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Lay Abstract

We use our senses every day to accomplish numerous categorization

tasks: categorizing footsteps as originating from an ‘intruder’ or a

‘family member’, a distant animal as a ‘coyote’ or a ‘dog’, a writing

utensil as a ‘pen’ or a ‘pencil’, and so on. Despite performing count-

less categorization tasks each day, we often overlook their complexity.

Our research investigates the processing behind these tasks, specifically

those tasks completed using the sense of touch. We conclude that peo-

ple combine the most reliable information from their environments to

determine the identity of an unknown object or stimulus. Moving for-

ward, we can apply this deepened understanding of tactile processing

to advance research in special populations and robotic applications.
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Abstract

We rely heavily on our sense of touch to complete a myriad of tasks each

day, yet past research focuses heavily on the visual and auditory sys-

tems, rarely concentrating on the tactile system. In the current study,

we investigate human performance on a haptic categorization task and

ask: what strategy do humans use to sense, interpret, and categorize

objects using their sense of touch? During the experiment, participants

complete 810 trials on which they receive a 3D printed object and cate-

gorize it as belonging to Category A or B. We sample the objects from

a set of 25 objects, each of which differs in number of sides and dot

spacing on one face. We define Categories A and B using overlapping

Gaussian distributions, where Category A objects generally have fewer

sides and smaller dot spacing, while Category B objects generally have

more sides and larger dot spacing. Participants begin with no knowl-

edge of the categories and learn them using feedback provided on each

trial. We compared human performance to a Feature-Focused Bayesian
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Observer that weights the sides and dots feature information based on

their reliability. It combines information from one or both features to

inform a final percept and categorize each object. Our results support

the hypothesis that humans employ a feature-focused categorization

strategy on this task, during which they learn the categories and con-

sider one or both of an object’s features based on their reliability. As

participants complete more trials, they appear to maintain or switch to

more optimal categorization strategies. Video analysis of hand move-

ments during the experiment strongly supports these findings.
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Chapter 1

Introduction

1.1 Sensory Perception

As humans, we use our senses to accomplish countless tasks each day.

Consider everyday tasks, such as searching the pantry for a specific

item, snoozing an early alarm before opening your eyes, and feeling a

hot mug of coffee to determine whether it has cooled enough to take a

sip. These tasks all employ one or more of a person’s sensory systems.

We often take our senses for granted, but without them these seemingly

effortless tasks would not be possible.

1.2 Sensory Perception as Bayesian Inference

Humans gather and compile sensory information to make interpreta-

tions about the stimulus from which it originated. Because our sensory
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abilities have limitations, we base these interpretations on uncertain in-

formation acquired from our environments. Imagine, for example, that

you go on an evening walk and encounter an animal. Your neighbour

recently lost their dog, so while you initially assumed that this was

an outdoor cat roaming the neighbourhood, you may have spotted the

neighbour’s missing dog. You must use the animal’s appearance, as

well as any sounds it produces, to determine its identity.

Bayesian inference provides a rational mathematical framework to

model this sensory process. In a situation with two or more hypotheses

about the state of the world, Bayes’ theorem quantifies the probability

of each hypothesis, given the information at hand (posterior proba-

bility, or posterior) (Equation 1.1). In this example, we consider two

hypotheses (‘dog’ and ‘cat’) and calculate a posterior for each hypoth-

esis, given the animal’s shape and sound production. Bayes’ theorem

quantifies each posterior using a (1) likelihood: the probability of per-

ceiving this sensory information, given the hypothesis and a (2) prior

probability (or prior): the probability of a hypothesis before collecting

sensory information (Equation 1.1).

posterior probability ∝ likelihood× prior (1.1)

2
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We refer to the posterior and likelihood terms as conditional prob-

abilities, which consider two events, A and B. In our case, A refers to

the animal’s identity (i.e. the hypothesis: dog or cat) and B refers to

the sensory information (sound & shape). We denote the posterior as

P (A | B) or P (dog | sound & shape), read as the probability that the

animal is a dog, given the sound & shape observed. We denote the like-

lihood as P (B | A) or P (sound & shape | dog), read as the probability

of observing the sound & shape, given the animal is a dog. We consider

the same terms for the cat hypothesis. People commonly confuse these

terms, falsely claiming that P (A | B) = P (B | A). Consider the claim

that P (dog | fur) = P (fur | dog). Most (if not all) dogs have fur,

making the probability that the animal has fur, given that it is a dog

(P (fur | dog)), very large. However, many other animals (cats, wolves,

lions, coyotes, etc.) also have fur, making P (dog | fur) much smaller.

P (dog | sound & shape) ∝ P (sound & shape | dog)× P (dog) (1.2)

P (cat | sound & shape) ∝ P (sound & shape | cat)× P (cat) (1.3)

Before collecting any sound & shape information, you know that

several people in the neighbourhood have outdoor cats. However, the

3
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area only has 1 lost dog. In our Bayesian model, we represent this

information as priors, where the prior for cat is greater than that for

dog (P (cat) > P (dog)).

As you approach this animal, you notice its small shape and arched

back, which you commonly associate with cats. That is, the probability

of observing a small shape and arched back when looking at a cat

is greater than when looking at a dog (P (sound & shape | cat) >

P (sound & shape | dog)). These likelihoods, paired with the greater

prior for cat, produce a larger posterior probability for cat than dog

(P (cat | sound & shape) > P (dog | sound & shape)) (equations 1.3

and 1.2). According to the Bayesian model that we have presented in

this example, you should now identify the animal as a cat.

As you continue to approach the animal, you hear it bark. In a

manner similar to a person’s judgement, our Bayesian model incorpo-

rates this new information into its likelihood value. Because a dog

is much more likely to bark than a cat, our probability of acquiring

this sound & shape from a dog becomes much greater than from a cat

(P (dog | sound & shape) > P (cat | sound & shape)), which in turn

produces a greater posterior for dog than cat.

Sensory perception requires us to make interpretations using uncer-

tain information. Consequently, such interpretations are sometimes

4
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inaccurate. In this vein, an effective mathematical model should sim-

ulate human behaviour, including both correct interpretations and in-

correct interpretations of an environment. Bayesian models provide

a promising mathematical-probabilistic framework for the integration

and interpretation of multiple sources of uncertain sensory informa-

tion (Rohe and Noppeney, 2015). We define an optimal strategy as

one that recognizes its own uncertainty and takes steps to avoid or

account for this uncertainty, therefore maximizing performance on a

task. Conversely, we can define sub-optimal strategies as those that

fail to account for uncertainty in an ideal manner, of which there are

many. We can construct optimal Bayesian, sub-optimal Bayesian, and

non-Bayesian models to compare to human performance on a task.

1.3 Tactile Perception

People often dismiss the sense of touch as being less accurate than other

senses, in particular vision, and therefore deem touch to be less impor-

tant. Researchers drew this flawed conclusion from studies that tested

the haptic system on tasks geared toward the visual system (Lederman

and Klatzky, 1987; Klatzky et al., 1985). For example, many studies

evaluate participants’ ability to feel and identify raised-line representa-

5
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tions of common objects. A raised-line drawing depicts the outline of

an object on a flat surface, with the lines recognizable by touch. Peo-

ple perform quite poorly on several variations of this task (Lebaz et al.,

2012; Lederman et al., 1990). Humans can easily identify raised line

drawings using vision, as the visual system can easily interpret shape

with minimal uncertainty. However, touch relies heavily on additional

cues, such as weight and texture, that two-dimensional object repre-

sentations lack. This means that simple raised line stimuli eliminate

highly informative cues. Further investigation suggests that during

these tasks, participants convert the tactile cues to a visuospatial im-

age, which the visual system then interprets. In other words, such tasks

measure an individual’s visuospatial imaging abilities, rather than their

haptic abilities (Lebaz et al., 2012; Lederman et al., 1990).

Crucially, Klatzky et al. (1985) showed that humans can identify

common three-dimensional objects with almost 100% accuracy in a

matter of seconds using the sense of touch (Klatzky et al., 1985). Hu-

mans employ numerous strategies, each referred to as an exploratory

procedure (EP), to extract information about a three-dimensional ob-

ject’s features (weight, texture, shape, etc.). Lederman and Klatzky

(1987) defined eight EPs, each specialized for detecting and interpret-

ing a specific object property (Table 1.1).

6
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Table 1.1: Exploratory Procedures Brief description and purpose of the 8 EPs defined by Lederman
and Klatzky (1987).

Exploratory
Procedure

(EP)

Description of Hand Movement Primary
Property Under
Investigation

Lateral Motion Hand swipes across an object’s surface Texture
Pressure Hand applies force to an object’s surface Hardness

Static Contact Hand maintains contact with an object with no
lateral motion

Temperature

Unsupported
Holding

Hand lifts and independently supports object Weight

Enclosure Hand encloses object to make as much contact as
possible

Volume, Global
Shape

Contour
Following

Hand traces around the perimeter of an object Volume, Exact
Shape

Part Motion Test Hand applies force to part of an object to
produce movement

Part Motion

Function Test Hand applies force to part of an object to
produce movement associated with a specific

object function

Specific Function

Studies using two-dimensional raised-line representations restrict par-

ticipants to EPs that can interpret shape. When feeling a three-dimensional

object, participants are provided with more properties to investigate

(eg. texture, hardness, temperature, weight, and function) and can em-

ploy any of the EPs defined by Lederman and Klatzky (1987). Some

studies suggest that participants preferentially use EPs best suited to

extract the desired information (Lederman and Klatzky, 1987, 1993;

Withagen et al., 2013). For example, a participant tasked with dif-

ferentiating objects of various textures primarily uses lateral motion

to explore the object (because it captures the most information), even

though static contact pressure could also provide information about

object texture (Lederman and Klatzky, 1990; Schwarzer et al., 1999).
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1.4 Sensory Integration

Real-world stimuli typically consist of two or more physical properties

that humans can interpret. Different stimuli have different properties

available for interpretation. For example, we can consider face-to-face

speech perception as an audiovisual cue integration task. It requires a

person to consider an auditory cue (speaker’s voice) and a visual cue

(speaker’s lip movement) to interpret the stimulus (speech content).

Researchers commonly use sensory illusions to investigate cue inte-

gration (Alais and Burr, 2004; Bejjanki et al., 2011). If our sensory

systems make certain assumptions to process an environment, sensory

illusions demonstrate cases in which our sensory systems generate in-

correct perceptions of the environment. This provides us with oppor-

tunity to investigate the assumptions and processing patterns of our

sensory systems that would generate these illusions. The McGurk ef-

fect describes a classic audiovisual illusion in which participants inter-

pret an auditory cue differently, depending on the associated visual cue

(Mcgurk and Macdonald, 1976). When participants hear the auditory

cue, ‘da’, while watching a speaker’s lips mouth the same sound, then

they interpret the sound as ‘da’. However, when participants hear the

same auditory cue while watching a speaker’s lips mouth the sound

8
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‘ba’, then they disproportionately interpret the sound as ‘ba’. When

the auditory and visual cues become increasingly ambiguous, some par-

ticipants perceive cues between ‘ba’ and ‘da’, such as ‘va’ or ‘ga’. This

speech perception task requires participants to integrate an auditory

and a visual cue for the sounds ‘ba’ and ‘da’, a process studied by Mas-

saro and Cohen (1983). Using a number of auditory stimuli, ranging

from ‘ba’ to ‘da’ with several intermediate sounds, and either a ‘ba’ or

‘da’ visual indicator, they showed participants pairs of audiovisual stim-

uli. Their results suggest that participants consider both cues to form

a speech percept – when the visual stimulus appears as ‘ba’, then the

person is likely to perceive the sound as ‘ba’ unless the sound very dis-

tinctly resembles ‘da’. Bejjanki et al. (2011) propose a Bayesian model,

which simulated human performance differentiating these sounds and

suggests that humans combine these cues in a Bayesian optimal man-

ner.

Alais and Burr (2004) investigate multisensory integration in an al-

ternative audiovisual task where participants combine sensory cues to

determine their origin in space. This task simulates the ventriloquism

effect, traditionally described as the illusion produced when a puppeteer

produces speech while their puppet’s mouth moves. In this experiment,

participants located a sound source using an auditory and a visual cue

9
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that varied in their origin. They effectively modelled this task using an

optimal Bayesian observer with the following properties:

• Weight sensory cues according to their reliability. The model weights

an ambiguous cue lighter than a cue that reliably represents the

hypothesized stimulus. Humans tend to weight visual cues more

heavily, so according to their model, people consider the puppet’s

mouth movement more heavily than the sound source. If, however,

the lip movement of the puppet becomes blurred, people begin to

interpret the puppeteer as the speaker because the auditory cue

becomes more reliable than the visual cue.

• Perform better when integrating both sensory cues than when re-

lying on a single cue.

• Sensed stimuli can differ from the actual stimulus, as the nervous

system has sensory noise that leads to imperfect measurements. For

example, the actual stimulus may originate in one location, while

you may sense that stimulus as originating from a position slightly

displaced from the actual origin.

Additional research investigates optimal Bayesian models of sensory

integration in additional audiovisual tasks and alternative multisensory

combinations, such as visuotactile, sensorimotor, and audiotactile tasks
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(Arnold et al., 2019; Ernst and Banks, 2002; Gepshtein and Banks,

2003; Knill and Saunders, 2003; Körding and Wolpert, 2004; Petrini

et al., 2014). Their findings suggest that across a variety of sensory

integration tasks, Bayesian models effectively simulate human perfor-

mance.

1.5 Perceptual Categorization

Sensory integration involves several levels of interpretation. After per-

ceiving a stimulus, we often strive to further categorize that stimulus.

Consider again the animal from Section 1.1. We can combine auditory

and visual cues produced by the animal, but maintain an overarching

goal to categorize it as a dog or cat. Each category (dog and cat)

includes several possible sizes and breeds of animal, making this a sur-

prisingly complex task.

In order to accomplish these types of categorization tasks, we must

learn and store categorical representations in the nervous system. In

other words, we need to learn and remember categories. Past studies

used functional neuroimaging to investigate the neural structures and

pathways involved in both unimodal and multisensory category learn-

ing (Li et al., 2020; Lim et al., 2019). While these studies reveal the
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brain’s activation patterns during categorization tasks, we still don’t

fully understand the processing accomplished by brain regions during

these tasks. Rosch and Mervis (1975) proposed prototype theory, an

early theory of categorization, which argues that the resemblance of an

object to a single prototype determines category membership. More re-

cently, researchers have developed a number of different mathematical

models to study categorization. These models propose frameworks for

category learning that incorporate the calculation of decision bound-

aries based on the features of previously presented stimuli (Anderson,

1991; Ashby and Gott, 1988).

Previously, I outlined the audiovisual cue integration involved in the

McGurk effect, where a visual cue impacts sound perception. This ef-

fect also includes a categorization aspect. In addition to integrating two

uncertain sensory measurements, a participant must map the stimulus

onto established categories with their own variance. People learn the

two categories, ‘ba’ and ‘da’, through experience. Bejjanki et al. (2011)

model this categorization process using an optimal Bayesian observer

that weights the sensory cues based on both sensory and category varia-

tion. Cues with less variability are more reliable, and therefore weighted

more heavily in the observer’s categorization decision. The researchers

could, for example, present participants with visual stimuli from people
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who had the same accent as the participant, but auditory stimuli from

a person with a different accent. Presumably, the person spends more

time around people with the same accent and therefore can more reli-

ably interpret cues from individuals with the same accent. In this case,

the auditory cure would become less reliable, and they would weight the

visual cue more heavily in their categorization decision. Qualitatively,

this model provides a promising framework for sensory categorization.

Because the ‘ba’ and ‘da’ categories occur naturally, we cannot easily

quantify the variance within each category, making it difficult to quan-

titatively compare this model to humans. Bankieris et al. (2017) pro-

pose a similar Bayesian model for an audiovisual categorization task

with two novel categories. Their Bayesian categorical model, which

considers sensory and categorical variance when weighting cues, best

simulates human performance on the task.

1.6 Prior Probability of Categories

In the real world, each individual’s experience with categories varies.

If we again consider the McGurk effect, prior experiences involving

the sounds ‘ba’ and ‘da’ can further influence a participant’s perceived

sound. For example, a person named David may hear ‘da’ more than a

13
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person with a different name because, after years frequently hearing and

responding to a name starting with the same sound, his prior experience

suggests that ‘da’ occurs more commonly than ‘ba’. People acquire this

information before even hearing the sound stimulus.

Bayesian models incorporate this life experience variable as a prior.

Because every individual has unique life experience, prior probabilities

prove difficult to quantify. Many researchers design studies with uni-

form priors for all hypotheses to avoid the need to quantify this prior.

Some existing studies implement optimal Bayesian models of audiovi-

sual, sensorimotor, and spatiotemporal tasks with variable priors. Their

models consider the prior for each possible response based on com-

pleted trials (Beierholm et al., 2009; Berniker et al., 2010; Petzschner

et al., 2012; Tassinari et al., 2006; Guo et al., 2004; Gredin et al., 2021;

Miyazaki et al., 2005). When sensory information becomes less reliable,

priors begin to influence our perception more heavily (Hansen et al.,

2012). For example, a participant may rely upon their prior for an

event more heavily if the current visual stimulus becomes increasingly

blurry. Results from these studies suggest that Bayesian priors simu-

late both the incorporation of existing knowledge in decision making,

as well as the process of learning these priors during early testing trials

(Beierholm et al., 2009; Berniker et al., 2010; Petzschner et al., 2012;
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Tassinari et al., 2006; Guo et al., 2004; Gredin et al., 2021; Miyazaki

et al., 2005). When the prior distribution was Gaussian over all hy-

potheses, Berniker et al. (2010) found that participants can learn the

mean of a prior distribution quickly, but take more trials to learn the

variance of the prior distribution. Nagai et al. (2012) extended this

research to model a tactile temporal order judgement task with two

different sources of prior knowledge that can inform participants’ de-

cisions. Their results suggests that an optimal Bayesian model, which

considers two different visual sources of prior information, effectively

models human behaviour.

In categorization studies, researchers commonly design novel cate-

gories with nonsense names to study a categorization task in which

all participants have no prior experience with the categories (Bankieris

et al., 2017). This allows them to control the participant’s expectation

regarding the probability of receiving a stimulus from each category.

Gifford et al. (2014) extended these findings to categorization tasks.

They designed an auditory task in which participants group auditory

stimuli into one of two overlapping uniform categories. The probability

of hearing a stimulus from each category (i.e. the category priors) varied

throughout the experiment. Contrary to expectations, their Bayesian

probability matching model (initially considered sub-optimal) best sim-
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ulated human performance, outperforming a Bayesian MAP estimate

model. While this Bayesian MAP estimate model categorized stimuli

according to the category with the greater posterior probability, the

Bayesian probability matching model sampled from the posterior dis-

tributions to determine a stimulus’ category. They hypothesize that

either the combination of category and prior uncertainty, or potentially

incorrect stationary prior assumptions made by their model, cause the

Bayesian MAP estimate model to poorly simulate human performance.

1.7 Current Study

Recent research from Gauder (2024) investigated performance on a hap-

tic categorization task where human participants used their sense of

touch to interpret tactile cues from 3D printed objects and sorted them

into one of two novel categories, A and B. They defined these categories

as overlapping 2D Gaussian distributions, where objects further from

the mean belonged to that category less commonly. This research sug-

gested that a Bayesian Observer that experiences sensory measurement

noise effectively modelled human performance on their entirely haptic

categorization task.

In the present study, we made modifications to this same haptic

16



M.Sc. Thesis - G. Arthur; McMaster University - Psychology, Neuroscience, and Behaviour

categorization task. We tested human participants on two different

variations of this task, where we manipulated either variation within

each category or the prior probability of the categories. Using several

variations of a novel Bayesian Observer that learned the task categories

trial to trial, each of which uniquely integrated tactile cues, we studied

the process by which participants sense, integrate, and categorize these

objects.

17



Chapter 2

Computational Models

2.1 Introduction

The research cited in Chapter 1 demonstrates that Bayesian models can

effectively simulate human performance on several sensory categoriza-

tion tasks (Bejjanki et al., 2011; Gifford et al., 2014). Despite this large

body of work that supports sensory perception as Bayesian inference,

researchers have yet to propose a Bayesian model of a solely tactile

categorization task to simulate category learning and cue combination

required for task performance.

In this chapter, we propose a Feature-Focused Bayesian Observer

that models performance on our solely tactile categorization task. We

made several variations of this computational observer to reflect po-

tential categorization strategies used to complete the task. We further
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describe a Bayesian model comparison process, which aimed to deter-

mine whether our Feature-Focused Bayesian Observer effectively sim-

ulated participant performance on our task. We classified large groups

of simulated participants, each of which used a known categorization

strategy, to validate the accuracy of our model comparison.

We begin here with a brief outline of the procedure followed in our

human experiments. Then, we describe our computational models and

experiment simulations. We report the results of the actual human

experiments in Chapters 3 and 4.

2.2 Methods

2.2.1 Haptic Categorization Task

Object Set

In this haptic categorization task, we used 3D printed polygons (‘ob-

jects’) designed and printed by Gauder (2024) that differed in number

of sides and dot spacing on one textured face (Figure 2.1). Number of

sides ranged from 6 to 10, while dot spacing ranged from 4mm to 8mm

in increments of 1mm. Our object set included 25 objects, one with

each combination of feature measurements.
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(a) Sample Object (b) Full Object Set

Figure 2.1: Object Set (a) Sample object with 8 sides and 6 mm dot spacing. (b) Full set of 25 objects.
Each object had a unique combination of sides and dots measurements.

Categories

During this experiment, participants categorized several objects as be-

longing to either Category A or Category B, where the task’s premise

and procedure closely resemble that described by Gauder (2024). We

defined each category using a unique 2D Gaussian distribution, centred

at a mean number of sides and dot spacing, with no correlation between

the 2 features. Category A was centred at 5mm dot spacing and 7 sides,

while category B was centred at 7mm dot spacing and 9 sides (Figure

2.2). Objects with feature measurements closer to the mean were more

likely to belong to that category. However, variation within each cat-

egory caused the categories to overlap, meaning that any object could

belong to either category. An object with 7 sides, for example, had a
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high probability of belonging to Category A and a lower probability of

belonging to Category B. We could increase the standard deviation of

these category distributions to make them broader with more overlap

or decrease the standard deviation to make them narrower and decrease

overlap.

(a) Category Definitions (b) Category Means

Figure 2.2: Category A and B Definitions (a) 2D Gaussian distributions that defined categories A
and B. (b) Category A (blue) was centred at 5mm dot spacing and 7 sides, while category B (orange) was
centred at 7mm dot spacing and 9 sides. These distributions illustrate category distributions with a sample
standard deviation of 0.75 in both dimensions. In our task, standard deviation could differ to make
categories broader or narrower.

Experimental Procedure

We ran this experiment using LabVIEW v18.0. During the task, each

participant completed 810 trials of our haptic categorization task. On

each trial, the participant reached their hands through a hole in the

bottom of a large, opaque screen. This screen blocked their field of
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vision and ensured that they used only their sense of touch to complete

the task. A 50/50 draw, similar to a coin flip, determined whether the

experimenter presented the participant with an object from Category

A or B. After selecting a category, the computer randomly sampled

feature values (i.e. number of sides and dot spacing) from the 2D

Gaussian distribution defining that category. Values close to the mean

were more likely to be sampled, while values far from the mean were

less likely to be sampled. We presented the corresponding object to

the participant to feel for up to 5 seconds, after which a beep sounded

to indicate to the participant that their time for haptic exploration

had elapsed. The participant categorized the object as A or B and

received auditory feedback in the form of a ding or a buzz to indicate

a correct or incorrect response, respectively. Because all participants

began the task with no knowledge of the categories, they needed to

guess the category on the first trial. As they completed trials and

received feedback, participants could learn the categories and perform

better on the task.

2.2.2 Overview of Feature-Focused Bayesian Computational Observer

In this section, we outline the computational basis for a Feature-Focused

Bayesian Observer that aimed to simulate human performance on our

22



M.Sc. Thesis - G. Arthur; McMaster University - Psychology, Neuroscience, and Behaviour

task. This Observer considered both the proportion of A’s and B’s pre-

sented on past trials and sensory information about the current object’s

features (sides and dots) to determine its category identity. In Section

2.2.3, we outline the mathematical foundation for this Observer.

To consider several possible categorization strategies that a partic-

ipant could employ on this task, we generated three versions of this

Observer: a Sides & Dots (SD) Observer, a Sides Only (SO) Observer,

and a Dots Only (DO) Observer. Our SD Observer considered infor-

mation about both haptic features in its categorization decision, while

our SO and DO Observers considered only one of the two haptic fea-

tures in categorization decisions. Because this observer interpreted sen-

sory measurements of the object’s actual sides and dots feature values,

we needed to quantify the sensory noise involved in interpreting the

features. A previous Graduate Student conducted a study with 16

participants to quantify the sensory noise associated with each feature

(Table 2.1) (Gauder, 2024). On average, participants experienced more

sensory noise when feeling the sides feature than the dots feature. Fur-

ther, participants experienced more sensory noise when attending to

both the sides and dots features than when attending to either sides or

dots. We referred to the sensory noise associated with attending to a

single feature as light sensory noise, while we labelled the sensory noise
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associated with attending to multiple features simultaneously as heavy

sensory noise. This association between sensory noise and number of

features under investigation may result from an increased cognitive load

associated with attending to multiple features, which manifests as in-

creased sensory noise in participants.

We modelled an SD, an SO, and a DO Observer with heavy sensory

noise. To consider the possibility that a participant could focus their

attention on a single feature to minimize sensory noise when employing

an SO or a DO categorization strategy, we also modelled an SO and a

DO Observer with light sensory noise.

Table 2.1: Sensory Noise Measurements Average magnitude of sensory noise experienced when
feeling the sides and/or dots features of objects, determined by a previous study of 16 subjects using the
same object set (Gauder, 2024). We considered sensory noise when a participant attends to both features
and when they attend to a single feature.

Number of Features Under Investigation

Feature Multiple Single
(Attending to Sides and Dots) (Attending to Sides or Dots)

Number of Sides 1.65 1.26
Dot Spacing (mm) 1.18 0.78

2.2.3 Feature-Focused Bayesian Observer

Our Feature-Focused Bayesian Observer aimed to simulate human per-

formance on a haptic categorization task. Like humans, sensory noise

altered the observer’s perception, causing it to sense ‘noisy’ feature

measurements (f) of the object’s number of sides (s) and dot spac-
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ing (d). To generate these ‘noisy’ feature measurements, we randomly

sampled a value from a Gaussian distribution centred at the object’s

actual feature value, F (actual number of sides, S, and actual dot spac-

ing, D), with standard deviation equal to the amount of sensory noise

associated with the sides (σsensS) and dots features (σsensD) (see Table

2.1 for values). On each trial, our Feature-Focused Bayesian Observer

received ‘noisy’ sides and dots measurements as input.

Because Categories A and B overlapped, both category and sensory

noise limit the ability of an observer to discriminate between A’s and

B’s. If we assumed that the category distributions were continuous,

extended infinitely, and had equal sigma values in both dimensions

(i.e. our 0.75/0.75 and 1.25/1.25 conditions), then we could quantify

this discriminability as d′ (Equation 2.1). d′ depended on the amount

of category (σ2
catS and σ2

catD) and sensory (σ2
sensS and σ2

sensD) variance,

as well as the the distance between the means of Categories A (µS,A

and µD,A) and B (µS,B and µD,B).

d′ =

√
(µS,A − µS,B)2

σ2
sensS + σ2

catS

+
(µD,A − µD,B)2

σ2
sensD + σ2

catD

(2.1)

Larger d′ values occurred with less variance and/or more distance

between category means, resulting in the increased ability of an ob-
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server to discriminate between A’s and B’s. Conversely, low d′ values

indicated a decreased ability of an observer to discriminate between A’s

and B’s. Note that we use d′ to conceptualize discriminability in our

experimental conditions, but the modelling outlined in this chapter did

not incorporate d′ in its calculations.

Once our Observer ‘felt’ the object, it had two goals: (1) learn the

categories and (2) categorize the object. The Observer completed these

two steps on each trial of the experiment.

Learning the Categories Using Bayesian Parameter Estimation

Hypotheses The Feature-Focused Bayesian Observer began this exper-

iment with no knowledge of the two categories. It assumed that the

categories were Gaussian and generated n = 1225 hypotheses for each

category (Hn,A, Hn,B). Each hypothesis defined four parameters de-

scribing a unique 2D Gaussian distribution: mean number of sides (µS

ranging from 6 to 10 in increments of 1 side), mean dot spacing (µD

ranging from 4 to 8 in increments of 1mm), standard deviation in the

sides dimension (σcatS from 0.5 to 2 in increments of 0.25), and stan-

dard deviation in the dots dimension (σcatD from 0.5 to 2 in increments

of 0.25) (Figure 2.3).
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Figure 2.3: Category Hypotheses Five examples of hypothesized 2D Gaussian distributions that could
describe Category A and Category B. Each distribution was centred at a different mean sides and mean
dots measurement: (A) µS = 6, µD = 4 mm, σcatS,D = 0.75 (B) µS = 7, µD = 5 mm, σcatS,D = 0.75 (C)
µS = 8, µD = 6 mm, σcatS,D = 0.75 (D) µS = 9, µD = 7 mm, σcatS,D = 2.0 (E) µS = 10, µD = 8 mm,
σcatS,D = 2.0. This Feature-Focused Bayesian Observer considered 1225 hypothesized categories, each a set
of 4 values: µS ,µD,σcatS ,σcatD.

The Feature-Focused Bayesian Observer quantified a likelihood and,

in turn, a posterior for each hypothesis, as outlined in Figure 2.4.
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(a) Overview of Category A Learning

(b) Overview of Category B Learning

Figure 2.4: Overview of Category Learning To learn the Category A and B distributions, this
Feature-Focused Bayesian Observer used Bayesian parameter estimation to determine the mean and
standard deviation of each category distribution. (a) and (b) outline this learning for Categories A and B,
respectively. The Observer first generated hypotheses for each distribution as sets of 4 variables,
{µS ,µD,σcatS ,σcatD}, each defining a potential distribution for one of the categories (P (Hn | fi, f<i, A) and
P (Hn | fi, f<i, B)). For each hypothesis, the Observer quantified a likelihood as the probability of sampling
the object presented from the current trial from the hypothesized distribution and the probability of
‘feeling’ the measured feature value from that object (P (fi | Hn, A) and P (fi | Hn, B)). Using each prior
(posterior probability for that hypothesis from the previous trial) and likelihood, the observer determined
the posterior probability that the hypothesis correctly describes the actual category distribution
(P (Hn | fi, f<i, A) and P (Hn | fi, f<i, B)).

Likelihoods The Observer calculated the likelihood of each hypothesis,

that is, the probability that the feature measurements came from an

object sampled from the hypothesized category and presented on the

current trial, i (Equation 2.2). Because our Feature-Focused Bayesian
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Observer was aware of its own sensory noise, the likelihood of a hy-

pothesis depended on both the probability of ‘feeling’ the measured

object features from a particular object (P (fi | Fg)) and the probabil-

ity of sampling that object from the hypothesized category distribution

(P (Fg | Hn, A)). The observer was more likely to ‘feel’ feature measure-

ments close to the actual object’s feature values, but could theoretically

sense a given feature measurement from any of the 25 objects. Like hu-

mans completing this task, the observer sensed only noisy feature mea-

surements and therefore remained unaware of the actual feature values

of the actual object presented. Equation 2.2 quantifies a likelihood

for each hypothesized distribution, that is, the probability of ’feeling’

the measured features, given that they resulted from the hypothesized

distribution.

P (fi | Hn) =
25∑
g=1

[P (fi | Fg)× P (Fg | Hn)] (2.2)

Note that here we show the calculations for Category A. We per-

formed equivalent calculations for Category B.

Our SD Observer considered both object features and quantified

P (fi | Fg) as the product of two independent Gaussian distributions

(Equation 2.3). Similarly, this SD Observer quantified P (Fg | Hn, A)
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as the product of two independent Gaussian distributions, one for each

feature (Equation 2.4). The mean and standard deviation values con-

sidered in each Gaussian of Equation 2.4 equaled those defined by the

current hypothesis. Our SO and DO Observers considered only one

object feature and therefore quantified P (fi | Fg) and P (Fg | Hn, A)

using a single Gaussian distribution, corresponding to the single feature

considered.

P (fi | Fg) =
1

σsensS
√
2π

e
−(si−Sg)

2

2σ2
sensS × 1

σsensD
√
2π

e
−(di−Dg)

2

2σ2
sensD (2.3)

P (Fg | Hn, A) =
1

σcatS,A
√
2π

e

−(Sg−µS,A)2

2σ2
catS,A × 1

σcatD,A

√
2π

e

−(Dg−µD,A)2

2σ2
catD,A (2.4)

Our Feature-Focused Bayesian Observer was more likely to sense

feature values close to the mean of a hypothesized category distribution.

The probability of sensing a feature measurement from an object with

very dissimilar feature value was greater in a model with more sensory

noise than one with less sensory noise.

Posterior Probabilities We calculated the posterior probability for each

hypothesized distribution for a given category using Equation 2.5, which

defines Bayes’ theorem for an n hypothesis problem considering data

30



M.Sc. Thesis - G. Arthur; McMaster University - Psychology, Neuroscience, and Behaviour

from both the current trial (fi) and data from all previous trials. Data

from previous trials included both sensory measurements (f<i) and the

number of As and Bs presented (N<i).

P (Hn | fi, f<i, A) =
P (fi | Hn, A)× P (Hn | f<i, A)∑
Hn

[P (fi | Hn, A)× P (Hn | f<i, A)]
(2.5)

On trial 1, all hypotheses had an equal probability of correctly de-

scribing the category (i.e. uniform priors, P (H1,A) = P (H2,A) = ... =

P (H1225,A)). This simulated a participant’s lack of knowledge regarding

the category definitions. Accordingly, the posterior probability of each

hypothesis equaled its likelihood divided by the sum of the likelihoods

for all hypothesized categories (Equation 2.5).

Updating Probabilities of the Category Distributions Following trial 1, the Feature-

Focused Bayesian Observer possessed information that informed its un-

derstanding of the Category A and B distributions. For example, we

may sample an object from category A with 6 sides and 4mm dot spac-

ing to present on a given trial. Its features are closer to the mean of

Category A than Category B, providing the Observer with evidence

that the mean of Category A is close to 6 sides and 4mm dot spacing.

As the observer completed trials, hypotheses were continuously re-

31



M.Sc. Thesis - G. Arthur; McMaster University - Psychology, Neuroscience, and Behaviour

weighted to reflect the observer’s knowledge of Categories A and B.

We quantified this acquired knowledge as prior probabilities for each

hypothesis. At the end of each trial, the model learned through feed-

back whether the object belonged to Category A or B. If the object

belonged to Category A, the Feature-Focused Bayesian Observer used

the posteriors for each hypothesized distribution (P (Hn | fi, f<i, A))

as priors on the following trial. If the object belonged to Category

B, the Observer used the posteriors for each hypothesized distribution

(P (Hn | fi, f<i, B)) as priors on the following trial.

Categorizing the Object

In each trial, the observer also needed to categorize an object as “A”

or “B”. Even though the Feature-Focused Bayesian Observer remained

uncertain as to the actual distributions defining each category, it had al-

ready calculated the prior probability and likelihood for all the hypoth-

esized distributions that could define each of the 2 categories (outlined

above). Considering this information, the observer used the measured

feature values for the sides and dots features to determine the category

to which the object was more likely to belong (Figure 2.5).
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Figure 2.5: Overview of Object Categorization Outline of the Bayesian calculations used to simulate
our Feature-Focused Bayesian Observer’s object categorization process on a single trial of a haptic
categorization task. The Observer considered all hypothesized categories and the likelihood of those
categories correctly describing Categories A and B to identify the category from which the measured
feature was more likely to be ‘felt’.

We quantified the likelihood that the measured object features were

sampled from Category A, considering all 1225 potential Category A

distributions, using Equation 2.6. We quantified the corresponding

likelihood for Category B using Equation 2.7.

P (fi | A, f<i) =
∑
Hn

[P (fi | Hn, A)× P (Hn | ffi, f<i, A)] (2.6)

P (fi | B, f<i) =
∑
Hn

[P (fi | Hn, B)× P (Hn | ffi, f<i, B)] (2.7)

Next, we used Bayes’ formula (Equation 2.8) to calculate the poste-

rior probability that the object belonged to Category A.
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P (A | fi, f<i, θ) =
P (fi | A, f<i)× θ

P (fi | A, f<i)× θ + P (fi | B, f<i)× (1− θ)
(2.8)

In Equation 2.8, θ denotes the observer’s prior probability for (or the

prevalence of) Category A. In some cases, we informed the observer that

we planned to present equal proportions of objects from both categories.

In this case, the prevalence of objects from each category was equal

(θ = 0.5).

If the model remained naive to the proportion of A’s and B’s that we

planned to present, we used Equation 2.10 to estimate the prevalence

of objects from Category A (θ) based on the number of A’s and B’s

presented on previous trials (N<i) for 10 hypothesized θ values using

Bayesian parameter estimation, a calculation further outlined in Sec-

tion 2.2.4. Then, we calculated the posterior probability that the object

belonged to Category A using each of the hypothesized θ values (Equa-

tion 2.8). Following that, we used Equation 2.9 to marginalize over θ

and determine the probability that the object belonged to Category A,

considering all of the potential θ values.

P (A | fi, f<i, N<i) =
∑
θ

P (A | fi, f<i, θ)× P (θ | N<i) (2.9)

34



M.Sc. Thesis - G. Arthur; McMaster University - Psychology, Neuroscience, and Behaviour

If the posterior probability of Category A > 0.5, then our Feature-

Focused Bayesian Observer categorized the object as “A”. If the poste-

rior probability of Category A< 0.5, then our Feature-Focused Bayesian

Observer categorized the object as “B”. If the posteriors for both cate-

gories were equal, then the Observer randomly categorized the object.

2.2.4 Non-Sensory Computational Observers

Despite the valuable information available from a stimulus’ properties,

individuals could dismiss this information and rely solely on the preva-

lence of stimuli from each group to make categorization decisions. We

modelled 3 non-sensory reference observers to simulate such strategies.

We later used these observers to verify that participants reasonably

attempted our haptic categorization task.

Null Observer

We modelled a Null Observer that employed the least optimal approach

of those considered. It received no sensory input about an object and

randomly categorized it as “A” or “B” with equal chance.

Prevalence MAP Estimate Observer

We further modelled a Prevalence MAP Estimate Observer, which con-

sidered the proportion of A’s and B’s presented on past trials to de-
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termine whether the current object belonged to Category A or B. This

observer considered 10 values as possible proportions of all objects be-

longing to Category A (or prevalence, θ, values), ranging from 0.05 to

0.95 in increments of 0.1. It used the number of A’s and B’s presented

over past trials (N<i) to quantify the probability that each θ value gave

rise to the proportion of each category presented. We express these

likelihoods using Equation 2.10.

P (N<i | θ) ∝ (θNA,<i)× (1− θNB,<i) (2.10)

We considered all θ hypotheses equally with uniform priors. As a re-

sult, the posterior probability for each θ hypothesis, P (θ | N<i), equaled

its likelihood divided by the sum of the likelihoods for all hypothesis.

Using these posteriors, we calculated the probability that the current

trial’s object belonged to category A, P (A | N<i), based exclusively on

the prevalence of the categories from all previous trials (Equation 2.11).

P (A | N<i) =
∑
θ

[θ × P (θ | N<i)] (2.11)

Because the object must belong to either Category A or B, P (B |

N<i) = 1−P (A | N<i). This Prevalence MAP Estimate categorized the

object according to the larger probability, P (A | N<i) or P (B | N<i).
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If P (A | N<i) = P (B | N<i), then the observer randomly categorized

the object as “A” or “B” with equal chance.

Prevalence Probability Matching Observer

This final non-sensory observer performed the same calculations to ap-

proximate the prevalence of Category A (Equation 2.10) and probabil-

ity that the current trial’s object belonged to Category A (Equation

2.11) as the Prevalence MAP Estimate Observer. It then flipped a coin

with two sides, “A” and “B”, to categorize the object, where the prob-

ability of landing on “A” equalled P (A | N<i), determined by Equation

2.11.

2.2.5 Comparing our Computational Observers to a Participant using

Bayesian Model Comparison

We further compared participants to these computational observers us-

ing Bayesian model comparison. This process quantified the degree to

which each observer can simulate participant performance, relative to

our other computational observers.

In this chapter, we compared our computational observers to simu-

lated participants. To simulate a participant, we assigned them sensory

noise values (σsensS and σsensD) and ran them through 810 trials of the

experiment. On each trial, the simulated participant received an ob-
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ject from one of the categories and drew a sensory measurement of

the features based on their sensory noise sigma. Using these feature

measurements, the simulated participant learned the categories and

categorized objects according to the calculations previously outlined

for our computational observers. While we ran each simulated partici-

pant once through the experiment, we ran 10 individual repetitions to

implement each computational observer in order to account for varia-

tion in model performance resulting from sensory noise. We compared

each participant to a unique set of computational models, generated

using the same sequence of objects, to prevent performance differences

resulting from object sequence.

Figure 2.6: Overview of Model Comparison To identify the computational observer that best
simulated a participant’s performance, we used Bayesian model comparison to quantify the probability
that a given Observer produced the same response sequence as the participant (i.e. its posterior
probability). The Observer most likely to produce the same response sequence best simulated the
participant. This calculation considered a prior and likelihood for each computational observer, or model,
to quantify its posterior probability. The model priors depended on the computational observers
considered, and are specified in parentheses next to the corresponding observer. For example, if only 3
models (SD, SO, and DO) were considered, then the prior for each model was 1

3
. However, if we considered

a heavy and light sensory noise model for the SO and DO Observers, then the priors were 1
3
for the SD

Observer and 1
6
for the SO and DO Observers. We followed the same structure for observers that assumed

equal category prevalence (Con.) and those that did not make this assumption (Upd.).
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Prior Probabilities The prior probabilities for each computational ob-

server, or model (Mj), depended on the number and type of observers

considered. Figure 2.6 outlines the model priors, which assumed that a

participant was equally likely to employ an SD, an SO, or a DO cate-

gorization strategy. If we considered only these 3 Observers, then each

model had a prior of 1
3 . This changed if we considered that a partic-

ipant’s sensory noise may differ, choosing to model the SO and DO

Observers with both heavy and light sensory noise. In this case, the

SD Observer had a prior of 1
3 , while each SO and DO Observer had a

prior of 1
6 . We could further divide each Observer based on prevalence

assumptions, where one Observer assumed equal (constant) prevalence

of Categories A and B (Con.) and a second estimated (updates) the

prevalence of each category (Upd.).

For our reference Null and Prevalence-Focused Observers, rather

than assign a prior to these improbable models, we instead simply

calculated a Bayes factor to compare each of these observers to the

observer with the highest likelihood (Equation 2.12).

Bayes Factor =
maximum liklihood across all observers

likelihood of Null or Prevalence−Focused Observer

(2.12)
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Likelihoods We denoted the actual object sampled on a given trial, i,

as Fi. By the end of the experiment, each participant produced a

sequence of 810 categorization responses, which we denoted as r. On

a given trial, x = 1 if the participant responded “A” and x = 0 if the

participant responded “B”. Note that “A” represented a participant

response, which may or may not align with the actual object category.

We aimed to determine the probability that each model, Mj, would

produce the same response sequence (Equation 2.13). Equation 2.13

used a given model’s unique probability of responding “A” or “B” when

presented with Fi on each trial of a given repetition (P (“A”w,i | Fi)

and P (“B”w,i | Fi)) to express the probability that this model would

produce the participant’s response sequence. We included a lapse rate

of 0.01, assuming that on 1% of trials, participants randomly responded

“A” or “B”. Note that because the participant must categorize the

object as A or B, we defined P (“B”w,i | Fi) as 1− P (“A”w,i | Fi).

We further averaged this probability across w = 10 repetitions us-

ing Equation 2.14, which obtained unique sensory measurements of an

object’s features on each trial to account for a range of sensory mea-

surements that could be made by a participant completing the same

task. See Sections 2.2.5: Feature-Focused Bayesian Observer, 2.2.5:

Null Observer, and 2.2.5: Prevalence-Focused Observer for observer
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specific P (“A”w,i | Fi) values.

P (r | Mj,w) =
810∏
i=1

[(0.01)(0.5) + (0.99)(P (“A”w,i | Fi)
xi × P (“B”w,i | Fi)

1−xi)]

(2.13)

P (r | Mj) =
1

10

10∑
w=1

P (r | Mj,w) (2.14)

Posterior Probabilities We used the priors and likelihoods calculated for

each model to determine the posterior probability that it simulated

a participant’s categorization strategy, given their response sequence

(Equation 2.15). We classified the observer with the largest posterior

as the one that most accurately simulated a participant’s categorization

strategy.

P (Mj | r) =
P (r | Mj)× P (Mj)∑
Mj

[P (r | Mj)× P (Mj)]
(2.15)

Calculating P(“A”w,i | Fi) for a Feature-Focused Bayesian Observer

Our Feature-Focused Bayesian Observer considered sensory noise, cat-

egory noise, and category learning to calculate P (“A”w,i | Fi). To start,

we considered k possible measurements (fk) that the observer may have

‘felt’ when given the actual object, Fi (Equation 2.16). We calculated
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the probability of ‘feeling’ each fk using a 2D Gaussian distribution cen-

tred at the actual feature measurements of Fi with a standard deviation

equal to the observer’s sensory noise. Each fk resulted in either an “A”

or a “B” categorization. The sum of all P (fk | Fi, w) where the observer

‘felt’ fk and categorized the object as “A” sum to P (“A”w,i | Fi). We

performed the same calculation for Category B.

P (“A”w,i | Fi) =
∑
k

P (fk | Fi, w)× 1 if P (A | fk,i, w) > 0.5, else, 0

(2.16)

If we specified to the model at the outset that we planned to present

equal numbers of A’s and B’s during the task (i.e. θ = 0.5), then we

determined which fk values resulted in an “A” categorization response

using Equation 2.17. A model responded “A” when the probability

that an object was sampled from Category A, considering the feature

measurement (P (A | fk,i, θ)), was greater than 0.5. Equation 2.17 used

Bayes’ theorem to calculate P (A | fk,i, θ) based on the likelihood of

obtaining fk from objects of either category.

P (A | fk,i, θ) =
P (fk,i | A)× θ

P (fk,i | A)× θ + P (fk,i | B)× (1− θ)
(2.17)
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If we did not specify the prevalence of Category A or B, then we

considered 10 θ hypotheses ranging from 0.05 to 0.95 and used Equation

2.17 to calculate P (A | fk,i, θ) for each θ. Using Equation 2.18, we

calculated P (A | fk,i), where we weighted each P (A | fk,i, θ, f<i) value

using the probability that θ correctly defined the category prevalence.

These weights were previously calculated using the likelihoods from

Equation 2.10.

P (A | fk,i) =
∑
θ

[P (A | fk,i, θ, f<i)× P (θ | N<i)] (2.18)

Equation 2.17 considered the probability of ‘feeling’ fk from an ob-

ject belonging to Category A or B, values that we calculated using

Equation 2.19. Because any object could belong to either category

and the model did not know the actual feature values of Fi, we con-

sidered that Fi could be any one of the 25 objects (g = 25). We

calculated the probability that any object, Fg,i, could give rise to the

perceived measurement (P (fk,i | Fg,i)) and the probability of sampling

Fg,i from Category A (P (Fg,i | A). We quantified P (fk,i | Fg,i) using a

2D Gaussian distribution centred at the actual feature measurements

of Fg,i with a standard deviation equal to sensory noise. We quantified

P (Fg,i | A) using Equation 2.20, which considered many hypothesized
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2D Gaussian distributions that could describe Category A. This calcu-

lation considered both the probability of randomly sampling Fg,i from

the hypothesized category and the probability of that hypothesis cor-

rectly describing the actual category, based on what the observer has

learned about Category A on completed trials (f<i and N<i). Because

our model learned new information about the categories on each trial,

these values changed on each trial. We used equations 2.19 and 2.20 to

calculate P (fk,i | B) and P (Fg,i | B) as well.

P (fk,i | A) =
25∑
g=1

P (fk,i | Fg,i)× P (Fg,i | A) (2.19)

P (Fg,i | A) =
∑
Hn

P (Fg,i | Hn, A)× P (Hn | f<i, N<i, A) (2.20)

Calculations for SD Observers considered both feature measurements

throughout these calculations. Conversely, SO and DO Observers con-

sidered only the corresponding feature in their calculations.

Calculating P(“A”w,i | Fi) for a Null Observer

Our Null Observer categorized objects as “A” or “B” on trials with

equal probability. As a result, P (“A”w,i | Fi) = P (“B”w,i | Fi) = 0.5.

44



M.Sc. Thesis - G. Arthur; McMaster University - Psychology, Neuroscience, and Behaviour

Calculating P(“A”w,i | Fi) for a Prevalence MAP Estimate Observer

Our Prevalence MAP Estimate Observer based P (“A”w,i | Fi) on the

magnitude of P (A | N<i) calculated using Equation 2.11. If P (A |

N<i) > 0.5, then P (“A”w,i | Fi) = 1. Similarly, if P (A | N<i) < 0.5,

then P (“A”w,i | Fi) = 0.

Calculating P(“A”w,i | Fi) for a Prevalence Probability Matching Observer

Our Prevalence Probability Matching Observer used Equation 2.11 to

calculate the probability that a given object belonged to Category A

based on the proportion of A’s and B’s previously presented, P (A |

N<i). On each trial, this P (A | N<i) value equalled P (“A”w,i | Fi).

2.3 Results

We produced computational observers for two variations of our haptic

categorization task.

2.3.1 Manipulate Category Variation

In a first variation of our haptic categorization task, we manipulated

the variation of the 2D Gaussian distributions defining Categories A

and B. We created 4 experimental conditions to test low, moderate,

and high category overlap. We define these conditions in Figure 2.7.
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In all conditions, we specified at the outset that we were equally likely

to present an object from each category on a given trial during the

experiment.

d′ values for low and high overlap, or for the 0.75/0.75 and 1.25/1.25

conditions, using an SD strategy with heavy sensory noise equalled 1.81

and 1.51, respectively. d′ values for each degree of overlap using a DO

strategy with light sensory noise equalled 1.85 and 1.36, respectively.

Note that d′ for a DO (Light) strategy is greater than for an SD strategy

in the 0.75/0.75 condition, while an SD strategy has a larger d′ in the

1.25/1.25 condition.

Figure 2.7: Category Variation Conditions Summary of the four experimental conditions with
unique category standard deviation of Categories A and B, each described by 2D Gaussian distributions.
These standard deviation (σ) values apply to both dimensions of the category distributions.

We produced 6 computational observers: Null Observer, SD Ob-

server (heavy sensory noise), SO Observer (heavy sensory noise), SO

Observer (light sensory noise), DO Observer (heavy sensory noise), and
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DO Observer (light sensory noise). Each observer produced a learning

curve that illustrates the cumulative percent correct (PC) achieved on

each trial of the experiment. Figure 2.8 shows sample learning curves

of performance on this haptic categorization task. Learning curves for

our Null Observer maintained a consistent PC at approximately 50%

correct on all trials. Learning curves for all variations of our Feature-

Focused Bayesian Observer increased in PC during early trials and

approached asymptotic performance in later trials.

Figure 2.8: Sample Learning Curves Sample learning curves for 6 computational observers, each of
which is the average Percent Correct (PC) of 10 repetitions on 810 trials of a haptic categorization task.
These observers were run in the 1.25/0.75 experimental condition. The Null Observer maintains a PC at
approximately 50% correct. All 5 variations of the Feature-Focused Bayesian Observer improve in PC as
trial number increases to an asymptotic performance.

We calculated approximate asymptotic performance for each of our
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computational observers using 200 repetitions, estimating the asymp-

tote as the average cumulative PC after 100 000 trials (Table 2.2).

When calculating asymptotes, we input the actual category mean and

standard deviation of both categories, meaning that the observer knew

the actual category distributions from the outset and did not need

to learn them. In all conditions, asymptotic performance of the Null

Observer equalled 50.0%. The DO (Light) Observer had the highest

asymptote compared to other observers in the 0.75/0.75 condition. The

SD Observer had the highest asymptote compared to other observers

in the 1.25/1.25 condition. The DO (Light) and SD Observers had sim-

ilar asymtotes in the 0.75/1.25 and 1.25/0.75 conditions. All Feature-

Focused Bayesian Observers had their highest asymptotic performance

in the 0.75/0.75 condition and their lowest asymptotic performance in

the 1.25/1.25 condition. Asymptotic performance was almost identical

in the 0.75/1.25 and 1.25/0.75 conditions for all observers.

Table 2.2: Manipulate Category Variation – Observer Asymptotes Summary of approximate
asymptotic performance for 6 Computational observers in each of our 4 experimental conditions.
Asymptotes were calculated as the average performance of 200 simulated observer repetitions after 100 000
trials.

Experimental Condition

Computational Observer 0.75/0.75 0.75/1.25 1.25/0.75 1.25/1.25

SD 81.2 77.3 77.2 73.1
SO (Heavy) 70.5 67.8 67.8 65.2
SO (Light) 74.8 71.4 71.4 68.1
DO (Heavy) 75.9 72.4 72.3 68.7
DO (Light) 82.0 77.2 77.2 72.2

Null 50.0 50.0 50.0 50.0
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Comparison to Simulated Participants

We generated 100 simulated participants corresponding to the catego-

rization strategies of each of our computational observers to evaluate

the accuracy of our model comparison process. We omitted the Null

Observer from this comparison, as the Bayes factor comparing the Null

Observer and most likely observer did not exceed a values of 10−31.

In the resulting model comparison, considering the Feature-Focused

Bayesian Observers, we simulated observers and participants using the

same sequence of objects selected from categories defined by 2D Gaus-

sian distributions with standard deviation equal to 0.75 in both dimen-

sions. Table 2.3 summarizes the number of participants correctly and

incorrectly classified by our Bayesian model comparison.

Table 2.3: Manipulate Category Variation – Confusion Matrix We generated 100 simulated
participants using each of following categorization strategies: SD, SO (Heavy), DO (Heavy), SO (Light),
and DO (Light). We compared each simulated participant to the computational observers and identified
the observer that best modelled the participant’s performance according to our Bayesian model
comparison. All participants and observers were simulated in the 0.75/0.75 experimental condition.

Actual Categorization Strategy

Model
Comparison
Classification

SD SO
(Heavy)

DO
(Heavy)

SO
(Light)

DO
(Light)

SD 100 0 3 0 0
SO (Heavy) 0 97 0 44 0
DO (Heavy) 0 0 91 0 0
SO (Light) 0 3 0 56 0
DO (Light) 0 0 6 0 100

All simulated participants using an SD or a DO (Light) categoriza-

tion strategy were correctly classified. We correctly classified 97% and
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91% of SO (Heavy) and DO (Heavy) participants, respectively. All

misclassified SO (Heavy) participants were classified as SO (Light).

Misclassified DO (Heavy) participants were classified as either SD or

DO (Light). 56% or SO (Light) participants were correctly classified,

while 44% were misclassified as SO (Heavy).

We further compared the same simulated participants to the same

computational models using a mean squared error (MSE) analysis,

rather than our Bayesian model comparison (Table 2.4). We classi-

fied the best matched model as the one with the smallest MSE.

Table 2.4: Manipulate Category Variation – Confusion Matrix for MSE Analysis We generated
100 simulated participants using each of following categorization strategies: SD, SO (Heavy), DO (Heavy),
SO (Light), and DO (Light). These were the same simulated participants considered in table 2.3. We
compared each simulated participant to the computational observers and identified the observer that best
modelled the participant’s performance as the model with the smallest MSE. All participants and
observers were simulated in the 0.75/0.75 experimental condition.

Actual Categorization Strategy

MSE
Classification

SD SO
(Heavy)

DO
(Heavy)

SO
(Light)

DO
(Light)

SD 54 0 5 7 43
SO (Heavy) 0 76 6 10 0
DO (Heavy) 5 15 54 49 1
SO (Light) 3 9 34 34 1
DO (Light) 38 0 1 0 55

All sets of simulated participants had more participants misclassified

by an MSE comparison than by our Bayesian model comparison. We

correctly classified 76% of simulated SO (Heavy) participants and 34%

of simulated SO (Light) participants. We correctly classified 54% to

55% of participants in all other sets of simulated participants.
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2.3.2 Manipulate Prior Probabilities of Categories

In a second variation of our haptic categorization task, we manipulated

the proportion of objects presented from each category. We created

4 experimental conditions, where we specified that we would sample

equal proportions of objects from Categories A and B on the first 405

trials, but that proportions could differ for the last 405 trials. In all con-

ditions, category standard deviation equalled 0.75 in both dimensions.

We illustrate these conditions in Figure 2.9.

Figure 2.9: Category Prior Conditions Summary of the four experimental conditions tested in
Experiment 2, where we manipulated the category proportion of objects presented from the two categories
on each day of the experiment. On Day 1, participants in all conditions received the same proportion of
objects from A and B.

We produced 13 computational observers to simulate performance

on this task variation. 5 of these 12 observers were identical to the
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Feature-Focused Bayesian Observers generated in the previous section:

SD Observer (heavy sensory noise), SO Observer (heavy sensory noise),

SO Observer (light sensory noise), DO Observer (heavy sensory noise),

and DO Observer (light sensory noise). In this section, we refer to these

as constant category prior observers, as they assumed that objects from

both categories are equally likely to be presented on both days of the

experiment. We also generated 5 updating category prior observers,

which considered the same features as the constant category prior ob-

servers, but made no assumptions regarding category priors on the last

405 trials. The constant and updating category prior observers per-

formed identical calculations on the first 405 trials, and differed only

in the sensory noise that affects all observer repetitions. Finally, we

generated a Null Observer, a Prevalence MAP Estimate Observer, and

a Prevalence Probability Matching Observer on this task variation.

Similar to the previous set of observers, cumulative PC of Feature-

Focused Bayesian Observers improved in early trials and approached

an asymptote in later trials. This pattern held true for the Prevalence

MAP Estimate and Prevalence Probability Matching Observers. Ta-

ble 2.5 summarizes asymptotic performance for each observer in each

condition. Constant and updating category prior observers approached

equal asymptotes in the 50/50 condition, while updating category prior
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observers approached higher asymptotes in the 60/40, 70/30, and 80/20

conditions. In these 3 conditions, the Prevalence MAP Estimate and

Prevalence Probability Matching Observers approached an asymptotic

performance lower than than that of the Feature-Focused Bayesian Ob-

servers, but higher than that of the Null Observer.

Table 2.5: Manipulate Category Priors – Observer Asymptotes Summary of approximate
asymptotic performance for 6 Computational observers in each of our 4 experimental conditions.
Asymptotes were calculated as the average performance of 200 simulated observer repetitions after 100 000
trials.

Experimental Condition

Computational
Observer

50/50 60/40 70/30 80/20

Updating
Category
Prior

SD 81.2 81.8 83.7 87.0
SO (Heavy) 70.5 71.8 75.6 81.8
SO (Light) 74.8 75.9 78.7 83.6
DO (Heavy) 75.9 76.8 79.5 84.0
DO (Light) 81.9 82.5 84.3 87.3

Constant
Category
Prior

SD 81.2 81.3 81.2 81.2
SO (Heavy) 70.5 70.8 70.6 70.6
SO (Light) 74.8 75.0 74.7 74.9
DO (Heavy) 75.9 75.9 75.9 75.9
DO (Light) 81.9 82.0 81.9 81.9

Null 50.0 50.0 50.0 50.0
Prevalence MAP

Estimate
50.0 60.0 70.0 80.0

Prevalence
Probability
Matching

50.0 52.0 58.0 67.9

Comparison to Simulated Participants

We generated 100 simulated participants using the same strategy as

each of our computational observers. We compared each simulated

participant to our computational observers and classified it as using
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the strategy of the observer that best simulated participant perfor-

mance. (Table 2.6). As with the first task variation, we omitted the

Null, Prevalence MAP Estimate, and Prevalence Probability Matching

Observers from our analysis, for which our Bayes factors did not exceed

values of 10−59, 10−28, and 10−29, respectively.

Table 2.6: Manipulate Category Priors – Confusion Matrix We generated 100 simulated
participants using each of following categorization strategies, considering both constant and updating
category prior versions of the Feature-Focused Bayesian Observers: SD, SO (Heavy), DO (Heavy), SO
(Light), and DO (Light). We compared each simulated participant to the computational Observers and
identified the Observer that best modelled the participant’s performance. All participants and observers
were simulated in the 80/20 experimental condition.

Actual Categorization Strategy

Updating Category Prior Constant Category Prior

Model
Comparison
Classification
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Updating
Category
Prior

SD 100 0 0 5 0 0 0 0 0 0
SO (Heavy) 0 66 1 0 0 0 0 0 0 0
SO (Light) 0 34 99 0 0 0 0 0 0 0
DO (Heavy) 0 0 0 87 0 0 0 0 0 0
DO (Light) 0 0 0 8 100 0 0 0 0 0

Constant
Category
Prior

SD 0 0 0 0 0 100 0 0 1 0
SO (Heavy) 0 0 0 0 0 0 64 1 0 0
SO (Light) 0 0 0 0 0 0 36 99 0 0
DO (Heavy) 0 0 0 0 0 0 0 0 88 0
DO (Light) 0 0 0 0 0 0 0 0 11 100

We correctly classified all simulated participants generated using cat-

egorization strategies identical to the following observers: SD (constant

category prior), SD (updating category prior), DO (Light) (constant

category prior), and DO (Light) (updating category prior). We cor-

rectly classified 87% of DO (Heavy) (updating category prior) partic-
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ipants, with remaining participants misclassified as DO (Light) (up-

dating category prior) or SD (updating category prior). We correctly

classified remaining simulated participants with > 50% accuracy, where

we misclassified participants as using the same strategy with a different

level of sensory noise (i.e. heavy/light).

2.4 Discussion

2.4.1 Summary of Findings

In this chapter, we proposed 3 different computational observers: Feature-

Focused Bayesian Observer, Prevalence MAP Estimate Observer, Preva-

lence Probability Matching Observer, and Null Observer. Our central

observer, the Feature-Focused Bayesian Observer, learns novel cate-

gories and categorizes objects on each trial of a haptic categorization

task. Its performance increases in PC toward an asymptote that in-

creases when the observer’s sensory noise decreases. The observer may

attend to a single feature or multiple features on the haptic stimuli,

which further impacts its asymptotic performance.

We further implemented a Bayesian model comparison to compare

participant performance to several different computational observers.

We compared simulated participants using a known categorization strat-
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egy to the observers and identified the observer that best simulated

participant performance (Figure 2.3, 2.6). These results demonstrate

the high accuracy of our model comparison in classifying participant

categorization strategies.

2.4.2 The Challenge of Defining Optimality

Most research considers Bayesian models as optimal when they combine

all available cues to increase reliability of a perceived stimulus (Alais

and Burr, 2004; Ernst and Banks, 2002; Gepshtein and Banks, 2003;

Bejjanki et al., 2011; Bankieris et al., 2017). For example, Alais and

Burr (2004) demonstrated that participants combine a visual and an

auditory cue to optimally locate the origin in space of a stimulus, rather

than relying on a single cue. Initially, we expected our SD Observer

to consistently achieve the highest PC on our task, as integrating in-

formation from both features provides more reliable information about

the objects. Contrary to our expectations, the DO (Light) Observer

achieved the highest PC in many cases, a pattern further observed

amongst the asymptotes in our experimental conditions (tables 2.2 and

2.5). If we define our optimal observer as the one that achieves the

highest PC on our task, then SD and DO (Light) Observers can both

perform optimally, depending on the object sequence and experimen-
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tal condition. Despite the benefit of minimizing sensory uncertainty

by combining multiple sensory estimates in an SD categorization strat-

egy, the higher cognitive demand of attending to two features may

increase the sensory noise associated with each measurement. Using a

DO strategy with sufficiently small sensory noise when interpreting the

dots feature could provide more reliable information.

2.4.3 Assumptions of our Feature-Focused Bayesian Observer

This Feature-Focused Bayesian Observer ultimately aimed to simulate

human performance. In doing this, it made assumptions about the state

of the world, which may or may not align with human assumptions.

Gaussian Categories with Feature Independence

We considered a total of 2450 hypotheses for the categories, each of

which defines a 2D Gaussian distribution with no correlation between

features. In reality, people may consider any distribution to define

the categories, such as Poisson, logarithmic, or uniform distributions.

While we could have generated additional hypotheses for different dis-

tribution types, past research suggests that humans may make this

Gaussian assumption when presented with uniformly distributed cate-

gories (Gifford et al., 2014). Accordingly, we accepted this as a reason-
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able assumption for the computational observer.

Set Range of Actual Feature Values

Like humans, this observer experienced sensory noise when measuring

sides and dots feature values. When interpreting these measurements,

our Feature-Focused Bayesian Observer considered several actual fea-

ture values that may have produced a measured feature value. This

observer considered 8 possible values for the actual feature values, rang-

ing ±2 σsens (sensory noise variability), from the actual feature value.

We implemented this 8 value range as a computational consideration to

maintain reasonable run times to produce observers. While we would

ideally consider a wider range of actual feature values, the probabil-

ities for more extreme values would become very small, likely having

negligible effects on our final results.

Constant Sensory Noise

This observer assumed that sensory noise remained constant across

objects and trials. That is, the observer experienced the same amount

of sensory noise with any of the 25 objects, as well as on any trial from

1 to 810. We acknowledge that this may differ from human experience,

such as in a participant who experiences greater sensory noise in later

58



M.Sc. Thesis - G. Arthur; McMaster University - Psychology, Neuroscience, and Behaviour

trials as their focus diminishes.

2.4.4 Assumptions of our Bayesian Model Comparison

In the same vein, our Bayesian model comparison makes assumptions

regarding the state of the world and the past experience of participants.

Exhaustive List Of Computational Models

In this study, we consider only Bayesian computational observers and

3 non-sensory reference Observers. While Bayes’ theorem does provide

a promising framework for modelling human sensory perception (Alais

and Burr, 2004; Bejjanki et al., 2011; Bankieris et al., 2017), researchers

have proposed alternative models. For example, Granato et al. (2022)

trained a machine learning model on a visual categorization task, which

could effectively accomplish the task and qualitatively simulate human

performance. Our comparison between participants and observers as-

sumed that we provided an exhaustive list of computational observers,

overlooking the possibility that an alternative observers better simu-

lates sensory perception. Future studies may compare Bayesian models

to other computational observers.

We can better investigate the goodness-of-fit between a participant

and winning model by comparing the performance of a participant to
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the 10 repetitions that make up that model. See Figure A.3.2 for il-

lustrations of this comparison in participants tested on categories with

manipulated category variation (note that these are the 24 participants

tested in Chapter 3). See Figure A.4.2 for these illustrations for par-

ticipants tested on categories with manipulated category priors (note

that these are the 20 participants tested in Chapter 4).

2.4.5 Computational Limitations

Many of the previously mentioned assumptions help to address compu-

tational limitations. If we considered infinite categorical distributions

to describe A and B, infinite hypotheses for the actual feature values,

and infinite computational models of categorization, our model would

exceed the processing capabilities of any existing computer. In the

following sections, we outline these limitations.

Assigning Priors to Computational Observers

In comparing computational models to participants, we imposed hier-

archical priors across all models. Our priors assumed that participants

employ SD, SO, and DO categorization strategies with equal chance.

While this may be appropriate for simulated participants, humans may

favour certain strategies depending on past experiences. For example,
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a person who does more manual labour may have callused hands and

in turn poorer tactile acuity than average. This individual may find

the sides feature easier to measure than the dots feature, as they can

discern the side length and vertex angles more easily than the raised

dots. In this case, the individual may favour SO or SD strategies, where

they rely more on measuring the sides feature.

Despite knowing that models may not be considered equally in all

cases, it proves extremely difficult to quantify all of a person’s life ex-

perience into a single numerical prior probability. Because our study

exclusion criteria excluded individuals with poor tactile acuity, or no-

table factors that would cause them to perform uniquely, we consider

it reasonable to assume that participants are approximately equally

likely to employ these three categorization strategies. Accordingly, we

interpret the results of this model comparison analysis as the posterior

probability for a model if participants did begin the experiment with

uniform priors for SD, SO, and DO strategies.

Sensory Variability Between Repetitions

The sensory variability associated with measuring object features dur-

ing this task results in infinite possible sequences of measured values

across the 810 trials. In this study, we generate and average across
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10 repetitions of our Feature-Focused Bayesian Observer. Ideally, we

could generate and average across infinite repetitions.

Observers with less sensory noise are less likely to measure feature

values far from the actual value. With sufficiently small sensory noise,

fewer repetitions likely encompass enough sequences of measured fea-

ture values to produce a representative observer of participant per-

formance. To investigate this, we briefly compared the categorization

strategy results from models with 10 and 20 repetitions. Qualitatively,

we observed no notable differences between these results, suggesting

that 10 repetitions are sufficient to model performance.

Dividing Observer Repetitions

This variability between repetitions becomes increasingly relevant in

Section 2.3.3., where we model constant and updating category prior

observers. All observers have equal category priors for the first 405 tri-

als, then either learn the categorical priors using parameter estimation

on the last 405 trials or continue to consider equal category priors for

the entirety of the experiment. While these two models differ on the

final 405 trials, they employ identical strategies on the first 405. Ac-

cordingly, observers simulating the same categorization strategy should

be equally effective in simulating participant’s performance on the first
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405 trials. We distribute observer repetitions in a manner that makes

these two models nearly equal as possible at simulating a participant’s

response after the first 405 trials. Because of variation between repeti-

tions, these probabilities often differed somewhat, meaning that strat-

egy classifications from the final 405 trials were biased at least slightly

toward one or the other of of the two models.

Number of Feature Value Hypotheses

While our Feature-Focused Bayesian Observer considers a set number

of actual values for an object’s sides and dots features, one may want to

model an Observer that considers more values. Because each additional

value increases the processing time to simulate this observer, we were

limited to our current ranges to maintain a reasonable processing time.

2.4.6 MSE Analysis vs. Bayesian model Comparison

We performed 2 comparisons between our simulated participants and

computational models, one using MSE and another using Bayesian

model comparison. In all groups of simulated participants, the Bayesian

model comparison proved much more accurate in classifying participant

strategies. This finding provides further evidence that Bayesian model

comparison can correctly classify participant strategies.
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2.5 Conclusion

Overall, we put forward a Bayesian model of haptic perception that

successfully learns categories and categorizes stimuli on a haptic cate-

gorization task. We identify the model type that best simulates partic-

ipants using known categorization strategies with high accuracy.

64



Chapter 3

Experiment 1: Manipulation of

Category Variation

3.1 Introduction

In the previous chapter, we outlined a Feature-Focused Bayesian Ob-

server that can effectively simulate human performance on a haptic

categorization task. We further simulated participants on this task

and classified their strategy with high accuracy.

In this chapter, we report a study in which we tested human partici-

pants on the same task to compare to our computational observers. We

tested human participants on one of four variations of this task, where

we manipulated the standard deviation of the 2D Gaussian distribu-

tions defining categories A and B to create four task variations with

unique category overlap. Then, we compared human and Bayesian
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model performance on the task. We hypothesized that human per-

formance would be best simulated by either (1) an optimal Bayesian

model, (2) a sub-optimal Bayesian model, or (3) a non-Bayesian model.

3.2 Methods

3.2.1 Participants

We collected data from 24 participants aged 18 to 22 (average age 19

years, 22 F, 2 M) recruited from the McMaster undergraduate student

population using SONA. All participants self-reported they were unaf-

fected by any of the following conditions: diabetes, nervous system dis-

order or injury, learning disability, dyslexia, attention deficit disorder,

cognitive impairment, carpal tunnel syndrome, arthritis of the hands,

hyperhidrosis. This study was approved by the McMaster Ethics Re-

search Board and all participants were compensated with cash or course

credit.

3.2.2 Experimental Conditions

We assigned each participant to one of four experimental conditions,

which we counterbalanced based on their order of entry into the ex-

periment. In total, we tested 6 participants in each of the conditions.

Each condition used a unique set of 2D Gaussian distributions to define
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categories A and B (Table 3.1).

Table 3.1: Experiment 1 – Conditions Summary of the four experimental conditions tested in
Experiment 1, during which we manipulated the category standard deviation of categories A and B. Both
categories were described by two dimensional Gaussian distributions. These standard deviation (σ) values
applied to both dimensions of the category distributions. See Chapter 2, Figure 2.7 for additional details.

Category A Standard Deviation Category B Standard Deviation
Condition 1 0.75 0.75
Condition 2 0.75 1.25
Condition 3 1.25 0.75
Condition 4 1.25 1.25

In each of these conditions, the standard deviation remained constant

across both dimensions of the 2D Gaussian distribution. Condition 1

produced the least overlap between categories, while condition 4 pro-

duced the most overlap between categories.

3.2.3 Experimental Procedure

We used an experimental procedure almost identical to that described

in Chapter 2. See Chapter 2, Subsection 2.2.1 for details. We made two

minor adjustments when testing this set of human participants. First,

we had participants complete 405 trials on each of two days spaced 1

week apart, rather than 810 trials on a single testing day. This ensured

that participants did not exceed 2.5 hours of testing on a single day,

after which we deemed it unreasonable to expect focus and effort from

participants. We further divided the trials on each day into 9 blocks of

45 trials, where participants received a 1 minute break after every block
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and a 5 minute break after every 3 blocks. Second, we named the two

categories “Elyk” and “Noek”, counterbalancing the assignment of each

name to either category A or B across participants. These names, with

which participants had no past experience, prevented name associations

from impacting performance.

3.2.4 Haptic Exploratory Procedures

Previous studies defined eight haptic EPs that participants employ to

obtain tactile information about an unknown object (Lederman and

Klatzky, 1987, 1993). We determined that four of these previously

defined EPs describe hand movements that participants could employ

to extract information about the 3D printed objects used as stimuli

in our study. In Table 3.2, we list and define these four EPs as they

relate to our study, as well as identify the tactile features (sides, dots,

or both) participants could explore with the EP.

During the experiment, we used a GoPro Camera (Hero Session or

Hero 5 Session) to record participants’ hands while they explored the

haptic stimuli. The camera was mounted on a stand approximately

51cm above the participants’ hands and recorded them from a top-

down view. We recorded 15 trials per block of testing: trials 1 to 5,

trials 20 to 24, and 41 to 45. In total, we obtained video from 270
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Table 3.2: Exploratory Procedure definitions Summary of the four exploratory procedures that we
recognized as participant strategies used during our haptic categorization task. Each strategy focused on
investigating one or both of the two object features, sides and dots. Enclosure obtained information about
the sides and dots features simultaneously, while participants could use the other exploratory procedures to
obtain information about one feature at a time.

Exploratory
Procedure

Feature
Under

Investigation

Description

Enclosure Sides AND Dots Participant has contact with as much of the object as
possible for a period of time. This commonly involves
making a fist around the object.

Static Sides OR Dots Participant has sustained contact between the object
and one or more parts of the hand(s) with no move-
ment between the skin and object feature.

Swipe Dots Participant moves one or more parts of the hand(s) to
swipe across the dots feature of the object.

Contour
Following

Sides Participant maintains contact with the perimeter of
the object and uses a smooth, coordinated movement
to feel the side lengths and vertices. Contour following
ends when the participant lifts their hand off of the
object.

of the 810 trials completed. We informed participants that we would

record their hands during the experiment, but did not specify the total

number of trials or the specific trials that we planned to record.

We reviewed videos offline to score EPs used during haptic explo-

ration. Table 3.3 details the information collected from each video.

Initially, we recorded additional data to that listed in Table 3.3. Be-

cause participant hand movements can be subtle, these additional data

proved difficult to identify and record reliably. As a result, we decided

to omit those data from our analysis.

To train on how to watch and score videos, all experimenters watched

and scored sample data from a pilot study in which experimenters acted

69



M.Sc. Thesis - G. Arthur; McMaster University - Psychology, Neuroscience, and Behaviour

Table 3.3: Exploratory Procedure Scoring Summary of EP information collected from video
recordings. We recorded one or more details for each EP. Bolded text, followed by a more detailed
description, defines individual pieces of information scored. Experimenters scored EP details using
keywords, indicated by italicized text.

Exploratory
Procedure

Data Recorded

Enclosure EP Used: Did the participant use this EP? [true or false]
Static Contact EP Used: Did the participant use this EP? [true or false]

Hand(s) Used: If the participant used this EP, which hand(s) did they
use? [left or right or both]

Swipe EP Used: Did the participant use this EP? [true or false]
Contour
Following

EP Used: Did the participant use this EP? [true or false]

Hand(s) Used: If the participant used this EP, which hand(s) did they
use? [left or right or both]

General
Information

Table contact: Did the participant lift the object off of the table or
leave it on the table during haptic exploration? [on or off or both]
Hand(s) Used: Throughout the entire trial, which hand(s) did the
participant use to explore the object? [left or right or both]
Trial Time: For how long did the participant explore the object? [0,
1, 2, 3, 4, 5, 6, >6 seconds]

as participants. We completed rounds of training until at least 80% of

information scored by each pair of experimenters matched. After four

rounds of training, between 84% to 93% of scores from each pair of

experimenters matched.

We watched and scored the last trial of each five trial recording,

i.e. trials 5, 24, and 45 of each testing block, totalling 54 trials for

each participant. Different pairs of experimenters, selected from our

4 available experimenters, watched and scored video for each of our

24 participants. Experimenters remained blind to the computational

model that best simulated performance throughout the scoring pro-

cess. They watched videos on 1x speed as many times as necessary to
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confidently record all information included in Table 3.3. A third ex-

perimenter compiled scores from the two experimenters watching each

video. In case of disagreement between experimenters scoring partici-

pant data, responses were compiled according to the guidelines in Table

A.1.

3.3 Results

3.3.1 Human Participant Results

Each participant completed two days of testing on our haptic catego-

rization task. We calculated the average PC across participants for each

experimental condition and each study day (Figure 3.1). Average PCs

on Day 2 were higher than on Day 1 for all conditions. On both days,

condition 1 (0.75/0.75) had the highest average PC, while condition 4

(1.25/1.25) had the lowest average PC on both days. Average PC from

participants in conditions 2 and 3 remained between conditions 1 and

4 on both days.

Figure 3.1 illustrates average participant learning curves in each of

the four experimental conditions. These learning curves compare aver-

age PC across all participants in a given condition for sets of 3 experi-

mental blocks (referred to as block sections). Block sections incorporate
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Figure 3.1: Experiment 1 – Human Performance on Haptic Categorization Task Average PC
of participants in each of the four experimental conditions study Days 1 and 2. The light grey line
represents points at which Day 1 PC equals Day 2 PC. The error bars show ±1 Standard Error (SE). n =
24 (n = 6 within each condition).

3 blocks of 45 trials each. For example, block section 1 includes Day

1 blocks 1 to 3. Block sections 1, 2, and 3 include blocks from Day 1,

while block sections 4, 5, and 6 include blocks from Day 2. In all condi-

tions, average participant PC increased from block section 1 to 6. For

conditions 0.75/0.75, 0.75/1.25, 1.25/0.75, and 1.25/1.25, average PC

increased by 12.4%, 9.0%, 7.3%, and 1.1% from the first to last block

section, respectively (Figure 3.1). In conditions 3 and 4, PC decreased
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by 3.58% between block sections 3 and 4 (Figure 3.1c,d). Any other

decreases in average PC were ≤ 0.5%.

(a) Condition 1 (0.75/0.75)

(b) Condition 2 (0.75/1.25)
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(c) Condition 3 (1.25/0.75)

(d) Condition 4 (1.25/1.25)

Figure 3.1: Experiment 1 – Learning on Haptic Categorization Task Participant PC averaged
over windows of 135 trials (block sections). Black lines illustrate the average learning curves across all
participants in a given condition. Grey lines illustrate individual participant PC on each block section. n
= 20 (n = 5 within each condition).
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3.3.2 Comparison to Bayesian Observers

We compared human performance on our haptic categorization task to

that of 5 different computational models: SD, DO (Heavy), DO (Light),

SO (Heavy), and SO (Light). As in Chapter 2, we omitted the Null

Observer from this comparison, as the Bayes’ factor comparing the Null

and most likely observers for each participant did not exceed 10−13.

We generated a unique set of models for each participant according

the specific object sequence they received during the experiment. We

compared Day 1 and Day 2 performance to the computational models

separately to classify the strategy that each participant used on each

study day. On Day 1, we classified 9 participants as using a DO (Light)

strategy, 7 as using a DO (Heavy) strategy, 7 as using an SD strategy,

and 1 as using an SO (Heavy) strategy (Figure 3.2a). We did not

classify any participants as using an SO (Light) strategy. On Day 2,

we classified 12 participants as using an SD strategy, 11 as using a DO

(Light) strategy, and 1 as using a DO (Heavy) strategy (Figure 3.2b).

We did not classify any participants as using an SO (Heavy) or SO

(Light) strategy.

We could, alternatively, compare participant performance to the

computational models using a mean squared error calculation, rather
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(a) Day 1 Strategy Classification

(b) Day 2 Strategy Classification

Figure 3.2: Experiment 1 – Strategy Classification Number of participants classified as using each
categorization strategy on Day 1 and Day 2. Black Bars represent observers simulated with heavy sensory
noise, while white bars represent observers simulated with light sensory noise. n = 24.
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than using Bayesian model comparison. This comparison identifies the

model that produces a learning curve closest to that of the participant

as the best fitting model. If we use this comparison with the same set

of 24 participant, 17 and 12 participants are classified differently on

Days 1 and 2, respectively.

In total, our model comparison classified 15 participants as using the

same strategy on both days, while 9 participants changed strategies

between study days (Figure 3.3). Of the 15 participants classified as

maintaining the same strategy on both days, 8 participants used DO

(Light), 6 used SD, and 1 used DO (Heavy). We classified the following

strategy changes in participants between study days: DO (Heavy) to

DO (Light), DO (Light) to SD, DO (Heavy) to SD, SO (Heavy) to

SD, and SD to DO (Light). For participants who changed strategy,

PC increased by an average of 3.8% (std dev 1.68%) (See Table A.3

for individual participant values). For participants who maintained the

same strategy, PC increased by an average of 1.17% (std dev 2.52%)

(See Table A.2 for individual participant values).

Individual learning curves and posterior probabilities for each ob-

server model quantify the relative probability of all computational mod-

els in best simulating human performance. Figure 3.4a illustrates the

learning curve for a participant classified as SD on both days, as well as
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Figure 3.3: Experiment 1 – Changes in Strategy Classification Between Experiment Days
Count of participant classification changes between Days 1 and 2. The x-axis indicates a participant’s Day
1 categorization strategy, while the bar colour indicates their Day 2 categorization strategy. *15
participants maintained the same strategy on both study days, while the remaining 9 participants changed
strategies between study days. n = 24.

the computational observers to which we compared their performance.

Figure 3.4c,e illustrate the most probable model, determined by our

Bayesian model comparison, on each trial of study Days 1 and 2. On

both days, the Bayesian model comparison recognizes SD as the most

probable model relatively quickly.

Our Bayesian model comparison recognized SO (Heavy) on Day 1 to

SD on Day 2 as one of the strategy changes performed by a participant

in the study. Figure 3.4b illustrates the learning curve for one sample

participant who made this strategy change, as well as the computational

observers to which we compared their performance. On Day 1, our
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Bayesian model comparison classified the participant as using an SO

(Heavy) strategy on most trials (Figure 3.4d). On Day 2, the Bayesian

model comparison classified the participant as using an SD strategy on

most trials (Figure 3.4f).

We compared both sample participants in Figure 3.4 to 5 Feature-

Focused Bayesian Observers. In one comparison, the DO (Light) Ob-

server achieved the highest PC by the end of trial 810, while the SD

observer achieved the highest PC in the other comparison. Overall, the

DO (Light) Observer achieves the highest PC for 10 of 24 sets of par-

ticipant models. The SD Observer achieves the highest PC for 13 of 24

sets of participant models. For one participant’s set of computational

observers, the DO (Light) and SD Observers end with an equal PC at

trial 810.

Upon comparing each participant to the Feature-Focused Bayesian

Observers across 810 trials, our model comparison analysis classified

all participants but 1 as either an SD or a DO (Light) Observer. Of

the 6 participants in each experimental condition, 1 was classified as

SD in each of the 0.75/0.75 and 0.75/1.25 conditions, while 2 were

classified as SD in each of the 1.25/0.75 and 1.25/1.25 conditions. In

the 0.75/0.75, 0.75/1.25, 1.25/0.75, and 1.25/1.25 conditions, 5, 5, 4,

and 3 participants were classified as DO (Light), respectively.
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(a) Sample Participant 1: Learning Curves for Human Participant and Computational
Models

(b) Sample Participant 2: Learning Curves for Human Participant and Computational
Models
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(c) Sample Participant 1: Day 1 Strategy Classification

(d) Sample Participant 2: Day 1 Strategy Classification
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(e) Sample Participant 1: Day 2 Strategy Classification

(f) Sample Participant 2: Day 2 Strategy Classification

Figure 3.4: Bayesian Classification of a Sample Participant (a,b) Learning curves for two different
human participants and 5 computational models of their performance, each made up of 10 repetitions of
performance on 810 trials of the haptic categorization task. (c – f) Model posteriors for each
computational model on all trials of the experiment. The participant and observers illustrated in a,c,e were
tested in the 1.25/1.25 experimental condition. The participant and observers illustrated in b,d,f were
tested in the 0.75/0.75 experimental condition.
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3.3.3 Exploratory Procedures

We recorded EP use from each participant on 54 trials of the experi-

ment and calculated the proportion of trials on which participants used

swipe and contour following during haptic exploration (Figure 3.5). We

averaged EP use over all participants classified as using a given catego-

rization strategy. The 9 participants classified as DO (Light) on Day

1 swiped on 98.9% and contour followed on 23.0% of trials. The 11

participants classified as DO (Light) on Day 2 swiped on 99.0% and

contour followed on 38.7% trials. The 7 participants classified as DO

(Heavy) on Day 1 used swipe and contour following on an average of

99.5% and 30.2% of trials, respectively. The single participant classi-

fied as DO (Heavy) on Day 2 used both EPs on 100% of trials. The

7 participants classified as SD on Day 1 used swipe on 98.1% of trials

and contour following on 82.1% of trials. On Day 2, the 12 participants

classified as SD used swipe on 95.7% of trials and contour following on

89.2% of trials. One participant was classified as SO (Heavy) on Day 1,

during which they used swipe on 66.7% of trials and contour following

on 96.3% of trials.

Table 3.4 summarizes the average use of all 4 EPs on recorded trials.
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(a) EP use on Day 1

(b) EP use on Day 2

Figure 3.5: Participant use of Swipe and Contour Following Exploratory Procedures Average
proportion of trials analyzed (each proportion is calculated with a total of 27 trials) in which the swipe and
contour following strategies are employed by participants. Red error bars show ±1 SE. Proportions are
specified for day (a) 1 and day (b) 2 individually. Number of participants averaged for each strategy
corresponds to the number of participants classified as using that strategy. Number of participants is as
follows: (a) DO (Light): n = 9 (b) DO (Light): n = 11 (a) DO (Heavy): n = 7 (b) DO (Heavy): n = 1 (a)
SD: n = 7 (b) SD: n = 12 (a) SO (Heavy): n = 1.
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Table 3.4: Summary of Exploratory Procedure Use Percent of trials (out of 27) on which
participants classified as using each of the strategies used each of our five EPs. Each cell includes a percent
that is averaged over all participants classified as using that strategy (number indicated in the rightmost
column).

Exploratory Procedure
Day Strategy

Classifica-
tion

Static
Con-
tact

(Dots)

Swipe Static
Con-
tact

(Sides)

Contour
Follow-

ing

Enclosure Number of
Partici-
pants

1 Null 0 0 0 0 0 0

1 SD 66.67 98.15 96.30 82.10 0.62 7

1 SO (Heavy) 100.00 66.67 100.00 96.30 0 1

1 DO (Heavy) 56.35 100.00 98.94 30.18 1.06 7

1 Sides (Light) 0 0 0 0 0 0

1 DO (Light) 68.15 98.89 86.67 22.96 0.74 9

2 Null 0 0 0 0 0 0

2 SD 67.28 95.68 83.02 89.20 0 12

2 SO (Heavy) 0 0 0 0 0 0

2 DO (Heavy) 0 100.00 100.00 100.00 0 1

2 Sides (Light) 0 0 0 0 0 0

2 DO (Light) 49.61 99.31 95.29 39.00 0 11

3.4 Discussion

3.4.1 Summary of Findings

Upon comparing participants to our computational observers, we found

that our Feature-Focused Bayesian Observer effectively simulated all

24 participants’ performance. Of the observers we considered, our Null

and Prevalence-Focused Observers did not effectively simulate any of

our participants’ performance. This finding aligns with past studies,

which suggest that Bayesian models accurately simulate human per-

formance on a number of sensory categorization tasks (Bejjanki et al.,

2011; Bankieris et al., 2017). Our model comparison further recognized

a change in categorization strategy for 9 of our 24 participants between
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Days 1 and 2, suggesting that they may change strategies to optimize

performance.

Exploratory Procedure Analysis Supports the Bayesian Model Comparison Results

Lederman and Klatzky (1993) determined the relative accuracy of each

EP in interpreting different haptic properties. Swipe proved most re-

liable in interpreting texture compared to other EPs, while contour

following proved most reliable in interpreting exact shape compared

to other EPs. Texture and exact shape are the primary informative

properties associated with the dots and sides features of our objects,

respectively. As a result, we expected these EPs to correlate with the

strategy classification of each participant made by our Bayesian model

comparison.

Figure 3.5a illustrates the proportion of trials on which participants

using each categorization strategy used swipe and contour following on

Day 1. Remarkably, our findings align closely with expectations. DO

(Light) and DO (Heavy) categorization strategies require participants

to interpret the texture of the object. As predicted, participants clas-

sified as DO (Light) and DO (Heavy) used swipe on almost all trials,

while they use contour following on less than half of trials. An SO

(Heavy) categorization strategy requires participants to interpret the
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exact shape of the object. As predicted, the participant classified as SO

(Heavy) used contour following on almost trials, while they use swipe

on far fewer trials. Our results further show that participants classified

as using an SD strategy used both EPs on a large proportion of trials.

Figure 3.5b illustrates the same information for Day 2. Average EP

use by participants classified as using DO (Light) and SD categoriza-

tion strategies follow the same pattern as Day 1. In contrast to our

expectations, DO (Heavy) has 100% average use for both swipe and

contour following on Day 2. Because we only classified one participant

as DO (Heavy) on Day 2, this could result from individual variation in

performance. Alternatively, this may indicate that the participant was

in the process of transitioning to an SD strategy, requiring them to use

both EPs.

These results provide evidence to validate the accuracy of our Bayesian

model comparison. They also suggest that we can reliably track EPs

in our video recordings.

3.4.2 The Role of Memory

One considerable difference between our Feature-Focused Bayesian Ob-

server and humans is memory abilities. We know that sleep consolidates

learning into long term memory, and also that humans can forget infor-
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mation over time (Hennevin et al., 2007). Because Days 1 and 2 of this

study were separated by 1 week, both of these factors likely influenced

human performance on Day 2, but are not considered by our computa-

tional observers. The decreases in performance between Days 1 and 2

observed in Figure 3.1c,d suggest that human performance worsened at

the beginning of Day 2, but improved rapidly as participants completed

trials.

3.4.3 Defining Optimality for Individual Participants

In the previous chapter, we outlined the challenge of defining optimal-

ity (Section 2.4.2). Here, we highlight the same concept for individual

human participants. As previously mentioned, the experimental con-

dition, object sequence, and an individual’s sensory noise all aid in

determining an optimal strategy. In Chapter 2, we determined that

the DO (Light) Observer has the highest asymptote in the 0.75/0.75

condition, while the SD Observer has the highest asymptote in the

1.25/1.25 condition. In accordance with this finding, we classified 5

participants as DO (Light) and 1 as SD in the 0.75/0.75 condition,

while we classified 3 participants as DO (Light) and 2 as SD in the

1.25/1.25 condition. This suggests that optimality – and the strategy

that participants choose to follow – are not generalizable, but rather
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dependent on the categories under investigation.

3.4.4 Time Dependence

We consider the possibility that performance on our haptic categoriza-

tion task varies as a function of time provided during haptic exploration.

In the current study, we allowed participants 5 seconds for haptic explo-

ration. With enough time, participants’ sensory noise associated with

measuring the sides and dots features would likely decrease consider-

ably. If the sensory noise decreased to a negligible value with prolonged

exploration time, we could modify our Feature-Focused Bayesian Ob-

server to consider only category noise to model the same haptic cat-

egorization task with unlimited time provided for haptic exploration.

In this scenario, our SD and DO Observers would have the same (neg-

ligable) amount sensory noise, where we previously considered a DO

observer with light sensory noise to reflect a participant attending to

only the one feature and therefore having less sensory noise. While

this sensory noise difference allowed a DO categorization strategy to

prove optimal in many cases, increasing the time to essentially remove

sensory noise as a variable would remove this occurrence and an SD

observer would consistently obtain the most sensory information and

perform optimally on the task, compared to the other models.
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3.4.5 Rationale Behind Categorization Strategy Changes

Figure 3.3 summarizes the categorization strategy changes made by 9 of

24 participants between study days. While it proves difficult to deter-

mine whether these participants move toward more optimal strategies,

we can reasonably explain the 5 strategy changes observed as a shift

toward optimality. The 6 participants using dots (light/heavy) or SO

(Heavy) on Day 1 and SD on Day 2 may attend to a second feature

to make more reliable interpretations of the objects on Day 2. The 3

participants using DO (Heavy) or SD on Day 1 and DO (Light) on Day

2 minimize their sensory noise, possibly with experience or increased

attention, to make more reliable interpretations of the objects.

Tables A.3 and A.2 further support the prediction that participants

become more optimal on Day 2. They show that all 9 participants who

change strategy achieve a higher PC by the end of Day 2 than they

achieved at the end of Day 1. That said, we also consider the possibility

that this improvement on Day 2 arises from a better understanding of

the categories, rather than a change in categorization strategy.

Future studies may investigate and model the process by which in-

dividuals determine whether or not to change strategy. This process

likely considers factors to maximize performance on the task, as well as
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quantify the amount of feedback required to identify the best strategy.

Number of Categorization Strategy Changes

In this chapter, we consider strategy changes between study Days 1 and

2. In Figure A.3.1, we narrow the window of trials considered to classify

participant strategies. In reality, participants can make infinite strategy

changes during the experiment. For our Bayesian model comparison to

classify a participant’s strategy, it must compare their performance on

a range of trials to that of the computational models. Providing the

Bayesian model comparison with a smaller range of trials to compare

results in a less reliable classification. Providing it with a larger range

of trials increases the risk of overlooking a strategy change within that

trial range. We are limited in our ability to recognize strategy changes

because we need to balance these two factors.

Figure A.3.1 suggests that only 5 participants maintained the same

categorization strategy throughout all block sections – 4 less than when

comparing Day 1 and 2 categorization strategies. We can consider the

possibility that all participants use multiple strategies at some point,

but our model comparison lacks the sensitivity to recognize these strat-

egy changes.
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3.4.6 Exploratory Procedure Functionality

While reviewing videos, we recorded information about participant use

of 4 different EPs: static contact, enclosure, swipe, and contour fol-

lowing. During the experiment, most participants lifted objects off of

the table to explore them. As a result of holding these objects, almost

every participant consistently used static contact during haptic explo-

ration. While participants can obtain information using static contact,

its almost constant use made it challenging to determine whether a par-

ticipant used it as a functional strategy (i.e. used to acquire sensory

information) or a non-functional strategy (i.e. simply used to support

the object, providing no information about the sides or dots feature).

Table 3.4 summarizes the percent of trials on which participants of

each strategy classification use static contact. These percentages con-

sider only trials in which static was used through the middle of the

trial, as almost all participants use static contact in a non-functional

manner at some point to lift objects off of the table. We cannot know

for certain, from a video, whether a strategy is functional or not. This

makes static contact an unreliable indicator of categorization strategy

on our haptic categorization task.

Unlike static contact, participants use enclosure on an average of
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less than 1.5% of trials. We expected minimal use of enclosure, as past

studies concluded that enclosure is minimally reliable in interpreting

object texture and shape (Lederman and Klatzky, 1993).

In future studies, we could further consider the possibility that the

combination of EPs affects participant performance.

3.4.7 Exploratory Procedure Ambiguity

Some hand movements used to feel our objects can be brief and subtle.

This proved to be a common challenge when tracking EP use by each

participant. In addition, the top down camera angle used to record

video in our experiment produced some ambiguity, as there were frames

in which we struggled to determine whether participants made contact

with the object. We attempted to minimize errors by requiring two

different experimenters to record information from each video. Future

studies may add a second camera to capture video of hand movements

from a second angle to minimize uncertainty in scoring EPs.

3.5 Conclusion

Overall, we provide evidence that humans employ Bayesian strategies

to interpret and categorize stimuli, as our Feature-Focused Bayesian ob-

server effectively simulated human sensory categorization in the haptic
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modality. We further validated these results with an analysis of each

participant’s EP use, which strongly supported the classification results

of our Bayesian model comparison.
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Chapter 4

Experiment 2: Manipulation of

Category Prior Probabilities

4.1 Introduction

In Chapter 3, we outlined a study in which participants group objects

into one of two categories with different levels of variation in the two

categories. While this provides insight into the processing behind sen-

sory categorization in humans, we can alter our categories further to

better reflect naturally occurring categories. In reality, categories rarely

occur in equal proportions. In most cases, one category appears more

frequently than another.

In this chapter, we report a study in which we tested participants on

a second variation of our haptic categorization task, where participants

could receive objects from Category A more frequently on study Day 2
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(i.e. modified prior probabilities for each category). We considered two

hypotheses: (1) participants can learn and integrate category priors

in their categorization decisions or (2) participants cannot learn and

integrate category priors in their categorization decisions.

4.2 Methods

4.2.1 Participants

We collected data from 20 participants aged 17 to 22 (average age 19

years, 18 F, 2 M), recruited from the McMaster undergraduate student

population using SONA. All participants self-reported they were unaf-

fected by any of the following conditions: diabetes, nervous system dis-

order or injury, learning disability, dyslexia, attention deficit disorder,

cognitive impairment, carpal tunnel syndrome, arthritis of the hands,

hyperhidrosis. This study was approved by the McMaster Ethics Re-

search Board and all participants were compensated with cash or course

credit.

4.2.2 Experimental Conditions

We assigned each participant to 1 of 4 experimental conditions outlined

in Table 4.1 based on their entry number into the experiment. In total,

we assigned 5 participants to each experimental condition. In all condi-
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tions, we informed participants that we were equally likely to select an

object from Category A or B to present to the participant (i.e. uniform

priors for categories) on Day 1. On Day 2, we told participants that the

prevalence of each category may change. Depending on the experimen-

tal condition in which participants were tested, category priors either

remained equal, or shifted to increase the Category A prior, making us

more likely to present an object from Category A on a given trial. In

all conditions, objects were drawn from Category A and B distributions

with a category sigma value of 0.75 in both feature dimensions. Note

that these conditions were identical to those in Chapter 2: Table 2.9,

on which we tested our computational observers.

Table 4.1: Experiment 2 – Conditions Summary of the four experimental conditions tested in
Experiment 2, where we manipulated the category proportion of objects presented from the two categories
on each day of the experiment. On Day 1, participants in all conditions received the same proportion of
objects from A and B. See Chapter 2, Figure 2.9 for additional details.

Day 1 Day 2
Condition 1 P (A) = 0.5, P (B) = 0.5 P (A) = 0.5, P (B) = 0.5
Condition 2 P (A) = 0.5, P (B) = 0.6 P (A) = 0.6, P (B) = 0.4
Condition 3 P (A) = 0.5, P (B) = 0.7 P (A) = 0.7, P (B) = 0.3
Condition 4 P (A) = 0.5, P (B) = 0.8 P (A) = 0.8, P (B) = 0.2

4.2.3 Experimental Procedure

We used an object and experimental procedure identical to that de-

scribed for Experiment 1 (Chapter 3), with the exception of the exper-

imental conditions in which we manipulate category priors rather than
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category variation and the constant category sigma value of 0.75.

4.3 Results

4.3.1 Human Participant Results

We calculated the average PC of participants in each experimental con-

dition and plot the average PC on Day 1 against the average PC on

Day 2 (Figure 4.1). On average, participants in all conditions achieved

a higher PC on Day 2 than on Day 1. Participants in the 80/20 con-

dition achieved the highest average PC on Day 1, while participants in

the 70/30 condition achieved the lowest average PC. On Day 2, partic-

ipants in the 80/20 condition achieved the highest average PC, followed

by participants in the 70/30 condition. Participants in the 50/50 and

60/40 conditions achieved a similar PC on Day 2. Note that category

prevalence was identical for all conditions on Day 1, so we attribute any

performance differences to variability in participant responses and/or

individual differences between participants assigned to each condition.

In a similar vein, category prevalence remained constant across Days

1 & 2 in the 50/50 condition, so we attribute performance differences

between days to response variability and/or additional practice on the

task during Day 2 trials. While these factors remain relevant in the
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other 3 conditions, we consider the added factor of modified category

priors as a rationale for changes in average PC as well.

Figure 4.1: Experiment 2 – Human Performance on Haptic Categorization Task Average PC
of participants in each of the four experimental conditions study Days 1 and 2. The light grey line
represents points at which Day 1 PC equals Day 2 PC. The error bars show ±1 SE. n = 20 (n = 5 within
each condition).

In Figure 4.2, we plot the PC of participants in 3-block intervals

throughout the experiment, referred to as block sections. Block sec-

tion 1 includes Day 1 blocks 1 to 3; block section 2 includes Day 1

blocks 4 to 6, and so on. Black lines illustrate the average PC across

participants in a condition, while grey lines illustrate PC of individual
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participants. Average PC increased between block sections 1 and 6 in

all experimental conditions. Average PC in the 50/50, 60/40, 70/30,

and 80/20 conditions increased by 5.93%, 7.56%, 8.59%, and 3.70%, re-

spectively. In 3 of 4 experimental conditions, category priors changed

between the end of block section 3 (end of Day 1) and the beginning of

block section 4 (beginning of Day 2). Changes in average PC between

the end of Day 1 and beginning of Day 2 in the 50/50, 60/40, 70/30,

and 80/20 conditions changed by the following amounts, respectively:

2.22%, -0.59%, 4.30%, and 6.81%.

4.3.2 Comparison to Bayesian Observers

We compared each participant’s performance to that of our Feature-

Focused Bayesian Observers. As in Chapters 2 and 3, we omitted the

Null, Prevalence MAP Estimate, and Prevalence Probability Matching

Observers from these analyses, as none of their Bayes’ factor exceeded

10−28 when compared to any of the participants’ performance.

We compared participants to computational observers simulated us-

ing the same object sequence. To classify categorization strategy, we

considered the posterior for both the constant and updating category

prior observers that employed that strategy. For example, the posterior

probability for an SD Observer equalled the sum of the posteriors for
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(a) Condition 1 (50/50)

(b) Condition 2 (60/40)

101



M.Sc. Thesis - G. Arthur; McMaster University - Psychology, Neuroscience, and Behaviour

(c) Condition 3 (70/30)

(d) Condition 4 (80/20)

Figure 4.2: Experiment 2 – Learning on Haptic Categorization Task Participant PC averaged
over windows of 135 trials (block sections). Black lines illustrate the average learning curves across all
participants in a given condition. Grey lines illustrate individual participant PC on each block section. n
= 20 (n = 5 within each condition).
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the constant and the updating SD Observers. On Day 1, we classified

18 of 20 participants as using a DO (Light) categorization strategy, 1

participant as using an SD categorization strategy, and 1 participant

as using an SO (Light) categorization strategy (Figure 4.3). On Day 2,

we classifies 12 participants as DO (Light), 7 participants as SD, and 1

participants as DO (Heavy) (Figure 4.3). Figure 4.3 further illustrates

changes in participant categorization strategies between Days 1 and 2,

where we classified 11 participants as maintaining the same strategy

and 9 as changing strategies. Of the 18 participants classified as DO

(Light) on Day 1, 11 remained DO (Light) on Day 2, 6 changed to an

SD categorization strategy, and 1 changed to a DO (Heavy) categoriza-

tion strategy. The participant classified as SD on Day 1 changed to DO

(Light) on Day 2, while the participant classified as SO (Light) on Day

1 changed to SD on Day 2.

For each participant, we quantified the posterior probability for con-

stant and updating category prior observers as the sum of the posteriors

for observers with the same category prior assumption using any of the

categorization strategies. On Day 2, updating category prior observers

best simulated the performance of 15 participants, while constant cate-

gory prior observers best simulated the performance of the remaining 5

participants (Figure 4.4). Of these 5 participants, 2 were tested in the
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Figure 4.3: Experiment 2 – Changes in Strategy Classification Between Experiment Days
Count of participant classification changes between Days 1 and 2 of the experiment. The x-axis represents
a participant’s Day 1 categorization strategy, while the bar colour represents a participant’s Day 2
categorization strategy. *11 DO (Light) participants maintained the same strategy across both study days,
while the remaining 9 participants switched categorization strategies between Days 1 and 2. n = 20.

50/50 condition, 2 in the 60/40 condition, and 1 in the 70/30 condi-

tion. Updating category prior observers best simulated all participants’

performance in the 80/20 condition.

4.4 Discussion

4.4.1 Summary of Findings

Results from this study further support the hypothesis that Bayesian

models can effectively simulate human categorization strategies in our

haptic categorization experiment. We determined that Bayesian ob-
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Figure 4.4: Number of Constant and Updating Prior Strategy Classifications Count of the
number of participants in each experimental condition best simulated by constant and updating category
prior observer on study Day 2. Black bars illustrate the number of participants best simulated by a
constant category prior observer, while white bars illustrate the number of participants best simulated by
an updating category prior observer. n = 20 (n = 5 within each condition).

servers best simulate human performance when they update their be-

liefs of category prevalence. These findings build upon our results from

Experiment 1 to suggest that participants incorporate changes in cat-

egory prevalence, as well as changes in category variation, into their

categorization decisions.

4.4.2 Classifying Participants in the 50/50 Condition

As category priors become more extreme, performance of the constant

and updating category prior observers becomes increasingly different.

Consequently, these two observer types perform quite similarly when
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simulated in the 50/50 experimental condition. In this study we classi-

fied 2 of 5 participants tested in the 50/50 condition as using a constant

category prior categorization strategy on Day 2, while the other 3 were

classified as using an updating category prior strategy. In theory, par-

ticipants should employ an updating category prior strategy on Day 2

because we do not inform them of the category priors in our experiment

instructions. One possible explanation for the constant category prior

strategies is that people may favour 50/50 category priors until they

are sufficiently different from 50/50.

4.4.3 Rationale Behind Categorization Strategy Changes

On Day 1 of this experiment, we classified 18 of 20 participants as

using a DO (Light) categorization strategy. According to Table 2.5,

the DO (Light) Observer approached the highest asymptote on Day 1,

compared to all other observers. This provides a reasonable rationale

for this finding, that a DO (Light) categorization strategy is optimal.

We determined that 9 participants changed categorization strategies

between Days 1 and 2, while 11 participants maintained the same strat-

egy. Table 2.5 indicates that the difference between the SD and DO

(Light) Observer asymptotes decreases as category priors get more ex-

treme. This further explains the change of categorization strategy from
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DO (Light) to SD observed in 6 participants.

4.4.4 Learning the Category Priors

Past studies suggest humans can learn and incorporate category priors

into their decisions during categorization tasks (Berniker et al., 2010;

Nagai et al., 2012). Our results, illustrated in Figure 4.4, further sup-

port this claim. In all experimental conditions, updating category prior

observers best simulated performance more commonly than constant

category prior observers. As the category priors became more extreme

and the updating and constant observers varied more in performance,

updating category prior observers best simulated a larger proportion of

participants’ performance. This suggests that human participants can,

in fact, learn and incorporate category priors into their categorization

decisions.

4.4.5 Human Implications

In the previous chapter, we outlined several considerations that be-

come relevant when testing human participants. These remain relevant

for the participants discussed in the current chapter. See Chapter 3,

Sections 3.4.2, 3.4.3, 3.4.3, and 3.4.4 for details.

107



M.Sc. Thesis - G. Arthur; McMaster University - Psychology, Neuroscience, and Behaviour

4.5 Conclusion

These findings provide further evidence to support the hypothesis that

Bayesian models effectively simulate sensory, and more specifically tac-

tile, perception. They further support the hypothesis that people con-

sider and integrate environmental priors, namely the prevalence of cat-

egories, in the decision making process.
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Chapter 5

General Discussion

5.1 Summary

This project aimed to deepen our understanding of the haptic modality,

specifically the processes behind haptic categorization. We built upon

research from Gauder (2024), which suggested that Bayesian Observers

that account for sensory measurement noise experienced by humans can

effectively model human haptic categorization. We used computational

observers to model human performance on two variations of a haptic

categorization task, during which participants categorize haptic stimuli

and use feedback to learn two novel Gaussian categories, labelled A

and B. We used haptic stimuli that differ in number of sides and dot

spacing, 2 features that informed category identity.
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5.1.1 Computational Observers

We produced computational observers that use unique computational

approaches to model this categorization task. Our central model, re-

ferred to as our Feature-Focused Bayesian Observer, weighted the avail-

able sensory features (sides and dots) based on their reliability to ‘feel’

and categorize haptic stimuli. We successfully modelled 3 versions of

this Feature-Focused Bayesian Observer, each of which learned the cat-

egories and categorized the stimuli using one or both of the available

sensory features (sides, dots). We compared participants to our com-

putational models using Bayesian model comparison and identified the

observer that best simulated participant performance (i.e. best simu-

lated their categorization strategy) with high accuracy.

5.1.2 Experiment 1: Modification of Category Variation

We tested 24 human participants in 1 of 4 experimental conditions,

where each condition had unique overlap between the Gaussian cate-

gories A and B. Participants tested in the condition with the least cate-

gory overlap achieved the highest average PC, while participants tested

in the condition with the most category overlap achieved the lowest av-

erage PC. By study Day 2, all but 1 of the 24 participants’ performance

was best simulated by either an SD or a DO (light) Observer. In all

110



M.Sc. Thesis - G. Arthur; McMaster University - Psychology, Neuroscience, and Behaviour

cases, one of these two Observers produced the highest percent correct

on the task, suggesting that participants employed Bayesian-optimal

categorization strategies during the experiment. These categorization

strategy classifications are further validated by our exploration of EP

use, where participant EPs closely aligned with the categorization strat-

egy identified.

5.1.3 Experiment 2: Modification of Category Prior Probabilities

We tested 20 human participants in 1 of 4 experimental conditions,

where each condition received a different ratio of Category A and B

objects on study Day 2. Bayesian models that did not assume equal

prevalence of A’s and B’s and instead estimated the prevalence of each

category simulated the performance of 15 participants better than mod-

els that did make this assumption. These results support our hypothesis

that humans can estimate and integrate category prevalence into their

categorization decisions.

5.2 Future Directions

5.2.1 Quantify Sensory Noise for Individual Participants

Individual differences pose a challenge for researchers during behavioural

studies. While humans share many behaviours, each individual may
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have a distinct process and physical compositions (ex. tactile receptor

density, skin compliance, etc.) for considering and interpreting relevant

variables when completing these studies. The average values for sensory

noise considered in this study were calculated using data collected from

participants tested previously on the same object set. Future research

may test participants on that initial task to quantify their individual

sensory noise prior to testing them on a categorization task, allowing

the researchers to produce Bayesian models with their specific sensory

noise.

Another factor that makes an individual’s sensory noise difficult to

quantify is that it may differ across trials. For example, participant

focus and attention span influence sensory noise and almost certainly

vary throughout the experiment. Because these factors can vary mean-

ingfully and prove almost impossible to measure, we rely on our exper-

imental design to maximize participant focus and minimize the impact

of this noise on performance. We implement breaks and provide partic-

ipants with their scores throughout the experiment to maximize focus

and motivation.
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5.2.2 Quantify Sensory Noise for Individual Stimulus Levels

The sensory noise associated with a stimulus commonly changes with

stimulus level, where its magnitude is a constant fraction of the stim-

ulus level, rather than remaining constant across all stimulus levels.

This phenomenon is described by Weber’s law (Ekman, 1959). Future

studies may conduct a two interval forced choice task to determine the

sensory noise associated with discriminating between specific feature

levels (i.e. 4mm dot spacing, 5mm dot spacing, etc.), rather than as-

suming a constant value of sensory noise across feature levels.

5.2.3 Quantify Sensory Noise based on Alternative Sensory Cues

The Bayesian observers considered in these studies assume that all par-

ticipants interpret the sides and dots features as number of sides and dot

spacing. While all participants feel objects with these same features,

they don’t necessairly attend to the same sensory cues. For instance,

rather than interpreting number of sides, participants may consider

side length or vertex angle. In a similar manner, they may interpret

dot spacing as number of dots or vibration frequency when swiping

across dots. While such alternative sensory cues provide information

about the same object feature, they may not have a linear relation-

ship with the number of sides and dot spacing cues and corresponding
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sensory noise that we considered.

5.2.4 Expand Object Set

Future studies may extend the object set in the current study to greater

than 25 objects, in turn creating objects with smaller increments be-

tween feature values. The current object set uses increments of 1 side

and 1mm for the sides and dots features, respectively. These increments

may exceed the magnitude of some participants’ sensory noise, making

it difficult to quantify their sensory noise using the current object set.

A smaller increment would allow us to better measure an individual’s

sensory noise and model their performance.

5.2.5 Modify Categories Further

In the current study, we test participants on 2 variations of our haptic

categorization task. Analogous studies in other sensory modalities test

participants on sensory categorization tasks with further manipulations

applied to Gaussian categories, such as adding correlations between di-

mensions of the category (Bankieris et al., 2017). In a similar manner,

future studies may further manipulate the categories in this haptic cat-

egorization task to determine whether Bayesian observers remain effec-

tive in simulating human performance. For example, we could further
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modify our categories to correlate the sides and dots features within

each category, in turn adding a level of complexity for participants to

learn and integrate into their decision-making process.

5.2.6 Automate Exploratory Procedure Scoring

Agreement between our model comparison and EP scoring results dra-

matically increased our confidence in the ability of our Feature-Focused

Bayesian Observer and model comparison process to effectively simulate

and classify human performance and categorization strategy. Put dif-

ferently, our EP analysis strongly supported the accuracy of our model

comparison results. Ideally, we could score EP use across all trials

and participants. However, watching and scoring trial videos proves

extremely time consuming and tedious. An undergraduate student in

the lab began preliminary exploration of machine learning algorithms

that measure contact time between an object and a hand on a given

trial. The surgical field has had success in a similar area, where they

designed deep learning models that can identify surgical hand gestures

and procedure types with accuracy significantly above chance (Luongo

et al., 2021; Khalid et al., 2020). This emerging field of deep learning

video analysis provides a promising foundation for automating our EP

scoring process.
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5.3 Broader Applications

As the theory that Bayes’ Theorem effectively models sensory per-

ception gains traction and evidence-based support, we can begin to

broaden its applications. Past studies extend this research to special

populations, such as autistic spectrum disorder (ASD), to propose the

theory that ASD individuals establish unique priors compared to con-

trol individuals, resulting in varied perception of their environment

(Angeletos Chrysaitis and Seriès, 2023). Despite this theory’s pop-

ularity, studies provide weak evidence to support its claims. Sapey-

Triomphe et al. (2023) recently used Bayesian models to find evidence

that ASD populations do not have unique priors, but rather a unique

learning process that results in varied perception. Our Feature-Focused

Bayesian Observer models this learning phase and could further extend

this research to haptic categorization tasks.

We can further extend this research to robotics that aim to simulate

human tactile behaviours. Yuan et al. (2017) investigate the ability of a

robot to perceive object hardness, a feature commonly explored using

pressure. Solak and Jamone (2023) further explore hand movements

for robotic haptic exploration, attempting to incorporate movements

that allow an autonomous robotic hand to obtain information about
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an unknown object in a safe and effective manner. Our findings asso-

ciate hand movements with optimal and sub-optimal strategies, which

may help inform these findings and possibly aid in optimizing robotic

Exploratory Procedure (EP)s.
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Appendix A

Supplemental Information

A.1 Participant Instructions

Below are the experiment instructions recorded and played for partic-

ipants at the beginning of each study day. We repeated instructions

for participants until they could provide a sufficient summary to the

experimenter.

A.1.1 Experiment 1 – Manipulation of Category Sigma: Participant In-

structions

Days 1 & 2 “For this experiment, your task will be to try to learn

two different categories of objects using only touch. These two object

categories are called Elyk and Noek and they differ by both shape and

the density of dots on top. To be as good as you can, you will need to

pay attention to both of these. Half of the objects are Elyk and half
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are Noek. There are many different Elyks and many different Noeks,

and some of them look like each other. For example, say we measured

the height of a group of 5-year-old’s and 7-year-old’s. Generally older

children will be taller, but some younger children will be as tall or taller

than some older children.

During the experiment, you will sit behind this sheet and reach your

hands through where I can give you an object to explore. During a

trial, I will reach into a box and pull out an object at random. I will

place the object on the table and give you five seconds to explore it.

The computer will beep when the trial is over; as soon as you hear this

sound, immediately put the piece down. I will then put your answer

into the computer and it will respond with whether you were correct

or incorrect. This sound will play when you are correct, and this sound

when you are incorrect. The first trial may seem strange as you will

need to answer without any knowledge of the piece, but as the test

proceeds you’ll start acquiring knowledge.

This experiment is divided into blocks. There are 45 trials in each

block. There will be a one-minute break after every block, and a five-

minute break after every three blocks. At the end of each block, I

will reveal your score. The categories will not change throughout the

experiment; every block will follow the same procedures, so you’ll find
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out if you’re improving over time. We will also be recording your hands

as you explore the objects. Do you have any questions?”

A.1.2 Experiment 2 – Manipulation of Category Priors: Participant In-

structions

Day 1 “Imagine that you spent the morning collecting seashells on a

beach. You now have a large bin of shells. Scientists recently discovered

two new types of shells on this beach, called Elyks and Noeks. Your

task is to learn to identify Elyks and Noeks, which differ by both shape

and the density of dots on top, using only touch. To be as good as you

can, you will need to pay attention to both of these features. Half of

the shells on this beach are Elyk and half are Noek. There are many

different Elyks and many different Noeks, and some of them look like

each other. For example, say we measured the height of a group of 5-

year-old’s and 7-year-old’s. Generally older children will be taller, but

some younger children will be as tall or taller than some older children.

During the experiment, you will sit behind this sheet and reach your

hands through. During a trial, I will select a shell from your collection,

place it on the table, and give you five seconds to explore it. The

computer will beep when the trial is over; as soon as you hear this

sound, immediately put the shell down. I will then put your answer
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into the computer and it will respond with whether you were correct

or incorrect. This sound will play when you are correct, and this sound

when you are incorrect. At the end of the trial, I will put the shell

back into your bin of seashells. The first trial may seem strange as you

will need to answer without any knowledge of the shell, but as the test

proceeds, you’ll start acquiring knowledge.

This experiment is divided into blocks. There are 45 trials in each

block. There will be a one-minute break after every block, and a five-

minute break after every three blocks. At the end of each block, I

will reveal your score. The categories will not change throughout the

experiment; every block will follow the same procedures, so you’ll find

out if you’re improving over time. We will also be recording your hands

as you explore the objects. Do you have any questions?”

Day 2 “Last week, we asked you to imagine collecting seashells on a

beach with two new types of shells, Elyks and Noeks. That beach had

the same amount of Elyks and Noeks. This week you have moved to

a new beach. Scientists have also discovered Elyks and Noeks at this

new beach, but do not know whether half of the shells on the beach are

Elyks and half are Noeks, or if one shell type is more common than the

other.
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Imagine now that you collected a bin of shells from this new beach

and must learn to identify Elyks and Noeks, which differ by both shape

and the density of dots on top, using only touch. To be as good as you

can, you will need to pay attention to both of these features. There

are many different Elyks and many different Noeks, and some of them

look like each other. For example, say we measured the height of a

group of 5-year-old’s and 7-year-old’s. Generally older children will be

taller, but some younger children will be as tall or taller than some

older children.

During the experiment, you will sit behind this sheet and reach your

hands through. During a trial, I will select a shell from your collection,

place it on the table, and give you five seconds to explore it. The

computer will beep when the trial is over; as soon as you hear this

sound, immediately put the shell down. I will then put your answer

into the computer and it will respond with whether you were correct

or incorrect. This sound will play when you are correct, and this sound

when you are incorrect. At the end of the trial, I will put the shell back

into your bin of seashells.

This experiment is divided into blocks. There are 45 trials in each

block. There will be a one-minute break after every block, and a five-

minute break after every three blocks. At the end of each block, I
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will reveal your score. The categories will not change throughout the

experiment; every block will follow the same procedures, so you’ll find

out if you’re improving over time. We will also be recording your hands

as you explore the objects. Do you have any questions?”

A.2 Experimenter Instructions for Compiling EP Data

Table A.1: Exploratory Procedure Compilation Guidelines Different pairs of experimenters (from
the 4 available experimenters) reviewed and scored video recordings of each participant’s hand movements
during this experiment. If the pair of experimenters scored any movements differently, then a third
experimenter followed these guidelines to compile information from the pair of experimenters. Note that
experimenters were instructed to highlight information in yellow if they were uncertain of their response.

Case Resolution
Experimenter responses match Record matching response
One experimenter highlighted information in
yellow (unsure of response) and the other did
not

Record non-highlighted response

Experimenter comments provide reasoning and
resolution for a disagreement

Use comments to determine the appropriate in-
formation

Trial times differ by less than 4 seconds Average the two times
One experimenter records timing in trial as
‘middle’ and the other records ‘both’

Record ’both’

One experimenter records timing in trial as ‘Be-
ginning & End’ and the other records ‘both’

Record ‘Beginning & End’

One experimenter records ‘TRUE’ for an EP and
the other records ‘FALSE’

Watch the trial video. If the procedure was not
used, record ‘FALSE’. If the procedure was used,
record ‘TRUE’ and record the remaining infor-
mation as done by the experimenter that ini-
tially entered ‘TRUE’.

The procedure is static. One experimenter
recorded ’TRUE’ at ’beginning/end’ and the
other recorded ’FALSE’

Record ’TRUE’ at ’beginning/end’

None of the above rules apply Watch the trial video. Record the the response
of the experimenter with whom you agree.

All 3 experimenters disagree All three experimenters rewatch the trial video
together and discuss to determine the correct
information to record

123



M.Sc. Thesis - G. Arthur; McMaster University - Psychology, Neuroscience, and Behaviour

A.3 Chapter 3: Supplemental Information

Figure A.3.1: Experiment 1 – Categorization Strategy Classification for Individual
Participants For each of the 24 participants in Experiment 1, we compared windows of 135 trials (block
sections) through the 810 trials total to 5 Feature-Focused Bayesian Observers to identify the observer that
best simulated participant performance. Participants are listed according to the number of times that we
recorded a change in strategy. We identified 5 participants as maintaining the same categorization strategy
throughout all block sections, 7 participants as making 1 strategy change, 5 participants as making 2
strategy changes, 5 participants as making 3 strategy changes, 1 participant as making 4 strategy changes,
and 1 participant as making 5 strategy changes.
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(a) Participant 1 Days 1 & 2

(b) Participant 2 Days 1 & 2

(c) Participant 3 Days 1 & 2
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(d) Participant 4 Days 1 & 2

(e) Participant 5 Days 1 & 2

(f) Participant 6 Days 1 & 2

(g) Participant 7 Day 1 & 2
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(h) Participant 8 Day 1 & 2

(i) Participant 9 Day 1 & 2

(j) Participant 10 Days 1 & 2

(k) Participant 11 Days 1 & 2
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(l) Participant 12 Days 1 & 2

(m) Participant 13 Days 1 & 2

(n) Participant 14 Days 1 & 2

(o) Participant 15 Days 1 & 2
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(p) Participant 16 Days 1 & 2

(q) Participant 17 Days 1 & 2

(r) Participant 18 Days 1 & 2

(s) Participant 19 Days 1 & 2
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(t) Participant 20 Days 1 & 2

(u) Participant 21 Days 1 & 2

(v) Participant 22 Days 1 & 2

(w) Participant 23 Days 1 & 2

130



M.Sc. Thesis - G. Arthur; McMaster University - Psychology, Neuroscience, and Behaviour

(x) Participant 24 Days 1 & 2

Figure A.3.2: Experiment 1 – Participant Performance Compared to Winning Model
Repetitions We plot the learning curve for each of the 24 participants tested in Experiment 1 on Day 1
(left) and Day 2 (right). On each day, we classified participant categorization strategies using our model
comparison analysis, which compared human performance to that of computational observers. Each
computational observer was run on 10 simulated repetitions of the experiment. In grey, we plot each
repetition of the most probable observer for each participant on Days 1 and 2. Figures a to x show results
for participants 1 through 24.

Table A.2: Experiment 1 – Performance Differences Between Days Summary of the difference in
PC of participants between the end of Day 1 and the end of Day 2. We classified the included participants
as individuals who maintained the same categorization strategy between study days. On average, PC
increased by 1.17%.

Participant Number PCDay 2 − PCDay 1

1 -3.61
3 1.32
4 1.34
5 3.19
6 -0.77
8 2.70
10 -0.40
11 0.21
12 -0.64
14 0.34
15 3.56
17 3.67
19 -1.64
22 1.69
23 6.52

Average 1.17

A.4 Chapter 4: Supplemental Information
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Table A.3: Experiment 1 – Performance Differences Between Days Summary of the difference in
percent correct scores of participants between the end of Day 1 and the end of Day 2. We classified the
included participants as individuals who change categorization strategies between study days. On average,
PC increased by 3.79%.

Participant Number PCDay 2 − PCDay 1

2 3.80
7 2.56
9 3.56
13 7.27
16 4.17
18 3.68
20 2.70
21 5.04
24 1.33

Average 3.79
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Figure A.4.1: Experiment 2 – Categorization Strategy Classification for Individual
Participants For each of the 20 participants in Experiment 2, we compared windows of 135 trials (block
sections) through the 810 trials total to 10 Feature-Focused Bayesian Observers to identify the observer
that best simulated participant performance. A white * indicates that the best matched observer
estimated the prevalence of Category A and B (updating category prior observers, or [U]), rather than
assuming they appeared in equal proportions (constant category prior observers, or [C]). Participants are
listed according to the experimental condition in which they were tested. An updating category prior
observer best simulated participant performance 40 of 60 total block sections on Day 2.

(a) Participant 1 Days 1 & 2
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(b) Participant 2 Days 1 & 2

(c) Participant 3 Days 1 & 2

(d) Participant 4 Days 1 & 2

(e) Participant 5 Days 1 & 2
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(f) Participant 6 Days 1 & 2

(g) Participant 7 Day 1 & 2

(h) Participant 8 Day 1 & 2

(i) Participant 9 Day 1 & 2
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(j) Participant 10 Days 1 & 2

(k) Participant 11 Days 1 & 2

(l) Participant 12 Days 1 & 2

(m) Participant 13 Days 1 & 2
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(n) Participant 14 Days 1 & 2

(o) Participant 15 Days 1 & 2

(p) Participant 16 Days 1 & 2

(q) Participant 17 Days 1 & 2
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(r) Participant 18 Days 1 & 2

(s) Participant 19 Days 1 & 2

(t) Participant 20 Days 1 & 2

Figure A.4.2: Experiment 2 – Participant Performance Compared to Winning Model
Repetitions We plot the learning curve for each of the 20 participants tested in Experiment 2 on Day 1
(left) and Day 2 (right). On each day, we classified participant categorization strategies using our model
comparison analysis, which compared human performance to that of computational observers. Each
computational observer was run on 10 simulated repetitions of the experiment. In grey, we plot each
repetition of the most probable observer for each participant on Days 1 and 2. Figures a to t show results
for participants 1 through 20.
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Table A.4: Experiment 2 – Performance Differences Between Days Summary of the difference in
percent correct scores of participants between the end of Day 1 and the end of Day 2. We classified the
included participants as individuals who change categorization strategies between study days. On average,
PC increased by 5.57%.

Participant Number PCDay 2 − PCDay 1

2 0.49
3 4.20
7 -1.98
8 8.89
11 8.40
12 2.96
13 2.96
14 11.60
15 2.96
17 7.65
18 13.09

Average 5.57

Table A.5: Experiment 2 – Performance Differences Between Days Summary of the difference in
PC of participants between the end of Day 1 and the end of Day 2. We classified the included participants
as individuals who maintained the same categorization strategy between study days. On average, PC
increased by 3.32%.

Participant Number PCDay 2 − PCDay 1

1 4.69
4 -0.74
5 4.44
6 2.96
9 3.70
10 0.99
16 1.73
19 5.68
20 6.42

Average 3.32
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