP load as: Finger Pressing = 0.91− 0.18× Score Modifier.

Figure 17.27: Comparing SIBM competency profiles at different loads.

17.6.2 MIBM

Figure 17.28: Comparison of all MIBM Re-
gression Models vs. Experimental Data

Performance and Score Modifiers:
While our investigation shows that perfor-
mance scales with the score modifier,
we have to keep in mind that the models
require more investigation. We plot the
Easy and Hard models alongside the Base-
line (Fig. 17.28). We include the experimen-
tal data, the models’ confidence and predic-
tions intervals, and reference lines indicating
the average FP rate ± 1 standard deviation.
We see Easy’s lower data points fall inside
the Baseline prediction intervals and fit in
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among the Control values. This could be happening because of underperforming Easy par-
ticipants. These “under performing” outliers could be excessively impacting the
group means, causing them to look similar. This may explain why the interaction
term did not show a significant difference between conditions (see 17.5.2). The
Baseline predictions also overlap the Hard confidence intervals, but the data points do not
intermingle. This leads us to believe that the Hard is significantly different from the Base-
line, which in turn may be what is pulling the interaction term from our comparison ANOVA
towards being significant.

Competency Profiles and Score Modifiers: We calculate the standardized coefficients
for the Easy (0.43) and Hard (0.67) models to compare to the Baseline (0.50). We graph
the Underload (i.e. Easy), Baseline, and Overload (i.e. Hard) competency profiles (Fig.
17.29). Hard’s FP load is about 1.34 times Baseline, and Easy is 0.86 times Baseline. While
the increase is happening in the expected direction, the magnitude does not match our
hypothesis. Using these data points we approximate the relationship between changes in the
score modifier and FP load as: Finger Pressing = 0.71− 0.15× Score Modifier.

Figure 17.29: Comparing MIBM competency profiles at different loads.

17.6.3 AIBM

(a) (b)

Figure 17.30: Comparison of all AIBM Regression Models vs. Experimental Data
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Performance and Score Modifiers: From our investigations, performance seems to
be tied to score modifier. We plot the regression planes, and the experimental data side
by side (Fig.17.30). For readability purposes we leave out the prediction and confidence
intervals, and reference lines for the ability measures. While for the most part data points
are close to their respective planes, there are spaces where they seem to butt up against the
prediction intervals for its adjacent condition. The most interesting element of comparing
performance is seeing how SelAtt (the secondary ability) changes importance between condi-
tions (Fig.17.31b), particularly compared to FP changes (Fig. 17.31a). We previously discuss
this in Sec. 17.5.3, but it seems that SelAtt is a “bonus” skill in Easy (improving
scores but a high value is not a success requirement) but becomes more required
as difficulty increases. Recall that SelAtt did not correlate to the Easy scores (which made
the regression unreasonable); SelAtt as a “bonus” skill in trivial difficulties could explain why
does not correlate for just this condition.

(a) Finger Pressing Axis (b) Selective Attention Axis

Figure 17.31: AIBM Regression Models rotated to highlight specific growth along axes.

Competency Profiles and Score Modifiers: We calculate the standardized coefficients
for the Easy (FP: 0.36, SelAtt: 0.16) and Hard (FP: 0.51, SelAtt: 0.09) models to compare
to the Baseline (FP: 0.38, SelAtt: 0.28). We graph the Underload (i.e. Easy), Baseline, and
Overload (i.e. Hard) competency profiles (Fig. 17.32). For FP load, Hard is about 1.33 times
Baseline, and Easy is 0.95 times Baseline. While the changes are happening in the expected
directions, the magnitudes do not match our hypotheses. We also look at SelAtt load; Hard
is 0.33 times the size of Baseline, and Easy is 0.56 times Baseline. It is unclear why the
changes in SelAtt are like this; however, we did expect this in our hypothesis. Using these
data points we approximate the relationship between changes in the score modifier and FP
and SelAtt loads as:

Finger Pressing = 0.52− 0.09× Score Modifier

Selective Attention = −0.33× Score Modifier2 + 0.87× Score Modifier− 0.26

17.7 Conclusion

This chapter is an exploratory look at the relationship between a challenge’s ability loadings
(via competency profiles) and mechanical achievability (via performance) for the purpose of
answering RQ2.
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Figure 17.32: Comparing AIBM competency profiles at different loads.

Verifying Baseline Models: We begin by verifying our baseline models of button
mashing challenges against new data from the same participants. The data analysis suggests
that participants were performing within human variability error between button mashing
instances. As well, results seem to imply that the baseline and control models were statis-
tically identical (i.e. for each challenge there was no significant interaction effect between
performance and whether the data was from the Baseline or Control set).

Analysing the Relationship Between Performance and Finger Pressing Load:
We analyse player performance at button mashing challenges tuned to different difficulties,
and compare the performance models for the Underloaded (i.e. Easy), and Overloaded (i.e.
Hard) instances to the Control (i.e. Baseline) models. Our results highlight the changes
in a player’s button mashing challenge performance as a result of FP load. Specifically, we
observe that:

1. Performance in SIBM seems solely influenced by FP load;

2. Performance in MIBM seems largely influenced by FP load at Easy and Baseline tun-
ings, but there seems to be a latent variable (potentially SelAtt given the correlations)
that exerts influence at the Hard tuning; and,

3. Performance in AIBM seems primarily influenced by FP load, and secondarily by Se-
lAtt.

Quantifying the Mechanical Difficulty Relationship Between Abilities and
Score Modifier: We use these performance models to provide preliminary insight into
the mechanical difficulty relationship between the tuning of score modifiers to the amount of
FP load in the challenge (represented in the competency profile). Specifically these results
suggest:

1. SIBM’s FP is linearly related to the score modifier (FP = 0.91−0.18×Score Modifier);

2. MIBM’s FP load is linearly related to the score modifier (FP = 0.71−0.15×Score Modifier);

3. AIBM’s FP load is linearly related to the score modifier (FP = 0.52−0.09×Score Modifier);
and,
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4. AIBM’s SelAtt load is quadratically related to the score modifier (SelAtt = −0.33 ×
Score Modifier2 + 0.87× Score Modifier− 0.26)

By establishing a preliminary understanding of the performance relationship between FP load
and button mashing challenges, and the mechanical difficulty relationship between abilities
and score modifier, we have a starting answer to RQ2.

Limitations in Results: These results are limited by factors discussed in Ch. 15.5,
particularly the small sample size, uncertainty in the measures, and noise in the data.

Future work. A more thorough investigation of AIBM should be the first step in further-
ing this work. AIBM shows interesting and unclear effects on the secondary ability (Selective
Attention). From the current data, AIBM seems to change competency profile shapes with
difficulty as its secondary ability becomes more or less important. We suspect something
similar is happening with MIBM, where a secondary variable like Selective Attention be-
comes more necessary at higher difficulties. To confirm this we would need more targeted
studies with larger sample sizes. Another direction for future work is to explore dynamically
adjusted condition to try and control participant effort modulation which could be causing
data overlap.

Take home points

From this chapter we learned the following meta-lessons:

� Competency profiles represent ability load for challenge tuning.

� The baseline models for Single Input Button Mashing and Alternating Input
Button Mashing are reasonably good at fitting new data.

� The regression issues with Multiple Input Button Mashing (particularly the Over-
load condition) adds more evidence to a latent variable in the competency profile.

� Performance in button mashing challenges seem directly tied to the limiting abil-
ity and scales with score modifier as expected.

� Player’s effort at a challenge may be directly tied to how difficult they perceive
it to be.

� Button mashing competency profiles do not change finger pressing load one-to-
one with score modifier (i.e. what “counts” as a button press).

� Competency profiles may change depending on difficulty tuning (as with AIBM
Underload and MIBM Overload).
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Chapter 18

Mechanical Experience of
Competency Profiles (Study 1C))

We conduct a convergent mixed methods research [101] study to explore the player’s per-
ceptions of the button mashing challenges in their experimental conditions. This serves
to address RQ3, as we explore the relationship between controlled mechanical experiences
(facilitated by mechanical difficulty changes) to the larger holistic player experience.

We start by constructing our theoretical framework. We focus on concepts and theories
which we rely on when contextualizing and analysing the data. The theoretical framework
replaces a specific hypothesis as it summarizes what we expect from the data and how we
will be interpreting subjective elements. We then explain the study design and summarize
participant details. We provide a short researcher reflexivity statement to further contex-
tualize our interpretations of the data, and increase integrity and transparency. We then
spend a moment examining participants to understand how their intersecting identities and
positions affect their responses. We then present the data in two separate analyses: first the
quantitative data, then the qualitative. For each type of data, we explain our data analysis
approach, present the results, and discuss our interpretations of the data on its own before
coming together at the end for a meta-discussion about how the results support each other
and interact. We end this chapter by expressing how these results will impact our design of
“jutsu”.

A Quick Aside...

This study has a lot of data. For readability, we present samples and summaries of
data in the body of the thesis. Full data and results are in App. H.

18.1 Theoretical and Conceptual Framework

We take a social constructionist perspective to this research meaning that we see reality as
constructed through the social discourses and practices of people [86]. We establish some basic
theoretical foundations of how experiences are constructed and what other social constructs
influence these experiences. While the whole thesis can be thought of as developing this
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larger conceptual framework for understanding player experiences, players, and games, we
particularly highlight a handful of immediately relevant concepts.

Player Experiences. Player experiences (PX) are constructed phenomena composed of
many experiential types (see Experiential Tetrad - Fig. 3.1). These experiences exists at
multiple levels of abstraction and across different times, as reflected in Nacke and Drachen’s
PX framework (Fig. 18.1) [315]. Since we focus on mechanical experiences, we anticipate
discussions to centre the technical experience and individual experience. Leverag-
ing these conceptual frameworks further, we can anticipate that an individual player’s
game literacy, and gamer identity play a significant role in how they experience our
difficulty-adjusted games.

Figure 18.1: Nacke and Drachens Player Experience Framework reproduced from [315].

Game Literacy. Game literacy is broadly the ability to understand and make meaning in
games at different levels of abstraction by employing various skills and competencies built
through play, design, and analysis [14, 540, 542]. For the average player, their gaming
literacy is developed through their personal gaming experiences, interaction with
gaming paratexts, and the larger gaming culture. In this way players develop a
wealth of knowledge about common mechanics, goals, interactions, and optimal strategies
which improve their performance in games. This wealth of experience can impact a player’s
perceived usability, competence, immersion, and positive affect in similar games
(e.g. games in the same franchise 206, or genre).

Gamer Identity. Self-categorization theory [484] explores how social identity groups both
describe and prescribe their members’ attitudes and behaviours. Identities are therefore
performative (built through ongoing adherence to attitudes and behaviours) and precarious
(under scrutiny by others who validate that identity) [72]. An individual’s performance
of their identity is constantly compared against the prototypical group member.
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Shaw [432] summarizes “gamer” identity as being performed through acts of consumption
(e.g. time commitment, economic investment, subcultural capital) and dedication (e.g. social
capital). However, this only accounts for some of the behavioural elements of the prototype
— to fully understand gamer identity we need to combine this knowledge with the “gamer”
stereotype. For “gamers” the traditional stereotype paints a picture of a young White man
[106, 359, 431, 523], who is commonly heterosexual [431], unattractive [243], socially inept and
unmotivated for real world rewards [243, 452] but likely has some technical expertise [112].
When it comes to play, the stereotype is that “real gamers” want challenging competitive
experiences [94, 359], and therefore focus on a subset of “real games” and playstyles [145, 223,
286]. This is reinforced through the identity sub-labels and rhetorics found in online gaming
communities which create a hierarchy of “realness” [60, 112]. While continually disproven
both academically (e.g. 170, 243, 509, 523) and through gamer census data (e.g. 15, 16), the
stereotypes still persist even among self-identified gamers who lobby it at others or use it as a
reason to discredit themselves as gamers [431, 452]. The persistence of the “gamer” stereotype
in spite of contradicting evidence, implies that it is the prototypical view of a gamer even
inside the gaming community. Tension with this stereotype leaves individuals unsure
of their “gamer” identity even when they exhibit stereotypical behaviours (e.g.
112, 359, 432).

Identity Threat. When a precarious identity is challenged either culturally or individually
strongly identifying group members may experience identity threat [37, 57], leading mem-
bers to reassert themselves by performing more prototypical group behaviours, and
denigrating outgroups [57]. Self-Affirmation Theory1 [448] outlines three typical responses to
identity threat: accommodation (accepting the threat and changing themselves), amelioration
(handling the threat by reframing, dismissing, denying, or avoiding it), or self-affirmation
(reflecting on aspects of our self-image unrelated to the threat) [433]. For gamers, under the
prototypical belief of a gaming meritocracy [220, 365], failure can result in identity threat
inciting gamers to self-regulate individually through defensive biases (e.g. attributing
the loss to the game or circumstance [220, p. 17-19]; self-defeating behaviours like expecting
negative outcomes or not recognizing poor performance [510]), and self-affirm culturally
through reinforcing the stereotype (e.g. stating women are inferior players due to bio-
logical and cultural reasons [296]), harassing perceived outsiders (e.g. being hostile towards
women gamers [226]; toxic practices [60, 365]), or reframing the threat (e.g. attributing
negative outcomes to external prejudice and having a more positive opinion of being a gamer
[508]).

Meaning for our study. To understand latent meanings and implications of responses
we must consider:

� Responses will likely focus on the concrete levels of experience (i.e. technical and
individual);

1This overlaps with Attribution Theory [141] which explores how people connect events to causes. Juul
[220] notes that gamers can either attribute failure to themself (i.e. accommodation), the game (i.e. amelio-
ration) or circumstance (i.e. amelioration).
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� Gaming literacy and gamer identity will influence what they perceive, how they feel
about it, and the way they communicate;

� Identity threat may influence responses leading to prototypical gamer behaviours/re-
sponses.

Therefore we must familiarize ourselves with contemporary gamer culture, and look at how
our participants fit into it.

18.2 Study Design

We conduct a convergent mixed-methods2 study [101], using a questionnaire variant [100], to
understand PX for button mashing challenges at different difficulties. We collect Player eX-
perience Inventory (PXI) responses as quantitative data, and open-ended response questions
as qualitative data. Using a questionnaire variant means we will not have rigorous qualitative
data since the open-ended questions are just appended to the quantitative survey, and we
cannot follow up with participants as we would in an interview. While this means the data
would not hold up on its own as a qualitative study, it can still produce emergent themes to
enhance and discuss the quantitative data set [100]. Details of the study design, procedures,
and apparatus are in Ch. 15.

18.2.1 Researcher Reflexivity

Sasha has been academically researching games since 2016, which affects how she interprets
participant responses due to her awareness of game studies and human-computer interaction
work. Sasha is an avid game player for over 25 years, covering a variety of genres (e.g.
shooters, hack-and-slash, puzzle, party, visual novel, point-and-click adventure, roleplaying,
strategy, platformers, etc). This influences the approach to the overall thesis including the
focus on creating models of games at the level of atomic challenges. Sasha identifies as
a gamer with previous inclinations to being a “hardcore” gamer (see Brett and Soraine
[60] for meanings of different sub-labels) and she participates in broader gamer and gaming
culture. This gives Sasha a partial insider perspective as her gender (not cis-male) and
racial (not White) identity do not align with the “gamer” stereotype. While the overlapping
gamer identities allow for more nuanced interpretation of the responses and insight into latent
meanings, we do acknowledge the potential bias of over-relying on perceived group stereotypes
because of this. We try to offset this through relying on our conceptual framework to support
insights and meanings we find.

2Details on convergent mixed method research are in App. H.1.
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18.2.2 Participants

753 participants complete our study (Men: 46, Women: 25, Queer4: 4). We collect partici-
pants’ ages, genders, gamer identity, gaming history, and gaming habits (see Table 18.1 for
sample). Based on the average responses, a representative participant is a 21.9 year-old (σ
4.2, range: 18 to 37) man who self-identifies as a gamer (68%: 35 men, 12 women, 4 queer),
has been playing games for 10+ years (60%: 32 men, 9 women, 4 queer), and averages 5+
gaming sessions a week (44%: 24 men, 7 women, 2 queer) at 1 to 3 hours per session (48%:
24 men, 12 women, 0 queer) on his computer (85%). We also collect their gaming platforms
and a sample of games they play (see Table 18.2 for sample).

Demographics Gaming Information

ID Age Gender Gamer History Length
(hours)

Sessions per
week

P01 30 Man Yes 10+ years 0.5 to 1 5+

P02 21 Man Yes 10+ years 1 to 3 5+

P03 28 Man Yes 10+ years 1 to 3 2 to 4

. . . . . . .

P18 19 Woman No� 10+ years 1 to 3 Irregular

P19 19 Man No� 5 to 9 years 0.5 to 1 1

P20 26 Man No 10+ years 1 to 3 5+

P21 21 Woman Yes� 10+ years 1 to 3 2 to 4

P22 30 Queer Yes� 10+ years 3+ 5+

. . . . . . .

P73 29 Man Yes 10+ yeas 1 to 3 5+

P74 20 Man Yes 10+ years 3+ 5+

P75 33 Woman Yes 10+ years 1 to 3 2 to 4

�: indicates a more complicated response than Yes/No

Table 18.1: Sample of Participant Demographics (11/75 rows). Full information in Table
H.10.

18.3 Analysing Participants

We take a critical look at the participants’ gamer identity, history, and habits. We aim to get
a better understanding of how these intersect in ways that could help us interpret responses
more accurately.

3This study does not need to remove any participants as we have complete data from their questionnaires
(the primary data source), as well as their ranks in the baseline, experimental conditions (secondary data
sources).

4We include specific identities in the Participant Information table (Table 18.1), but for simplicity in
numerical reporting we categorize Trans, Non-Binary, Queer and fluid or unshared identities as “Queer”.
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ID PC Ph/T Con HCon. Sample of Reported Games/Genres

P01 ✓ ✕ ✓ ✕ LoL, Zelda, CoD, Stardew Valley, Mario Party

P02 ✓ ✓ ✓ ✕ FIFA, CoD, Fortnite

P03 ✕ ✕ ✓ ✕ Last of Us, GTA V, God of War

. . . . . .

. . . . . .

. . . . . .

P18 ✕ ✕ ✓ ✕ CoD

P19 ✓ ✕ ✓ ✓ Minecraft, Kingdom Hearts, Forza Horizon, CS:GO

P20 ✕ ✕ ✓ ✕ FIFA, Overwatch, Warzone, Spiderman

P21 ✕ ✓ ✓ ✕ Animal Crossing, Mario Kart, Mario Party, Overcooked 2, Cookie Run Kingdom

P22 ✓ ✕ ✓ ✓ MMORPGs, MOBAs, party games, fighting games, Mario Kart

. . . . . .

. . . . . .

. . . . . .

P73 ✓ ✓ ✕ ✓ Palworld, LoL, Pokemon

P74 ✓ ✓ ✓ ✓ Action-Adventure, JRPGs, Puzzle, Shooters, Platformers, Co-op, Arcade

P75 ✓ ✕ ✓ ✕ Mario Kart, FF XII, Layers of Fear, Love Nikki, Pokemon Snap, Shadow of the Colossus

Legend Computer (PC), Smartphone/Tablet (Ph/T), Console (Con), Handheld consoles (HCon), League of Legends
(LoL), Call of Duty (CoD), Grand Theft Auto (GTA), Counterstrike: Global Offensive (CS:GO), Legend
of Zelda (Zelda), Final Fantasy (FF), Japanese Roleplaying Game genre (JRPG), Massively Multiplayer
Online Roleplaying Game genre (MMORPG), Multiplayer Online Battle Arena genre (MOBA)

Table 18.2: Sample of Participant Gaming Context (11/75 rows). Full information in Table H.12.
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Uncertain Gamers. Eight participants express uncertainty about their gamer status.
Those who seem positively-inclined to the identity (P21, P22, P36) have long gaming his-
tories (10+ years) and frequent weekly sessions (2 to 4) which generally fit or exceed the
average session length. The negatively-inclined ones (P14, P18, P19, P34, P57) report long
gaming histories (5 to 9 years: P19, P34, or 10+ years: P18, P57), irregular gaming ses-
sions (P14, P18), or shorter average sessions (0.5 to 1 hour: P19, P34, P57). Uncertainty
implies a complex relationship to the gaming stereotype, not inherently gaming
experience or knowledge.

Non-gamers. 75% report gaming for at least one year (29% reporting more than 10 years),
with 37.5% report between one to four gaming sessions a week — numbers that hardly
seem like low amount of play. While “non-gamers” report shorter sessions than the average
participant, there is evidence that self-report measures are biased by social and cognitive
processes (e.g. 362) and that video game playtime is generally underestimated by players
[45] as time is perceived to pass faster in flow states [402]. This makes it seem like self-
identification as a non-gamer reflects the participants comparing themselves to
the gamer stereotype, rather than having significant inherent differences in their
relationship to games.

“Gamer” Habits. Patterns aligning with the gamer stereotype emerge in platform pref-
erences (Computer: 85%, Smartphone/Tablet: 57%), common games (e.g. Valorant, League
of Legends, Minecraft, FIFA) and genres (e.g. Action, Action-Adventure, MOBA, FPS,
Sports). Insight into how these preferences are related to gamer identity and stereotype will
allow for more nuanced response interpretations.

Platform. Computer gaming carries social gaming capital [60, 94], making it unsur-
prising it is the most common platform. Our gamer participants are likely very familiar
with manipulating games through keyboard (95% report being familiar and confident with a
keyboard). In gaming culture, mechanical keyboards are discussed as necessary for optimal
performance both in community posts (e.g. Reddit [501]), and scholarly work on gaming
performance (e.g. [280, 298]).

Games and Strategy. The most commonly listed genres (e.g. Action, MOBA) and
games (e.g. Valorant, League of Legends) indicate that many of our participants exist in
competitive gaming culture [60]. This competitive space embodies the gaming meritocracy
mindset and so considers all competition as inherently strategic. To competitive-oriented
gamers “button mashing” is a reviled strategy for new players and non-competitives (e.g.
531).

Games and Age. In light of participant ages and gaming histories, the commonly
listed games imply that our our average participant may not be exposed to button
mashing as a challenge. Button mashing as challenge became heavily tied to quick-
time events (QTEs), which larger gaming culture began to openly detest around the 2010s
(e.g. 292). This led to button mashing challenges being used less frequently in large and
competetive games, though it still exists in party and mini-games.
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What we learn about the participants:

� Gamer identity or lack-thereof does not indicate lack of gaming experience or poor
game literacy.

� Specific hardware (e.g. mechanical keyboards) and strategy discussions can be indica-
tors of prototypical gamer views.

� Participants may not be familiar with button mashing as a challenge, and so interpret
it as button mashing as a strategy (which can trigger identity issues on failure).

18.4 Quantitative Strand: PXI Responses

18.4.1 Analysis Method

Figure 18.2: PXI Analysis Method

We analyse the PXI data in five steps (Fig. 18.2).
We start by recoding participant item responses
from the original 1 (strongly disagree) to 7
(strongly agree) into a range from -3 (strongly
disagree) to +3 (strongly agree). This way the
response’s sign represents its valence (positive or neg-
ative), and its value indicates intensity, and scores of
0 are neutral (neither agree nor disagree). We then
sum construct item responses into a construct
score ranging from -9 to +9, with the mean-
ings of signs, values and 0 still holding. We
import the data into IBM SPSS v29 [207] for statisti-
cal analysis. We compare mean construct scores
via One-Way ANOVAs followed by Tukey Hon-
est Significant Difference (HSD) tests to con-
firm group differences at significance p < 0.05.
We further investigate the groups’ scores via the me-
dian and modes of each Likert-item to get a
general sense of how the groups respond to dif-
ferent items, and how those contribute to the
overall score.

18.4.2 Expected Trends

We expect Easy responses will be low in Meaning, Immersion, and Challenge as the game
is too easy (bordering on boring), but the Master scores will likely be high. Comparatively,
Hard scores should be low across the board (as the game is virtually impossible), and Control
should be high (as the game meets player skills). We derive these expectations from our
understanding of PX (recall the larger survey in Part I), and summarize them in Table 18.3.

201



PhD. Thesis – S. Soraine McMaster University – Software Engineering (HCI)

Mean. Mast. Imm. Prog. AV Cha. Con. Goals

Easy _ ^ _ – – _ – –

Control ^ ^ ^ ^ ^ ^ ^ ^

Hard _ _ _ – – _ – –

Table 18.3: Expected trends in responses._= low values, ^= high values.

18.4.3 PXI Results

We focus on Meaningful, Mastery, Immersion and Challenge as we expect these to change
depending on group. As there is a lot of data, we summarize important findings and what
they mean in Table 18.4. We present the full results in App. H.4, and point to the appropriate
tables in the body of this results section.

The results are counter-intuitive to our expectations: Easy’s mean responses
are the highest across constructs (Table H.13), Control and Hard never statistically differ
from each other (Table H.15), and while Hard does have some negative means (Meaningful,
Mastery) they are fairly close to neutral (see Table H.16 for details). We find significant
group differences for Meaningful (F2,74 = 6.26, p < 0.005) and Mastery (F2,74 =
6.93, p < 0.005). Meaningful and Mastery means differ between groups (Hard: negative,
Control: neutral, Easy: positive). In Meaningful, Easy differs from both Control (Diff: 2.93, p
< 0.05) and Hard (Diff: 4.05, p < 0.005); but Control and Hard are not statistically different.
In Mastery, Easy and Hard differ (Diff: 5.10, p < 0.001), but no other pairing is significantly
different. Challenge was close to being significant between groups (F2,74 = 3.03,
p = 0.054). Challenge’s group means were all positive; looking at individual pairings only
Easy and Hard significantly differ (Diff: 3.07, p < 0.05). Immersion is not significant,
and its means are positive across groups.

18.4.4 Discussing PXI Results

Meta-Explanations: Groups are randomized, so within each group there may be partic-
ipants who felt the over- and under-loading to greater degrees. Their responses may pull
the group averages in ways that made constructs seem not significantly different. It is also
possible that a player’s identities and performance expectations could skew their responses
based on item wording.

Meaningful: It is unclear why Easy feels somewhat meaningful (Mean: 3.13), while the
other two feel neutral (Control Mean: 0.19, Hard Mean: -0.92). It could be that the in-
dividual items were ambiguous in defining “meaningful” (Mean1), “relevant”
(Mean2), and “valuable” (Mean3). Participants may address this ambiguity by think-
ing about their scores between the baseline and experiment as an evaluation of meaning.
Perceived score changes could inspire positive (if rank increases) or negative (if
rank decreases) feelings which participants interpret as “meaningful”. This could
explain why Control is fairly neutral, but not why Hard is also neutral. Considering modes,
most Control participants did not find the experience meaningful (-6 - disagree), while Hard
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Results Summary Interpretation

Meaningful

� ANOVA: 6.26*** � Easy perceives more meaning

� Tukey: Easy/Control = 2.93* � Control and Hard are neutral

� Tukey: Easy/Hard: 4.05*** � Individual responses wildly vary

� Construct Desc.: Easy means are
positive and larger than other groups

� Item Desc: Values support other
findings

� ANOVA: 6.93***

� Tukey: Easy/Hard = 5.10****
� Easy perceives significant mastery.

� Construct Desc.: Easy’s mean ±σ
completely overlaps Control mean ±σ

� Control and Hard perceive neutral
to somewhat positive mastery.

� Item Desc: Easy generally strongly
agrees; Control and Hard are more neu-
tral

Mastery

� Item Desc: Control and Hard have
noticeably lower responses for Mast3
than other Mastery items

Immersion � ANOVA: n.s � Groups are similarly immersed.

� Tukey: n.s � All central tendencies trend positive

� Construct Desc.: Values are ex-
tremely close and have large σ

� ANOVA: n.s (p = 0.054)

� Tukey: Easy/Hard = 3.07*

� Easy perceives the challenge as just
right for them.

� Construct Desc.: Trends positive � Control and Hard perceive neutral
or slightly positive challenge.� Construct Desc.: Central tenden-

cies are different from each other within
group

Challenge

� Item Desc.: Cha3 is significantly
different between Easy and Hard

Significance: not (n.s), p < 0.05(∗), p < 0.01(∗∗), p < 0.005(∗∗∗),p < 0.001(∗∗∗∗)

Table 18.4: Important results from PXI analysis and what they mean.
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participants did (+2 - somewhat agree). This further complicates the hypothesis that re-
sponses are due to the change in score/rank. Alternatively, it could be that participant
interpretations are just diverse, and so Meaningful just captures their overall at-
titude towards the experience.

Mastery: Given that Control and Hard are not significantly different, it is counter-intuitive
that Easy and Hard are significantly different, but not Easy and Control5. Looking at the
means, we see our expected experiences: Easy feels Mastery, Control is neutral, and Hard
does not feel Mastery. However, the Mastery medians (Easy: 6, Control: 2, Hard:
0) are quite different from the means (Easy: 3.54, Control: 0.50, Hard: -1.56).
The medians and modes suggest Easy feels Mastery strongly, Control feels some Mastery,
and Hard is neutral. Looking at the individual items, it seems Control and Hard are greatly
influenced by Mast3 (Hard - median: -2, mode: -3; Control - median: -1, mode: -1). Mast1
and Mast2 ask participants if they felt “capable” and “good” at the game; Mast3 asks if they
felt “a sense of mastery”. It could be that the more positive responses to Mast1 and
Mast2 are due to players not reflecting on their particular experience, but their
overall feeling about how good they think they are at this type of game.

Immersion. The group positive and not significantly different means (Easy: 4.42, Control:
3.35, Hard: 2.56) indicate all groups felt some level of immersion. Medians for individual
items were similar between groups and across questions. It is possible that responses are so
similar because the definition of “immersed” is ambiguous. Participants who perceive
immersion as being focused on the game may be biased because the mini-games
are short and mechanically intense, thus emulating conditions of immersion in
larger settings.

Challenge. Easy (mean: 3.63, median: 5, mode: 6) seem to feel the game is
appropriately tuned to their level. Control group is more split (mean: 2.62, median:
4, mode: 0); they seem to agree that the game was appropriately tuned in Cha 1 and Cha2
(Mode: 2, Median: 1), but were less sure when asked to evaluate if the tuning was to their
level (Mode: 1, Median: 1). Hard (mean: 0.56, median: 0, mode: 5) suggests that
they feel neutral, but the mode suggests many believe the game is appropriately
tuned for their levels. This is odd considering it was tuned to be impossible for the players
to beat, and all but one6 member of the Hard group received either a “D” or an “F” rank in
their experimental conditions across the button mashing games (an average of 2 ranks lower
than their baseline). Looking at individual items, Hard responses to Cha3 (median: 0, mode:
-2) deviate from the other groups. Cha1 and Cha2 ask more generally about the game, while
Cha3 directly asks the player if the challenge was the right level for them. It is possible that
the generic wording of Cha1 and Cha2 cause the participants to compare this game against
other games they have played, resulting in a more positive score since these are “simple”.

5We understand this is mathematically because Easy’s mean and standard deviations completely overlap
Control’s mean and standard deviation. Here we focus on why players may respond that way.

6P21 received an outlying “C” rank in AIBM, but a “D” in SIBM and “F” in MIBM.
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18.4.5 Summarizing PXI

From the PXI results we see:

� Players in the Easy condition have a more positive experience with the game, while
believing it is appropriately tuned to their abilities.

� Players in the Control and Hard conditions report neutral feelings towards the game
tuning regardless of actual performance.

These findings run counter to Flow theory [103] and other PX constructs (e.g. immersion
[127]) that suggest players are disengaged from “boring” or “trivial” gameplay. As well, the
fact that Control and Hard report neutral feelings regardless of degree of failure indicates
that something is going on in the self-reporting.

18.5 Qualitative Strand: Textual Responses

18.5.1 Thematic Analysis Process

Figure 18.3: Thematic analysis pro-
cess overview.

We adopt a “Big Q” perspective, relying on our the-
oretical and conceptual frameworks (Sec. 18.1) and
positionality (Sec. 18.2.1) to reflexively guide our in-
terpretations. Fig. 18.3 is an overview of our thematic
analysis process. These steps are non-linear; we move
back and forth, and combine stages during the holistic
analysis process. Our understanding of each phase are
shaped by work from Braun and Clarke [59] and Terry
et al. [469] and Sasha’s previous grounded theory work
that used thematic analysis to study changes to gamer
identities and labels over COVID-19 [60]. We detail
each step below, and provide examples where appro-
priate.

0. Data Organization. We group responses by
their experimental condition (participant distribu-
tion in Table H.11). Groups are approximately the
same size, average age, gender distribution (see Ta-
ble 17.1 for demo details), gamer-to-non-gamer ratio
(Easy 18:6, Control 20:6, Hard 16:9), and frequently
reported gaming history (Easy/Control/Hard: 10+
years). We then separate the data by challenge, so we
can analyse all of the SIBM Easy condition responses
before moving on to the SIBM Hard responses, etc.
This allows us to note codes, patterns, and observa-
tions unique to a game-condition pair, enabling more
meaningful latent understandings. We treat the “final
thoughts” separately and review/code it after the challenge-based responses.
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1. Familiarization. We make three complete passes through our data, each with a dif-
ferent response context (anonymous, gamer demographic, performance). Each pass requires
multiple readings to make sure that we capture as much information as possible, especially
as ideas from later responses may change opinions and contexts of earlier ones.

1.1 Anonymous pass: We look at the responses with no identifying participant data.
We focus on semantic meanings. We draw some initial interpretations and highlight keywords
that could be relevant to coding.

1.2 Gamer demographics pass: We look at the responses alongside participant demo-
graphics (age, reported gender), reported gamer identity, and gaming history (play history,
frequency, session lengths, common games, and frequently used platforms). We focus on
latent and contextual meanings, prioritizing understanding that reflect participant informa-
tion and concepts from our theoretical framework. We update our notes for all responses and
highlight potential codes.

1.3 Performance pass: We add participant performance data (raw scores, ranks, rank
differences) and our observational notes to the responses. This contextualizes responses in
emotional experiences and immediate gaming contexts. We update our notes to highlight
how this information enhanced or changed our understanding of the data and trends.

2. Code generation. We mix deductive (descriptively reflecting what was being said)
and inductive (interpreting what was being implied) coding. We start with descriptive codes
and then review the responses again with an interpretive lens, potentially resulting in new
inductive codes. Whenever we generate new codes, we revisit previously coded data to see
whether the new codes apply. Through this process, the same phrases or segments of data
may have multiple codes applied; this is a regular occurrence in thematic analysis [59, 469]
and just reflects the richness of qualitative data. We list out the complete set of codes in
App. H.5. We walk through this process with P69’s responses to what he felt was the hardest
part of the fire-starting game (SIBM):

“Difficulty was not an overall factor, but ensuring position of my hands to rapidly
click the right arrow key at length without succumbing to fatigue”

(P69, SIBM, Easy)
Man, 31, Gamer for 10+ years, SIBM Rank increased by 1

2.1 Descriptive coding: We start by looking just at the semantic meaning of the
response noting down what is being signaled through the phrases as codes. For example,
when P69 says “difficulty was not an overall factor” they are signaling the game was easy
for them. We give our codes a long descriptive form (e.g. Game was easy for me), and
a shorthand (e.g. Easy) for quicker notation. We summarize the descriptive codes for this
quote in Table. 18.5.

206



PhD. Thesis – S. Soraine McMaster University – Software Engineering (HCI)

Code Shorthand Part of the response

Game was easy for me Easy “Difficulty was not an overall factor...”

Approaching the game with a strategy Strategy “...ensuring position of my hands...”

Understanding input Input “...rapidly click the right arrow key...”

Understanding of mechanics Mechanic “...rapidly click the right arrow key...”

Fatigue Fatigue “...without succumbing to fatigue”

Table 18.5: Descriptive codes for P69’s quote for SIBM Difficulty.

2.2 Inductive coding: We then go back and look at the response for latent meanings
(codes in Table. 18.6). For example, “Difficulty was not an overall factor, but ensuring
position of my hands...” implies P69 sees their hand position (code Strategy) as having a
non-trivial impact on their performance. P69’s linking of a particular strategy and increased
performance signals they have meta-knowledge (“the set of skills, strategies, and attitudes
that support optimal play” [60]) for these challenges, likely developed over their gaming
history (10+ years, many different genres). While they performed well, this phrase shows
they are justifying their performance through meta-game knowledge . This aligns
with what we understand of game literacy and gamer identities.

Code Code shorthand Part of the response

Conceptual model of gameplay Conceptualization “...ensuring position of my hands to
rapidly click the right arrow key...”

Justifying their performance
through meta-game knowledge

Justifying perfor-
mance

“Difficulty was not an overall factor,
but ensuring position of my hands...”

Table 18.6: Inductive codes for P69’s quote for SIBM Difficulty.

3. Theme construction. We cluster codes based on similarities in their use, and the
phenomena they describe into candidate themes7. This entire subjective process relies heav-
ily on our understanding of the data (from familiarization), our theoretical and conceptual
frameworks, and our positionality. We give more weight to the inductive codes as they re-
flect latent meanings and provide more rich data. While “good quality themes should be
distinctive, with little ‘bleeding’ of codes” [469, p. 28], it is possible for themes to overlap
their concepts and codes in ways that suggest a unifying framework [59].

4. Reviewing themes. We break this process up into two steps: an independent reflexive
review, and a group-based review.

4.1 Reflexive review: We compare candidate themes to see if they have any relation-
ships, or if they are further collapsible into a more comprehensive theme. We double check
the themes to see if they meaningfully capture aspects of data and its tone, and relate to the

7Underlying concepts and patterns in data which relate to our research question.
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research question. If we are unsatisfied we return to theme construction. Once satisfied we
move to the group review.

4.2 Group review: We present our candidate themes to other members of the Games
Scalability Lab (G-ScalE) alongside coded excerpts. This serves as a soundness check of our
themes and reasoning. We prime the group with an overview of our theoretical and conceptual
framework so they can see whether our interpretations of the coded excerpts seem logical,
and therefore fit the overall theme. If at any point the themes do not seem reasonable, we
return to the theme construction stage and try a new organization.

5. Defining and naming themes. We finalize theme names, their supporting examples,
and the story of their interpretation and meaning. We use excerpts from player responses as
narrative evidence for the themes. We attribute excerpts to the participant via their ID, and
list the game being discussed, and the condition. We also outline the relationships between
themes and draw conclusions from across the whole analysis.

18.5.2 Results: Factors Influencing PX of Gameplay

Two major themes emerge from our data: the player’s conceptualization of the challenge, and
their conceptualization of themselves. Conceptual models8 reflect a person’s understanding
of an object, experience, situation and/or person based on their previous experiences and
knowledge [350]. A player’s conceptual models of a game impact their in-game performance,
feelings of presence, and frustration (e.g. 289, 398, 524). Their conceptual model of being a
gamer influences the types of experiences they seek out (e.g. 30, 534), how they approach
games (e.g. 202), and how they conceptualize failure (e.g. 11, 146). The interaction of these
two conceptual models (challenge and gamer-self) form the basis of the perceived difficulty
and PX of gameplay.

Theme 1: Conceptualization of the Challenge.

The conceptual model of a game covers a player’s understanding of the formal game elements
(e.g. goals, mechanics, rules), appropriate strategies, and general opinions on the gameplay.
When encountering any gameplay, players fallback on their conceptual models to determine
how they should approach the challenge and what they should expect of the game.

We find the players conceptualization of the gameplay seems to address two underlying
questions: (1) is the challenge simple or complex, and (2) is the challenge skill-based or
strategy-based?

Simplicity vs. Complexity: Players broadly conceive of a challenge as either simple
or complex. Simple challenges are considered “easy”, a perception seemingly constructed
through comparing the game’s formal elements to other games. This recurs across games
and conditions when players say things like “the only hard part was spamming the keyboard”
(P13, SIBM, Hard). Complex challenges require players “to think about what [they were]
doing” (P30, MIBM, Hard). Complexity implies difficulty, and is constructed from the ways

8Also known as mental models.
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the game’s formal elements combine with the potential approaches. Player’s view of a
challenge as simple or complex seems to be entirely based on gaming literacy,
not in-game performance. Consider these quotes about the difficulty of AIBM from two
longtime gamers:

“this game wasn’t really that hard,
I thought it was easy as you had to
press the keys one after the other”

(P43, AIBM, Easy)

“I think it was knowing if I should
use my right hand or using both
hand fingers - I like challenges so I
wanted to know which way I could
do it so it was challenging - maybe
using just my right hand but I like
to win so I liked to focus during it”

(P59, AIBM, Easy)

P43, a team-based shooter focused computer player, constructs the game as “easy” based
on its mechanics and goals held in comparison to the more cognitively demanding gameplay
he is used to. He sees no further depth to the gameplay or ways to engage with it beyond
press the buttons fast. P59, an action-adventure focused console player, constructs the game
as “complex” through strategizing whether one or two-hands would be optimal. Her response
implies a more sophisticated literacy for button mashing, which could reasonably have been
developed based on her age and gaming context.

Skill-based vs. Strategy-based: Players consider challenges as either skill or strategy
based. Skill-based games focus on player proficiency and limitations, with discussions about
how “I was getting tired and felt like I was losing my rhythm” (P47, AIBM, Hard). In
comparison, strategy-based games are about finding “what type of button mashing would
work best” (P22, SIBM, Control). We can consider the differences between views from the
following quotes:

“Pressing the button fast enough (I
felt like I was lacking the only skill
needed to do well in the game).”

(P14, SIBM, Control)
Skill-based

“Mashing at the same time, using
one hand was more consistent but
would obviously be slower than two
hands”

(P47, MIBM, Hard)
Strategy-based

While both views agree that competency is needed to perform well, skill-based considers
it the only determinant (e.g. P14), while strategy-based believes that optimal technique
overcomes competency deficits (e.g. P47). Players often consider simple as skill-based,
and complex as strategy-based. This feeds into their underlying expectations about how
much effort they should put into the game and how much experimentation is necessary.
However, this is not a hard and fast rule as we see with P47 who seems to view the challenge
as simple with a straight-forward approach, even though she clearly recognizes it as strategy-
based.
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Theme 2: Conceptualization of Themselves.

While gamers are not a monolith, they all exist inside gaming culture and absorb its values.
Gaming culture sees itself as a meritocracy [60, 220, 365] which values “skill above everything
else” [220, p. 79]. Gamers embody this value, and exhibit a sort of gamer exceptionalism (e.g.
41, 60, 94), reinforced by research about how gamers have superior abilities than non-gamers
(e.g. 122, 169, 453), and are more persistent in the face of failure (e.g. 506, c.f 12).

When faced with the possibility of failure, this strong identity and sense of exceptional-
ism primes gamers for identity threat soothed by strong self-affirmation and self-regulation
responses [37]. We see these responses emerge through: (1) asking am I this type of gamer?,
and (2) living up to gamer expectations.

Am I this type of gamer? Individuals see themselves as a “type” of gamer; their
“type” acts as a lens to view their performance, and set their skill expectations.
Colloquially “skills” refers to the cognitive and motor abilities needed to excel at the me-
chanics of a game. So it makes sense that a strategy (i.e. cognitively-focused) gamer like
P71 would self-affirm this type identity in the face of perceived failure by saying
they are “[n]ot particularly experienced with mashing games” (P71, General Feedback, Hard).
Players using this defense may mischaracterize the gameplay to fit genres they
are familiar with and are outside their type. For example, P58 clarified they “...don’t
usually do well with rhythm games” (MIBM, Hard). While none of our games are rhythm
games in their design or mechanics, P58 may perceive them that way due to her 10+ years of
gaming history which focuses on games that do not involve button-mashing-as-a-challenge.
This exposure to gaming culture could lead to this particular type of defense despite of not
having a strong “gamer” identity.

Living up to gamer expectations:

“I felt that I should have spent more time figuring out what techniques
worked best, but I wasn’t expecting to need to optimize it that much
because button mashing games are usually pretty easy and don’t have
high thresholds for success. I enjoyed the game but did not enjoy the taste
of failure. Generally I don’t feel motivated to button mash as hard as
possible unless it’s in a competitive setting, or a reward I genuinely want.”

(P58, General, Hard)
Bolded for emphasis.

In failure, we see the underlying expectations and reactions that gamers have about the
challenges (Quote 18.5.2). Many gamers assume inherent competency regardless of knowing
their abilities were being tested. Faced with failure, their responses rely on common gaming
rhetoric to distance themselves from their performance and self-regulate their identity. We
see defensive biases like describing ways they were knowingly sub-optimal (e.g. not figuring
out the best technique, not going as hard as possible), and attributing blame to the game (e.g.
not feeling motivated because it was not competitive/did not have a reward they wanted,
not having the right technology, not having the right type of feedback). In most of these
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identity threat responses there is palpable frustration as gamers tried “not getting angry at
a bad rating” (P74, All Games, Hard).

18.5.3 Summarizing Themes

Theme Sub-themes

Conceptualization of the Challenge
Simplicity vs. Complexity

Skill-based vs. Strategy-based

Am I this type of gamer?
Conceptualization of Themselves

Living up to gamer expectations

Table 18.7: Themes and subthemes from Thematic Analysis.

Table 18.7 summarizes our themes: two conceptual models (challenge and gamer-self),
and their implicit questions, that provide insight into a player’s expectations about and ex-
perience of gameplay. These conceptual models are not mutually exclusive, as game literacy
(and by extension the conceptualization of the challenge) is informed by the player’s rela-
tionship to the gamer culture and identity. Misalignment of their expectations create
frustration. Gamers self-regulate with defensive behaviours like attributing performance
issues to the game, or self-affirm by distancing themselves from the type of game, or explain-
ing how the circumstance is less than ideal (e.g. not having the right technology). These
behaviours save face because it allows them to be “good gamers” even though
they did not succeed. Non-gamers seem to self-attribute failure, likely because they do
not expect themselves to succeed. Regardless of actual skill-difficulty tuning, if a
player believes they should have “succeeded” and they do not, their view of the
experience will be negative.

18.6 Integrating PXI and Thematic Results

We integrate our analyses, using our themes to contextualize why PXI findings run counter
to our expectations and conventional knowledge.

Why does Easy have high PXI scores? Overall players’ perceptions of the experience
seem directly related to their success in the game. Players in the Easy condition were
always successful, and did not question this behaviour. Their conceptual models aligned,
so they expected high performances. The high levels of Meaningfulness reported by the Easy
condition seem to reflect this alignment, implying that meaningfulness may be a construct
measuring expectations, and so is heavily influenced by positive experiences (i.e. winning).
This aligns with Bowey, Birk, and Mandryk [53], which finds that feelings of success increase
the player’s view of their own competency, autonomy, presence, enjoyment, and positive
affect.
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Why do Control and Hard not differ? The Control and Hard groups expectations are
not being met. Previous work found that gamers seem to have a more nuanced interpretation
of “what counts” as failure focused more on their self-expectations [11, 146]. This could
explain why PXI measures for these groups were not significantly different since both groups
view success as achieving an S-rank. Hence a less than perfect score (Control group) and
failing score (Hard group) are equally bad. The lack of difference in intensity, while surprising,
could be a reflection of player’s responding to stereotype threat. This would explain why the
Control and Hard group’s were unsure about the amount of feedback since that is a common
way poor performance is attributed to the game.

Why are Control and Hard responses neutral? The PXI responses seem to reflect
the player’s conceptual models rather than the specifics of the game they just played —
hence why we see players who failed rating the game as “not too easy/too hard” (Cha1).
This would also explain why we see players from the Hard group consider themselves to have
some amount of Mastery at the game (see Mast1 and Mast2), in the face of failure. They
believe their conceptual model is correct, and so may be responding to these questions as
if they were asking “are you good at button mashing” instead of directly regarding these
games.

Overall. Our findings lend some support to the idea of the “Impression Manager” player
type [183]. These are players who are motivated by the social capital of being “good” at a
game but are so risk-averse that they only want to play at difficulty levels that guarantee
their success. Impression managers therefore want to engage with the rhetoric that games are
a skill-based meritocracy since it gives them prestige, but they want to always be perceived
as having significant merit. This kind of motivation could be exacerbated by the social
hierarchies and rhetorics of competitive gaming culture [60], which are now the dominant
gaming culture. This reinvigorates the case for dynamic difficulty adjustment in games,
especially based around their competency profiles, as it could be particularly effective for
this type of gamer.

18.7 Conclusion for this study

Our mixed-methods study results are short:

� Player’s perceived experience is influenced by their expectations, not just their skill-
difficulty balance.

� Player expectations are the result of their conceptualization of the challenge and their
conceptualization of themselves as a gamer.

� Aligned expectations skew positive experiences and belief in game balance.
� Misaligned expectations skew negative experiences and can induce gamer identity threat.
� Gamer self-affirmation could impact the measurement of experience constructs for neg-

ative experiences.

This aligns with existing game studies literature on gamer identities and player types, even
though it disagrees with PX construct literature (i.e. Flow and immersion). We can interpret
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these results as showing that mechanical experiences (even the limited scope that we are
looking at) are a single factor in larger PX, with the results suggesting that in this case the
socio-cultural experiences may have a stronger influence on the holistic PX.

What this means for our thesis. RQ3 asks how designers can use the knowledge of a
challenge’s mechanical experience in their game design. Jutsus as knowledge capture tools
visualize the mechanical achievability of a specific challenge for a particular player making
it easy for designers to tune challenges for desired PX. Expressing mechanical experiences
through mechanical achievability, we rely on understandings of Flow and challenge-based im-
mersion to dictate what challenge tunings would result in “good” PX. We originally envision
the competency profiles as representing the centre of an ability range that could possibly
complete a challenge and so feel positive PX. Seeing how players do not actually want per-
fectly challenging experiences, means that we should interpret challenge competency profiles
as ability floors necessary for a positive PX. This must be kept in mind as we design jutsus
and explain how to interpret them.

Limitations in Study. We discuss generic limitations in Ch. 15.5. A unique limitation
of this study is that we took the participant’s PXI measurements after having played all the
games so their responses may reflect their experience with all of the button mashing games
they played. Having participants fill out PXI forms after each challenge would significantly
increase their experimental time and could make their results less reliable since they would
be spending 10 seconds on the game and about 6 minutes for the survey (the average amount
of time it took to complete). By having the survey at the end, participants had more time
in their experimental condition to reflect on their feelings and so their responses give us a
sense of how the tuning relates to the experience.

Future Work. We should explore this idea through dynamically adjusted experimental
conditions to see whether there are stronger or different results when participants are grouped
by ability level. Studies like this would benefit as well from a more in-depth qualitative process
that targets how integrated a player’s gamer identity must be before these effects appear.
Future studies should also consider recording participant player types to see whether there
are deviations along those motivation lines.
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Take home points

From this chapter we learned the following meta-lessons:

� Self-report measures for experience are susceptible to bad data when a negative
experience triggers the respondent’s identity threat.

� Player’s experiences are the result of their expectations of the game and them-
selves (positive = aligned expectations; negative = misaligned expectations).

� Players want to succeed more than they want to play a balanced challenge.

� Our jutsus should reflect this by highlighting competency profiles as ability floors.
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Chapter 19

Closing Remarks: The Challenge
Model

We close out Part III with some promising preliminary answers for our research questions.
RQ1 is addressed by the challenge models for our Button Mashing family of challenges (Tables
19.1, 19.2, 19.3 on the next three pages) based on their hypothesized (Ch. 14) and validated
(Ch. 16) competency profiles. RQ2 is addressed by our competency profiles at different
loadings (Ch. 17), which show us that performance only uniformly scales with limiting ability
when there are no “important but not limiting” abilities at play. We start to address RQ3
through Ch. 18, and end up reminding ourselves that the perceived experience is more than
just the mechanical experience. Through all of this we have a more robust understanding of
the mechanical experiences of button mashing challenges through the lens of limiting abilities.
This is an important stepping stone to improving our overall understanding of mechanical
experiences and the effectiveness of our challenge model.

19.1 Improving our work

Future work in understanding the relationship between human abilities and atomic challenges
in a quantitative way should start by improving their measurement methods for abilities. We
foresee this becoming a more limiting factor in validating challenge competency profiles, es-
pecially for cognitive-focused challenges where abilities overlap significantly. Most challenges
in commercial games require more significant combinations of motor and cognitive abilities
than we see here, and some flip the script to rely more heavily on cognitive abilities entirely.
Having more precise and reliable measurement tools will allow for more specific understanding
of our more complex challenges.

With an improved measurement method, the next conceptual step in this type of research
is to understand how to account for or incorporate elements of a player’s gaming literacy and
experience into these kinds of models. We see that even in a motor-dominant challenge fam-
ily like Button Mashing Games, players interpret the games differently and employ different
strategies which may be significantly impacting their performance. This makes the relation-
ship between the challenge and abilities somewhat suspect as a person with lower ranked
abilities may be able to perform well due to strategy differences. While this is minimized in
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Table 19.1: Challenge Model for Single Input Button Mashing Game.
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Table 19.2: Challenge Model for Alternating Input Button Mashing Game.

217



PhD. Thesis – S. Soraine McMaster University – Software Engineering (HCI)

Table 19.3: Challenge Model for Multiple Input Button Mashing Game.
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motor-dominant challenges due to biomechanical limitations of human movement, we foresee
it becoming problematic in cognitive-dominant challenges.

19.2 Wrapping Up

What we learned in this part:

� Challenge performance is reasonably modeled as a linear combination of some
subset of human cognitive and motor abilities (the competency profiles being
direct answers to RQ1).

� Our method for creating competency profiles seems to produce reasonable ap-
proximations of the actual competency profiles.

� Our understanding of limiting abilities as main drivers of success is reasonable
when considering over and underloading challenges (RQ2).

� Performance in atomic challenges is susceptible to influence from gaming litera-
cy/experience (i.e. strategy)

� Even in pure skill-based gameplay, player’s perceived experience is more related
to their expectations of the game and themselves as gamers than pure mechanical
experience (related to RQ3).

What we produced in this part:

� A method for creating challenge competency profiles that include cognitive abil-
ities;

� Expanded and validated competency profiles for single-input, alternating-input
button mashing games (see charts in Tables 19.1, 19.2);

� Expanded and semi-validated competency profile for multiple-input (see chart in
Table 19.3) button mashing games;

� Three custom button mashing games for testing purposes (App. D);

� A method for experimentally validating competency profiles; and,

� Final challenge models for our Button Mashing family of challenges (Tables 19.1,
19.2, 19.3).
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Part IV
The Jutsu Framework

We have finally arrived to the main event of this thesis: combining our player model (Part
II) and challenge model (Part III) into jutsu.

Through Ch. 20 we elaborate on what a justu is (Def. 4.1), specifying how it is constructed
and interpreted by presenting jutsu for our button mashing challenges. Using these examples,
we build a case for the usefulness of jutsu in helping designers assess a challenge’s mechanical
achievability and potential experience. This chapter serves as our answer to RQ3, and acts as
an invitation for future researchers to continue this work. We end this part, and our thesis,
in Ch. 21 with a reflection on what we have learned, and short walk through new areas of
investigation.



Chapter 20

Jutsu

Back in Ch. 4.3 we defined jutsus as structured representations of a specific mechanical
experience (MX) made from combining a challenge model and a player profile (Def. 4.1).
Jutsus visualize a player’s MX of a challenge by highlighting mechanical achievability and
sources of mechanical difficulty (i.e. design elements that affect the experience). They are
intended to be used by designers to tune their challenges towards particular experiences for
individual players or demographics of players.

We begin by explaining how to construct and interpret a jutsu’s mechanical experience
analysis graph. We then present the jutsus for our button mashing challenges, highlight-
ing what we can learn about the challenge designs from the jutsus. We end by proposing
hypothetical scenarios to illustrate ways jutsus can be used by designers.

20.1 Constructing Jutsu

Recall Ch. 4.3 explained the structure of a jutsu as three parts: the challenge description,
player profile, and MX analysis. Challenge descriptions are constructed through our game
reading techniques (Ch. 13), and player profiles are constructed through our ability battery
(Ch. 12). We do not repeat that information, and instead focus on the construction of the
mechanical experience analysis.

A Quick Aside...

Our process is based on and illustrated by our button mashing challenges. While we
believe the construction steps are applicable to other challenges, they may require
further refinement or tweaking.

20.1.1 Mechanical Experience Analysis

To visualize MX we need a specific player profile and challenge instance for our computations.
Let us consider P22 (Fig. 20.1) and our experimental SIBM implementation (Table 20.1).
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Figure 20.1: P22 Profile. Blue dots indicate
motor abilities, purple dots indicate cognitive
abilities. Legend: p: Button presses, c: Cor-
rect Responses, T: total number of trials, s:
Seconds

Model: 26.70 + 0.68× FP

Mechanic Variable Value

Target
Button

Button →

Time limit Time 10 seconds

Press
“counts”

Score
Modifier

1

Goal 77

Table 20.1: Fire Starter (SIBM) Infor-
mation for Jutsu. Legend: FP: Finger
Pressing

1. Gathering Challenge Information

Finding the ability minimums. We do this using gameplay details. For SIBM with
score modifier of 1, our calculation is:

Goal = 77 = 26.70 + 0.68× Finger Pressing

Finger Pressing = 73.78 presses/10 seconds

Finding abilities for ranks. We calculate minimums based on each rank’s lower threshold.
Recall for our games, meeting the goal is the lower end of B-rank, with ranks going up or
down by 0.25×Goal. SIBM calculations are summarized in Table 20.2.

Rank Score Threshold Finger Pressing

S 115.5 130.25

A 96.25 102.01

B 77 73.78

C 57.75 45.55

D 38.5 17.31

F 0 0

Table 20.2: Minimum Finger Pressing Ability for each SIBM Rank, rounded to two decimal
places.

2. Gathering Player Information

Finding error bars. Player performance is not guaranteed to be consistent between games.
We represent this potential ability range through using the standard deviations (σ) of the
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sample. The low end (Measure − 1σ) represents a “bad day” where the player is underper-
forming; “good days” (Measure+1σ) similarly mean overperforming. Table 20.3 summarizes
P22’s ability ranges.

Ability Measure -1σ +1σ

Finger Pressing 68.90 55.85 81.94

Selective Attention 1.03 0.79 1.26

Inhibition 0.79 0.67 0.91

Object Recognition 1 0.95 1.05

Token Change Detection 0.20 0.16 0.23

Table 20.3: P22’s ranges for abilities, rounded to 2 decimal places.

3. Plotting Analysis Graph

We plot the player profile as a bullet graph using two axes (blue for motor abilities, and purple
for cognitive abilities). The player’s potential range is indicated via error bars. Behind
the player information we display the minimum limiting ability measure for the challenge
instance, along with the rank that the player would achieve at different ability scores. Fig.
20.2 is the mechanical analysis graph for our example.

Figure 20.2: Mechanical Experience of SIBM for P22

Interpreting the Analysis Graph. We can immediately see this SIBM tuning may not
be achievable for P22, as their finger pressing ability barely meets the minimum. Considering
their range, we see they are more likely to fail this challenge than succeed (though success
is possible). In light of what we know about perceived experiences (see Ch. 18) this tuning
looks like it will frustrate P22 and will not be enjoyed.
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What about multi-ability challenges?

We treat secondary abilities as thresholds that need to be met in order for the performance to
rely on the limiting ability. We choose a handful of meaningful thresholds for the secondary
ability and generate analysis graphs at each value. Thresholds are represented by light-gray
boxes behind their associated ability. Fig. 20.3 shows P22’s potential mechanical experience
for AIBM at three selective attention thresholds (mean, and ±3σ).

Figure 20.3: Comparing P22’s AIBM Analysis graphs at Thresholds: Mean and ±3σ

Interpreting Multi-Ability Graphs. Ranks and minimums must be understood as be-
ing calculated given the secondary threshold is met. In order to use the graphs to assess
mechanical achievability we need to find the spot where the player’s secondary ability meets
the threshold and where their secondary ability’s lower range touches the threshold. For
P22, their AIBM mechanical experience is expressed between the Mean and −σ thresholds
(Fig. 20.4). Between these graphs we see that P22 is likely to get a low B-rank on average,
though they may drop significantly on “bad days”.

Figure 20.4: P22’s Mechanical Experience of AIBM (Thresholds: mean, −σ)

224



PhD. Thesis – S. Soraine McMaster University – Software Engineering (HCI)

20.2 Presenting Jutsus: Button Mashing Challenges

The following jutsu are constructed using our experimental games tuned to the baseline
(challenge descriptions in Tables 19.1, 19.2, and 19.3), and a player homunculus representing
the “average player” from our competency profile study sample (Fig. 20.5). For readability
we only present the mechanical experience analysis graphs.

Figure 20.5: “Average Player” Homunculus: Profile representing a fake player with the mean
score in each ability.

20.2.1 Single Input Button Mashing

Figure 20.6: SIBM Mechanical Experience for Average Player.

From Fig. 20.6 we see the average player is reasonably challenged by the current tuning,
as it becomes a 50-50 chance of success (B vs. C-rank). While this in theory is “fair” and

225



PhD. Thesis – S. Soraine McMaster University – Software Engineering (HCI)

“balanced”, we understand players will dislike this because they expect an A-rank or better.
The jutsu confirms that the gameplay was mechanically reasonably tuned, and therefore
response was related to perceived difficulty being too much.

20.2.2 Alternating Input Button Mashing

Figure 20.7: AIBM Mechanical Experience for Average Player at Threshold Mean.

From Fig. 20.7 we gather AIBM may be somewhat easy for the average player, as they
will always clear the goal. This tracks with the comments left by players in Ch. 18 that
it was simultaneously the “easiest” and most enjoyable of the three challenges. Looking at
the extremes (Figs. 20.8) failure is possible given the trade-off between finger pressing and
selective attention. However, it is impossible to get an F-rank and seems genuinely difficult
for the average player to get a D-rank.

(a) (b)

Figure 20.8: AIBM Mechanical Experiences for Average Player at Thresholds ±3σ.
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Figure 20.9: MIBM Mechanical Experience for Average Player.

20.2.3 Multiple Input Button Mashing

From Fig. 20.9 we see the game is virtually impossible for the average player, whose abilities
barely meet the minimum requirements on a “good day”. The only participants who can
reliably clear the challenge are top-performers, with even our best Finger Presser (P12 - Fig.
20.10a) only able to barely break A-rank (Fig. 20.10b). S-ranks are not possible. This overall
makes it clear MIBM’s base tuning was too difficult.

(a) (b)

Figure 20.10: MIBM Mechanical Experience for P12.

20.3 Tuning Gameplay with Jutsu

Visualizing button mashing MXs through jutsus immediately highlights the mechanical
achievability and its affect on the perceived experience. While this is useful, we can go
a step further by using jutsu to tune the difficulty (and thereby MX) of our challenges. Us-
ing our challenge models, we can “test” different game tunings against player profiles without
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having to touch the actual game. The jutsus then display what this new experience would
be, allowing for interactive design tuning.

Consider SIBM, our original baseline tuning (Goal: 77, Score Modifier: 1) felt unfair to
players who found they were not doing as well as they would expect. If we want to align the
gameplay to our player’s expectations we could modify the intrinsic difficulty of the challenge,
or just the perceived experience of the challenge.

A Quick Aside...

Changing the intrinsic difficulty of a challenge will change its perceived difficulty as
the ranks are tied to the goal. However, we make this narrative distinction of intrinsic
vs perceived difficulty to highlight what we are modifying.

20.3.1 Tuning Intrinsic Difficulty

The intrinsic difficulty is how hard the challenge is based on its design — effectively its
mechanical difficulty. For our button mashing challenges this means adjusting the variable
components, which in turn affects how much proficiency a player needs to meet the goal.
SIBM allows us to tune via time limit, score modifier, or goal. Our model defines the
relationship between goal (and by proxy score modifier) and abilities.

By Goal. By reducing the SIBM goal to 60 (the previous normative finger pressing value
[32]), we see the Finger Pressing requirement is reduced from 73.78 to 48.85 presses/10
seconds (Fig. 20.11b). Therefore the average player is more likely to surpass that threshold,
and their expectations begin to line up with their performance.

(a) Goal: 77 (b) Goal: 60

Figure 20.11: Comparing SIBM for Average Player based on changing Goal.

By Score Modifier. Since our models are built from regressions on player scores (which
incorporate the score modifier), changing the score modifier means using a different model
equation. When we double SIBM’s baseline score modifier (i.e. underload model), the
required Finger Pressing drops from 73.78 to 15.35 presses/10 seconds (Fig. 20.12b). While
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this makes the game trivially easy, the ranks align more closely with the average player’s
expectations of themselves as we saw in Ch. 18.

(a) Baseline model (b) Underload model

Figure 20.12: Comparing SIBM for Average Player based on changing Score Modifier.

20.3.2 Tuning for Perceived Difficulty

By playing on player expectations without changing the inherent game design we could influ-
ence their perceived difficulty and MX for the challenge. For our button mashing challenges
the main way to do this is through changing the thresholds for ranks. Recall the current
ranks for our games are uniformly increasing from the goal by 0.25 (e.g. C rank begins at
0.75 times Goal, B rank begins at Goal, A rank begins at 1.25 times Goal). If instead we use
a non-uniform rank, we could skew player’s experience as they would have an inflated sense
of their performance. Fig. 20.13b shows a version of SIBM at original baseline tuning (Goal:
77, Score Modifier: 1) where the distance between the “success” ranks are really small (A
begins at 1.05 × Goal, S begins at 1.25 × Goal), and the “fail” ranks collapse into C-rank
(0.25 × Goal).

(a) (b)

Figure 20.13: Comparing SIBM (Goal: 77, Score Modifier: 1) for Average Player between
Uniform and Non-Uniform Ranks
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20.3.3 Tuning Multiple Variables (Comparing Difficulty Levels)

So far we only discuss changing singular variables. However, we can compare whether diffi-
culty levels have a similar MX when multiple variables are changed by looking at the rank
distributions, since the ranks strongly influence the player’s perceptions.

Recall our challenge difficulty conditions were achieved by changing what “counts” as a
press for each condition (i.e. Score Modifier). We can compare the different models (under-
load, baseline, overload) perceived experience by comparing their rank distributions given an
“effective goal”. For button mashing challenges, the “effective goal” is Goal × Score Modifier.
For example, consider our goal is 38.5, the effective goal for each model would be: Baseline
= 38.5 (Score Modifier: 1), Easy = 77 (Score Modifier: 2), Hard = 19.25 (Score Modifier:
0.5). We look at SIBM and AIBM examples using “effective goals” to compare conditions.

SIBM

Figure 20.14: Comparing “equivalent” SIBM
tunings for Average Player.

Looking at SIBM models for the average
player at these “effective goals” (Fig. 20.14)
we see the jutsus look almost identical. The
average player receives the same rank in each
and the minimum required ability is simi-
lar (Easy: 15.35, Base: 17.31, Hard: 20.09).
While the appearance of potential “D” rank
is higher in Baseline and Hard condition, it
is really minimal and could be a result of the
variance in the condition’s equations. This
comparison tells us that the models would
be perceived the same way if they are tuned
similarly. This also shows that, while we
experimentally found the different difficulty
models (Ch. 17), we could approximate
these experiences using “effective goals” and
just the Baseline model for SIBM as the scal-
ing is fairly uniform.
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AIBM

Figure 20.15: Comparing “equivalent” AIBM
tunings for Average Player (Threshold:
Mean).

In comparison, we found that AIBM did
not seem to uniformly scale even though
the player scores were effectively uniformly
scaled by the score modifier. We compare
AIBM models with the same effective goals
(i.e. same difficulty) at the Mean (Figs.
20.15) and −σ (Figs. 20.16) thresholds. For
the average player, these thresholds highlight
an average day (Mean - meets the threshold
most of the time) and a “good day” (−σ -
meets and surpasses the threshold all of the
time) so we can accurately interpret the fin-
ger pressing difficulty. A cursory look shows
the scaling does not seem uniform, and the
experiences seem oddly dissimilar.

For Mean, the conditions do not seem suf-
ficiently alike; based on the size of the ranks
and where the average player’s ability lands
it almost seems like the Easy condition is
harder than the Baseline and Hard condi-
tions in spite of being tuned “the same”. For
−σ we see the experience of the Hard con-
dition does not change from the Mean. But
both the Easy and Hard conditions have be-
come more challenging, with players gener-
ally dropping to a 50-50 chance of success.
Between the three −σ conditions, differences
in the size of each rank become more appar-
ent.
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Figure 20.16: Comparing “equivalent” AIBM
tunings for Average Player (Threshold: −σ).

A notable difference between the Mean
and −σ thresholds is whether the player’s
upper selective attention limit is above or be-
low the minimum finger pressing line. This
change can be seen in the Baseline condi-
tions, and creates the most significant seem-
ing experiential change. Looking closely, we
see that when the minimum finger pressing
line is between the player’s selective atten-
tion thresholds, they seem to have a better
rank. We are unclear whether this is mean-
ingful, as the abilities are measured on dif-
ferent scales and this could just be a coin-
cidence in visualizing. However, it may be
worth future testing to see how “difficulty” is
perceived when the games are tuned so finger
pressing requirements fall in that threshold.

20.4 Comparing Challenges with Jutsu

Beyond assessing mechanical experience and tuning gameplay, we think the jutsu structure
can be useful for comparing challenges against each other.

For example, MIBM seems to be intrinsically harder than SIBM. While there ought to be
a difference due to increased motor load, the jutsu make it clear that the difference is more
perceptible than we originally thought. Playing around with the MIBM jutsu, we see that
the challenge becomes more “balanced” (50-50 chance) like SIBM when the goal is 67 (Fig.
20.17, MIBM-67). MIBM-67 has small bands for the F and S-ranks, so players are less likely
to catastrophically fail or excessively succeed. Knowing players care about the perception
more than the actual likelihoods, this could make them feel like the game is less “fair” and
more punishing since they are more stuck in the middle. This further seems to imply that
intrinsically MIBMs are harder than SIBMs.
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Figure 20.17: MIBM Mechanical Experience for Average Player. Goal: 67

20.5 Moving forward with Jutsu

We present the button mashing jutsu family: single-input button mashing (Fig. 20.6),
alternating-input button mashing (Fig. 20.7), and multiple-input button mashing (Fig. 20.9).
These jutsu represent the final answers to our research questions, and the first step into a
larger body of work on quantifying mechanical experiences.

With our competency profiles and models we can use jutsu to pre-assess the
MX and mechanical achievability of different challenge tunings. This would be
extremely helpful for coming up with static difficulty levels for these challenges based around
an average player profile. This tuning ability could also help us enforce a specific MX
by dynamically tuning these challenges to a player’s specific proficiency.

This design-time tuning also allows us to speculate about why certain values
would deliver a “better” experience. For SIBM, it is possible that player’s expectations
of high ranks could be reinforced by playing games that were tuned to the old norms and
so makes them feel significantly better than the average. If we want to keep this positive
feeling we could even try more specific goal refinements to control the ranks (and therefore
perceptions) of the players.

Future work should look to both expand the number of jutsu (including testing variants)
and undertaking a more qualitative study of the usefulness of jutsu for game designers.
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Take home points

From this chapter we learned the following meta-lessons:

� Jutsu successfully visualize mechanical achievability and highlighting potential
issues.

� Jutsu can be used to pre-tune a challenge for a particular player profile using the
challenge model.

� Jutsu can be used to draw broad comparisons between challenges.

� Jutsu may be useful in trying to “guarantee” a particular mechanical experience
through dynamic difficulty tuning.
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Chapter 21

Reflecting on The Jutsu Framework

Our thesis goal is to explore player experience (PX) through the lens of experiential types
(ExpTypes). ExpTypes reflect the ways a person interacts with a game; they are organized
into the Experiential Tetrad (ExperT) to highlight their boundaries and connections to each
other. We realise that holistic PX incorporates all ExpTypes, but moves through these
experiences from mechanical experience (MX) to socio-cultural. To further explore this idea
we choose to focus on thoroughly exploring and modeling MX. We specifically focus on finding
basic competency profiles for button mashing challenges and exploring the ways the challenge
design affects the limiting ability load and by extension performance. While this is not fully
exploring MX, it gives us a starting point in the discussion of this concept.

Figure 21.1: Experiential Tetrad from the Player View, outlining four interconnected expe-
riential types: Mechanical, Emotional, Aesthetic, Socio-Cultural.
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21.1 Thesis in review

We explore MX through the mechanical achievability and mechanical difficulty of button
mashing challenges as impacted by their limiting ability. We focus on three questions, and
summarize our answers in Table 21.1. These results, while preliminary, are a promising
stepping stone in the efforts to quantify MX with jutsus through visualizing competency
profiles and how they change with limiting abilities.

Questions Answers

RQ1: How are cogni-
tive and motor abilities
used to interact with
various challenges?

� Abilities are a game’s “player requirements”.
� Competency profiles show the abilities used in a challenge, and

which are limiting performance.

RQ2: What are the ef-
fects of cognitive and
motor overloading on
the mechanical achiev-
ability of a challenge?

� Performance in simple challenges (e.g. SIBM) scales uniformly
with load on the limiting ability.

� Performance in challenges with multiple important abilities (e.g.
AIBM) is more complex.

� Perceived experience skews negative when load matches or ex-
ceeds player abilities.

RQ3: How can design-
ers use this knowledge? � Jutsu visualization can help designers tune a challenge’s me-

chanical experience to a player profile at design-time.
� Jutsu can visualize how changes to the game mechanics affect

mechanical experience.

Table 21.1: Research Question and Our Answers.

21.2 Discussion

While our results show jutsus work at visualizing MX of a challenge, we also found recurring
limitations and potential influences on our work.

21.2.1 The Difficulty of Player Modeling

Isolating abilities. Human abilities are not mutually exclusive: abilities overlap in func-
tion, and are used in tandem to produce results for any action. Any measurement we make
on some quantifiable output, like correct responses or button counts, inherently includes the
motor response ability as well as the cognitive abilities we are trying to measure. Our work
mirrors cognitive psychology tests and counts the “results” as a score for just the targeted
ability. However, this effectively adds a level of uncertainty into the measurements and the
resulting models. While this is fine for a preliminary attempt at this work, we wonder if
a more robust player profile is feasible. Having more redundant measures in the battery
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could allow us to get a weighted-composite score for each individual ability. However, it is
unclear how different ability measures should be combined, and it is unclear if it would be
advantageous enough to offset the extra fatigue and length of the battery.

Tuning ability measurements. Even if abilities could be easily isolated or combined,
tuning the measurement games to get an accurate read of the player’s ability is difficult. We
tuned the Ability Battery games based on play testing with a variety of volunteer “gamers”.
These gamers gave us feedback on difficulty and playability. While we knew that these
playtests would be skewed towards these gamers’ experience, we did not anticipate that their
responses may actually have the games be skewed too easy. We see this happen with the
Cake game, where most participants got all of the trials correct showing that it was tuned
too easy. At the moment, we have not considered this problematic because all of our players
went through the same battery and so at least their scores could be compared to each other.
However, a more accurate ability measurement would require more tuning to find the level
where player abilities begin to fail.

Human variability (Fatigue and Experience). Beyond the initial design difficulties,
we consider how player performance in the measured games are different based on environ-
mental and personal factors. At the most basic level, we have no control over whether players
are fatigued or distracted when undergoing the modeling process. This could create issues in
finding the player’s MX since we do not have a good read of their abilities. A more complex,
but significant difference, is the variability in player gaming experience and literacy. We
noted multiple times that gamers approached basic tasks like button mashing with different
strategies based on their gaming literacy and history. Since the ability measurements are
similarly perceived as mini-games players applied their same strategies during their assess-
ment. While this gives us a more accurate understanding of what their abilities are in a
gaming context, it inadvertently seems to capture strategy/experience as a latent variable.
At a larger level this may not be a problem, as a person’s performance of an ability cannot be
divorced from that kind of practice and history. However, this could mean that when doing
future research into jutsus for different challenge types we should seek out more homogeneous
groups to get more insight into how different levels of experience might result in different
competency profiles.

21.2.2 Perceiving Experiences

Game literacy on challenge modeling. We rely heavily on our own gaming knowledge
when reading the challenges we use as a base for our competency profiles. Our personal gam-
ing literacy, and gaming context greatly affects this. The abilities we identify as part of the
challenge are directly related to the strategy we use to play the games. While we try to mit-
igate this effect by playing with particular intent to observe playing using various strategies,
it is impossible to guarantee our method is unbiased from our knowledge. Other people using
our method for developing competency profiles may therefore end up with somewhat different
abilities because of their biases. We think this could become more apparent for complex and
cognitively-focused challenges which allow for vastly different strategies/approaches.
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Gaming trends. We also consider how gaming trends affect player exposure to different
challenge types. As different genres become more popular across different times, entire types
of challenges may be erased from the gaming landscape and so player knowledge of it will be
varied. We see this in our study on perceived experiences, as players were unsure of how to
approach challenges that used to be common in the early 2000s (button mashing).

21.3 Future Work (Ways We Can Keep Learning)

We categorize the different avenues for future work as either improvements to existing work,
next steps for MX research, and furthering the theory. We end this section by outlining ways
that a jutsu framework could expand the usefulness and accessibility of our work.

21.3.1 Immediate Improvements

Improved measurements. This involves adding redundancy, improving the existing games
tuning and design, and creating new games for other abilities. As previously discussed, re-
dundancy and improved existing measurements would allow for a more robust player profile
and allow for finding more nuanced relationships between the abilities and gameplay. Flesh-
ing out the battery with games for the rest of the cognitive and motor abilities will also give
us the ability to check whether any of those better explain performance, or are latent in our
existing games.

Dynamic Difficulty in Button Mashing. At static difficulty levels we end up with
players who have different degrees of failure or success at the games. Having the custom
button mashing games interface with the Ability Battery would allow us to scale the ranks and
difficulty based on the individual player. Thus guaranteeing that players “fail” or “succeed”
by the same relative degree in the loading tests. It would also allow us to control for perceived
experience since we could make all players feel like their performance met expectations. Work
in this direction could create the bedrock for a larger player profile application programming
interface (API). With an API for reading ability data during gameplay startup, we could
envision a future where these profiling tools are built into the base console experience and
all games could read those values to configure themselves for a specific player by default.

Replicating studies with different groups or simulated players. It would be useful
to re-run these studies both as-is and with different contexts and groups to see whether
the competency profiles are stable. This would add credibility to the larger jutsu concept,
and could be incorporated as part of testing jutsu variants. Another potential avenue is to
use existing data to create a simulated player which could run the button mashing games
multiple times under different conditions. This automated player could give us insight into
running the studies thousands of times with various levels of noise in the data to see how
stable profiles are, and if there are any other insights we may get from large scale testing.

Experimenting with Jutsu. The usefulness of our specific jutsu is that they only exist
for one context. Immediate research following our same methodology, but changing challenge
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context variables like the controller, would help us see whether competency profiles change
drastically with context or if (when ordered by importance) the shape is the same. This
would also add to our ability to construct a jutsu framework as we could explore experiential
differences between controllers. However, this kind of variant experimentation would require
improvements to the ability battery and minor changes to the custom games.

21.3.2 Next Steps for Mechanical Experience

Extending Cognitive and Motor Models. Our current player model limits itself to
motor abilities related to modern controllers, and lower-order cognitive abilities. Future work
should look at how to reasonably expand this model. Motor abilities could be reasonably
expanded by future reviews of hardware to see whether new abilities are being used. Cognitive
abilities are more difficult as we would encourage future work to look into higher-order
abilities like executive functioning and problem-solving. These abilities are generally viewed
as a sets of interrelated sub-abilities, but their processes are less clear. Work that dives
into ways to model these for gameplay would be a significant undertaking, but opens up an
ability to examine larger challenge instances that have more open-ended goals or complex
mechanics.

Exploring More Challenges Expanding our work requires examining more atomic chal-
lenges and developing their jutsu. We suggest future work starts with timing challenges
as the next logical step. These are challenges that seem to require cognitive and motor abil-
ities in similar amounts, and so would give us more insight into the compensatory effects of
different abilities and whether limiting abilities change. To this end we offer a preliminary
analysis of Balloon Burst [193, 194, 323] in App. C.

21.3.3 Furthering the Theory

Studying other experiences. As we note in our broader contributions, this work could
extend into studying different types of experiences or even the relationship between experi-
ences. We think an interesting avenue would be to explore how challenges (or their equivalent)
exist in different experience contexts. We would like to get to a stage where we have both
a MX and socio-cultural experience (SX) model for a more complex challenge like a level in
Hitman. We would want to explore how models of challenges at different levels come together
to describe the more holistic PX that other work has focused on studying.

Incorporating Player Context. Currently our understanding of player profiles and ex-
perience nominally acknowledges gaming history, literacy, and experiences as affecting expe-
rience. A more robust look at how to evaluate a player’s gaming context and integrate it
into our measures of MX may help give us a deeper understanding as to why a player may
score poorly in a measure but perform exceptionally well in the game context.
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21.3.4 Imagining a Jutsu Framework

So far we have considered individual jutsu for a small set of challenges tailored to limiting
abilities. While this has served as a proof of concept, we know that games are generally made
of many interacting atomic challenges. Envisioning the possibility of a large set of jutsus for
all of the atomic challenges, we believe a meta-structure that organizes and relates them
would make jutsus more useful. We discuss two elements of a larger framework that could
be useful: the relationship between jutsus and organization of the jutsu set.

Jutsu Relations

While individual jutsu show us the MX of a challenge, their relationships with other jutsus
paint a larger picture about types of experiences in games. We consider three types of jutsu
relationships worth discussing: jutsu families, jutsu variants, and complementary/discordant
jutsu.

Jutsu Families group together challenges with similar mechanics and competency pro-
files, like our button mashing challenges. These groupings could be helpful for shortlisting
challenges that deliver a similar “feel” so designers can see options that they may not have
previously considered.

Jutsu Variants are a version of a jutsu given a different context (e.g. interaction type,
number of players, etc). Variants would show how the overall shape of the competency profile
does not change when only the motor ability changes. For example, our SIBM jutsu currently
uses a button as input and so may work for keyboard and controller schemes. However, if
we were to implement SIBM where the “button” was on a dance mat (like Dance Dance
Revolution [237]), the new jutsu would rely on leg moving and foot pressing resulting in a
similar but different competency profile. A single jutsu may have several related variants.

Variants could help designers quantify the impact of different controllers on MX. A game
tuned to be played on a controller (i.e. finger pressing) would have to undergo different
tuning for a dance-mat (i.e. foot pressing) because of differences in the movement. In turn
this could improve decision making for accessible control schemes. Consider certain players
may have difficulty with the fine motor skills of a standard controller, but can play games
well with different types of joysticks and switches. With jutsu variants, a designer could see
how the control schemes are different as well as how they would need to be tuned to different
demographics.

Complementary and Discordant Jutsu express the compatibility of two challenge’s
MX. Two jutsus are complementary if their challenges competency profiles are not conflict-
ing (i.e they have different limiting abilities, and the other required abilities do not exceed
the player ability capacity). Conflicting jutsus are discordant. As gameplay is concurrently
operating atomic challenges, knowing challenge compatibility is important for tuning. Com-
plementary relationships mean challenges are possible to do at the same time; discordant
relationships mean challenges will overload the player by design. Future work could explore
how the overall MX looks when stacking atomic challenges together.
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Organizing Jutsu

With a large set of jutsu, we want to organize them in a way that makes both their individual
relationships and the overall state of MX easy to see. Any organization should also be useful
for various users to navigate and expand upon. We consider two organizations for the set of
jutsu: challenge-based and ability-based.

Challenge-based organization maps out jutsus based on jutsu families (Fig. 21.2) so
we can navigate through the jutsus based on the gameplay descriptions. This organization
makes finding related challenges easy, and so could help designers find similar experiences.
We think this organization can help designers in the beginning stages of their work. If they
have a particular challenge that is central to their game, knowing the complementary and
discordant relationships with that particular challenge would help find other challenge types
to add in the larger game.

Figure 21.2: Hierarchical challenge based organization of jutsu.

Ability-based organization maps out jutsus based on their limiting abilities (Fig. 21.3)
so we can navigate based on targeted abilities. This organization highlights how seemingly
unrelated challenges rely on similar skills. This organization may be useful to researchers
and medical practitioners who communicate in terms of human abilities. Consider a research
team working with children with cerebral palsy who may have trouble with motor function;
they already understand the needs and limitations of these children and so can find gameplay
that works with their specific requirements. This organization may also help designers tailor
games to particular audiences with ability-related concerns. This organization could also
be used to find novel gameplay development areas by identifying which abilities are under
represented in challenges.
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Figure 21.3: Hierarchical ability based organization of jutsu.

21.4 Final Remarks

By starting to explore MX with jutsus we have crossed through many academic domains.
In a way, this thesis reflects the practice of game design as an interdisciplinary marriage
of science, engineering, and art. The results we have achieved set up a significant body of
future research that could impact the way we study game-related experiences. The larger
theoretical framework we construct in ExperT opens even more possibilities to the ways that
marginalized experiences or intersecting experiences can be studied. So for all our readers
who want to continue this quest...
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Antropoloǵıa Iberoamericana 4.3 (2009).

[73] Yuanzhe (Michael) Cai. Electronic Gaming in the Digital Home. Sept. 6. url: http:
//www.parksassociates.com/research/reports/tocs/2006/multi-gaming.htm.

[74] E.H. Calvillo-Gamez, P. Cairns, and A. Cox. “Assessing the Core Elements of the
Gaming Experience”. In: Evaluating User Experience in Games. Ed. by Regina Bern-
haupt. Vol. 1. Human Computer Interaction Series. London, United Kingdom: Springer,
2010. Chap. 3, pp. 47–71.

[78] Stuart K Card, Thomas P Moran, and Allen Newell. “Computer text-editing: An
information-processing analysis of a routine cognitive skill”. In: Cognitive psychology
12.1 (1980), pp. 32–74.

[79] Stuart K Card, Thomas P Moran, and Allen Newell. “The keystroke-level model for
user performance time with interactive systems”. In: Communications of the ACM
23.7 (1980), pp. 396–410.

[80] Stuart K. Card, Allen Newell, and Thomas P. Moran. The Psychology of Human-
Computer Interaction. Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1983. isbn:
0898592437.

[81] Kevin D. Carlson and Andrew O. Herdman. “Understanding the Impact of Conver-
gent Validity on Research Results”. In: Organizational Research Methods 15.1 (2012),
pp. 17–32. doi: 10.1177/1094428110392383. eprint: https://doi.org/10.1177/
1094428110392383. url: https://doi.org/10.1177/1094428110392383.

247

https://doi.org/10.1145/985921.986048
https://doi.org/10.1145/985921.986048
https://doi.org/10.1145/985921.986048
https://doi.org/10.1177/1555412020971500
https://doi.org/10.1177/1555412020971500
https://doi.org/10.1177/1555412020971500
https://doi.org/10.1177/1555412020971500
http://www.parksassociates.com/research/reports/tocs/2006/multi-gaming.htm
http://www.parksassociates.com/research/reports/tocs/2006/multi-gaming.htm
https://doi.org/10.1177/1094428110392383
https://doi.org/10.1177/1094428110392383
https://doi.org/10.1177/1094428110392383
https://doi.org/10.1177/1094428110392383


PhD. Thesis – S. Soraine McMaster University – Software Engineering (HCI)

[82] Dominic A Carone. E. Strauss, EMS Sherman, & O. Spreen, A Compendium of Neu-
ropsychological Tests: Administration, Norms, and Commentary: A Review of:“, Ox-
ford University Press, New York, 2006.”. 2007.
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[358] Zoë O’Shea and Jonathan Freeman. “Game Design Frameworks: Where Do We Start?”
In: Proceedings of the 14th International Conference on the Foundations of Digital
Games. FDG ’19. San Luis Obispo, California, USA: Association for Computing Ma-
chinery, 2019. isbn: 9781450372176. doi: 10.1145/3337722.3337753. url: https:
//doi.org/10.1145/3337722.3337753.

[359] Benjamin Paaßen, Thekla Morgenroth, and Michelle Stratemeyer. “What is a true
gamer? The male gamer stereotype and the marginalization of women in video game
culture”. In: Sex Roles 76 (2017), pp. 421–435.

[360] Selma Papegaaij et al. “Aging causes a reorganization of cortical and spinal control of
posture”. In: Frontiers in Aging Neuroscience 6 (2014), p. 28. issn: 1663-4365. doi:
10.3389/fnagi.2014.00028. url: https://www.frontiersin.org/article/10.
3389/fnagi.2014.00028.

[361] Park Associates. Survey reveals U.S. gamers market is diversifying. Parks Associates
Press Release. Aug. 29. url: http://www.parksassociates.com/press/press_
releases/2006/gaming_pr4.html.

[362] Douglas A Parry et al. “A systematic review and meta-analysis of discrepancies be-
tween logged and self-reported digital media use”. In: Nature Human Behaviour 5.11
(2021), pp. 1535–1547.

[364] Karalyn Patterson, Peter J Nestor, and Timothy T Rogers. “Where do you know what
you know? The representation of semantic knowledge in the human brain”. In: Nature
Reviews Neuroscience 8.12 (2007), p. 976.

[365] Christopher A Paul. The toxic meritocracy of video games: Why gaming culture is the
worst. U of Minnesota Press, 2018.

[366] V. Gregory Payne and Larry David Isaacs. Human motor development: a lifespan
approach. 8th ed. McGraw-Hill, 2012.

263

https://doi.org/https://doi.org/10.1002/asi.20801
https://doi.org/https://doi.org/10.1002/asi.20801
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/asi.20801
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/asi.20801
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.20801
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.20801
https://doi.org/10.1145/3337722.3337753
https://doi.org/10.1145/3337722.3337753
https://doi.org/10.1145/3337722.3337753
https://doi.org/10.3389/fnagi.2014.00028
https://www.frontiersin.org/article/10.3389/fnagi.2014.00028
https://www.frontiersin.org/article/10.3389/fnagi.2014.00028
http://www.parksassociates.com/press/press_releases/2006/gaming_pr4.html
http://www.parksassociates.com/press/press_releases/2006/gaming_pr4.html


PhD. Thesis – S. Soraine McMaster University – Software Engineering (HCI)

[367] Chris Pedersen, Julian Togelius, and Georgios N Yannakakis. “Modeling player expe-
rience in super mario bros”. In: 2009 IEEE Symposium on Computational Intelligence
and Games. IEEE. 2009, pp. 132–139.

[368] Peter Peduzzi et al. “A simulation study of the number of events per variable in logistic
regression analysis”. In: Journal of Clinical Epidemiology 49.12 (1996), pp. 1373–1379.
issn: 0895-4356. doi: https://doi.org/10.1016/S0895-4356(96)00236-3. url:
https://www.sciencedirect.com/science/article/pii/S0895435696002363.

[369] Federico Peinado and Pablo Gervás. “Transferring game mastering laws to interac-
tive digital storytelling”. In: International Conference on Technologies for Interactive
Digital Storytelling and Entertainment. Springer. 2004, pp. 48–54.

[370] Wilder Penfield and Theodore Rasmussen. “The cerebral cortex of man; a clinical
study of localization of function.” In: (1950).

[371] Iris-Katharina Penner et al. “The Stroop task: comparison between the original paradigm
and computerized versions in children and adults”. In: The Clinical Neuropsychologist
26.7 (2012), pp. 1142–1153.

[372] M-T Perenin and A Vighetto. “Optic ataxia A specific disruption in visuomotor mech-
anisms I. Different aspects of the deficit in reaching for objects”. In: Brain 111.3
(1988), pp. 643–674.

[374] Brian Piper et al. “Evaluation of the validity of the Psychology Experiment Building
Language tests of vigilance, auditory memory, and decision making”. In: PeerJ 4
(2016), e1772.

[377] Susanne Poeller and Cody J. Phillips. “Self-Determination Theory — I Choose You!
The Limitations of Viewing Motivation in HCI Research Through the Lens of a Single
Theory”. In: Extended Abstracts of the 2022 Annual Symposium on Computer-Human
Interaction in Play. CHI PLAY ’22. Bremen, Germany: Association for Computing
Machinery, 2022, 261–262. isbn: 9781450392112. doi: 10.1145/3505270.3558361.
url: https://doi-org.libaccess.lib.mcmaster.ca/10.1145/3505270.3558361.

[378] K. Poels, Y.A.W. de Kort, and W.A. IJsselsteijn. D3.3 : Game Experience Question-
naire: development of a self-report measure to assess the psychological impact of digital
games. English. 2007.

[379] Russell A Poldrack and John DE Gabrieli. “Characterizing the neural mechanisms of
skill learning and repetition priming: evidence from mirror reading”. In: Brain 124.1
(2001), pp. 67–82.

[380] Russell A Poldrack et al. “The relationship between skill learning and repetition prim-
ing: Experimental and computational analyses.” In: Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition 25.1 (1999), p. 208.

[381] Teddy Pozo. “Queer games after empathy: Feminism and haptic game design aesthet-
ics from consent to cuteness to the radically soft”. In: Game Studies 18.3 (2018).

[382] Steven E Prince, Takashi Tsukiura, and Roberto Cabeza. “Distinguishing the neural
correlates of episodic memory encoding and semantic memory retrieval”. In: Psycho-
logical Science 18.2 (2007), pp. 144–151.

264

https://doi.org/https://doi.org/10.1016/S0895-4356(96)00236-3
https://www.sciencedirect.com/science/article/pii/S0895435696002363
https://doi.org/10.1145/3505270.3558361
https://doi-org.libaccess.lib.mcmaster.ca/10.1145/3505270.3558361


PhD. Thesis – S. Soraine McMaster University – Software Engineering (HCI)

[383] Dongxiao Qin. “Positionality”. In: The Wiley Blackwell encyclopedia of gender and
sexuality studies (2016), pp. 1–2.

[384] Philip Quinlan, Philip T Quinlan, and Ben Dyson. Cognitive psychology. Pearson
Education, 2008.

[385] Rishi Rajalingham, Kailyn Schmidt, and James J DiCarlo. “Comparison of object
recognition behavior in human and monkey”. In: Journal of Neuroscience 35.35 (2015),
pp. 12127–12136.

[386] Paul Ralph and Kafui Monu. A Working Theory of Game Design - First Person
Scholar. Sept. 2020. url: http://www.firstpersonscholar.com/a- working-

theory-of-game-design/.

[389] Megan E Renna et al. “The use of the mirror tracing persistence task as a measure of
distress tolerance in generalized anxiety disorder”. In: Journal of Rational-Emotive &
Cognitive-Behavior Therapy 36.1 (2018), pp. 80–88.

[392] Charles Reynaldo et al. “Using video games to improve capabilities in decision making
and cognitive skill: A literature review”. In: Procedia Computer Science 179 (2021),
pp. 211–221.

[393] Giovanni Ribeiro et al. “Game atmosphere: effects of audiovisual thematic cohesion on
player experience and psychophysiology”. In: Proceedings of the Annual Symposium
on Computer-Human Interaction in Play. 2020, pp. 107–119.

[394] Jennifer J Richler, Jeremy B Wilmer, and Isabel Gauthier. “General object recognition
is specific: Evidence from novel and familiar objects”. In: Cognition 166 (2017), pp. 42–
55.

[396] Raquel Robinson et al. “” Let’s Get Physiological, Physiological!” A Systematic Re-
view of Affective Gaming”. In: Proceedings of the Annual Symposium on Computer-
Human Interaction in Play. 2020, pp. 132–147.

[397] Paul B Rock, Mike G Harris, and Tim Yates. “A test of the tau-dot hypothesis of
braking control in the real world.” In: Journal of Experimental Psychology: Human
Perception and Performance 32.6 (2006), p. 1479.

[398] Ryan Rogers, Nicholas David Bowman, and Mary Beth Oliver. “It’s not the model
that doesn’t fit, it’s the controller! The role of cognitive skills in understanding the
links between natural mapping, performance, and enjoyment of console video games”.
In: Computers in Human Behavior 49 (2015), pp. 588–596.
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Part V
Appendices

The following chapters contain additional information to support the thesis. Each chapter
is self-contained.



Appendix A

Ability Battery Minigames Designs

This chapter covers the design of the mini-games for the ability battery. These minigames
are the tasks of the player profiling tool. They are informed by the ability tests from Ch. 10.
We further explore inspirations from commercial minigames that seem to implement similar
ability tests before explaining the game designs.

A.1 Minigame Inspirations

This section collects examples of mini-games that seem to match the structure of various
cognitive and motor ability tests. They serve as inspiration and small case studies for ways
we can design a game for our experimental purposes.

A.1.1 Finger Tapping Test

Figure A.4: Will Flower, from Mario Party 5 [197] as
an example of a game that could double as a Finger
Tapping Test.

Mario Party 5’s Will Flower mini-
game (Fig. A.4) [197] is an ex-
ample of a game that mimics the
structure of a FTT. It tasks play-
ers with repeatedly pressing the A
button to revive a flower; players
compete against each other to do
this in a set time limit (the game
times out at 5 minute). We could
modify this gameplay to be a more
suitable FTT by reducing the time
limit to 10 seconds (to match ex-
isting FTT structure). The design
choice to be made here is whether
there is a set number of button
presses that we are expecting the
player to achieve (and so anima-
tion of the flower would be tied to
a number), or are we looking to
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max out the number of presses the
player will try to do in a session
(and so have the animation move at a preset pace and just record how quickly they press).
Since we are not looking to identify the maximum human limits or find a normative number,
it makes sense for our performance focused design to have a normative number of presses that
we design the challenge for, and then we can run the participant through several iterations
based around that normative number.

A.1.2 Simple and Parametric GNGs, and Stroop Colour Word
Test

A reminder that the difference between simple and parametric GNGs are their complexities.
Simple GNG require straight forward responses (including potentially incongruent responses)
to stimuli, where parametric GNGs add cognitive load to the task by asking the participant to
interpret when the stimuli appears. With this in mind most simple mini-games (and thereby
most examples) will be of simple GNGs.

Figure A.5: Video clip of Shy Guy Says mini-game from
Mario Party[193]. Click the image to play.

Shy Guy Says (Fig. A.5) [193,
194, 323] mimics the structure of a
Simple GNG. While the aesthetics
are different (taking place on a pi-
rate ship in Mario Party 1 and Su-
perstars, and in the air for Mario
Party 2) the core game is the same;
the Shy Guy in the centre of the
screen will raise a flag, players must
then raise the same flag. Players
who raise the incorrect flag or do
not raise a flag are eliminated from
the game. The last player stand-
ing wins; draws are possible if the
last players are eliminated on the
same round. What makes this a
good GNG analog is how the re-
sponses are related to the stimuli,
and there are many repetitive trials
(in comparison to a reaction time
task where it would be solely based

on who responded first, not on who responded correctly). In order to modify this game for
testing, the player cannot be eliminated with a wrong response — ergo we would need to
create some other type of disincentive to keep the game feeling meaningful.

In Looking for Love (Fig. A.6) [324] players press directional input matching the location
of the heart on the screen. The heart can appear in one of four locations (top, bottom, left,
or right of the screen). This fits the basic parameters of a simple GNG (as stimulus appears
perform response). This version adds two levels of difficulty; firstly, it provides distractor
stimuli in the form of other icons appearing alongside the heart. Secondly, like a Stroop
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test it changes the colour of the heart icon between trials. Initially the heart is coloured red
(matching what participants expect a heart to be) and then over the trials it can be coloured
other colours. Similarly, the distractor icons can be coloured either the same or different
colours than the heart to try and further confuse/distract the players. The mini-game is not
timed; players must play through 10 rounds (i.e. trials). Scoring is based on speed of correct
response (first person to look gets 5 points, with subsequent participants getting a reduced
score).

Figure A.6: Video clip of Looking for Love mini-game from Super Mario Party[324]. Click
the image to play.

Similarly, Don’t Look (Fig. A.7) [322] has players react with a directional input to a
stimulus. Here the players are shown an arrow on screen pointing in a cardinal direction;
the players must respond by looking in any direction except the one that matches the arrow.
This is an in-congruent response condition for the GNG test. There are 10 rounds; for rounds
1 and 2 only 1 arrow is shown, 2 arrows are shown for rounds 3 to 6, and 3 are shown for 7
to 10. Each round has a time limit in which the players inputs are registered; this time limit
is reduced for every trial.

Thundering Dynamo (Fig. A.8) [334] has the player’s response be button mashing based
on the colour shown on screen. When the stimuli is green the player must respond by mashing
the B button, and when it is blue they must mash the A button. The game ends when one
of the player has filled up their energy bar from button mashing; in this way there are no
clear trials. As well, because the response is button mashing instead of a single press, the
stimuli will always change to the other colour leaving the unknown variable to be when and
for how long will it change.
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Figure A.7: Video clip of Don’t Look mini-game from Mario Party 9[322]. Click the image
to play.

A.1.3 Object Categorization and Identification Tests

We start by looking at pure identification tasks.

Figure A.9: Second round of Absent Minded mini-game
from Super Mario Party[324], where the images are pix-
elated. Click the image to play video clip of game.

Absent Minded (Fig. A.9) [324]
works like an object identification
task. The game is played across
3 rounds, each lasting at most 15
seconds. Players are shown 8 im-
ages, and are given 3 options at the
bottom of the screen. The player
must select which of the 3 options
does not exist in the set of 8 im-
ages. The difficulty (and ability
test) comes from how the 8 images
are presented. In the first round
the images are flashed one at a time
on screen in a random order. In the
second round, the images are heav-
ily pixelated and become more fo-
cused over the course of the round.
The third round cuts the image into
tiles and places the tiles randomly across the screen meaning that the player cannot see a
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Figure A.8: Video clip of Thundering Dynamo mini-game from Pokemon Stadium[334]. Click
the image to play.

complete image of any object. Players are scored based on how quickly they can correctly
identify the missing image (fastest player receives 5 points, then 3, then 2, then 1). The indi-
vidual rounds mimic conditions like the Shape Detection Task, Incomplete Letters Task, and
Progressive Silhouettes Task. The structure of test is good, but would need to be adapted
to single player set ups, and potentially include more rounds for trials.

Figure A.10: Crowd Cover from
Mario Party 3[195]. Click the image
to play video clip of game (video con-
tains commentary unassociated with
this thesis).

Crowd Cover (Fig. A.10) [195] presents the play-
ers with a picture which is obscured by moving char-
acters. The players have 30 seconds to decide which of
the 3 options the game presents matches the obscured
figure. Over the duration of the mini-game the crowd
decreases in size, making it easier to see the figure
underneath. The difficulty here is determined by how
different the options are and how many characters are
covering the image.

We now look at object categorization tasks. These
are more common in mini-games and combine object
identification as the initial step, and categorization as
the secondary step for these games.

Sort of Fun (Fig. A.11), from Super Mario
Party [324], has players sorting types of balls into
baskets, mimicking categorization and identification
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tasks. Players have 30 seconds to work together to
pass the balls to the person stationed at the correct
basket; players can either pass the ball left or right,

or drop the ball in the basket in front of them. For ever correctly sorted ball, the players get
one point; every incorrectly sorted ball loses one point. Players are graded by their overall
team score (with ≥ 10 being the top score). The game has a two step process (identifying if
the ball matches your basket, identifying which direction the ball should move). Balls are a
token change (they are all the same size, shape, and type with just their visual patterns being
different) making it a within-category identification task. Every ball counts as a trial, making
the whole experiment 30 seconds; the only thing that would need adjustment is making it
a solo experience. The design decisions with that are how to adjust the inputs when you’re
not just choosing who to pass the ball to.

Figure A.11: Sort of Fun, from Super Mario Party [324] as an example of a game that could
double as an Object Identification Test.

Figure A.12: Mail Sorting mini-game from The
Legend of Zelda: The Wind Waker. Click the
image to play video clip.

The mail sorting mini-game in The Leg-
end of Zelda: The Wind Waker (Fig. A.12)
[327] also acts as an object identification/-
categorization task. Players are given 30
seconds to sort as many letters as possible
based on the symbol on the letter. There
are 6 different symbols, and the player gets
1 rupee (in game currency) for every letter
sorted correctly; the reward increases based
on the number of sorted letters (2 rupees per
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letter past 20, 3 rupees per letter past 25).
Every letter is a trial and the rewards in-
crease based on performance. The choice to
set goals at 20 and 25 letters shows an in-
teresting assessment of what is possible yet
difficult to accomplish.

A.1.4 Change Detection Tests

Figure A.13: Video clip of Odd Card Out mini-
game from Mario Party 6 [198]. Click the im-
age to play.

Odd Card Out (Fig. A.13) [198] tasks play-
ers to identify which of the three cards pre-
sented is different from the others. The
game has 4 characters it could show for the
test; each character has 5 unique tokens (Fig.
A.14). In every round, a character is chosen
by the game and then two cards from that
character’s set are selected (one as the target
card, the other as a the comparison cards) to
make the 3 presented to the player. Players
have 5 seconds to identify which card is dif-
ferent. The first person to identify it gets
the point. Once a player reaches two cor-
rect answers they win the mini-game. Odd
Card Out is a comparison task, but does not
exactly mimic a canonical CDT because all
the tokens are shown at the same time. To
use this as an effective assessment, we need
to understand the magnitude of differences
between the images.

Figure A.14: Different token cards for Odd Card Out.
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A.1.5 Serial Reaction Time Tasks (SRTT)

Recall SRTT are almost mechanically identical to GNG because they just ask players to
respond correctly to different stimuli multiple times in a row. To this end, the examples here
could easily be used as GNG examples as well.

A.2 Minigame Designs

All of the designed ability battery mini-games are created in the Unity engine. The mini-
games take a JSON file for adjusting the variables and set-up of the ability battery. This
allows for easy adjustment of the battery without needing to manipulate code, which makes
it more portable for other researchers to use. The mini-games output the raw event data
from the game to a JSON file. This data needs to be cleaned to be interpreted easily.

It is important to note that we will only be covering the mini-games that are useful
measures for abilities we suspect are involved in Button Mashing challenges. We do this to
keep the thesis concise and focused. However, more mini-games were developed that measure
abilities outside of button mashing challenges as well.

A Quick Aside...

As a reminder, the design and coding of these games was done by various other students
under my supervision. The code architecture, aesthetic choices, and details are their
intellectual work. In their supervision I provided the guiding criteria for development
(i.e. abilities they should be focusing on, general type of output needed) and acted
as producer/project manager on their games (e.g. evaluating designs, assisting with
decisions, helping with inspiration from other games). My intellectual contribution
to this work is the idea, goals, and then the subsequent experiment design that these
mini-games are used in.

A.2.1 Digger: Finger Tapping Proxy

Designed and coded by Mactivision student group as part of their capstone project.

Gameplay Description

The Digger mini-game presents tasks the player with digging from the surface of the Earth
to a treasure buried underground within a set amount of time (default 100 seconds). To
do this players mash a specified button (default ’B’ button) as quickly as they can. Every
button press moves the player down a specific amount — hence there is a specific number of
presses that the player needs to reach the treasure (default 100).

Abilities Measured and Relationship to Existing Tests

The Digger game is designed to measure finger pressing, and so is based on and compared
with the Finger Tapping Test (FTT). The FTT measures the number of presses that can
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Figure A.15: Digger Mini-Game. Tests player finger pressing.

be made in 10 seconds; here we similarly set a time limit and measure number of presses.
The difference here is that we set a “goal” number of presses that should be made in the 10
seconds. We found that able-bodied cis-men between the ages of 20-28, average approximately
60 presses per 10 seconds [32]. As we look for various normative data sets, we use this as a
(albeit problematically skewed) benchmark for “average” performance.

Variable Components and Difficulty

Digger allows the tester to vary the following components:

Variable Explanation Effect on Difficulty Variable
Name

Default

Game
length

The amount of time the
game goes for before ending
the instance.

Time restriction limits the
total number of presses pos-
sible, and makes the speed
of the pressing action the
main thing being tested.

MaxGameTime100

Goal
presses

The amount of presses
the player must make to
successfully complete the
game.

The goal number scales the
difficulty in relation to the
game length.

DigAmount 100

Key The specific keyboard key
whose presses are counted
towards the goal.

The size and location of the
key will make certain but-
tons easier or more difficult
to press.

DigKey B

For the purpose of measuring abilities, we will hold the game length and key to be fixed
for the study. Based on the information we have on the FTT, we will hold game length at 10
seconds since that’s the original metric for the analog FTT. We leave keyCode at its default
setting. Therefore the only changing variable is the goal number.

For testing with this mini-game we believe that a “medium” level of difficulty would be
a target goal of 60 presses per 10 seconds, which is in line with the found average [32]. A
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lower number would create an “easy” variant, and a higher number would create a “harder”
variant as fatigue sets in. The same study reports the changes in intertap interval over the
number of button presses and uses it to evaluate when fatigue starts to have an observable
effect on performance. They specifically note that fatigue begins to affect the performance
of their participants around the midpoint of the task (4-5 seconds, or approximately 30-35
presses), and that post 60 presses the intertap intervals were no longer tightly coupled, with
the graph maxing out at 81 presses [32]. Using these as our guidelines we set the “easy” goal
to 35 presses, and the “hard” goal to 80 presses.

Measurements/Outputs

The Digger file is looking to measure the button presses that happen during the mini-game.
It catalogues every button press event and tells us which button is pressed, and when. The
output is a series of JSON entries which look like Listing 1.

{

"keyCode": 98,

"keyDown" : true,

"eventTime" : "yyyy-mm-ddThh:mm:ss"

}

Listing 1: Example output of Digger mini-game.

The total number of events logged lets us know how many total presses there are. In
this way we can see whether a participant has met the goal (number of presses), if they have
made any errors (which button is pressed via keyCode), and how quickly they press (based
on difference between eventTime).

A.2.2 Stage: Token Change Detection Proxy

Designed and coded by Vansh Pahuja as part of their M.Eng Project.

Gameplay Description

The Stage mini-game tasks the player with identifying if there have been any changes made
to the on-stage performers. The player is shown the first set of performers walking onto the
stage, and after a short pause on stage they walk off. The second set of performers then
walks on the stage, and the player must decide whether anything has changed by pressing
one button for yes (default Right shift) and another button for no (default Left shift).

Abilities Measured and Relationship to Existing Tests

The Stage game is designed to measure token change detection, and is based on the canon-
ical change detection task (CanonCDT). The CanonCDT measures whether a person can
accurately determine whether there has been a change in the number or colour of squares
presented to them. The basis of this test is that the array of items is stored in the player’s
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Figure A.16: Stage Mini-Game. Tests player’s token change detection. Left image is the
original set, right image is the second set with the instructional prompt.

working memory, and so long as the number of stimuli presented is less than or equal to
the working memory capacity the player should be able to easily identify if there are any
changes. If the number of stimuli exceeds the working memory capacity, the probability of
an incorrect response (i.e. saying no change when there is a change, or change when there is
no change) increases. While Miller’s original “magic number” is 7± 2 [299], the psychology
community generally believes that the working memory capacity of perfectly encoded infor-
mation is between 2 and 5 objects, depending on their complexity [35]1. Therefore difficulty
should be scaled around this understanding.

Variable Components and Difficulty

Stage allows the tester to vary the following components:
For simplicity purposes we only modify the difficulty level during testing. The difficulty

variable changes the total number of stimuli on the screen. Difficulty level 1 displays 3
stimuli, which is solidly between the 2 to 5 objects that we generally accept as allowing for
perfect encoding. Difficulty level 2 displays 6, which falls slightly outside the 2 to 5 objects,
but still remains in the “magic number”. Difficulty level 3 displays 9 stimuli, which is the
high end of the “magic number” and squarely outside of the 2 to 5 object range. The game
length will be set to 500 seconds for each instance; this is to account for animation time, and
waiting time for the player to input their answer. This time limit allows for each instance to
have approximately 5 trials per instance, accounting for animation time and wait times for
the player to make their decision. While the original CanonCDT did not impose time limits
on the participants, we believe that in order to keep the ludic nature of these games in the
battery these constraints should remain. We have set the game to not timeout if the player
is currently making a choice, so that players do not interpret the mini-game to be unfair for
cutting them off before they made a choice.

1Just a reminder, that we are subscribing to the discrete model of working memory capacity as that is
the paradigm the change detection tasks have been developed under. There is mounting evidence based on
how cueing influences working memory that this discrete model may not be sufficient [35]. There is also a
competing resource paradigm for working memory that instead proposes that every stimuli seen is attended,
but the quality of information encoded in memory about them is reduced as the number of stimuli increases
[137].
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Variable Explanation Effect on Difficulty Variable
Name

Default

Game
length

The amount of time the
game goes for before ending
the instance.

Time restriction limits the
total number of presses pos-
sible, and makes the speed
of the pressing action the
main thing being tested.

MaxGameTime90

Number of
trials

The total number of trials in
the instance.

– MaxPrompts 5

Number of
stimuli

The maximum number of
stimuli that can be on
screen.

The more stimuli the hard
it is to identify changes be-
cause you have to remember
more.

MaxPlayersDisplayed10

Difficulty
level

Controls the number of
stimuli on screen for differ-
ent levels.

More stimuli means harder
difficulty because there is
more to remember. Diff 1 is
3 stimuli; Diff 2 is 6 stimuli;
Diff 3 is 9 stimuli

Diff 2

Measurements/Outputs

The performance measurement for Stage is the number of correctly identified changed scenes.
Stage catalogues every user input during the “prompt” section (as seen in right image of Fig.
A.16). The output is a series of JSON entries which look like example 2.

The response time for each trial is the difference between the choiceTime (when the input
is made) and eventTime (when the second set is shown to the player) variables. The color-
Changed variable indicates whether there was a change (true) or not (false). When compared
with the choice variable it lets us know whether the player successfully identified the change
(RShift) or not (LShift). The output also provides additional information about the colour
order of the stimuli (colors1...9 2) and what the original stimuli color (colorOriginal) was
and the changed colour (colorNew). These pieces of additional information can be used to
understand the type of error (e.g. if the colours were similar to each other).

A.2.3 Looking: Selective Attention and Inhibition Proxy

Designed and coded by Vansh Pahuja as part of their M.Eng Project.

Gameplay Description

The Looking mini-game tasks the players with finding the object that matches the given
stimulus. Players are presented with a target item (Fig. A.17, left) and then are shown four
items on screen (Fig. A.17, right). If the item is on the screen, the player must press its

2Details about the enumerated colour values will be found in Vansh’s thesis.
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{

"color1": 3,

"color2": 4,

"color3": 1,

"color4": -1,

"color5": -1,

"color6": -1,

"color7": -1,

"color8": -1,

"color9": -1,

"colorsShown": null,

"correct": true,

"choice": "RightShift",

"colorChanged": true,

"colorOriginal": 1,

"colorNew": 6,

"choiceTime": "2023-07-05T11:04:19.5455543-04:00",

"eventTime": "2023-07-05T11:04:16.5650428-04:00"

}

Listing 2: Example output of Stage mini-game.

corresponding arrow key to identify it. If the item is not on screen, the player must press ’X’
to indicate that it is not there. The game is timed and players are incentivized to go quickly.

Figure A.17: Looking Mini-Game. Tests selective attention and inhibition. Left image shows
target stimulus. Right image shows presented options.

Abilities Measured and Relationship to Existing Tests

The Looking mini-game is designed to measure selective attention and inhibition via choice
reaction task (Go/No-go paradigm). Players are required to prioritize speed in this test
similar to the Looking for Love mini-game in Super Mario Party. The item set has many
overlapping features that could make quick object identification difficult; for example there
are two drinks in a martini glass with their main difference being colour (red and orange)3.

3The quantification of item similarity is displayed in a visual similarity matrix in Vansh’s thesis.
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While this task also uses object recognition abilities, the focus on speed and the overlapping
features between items allows us to target inhibition and selective attention because it requires
significant restraint to not just go with the first seemingly correct item, especially in cases
where the target is not actually present. Normative performance data does not exist (and
would be somewhat meaningless) for Go/No-go paradigm tasks; as such while we care about
the difficulty of the tasks, we do not base the difficulty adjustments around any normative
baselines but rather our understanding of how the variable elements affect task performance
more holistically.

Variable Components and Difficulty

Looking allows the tester to vary the following components:

Variable Explanation Effect on Difficulty Variable
Name

Default

Game
length

The amount of time the
game goes for before ending
the instance.

Time restriction limits the
total number of presses pos-
sible, and makes the speed
of the pressing action the
main thing being tested.

MaxGameTime90

Number of
trials

The total number of trials in
the instance.

– MaxFoodDisplayed15

Number of
stimuli

The total number of unique
stimuli.

More stimuli means there
are more to distinguish be-
tween for sorting; fewer
stimuli types means that
players can figure out cate-
gorization through trial and
error.

UniqueObjects6

Number
of stimuli
before new
target

Average number of stimuli
dispensed before it presents
you with a new set.

Player must pay attention
and update their working
memory to make sure they
are matching against the
currently active set.

AverageUpdateFrequency3

Variance in
updating

Variance of avgUpdateFreq — UpdateFreqVariance0.3

For the purposes of our work we set the number of trials for an instance (MaxFoodDis-
played) at 18. Since speed is a factor of our work, we maintain the default time limit for
this instance. If the player is unable to complete the total number of trials for an instance
in that time, the missed trials will count as failures.

While the intrinsic difficulty of each choie is set based on the qualities of the items shown,
we can control some difficulty through the update frequency of the target stimulus. The
more frequently the target changes, the more likely the player is to make errors because
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they’re remembering the previous target. Simple GNG do not do this, however Parametric
GNG will often provide multiple rules that change response behaviour — we believe this
target updating feature is in line with Parametric GNG design. We change the number of
stimuli between target changes (AverageUpdateFrequency) to reflect the instance’s difficulty.
Easy instances of Looking will have an AverageUpdateFrequency equal to the number of
trials (ergo only one target stimulus like a Simple GNG). Medium instances will have an
AverageUpdateFrequency of 6, ergo creating three stimulus blocks. Difficult instances will
have an AverageUpdateFrequency of 3, creating 6 stimulus blocks.

Measurements/Outputs

The performance measurement for Looking is based on accuracy (correct responses to incor-
rect responses) and response time measured in milliseconds. The output is a series of JSON
entries which look like example 3. For every trial correct tells us whether the response was

{

"_goodObject": "cosmopolitan",

"correct": "True",

"objectsShown": [

"broccoli",

"cosmopolitan",

"frittata",

"apple"

],

"choice": "Right",

"choiceTime": "2023-06-08T11:38:14.3970855-04:00",

"eventTime": "2023-06-08T11:38:13.8642335-04:00"

}

Listing 3: Example output of Looking mini-game.

correct (true) or not (false). We can use the total count of trials, and the number of correct
and incorrect responses to calculate the accuracy of the player. As well, we have the differ-
ence between eventTime and choiceTime which gives us the response time for each trial. We
also output the additional information about which objects are shown (objectsShown), what
the target object is ( goodObject) and which button was pressed. We can use this additional
data to consider reasons why incorrect responses may have happened.

A.2.4 Cake: Object Recognition (Categorization) Proxy

Designed and coded by Vansh Pahuja as part of their M.Eng Project.

Gameplay Description

The Cake mini-game tasks the players with sorting various food objects into three categories:
desserts, meals, or fruits/vegetables. The stimulus flows along a conveyor belt and the player
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must move the sorting bins up and/or down until the correct box lines up with the conveyor
belt.

Figure A.18: Cake Mini-Game.

Abilities Measured and Relationship to Existing Tests

The Cake mini-game is designed to measure object recognition; it is based on object catego-
rization tasks and mini-games like Sort of Fun in Super Mario Party and the letter mini-game
in Legend of Zelda The Windwaker. In Cake, food travels down a conveyor belt at a fixed
speed, and players must sort the food into one of three categories (dessert, meals, fruits/veg-
etables). Inherently this relies on North American cultural understandings of the categories.
As with the previous mini-game, normative data does not exist, nor would it make sense, for
this type of task. As such when we discuss the difficulty of the mini-game and the ways we
will adjust it, those decisions are based on our understanding of how the ability works and
how the variables will affect performance in the task.

Variable Components and Difficulty

Cake allows the tester to vary the following components:
Difficulty in object categorization comes in two forms: the clarity of the object being

categorized (i.e. it fits into a single category), and the time limit for making your decision.
For the North American context of our experiment, the objects used were selected so they only
fit into one of the three categories. The time limit for making decisions relies on the number
of stimuli on the conveyor belt (AverageDispenseFrequency) and how quickly they reach the
sorting bins (FoodVelocity). The higher the FoodVelocity, the less time the player has to
decide on the object category and adjust the sorting bins. This makes each sorting task more
difficult. This difficulty can be compounded by having the number of objects on the conveyor
belt at one time increased (which is done by decreasing the AverageDispenseFrequency).
If only one object is on the conveyor belt at a time, the player has time proportional to
FoodVelocity to react. If there are multiple the perceived time to react is lower because
subsequent objects will only be responded to after the first is dealt with (hence losing time
in processing, categorizing, and reacting).

To this end, our “easy” version of this mini-game will have FoodVelocity 2.5 and reduce
the AverageDispenseFrequency to 2. We increase the difficulty in the medium version by
increasing the FoodVelocity to 3, and decreasing AverageDispenseFrequency 1.5. For the
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Variable Explanation Effect on Difficulty Variable
Name

Default

Game
length

The amount of time the
game goes for before ending
the instance.

Time restriction limits the
total number of presses pos-
sible, and makes the speed
of the pressing action the
main thing being tested.

MaxGameTime90

Number of
trials

The total number of trials in
the instance.

– MaxFoodDispensed20

Number of
stimuli

The total number of unique
stimuli.

More stimuli means there
are more to distinguish be-
tween for sorting; fewer
stimuli types means that
players can figure out cate-
gorization through trial and
error.

UniqueFoods 9

Number of
stimuli at
once

Average number of stimuli
on conveyor belt between
the food updates.

Every stimuli on the belt
acts as a distractor for the
current one to be sorted.

AverageDispenseFrequency3

Conveyor
belt speed

How quickly the stimuli
move across the conveyor
belt; variance of avgUp-
dateFreq

The faster the stimuli need
to be sorted, the more pres-
sure the player will feel and
the less time they have to
think.

FoodVelocity 2.25

“hard” version we increase the FoodVelocity to 3.5, and increase the the AverageDispense-
Frequency to 1. We arrived at these numbers through play-testing the game while tweaking
these numbers in order to experience when the mini-game felt noticeably more challenging.

Measurements/Outputs

The performance measurement for Cake is the accuracy of the player. The output is a series
of JSON entries which look like example 4.

For every trial correct lets us know whether the response was correct (true) or incorrect
(false). The additional information such as objectType, object and boxChoice provide us
with insight into incorrect trials. For example, we can compare object to the boxChoice and
see whether there is any cultural constraints that may have created the error (e.g. fruit like
oranges being thought of as dessert may lead to incorrect labelling due to cultural differences).

As well we collect the choiceTime and eventTime, whose difference lets us review how
much time the stimulus was on screen — and by extension how long the player could have
had to process it.
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{

"objectType": 1,

"_object": "cookie_chocolate_chip(Clone)",

"boxChoice": 1,

"correct": true,

"choiceTime": "2023-06-08T11:56:36.6988288-04:00",

"eventTime": "2023-06-08T11:56:33.212261-04:00"

}

Listing 4: Example output of Cake mini-game.

A.2.5 Recipe: Object Recognition (Identification) Proxy

Designed and coded by Vansh Pahuja as part of their M.Eng Project.

Gameplay Description

The Recipe mini-game tasks the players with recognizing whether a pair of sweets are the
same or different from a target pair. The player is first presented with a target set of sweets
(left Fig. A.19). The dispenser then begins to dispense two sweets at a time (Fig. A.19
right). If the pair matches the target set, then the player should pack it for shipping (right
arrow). If it does not match, they should dispose of it (left arrow). Once they’ve made their
decision, a new pair of sweets will be dispensed to be identified as either the same or different
from the target set. The target set will change based on an update frequency, meaning that
the player will also need to be aware of what the current target set is.

Figure A.19: Recipe Mini-Game. Tests player’s object recognition (identification). Left
image is the target pair, right image is a trial the player must sort.

Abilities Measured and Relationship to Existing Tests

The Recipe mini-game is designed to measure object recognition, and is based on object
identification tasks. This mini-game shares similarities to Looking. Players are prioritizing
speed, and dealing with an object set where there are overlapping features meaning there is a
non-trivial amount of attention that is needed to complete this task. These similarities show
that it is a simpler choice reaction task (or a simple Go/No-go) and so is also measuring

299



PhD. Thesis – S. Soraine McMaster University – Software Engineering (HCI)

inhibition and selective attention at the same time. We have emphasized the object identi-
fication element of this mini-game through the use of object pairs; since the player needs to
see whether both stimuli match the “recipe” (target stimuli) the identification aspect of this
game should be more involved than the regular choice reaction tasks which focus on selective
attention/inhibition.

As with object categorization and selective attention/inhibition, normative data does not
exist, nor would it make sense, for this type of test. As such when we discuss the difficulty
and ways we modify it those decisions will be based on our understanding of how the ability
works and how we can affect the performance of the game.

Variable Components and Difficulty

Recipe allows the tester to vary the following components:

Variable Explanation Effect on Difficulty Variable
Name

Default

Game
length

The amount of time the
game goes for before ending
the instance.

Time restriction limits the
total number of presses pos-
sible, and makes the speed
of the pressing action the
main thing being tested.

MaxGameTime90

Number of
trials

The total number of trials in
the instance.

– MaxFoodDispensed20

Number of
stimuli

The total number of unique
stimuli.

More stimuli means there
are more to distinguish be-
tween for sorting; fewer
stimuli types means that
players can figure out cate-
gorization through trial and
error.

UniqueFoods 9

Number
of stimuli
before new
target

Average number of stimuli
dispensed before it presents
you with a new set.

Player must pay attention
and update their working
memory to make sure they
are matching against the
currently active set.

AverageUpdateFrequency3

Variance in
updating

Variance of avgUpdateFreq — UpdateFreqVariance0.3

As with object categorization difficulty is determined partly by the visual similarity be-
tween the objects4, but also by the frequency of the target set changing. In this case, since
our game is closer in design to Looking, we use the same variable values as Looking to de-
termine our “easy”, “medium”, and “hard” variants. Each instance will be set to 18 trials

4The visual similarity between sweets is recorded in a visual similarity matrix in Vansh’s thesis.
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(MaxFoodDispensed), For the easy variant AverageUpdateFrequency will be equal to the
number of trials (18) such that there are no changes. For the “medium” variant Average-
UpdateFrequency will be 6, creating 3 blocks of trials. Finally, the “hard” variant will set
AverageUpdateFrequency to 3, creating 6 blocks of trials.

Measurements/Outputs

The performance measurements for Recipe are the number of correct responses and the
response time in milliseconds. The output is a series of JSON entries which look like example
5. For every trial we see what the “recipe” (target stimuli set) is, as well as the objects that

{

"objectsSet": [

"pinkstar",

"greenjelly"

],

"_object": [

"greenjelly",

"blueswirl"

],

"choice": true,

"correct": false,

"choiceTime": "2023-06-08T11:41:37.0527443-04:00",

"eventTime": "2023-06-08T11:41:35.9992559-04:00"

}

Listing 5: Example output of Recipe mini-game.

were dispensed. choice lets us know what the player’s choice was for this trial (true or false
about matching the recipe). We can compare this against correct which tells us whether the
right answer was true or false. Counting the total number of correct choices for the test will
allow us to calculate the accuracy of the player’s identifications. Knowing the objects that
were dispensed for each trial and what the target stimuli were will allow us to hypothesize
about why errors may have occurred (e.g. in Listing 5 one of the target stimuli was there but
not both). This can help us have more robust understandings about the performances of our
players. We can also use choiceTime (when the player makes their decision) and eventTime
(when the stimuli are dispensed) to find the response time for that trial. We can find the
player’s average response time to consider the speed-accuracy tradeoffs that may affect their
overall performance score.
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Appendix B

Correlational Study Extra Details

This chapter covers any details about the study design and procedures to ensure that another
person could re-run this work.

B.1 Recruiting Participants

Participants are recruited by four processes:

� flyers posted on McMaster University’s main campus,

� targeted email recruitment,

� social media posts, and

� snowball sampling.

A recruitment poster (Fig. B.20a) was made and submitted in accordance with the
McMaster Research Ethics Board (MREB) guidelines. The recruitment poster was posted
across campus in departmental buildings, libraries, and the student centre in order to ensure
a wide net was cast as to potential participants.

A secondary poster (B.20b) was made to be attached to the email and social media posts.
In this way consistent branding and information was provided to potential participants. E-
mails were sent to undergraduate and graduate students in the Department of Computing
and Software at McMaster University. A snowball recruitment script was prepared for asking
participants whether they knew anyone else who would be eligible and interested in partici-
pating.

Participants are not being offered compensation for their participation in this study.
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B.2 Pre-Study Survey

We collect information about the participant’s demographics and gaming habits through a
pre-session survey. Demographic data such as age, sex (assigned at birth), education level,
and self-identified disability status are useful in explaining and comparing ability performance
data against other normed data which often focuses on specific demographics. As well,
this information will be useful when considering any significant deviations of performance
between participants considering we do not impose significant restrictions on the potential
participants. Information about game playing habits similarly contextualizes participant
performance to some degree. We anticipate that those who play a variety of games much
more frequently will perform better than someone who plays a single game only once a week
due to greater game literacy (i.e. they understand the conventions of video games). Therefore
any significant variations in performance could be explained by this difference in background
knowledge between participants.

The following document is a copy of the survey participants must fill out.
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1.

Mark only one oval.

YES, I agree to participate in this study. Skip to question 2

NO, I do not agree to participate in this study Skip to section 7 (Withdrawing from Study)

Consent Statements

This section outlines speci�c consent statements that must be answered before participating in the survey. Agreeing or disagreeing to these 
speci�c consent statements will not be used to disqualify participants from the study.

2.

Mark only one oval.

Yes

No

3.

Mark only one oval.

Yes

No

Human Mechanics of Video Game Design 
This study is being conducted by Sasha Soraine and Dr. Jacques Carette of the Department of Computing and Software at McMaster 
University. They can be reached via e-mail at sorainsm@mcmaster.ca and carette@mcmaster.ca respectively.

The purpose of the study is to con�rm whether mini-games (short video games with clear goals) can be used to measure a player’s 
performance for various human cognitive and motor abilities. Information gathered during this study will be written up as a doctoral thesis 
and used in conference and/or journal papers. People participating in this study must be between the ages of 18 and 64, and play video 
games (any genre, any platform) at least once a week.

This survey should take approximately 5-10 minutes to complete. Eligible participants will then be contacted to schedule two study sessions. 
The study sessions will take a total of 1 hour and 10 minutes to complete (50 minutes for the �rst session, 20 minutes for the second 
session), with a one-week gap between sessions.

To learn more about this study, particularly in terms of any risks or harms associated with the study, how con�dentiality and anonymity will 
be handled, withdrawal procedures, incentives that are promised, how to obtain information about the study’s results, how to �nd helpful 
resources should any questions or tasks make you uncomfortable or upset etc., please read the Letter of Information.

This study has been reviewed and cleared by the McMaster Research Ethics Board (MREB# 2347 ).

If you have any concerns or questions about your rights as a participant or about the way the study is being conducted, please contact:

McMaster Research Ethics Board Secretariat
Telephone: 1-(905) 525-9140 ext. 23142
E-mail: mreb@mcmaster.ca

* Required

Having read the previous preamble OR the linked Letter of Information, I understand that by clicking the "Yes" option below, I
agree to take part in this study.

*

I agree to allow my study data to be stored and used for future research as described in the Letter of Information *

If I choose to quit the study, I agree to have my responses up to the point of quitting the study retained for use in the research. *



4.

Mark only one oval.

Yes

No

Contact Information

The following information will be used to contact you in order to set up your study sessions and optionally to send you copies of the study 
results. This information will not be stored as part of the study data.

For contact purposes we require an e-mail from participants. Participants who prefer to coordinate over phone (call or text) may provide their 
contact number, but e-mail is the only required contact method.

Please note that your name and contact information will remain completely con�dential and will not be linked with any of your study 
responses.

5.

6.

7.

Check all that apply.

E-mail
Phone (call)
Phone (text)

8.

9.

Demographic Questions

These are questions regarding your personal demographics. They are necessary to help us understand differences in video game 
performance.

10.

I agree to allow my anonymized study data be uploaded to an open science data sharing platform *

Please enter your full name and preferred pronouns. *

Please enter your e-mail address. *

What is your preferred methods of contact? Select all that apply.

Please enter your phone number (for calling).

If it is different from the calling number, please enter your phone number for texting.

What is you age in years? *



11.

Mark only one oval.

Prefer not to say

Intersex

Female

Male

12.

Mark only one oval.

No formal education

Some elementary school (Kindergarten to Grade 8)

Elementary School

Some high school or equivalent

High School Diploma OR GED

Some college or university

College or University

Some post-graduate (Masters or PhD)

Post-graduate (Masters or PhD)

13.

Mark only one oval.

No

Yes

Prefer to self-identify

Prefer not to answer

What was your sex assigned at birth? *

What is your highest level of completed education? *

Do you identify as a person with a disability that was present at birth, caused by an accident, or developed over time;

•  that encompasses any degree of physical disability, mental or developmental disability, sensory disability, learning disability,
mental health / psychiatric disability, addiction, and life-threatening allergies;

•  that may affect full participation in society (school / work);

•  that may have been accommodated in workplace / school because of functional limitation as a result of the disability; or,

•  who, as a result of self-perception, perception of others, environmental barriers, inaccessible attitudes, or a any combination
of these factors, may experience unequal opportunity to access services by reason of the disability?

*



14.

Other:

Check all that apply.

Vision
Hearing
Fine motor control (e.g. �ngers, toes)
Gross motor control (e.g. legs, arms)
Attention
Short term memory
Long term memory
Executive functioning

Video Game Playing Habits

These are questions about your video game playing habits and preferences. They are used to give us insight into how you approach the study.

15.

Mark only one oval.

Less than a year

Between 1 and 4 years

Between 5 to 9 years

10 or more years

16.

Mark only one oval.

Once a week

2 to 4 times a week

5 or more times a week

17.

Mark only one oval.

5 to 10 minutes

15 to 30 minutes

30 minutes to 1 hour

1 - 3 hours

More than 3 hours

18.

If you identify as having a disability, does your disability affect any of the following? Please select all that apply.

Approximately how long have you been playing video games? *

On average, how many times a week do you play video games on any platform (e.g. phone, tablet, console, computer) *

On average, how much time do you spend on a single play session (from turning the game on to turning it off)? *

What are the games you play most frequently? *



19.

Other:

Check all that apply.

Computer
Smartphone or tablet
Handheld console (e.g. Playstation Vita, Nintendo 3DS)
Console (e.g. Xbox One, Playstation 5, Nintendo Switch)

20.

Mark only one oval.

Very uncomfortable

1

2

3

4

5

Very comfortable

21.

Check all that apply.

Keyboard
Mouse
Joystick and buttons
Gamepad (e.g. Xbox controller, Playstation controller)
Motion controller (e.g. Wii Remote, Switch Joy-Cons, Playstation Move)
Full motion controller (e.g. Kinect)

22.

Mark only one oval.

Other:

Yes

No

Survey Complete!

Thank you for completing the pre-study questions. Your responses have been submitted. Our researchers will check your age and 
gameplaying habits to see if you are eligible for the study before contacting you to set up a session.

What platforms do you commonly use to play games? Please select all that apply. *

On a scale of 1 to 5, how comfortable are you with using a keyboard and mouse? *

From the list below, please select any video game controllers that you have used in the past. *

Do you consider yourself a gamer? *



If you have any follow up questions please feel free to contact Sasha Soraine by phone (289-434-4053)or via e-mail 
(sorainsm@mcmaster.ca). 

23.

Check all that apply.

I would like a copy of the study results sent to the contact e-mail I provided.
I would like to be contacted to participate in further studies for this research program.

Withdrawing from Study

Thank you for your time. You have decided to quit this study. None of your responses have been collected or stored.

This content is neither created nor endorsed by Google.

Please select any that apply to you:

 Forms
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(a) (b)

Figure B.20: MREB approved recruitment visual materials; B.20a is approved for physical
posting, B.20b is approved for posting on social media.

B.3 Detailed Data Analysis - Accuracy

Since the Battery is intended for capturing abilities in a gaming context, we originally consid-
ered comparing the data by its accuracy. We believed focusing on accuracy over reaction time
would be appropriate as games frequently use accuracy as a binary success condition, with
reaction time being a secondary feature indicating level of success. However, raw accuracy
measures are only reliable for showing individual differences when participants make sufficient
errors, and the speed-accuracy trade-off is controlled for by fixing reaction times or making
them irrelevant (e.g. 118). Since we recruited participants with gaming backgrounds, and
modeled the Battery after existing games, it is possible that the spread of accuracy measures
will be too close to be useful. As well, all tasks (except Battery’s Cake game) incentivize
participants to as accurate and as fast as possible. Since we cannot account for how that
was interpreted, we may have participants who have lower accuracy scores due to prioritizing
speed and higher scores from participants who prioritized accuracy. Comparing the data by
accuracy measures showed data distributions and correlations in-line with these concerns.

This section takes a close look at the accuracy data for every pairing of minigame and
PEBL task, to analyse validity and reliability.
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B.3.1 Validity

To better understand what is happening with this data, we look at each reported correlation
through it’s scatterplots. For validity testing, we always report PEBL (standard measure) in
the X-axis, and the Battery results (new measure) in the Y-axis.

Digger-Tapping: The Digger-Tapping pair is measured by press rate (presses/second).
Since this is the measure we stick with for study results, the details about this analysis are
in B.4.1.

Looking-Choice: There was no reason to remove outliers in this data.
Fig. B.21 compares the accuracy scores for Looking and Choice Reaction Time. We

see no significant correlation (ρ = 0.214262, p = 0.242698571; r = 0.244763, p = 0.184485).
Zooming in on the data for Choice (Fig. B.21b) we see clear bucketing. PEBL scores only
exist as either 0.94, 0.96, 0.98, or 1.00. The Battery has a more varied distribution, although
still tightly in the 0.8 to 1.00 range.

(a) PEBL Choice Reaction Scores
(Mean: 0.9852, s.d. = 0.0155) vs. Bat-
tery Looking Scores (Mean: 0.9397, s.d.
= 0.0361), Accuracy.

(b) Zoomed in pair plots and distribu-
tions.

Figure B.21: Validity test for Looking mini-game and Four Choice Reaction Time PEBL
Test.

At first we thought this may be a case of different intents between PEBL’s Four Choice
and Looking. Where Looking encourages speed through the score system, Four choice does
not limit the amount of time participants have to make a decision about their input. If
participants chose accuracy in their accuracy-speed trade-off, it may explain some of the
bucketing but we would expect to see significantly longer reaction times. However when
we look at the relationship between reaction time and accuracy for both Four Choice and
Looking, they seem uncorrelated and PEBL’s reaction times are shorter than Battery’s (Fig.
B.22).

Having thought more on the design of Four Choice Reaction and Looking, this may be
a case where PEBL is “easier” than the Battery. The four choice task asks participants to
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Figure B.22: Comparing Reaction Time (ms) to Accuracy Scores for both PEBL Four Choice
Task and Battery’s Looking Game. There is no statistical correlation between response time
and accuracy in this data.

select the screen quadrant where a cross appears. Each quadrant is associated with a key on
the number pad (top-left: 4, top-right: 5, bottom-left: 1, bottom-right:2). Looking instead
asks that participants identify whether a target stimuli is presented on screen and if so select
it’s position. This increased cognitive load of remembering and identifying the target stimuli
may account for some of the variation in Looking’s score. When we compare Looking to
the Object Judgement scores as proxies for object recognition abilities we do not get any
significant correlation (Invariant: ρ = 0.11, p = n.s.; Identical: ρ = 0.09, p = n.s). This data
does not indicate that Looking and Object Judgment are measuring the same underlying
ability.

Looking-Flanker: Fig. B.23 compares the accuracy scores for Looking and Flanker. We
see a marginal correlation in ranks (ρ = 0.412806221, p = 0.021000981), but an insignificant
one in linear correlation (r = 0.33077389, p = 0.069135074).

The zoomed in data for Flanker shows a strong looking relationship between the clustered
data, with noticeable outliers. When visualizing the standard deviations of the data (Fig.
B.24) we get an idea of how close the outliers are to this clustered data given the wide
variation in PEBL scores. Since we are working with accuracy scores between 0 and 1, small
numeric variations can still create large effects on our data’s correlation.

The variation could be an issue of task presentation; the items in Looking are significantly
bigger and more colorful than the arrows in the Flanker test. Reduced performance could be
a result of difficulty seeing the stimulus. As well, the Flanker distractors are visually closer
to the target stimulus in comparison to Looking where the items are separated visually by
their boxes and the player’s avatar. This small variation in performance could be an issue of
a couple of participants struggling early in Flanker before getting better.
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(a) PEBL Flanker Scores (Mean:
0.9403, s.d = 0.0594) vs. Battery Look-
ing Scores (Mean: 0.9397, s.d. =
0.0361), Accuracy.

(b) Zoomed in pair plots and distribu-
tions.

Figure B.23: Validity test for Looking mini-game and Flanker PEBL test.

Figure B.24: Zoomed in Flanker vs. Looking accuracy data. Red bars represent the standard
deviation in PEBL data. Blue bars represent the standard deviation in Looking data.

As well, Looking may be measuring multiple abilities. The marginal-but-significant rank
correlation could indicate that while the abilities underlying Flanker are used in Looking,
there are other unknown abilities that could be influence performance. However, with only
31 data points, we do not have enough statistical power to run a multiple regression model
to see if adding other abilities would improve the relationship.
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Cake-Object Judgment: Cake is the only game where it makes sense to focus on accuracy
as the main measure. Therefore, we cover the details of the correlation analysis in B.4.1.

Recipe: Participant P24B only registered two instances of Recipe, and so their data was
removed from the set, leaving us with 30 observations.

Recipe does not significantly correlate with the Four Choice Reaction Time task (ρ =
−0.3115, p = 0.093811(n.s); r = −0.29926, p = 0.108158(n.s)), nor the Flanker Test (ρ =
−0.16135, p = 0.39433(n.s); r = 0.0239, p = 0.900239(n.s)). Looking at the zoomed in data
for both, we see Four Choice’s bucketing problem. For both we see clustering but no obvious
relationship to the data. This could indicate that where Four choice and Flanker measure
selective attention and inhibition, Recipe measures neither of those abilities.

(a) PEBL Choice Reaction Scores
(Mean: 0.985333, s.d. = 0.015698) vs.
Battery Recipe Scores (Mean: 0.96104,
s.d. = 0.04427), Accuracy.

(b) Zoomed in pair plots and distribu-
tions for Recipe and Four Choice Reac-
tion Test.

(c) PEBL Flanker (Absolute) Scores
(Mean: 0.925379, s.d = 0.064537) vs.
Battery Recipe Scores (Mean: 0.96104,
s.d. = 0.04427), Accuracy.

(d) Zoomed in pair plots and distribu-
tions for Recipe and Flanker.

Figure B.25: Validity test for Recipe mini-game and Four Choice Reaction Time PEBL Test.

It is possible that the design of Recipe encourages more perception and memory-based
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abilities like object recognition, since participants have to recall the correct pair to pack into
the box. However, when we look at the relationship between Recipe and the Object Judg-
ment tasks, we do not see any better correlation (Invariant: ρ = 0.00959, p > 0.9(n.s); r =
−0.07366, p > 0.6(n.s); Identical: ρ = 0.000313, p > 0.9(n.s); r = −0.01764, p > 0.9(n.s)). If
Recipe focuses more heavily on memory, future work could look at comparing it to an n-back
test or other measures of short term memory.

Stage-Luck Vogel: Fig. B.26 confirms that there is no correlation between Stage and
Luck-Vogel when looking at their accuracy (ρ = 147370152, p = 0.428863793(n.s); r =
0.079358321, p = 0.671302272(n.s)). We can see from their distributions that PEBLs scores
seem to be clustered between 0.8 and 1.0. In comparison the distribution of scores for Stages
seems more reasonable. Since this is an aggregate over participant accuracies across the easy,
medium, and hard conditions we take a look at the plots for each condition to see how they
relate.

(a) PEBL Luck Vogel Scores (Mean:
0.8871, s.d = 0.11696) vs. Battery Stage
Scores (Mean: 0.8197, s.d. = 0.1426),
Accuracy. Values are averaged across
the multiple trials.

(b) Zoomed in pair plots and distribu-
tions.

Figure B.26: Validity test for Stage mini-game and Luck Vogel PEBL test.

Given that Stage and Luck Vogel are meant to measure Token Change Detection, which
is closely tied to short term memory capacity, we expected clustering in the scatter plots
based on the difficulty of the task. We expected easy condition to be tightly clustered
around near perfect scores, with spread increasing in both dimensions as the task became
more difficult. Fig. B.27 shows the scatter plots for the different difficulties. We see none
of them are correlated: Easy (ρ = 0.125, p = 0.503(n.s); r = 0.029, p = 0.878(n.s)); Medium
(ρ = 0.137, p = 0.461(n.s); r = 0.154, p = 0.407(n.s)); Hard (ρ = 0.109, p = 0.561(n.s);
r = 0.099, p = 0.598(n.s)).

When examining the plots to see if the behaviour matches our expectations we find that
the spread changes between each condition, but not as much as we would have expected. Fig.
B.27b shows that PEBL had near perfect scores in the easy condition, while Stage had more
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variation. The medium condition shows increased spread, but participants still performed
quite well in PEBL where Stage’s spread is wider (Fig. B.27d). At the Hard level where we
expect most participants to do poorly, PEBL and Battery start to look more like a normal
distribution (Fig. B.27f), however Stage has a surprising spike in perfect scores.

Stage’s variation from PEBL at the lower condition could be because of the increased
visual and audio stimuli it presents in the game-based format. As well, Stage uses the entire
screen while PEBL’s Luck Vogel task centralizes the stimuli so it’s easier to see at once. We
think the increased performance in Stage at the hard condition could be the result of increased
attention. Participants made sure to tell us that the last level of Stage felt “impossible”; in
observing their play participants seemed more attentive in their body language, and tried
various memory techniques like speaking to themselves, and pointing at the screen. This
increased attention could have resulted in higher scores. Another potential reason could be
random patterns created in Stage’s stimuli. As colours are randomly assigned to the on-
screen characters, there were cases where colours would be unintentionally grouped. This
unintentional grouping would reduce the overall difficulty of the task since the participant
could more easily chunk multiple stimuli as one group instead of having to remember them
separately.
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(a) PEBL Luck Vogel Scores (Mean:
0.9677, s.d = 0.1002) vs. Battery Stage
Scores (Mean: 0.9078, s.d. = 0.1752),
Accuracy (Easy). Values are averaged
across the multiple trials.

(b) Distribution of Accuracy Scores for
PEBL and Battery (Easy)

(c) PEBL Luck Vogel Scores (Mean:
0.8871, s.d = 0.11696) vs. Battery Stage
Scores (Mean: 0.8197, s.d. = 0.1426),
Accuracy (Medium). Values are aver-
aged across the multiple trials.

(d) Distribution of Accuracy Scores for
PEBL and Battery (Medium)

(e) PEBL Luck Vogel Scores (Mean:
0.8871, s.d = 0.11696) vs. Battery Stage
Scores (Mean: 0.8197, s.d. = 0.1426),
Accuracy (Hard). Values are averaged
across the multiple trials.

(f) Distribution of Accuracy Scores for
PEBL and Battery (Hard)

Figure B.27: Validity test for Stage mini-game and Luck Vogel PEBL test.

The way the data changes between the different test conditions shows that PEBL may
be too easy to discern participant limits. This could be an artifact of the implementation
of Luck Vogel for PEBL, which draws all the stimuli in a central area of the screen so
participants can more easily see all the objects at once. While Stage also shows all the
objects on screen at once, they are larger in the participant’s field of view and competing
with the background. These attributes could be making Stage significantly harder than
PEBL. However, Stage’s results seem to fit what we would expect to see of a sample in this
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population; a distribution approaching normal, but centred around a higher performance
average because the participants are more practiced at this skill.

B.3.2 Reliability

We look closer at the scatterplots for the reliability data to see any emergent trends. For
reliability tests which plot battery results versus battery results, we have the Retest values
on the X-axis and the Original values on the Y-axis, but this is arbitrary.

Digger. Since Digger’s measure is consistent (press rate), we cover the reliability analysis
in B.4.2.

Looking. P10 was removed from the dataset due to measurement errors, leaving us with
26 datapoints for this analysis. We do not see a significant correlation for Looking (r =
0.284673025209601, p = 0.158679857351409(n.s); ρ = 0.322559413446464, p = 0.10802327549417(n.s)).
Looking at Fig. B.28a we see tight clustering in the upper right corners that could be indica-
tive of a relationship. Zooming in with Fig. B.28b, the scatterplot appears more linear than
we would expect from the correlation analysis, with one significant outlier (P25B). When con-
sidering the standard deviations of the scores, we see that the outlier is significantly further
away from the rest of the data and so has a large affect on the correlation. We anticipated
retest scores would vary between sessions, likely within standard deviation of the original
data point. While most retest scores seem to match this, P25B is significantly outside of this
range. P25B does self-identify as disabled with symptoms that can affect their attention and
executive functioning (which are pivotal in selective attention and inhibition measures). It is
possible that their personal variation may be larger than we anticipated since symptom flair
up is inconsistent; however, we cannot make any meaningful inferences since we did not have
participants rate their symptoms before sessions.

Cake. Since Cake’s final measure is accuracy, we cover its reliability analysis in B.4.2.

Recipe. There is no significant correlation for Recipe (r = 0.183565239160104, p = 0.359393883829444(n.s); ρ =
0.24867721662188, p = 0.211013936960891(n.s)). Fig. B.29 seems tightly grouped; the closer
view shows some outlier and evenly spaced differences between the clustered data in the top
right. It is unclear why the retest reliability is poor here.

Stage. There is no significant correlation for Stage (r = 0.150349p = 0.44507(n.s); ρ =
0.136582, p = 0.488289(n.s)). Looking at the average data in Fig. B.30 we see no obvi-
ous pattern in the data. However, we do see performance in the retest is more normally
distributed.

B.4 Detailed Data Analysis - Final Measures

This section covers the detailed analysis and discussion of the correlation study data. We
assess both the validity and reliability of the games using their appropriate measures.

318



PhD. Thesis – S. Soraine McMaster University – Software Engineering (HCI)

(a) Retest vs Original Looking scores,
Accuracy.

(b) Zoomed in Looking reliability data.
Red bars represent the standard devia-
tion in Retest data. Blue bars represent
the standard deviation in Original data.

Figure B.28: Reliability test for Looking mini-game.

(a) Retest vs Original Recipe scores, Ac-
curacy. Values are averaged across the
multiple trials. (b) Zoomed in Recipe reliability data.

Figure B.29: Reliability testing for Recipe.

B.4.1 Validity

We look at each pair of mini-game and PEBL test based on the appropriate measure: press
rate (number presses per second), accuracy (mean correct responses), or rate correct score
(RCS: correct responses per second). Wherever scatter plots are presented we use PEBL
scores as the independent variable (X-axis) and Battery scores as the dependent variable
(Y-axis) to simplify reading and comparison.

Recall in reading this section we are testing H1:
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(a) Retest vs Original Stage scores, Ac-
curacy.

(b) Zoomed in Stage (Avg.) reliability
data.

Figure B.30: Reliability testing for Stage (Avg.).

H1 For the mini-game battery to be considered valid participants’ mini-game assessment
scores must positively correlate to the associated existing measurement scores, with
ρ ≥ 0.7 or r2 > 0.5.

We set α = 0.05, and consider any correlation to be significant if the p-value < α.

Digger-Tapping: Digger and Tapping are compared via press rate. There was a mea-
surement error with P03’s PEBL data, so it was removed from the set. We still have
30 participants in this pool so the data is viable. The accuracy data seems relatively
correlated (Fig. B.31), with both Spearman (ρ = 0.770857, p < 0.0001), and Pearson
(r = 0.741397, p < 0.0001) correlations showing significance and strength.

Looking-Four Choice: Looking and Four Choice are compared using RCS. No data was
removed from this set in cleaning. We see both the Spearman (ρ = 0.375, p = 0.03765) and
Pearson (r = 0.3728, p = 0.03885) correlations are significant. Fig. B.32a shows an obvious
pattern between these two measures. We see that the values for Looking’s RCS exist in a
very narrow range; this is confirmed when looking at the distribution in Fig. B.32b. This is
potentially because Looking was more difficult than Four Choice in its design.

Unlike Four Choice, Looking actually requires players to choose between five option (the
four directions, and the “not shown” input). While this means that players may spend more
time searching for the stimuli before responding, the bigger impact is participant’s forgetting
that there was a “not shown” option. We had multiple participants ask us if the game was
broken or what they should press when they first encountered the “not shown” conditions.
While this could be a situation where participants did not clearly read the instruction, it
could also be the case that participants became engrossed in the selection response and so
the task switching to the “not shown” condition was so high they “forgot”.
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Figure B.31: Validity test: PEBL Tapping Scores vs. Battery Digger Scores, measured in
Presses/Second.

(a) Four Choice vs Looking scores, Rate
Correct Score.

(b) Zoomed in pair plots and distri-
butions for Four Choice and Looking
scores.

Figure B.32: Validity correlation results for Looking and Four Choice.

Another potential reason for this restricted range is Looking’s distractor stimuli; the item
set for the game featured similar items to increase the difficulty of selecting the correct object.
We had multiple participants mention to us after their sessions that the distractor objects
made the game “hard” because they kept picking them while trying to move quickly. This
was the purpose of the distractor objects, as avoiding them would require that participants
inhibit their response.
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Another reason this range may be limited is the way that Looking was presented to the
players at increasing difficulty levels. Difficulty was controlled by the number of stimuli
changes in an instance; the easy level would not change the target stimuli during the trials,
while the hardest level changed the stimuli every three trials. Participants noted that the
“stimuli may change” wording was confusing in the instructions as many were waiting for
the stimuli to change every trial, and so wasted time in the easy condition figuring out that
the stimuli would not change.

With all of these reasons for the data to look like it does, we wonder whether Looking,
by design, incorporates abilities other than selective attention and inhibition. The distractor
items seem to create some object recognition situations, as perceived by the participants.
However, when compared against the object recognition PEBL tasks we do not see any
significant correlation to indicate this might be the case.

Looking-Flanker: Looking and Flanker are compared via RCS and use all 31 datapoints.
Our original calculations of Spearman (ρ = 0.210, p = 0.255724) and Pearson (r = 0.424, p =
0.017475) are at odds. Looking at the scatter plot (Fig. B.33a) we see there is an outlier in
the data. Fig. B.33b shows that P08’s data is over 3 standard deviations under the mean
for PEBL data so we consider removing it from the set as it is exerting a significant amount
of influence on Pearson’s calculation.

(a) Flanker vs Looking scores, Rate
Correct Score.

(b) Standardized rates for Flanker and
Looking, to show deviations from mean.

Figure B.33: Validity correlation results for Looking and Flanker.

Looking into P08 we see this participant self-report playing predominantly Clash Royale
on their smartphone/tablet. They report a lower than average amount of gaming frequency
(once a week) and time (15 to 30 minutes) compared to the average participant. The type
of deck-building tower defense gameplay they prefer does not require the same intensity of
selective attention/inhibition proficiency as other game types, which could explain poorer
performance in inhibition tests like Flanker. As well, our observational notes list that they
generally seemed tired and frustrated with the PEBL tasks from their body language and
comments. This tiredness and frustration outside of the control of our experiment could be
a reason why they performed so out of line with the other participants. Given that we have
reason to believe their performance is impacted by external factors (tiredness, disengagement
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with testing method) we believe it is reasonable to remove P08 from the dataset. Removing
this point, Spearman (ρ = 0.129, p = 0.498) and Pearson (r = 0.216, p = 0.251) are in
alignment about the data being insignificant.

Cake-Object Judgment: We see a marginal rank correlation between Cake and the In-
variant condition (ρ = 0.362135846, p = 0.045289) but a significantly different Pearson corre-
lation (r = −0.0215, p = 0.908649(n.s)). There is no significant correlation between Cake and
the Absolute condition (ρ = −0.0075, p = 0.968057(n.s); r = −0.08596, p = 0.645649(n.s)).
In some ways this makes sense, as Cake is closer in task design to Invariant than Absolute.
For Cake participants must sort familiar items into their respective categories. Invariant
tasks participants to select which object matches the one they previously saw (irrespective
of scale and rotation). Absolute asks player to select the object that perfectly matches the
previous object in shape, scale, and rotation. While they are similar in design, this does not
explain the difference between the Spearman and Pearson correlations, nor does it explain
why the Spearman relationship is fairly weak.

(a) PEBL Object Judgment (Invariant)
Scores (Mean: 0.7645, s.d = 0.0954) vs.
Battery Cake Scores (Mean: 0.9543, s.d.
= 0.0766), Accuracy.

(b) Zoomed in pair plots and distribu-
tions for Invariant.

Figure B.34: Validity tests for Cake mini-game and Object Judgments Invariant PEBL tests.

Looking at the scatterplots for the Invariant (Fig. B.34a) and Absolute (Fig. B.35a)
conditions shows some clumping, but many outlier points. The zoomed images for the data
shows many participants ended up with a perfect score on Cake, while PEBL seems to have
better spreads. This leads us to believe that Cake was too easy. Thinking about its design,
the difficulty should be coming from how quickly and accurately the participant can identify
the object. Cake asks players to identify the object quickly enough to move the sorter to the
correct category. Since the items move down the conveyor belt at a constant speed, difficulty
should be based on how quickly the participant could recognize and categorize the item.
Since the items are visually distinct (e.g. pizza, cupcake) and have obvious categories (e.g.
entrée, dessert), the categorization may have been too easy. The difficulty is modulated by
how fast items spawn on the conveyor belt which acts as both a distractor for the current
item to be sorted, and as a way to reduce the amount of reaction time the participant has
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between objects. While the distinct and familiar objects were selected to make the gameplay
accessible, this may be a case where the items and categories should be custom to the
gameplay in order to have players enact their ability more.

(a) PEBL Object Judgment (Absolute)
Scores (Mean: 0.6527, s.d = 0.0749) vs.
Battery Cake Scores (Mean: 0.9543, s.d.
= 0.0766), Accuracy.

(b) Zoomed in pair plots and distribu-
tions for Absolute.

Figure B.35: Validity tests for Cake mini-game and Object Judgments Absolute PEBL tests.

Recipe-Flanker: Recipe and Flanker are compared along RCS. We removed P24 from
the dataset due to measurement errors, meaning we are analysing 30 data points. Recipe
is not significant for Flanker (Spearman ρ = 0.340600667, p = 0.065507; Pearson r =
0.294709038, p = 0.113891). As we saw in Looking, P08 for Flanker is more than 3 standard
deviations below the mean, and we have reason to believe the impact on their score comes
from external factors not individual differences, so we remove it as an outlier. This brings
us under our minimum 30 data points. While not able to make any claims with them, we
calculate the correlations to see how they look (Spearman ρ = 0.296, p = 0.120; Pearson
r = 0.214, p = 0.265).

Recipe-Four Choice: Recipe and Four Choice are compared along RCS. Recipe removes
P24 from the dataset due to measurement errors; this leaves us 30 data points for our
analysis. Recipe is significant across both Spearman (ρ = 0.402002, p = 0.027655) and
Pearson (r = 0.435002, p = 0.016289) coefficients. Fig. B.37a shows data with a similar
pattern to Looking-Four Choice, with the mini-game rates bounded. When looking at the
distributions in Fig. B.37b we see that the distribution seem normal, though Recipe’s is
heavily compacted.

Unlike Looking, Recipe is simpler than Four Choice; participants must just decide whether
the presented candies matches the target set (i.e. a Go/No-go task). While cognitively
simpler, Recipe employs distractor candy that may be increasing its difficulty. In both Recipe
and Looking the inclusion of the distractor items makes accuracy more rewarded than speed,
where four choice seems to cause more prioritization of speed from participants.
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(a) Flanker vs Recipe scores, Rate Cor-
rect Score.

(b) Standardized rates for Flanker and
Recipe, to show deviations from mean.

Figure B.36: Validity correlation results for Recipe and Flanker.

(a) FourChoice vs Recipe scores, Rate
Correct Score.

(b) Zoomed in pair plots and distribu-
tions for Four Choice and Recipe.

Figure B.37: Validity correlation results for Recipe and FourChoice.

Like Looking, participants were also unsure of how frequently the target stimuli would
change. In the easy condition of Recipe, the stimuli never changes. However, participants
who skimmed the instructions or did not understand that “may change” meant it could stay
the same, paused during their trial because they were waiting for a new target to show on
screen. This waiting time in the early conditions, accompanied by the difficulty of distractor
items may be why rates are seemingly concentrated between 0.5 and 1.

Stage-Luck Vogel: Stage and Luck Vogel are compared via RCS, and use all 31 data
points. When we originally examine them, we get very strong and significant correlations
for both Spearman (ρ = 0.443548387, p = 0.012444) and Pearson (r = 0.555854862, p =
0.001168). We see this correlation in Fig. B.38a; its shape and pattern seem similar to
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Looking-Four Choice and Recipe-Four Choice. However, we notice at the far right of the
axis a datapoint which looks like it may be significantly affecting our results. Taking a look
at the standard deviations (Fig. B.38c), we see two datapoints that are significant outliers
(P04 significant Luck Vogel outlier; P15 significant Stage outlier). Removing these two data
points we no longer have sufficient power to draw conclusions about the correlations (though
we calculate them as Spearman ρ = 0.345, p = 0.067, and Pearson r = 0.350, p = 0.063).

(a) Luck Vogel vs Stage scores, Rate
Correct Score.

(b) Zoomed in pair plots and distribu-
tions for Luck Vogel and Stage.

(c) Standard deviation for Luck Vogel
and Stage rates.

Figure B.38: Validity correlation results for Stage and Luck Vogel.

Looking at the participants attached to these data points, it makes sense that P04 per-
forms at such a high level considering they are a self-reported gamer playing a variety of
games 5 or more times a week. The games listed by P04 (Fortnite, Super Smash Bros.)
require significant attentional control and so may indicate significant practice with token
change detection skills that explain the high score. In comparison P15 reports that they
used to be a gamer but do not play enough to consider themselves one anymore; they list
playing 2 to 4 times a week but only list playing Rocket League. It is unclear from the
score why they may be performing poorly given this self-reported gaming history. P15 was
recruited in the final set of participants, and we have noted in our session notes that they
had just finished their exams and were completing this experiment before going home for
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the break. It could be that P15 was mentally fatigued from circumstances outside of this
experiment.

Given the individual context of P04, this deviation from the mean seems reasonable and
reflective of individual differences in our participants leading us to consider including it in
the data. In comparison, P15 does not have a strong reason why it should be included in
the data, but the external factors (mental fatigue) are assumed from their comments about
their life not observations of body language or specific comments being frustrated or tired. If
we include P04 but drop P15, we would have our sufficient minimum and the rates become
strongly and significantly associated again (Spearman ρ = 0.409, p = 0.025, and Pearson
r = 0.546, p = 0.002). This implies that P04 has a stronger effect on the correlation (likely
because of how far from the mean it falls). Since the more impactful data point is being kept,
and there is not a clear enough reason to remove the other data point we will keep both in
the data set and stick with the original correlation analyses.

B.4.2 Reliability

We look at each mini-game test-retest pair based on the appropriate measure: press rate
(number presses per second), accuracy (mean correct responses), or rate correct score (RCS:
correct responses per second). Wherever scatter plots are presented we use original test scores
as the independent variable (X-axis) and retest scores as the dependent variable (Y-axis) to
simplify reading and comparison.

Recall in reading this section that we are testing H2:

H2 For the mini-game battery to be considered reliable participants’ mini-game assessment
scores between sessions must positively correlate with a p ≥ 0.7.

We are assessing reliability using Pearson correlation; we also calculate the Spearman cor-
relation and intraclass correlation coefficient (ICC) to get a more robust understanding of
the mini-game’s reliability. ICCs are calculated in SPSS as an absolute agreement coefficient
using a single measure, two-way mixed effects paradigm. While it is imperative to use an
absolute agreement ICC for test-retest reliability [240], we recognize that people will perform
differently during different sessions due to a variety of factors. As such we do not expect
perfect agreement in the scores, and do not believe it to be a reasonable goal for our work.

Digger. Digger only uses 27 data points, since P03’s data was not captured properly in the
original test. Digger shows strong correlations between the test-retest press rate data (Fig.
B.39), with both Pearson (r = 0.825, p < 0.0001) and Spearman (ρ = 0.811966, p < 0.0001).
ICC reports correlation of 0.793, p < 0.001. This leads us to believe the reliability for Digger
is good.

Looking: Looking uses 26 data points as P10 needed to be dropped due to measurement
errors in the retest. The given data (Fig. B.40) shows strong correlations between the test-
retest data for Pearson (r = 0.657047, p = 0.000266) and Spearman (ρ = 0.603419, p =
0.001101). ICC reports a correlation of 0.577, p < 0.001. This leads us to believe that the
reliability for Looking is moderate.
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Figure B.39: Reliability test: Retest vs Original Digger scores, measured in Presses/Second.
Values are averaged across the multiple trials.

(a) Retest vs Original Looking scores,
Rate correct score.

(b) Zoomed in Looking reliability data.

Figure B.40: Reliability testing for Cake.

Cake. Cake scores are somewhat reliable (Pearson: r = 0.6818, p < 0.0001; Spearman:
ρ = 0.4863, p = 0.008695). ICC indicates poor reliability (ICC: 0.486, p = 0.002), but
given how close it is the 0.5 “moderate” threshold and taken in conjunction with the other
correlation measures, we believe Cake can be thought of as moderately reliable. There are a
couple odd outliers in the data (Fig. B.41) which show that participants did better in the
retest than in the original. With Cake being too easy, the lower scores on the original test
could be due to testing fatigue or experimental errors like participants getting a little bored
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and not paying attention.

(a) Retest vs Original Cake scores, Ac-
curacy. Values are averaged across the
multiple trials.

(b) Zoomed in Cake reliability data.

Figure B.41: Reliability testing for Cake.

Recipe: Recipe uses 27 data points as P24 is dropped from the original tests due to a
measurement error. Data shows a moderate correlation with Pearson (r = 0.597433, p =
0.001), and Spearman (ρ = 0.680708, p < 0.0001), but an unreliable ICC (0.388, p < 0.001).
This leads us to believe that the reliability for Recipe is somewhat reliable, though Looking
seems to be better across Pearson and ICC. This is something to consider as both games
target the same abilities, and correlate to the same PEBL tasks.

Stage: Stage uses 28 data points. Stage exhibits weaker correlations than the other games,
with Pearson (r = 0.424584, p = 0.024321), Spearman (ρ = 0.316913, p = 0.10035), and ICC
(0.405, p = 0.011). Taking a look at the reliability data scatterplots in Fig. B.42, we see no
clear pattern emerge from the data.

It is unclear why Stage performance does not show a clear relationship. Some possibilities
are practice effects from the original session affecting the retest measures, reduced fatigue in
the retest leading to higher scores, or lucky trial set ups in one or the other.

When participants return for the second session, it was assumed there was enough time
between session that participants could be considered “fresh” when interacting with the
mini-games. What we noticed instead was that participants remembered their perceptions
of certain games being hard or easy. Since most participants had trouble with Stage in the
original session, we observed that some were more attentive and focused during the Stage
instances in the retest. This could have led to improved performance.

Another factor could be that the retest is significantly shorter than the original, and so
participants may be less fatigued by the time they reach Stage. While fatigue effects were
mitigated in the original session by randomizing participant task order, for reliability we only
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(a) Retest vs Original Stage scores, Rate
correct score.

(b) Zoomed in Stage reliability data.

Figure B.42: Reliability testing for Stage.

care about one game at a time so these effects may come through in the data. We partitioned
the data to compare Group A (PEBL-first) and Group B (Battery-first) participants; each
group had 14 participants. Group A showed stronger reliability correlations than Group B.
For Group A, we found Pearson (r = 0.623, p = 0.017), Spearman (ρ = 0.547, p = 0.043),
and ICC (0.615, p = 0.007) which indicates a moderate reliability for this group. For Group
B, we found Pearson (r = 0.131, p = 0.656), Spearman (ρ = 0.103, p = 0.725), and ICC
(0.131, p = 0.321) which indicates poor reliability for this group. Given this information, we
see there is some kind of effect happening between groups but do not have enough information
to determine exactly what this effect is.

The final aspect we think may affect our reliability measures for Stage is the randomized
trial design. Since the colour of the stimuli are randomized every trial, it is possible that
participants encounter trials that are significantly easier that the other trials in the set be-
cause the randomized colours unintentionally create patterns. These patterns allow for easier
chunking of information in memory, which means that participants may perform significantly
better in these cases than we would expect them to. It is possible that these randomized
“lucky” trials may have influenced the test/retest scores depending on if and when they were
encountered.
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Appendix C

Timing Challenges

In Ch. 14 we noted that two mini-games did not meet the button mashing family when we
re-examined them. These two challenges fit our view of Timing challenges. Given this we
present here a preliminary case study of Ballon Burst as a timing challenge.

C.1 Gameplay Case Studies

Balloon Burst [193, 194, 323] has players inflating Bowser-shaped balloons using a hand
pump. In Mario Party players are doing so individually, while in Mario Party 2 and Mario
Party Superstars players work in teams of two. For the purposes of this analysis we will
be discussing the Mario Party 2 version played against (and with) CPUs (Fig. C.43). The
gameplay lasts for 30 seconds, with the timer positioned in the top middle of the screen.
Players alternate pressing the A and Z/B buttons (R and L in Superstars) respectively to
push the pump down and pull it up, thus filling the balloon with air. The winning team is
the one who finishes filling their balloon first. Players are advised to press the next button
in sequence when the pump flashes, as that indicates it is “full of air”. In this way the game
controls the pacing of button mashing, and signals what part of the sequence the player
is on. The context of the game is local team-based competitive multiplayer on a standard
controller.

The main motor interactions for this game are finger pressing and wrist pointing. Fingers
are used to interact with the buttons, while wrist pointing stabilizes the wrist and hand,
thereby helping with the finger pressing speed. Speed of pressing these buttons is fairly
important in this game, as the faster these buttons get pressed, the faster the balloon inflates.

While speed is important, the effectiveness of just button mashing is low for most levels
of difficulty. In this way, we see the advice of waiting for the pump to flash gives us deeper
insight into how the game is designed to be played. As well, the actions mapped to the
button presses account for how long the button is being held. The A button needs to be
held until the pump is fully depressed, and then the Z/B button needs to be held until the
pump is fully inflated (and starts flashing). Rather than speed, an understanding of timing
is therefore necessary to be competitive.

Inhibition, token change detection, and selective attention are the three abilities that
inherently address the timing aspect this mini-game. Inhibition is used to refrain from
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Figure C.43: Video clip of Mario Party 2’s Balloon Burst gameplay from Youtuber Ninten-
doMovies. Click image to play.

button mashing, and keeps us waiting for the “right” time to act. This is important as
the other factors of the game (competitive multiplayer, time limit) encourage the player to
rashly button mash. Token change detection helps us recognize the state of the pump as
the visual stimulus changes. When we recognize the pump as deflated we know to press
the Z/B button; when we see the pump flash we know to switch to pressing the A button.
Token change detection is the ability which detects the trigger we are inhibiting behaviour
around. The faster we can detect the change, the quicker we can respond to it. Selective
attention ties these together; it keeps us focused on the gameplay, which is longer than most
other mini-games, and tells us to act once we are triggered by the pump flashing. Selective
attention also works with inhibition to keep us from attending to other distracting/irrelevant
visual stimuli like the other pumps on screen, the pressure gauges, etc. Without these three
abilities working in tandem, pressing the buttons in the correct order is irrelevant as it doesn’t
optimally inflate the balloon.

Tactile perception and procedural memory are abilities that are used but significantly less
important to the gameplay. Procedural memory is used in remembering the layout of the
controller and what buttons to press. Considering the length of the sequence is short, and
there are multiple options for pressing (Z or B), this is minimal in effort. Tactile perception
supports procedural memory as the player can feel the buttons (which on the N64 Controller
are distinct in size and position). This means which button is being pressed, and whether it
is pressed or not is something we can feel/perceive quickly and easily.

Considering the gameplay, we believe that there are two abilities which bottleneck play:
token change detection and finger pressing. This reflects the importance of both reacting and
speed to successful gameplay completion. The gameplay is inherently a race, implying finger
pressing speed as the limiting ability. However, winning this race is contingent on well timed
presses triggered by quick change detection. We can’t quantify the difference between them
easily, but since pure speed can’t win this challenge alone we decide to place token change
detection as marginally more important than finger pressing, even though both are limiting
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abilities.
Since the timing element of the race is inherently important, we believe inhibition and

selective attention are important but not limiting abilities. This is because they support the
reaction to the changing pump. Tactile perception and procedural memory are used, but not
noticeably. We believe tactile perception is slightly more important than procedural memory
because of the feedback it gives us about the button presses. Since the buttons need to be
held for a short time, not just pressed and released quickly, knowing that it is still depressed
and when we have released it is useful in our timing.

With all of this in mind, we consider the priority ordering of abilities for this gameplay
to be:

1. Token change detection

2. Finger pressing

3. Inhibition

4. Selective attention

5. Tactile perception

6. Procedural memory
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Appendix D

Custom Button Mashing Challenge
Designs

We identified three types of button mashing challenges: single input, multiple input, and
alternating input. We aim to test the competency profiles for all of these challenges. Thus
we need three separate customizable games.

The games must fit the definition, mechanics, and context for each button mashing chal-
lenge. The main caveat is that our games are built to be played with the keyboard, not
standard controllers. Since we aim to use these challenges in this and potentially future con-
trolled studies, it is important that the variable aspects which affect the nature and difficulty
of the game are parameterized. This way we can easily change elements to test their effects
on perceived and measured difficulty. The games must also output participant score infor-
mation for easy analysis. Finally, we want these games to look and feel cohesive to promote
that “game” feel.

A Quick Aside...

Given that we are looking to study performance against measured abilities, you may
wonder why the mini-games give the players ranks at all. Our original implementation
provided the same animation for all players regardless of performance and told them
they did a “good job”. During our internal testing of the game, players said they
realised in the practice that “it didn’t matter how they performed” and so they did
not try as hard as they could have. We added the different ranks and animations to
incentivize engaged performance as we care about players actually trying. This aligns
with trying to promote “game” feel.

To this end we created three games: Fire Starter, Fly Away, and Potion Master. These
three games place the player as a young witch practicing her magic skills. All challenges
were developed in Unity 2022.3.0f1 using the C# scripting language. They all output the
game name, default parameters, and player’s score. The games use free assets from various
locations, the details of which are documented in the credits of the game. The source code
for the games, along with an executable, are available on GitHub.
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D.0.1 Single Input Button Mashing: Fire Starter

Figure D.44: Single input button mashing challenge designed to be customizable.

Fire Starter (Fig. D.44) tasks the player with rapidly and repeatedly hitting the specified
button within the allotted time span to light a fire. The parameters for the game, along with
their default values are found in Table D.2.

Parameter Default Value Explanation

Button Space bar The specific button pressed may affect difficulty due to
its size and postion. We default to space bar as it is
large and central, making it unlikely for participants to
“slip” and miss.

Time limit 10 seconds The time given to the player limits how many times
they can press the button. 10 seconds is the default as
it reflects the way average tapping speed was measured
(60 presses/10 seconds), and is similar in length to many
classic button mashing Mario Party minigames.

Goal 60 The expected number of presses is the main measure of
difficulty for SIBM as this is the “success target”. It
defaults to 60 presses as that was the measured “nor-
mative” data.

Score modifier 1 This affects how a button press is counted towards the
goal. It provides a way to artificially induce fatigue or
skew the difficulty. 1 is the default because it is the intu-
itive way players will understand their score increasing
(1 press = 1 press).

Table D.2: Parameters of SIBM custom game — Fire Starter — with the listed default
settings and an explanation of the parameter’s purpose.

The player’s score is calculated as # button presses × score modifier. For a player in
the default configuration to get a score of 60 (i.e. the goal) they need to press the space bar
(correct button) 60 times. This default was chosen based on previous literature on average
finger pressing rates. The final score will determine whether the fire is lit, and what colour
it burns as per Table D.3. These values are fairly arbitrary as they are meant to provide
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feedback to the player and encourage their play. Since the game outputs final scores for our
analysis we do not need to be specific about this subdivision.

Rank Player final score Fire State Fire Colour Effect Meaning

F < 0.5∗Goal Not lit – Really bad

D 0.5∗Goal ≥ Score < 0.75∗Goal Lit Green Bad

C 0.75∗Goal ≥ Score < Goal Lit Yellow Low Average

B Goal ≥ Score < 1.25∗Goal Lit Orange High Average

A 1.25∗Goal ≥ Score < 1.5∗Goal Lit Blue Good

S ≥ 1.5∗Goal Lit White Really good

Table D.3: List of fire states and colours based on player final score relative to the goal
number.

D.0.2 Multiple Input Button Mashing: Fly Away

Figure D.45: Multiple input button mashing challenge designed to be customizable.

Fly Away (Fig. D.45) shows our witch preparing to take off in flight. The player charges
her spell by rapidly pressing two target buttons simultaneously within the allotted time. The
parameters for the game, along with their default values are found in Table D.4. Since we
were unable to find literature about simultaneous button pressing rates, this goal is based
on the results of the pilot testing for the games where players performed relatively similarly
to their single input button mashing scores thus making the “same” goal seem reasonable.
This makes sense if players effectively approach the two games the same way: if pressing a
single button means locking your finger in position and pivoting at your wrist, then pressing
two buttons means locking two fingers but the wrist movement and speed is the same.

The player’s score is calculated as # of simultaneous button presses × score modifier.
“Simultaneous” pressing for this game effectively means that the first pressed key is not
released before the second key is pressed. In the game’s implementation each individual
button press throws an event, which is handled by the OnGUI function such that it can
capture multiple events happening as soon as they happen (OnGUI calls as soon as event
triggers, and doesn’t wait for a frame update). When a key in the correct set is pressed
(KeyDown event), the game adds it to the set of keys currently being pressed (CurrentKeys)
and flips the key’s state to say that it is currently being pressed (isPressed - one variable
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Parameter Default Value Explanation

Button 1 Right Arrow The specific button pressed may affect difficulty due to
its size and postion.Button 2 Left Arrow

Time limit 10 seconds The time given to the player limits how many times
they can press the button. 10 seconds is the default as
it reflects the way average tapping speed was measured
(60 presses/10 seconds), and is similar in length to many
classic button mashing Mario Party minigames.

Goal 60 The expected number of presses is a measure of diffi-
culty for MIBM as this is the “success target”. There is
no normative data for the number of button sequences
pressed during this time. From informal testing with 5
able-bodied people between the ages of 25 and 35 we
found the simultaneous presses to be similar in rate to
single button pressing.

Score modifier 1 This is a main measure of difficulty as it affects how a
button press is counted towards the goal. It provides a
way to artificially induce fatigue or skew the difficulty. 1
is the default because it is the intuitive way players will
understand their score increasing (1 press = 1 press).

Table D.4: Parameters of MIBM custom game — Fly Away — with the listed default settings
and an explanation of the parameter’s purpose.

exists per key). On release (KeyUp event), the game removes the unpressed key from the set
of currently pressed keys (CurrentKeys) and reverts its state back to unpressed. For the last
step of each event (KeyDown or KeyUp) the game checks to see whether the target keys are in
the current key set and that no other keys are also being pressed (this is to stop players from
just slamming their hand on the whole keyboard). If this is the case the game increases the
player’s score. Since the score increase is happening through the event system, holding the
keys down will not increase the player’s score because it will not trigger the events to increase
score. Having the scoring happen through the event system also means that players who are
effectively alternating (i.e. releasing the first button before the second is pressed) would
have a lower score, while rewarding players who are abiding by the coordinated action even
if they are moving slower. By designing and implementing the game this way, performance
hinges on synchronous pressing (which is in line with the challenge type) in a way that may
penalize fast but unsynchronized players (who are effectively alternating key presses) over
slow but synchronized players. Given our work sees alternating and synchronous pressing as
inherently different, this seems appropriate.

The final score determines how high the witch flies, details can be seen in Table D.5.
The values and animations are arbitrary. Since we are working with the final scores for our
analysis, this animation and ranking is exclusively to provide feedback to players about their
performance.
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Rank Player final score Flight Animation Meaning

F ≤ 0.5∗Goal Witch falls on her butt Really bad

D 0.5∗Goal ≥ Score ≤ 0.75∗Goal Witch hovers just
above the ground in
the same starting
screen

Bad

C 0.75∗Goal ≥ Score ≤ Goal Witch moves into the
next screen still in the
clouds

Low Average

B Goal ≥ Score ≤ 1.25∗Goal Witch moves past the
clouds into a light blue
sky

High Average

A 1.25∗Goal ≥ Score ≤ 1.5∗Goal Witch moves into the
stratosphere with the
moon behind her

Good

S ≥ 1.5∗Goal Witch escapes orbit
and is in the stars

Really good

Table D.5: List of animation effects based on player final score relative to the goal number.

D.0.3 Alternating Input Button Mashing: Potion Master

Figure D.46: Alternating input button mashing challenge designed to be customizable.

Potion Master (Fig. D.46) has our witch brewing a magic potion. The player does this by
rapidly pressing two target buttons in a specific repeating sequence (Button 1 then Button
2) within the allotted time. The parameters for the game, along with their default values are
found in Table D.6.

The target goal is set to 50, based on our two rounds of internal testing using analog and
digital measures. In the first round we asked a random sample of 15 people to perform the
sequence as many times as possible in 10 seconds on handheld tally counters (i.e. alternating
between right and left hands), resulting in an average of 45 sequences completed in 10 seconds.
The second round had our pilot testers play the game and found an average of 50 sequences
per 10 seconds.

The player’s score is determined by # correct sequences × score modifier. The sequence
order is fixed, as players must always start with Button 1. On correct input, the witch will
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Parameter Default Value Explanation

Button 1 Right Arrow The specific button pressed may affect difficulty due to
its size and postion.Button 2 Left Arrow

Time limit 10 seconds The time given to the player limits how many times
they can press the button. 10 seconds is the default as
it reflects the way average tapping speed was measured
(60 presses/10 seconds), and is similar in length to many
classic button mashing Mario Party minigames.

Goal 45 The expected number of presses is the main measure of
difficulty for AIBM as this is the “success target”. There
is no normative data for the number of button sequences
pressed during this time. From informal testing with 5
able-bodied people between the ages of 25 and 35 we
found an average of 45 complete sequences.

Score modifier 1 This affects how a button press is counted towards the
goal. It provides a way to artificially induce fatigue or
skew the difficulty. 1 is the default because it is the intu-
itive way players will understand their score increasing
(1 press = 1 press).

Table D.6: Parameters of AIBM custom game — Potion Master — with the listed default
settings and an explanation of the parameter’s purpose.

complete a half-stir animation (moving forward on Button 1, and backwards on Button 2).
To enforce the patterned input, the game remembers the current position in the sequence
and what the next input should be. Only input that matches the next input in the sequence
will result in animation and work towards increasing the player’s score. This means players
who cannot maintain the sequence are not penalized by having to restart the sequence and
can use the visual feedback (stirring animation) to know what the “next move” is, but if they
are just hitting random keys they will not have a high score. The final score will determine
whether how well the potion is brewed.

The results will be displayed through different animations as per Table D.7. These values
are fairly arbitrary as they are meant to provide feedback to the player and encourage their
play. Since the game outputs raw scores for our analysis we do not need to be specific about
this subdivision.
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Rank Player final score Magic Effect State Effect Meaning

F ≤ 0.5∗Goal Souls Escaping Cauldron Really bad

D 0.5∗Goal ≥ Score ≤ 0.75∗Goal Poison Cloud from Cauldron Bad

C 0.75∗Goal ≥ Score ≤ Goal Purple Smoke Puff Low Average

B Goal ≥ Score ≤ 1.25∗Goal Glow High Average

A 1.25∗Goal ≥ Score ≤ 1.5∗Goal Electricity Good

S ≥ 1.5∗Goal Magic wall of flames Really good

Table D.7: List of animation effects based on player final score relative to the goal number.
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Appendix E

Competency and Jutsu Validation
Experiment Surveys

E.1 Recruiting Participants

Participants were recruited through:

� targeted e-mails to previous participants;
� targeted e-mails to McMaster departments;
� flyers posted on McMaster University’s main campus;
� social media posts; and,
� snowball sampling.

We created visual advertisements following the MREB guidelines. Fig. E.47a is for
posting in-person across campus. Fig. E.47b is for posting on social media.
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Competency profiles for video games 
- Screening
This study is being conducted by Sasha Soraine (Principal Investigator) and Dr. Jacques Carette 
(Faculty Supervisor) of the Department of Computing and Software at McMaster University. They 
can be reached via e-mail at sorainsm@mcmaster.ca, 
and carette@mcmaster.ca, respectively.

The purpose of the study is to identify and measure the specific human cognitive and motor 
abilities that relate to performance (i.e. high scores) in different types of button mashing 
gameplay. Information gathered during this study will be written up as a doctoral thesis, and 
used in conference and/or journal papers. We are specifically looking for adults aged 18 or 
older to participate. No gaming history or experience needed.

This screening survey should take less than 5 minutes to complete.

Eligible participants will then be contacted via the provided e-mail to schedule an in-lab 
session. The in-lab session will take a total of 1 hour. It will involve completing a demographic 
survey, playing some minigames, and completing an exit survey. Participants will be 
compensated $20 for their in-lab time. Participants who withdraw mid-way through the 
session will be compensated at a rate of $10/30 minutes to the maximum of $20.

To learn more about this study, particularly in terms of any risks or harms associated with the 
study, how confidentiality and anonymity will be handled, withdrawal procedures, incentives that 
are promised, and how to obtain information about the study’s results please read the Letter of 
Information at https://mcmasteru365-
my.sharepoint.com/:b:/r/personal/sorainsm_mcmaster_ca/Documents/ButtonMashingExpe
riment/Documentation/LOI%20-
%20Competency%20Profiles%20for%20Video%20Games.pdf?csf=1&web=1&e=b3Mc5W 

This study has been reviewed and cleared by the McMaster Research Ethics Board (MREB# 6488 
). If you have any concerns or questions about your rights as a participant or about the way the 
study is being conducted, please contact:

McMaster Research Ethics Board Secretariat
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* Required

Telephone: 1-(905) 525-9140 ext. 23142
E-mail: mreb@mcmaster.ca

Screening Question

Yes

No

Are you over 18? * 1.
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This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms

Contact Information
Please enter your contact information and Sasha will reach out to eligible participants with more 
details.

Please enter your preferred name: * 2.

Please enter your e-mail address * 3.

Potential participants are screened via a single screening question:

We had unprecedented response to our study. We had over 100 respondents in the first
couple hours with just a single e-mail to the Computing and Software undergraduate and
graduate mailing lists. The posters had not yet been put up around campus before we had
to close the screening survey because we had reached capacity.

E.2 Pre-Study Gaming Habits Survey



1.

Mark only one oval.

YES, I agree to participate in this study. Skip to question 2

NO, I do not agree to participate in this study
Skip to section 9 (Withdrawing from Study)

Competency profiles for video games
This study is being conducted by Sasha Soraine (Principal Investigator)  and Dr. Jacques 
Carette (Faculty Supervisor) of the Department of Computing and Software at McMaster 
University. They can be reached via e-mail 
at sorainsm@mcmaster.ca, and carette@mcmaster.ca respectively.

The purpose of the study is to identify and measure the specific human cognitive and motor 
abilities that relate to performance (i.e. high scores) in different types of button mashing 
gameplay. Information gathered during this study will be written up as a doctoral thesis, and 
used in conference and/or journal papers. There are no  specific inclusion criteria for this 
study.

This survey should take approximately 5-10 minutes to complete. Participants will then be 
contacted to schedule an in-lab sessions. The in-lab sessions will take a total of 1 hour. After 
completing the session, participants will be compensated $20 for their time.

To learn more about this study, particularly in terms of any risks or harms associated with 
the study, how confidentiality and anonymity will be handled, withdrawal procedures, 
incentives that are promised, and how to obtain information about the study’s results please 
read the Letter of Information.

This study has been reviewed and cleared by the McMaster Research Ethics Board (MREB# 
6488 ).

If you have any concerns or questions about your rights as a participant or about the way the 
study is being conducted, please contact:
McMaster Research Ethics Board Secretariat
Telephone: 1-(905) 525-9140 ext. 23142
E-mail: mreb@mcmaster.ca

* Indicates required question

Having read the previous preamble OR the linked Letter of Information, I
understand that by clicking the "Yes" option below, I agree to take part in this study.

*



Consent Statements

This section outlines specific consent statements that must be answered before participating 
in the survey. Agreeing or disagreeing to these specific consent statements will not be used 
to disqualify participants from the study.

2.

Mark only one oval.

Yes

No

3.

Mark only one oval.

Yes

No

4.

Mark only one oval.

Yes

No

I agree to allow my study data to be stored and used for future research as
described in the Letter of Information

*

If I choose to quit the study, I agree to have my responses up to the point of quitting
the study retained for use in the research.

*

I agree to allow my anonymized study data be uploaded to an open science data
sharing platform as part of a publication process

*



5.

Check all that apply.

I would like a copy of the study results sent to the contact e-mail I provided.

I would like to be contacted to participate in further studies for this research program.

Contact Information

The following information will be used to contact you in order to set up your study session 
and optionally to send you copies of the study results. This information will not be stored as 
part of the study data.

For contact purposes we require an e-mail from participants. Participants who prefer to 
coordinate over phone (call or text) may provide their contact number, but e-mail is the only 
required contact method.

Please note that your name and contact information will remain completely confidential 
and will not be linked with any of your study responses.

6.

7.

8.

Check all that apply.

E-mail

Phone (Call)

Phone (Text)

Please select any that apply to you: *

Please enter your full name and preferred pronouns. *

Please enter your e-mail address. *

What is your preferred methods of contact? Select all that apply.



9.

10.

Demographic Questions

These are questions regarding your personal demographics. We need to collect this data to 
contextualize the performance data collected during the experiment. If you are 
uncomfortable providing this information you have the right not to answer; for any required 
questions (with the red star to the right) you can select or type in "prefer not to answer" and 
still be eligible for the study.

11.

12.

Please enter your phone number (for calling).

If it is different from the calling number, please enter your phone number for texting.

What is your age in years?  *

What is your self-identified gender? *



13.

Mark only one oval.

No formal education

Some elementary school (Kindergarten to Grade 8)

Completed Elementary School (Completed Grade 8)

Some high school or equivalent (Grade 9 - 12)

Completed High School Diploma OR GED

Some college or university

Completed College Diploma or University Degree

Some post-graduate (Masters or PhD)

Completed Post-graduate (Masters or PhD)

14.

Mark only one oval.

Yes

No

What is your highest level of completed education? *

Do you have any conditions, like carpal tunnel syndrome or repetitive stress
injuries, that may impact your ability to use a keyboard for a period of up to 20
minutes?

*



15.

Mark only one oval.

Prefer not to answer Skip to question 18

No Skip to question 18

Yes Skip to question 16

16.

Check all that apply.

Vision

Hearing

Fine motor control (e.g. fingers, toes)

Gross motor control (e.g. legs, arms)

Attention

Short term memory

Long term memory

Executive functioning

Do you self-identify as a person with a disability that was present at birth, caused
by an accident, or developed over time;

•  that encompasses any degree of physical disability, mental or developmental
disability, sensory disability, learning disability, mental health / psychiatric
disability, addiction, and life-threatening allergies;

•  that may affect full participation in society (school / work);

•  that may have been accommodated in workplace / school because of functional
limitation as a result of the disability; or,

•  who, as a result of self-perception, perception of others, environmental barriers,
inaccessible attitudes, or a any combination of these factors, may experience
unequal opportunity to access services by reason of the disability?

*

If you identify as having a disability, does your disability affect any of the following?
Please select all that apply.



17.

Video Game Playing Habits

These are questions about your video game playing habits and preferences, if any. They are 
used to give us insight into how you approach the study. You do not need to be a gamer to 
participate in the study.

18.

Mark only one oval.

Other:

Yes

No

19.

Mark only one oval.

I do not play video games Skip to question 23

Less than a year

Between 1 and 4 years

Between 5 to 9 years

10 or more years

Please list any tools or assistive devices you use when playing games, if any.

Do you consider yourself a gamer? *

Approximately how long have you been playing video games? *



20.

Mark only one oval.

Once a week

2 to 4 times a week

5 or more times a week

I do not play video games regularly

21.

Mark only one oval.

5 to 10 minutes

15 to 30 minutes

30 minutes to 1 hour

1 - 3 hours

More than 3 hours

22.

On average, how many times a week do you play video games on any platform (e.g.
phone, tablet, console, computer)

On average, how much time do you spend on a single play session (from turning the
game on to turning it off)?

What are the games you play (or used to play)  frequently? Feel free to give specific
titles or just genres you enjoy.



23.

Other:

Check all that apply.

Computer

Smartphone or tablet

Handheld gaming console (e.g. Playstation Vita, Nintendo 3DS)

Gaming console (e.g. Xbox One, Playstation 5, Nintendo Switch)

24.

Mark only one oval.

Very uncomfortable

1 2 3 4 5

Very comfortable

25.

Check all that apply.

Keyboard

Mouse

Joystick and buttons

Gamepad (e.g. Xbox controller, Playstation controller)

Motion controller (e.g. Wii Remote, Switch Joy-Cons, Playstation Move)

Full motion controller (e.g. Kinect)

What devices do you commonly use? Please select all that apply. *

On a scale of 1 to 5, how comfortable are you with using a keyboard and mouse? *

From the list below, please select any video game controllers that you have used
in the past.

*



Survey Complete!

Thank you for completing the pre-study questions. Your responses have been submitted. Our 
researchers will check your age and gameplaying habits to see if you are eligible for the study 
before contacting you to set up a session.

If you have any follow up questions please feel free to contact Sasha Soraine by phone (289-
434-4053)or via e-mail (sorainsm@mcmaster.ca). 

Withdrawing from Study

Thank you for your time. You have decided to quit this study. None of your responses have 
been collected or stored.

This content is neither created nor endorsed by Google.

 Forms
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E.3 Post-Jutsu Experiement Survey
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* Required

Post Button Mashing Survey
This survey will ask you questions about your experience with the button mashing games you have 
just played. 
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The scales in this question run from 1 (Strongly disagree with the statement) 
to 7 (Strong agree with the statement); a 4 on this scale is neither agree nor 
disagree. * 

1.

Strongly
Disagree Disagree

Somewhat
disagree

Neither
agree nor
disagree

Somewhat
agree Agree

Strongly
agree

Playing the
game was
meaningful
to me.

The game felt
relevant to
me.

Playing this
game was
valuable to
me.

I felt I was
good at
playing this
game.

I felt capable
while playing
the game.

I felt a sense
of mastery
playing this
game.

I was no
longer aware
of my
surroundings
while I was
playing.

I was
immersed in
the game.

I was fully
focused on
the game.

The game
i f d
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informed me
of my
progress in
the game.

I could easily
assess how I
was
performing in
the game.

The game
gave clear
feedback on
my progress
towards the
goals.

I enjoyed the
way the
game was
styled.

I liked the
look and feel
of the game.

I appreciated
the aesthetics
of the game.

The game
was not too
easy and not
too hard to
play.

The game
was
challenging
but not too
challenging.

The
challenges in
the game
were at the
right level of
difficulty for
me.

It was easy to
know how to
perform
actions in the
game.
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The actions
to control the
game were
clear to me.

The scales in this question run from 1 (Strongly disagree with the statement) 
to 7 (Strong agree with the statement); a 4 on this scale is neither agree nor 
disagree. * 

2.

Strongly
Disagree Disagree

Somewhat
disagree

Neither
agree nor
disagree

Somewhat
Agree Agree

Strongly
agree

I thought the
game was
easy to
control.

I thought the
game was
easy to
control.

I grasped the
overall goal
of the game.

The goals of
the game
were clear to
me.

I understood
the objectives
of the game.

I liked playing
the game.

The game
was
entertaining.

I had a good
time playing
this game
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Microsoft Forms

What did you feel was the hardest part of the fire starting game? * 3.

What did you feel was the hardest part of the potion making game? * 4.

What did you feel was the hardest part of the flying game? * 5.

Are there any comments you would like to leave the researchers about your 
experience with the games? * 

6.
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(a) (b)

Figure E.47: MREB approved recruitment visual materials; E.47a is approved for physical
posting, E.47b is approved for posting on social media.
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Appendix F

Background Information About
Methods for Study

Multiple linear regression (MLR) finds a linear combination of multiple predictor variables
that provides optimal explanatory power for a single dependent variable. In terms of our
work, MLR models attempt to quantify how the given abilities affect in-game performance.
MLR requires that we, as domain experts, provide it with predictors we are confident relate
to the dependent variable. Since we are unsure which predictors belong in the models, we
take a more exploratory approach and use subset analysis procedures.

F.0.1 Subset Analysis: Stepwise Regression

Subset analysis procedures are strategies for MLR that explore the data in an attempt to
find a subset of predictors that optimizes the model in someway [168]. There are two general
approaches to finding a subset model: all-subsets regression and stepwise regression [168].
All-subsets regression computes fitted models for all possible subsets of the predictors. These
models are compared based on a calculated criterion1 to create a short list of potential
regressions that would be further examined for suitability. Stepwise regression starts with an
initial model (either without any predictors, or with all predictors included) that is refined in
steps that add or remove a variable based on inclusion and exclusion criteria (most frequently
F-statistic thresholds on a regression diagnostic or fit metric). Stepwise regression is notably
a more widely used method, likely due to its inclusion in common statistical software packages
and lower computational cost [<empty citation>].

While frequently used, stepwise regression is significantly criticised [185]. Concerns range
from fundamental statistical issues with the procedure (e.g. bias of least squares regression),
lack of academic rigor (e.g. not assessing the underlying assumptions), and misuse (e.g. re-
searchers using it in place of theory-driven models) and misreporting (e.g. reporting resulting
models as “best” or “correct”) in academic work. Many critics note that stepwise regres-
sion should only be considered acceptable for small, exploratory studies, where little-to-no
theory exists or where researchers are looking for insight into a hypothesized theory [185].
This constraint allows for starting inquiries into areas and the small size reduces some of the
statistical bias concerns.

1Common criteria are R2, Adjusted 2, root mean square of residuals, or Mallow’s Cp [168]
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Our work is exploratory and lacks a well-established theory-driven model, making it
appropriate for stepwise regression. Given we do not have a solid reason to assume a starting
model, we start our stepwise regression with an empty model (i.e. just a constant). We
then allow the process to add or remove terms based on whether they created a significant
improvement in the model’s sum of squared error (SSE)2. The SSE is a measure of the model’s
estimation power based on the difference between the real values and model’s predicted values.
A smaller SSE means the regression fits the data better, and gets us closer to a more precise
model. A model is judged as “better” if the addition/removal of a term results in a significant
result for an F-Test comparing the two models’ SSE. Given that this is a first exploration
of competency profiles, we set the addition/removal threshold to p < 0.05. The resulting
reduced model is then checked against the common assumption and diagnostics for multiple
linear regression to assess whether they are “reasonable” (details in Sec. F.0.2).

F.0.2 Assumptions of Regression Modeling

For a multiple linear regression model to be reasonable, it needs to meet the following as-
sumptions:

1. each independent variable is correlated to the dependent variable;

2. the independent variables are not collinear with each other;

3. the errors follow a normal distribution;

4. the errors are independent; and,

5. the errors are homoscedastic.

We can think of these assumptions having to do with the independent variables (Assump-
tions 1 and 2) or having to do with the randomized errors of the regression (Assumptions 3,
4, and 5). The following subsections cover these assumptions in more detail.

At this point we want to note that the software we will be using to measure the player’s
abilities (independent variables) is not a perfect measurement tool (see Ch. 11). While for the
purposes of this study we will consider the measurements as “real”, we need to consider how
the errors in ability measurement may influence the assumptions and regression. Generally
this could introduce noise into the data such that strict interpretations of assumptions would
not be met. We keep this in mind when evaluating the assumptions, and explain below how
each will address this potential noise.

Assumptions on Independent Variables

Assumptions 1 and 2 can be checked prior to running the stepwise regression.

2We select SSE over R2 because R2 will generally increase with more predictors in the model, thus biasing
the resulting model.
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Correlation. The purpose of checking for correlation is to narrow down which independent
variables should reasonably occur in the final regression model. As the point of this is to
setup for regression, we do not put a threshold for correlation coefficients (Pearson’s r) at
this time. However, we do care about significance of the correlation and choose to set α =
0.05. Given the exploratory nature of this work, and its gaming context, a stricter α than
this traditional baseline did not seem necessary. Any independent variables that are not
significantly correlated with the dependent variable should not be in the regression model.

Collinearity. We check for collinearity to see whether our model’s coefficients and in-
cluded variables are being affected by relationships between our variables (as this could make
it harder to interpret the model). We check for collinearity of our variables with a pair-
wise correlation matrix and variance inflation factors (VIF). We consider correlations and
collinearity within acceptable ranges if the correlation coefficient between any two indepen-
dent variables is r < 0.5. This value is somewhat arbitrary, but we contextualize it with the
VIF values for the variables. Variables are considered not correlated when their VIF is equal
to 1, moderately correlated for values between 1 and 5, and highly problematically correlated
for values above 5. Since human cognitive and motor abilities tend to be redundant (e.g. fin-
ger pressing measured in all tasks because it is the motor response) and interconnected (e.g.
selective attention and inhibition), we expect some amounts of correlation. Since we know we
will not have clean orthogonal ability measures, we have looser constraints around acceptable
correlation to account for this. We consider VIF values less than 3 to be acceptable since
we expect some amount of correlation in the variables (particularly the cognitive measures)
— this follows a commonly cited “rule of thumb” for judging problematic multicollinearity.
While we will report the VIF values for all variables together, we will also report VIFs when
resulting regression models include multiple predictors to show how the collinearity looks for
that subset.

Assumptions on randomized errors in model

Assumptions 3, 4, and 5 can only be checked after the stepwise regression is run. We evaluate
all of these assumptions through analysing the residuals for the model. Given how the
potential measurement errors in the independent variables would propagate in the regression,
we evaluate the assumptions for residuals visually to get a sense for the severity of assumption
deviations. We outline below the deviations we may expect to give readers a sense of what
we believe would be acceptable deviations.

Residuals are normally distributed. We check the normality of the residuals through
looking at their histogram, probability (P-P) plot, and quantile-quantile (Q-Q) plot.

We expect the residuals to follow a normal distribution considering we are looking at the
skill-performance relationship of a random sample of the general population. However, since
the skill-performance relationship is also influenced by practice and age, we could see some
skew based on the demographics of participants. Participants from a university-aged cohort
are likely at the peak of age-related effects, and gamers are likely at the peak of practice
effects compared to non-gamers. This could create tailing in our data and residuals which

364



PhD. Thesis – S. Soraine McMaster University – Software Engineering (HCI)

would show up in these normality plots. So long as the normality plots do not deviate in
unexpected ways, we can say the normality assumption is met.

Residuals are Independent and Homoscedastic. We check for independence and ho-
moscedasticity in the residuals visually through a residuals versus fitted values plot. For
these plots, we are looking for the data points to be randomly distributed with no specific
patterns (independent) and for the data points to be relatively symmetrical around the 0-line
(homoscedastic). We expect that the same skew from particularly “skilled” participants will
cause some extreme outliers, but so long as no obvious pattern exists we believe these are
acceptable.
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Appendix G

Over and Under-loading Study Details

G.1 Checking Regression Assumptions

G.1.1 Easy Condition

We start by taking a look at correlations between independent variables and the dependent
variables, summarized in Table G.8.

Correlations

FP SelAtt SIBM MIBM AIBM

FP – -0.1283 0.7536**** 0.5841*** 0.5392**

SelAtt -0.1283 – -0.1714 -0.0263 0.0837

Significance: not significant ( ), p < 0.05(∗), p < 0.01(∗∗), p < 0.005(∗∗∗), p < 0.001(∗∗∗∗)

Table G.8: Summary of Correlations for Easy Condition. FP: Finger Pressing, SelAtt:
Selective Attention, SIBM: Single Input Button Mashing, MIBM: Multiple Input Button
Mashing, AIBM: Alternating Input Button Mashing.

SIBM

The SIBM regression model (summarized Table 17.2 and Fig. 17.8), is significant. The single
predictor variable used (Finger Pressing), is significantly correlated to the SIBM Scores (Tbl.
G.8). Looking at its Residuals versus Fitted values (Fig. G.48) shows a fairly random
distribution of points. There seems to be some clustering above the 0-line, but with so few
points it does not seem like these indicate a larger latent pattern or trend. This could be
happening because the data itself is skewed, and therefore the residuals may similarly be
skewed from normal.

Looking at the P-P Plot (Fig. G.49a) we see some bulging around the centre that almost
looks s-curved. The Q-Q Plot (Fig. G.49b) shows similar s-curvature. This seems to indicate
that data is peaky in the middle, and had long tails which pull the values. Overall the values
do not actually deviate drastically from the reference line is a way that obviously indicates a
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Figure G.48: Standardized Residuals vs. Fitted Values Plot for SIBM (Easy).

particular non-linear relationship. It could be that the data is non-linear, or more likely we
do not have a sufficient number of points to approach the normal distribution.

(a) P-P Plot of SIBM standardized residuals
with Normal Distribution reference line.

(b) Q-Q Plot of SIBM standardized
residuals with Normal Distribution ref-
erence line.

Figure G.49: Normal probability plots for SIBM Standardized Residuals.

Checking the histogram of residuals (Fig. G.50) we see heavy tails and peaking. However,
the plot does not seem to significantly deviate from normal, nor does it immediately call to
mind another distribution that would better fit the data.

Overall, given the small sample size and the exploratory nature of this study, the devi-
ations from normality assumptions seem reasonable. We think this indicates the resulting
regression model is reasonable.
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Figure G.50: Histogram of SIBM standardized residuals with a normal distribution reference
line.

MIBM

The MIBM regression model (summarized in Table 17.4 and Fig. 17.10) is significant. The
single predictor variable (Finger Pressing) is significantly correlated to the score. Looking
at the residuals vs fitted values (Fig. G.51) shows points on either side of the 0-line. It is
difficult to tell from the few points we have whether the residuals form an obvious pattern.
There is some linear growth in points above the 0-line ending in a data cluster. There is
also some increasing and decreasing in the bottom half of the graph that may indicate a
quadratic-style curve. However, it is hard to tell with the few number of points we have
whether this is over-interpreting this plot.

Figure G.51: Standardized Residuals vs. Fitted Values Plot for MIBM (Easy).

Turning to the P-P Plot (Fig. G.52a) and Q-Q Plot (Fig. G.52b) we see that the line is
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quite normal in the centre of the data but skews in the negative residuals. There seems to be
a wide spread of values at the tail, more so than expected, and the drastic shapes indicate
heavy tailing.

(a) P-P Plot of MIBM standardized residuals
with Normal Distribution reference line.

(b) Q-Q Plot of MIBM standardized
residuals with Normal Distribution ref-
erence line.

Figure G.52: Normal probability plots for MIBM Standardized Residuals.

The residuals histogram (Fig. G.53) confirms what we are seeing in the probability plot.
Overall this looks like it could come from a normal distribution if more data points were
gathered.

Figure G.53: Histogram of MIBM standardized residuals with a normal distribution reference
line.

When considering this information against the regression model plot (Fig. 17.10), this
lack of random distribution and heteroscedastic behaviour in the residuals could be the
result of the significantly underperforming datapoints in the set. It is unclear why this
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underperforming could be happening, and they fit within the prediction interval so they do
not deserve to be removed at the moment.

Overall we will tentatively consider this model acceptable, however a larger sample size
would likely improve our ability to determine whether this model meets assumptions.

AIBM

The AIBM regression model was significant (summarized in Table 17.6 and Fig. ??). Looking
at the correlations for the predictor variables Finger Pressing is significantly correlated to
the scores, but Selective Attention is not. This inherently means it “ought not” to be in
the model, however it remains for theory reasons (because it shows up significantly in the
baseline).

Taking a look at the residuals vs fitted values plot (Fig. G.54) we see what looks like a
quadratic pattern, which would indicate a linear model is not a reasonable way to look at
this data. However, given the small sample size for a two-predictor regression we may be
over interpreting what could be noise. There is some clustering of data points between 0
and 1, and there are significant outliers around -2 and +3 which could similarly be cause our
impression of the data to be skewed.

Figure G.54: Standardized Residuals vs. Fitted Values Plot for AIBM (Easy).

Focusing on the P-P Plot (Fig. G.55a) and Q-Q plots (Fig. G.55b) we see significant
tailing, bulging around the centre, and an odd spacing for the distribution. The data looks
like it is quite shifted from the normal distribution, but again this could be due to an
overinterpretation of a small sample size.

The histogram of the residuals (Fig. G.56) shows that the residuals may not be normally
distributed. While most of the data shows up under the normal reference line, there is
significant bunching around the centre (which matches the bulging in our probability plots).
The tailing that we are seeing similarly seems overblown because of the sample size; the bins
for the +3 residual has only 1 data point in it, while the bin between -1 and -2 has 5. This
histogram leads us to believe that the outliers are having a significant impact on the overall
data.
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(a) P-P Plot of AIBM standardized residuals
with Normal Distribution reference line.

(b) Q-Q Plot of AIBM standardized
residuals with Normal Distribution ref-
erence line.

Figure G.55: Normal probability plots for AIBM Standardized Residuals.

Figure G.56: Histogram of AIBM standardized residuals with a normal distribution reference
line.

Overall, we do not consider this model acceptable by strict regression assumptions due
to the lack of correlation between Selective Attention and the AIBM scores, the patterning
in the residuals vs. fitted plot, and the seemingly non-normal residuals. However, while this
model does not meet the regression assumptions, we feel this is more due to the sample size
limitations than the underlying theory being incorrect.

G.1.2 Hard Condition

We start by taking a look at correlations between independent variables and the dependent
variables, summarized in Table G.9. Notably this is the only condition where Selective
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Attention and Finger Pressing significantly correlate with each other. This seems to be an
artifact of the participant subset, as these abilities do not correlate in the baseline study
where all participants were used.

Correlations

FP SelAtt SIBM MIBM AIBM

FP – 0.5051** 0.7874**** 0.6410**** 0.5419**

SelAtt – – 0.4974*1 0.1522 0.35652

Significance: not significant ( ), p < 0.05(∗), p < 0.01(∗∗), p < 0.005(∗∗∗), p < 0.001(∗∗∗∗)

Table G.9: Summary of Correlations for Easy Condition. FP: Finger Pressing, SelAtt:
Selective Attention, SIBM: Single Input Button Mashing, MIBM: Multiple Input Button
Mashing, AIBM: Alternating Input Button Mashing.

SIBM

The SIBM regression model was significant (summarized in Table 17.3 and Fig. 17.9). The
sole predictor (Finger Pressing) is significantly correlated to the SIBM scores. However, Se-
lective Attention also significantly correlates with the SIBM scores. Looking at the residuals
vs. fitted plot (Fig. G.57) we see a very dispersed set of data points. There is no obvious
variance change related to the fitted values (i.e. not heteroscedastic), but the dispersion
makes it hard to see whether there are any obvious patterns emerging.

Figure G.57: Standardized Residuals vs. Fitted Values Plot for SIBM (Hard).

Looking at the P-P Plot (Fig. G.58a) we see some bulging in the centre that could
indicate peaking around the 0.5 Residuals. Turning to the Q-Q Plot we clearly see heavy
tailing as the positive quantiles skew far from the reference.

1p=0.0114
2p=0.0802
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(a) P-P Plot of SIBM standardized residuals
with Normal Distribution reference line.

(b) Q-Q Plot of SIBM standardized
residuals with Normal Distribution ref-
erence line.

Figure G.58: Normal probability plots for SIBM Standardized Residuals.

Looking at the residual’s histogram (Fig. G.59) shows strong peaking and tailing on the
right.

Figure G.59: Histogram of SIBM standardized residuals with a normal distribution reference
line.

Looking at these diagnostic plots it seems that we’re seeing that the regression is over-
predicting player performance. It is possible that a larger sample size may produce more
normally distributed residuals and clear elements to support or refute the assumptions. As
well, the correlation between SIBM scores and Selective Attention is surprising, and could
imply that a multi-variable model would better fit this data. As it stands, we can tentatively
say this model is reasonable, though a larger study may show something different.
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MIBM

The MIBM model is significant (summarized in Table 17.5 and Fig. 17.11). The only
predictor variable (Finger Pressing) is significantly correlated with MIBM scores. Looking
at the residuals vs. fitted plot (Fig. G.60) we see some patterning (though this could be an
artifact of over interpreting a small amount of data). We see a potential linear pattern for
points on the left side of the plot (Fitted values 30 to 36), as well as a potential ”W” pattern
with points as they bounce around the positive residuals and dip slightly below the 0-line.
We also notice that the plot shows significant outliers in the negative side.

Figure G.60: Standardized Residuals vs. Fitted Values Plot for MIBM (Hard).

The probability plots (Fig. G.61) show the data points are close to the reference line.
However, there are elements of the distributions that make us suspect the residuals may
not be normally distributed. Both plots seem to be skewed in the data point locations and
space between them. The P-P plot (Fig. G.61a) has unexpected gaps between data clusters
that could be indicative of a latent variable. The Q-Q plot (Fig. G.61b) shows the tails are
closer together than we would expect, and the tails begin to skew in the positive quantiles
indicating a right skewed residual distribution.

Looking at the histogram we see strong left tailing indicating that the regression seems
to be underperforming.

Overall it is hard to assess whether this model is reasonable. The plots are fairly good
for human data which is noisy and variable. However there seems to be evidence that the
residuals are not normally distributed and there may be some latent variable or condition
that is being measured here. We see this specifically in the gaps in the probability plots,
and the correlation with Selective Attention, which could point to there being a relationship
there. To be cautious and in line with what we saw from the Baseline regressions, we do not
consider this model reasonable.
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(a) P-P Plot of MIBM standardized residuals
with Normal Distribution reference line.

(b) Q-Q Plot of MIBM standardized
residuals with Normal Distribution ref-
erence line.

Figure G.61: Normal probability plots for MIBM Standardized Residuals.

Figure G.62: Histogram of MIBM standardized residuals with a normal distribution reference
line.

AIBM

The AIBM regression model was significant (summarized in Table 17.7 and Fig. ??). Looking
at the correlations to AIBM Scores, we see that Finger Pressing (r = 0.5419, p=0.0051)
correlates significantly, but Selective attention does not (r=0.3565, p=0.0802). Given how
close the measured significance of Selective Attention is to AIBM, it is possible that a larger
sample size would result in a significant correlation. While not strictly met, it is reasonable
to consider the correlation assumption as practically met given the theory from the baseline
models.

Looking at the residuals vs. fitted plot (Fig. G.63) we see the data points are very
dispersed, however they seem evenly distributed above and below the 0-line. It seems like
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there may be some patterns in the residuals as the points between fitted values 22 and 27
seem to have a downward curve, and the points right of 28 seem to have a slight curve as well.
Again, this could be over interpreting information from a graph with too few data points.
However, the two distinct sides seems to imply there may be something else at play with this
data.

Figure G.63: Standardized Residuals vs. Fitted Values Plot for AIBM (Hard).

Looking at the P-P Plot (Fig. G.64a) we see that the datapoints are close to the reference
line, but there are significant gaps between sections, especially around residual -1. The centre
of the P-P plot has a couple notable gaps that could be indicating peaking in the data or
some sort of missing condition/split in the data. Moving to the Q-Q plot (Fig. G.64b) we
see that there is slight tailing and the gap between the centre data and tails is still apparent.

(a) P-P Plot of AIBM standardized residuals
with Normal Distribution reference line.

(b) Q-Q Plot of AIBM standardized
residuals with Normal Distribution ref-
erence line.

Figure G.64: Normal probability plots for AIBM Standardized Residuals.

Looking at the residuals histogram (Fig. G.65) there is significant peaking and a lot of
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residuals 2 deviations from the mean. However, overall this looks relatively normal.

Figure G.65: Histogram of AIBM standardized residuals with a normal distribution reference
line.

Overall it seems like this model may have some underlying issues that indicate there is
another factor at play not counted in the model. However, the performance of the model
seems reasonable, and some of the issues we found are possibly the result of a small sample
size. We will cautiously consider this model reasonable, though this may be disproven with
a larger sample size.
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Appendix H

Mixed Methods Study Details

H.1 Background on Mixed Methods

Mixed methods have been used across many domains since the early 1990s with the moti-
vation of either generating complementary knowledge through multiple data types, or con-
firming results from one type of investigation with another [437]. The core questions driving
mixed methods research designs are why are we collecting multiple types of data, and when
should we be collecting this data. Creswell and Creswell [101] identify three core mixed-
methods research designs that address these questions: convergent, exploratory sequential,
and explanatory sequential. Convergent designs collect and analyse multiple types of data
simultaneously, often for the purpose of contextualizing the gathered quantitative data with
the qualitative data for a particular experiment or intervention. Exploratory sequential de-
signs first collect and analyse qualitative data to establish theories and concepts that are
then explored using quantitative methods. Explanatory sequential designs first collect and
analyse quantitative data, and then follow-up with qualitative methods in order to explain
the results further. Since our study is a convergent design, we will focus in on elements
related to that design type.

We construct a questionnaire variant of convergent design, where the data is collected
through a single measure with both open- and closed-ended questions [100]. Creswell and
Clark [100] outline the general procedure for convergent designs (including questionnaire
variants) as:

1. Collect the datasets;

2. Analyse each data type independently;

3. Integrate the datasets; and,

4. Interpret the merged results.

The independent analysis allows for the analysis methods to be appropriate to each data
type, and for preliminary understandings about the data to be formed from these methods.
The integration can be done in multiple ways depending on what you want to learn from
the combination. Since our goal is to understand how the qualitative and quantitative data
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compares, we focus on a side-by-side comparison where the results of each data type are first
presented independently and then compared in a meta-discussion [101].

Considerations for Convergent Designs. There are two main limitations that could
impact our results from this design. Firstly, the questionnaire variant’s data collection does
not result in rigorous qualitative data since the open-ended questions are just appended to a
quantitative survey. While this means the data would not hold up on its own as a qualitative
study, it can still produce emergent themes to enhance and discuss the quantitative data
set [100]. Since this is suitable for our larger goal, and pragmatically works for our larger
experimental session we do not see it being a problem. Secondly, there is tension in finding the
right sample size for the study because of the competing rationales from the qualitative (few
participants, lots of rich data) and quantitative (lots of participants, select data) perspectives.
For our study, since we do not have a rigorous qualitative dataset anyway, we choose to
include all of the participants from our quantitative dataset in our qualitative dataset. This
will allow for more reasonable comparisons between findings since the groups are covering
the same people, even though it means that we are getting a limited amount of qualitative
data from each participant.

H.2 Background on Thematic Analysis

Thematic analysis is a method of examining patterns and themes through a dataset for the
purpose of finding shared understandings and meanings from the sample population about
the concept being researched [59]. Generally, thematic analysis can be broken into a six-stage,
non-linear, process [59, 469]:

1. Familiarization with the data: becoming immersed in the data through repeated
close readings, while keeping notes on elements and patterns that may be useful to
analyse.

2. Initial code generation: systematically creating and applying labels to the data in
an effort to capture its relevant meanings for the research question.

3. Constructing themes from codes: grouping related codes in ways that show a
cohesive concept or phenomenon.

4. Reviewing potential themes: reflexively evaluating themes to see whether they tell
a cohesive and coherent story about the data.

5. Defining and naming themes: creating illustrative names and descriptions for the
final set of themes.

6. Producing the report

The specifics of these stages looks different depending on the type of thematic analysis being
done. Terry et al. [469] broadly defines two conceptual approaches for thematic analysis: a
positivist approach focused on pre-generating codes from theory and testing for the reliability
of these codes in the data (the “small q” approach), and a qualitative paradigm approach
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focused on code and theme development from exploring and immersing the researcher in the
data (the “big Q” approach). The difference between these approaches tends to be their
theoretical perspective (constructivist or essentialist), orientation to the data (critical or
experiential), and approach to coding and data analysis (deductive or inductive) [59]. While
Braun and Clarke [59] note that in practice thematic analysis will often incorporate aspects
of each perspective, orientation, and analysis type, it is important that the predominant
frameworks are stated to make it clear what can or cannot be said about the data, and what
assumptions underlie the interpretations.

We outline our theoretical and conceptual frameworks, and address the underlying as-
sumptions in our analysis as well as our positionality1 as researchers in Sec. 18.1. We cover
our specific implementation of the steps and analysis in Sec. 18.5.1.

H.3 Participant Data

H.3.1 Participant Demographics

Table H.10: Participant Demographics.

Demographics Gaming Information

ID Age Gender Gamer History Length
(hours)

Sessions
per week

P01 30 Man Yes 10+ years 0.5 to 1 5+

P02 21 Man Yes 10+ years 1 to 3 5+

P03 28 Man Yes 10+ years 1 to 3 2 to 4

P04 21 Man Yes 10+ years 0.25 to 0.5 5+

P05 18 Woman Yes 1 to 4 years 3+ 5+

P06 20 Man Yes 10+ years 1 to 3 2 to 4

P07 22 Man No 10+ yeas 1 to 3 Irregular

P08 20 Non-binary Yes 10+ years 0.5 to 1 5+

P09 20 Man Yes 10+ years 1 to 3 5+

P10 20 Man Yes 10+ years 1 to 3 5+

P11 22 Man Yes 10+ years 1 to 3 2 to 4

P12 20 Man Yes 10+ years 3+ 5+

P13 19 Man Yes 5 to 9 years 1 to 3 5+

P14 19 Woman No� 1 to 4 years Irregular Irregular

�: indicates a more complicated response than Yes/No

1Our relationship to various social processes and hierarchies of power and privilege that impact our
approach to the research and insight into the data [383].
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Table H.10 (continued)

Demographics Gaming Information

ID Age Gender Gamer History Length
(hours)

Sessions
per week

P15 22 Man Yes 5 to 9 years 1 to 3 1

P16 22 Man Yes 5 to 9 years 1 to 3 2 to 4

P17 19 Woman Yes 5 to 9 years 1 to 3 2 to 4

P18 19 Woman No� 10+ years 1 to 3 Irregular

P19 19 Man No� 5 to 9 years 0.5 to 1 1

P20 26 Man No 10+ years 1 to 3 5+

P21 21 Woman Yes� 10+ years 1 to 3 2 to 4

P22 30 Queer Yes� 10+ years 3+ 5+

P23 22 Man No 5 to 9 years 0.25 to 0.5 2 to 4

P24 23 Man Yes 10+ years 1 to 3 5+

P25 22 Woman No 10+ years 0.5 to 1 Irregular

P26 20 Undisclosed Yes 10+ years 0.5 to 1 2 to 4

P27 37 Man No 10+ years 3+ Irregular

P28 19 Man Yes 5 to 9 years 1 to 3 1

P29 19 Woman No 1 to 4 years 0.25 to 0.5 2 to 4

P30 20 Man Yes 10+ years 0.5 to 1 2 to 4

P31 19 Man Yes 10+ years 1 to 3 5+

P32 19 Woman No 1 to 4 years 1 to 3 1

P33 21 Man No None 0.5 to 1 2 to 4

P34 20 Man No� 5 to 9 years 0.5 to 1 2 to 4

P35 18 Woman No None 0.25 to 0.5 Irregular

P36 20 Man Yes� 10+ years 0.5 to 1 2 to 4

P37 18 Man Yes 10+ years 1 to 3 5+

P38 18 Man Yes 5 to 9 years 1 to 3 2 to 4

P39 18 Man Yes 10+ years 0.25 to 0.5 2 to 4

P40 20 Man Yes 10+ years 1 to 3 5+

P41 18 Man Yes 5 to 9 years 1 to 3 5+

P42 20 Woman Yes 5 to 9 years 0.5 to 1 2 to 4

P43 18 Man Yes 5 to 9 years 0.5 to 1 5+

�: indicates a more complicated response than Yes/No
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Table H.10 (continued)

Demographics Gaming Information

ID Age Gender Gamer History Length
(hours)

Sessions
per week

P44 18 Man Yes 10+ years 0.5 to 1 5+

P45 20 Woman No < 1 year 0.25 to 0.5 5+

P46 18 Man Yes 10+ years 1 to 3 2 to 4

P47 20 Woman Yes 5 to 9 years 0.5 to 1 2 to 4

P48 21 Man Yes 10+ years 0.5 to 1 2 to 4

P49 23 Woman Yes 5 to 9 years 1 to 3 2 to 4

P50 19 Woman Yes 10+ years 1 to 3 5+

P51 19 Man Yes 10+ years 1 to 3 5+

P52 18 Man Yes 10+ years 0.5 to 1 5+

P53 20 Man No 5 to 9 years Irregular Irregular

P54 21 Man No 5 to 9 years 0.5 to 1 1

P55 21 Man Yes 10+ years 1 to 3 5+

P56 19 Man No None 0.25 to 0.5 Irregular

P57 20 Man No� 10+ years 0.5 to 1 2 to 4

P58 26 Woman No 10+ years 1 to 3 1

P59 28 Woman Yes 10+ years 1 to 3 2 to 4

P60 21 Woman Yes 10+ years 1 to 3 5+

P61 33 Woman No None 0.25 to 0.5 Irregular

P62 24 Woman Yes 10+ years 1 to 3 5+

P63 19 Woman No 5 to 9 years 0.5 to 1 5+

P64 18 Trans Masc/
Non-binary

Yes 10+ years 0.25 to 0.5 2 to 4

P65 23 Woman Yes 5 to 9 years 1 to 3 2 to 4

P66 25 Woman No 1 to 4 years 0.25 to 0.5 Irregular

P67 20 Woman No 1 to 4 years 0.5 to 1 5+

P68 26 Woman No None 0.25 to 0.5 Irregular

P69 31 Man Yes 10+ years 3+ 5+

P70 27 Man Yes 10+ years 3+ 5+

P71 27 Man Yes 10+ years 1 to 3 5+

�: indicates a more complicated response than Yes/No
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Table H.10 (continued)

Demographics Gaming Information

ID Age Gender Gamer History Length
(hours)

Sessions
per week

P72 27 Man Yes 10+ years 1 to 3 5+

P73 29 Man Yes 10+ yeas 1 to 3 5+

P74 20 Man Yes 10+ years 3+ 5+

P75 33 Woman Yes 10+ years 1 to 3 2 to 4

�: indicates a more complicated response than Yes/No

H.3.2 Participant Group Distribution

Group Participants

Easy P03, P06, P09, P12, P15, P18, P20, P26, P29, P32, P35, P37, P40, P43,
P46, P49, P52, P56, P59, P62, P69, P72, P75

Control P02, P05, P08, P11, P14, P17, P19, P22, P24, P25, P28, P31, P34, P39,
P42, P45, P48, P51, P54, P57, P60, P61, P64, P67, P70, P73

Hard P01, P04, P07, P10, P13, P16, P21, P23, P27, P30, P33, P36, P38, P41,
P44, P47, P50, P53, P55, P58, P63, P66, P68, P71, P74

Table H.11: Participant Groups

H.3.3 Participant Gaming Context

Table H.12 summarizes the participants’ gaming platforms and a sample of the games they
report.
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Table H.12: Participant Gaming Context.

ID PC Ph/T Con HCon. Sample of Reported Games/Genres

P01 ✓ ✕ ✓ ✕ LoL, Zelda, CoD, Stardew Valley, Mario Party

P02 ✓ ✓ ✓ ✕ FIFA, CoD, Fortnite

P03 ✕ ✕ ✓ ✕ Last of Us, GTA V, God of War

P04 ✓ ✓ ✓ ✕ Rocket League, FIFA, Valorant

P05 ✓ ✕ ✕ ✕ Valorant, Minecraft, Elden Ring, Undertale

P06 ✓ ✓ ✓ ✓ FPS, Minecraft, Action-Adventures, RPGs

P07 ✓ ✕ ✓ ✕ Rocket League, Rainbox Six Siege, NHL, FIFA

P08 ✓ ✕ ✓ ✕ Celeste, Inscryption, Zelda: Breath of the Wild, Hades, Pokemon

P09 ✓ ✓ ✓ ✕ CoD, FIFA, RPG

P10 ✓ ✓ ✕ ✕ LoL, Tetris, Valorant, Roblox, Minecraft, Honkai: Star Rail, Maplestory

P11 ✓ ✕ ✕ ✕ Assassin’s Creed, Far Cry, Ori and the Blind Forest

P12 ✓ ✓ ✓ ✓ Dark Souls, Pokemon, PUBG, Osu!, Platformers, Smash Bros.

P13 ✓ ✓ ✕ ✓ Valorant, Forza, FIFA, Assassin’s Creed

P14 ✓ ✓ ✕ ✕ Super Mario Bros, Wii Sports, other Wii games

P15 ✓ ✕ ✕ ✕ Genshin Impact, Fortnite

P16 ✓ ✓ ✕ ✕ GTA V, PUBG Mobile

P17 ✓ ✓ ✕ ✕ LoL, Minecraft, Genshin Impact

P18 ✕ ✕ ✓ ✕ CoD

Legend Computer (PC), Smartphone/Tablet (Ph/T), Console (Con), Handheld consoles (HCon), League of Legends
(LoL), Call of Duty (CoD), Grand Theft Auto (GTA), Counterstrike: Global Offensive (CS:GO), Bloons
Tower Defense (BTD), Legend of Zelda (Zelda), Final Fantasy (FF), First Person Shooter genre (FPS),
Roleplaying Game genre (RPG), Massively Multiplayer Online (MMO), Multiplayer Online Battle Arena
genre (MOBA), Play Unknown Battlegrounds (PUBG), Civilization (Civ), Magic the Gathering (MtG)

384



P
h

D
.

T
h

esis
–

S
.

S
orain

e
M

cM
aster

U
n

iversity
–

S
oftw

are
E

n
gin

eerin
g

(H
C

I)

Table H.12 (continued)

ID PC Ph/T Con HCon. Sample of Reported Games/Genres

P19 ✓ ✕ ✓ ✓ Minecraft, Kingdom Hearts, Forza Horizon, CS:GO

P20 ✕ ✕ ✓ ✕ FIFA, Overwatch, Warzone, Spiderman

P21 ✕ ✓ ✓ ✕ Animal Crossing, Mario Kart, Mario Party, Overcooked 2, Cookie Run Kingdom

P22 ✓ ✕ ✓ ✓ MMORPGs, MOBAs, party games, fighting games, Mario Kart

P23 ✓ ✓ ✕ ✕ Clash of Clans, Hearthstone, LoL, Civ

P24 ✓ ✓ ✓ ✕ Fortnite, Baldur’s Gate 3, Mario Kart 8, Smash Bros. Ultimate

P25 ✓ ✓ ✕ ✕ Catan Online, Minecraft, Mario Kart, Animal Crossing

P26 ✓ ✓ ✕ ✕ Strategy games, RPGs

P27 ✓ ✕ ✕ ✕ Uncharted Waters, City building, World of Tanks

P28 ✓ ✓ ✓ ✕ Valorant, FIFA, Gran Turismo, Minecraft, Clash Royale, Clash of Clans, Geometry Dash

P29 ✕ ✓ ✓ ✕ –

P30 ✓ ✕ ✕ ✓ Celeste, Hollow Knight, Zelda

P31 ✓ ✕ ✓ ✕ Apex Legends, Zelda, indie games

P32 ✓ ✕ ✓ ✕ Nier Replicant, Omori, Steins Gate, Smash Ultimate

P33 ✕ ✓ ✓ ✕ FPS games, GTA, Racing games

P34 ✕ ✓ ✓ ✕ Rocket League, For Honour, God of War

P35 ✕ ✓ ✕ ✕ Love Nikki, Rusty Lake

P36 ✓ ✓ ✓ ✓ Professor Layton, Zelda: Tears of the Kingdom, Skyrim, 2D platformers

P37 ✓ ✕ ✕ ✕ Last of Us, Bioshock, Lethal Company, Fortnite

Legend Computer (PC), Smartphone/Tablet (Ph/T), Console (Con), Handheld consoles (HCon), League of Legends
(LoL), Call of Duty (CoD), Grand Theft Auto (GTA), Counterstrike: Global Offensive (CS:GO), Bloons
Tower Defense (BTD), Legend of Zelda (Zelda), Final Fantasy (FF), First Person Shooter genre (FPS),
Roleplaying Game genre (RPG), Massively Multiplayer Online (MMO), Multiplayer Online Battle Arena
genre (MOBA), Play Unknown Battlegrounds (PUBG), Civilization (Civ), Magic the Gathering (MtG)
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Table H.12 (continued)

ID PC Ph/T Con HCon. Sample of Reported Games/Genres

P38 ✓ ✕ ✕ ✕ Minecraft, Binding of Isaac, CS:GO, BTD6, Elden Ring, Lethal Company

P39 ✓ ✓ ✕ ✕ Minecraft, Open World Exploration, Co-Op games, not shooters

P40 ✓ ✕ ✕ ✕ Minecraft, Europa Universalis IV, Rainbow Six Seige

P41 ✓ ✕ ✕ ✕ FIFA, NBA, Valorant

P42 ✓ ✓ ✕ ✕ Minecraft, Stardew Valley, Team Fight Tactics, Persona, Mario Kart, Platformers

P43 ✓ ✓ ✕ ✕ Valorant, Clash of Clans, FIFA Mobile

P44 ✓ ✓ ✕ ✕ FIFA, Valorant, Spiderman

P45 ✓ ✓ ✕ ✕ Subway Surfers, GTA Vice City, Angry Birds, Racing and Adventure games

P46 ✓ ✕ ✓ ✕ Valorant, Spiderman, Forza, Gang Beasts

P47 ✓ ✕ ✕ ✕ Valorant, Rimworld, CivVI, Skyrim

P48 ✓ ✓ ✕ ✕ LoL, Into the Breach, Slay the Spire

P49 ✓ ✕ ✕ ✕ Binding of Isaac: Rebirth

P50 ✓ ✓ ✓ ✕ FF XIV, Metal Gear Rising: Revengeance, Baldur’s Gate 3

P51 ✓ ✓ ✕ ✕ Osu!, Overwatch 2, Genshin Impact

P52 ✓ ✓ ✕ ✕ FIFA, Fortnite, NBA

P53 ✓ ✓ ✕ ✕ Puzzle games (Mini Metro) and Thinking games (Hitman)

P54 ✓ ✕ ✓ ✕ Pokemon, Zelda: Tears of the Kingdom, Portal 2

P55 ✓ ✓ ✕ ✕ Genshin Impact, Metroidvanias, Portal, Valorant

P56 ✕ ✓ ✓ ✕ Fortnite, FIFA

Legend Computer (PC), Smartphone/Tablet (Ph/T), Console (Con), Handheld consoles (HCon), League of Legends
(LoL), Call of Duty (CoD), Grand Theft Auto (GTA), Counterstrike: Global Offensive (CS:GO), Bloons
Tower Defense (BTD), Legend of Zelda (Zelda), Final Fantasy (FF), First Person Shooter genre (FPS),
Roleplaying Game genre (RPG), Massively Multiplayer Online (MMO), Multiplayer Online Battle Arena
genre (MOBA), Play Unknown Battlegrounds (PUBG), Civilization (Civ), Magic the Gathering (MtG)
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Table H.12 (continued)

ID PC Ph/T Con HCon. Sample of Reported Games/Genres

P57 ✓ ✕ ✕ ✕ LoL, Valorant, Hearthstone, Pokemon, Mario

P58 ✓ ✕ ✕ ✕ Genshin Impact, Don’t Starve, MtG: Arena

P59 ✕ ✕ ✓ ✕ CoD, Zelda, Overwatch!, Shadow of the Colossus

P60 ✓ ✓ ✕ ✕ Risk of Rain, Honkai: Star Rail, Hollow Knight, Maplestory

P61 ✓ ✕ ✓ ✕ Mortal Kombat, Crash Bandicoot, The Neverhood, GTA 3

P62 ✓ ✓ ✓ ✕ CivV, Minecraft, Duolingo, Chess, Stardew Valley

P63 ✓ ✕ ✕ ✕ Nier, Genshin Impact, LoL

P64 ✓ ✓ ✓ ✓ Fortnite, Minecraft, Sims, Assassin’s Creed, Mario Kart

P65 ✓ ✕ ✕ ✕ Puzzle games, FPS, Multiplayer Cooperation

P66 ✕ ✓ ✕ ✕ Candy Crush, 2048

P67 ✓ ✓ ✕ ✕ Valorant, Osu!, Honkai: Star Rail, Bayonetta

P68 ✓ ✓ ✕ ✕ –

P69 ✓ ✕ ✓ ✕ Zelda, PUBG, LoL, Raft, Civ, Starcraft

P70 ✓ ✕ ✓ ✕ Minecraft, Zelda, No Man’s Sky, Old School Runescape, CoD, Pac-Man, Vampire Sur-
vivors

P71 ✓ ✓ ✕ ✕ MOBAs, 4X, Strategy style

P72 ✓ ✓ ✕ ✕ LoL, Runescape, Jackbox, Idle games

P73 ✓ ✓ ✕ ✓ Palworld, LoL, Pokemon

P74 ✓ ✓ ✓ ✓ Action-Adventure, JRPGs, Puzzle, Shooters, Platformers, Co-op, Arcade

Legend Computer (PC), Smartphone/Tablet (Ph/T), Console (Con), Handheld consoles (HCon), League of Legends
(LoL), Call of Duty (CoD), Grand Theft Auto (GTA), Counterstrike: Global Offensive (CS:GO), Bloons
Tower Defense (BTD), Legend of Zelda (Zelda), Final Fantasy (FF), First Person Shooter genre (FPS),
Roleplaying Game genre (RPG), Massively Multiplayer Online (MMO), Multiplayer Online Battle Arena
genre (MOBA), Play Unknown Battlegrounds (PUBG), Civilization (Civ), Magic the Gathering (MtG)
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Table H.12 (continued)

ID PC Ph/T Con HCon. Sample of Reported Games/Genres

P75 ✓ ✕ ✓ ✕ Mario Kart, FF XII, Layers of Fear, Love Nikki, Pokemon Snap, Shadow of the Colossus

Legend Computer (PC), Smartphone/Tablet (Ph/T), Console (Con), Handheld consoles (HCon), League of Legends
(LoL), Call of Duty (CoD), Grand Theft Auto (GTA), Counterstrike: Global Offensive (CS:GO), Bloons
Tower Defense (BTD), Legend of Zelda (Zelda), Final Fantasy (FF), First Person Shooter genre (FPS),
Roleplaying Game genre (RPG), Massively Multiplayer Online (MMO), Multiplayer Online Battle Arena
genre (MOBA), Play Unknown Battlegrounds (PUBG), Civilization (Civ), Magic the Gathering (MtG)
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H.4 PXI Results

The following tables are the resulting statistical analyses for the PXI data.

H.4.1 Descriptive Statistics

Construct Condition Range Mode Median Mean Std. Dev

Easy -6, 8 5 4 3.13 3.46

Control -9, 9 -6 0 0.19 5.01Meaningful

Hard -7, 7 2 0 -0.92 3.67

Mastery

Easy -9, 9 9 6 3.54 5.78

Control -7, 6 3 2 0.50 3.72

Hard -9, 7 1 0 -1.56 4.82

Easy -3, 9 6 6 4.42 3.61

Control -6, 9 6 4 3.35 4.04Immersion

Hard -9, 9 6 3 2.56 5.11

Progress

Easy -8, 9 5 5 4.33 4.41

Control -6, 9 -5 1 1.50 5.26

Hard -9, 9 -4 3 1.48 5.52

Easy -1, 9 9 8 6.04 3.43

Control -4, 9 9 5 4.31 3.81Audiovisual

Hard -6, 9 4 4 4.32 3.78

Challenge

Easy -7, 9 6 5 3.63 4.52

Control -8, 9 0 4 2.62 3.96

Hard -8, 7 5 0 0.56 4.86

Easy 5, 9 9 8 7.88 1.23

Control 0, 9 9 8 6.69 2.53Controls

Hard -2, 9 9 8 6.48 2.99

Goals

Easy 5, 9 9 9 8.25 1.23

Control 5, 9 9 9 8.04 1.40

Hard 0, 9 9 9 7.56 2.27

Table H.13: Descriptive statistics of Construct scores. Construct scores can range from -9 to
9.
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H.4.2 Checking Group Differences

Construct Sum Squares Mean Square F(2,74) Sig.

Meaningful 213.18 106.59 6.26 0.003

Mastery 321.97 160.98 6.93 0.002

Immersion 42.47 21.23 1.15 0.324

Progress 131.93 65.96 2.67 0.076

Audiovisual 48.73 24.37 1.76 0.174

Challenge 120.25 60.12 3.03 0.054

Controls 27.60 13.80 2.43 0.095

Goals 6.17 3.08 1.07 0.349

Table H.14: Between group results for One-way ANOVAs of Construct scores. Significant
constructs are bolded. Constructs requiring more investigation are italicized.

Table H.15: Tukey HSD Results for PXI Constructs. Significant pairs are bolded.

Construct Groups Mean Diff Std. Error Sig.

AB 2.93 1.17 0.038

AC 4.05 1.18 0.003Meaningful

BC 1.11 1.16 0.603

Mastery

AB 3.04 1.36 0.073

AC 5.10 1.38 0.001

BC 2.06 1.35 0.285

AB 1.07 1.22 0.655

AC 1.86 1.23 0.293Immersion

BC 0.79 1.20 0.792

Progress

AB 2.83 1.41 0.116

AC 2.85 1.42 0.117

BC 0.02 1.39 1

AB 1.73 1.04 0.227

AC 1.72 1.05 0.238Audiovisual

BC -0.12 1.03 1

Challenge

AB 1.01 1.26 0.704

AC 3.07 1.27 0.048

Legend A = Easy, B = Control, C = Hard.

Mean Diffs are first group minus second group (e.g. AB is A-B)
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Table H.15: Tukey HSD Results for PXI Constructs. Significant pairs are bolded.

Construct Groups Mean Diff Std. Error Sig.

BC 2.06 1.25 0.233

AB 1.18 0.67 0.192

AC 1.40 0.68 0.108Controls

BC 0.21 0.67 0.946

Goals

AB 0.21 0.48 0.899

AC 0.69 0.49 0.335

BC 0.48 0.48 0.576

Legend A = Easy, B = Control, C = Hard.

Mean Diffs are first group minus second group (e.g. AB is A-B)

H.4.3 Contextualizing with Individual Items

Table H.16: PXI Descriptive Statistics per Item. Item scores can range from -3 to 3.

Group Range Mode Median Group Range Mode Median

Meaning Audiovisual Appeal

Mean1 Easy -2, 3 2 1 AV1 Easy -1, 3 3 3

Control -3, 3 0 0 Control -2, 3 3 2

Hard -3, 2 0 -1 Hard -2, 3 3 2

Mean2 Easy -2, 3 2 1 AV2 Easy -1, 3 3 3

Control -3, 3 0 0 Control -2, 3 1 1

Hard -3, 2 -2 0 Hard -2, 3 1 1

Mean3 Easy -2, 3 2 2 AV3 Easy -1, 3 3 2

Control -3, 3 0 0 Control -2, 3 3 2

Hard -3, 3 -1 0 Hard -2, 3 2 2

Mastery Challenge

Mast1 Easy -3, 3 3 2 Cha1 Easy -3, 3 2 2

Control -2, 2 1 0 Control -3, 3 2 1

Hard -3, 2 1 0 Hard -3, 3 2 1

Mast2 Easy -3, 3 3 2 Cha2 Easy -3, 3 2 2

Control -2, 3 1 1 Control -3, 3 2 1
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Table H.16: PXI Descriptive Statistics per Item. Item scores can range from -3 to 3.

Group Range Mode Median Group Range Mode Median

Hard -3, 2 1 1 Hard -2, 2 2 1

Mast3 Easy -3, 3 3 2 Cha3 Easy -3, 3 2 2

Control -3, 2 -1 -1 Control -2, 3 1 1

Hard -3, 3 -3 -2 Hard -3, 3 -2 0

Immersion Ease of Control

Imm1 Easy -2, 3 1 1 Con1 Easy 1, 3 3 3

Control -3, 3 2 1 Control 0, 3 3 3

Hard -3, 3 2 1 Hard -2, 3 3 3

Imm2 Easy -2, 3 1 1 Con2 Easy 1, 3 3 3

Control -3, 3 2 2 Control 0, 3 3 3

Hard -3, 3 2 2 Hard -2, 3 3 3

Imm3 Easy -1, 3 3 2 Con3 Easy 1, 3 3 3

Control -3, 3 2 2 Control 0, 3 3 2

Hard -3, 3 2 2 Hard -2, 3 3 2

Progress Feedback Goals and Rules

Prog1 Easy -3, 3 3 2 Goal1 Easy 2, 3 3 3

Control -3, 3 3 1 Control 1, 3 3 3

Hard -3, 3 2 1 Hard -2, 3 3 3

Prog2 Easy -2, 3 1 2 Goal2 Easy 2, 3 3 3

Control -3, 3 2 1 Control 1, 3 3 3

Hard -3, 3 2 1 Hard 1, 3 3 3

Prog3 Easy -3, 3 1 1 Goal3 Easy 1, 3 3 3

Control -3, 3 3 0 Control 2, 3 3 3

Hard -3, 3 2 1 Hard 1, 3 3 3

H.5 Coding

The following is a summary of codes from the thematic analysis data. We provide an excerpt
example for each code to illustrate how it manifests. In cases where interpretation is less
clear-cut, we provide multiple examples to build a sense of what we see.

392



P
h

D
.

T
h

esis
–

S
.

S
orain

e
M

cM
aster

U
n

iversity
–

S
oftw

are
E

n
gin

eerin
g

(H
C

I)

Table H.17: List of codes generated from data.

Code Shorthand Explanation Example(s)

Game was easy for me Easy A lack of felt/perceived difficulty “Difficulty was not an overall
factor...” (P69)

Approaching the game with
a strategy

Strategy Discussions about optimal and suboptimal
ways of approaching the game

“...ensuring position of my
hands...” (P69)

“...I should have spent
more time figuring out what
techniques worked best...”
(P58)

Understanding input Input The description of the physical actions/inter-
actions with the input device

“...rapidly click the right arrow
key...” (P69)

Understanding of mechanics Mechanic Descriptions and discussion of the basic in-
structions, rules, and mechanics of the game.

“...rapidly click the right
arrow key...” (P69)

“...the game was fairly
simple.” (P19)

Fatigue Fatigue Feelings of being tired and the impact it has
on performance

“...without succumbing to fa-
tigue” (P69)

Speed and pace as impor-
tant factors in performance

Pace Discussion of speed, pace, and consistency of
input as it relates to game performance.

“starting off fast and then get-
ting slower as the timer went
on so keeping the pace was the
hardest part” (P46)
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Table H.17 (continued)

Code Shorthand Explanation Example(s)

Feeling unsure about the ef-
fectiveness of your approach

Uncertainty Discussions about the player’s perception of
their performance in relation to game factors.

“...so I did not know how
my technique was working...”
(P51)

“...I didn’t know what type of
button pressing would work
best...” (P20)

Technological limitations as
an important factor in per-
formance

Technology Discussion about the specifics of interfaces
and controls in relation to performance
and/or response recognition.

“The buttons on this keyboard
are much less tactile than the
one I’m used to...” (P63)

“...being on the membrane
keyboard was valid but I would
love to try again with my own
mechanical keyboard.” (P70)

“...wished I had a mechanical
keyboard for some haptic
feedback on the button presses
to know when I could begin a
new press.” (P71)

Game did not tell me how
well I was doing in real-time

Feedback Discussion of response recognition from the
game-end through visual or audio means.

“...difficult to tell what
counted as one tap...” (P35)

“feedback DURING the
game would vastly improve
performance” (P69)
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Table H.17 (continued)

Code Shorthand Explanation Example(s)

This was enjoyable Positive
Experience

General statements about enjoying them-
selves, having a good time, etc.

“...I enjoyed all the games and
they were well made and I had
a lot of fun with it...” (P05)

I am better than this perfor-
mance lets on

Expectations Emotionally-charged discussions of
rank/performance that imply they be-
lieve they were helped or hindered by the
game in some way.

“...I do feel like I was in the
hard rank...” (P70)

“...results at time felt a
bit arbitrary.” (P42)

“...but I don’t usually do
well with rhythm games”
(P58)

I need to be motivated to
perform

Confidence Discussions about the player’s perception of
their own expertise and performance in rela-
tion to ways the game could improve.

“...Getting a B rank did demo-
tivate me in the game.”(P70)

Focusing on the game Attention Specifically discussing attention, or task
switching as a limiting factor or difficult part
of the game.

“...I would trip up and forget
to alternate between the keys
and cost myself presses.”
(P24)

“...ensuring I had a proper
rhythm...” (P54)

“Fire starting game needed a
lot of attention...” (P70)
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Table H.17 (continued)

Code Shorthand Explanation Example(s)

The biomechanics of the
game

Ability References to physical limitations. “...my two hands to fall out of
sync...” (P28)

“Just controlling my arm
again. You have more muscles
active two have the two fin-
gers...” (P57)

“Holding hand in a more
awkward position to reach
both buttons” (P25)

I am/am not this type of
gamer

Experience Discussions about the player’s gaming liter-
acy and history.

“...I’m not much of a button
masher...” (P01)

“...but I don’t usually do
well with rhythm games”
(P58)

Modulating effort based on
perceived performance

Modulating The ways that effort are conserved or applied
based on how they are doing

“...I don’t feel motivated to
button mash as hard as possi-
ble unless it’s in a competitive
setting, or a reward I genuinely
want.” (P58)

Emotional regulation in re-
sponse to performance

Emotional
Regulation

The emotional response to performance and
ways it is communicated

“Not getting angry at a bad
rating” (P74)

“...did not enjoy the taste
of failure...” (P58)
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Table H.17 (continued)

Code Shorthand Explanation Example(s)

I had to think about what I
was doing

Overload When the difficulty resulted in an unantici-
pated amount of effort

“...I had to think about what
I was doing. This slowed me
down...” (P30)

Conceptual model of game-
play

Conceptualization “...ensuring position of my
hands to rapidly click the right
arrow key...” (P69)

“...button mashing games
are usually pretty easy and
don’t have high thresholds for
success...” (P58)

“...the game was fairly
simple.” (P19)

Justifying their perfor-
mance through meta-game
knowledge

Justifying
performance

“Difficulty was not an overall
factor, but ensuring position
of my hands...” (P69)

“...I should have spent
more time figuring out what
techniques worked best, but
I wasn’t expecting to need
to optimize it that much be-
cause button mashing games
are usually pretty easy and
don’t have high thresholds for
success...” (P58)
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