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Abstract
The enduring challenge in computed tomography (CT) imaging is mitigating the

radiation risks associated with high-dose protocols while maintaining image qual-

ity. This research introduces an innovative approach that diverges significantly

from conventional methodologies, using Generative Diffusion Models (GDM) to

enhance the quality of low-dose CT scans to that of high-dose scans. This advance-

ment is particularly pivotal as it addresses the crucial balance between minimizing

radiation risk and preserving diagnostic integrity. At the heart of our approach

is a distinctive application of a Convolutional Neural Network (CNN) designed

not to filter noise but to meticulously identify and segregate intrinsic noise fea-

tures within paired high and low-dose CT images. This method stands in contrast

to traditional techniques that often rely on generic random noise models, lacking

specificity to actual imaging conditions. By accurately modeling the unique noise

profile of low-dose scans, we enable our GDM to undertake a reverse diffusion

process, effectively reducing noise and enhancing image clarity to equal high-dose

standards. The significance of transitioning from low-dose to high-dose imaging

quality without additional radiation is offering a path to safer imaging protocols

that do not compromise quality. We present preliminary findings substantiated

by both PSNR and SSIM metrics, demonstrating improvement in image quality

through our method. In addition to delineating our approach, this research draws

comparisons with existing methods, particularly focusing on PALLETE, a known

algorithm in the field. Our comparative analysis illustrates the superiority of our

model in terms of image quality, showcasing our method’s potential for enhance-

ment in radiological imaging.
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Chapter 1

Introduction

The advent of Computed Tomography (CT) has undeniably revolutionized the

medical field, offering unparalleled internal views for diagnostic accuracy. However,

the use of ionizing radiation in CT scanning has raised significant health concerns,

primarily due to the potential risk of cancer and other radiation-induced condi-

tions (Brenner and Hall 2007; Pearce et al. 2012). These concerns have propelled

a shift towards low-dose CT protocols, aimed at minimizing patient exposure to

harmful radiation. While these protocols are a step forward in enhancing patient

safety, they introduce a new challenge: increased image noise, which can signifi-

cantly compromise diagnostic clarity and reliability (Pugliesi 2018). The balance

between reducing radiation exposure and maintaining high-quality diagnostic im-

ages presents a critical conundrum in medical imaging, highlighting the need for

innovative solutions. Traditional approaches to noise reduction in CT imaging,

such as Filtered Back Projection (FBP) and Iterative Reconstruction (IR), have
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provided pathways to clearer images at lower doses. However, these techniques of-

ten fall short when balancing noise suppression against detail preservation, some-

times introducing artifacts or losing vital diagnostic information (Willemink and

Noël 2019). As the limitations of these conventional methods became apparent,

the medical imaging community turned its attention to more advanced solutions.

In recent years, artificial intelligence (AI), particularly deep learning, has emerged

as a powerful tool in various domains, including medical imaging. Convolutional

Neural Networks (CNNs), a class of deep learning models, have shown particu-

lar promise in enhancing image quality by learning complex noise patterns and

structures directly from the data (Wang et al. 2019). These models have redefined

expectations for what is possible in terms of noise reduction and detail enhance-

ment, but they are not without their drawbacks. Generalization across different

noise levels and patient scenarios remains a challenge, as does the computational

intensity of training and deploying these models (Rueckert and Schnabel 2019).

Generative Adversarial Networks (GANs) introduced a novel paradigm by gen-

erating detailed, high-quality images from low-dose CT data. Despite their po-

tential, GANs are often criticized for their tendency towards mode collapse and

the introduction of non-authentic details, which could mislead diagnosis (Yi et al.

2019).

Enter Generative Diffusion Models (GDM), a new class of generative models

that have taken the field of image processing by storm. Known for their impressive

ability to generate and enhance images, GDMs offer a structured approach to image

synthesis, gradually transforming noise into detailed, coherent structures through

a controlled process. This method holds significant promise for medical imaging,

2
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particularly for enhancing low-dose CT scans, by learning and reversing the noise

distribution inherent to these images (Hung et al. 2023).

Despite the promise of GDMs, their application in enhancing low-dose CT im-

ages remains underexplored. The majority of existing studies have concentrated

on natural image processing, with only a handful venturing into the complexities

of medical imaging and even fewer addressing the specific challenges of CT noise.

Our research aims to bridge this gap, leveraging the unique capabilities of GDMs

in conjunction with CNNs to target the distinctive noise patterns of low-dose CT

images. By doing so, we propose a novel solution that not only adheres to the

ALARA(Low As Reasonably Achievable) principle (Miller and Schauer 1983) but

also pushes the boundaries of what’s achievable in low-dose CT imaging quality.

1.1 Background and Context

1.1.1 Historical Development of CT Imaging Technology

The invention of Computed Tomography (CT) imaging in the early 1970s by Sir

Godfrey Hounsfield and Dr. Allan Cormack marked a revolutionary advancement

in medical diagnostics (Hounsfield 1973; Cormack 1973). This innovative technol-

ogy, which garnered them the Nobel Prize in Medicine in 1979, employed X-ray

measurements from various angles to create cross-sectional images of the body,

introducing a groundbreaking perspective in medical examinations.

Initially, CT scanners were exclusively used for head imaging, requiring exten-

sive hours for data acquisition and image reconstruction. However, recognizing the

significant potential of CT scans, technological advancements quickly ensued. The

3
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development of whole-body scanners by the late 1970s substantially broadened the

scope of CT imaging applications (Ambrose 1976).

Technological progress continued to enhance the functionality of CT scanners,

notably with the introduction of spiral (or helical) CT technology in the 1980s,

which allowed for continuous data acquisition as patients moved through the scan-

ner (Kalender et al. 1989). This innovation dramatically reduced scan times and

enhanced image resolution, leading to more detailed and precise diagnoses. The

late 1990s saw further advancements with the development of multislice (or multi-

detector) CT scanners, which significantly decreased scanning times and improved

image quality by capturing multiple slices in a single rotation, facilitating compre-

hensive three-dimensional reconstructions (Flohr et al. 2005).

CT imaging has become a fundamental component of medical diagnostics and

treatment planning, providing intricate details of bones, blood vessels, and soft

tissues. It has proven invaluable in diagnosing a variety of conditions, such as

injuries, infections, tumors, and vascular diseases (Smith and Webb 2010). The

ability of CT imaging to deliver rapid and accurate diagnostic information is es-

pecially critical in emergencies, where it can be life-saving (Body CT (CAT Scan)

2024).

Moreover, CT imaging is instrumental in the planning and execution of medical

procedures and surgeries, evaluating the effectiveness of treatments, and monitor-

ing disease progression (Edelmers et al. 2024). Its extensive application across

various medical fields, including oncology, cardiovascular medicine, neurology, and

orthopedics, underscores its importance in modern healthcare.

4
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1.1.2 Evolution from Traditional CT Scanning to Low-Dose

CT Protocols

Despite the substantial benefits of CT imaging, traditional scanning methods have

been scrutinized due to the associated health risks from ionizing radiation, such as

increased cancer risk (Brenner and Hall 2007; Pearce et al. 2012). This concern has

led to the adoption of low-dose CT protocols, emphasizing the ALARA principle

to minimize radiation exposure while retaining image quality (Schauer and Linton

2009).

The transition to low-dose CT protocols involved multiple strategies, includ-

ing adjustments in the X-ray tube current, the use of advanced noise-reduction

software, and the optimization of scanning parameters to specific diagnostic needs

(Hara et al. 2009). The advent of iterative reconstruction techniques and the in-

tegration of AI and machine learning into medical imaging has further advanced

low-dose CT, allowing for significant reductions in radiation dosage while main-

taining, or even improving, the quality of diagnostic images (Beister et al. 2012;

Li et al. 2014).

As CT technology continues to advance, it is expected to uphold the delicate

balance between patient safety and diagnostic efficacy, ensuring CT imaging re-

mains a vital tool in medical diagnostics while addressing radiation safety concerns

(Dobbins et al. 2014).

5
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1.2 Advances in CT Imaging: Traditional Tech-

niques, AI Integration, and Future Direction

Noise reduction in CT imaging has significantly evolved, transitioning from basic

filtering techniques to more sophisticated algorithms aimed at improving image

clarity and diagnostic accuracy. Traditional methods like Filtered Back Projection

(FBP) have been a mainstay due to their computational efficiency, crucial for time-

sensitive applications such as emergency diagnostics. However, the limitation of

FBP lies in its predisposition to noise, particularly under low-dose conditions,

which can obscure critical details in the images (Hsieh 2003; Karimi et al. 2016).

The development of Iterative Reconstruction (IR) techniques marked a sig-

nificant leap forward. IR methods, such as Algebraic Reconstruction Technique

(ART) and Model-Based Iterative Reconstruction (MBIR), systematically refine

image quality by reducing noise and artifacts. They work by approximating a so-

lution through iterative processing, leading to higher quality images that facilitate

better diagnosis, particularly in challenging areas like oncology and cardiovascular

diseases (Beister et al. 2012; Ramirez Giraldo et al. 2011). Despite the advantages,

the higher computational demands of IR compared to FBP require more powerful

processing hardware and can result in longer image processing times, which might

limit their use in emergency settings (Li et al. 2014).

The integration of Artificial Intelligence (AI) in CT imaging has been transfor-

mative, marking a departure from conventional imaging techniques. Deep learn-

ing, a subset of AI, utilizes algorithms modeled after the human brain, enabling

6
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significant enhancements in image analysis, noise reduction, and interpretation ac-

curacy (Greenspan et al. 2016; Wang et al. 2017). Convolutional Neural Networks

(CNNs), a class of deep learning models, have demonstrated exceptional capabil-

ities in identifying complex patterns in imaging data, enabling the detection of

anomalies that may be invisible to the human eye (Litjens et al. 2017; Shen et al.

2017).

AI technologies not only provide superior noise reduction compared to tradi-

tional methods but also significantly reduce the amount of radiation needed to

produce high-quality images, aligning with patient safety initiatives (Kawamura

et al. 2024). Moreover, AI’s predictive analytics can assist in prognosis and treat-

ment planning, leading to more personalized patient care. However, challenges

remain, including the need for large annotated data sets for training and issues

related to the interpretability of AI models, known as the "black box" problem.

Advances in explainable AI are beginning to address these concerns, improving

trust and understanding among clinicians (Yamashita et al. 2018).

The synergistic integration of traditional noise reduction techniques and AI

into CT imaging heralds a new era in medical diagnostics. This evolution not

only enhances diagnostic precision but also significantly improves patient safety

by minimizing radiation exposure. The future of CT imaging is likely to be char-

acterized by further personalization, with AI-driven algorithms tailoring imaging

protocols to individual patient characteristics and clinic scenarios (Pianykh 2020).

Moreover, as AI continues to evolve, we can anticipate the development of

more advanced diagnostic tools that integrate real-time image analysis, offering

7
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immediate insights during imaging procedures. This could revolutionize areas

such as interventional radiology and oncological surgery, where precise imaging

is crucial. However, realizing the full potential of these advancements requires

overcoming existing challenges, such as ethical concerns related to data privacy,

standardizing AI applications in clinical practice, and ensuring equitable access to

this cutting-edge technology.

In conclusion, while traditional noise reduction techniques continue to play a

vital role in CT imaging, the integration of AI promises to enhance every aspect

of this field, from diagnostic accuracy to patient safety.

1.3 Generative Models in Medical Imaging

1.3.1 Generative Adversarial Networks (GANs) in Medical

application

The integration of generative models, especially Generative Adversarial Networks

(GANs), into medical imaging represents a significant leap forward, offering inno-

vative solutions and transformative potentials in enhancing Computed Tomogra-

phy (CT) imaging and beyond. This section delves into the recent advancements,

applications, and multifaceted challenges of generative models, emphasizing their

growing impact on the medical imaging landscape.

Since their inception by Ian Goodfellow et al. in 2014, GANs have revolution-

ized the paradigm of machine learning with their unique architecture comprising

8
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two competing neural networks: the generator and the discriminator. This ad-

versarial process has led to the generation of high-fidelity images, which are in-

creasingly leveraged in medical imaging for their ability to produce detailed and

realistic synthetic images (Goodfellow et al. 2014; Yi et al. 2019).

In the realm of CT imaging, GANs have found profound applications includ-

ing the enhancement of image quality in low-dose CT scans, generating virtual

contrast-enhanced images without actual contrast administration, and creating

synthetic datasets for training and validation purposes (Kazeminia et al. 2020).

These applications significantly contribute to dose reduction, improved patient

safety, and broader training datasets for machine-learning models.

Furthermore, GANs are instrumental in addressing incomplete datasets by gen-

erating synthetic images to fill gaps, thereby enabling more comprehensive anal-

yses. Their application extends to the generation of auxiliary images for multi-

modal disease diagnosis and the simulation of patient-specific anatomical models

for preoperative planning and education (Costa et al. 2018).

Despite the promising advancements, GANs face critical challenges in CT imag-

ing. The risk of generating anatomically incorrect or misleading features could lead

to misdiagnoses or inappropriate treatment decisions. The ’black box’ nature of

these networks, coupled with the difficulty in validating synthetic images against

real counterparts, underscores the need for transparent and interpretable models

(Han et al. 2020; Kazeminia et al. 2020).

Additionally, GANs require large volumes of high-quality, data for training,

a significant challenge given the privacy concerns and data scarcity in medical

9
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settings. Addressing these issues demands robust data governance frameworks

and innovative solutions to mitigate the risks of over-fitting and data bias (Yi et

al. 2019).

Looking forward, the integration of GANs with other AI techniques, such as

reinforcement learning and unsupervised learning, could offer new pathways for

innovation. Continuous efforts in enhancing model explainability, ethical AI prac-

tices, and cross-disciplinary collaborations are essential for leveraging GANs’ full

potential in improving clinic outcomes and advancing medical research (Mirsky

and Lee 2021).

Generative Adversarial Networks signify an important step in medical imaging,

offering unparalleled opportunities for enhancing CT scan quality. Addressing

the current challenges and ethical considerations is crucial for advancing their

application responsibly.

1.3.2 Generative Diffusion Model in Medical Application

Generative Diffusion Models (GDMs) have emerged as a groundbreaking class of

generative models that simulate the gradual diffusion process to create or edit

images, including medical images. This innovative advancement in the field of

medical imaging heralds a novel methodology for generating high-quality, realistic

images that can bolster diagnostic accuracy, patient care, and medical research

(Sohl-Dickstein et al. 2015; Dhariwal and Nichol 2021).

Distinct from GANs, which utilize an adversarial process between the generator

10
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and discriminator networks to fabricate new images, GDMs commence by intro-

ducing noise to an image and then master the reversal of this process. Through

iterative refinement, these models progressively reduce the added noise, culminat-

ing in clear, detailed images. This method has demonstrated exceptional efficacy

in crafting detailed medical images, where precision and accuracy are crucial (Ho

et al. 2020; Song et al. 2020).

Within the realm of CT imaging, GDMs have showcased potential across sev-

eral pivotal domains. A noteworthy application includes producing high-quality

images from low-dose CT scans, thereby diminishing radiation exposure for pa-

tients while either maintaining or enhancing the diagnostic quality of the images.

This capability is in harmony with the continuous efforts to improve patient safety

in medical imaging. Additionally, GDMs have been employed in generating syn-

thetic medical images for training purposes, thereby widening the pool of training

data without compromising patient privacy or subjecting patients to additional

radiation exposure.

The capacity of GDMs to generate and manipulate images also unveils new

avenues for simulating diverse disease states, offering a precious tool for medical

education and the planning of complex treatments or surgeries. By generating

images that accurately depict a broad spectrum of pathological conditions, these

models can aid clinicians and students in better comprehending and preparing for

real-life scenarios.
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Notwithstanding their promising applications, GDMs confront challenges, par-

ticularly regarding the ethical utilization of synthetic data and ensuring the accu-

racy and reliability of the generated images. The risk of producing images that

are realistic yet inaccurate in their portrayal of anatomy or pathology poses a

significant concern.

In essence, Generative Diffusion Models (GDMs) offer immense potential for

medical imaging through their ability to generate realistic, high-quality images

that support diagnosis, treatment planning, and medical education. The ability

of GDMs to produce high-fidelity images from lower-quality inputs is particularly

transformative. By focusing on the application of GDMs for converting high-

dose CT scans into low-dose equivalents, this thesis aims to tackle one of the

most pressing concerns in medical imaging: reducing patient exposure to radiation

without compromising the diagnostic quality of the images.

As this technology continues to mature, navigating the associated challenges

with thoughtfulness and ethical consideration will be paramount to unlocking its

full potential in enhancing patient care and propelling medical knowledge forward.

The transformative capability of GDMs to create accurate and detailed images

from low-dose scans underscores the importance of this research direction, promis-

ing significant advancements in medical imaging technology that prioritize both

patient safety and image quality. Chapter 2 provides further discussion on Gener-

ative Diffusion Models and their implications in medical imaging.
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1.4 Conclusion

The continuous advancement of computed tomography (CT) imaging reflects sig-

nificant progress in medical technology. Yet, amidst these advancements, signif-

icant research gaps persist, particularly in integrating advanced artificial intel-

ligence (AI) methodologies, such as Generative Diffusion Models (GDMs), into

low-dose CT imaging. These gaps highlight the unexplored potential of advanced

AI in enhancing diagnostic accuracy, refining treatment strategies, and advancing

patient safety.

A notable research void is the limited application of advanced AI, especially

GDMs, in the realm of low-dose CT imaging. Despite the utility of technologies

like Convolutional Neural Networks (CNNs) and Generative Adversarial Networks

(GANs), GDMs remain underexplored due to their novelty and the complexi-

ties associated with medical imaging integration. This oversight is significant, as

medical imaging, particularly Low-dose CT, faces unique challenges such as noise

reduction that are distinct from natural image processing.

In conclusion, while the prospects of integrating AI, in Medical imaging, are

promising, addressing existing research gaps is crucial. Collaborative efforts from

the research community, healthcare professionals, industry, and regulatory bodies

are essential to harness the full potential of AI.
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Chapter 2

Diffusion Models

2.1 Introduction to Diffusion Models

Diffusion models are an emerging and fascinating subset of generative models in the

expansive field of artificial intelligence (AI) and deep learning. Originating from

principles observed in statistical physics, particularly from phenomena like heat

diffusion and the random movement of particles, these models have transitioned

into the realm of machine learning, presenting innovative applications in image

processing and beyond.

The essence of diffusion models lies in the process where an image or signal

is incrementally corrupted by noise, then, intriguingly, learning to reverse this

corrupting process (Yang et al. 2023). The term ’diffusion’ is used to describe

this gradual increase of noise, mirroring the natural dispersal of particles such as

molecules in a gas (Sohl-Dickstein et al. 2015).
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Mathematically, diffusion models are frequently delineated using stochastic dif-

ferential equations (SDEs). They define the diffusion process as a Markov chain

transitioning from clean data to a noisy state across a series of steps, each involv-

ing the addition of incremental Gaussian noise. The reverse process, conversely,

is characterized by SDEs aimed at moving from a noisy condition back to the

original, clean data (Ho et al. 2020).

The realm of applications for diffusion models is broad and dynamically grow-

ing, covering everything from generating authentic images and converting text to

image, to producing voice audio and designing molecules. Their capacity for pro-

ducing highly detailed and diverse results has solidified their position as one of the

most promising fields in generative AI.

Throughout their development, diffusion models have witnessed various innova-

tions, particularly in terms of architecture and training methodologies, enhancing

efficiency, realism, and the diversity of generated outcomes. With attributes such

as conditional diffusion, where generation is guided by specific inputs or contexts,

their versatility and efficiency have considerably improved (Hung et al. 2023).

In the broad context of AI and deep learning, diffusion models establish a

unique position, as shown in Figure 2.1. They are differentiated by their robust

and principled approach to generating new data, distinguishing them from other

generative techniques such as GANs and VAEs. This firm theoretical foundation,

along with its impressive empirical performance, has fueled an increase in both

research and practical deployments, solidifying its status as a major player in the

realm of generative models.
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Figure 2.1: Generative Learning Trilemma. This diagram con-
trasts the capabilities of GANs, VAEs, and Diffusion models. GANs
produce high-fidelity images quickly but have limited diversity.
VAEs and Normalizing Flows offer more diversity but lower sample
quality. Diffusion models balance diversity and quality but are slow
and computationally demanding, underscoring the need for further
efficiency improvements (Kazerouni et al. 2023).

2.1.1 Mathematical Framework of Diffusion Models

The core of diffusion models lies in their mathematical framework, grounded in

stochastic processes. As it is described in Figure 2.2. these models operate through

a two-phase process: the forward diffusion process, where noise is incrementally

added to the data until only noise remains, and the reverse diffusion process, where

the model learns to reconstruct the original data from the noise. Here, we describe

the diffusion model through its forward and reverse processes.
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Figure 2.2: Representation of the forward and reverse diffusion
process in a diffusion model (Kim and Seo 2023).

Forward Diffusion Process

The forward process, also known as the noising process, gradually transforms data

into a Gaussian-distributed noise through a sequence of steps. This is mathemat-

ically represented as:

xt = √
αtx0 +

√
1 − αtϵ, ϵ ∼ N (0, I), t = 1, . . . , T (2.1)

In this equation, x0 denotes the original data, xt is the data at time step t after

noise addition, αt is a predefined variance schedule, and ϵ represents isotropic

Gaussian noise.

Reverse Diffusion Process

Conversely, the reverse process, or the denoising process, aims to recover the orig-

inal data from the noise. It is guided by a neural network predicting the noise
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added at each step of the forward process:

xt−1 = 1
√

αt

(
xt − 1 − αt√

1 − αt

ϵθ(xt, t)
)

, t = T, . . . , 1 (2.2)

Here, ϵθ(xt, t) denotes the noise predicted by the neural network with parame-

ters θ.

Objective Function

The training of diffusion models involves minimizing the difference between the

actual noise added in the forward process and the predicted noise in the reverse

process. This is captured by the following objective function:

L(θ) = Ex0,ϵ,t

[
∥ϵ − ϵθ(xt, t)∥2

]
(2.3)

where E denotes the expectation over the distribution of original data x0, the

noise ϵ, and the time step t.

The optimization of this loss function allows the diffusion model to learn an

accurate reverse process, effectively denoising the data and reconstructing the

original signal from its noisy version. By iterating through this reverse process,

the model can generate new samples that are consistent with the learned data

distribution, showcasing the powerful generative capabilities of diffusion models.
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Figure 2.3: The mathematical framework depicting the forward
and reverse diffusion processes. Adapted from OpenCVDDPM.

2.1.2 Applications of Diffusion Models

Diffusion models have found applications in a wide array of fields beyond just medi-

cal imaging. This versatility underscores their broad applicability and effectiveness

in generating high-quality synthetic data. Below, we explore some prominent areas

where diffusion models have been successfully applied.

Natural Image Generation

Diffusion models have made significant strides in the field of natural image gen-

eration. They can create detailed and diverse images that closely mimic the dis-

tribution of real-world photographs. This capability has implications for content

creation, gaming, and virtual reality, providing a way to generate landscapes, ob-

jects, and characters that are indistinguishable from real ones.

xsynth = DiffusionModel(z), z ∼ N (0, I) (2.4)
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Figure 2.4: Examples of some applications for diffusion models
in different domains (Saharia et al. 2022).

Here, xsynth represents the synthetic image generated by the diffusion model,

and z is a sample from a standard Gaussian distribution used as input noise.

Text-to-Image Synthesis

Another groundbreaking application of diffusion models is in text-to-image syn-

thesis, where models generate images directly from textual descriptions. This ap-

plication merges natural language processing with image synthesis, opening new

avenues in automated content creation and aiding in tasks such as storyboarding

and concept art creation.

ximage = DiffusionModel(text_description) (2.5)

In this context, ximage is the image generated from a given text description

through the diffusion process.
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Audio Synthesis

Diffusion models are also revolutionizing the field of audio synthesis, including

voice generation and music production. They can generate realistic and coherent

audio clips from a variety of inputs or even from noise, contributing to applications

such as virtual assistants, speech synthesis for individuals with speech impairments,

and new music creation.

xaudio = DiffusionModel(audio_input) (2.6)

Here, xaudio denotes the synthesized audio generated by the model, showcas-

ing the potential of diffusion models in creating diverse soundscapes and spoken

content.

Molecular Design

In the realm of chemistry and drug discovery, diffusion models are employed for the

generation and optimization of molecular structures(Yim et al. 2024). By learning

the distribution of viable molecular configurations, these models can propose new

compounds with desired properties, speeding up the drug development process and

contributing to personalized medicine.

xmolecule = DiffusionModel(property_constraints) (2.7)

xmolecule represents the molecular structure generated to meet specific prop-

erty constraints, demonstrating the model’s application in scientific research and
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pharmaceuticals.

2.1.3 Key Advancements and Milestones in Diffusion Mod-

els

The development of diffusion models has been marked by numerous significant ad-

vancements and milestones. In this section, we chronicle the pivotal breakthroughs

and notable contributions that have shaped the landscape of diffusion models.

Initial Developments

The initial concept of diffusion models was inspired by non-equilibrium thermody-

namics and the stochastic diffusion process. Early works laid the groundwork by

exploring how random noise can be systematically added and then removed from

data to learn intricate data distributions (Sohl-Dickstein et al. 2015).

Introduction of Score-Based Models

A significant leap forward was the development of score-based generative models

by (Yang et al. 2023), which utilized gradients (scores) of the data distribution to

guide the diffusion process, enhancing the model’s ability to generate high-quality

synthetic data.

Development of Denoising Diffusion Probabilistic Models

The introduction of Denoising Diffusion Probabilistic Models (DDPMs) by (Ho et

al. 2020). marked another milestone, presenting a robust framework that combined

variational inference with diffusion processes, significantly improving the quality

and efficiency of generated samples.
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x0 = DDPM(xt, ϵt; θ), ϵt ∼ N (0, I) (2.8)

θ denotes the parameters of the DDPM, illustrating the model’s denoising ca-

pability.

Improvements in Sampling Efficiency

Further improvements in diffusion models aimed at increasing sampling efficiency,

such as Fast Sampling Algorithms introduced by Song et al., which reduced the

number of required sampling steps without compromising output quality, marking

a crucial advancement for practical applications.

Extension to Diverse Data Types

Advancements have also been seen in extending diffusion models beyond images to

other data types, including audio, text, and molecular structures, demonstrating

the model’s versatility and adaptability to various domains.

Integration with Other AI Techniques

Recent breakthroughs include integrating diffusion models with other AI tech-

niques, such as reinforcement learning and GANs, to create hybrid models that

leverage the strengths of each approach, pushing the boundaries of generative

modeling.
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Latest Innovations and Ongoing Research

The field continues to evolve rapidly, with ongoing research exploring novel ar-

chitectures, optimization techniques, and applications of diffusion models. These

developments are setting new benchmarks for what can be achieved with generative

modeling.

Each of these milestones has contributed to the maturation of diffusion models,

turning them into one of the most promising areas in generative modeling. By

understanding these key advancements, we can appreciate the rapid evolution of

diffusion models and their growing impact on various fields, including medical

imaging.

2.1.4 Challenges and Limitations of Diffusion Models

Despite the significant advancements in diffusion models, they are not without

their challenges and limitations. This section explores the various hurdles currently

faced by practitioners and researchers in the field, setting realistic expectations for

the technology’s capabilities and applications.

Computational Intensity

One of the major challenges associated with diffusion models is their computational

intensity. The iterative nature of the reverse diffusion process requires substantial

computational resources, particularly in terms of memory and processing power.

Ttotal =
N∑

t=1
Tstep(t) (2.9)

24

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/


Master of Applied Science– Seyed Mohammad Mehdi Hassani Najafbadi;
McMaster University– ECE Department

Here, Ttotal represents the total computation time, N is the number of steps,

and Tstep(t) denotes the time taken for each step.

Long Training Duration

Diffusion models typically require extended periods of training to achieve satisfac-

tory results. This is particularly challenging when dealing with large datasets or

aiming to generate high-resolution outputs.

Quality of Generated Samples

While diffusion models can generate high-quality samples, maintaining consistency

and avoiding artifacts remain significant challenges. The balance between noise

reduction and detail preservation is delicate, often resulting in trade-offs.

Model Generalization

Generalizing diffusion models to diverse datasets and different types of noise is a

persistent challenge. Models trained on specific types of data may not perform

well when exposed to new or unseen data types or noise distributions.

Application-Specific Challenges

Diffusion models face unique challenges in specific applications, such as medical

imaging or audio synthesis, where high fidelity and accuracy are crucial. Tailoring

diffusion models to meet the stringent requirements of these applications requires

extensive customization and fine-tuning.
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Ethical and Privacy Concerns

The generation of realistic data samples, especially in domains like medical imag-

ing, raises ethical and privacy concerns. Ensuring that the synthetic data gener-

ated by diffusion models do not infringe on privacy rights or ethical standards is

an ongoing challenge.

Scalability

Scaling diffusion models to accommodate larger datasets or higher-dimensional

data without compromising performance or increasing computational demands

poses another significant hurdle.

Each of these challenges represents a barrier to the widespread adoption and

application of diffusion models. Addressing these limitations requires concerted

efforts from the research community, ongoing innovation, and the development

of more efficient and adaptable models. By acknowledging and tackling these

issues, we can further unlock the potential of diffusion models and extend their

applicability across a broader range of fields and applications.

2.1.5 Summary

This chapter has provided an overview of diffusion models, covering their intro-

duction, mathematical framework, diverse applications, key advancements, and

the challenges they face. We have explored how these models have evolved from

theoretical constructs into powerful tools for generative tasks across different do-

mains, including image and audio synthesis.
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Chapter 3

PALETTE: A New Frontier in

Image-to-Image Diffusion Models

3.1 Introduction

The landscape of generative models has undergone remarkable transformation re-

cently, especially with the advent of diffusion models that have significantly im-

pacted the fields of computer vision and image processing. This evolution is well

captured in the study by Saharia, Chitwan, et al., titled "Palette: Image-to-image

diffusion models," published in the ACM SIGGRAPH 2022 conference proceed-

ings. Here, diffusion models are spotlighted as robust contenders to Generative

Adversarial Networks (GANs), offering superior performance across a range of

applications from image synthesis to advanced super-resolution techniques.

PALETTE emerges from this innovative lineage as an exemplary implemen-

tation of image-to-image diffusion models. It is distinguished by its unmatched
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flexibility and efficiency, designed to accommodate an extensive array of transla-

tion tasks seamlessly. Unlike traditional models, PALETTE’s core methodology

is predicated on reverse diffusion, which systematically evolves a sample from a

simplistic Gaussian distribution into intricate, detailed data representations. This

is achieved through iterative denoising phases, meticulously orchestrated by neu-

ral networks, bestowing upon PALETTE commendable stability during training

phases and the ability to embrace a broad spectrum of data distribution patterns.

This unique attribute significantly diminishes the common pitfalls such as mode

collapse, which frequently afflict GANs. Below is an illustrative comparison show-

casing PALETTE’s effectiveness alongside other colorization methods.

Figure 3.1: Illustration of colorization methods on ImageNet val-
idation images. Comparisons include PixColor, ColTran, a regres-
sion baseline, PALETTE (our approach), and the original reference
images. Image adapted from "Palette: Image-to-image diffusion
models" by Saharia, Chitwan, et al., ACM SIGGRAPH 2022.

As demonstrated, PALETTE excels in producing images that closely match the

reference, significantly enhancing realism and detail compared to other coloriza-

tion techniques. PALETTE’s prowess is not confined to generic image-generation

tasks. It extends its utility to specific applications critical in real-world scenarios,
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including colorization, inpainting, uncropping, and JPEG artifact removal, show-

casing its universal appeal. A particularly noteworthy application, and the focus

of this chapter, is leveraging PALETTE’s sophisticated colorization capabilities to

enhance the quality of low-dose CT images. The hallmark features that propel

PALETTE to the forefront of diffusion models are multifold:

• Task Agnosticism: PALETTE introduces a paradigm of universal appli-

cation across diverse image-to-image translation tasks, thus obviating the

requirement for specialized tuning and architecture adjustments tradition-

ally necessary in other models.

• Training Stability and Efficiency: The framework of PALETTE is forti-

fied with innovative training methodologies and loss functions, fostering an

environment of remarkable stability and efficiency during training sessions.

This contrasts sharply with the challenges of noise overfitting and training

divergence prevalent in other diffusion models.

• High-Quality Image Synthesis: Through the meticulous optimization of

the diffusion process, PALETTE consistently generates images of unparal-

leled quality, showcasing enhanced details and precise colorization, thereby

establishing new benchmarks in the fidelity of image-to-image translations.

• Mode Diversity: PALETTE’s algorithm is adept at capturing the exten-

sive variability inherent in image distributions, ensuring the production of

outputs that are as diverse as they are realistic, and overcoming limitations

encountered in previous generative models.
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• Computational Efficiency: Despite the naturally iterative essence of dif-

fusion processes, PALETTE introduces significant improvements in compu-

tational efficiency, thereby democratizing access to high-quality image trans-

lation for broader applications.

This chapter sets the stage for an exploration of how PALETTE, particularly

through its colorization functionality, can enhance low-dose CT images.

3.1.1 Model Architecture

The PALETTE model employs a unique architecture tailored for image-to-image

diffusion processes, primarily focusing on tasks like colorization, inpainting, un-

cropping, and JPEG artifact removal. Its architecture is designed to accommodate

a wide range of image-to-image translation tasks without task-specific modifica-

tions. Specifically, PALETTE utilizes a modified U-Net architecture, a deviation

from the traditional 256 * 256 class-conditional U-Net model. The key modifica-

tions include:

• Absence of class-conditioning: Unlike conventional U-Net models that

might utilize class information to guide the image generation process, PALETTE

operates without class-conditional inputs, enhancing its versatility across

various tasks.

• Source image conditioning: PALETTE incorporates source image condi-

tioning through concatenation, enabling the model to adapt more effectively

to different image-to-image translation scenarios.
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Furthermore, PALETTE integrates self-attention mechanisms, an essential com-

ponent in enhancing the model’s performance for complex image-to-image transla-

tion tasks. This inclusion is based on empirical studies showing that self-attention

layers significantly contribute to the overall quality and diversity of the generated

samples.

3.1.2 Loss Functions

PALETTE employs a multifaceted approach to loss functions, tailored to the in-

tricate demands of image-to-image translation tasks. The model’s strategy encom-

passes a blend of different loss types to strike an optimal balance between fidelity

to the original image and diversity in the generated results.

Firstly, the L1 loss, or mean absolute error, is leveraged for its effectiveness

in promoting pixel-wise accuracy, which directly contributes to the fidelity of the

translated images:

LL1(θ) = Ey0,yt,t [∥fθ(yt, t) − y0∥1] . (3.1)

The L1 loss ensures that the generated images maintain structural and content

integrity relative to the target images by minimizing the absolute differences at

the pixel level.

Additionally, PALETTE incorporates the L2 loss, or mean squared error, which

penalizes larger discrepancies between the generated and target images more severely

than smaller ones, contributing to smoother gradients during training:

LL2(θ) = Ey0,yt,t

[
∥fθ(yt, t) − y0∥2

2

]
. (3.2)
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This component of the loss function aids in reducing variance and ensuring overall

coherence in the generated images.

Beyond L1 and L2 losses, PALETTE also explores the use of adversarial losses to

introduce a competitive dynamic between the generative model and a discriminator

model. The adversarial loss encourages the generation of images that are not only

close to the original in a pixel-wise sense but are also indistinguishable from real

images in the distribution space:

Ladv(θ, ϕ) = Ey0,yt [log Dϕ(y0) + log(1 − Dϕ(fθ(yt, t)))] , (3.3)

where Dϕ represents the discriminator, parameterized by ϕ, and fθ is the gener-

ative model, parameterized by θ. This adversarial component fosters innovation

in generated samples, enhancing their naturalness and diversity. Beyond L1, L2,

and adversarial losses, the model incorporates a noise prediction loss to enhance

its capability in stochastic modeling. The noise prediction loss ensures that the

model accurately predicts the noise added during each step of a generative pro-

cess, critical for models like diffusion models where reversing the noise addition is

essential:

Lnoise(θ) = E[(ϵpredicted − ϵactual)2], (3.4)

where ϵpredicted represents the noise predicted by the model, parameterized by

θ, and ϵactual is the actual noise applied to the data during training. This loss term

helps in fine-tuning the model’s ability to revert the noising process accurately,

improving its generative performance and fidelity to the original data distribution.

The integration of this component is crucial for achieving high-quality synthesis
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and regeneration capabilities in models dealing with noisy or complex data struc-

tures.

Combining these elements, PALETTE’s total loss function amalgamates the

advantages of each loss component, formulated as:

Ltotal(θ, ϕ) = λL1LL1(θ) + λL2LL2(θ) + λadvLadv(θ, ϕ) + λnoiseLnoise(θ), (3.5)

where λL1, λL2, λadv, and λnoise are weights assigned to each respective loss

term, allowing for fine-tuning of their influence on the overall training process.

By judiciously combining these loss functions, PALETTE achieves a delicate

balance between adhering closely to the source images and introducing diversity

into the generated images, thereby addressing the dual challenges of fidelity and

variation inherent in image-to-image translation tasks.

3.2 Application of Palette to Low-Dose to High-

Dose CT Image Enhancement

In this section, we discuss the application of Palette for enhancing low-dose CT

images to achieve high-dose CT image quality. This process is vital for reducing

radiation exposure while maintaining or even improving the diagnostic quality of

the images.
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3.2.1 Model Architecture Adaptation

The Palette model, initially designed for various image-to-image translation tasks,

has been adapted to tackle the low-dose to high-dose CT image enhancement

challenge. This adaptation involves fine-tuning the standard Palette architecture

to better handle the specific noise and detail characteristics inherent in low-dose

CT images.

3.2.2 Loss Function Modification

To address the low-dose to high-dose CT translation, Palette utilizes an adapted

set of loss functions. While maintaining the standard L1 and L2 losses for base-

line fidelity, additional loss components such as Ladv, and Lnoise be introduced to

target the specific types of noise and artifacts characteristic of low-dose CT scans.

The balance between these loss components is critical for achieving an optimal

enhancement effect.

3.2.3 Training Protocol for CT Image Enhancement

The training protocol for this particular application of Palette follows the gen-

eral diffusion model training practices but is specifically augmented to cater to

CT images’ unique characteristics. This includes selecting an appropriate dataset

consisting of paired low-dose and high-dose CT images and employing specialized

data augmentation techniques relevant to medical imaging.

34

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/


Master of Applied Science– Seyed Mohammad Mehdi Hassani Najafbadi;
McMaster University– ECE Department

3.3 Results and Analysis

Following the application of Palette to enhance low-dose to high-dose CT imaging,

we evaluate the model’s performance using established quantitative metrics: Peak

Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM).

These metrics serve as objective indicators of the quality of enhancement and

effectiveness in noise reduction.

3.3.1 Quantitative Results

Below, we present a comparison between the original high-dose CT images and

their corresponding images enhanced by Palette. The table showcases the im-

provement in image quality as quantified by the PSNR and SSIM values:

Table 3.1: Quantitative Palette-Enhanced Images

Metric Palette-Enhanced High-Dose
PSNR (dB) 24.5382
SSIM 0.48

The PSNR and SSIM values were calculated based on the comparison between

the original high-dose images and their Palette-enhanced counterparts. Higher

values indicate better image quality, with PSNR measuring the peak error, and

SSIM evaluating the similarity in structural information between the two images.

3.3.2 Qualitative Evaluation

In addition to quantitative metrics, we conduct a qualitative evaluation, assessing

the visual improvements in the enhanced images. This involves comparing the

clarity, detail visibility, and noise levels in low-dose original and Palette-enhanced
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images. This section showcases the visual outcomes of applying Palette to enhance

low-dose CT images. The figures below display a comparison between original

low-dose CT images and their enhanced counterparts after being processed by

Palette. These figures illustrate the effectiveness of Palette in enhancing the clarity

Figure 3.2: Comparative visualization of the CT image enhance-
ment using PALETTE: (A) Original high-dose, (B) Enhanced by
PALETTE, and (C) Visualization of the diffusion process

and detail of CT images while reducing noise, making them more suitable for

diagnostic purposes. The visual comparison highlights the improvements in image

quality, demonstrating Palette’s potential in aiding the medical field, particularly

in scenarios where reducing patient exposure to radiation is crucial.
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3.4 Conclusion

This exploration of Palette’s application to enhancing low-dose CT images has

demonstrated its potential to improve image quality while mitigating radiation

exposure risks. The findings from this study suggest avenues for further refine-

ment and validation, with the ultimate aim of integrating such advanced image

processing techniques into practical applications for safer and more accurate med-

ical imaging.
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Chapter 4

Noise-Characterized Diffusion

Model

This chapter introduces a mathematical formulation designed to enhance the qual-

ity of low-dose computed tomography (CT) images. By applying diffusion models

integrated with explicit noise characterization, we adapt and extend traditional

diffusion model equations to tackle the unique noise patterns observed in low-dose

CT scans.

4.1 Forward Process with Noise Characteriza-

tion

The forward process in noise-characterized diffusion models plays a pivotal role

in enhancing the quality of low-dose CT images. Unlike traditional approaches,

our method introduces noise into clean images systematically over T iterations.
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Figure 4.1: Noise Characterization using CNN

This section delves into the methodology, mathematical foundation, and practical

implications of our novel forward process with noise characterization.

4.1.1 Conceptual Framework

The conceptual framework behind the forward process is rooted in the under-

standing of noise dynamics within low-dose CT imaging. Low-dose CT scans are

inherently noisier compared to their high-dose counterparts due to reduced X-ray

photon counts, leading to increased statistical noise. This noise follows a specific

distribution characteristic of the imaging system and the radiation dose level. Rec-

ognizing tahis, we developed a noise model, denoted as Nc, that aims to replicate

this specific noise distribution accurately. In our approach, the clean image is

transformed into T iterations, where T represents the total number of steps in the

forward diffusion process. At each step, noise is incrementally added to the image,
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Figure 4.2: Proposed architecture for enhancing quality of low-
dose CT scans via generative diffusion model

simulating the increase in noise levels typically observed in low-dose CT scans.

The objective is to reach a noise level consistent with actual low-dose CT images

while maintaining control over the noise characteristics introduced at each stage.

4.1.2 Mathematical Representation

The mathematical representation of our forward process is encapsulated in the

following equation:

q(yt+1|yt) = Nc(yt; αtyt, (1 − αt)Ct), (4.1)
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Figure 4.3: Proposed architecture for enhancing quality of low-
dose CT scans via generative diffusion model

where yt represents the image after t iterations, and yt+1 is the image at the

subsequent iteration. The function Nc represents the noise model applied to the

image, governed by parameters αt and Ct. Here, αt modulates the degree of the

original signal retained in each step, while (1 − αt)Ct determines the variance of

the noise introduced.

The parameter αt is a critical component of our model as it guides the pro-

gression of noise addition. Initially set to a value close to one, αt decreases with

each iteration, allowing for a gradual increase in noise. The choice of αt is based

on empirical data and simulation studies designed to mimic the noise escalation

in low-dose CT scans.

The covariance matrix Ct is equally significant as it characterizes the noise

distribution’s nature. In the context of CT imaging, noise can exhibit varying

behaviors, such as being signal-dependent or possessing spatial correlations. By

incorporating Ct, our model acknowledges and replicates these complexities, en-

abling a more accurate simulation of low-dose CT noise.
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The iteration over T steps necessitates a balance between computational effi-

ciency and noise simulation fidelity. Too few iterations may lead to underdeveloped

noise patterns, while too many could result in computational inefficiency or exces-

sive noise. Therefore, determining the optimal value of T is subject to a trade-off

between computational resources and model accuracy.

4.1.3 Implications for Low-Dose CT Imaging

The implications of accurately modeling the forward process in low-dose CT imag-

ing are profound. By precisely characterizing and replicating the noise inherent in

low-dose scans, our approach enables a deeper understanding of noise effects on

image quality and diagnostic accuracy. Furthermore, this model serves as a foun-

dation for the subsequent reverse process, where the aim is to recover the clean

image from its noisy counterpart.

In summary, the forward process with noise characterization is a cornerstone

of our approach to enhancing low-dose CT images. Through careful mathematical

modeling and practical implementation, we can simulate the noise characteristics

of low-dose CT scans accurately, setting the stage for effective noise reduction and

image enhancement in subsequent steps of the diffusion model framework

4.2 Reverse Process with Noise Characterization

In the realm of enhancing low-dose Computed Tomography (CT) images through

diffusion models, the reverse process stands as a critical component. In the reverse

process, the primary goal is to reconstruct the original clean image from its noisy
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version. This is achieved by employing a specialized neural network fθ, meticu-

lously designed to counteract the specific noise attributes recognized during the

forward process.

4.2.1 Conceptual Foundation

The reverse process is conceptually the antithesis of the forward diffusion phase.

While the forward phase incrementally introduces noise into the clean images, the

reverse phase systematically eliminates this noise, aiming to restore the original

quality of the images. This denoising procedure is pivotal, as it directly impacts

the final image quality and, consequently, the diagnostic value of the CT scans.

The neural network fθ is at the heart of this process. It is not just a generic

denoising tool but a sophisticated algorithm tailored to the unique noise charac-

teristics identified in the low-dose CT images. This customization allows fθ to

target and mitigate specific noise statistics, a capability beyond that of standard

denoising techniques.

4.2.2 Mathematical Formulation

The effectiveness of the reverse process hinges on the proper formulation of the

learning objective, represented as:

L(θ) = E(x,y),(ϵ,y) [∥fθ(x, γy0 + (1 − γ)ϵ, γ) − ϵ∥] , (4.2)

where x denotes the original clean image, y0 the observed noisy image, and ϵ the

noise element. The variable γ serves as a scaling factor, adjusting the influence of
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the original and noisy components during training. This loss function is engineered

to refine fθ’s capability to discern and reverse the noise pattern imprinted during

the forward phase.

4.2.3 Implementation Challenges

Implementing the reverse process entails several challenges, notably the accurate

training of the neural network fθ. The network must learn to distinguish between

noise-induced artifacts and intrinsic image details, a task of considerable complex-

ity given the subtle nature of certain pathological markers.

Another challenge lies in the selection of the parameter γ, which must be finely

tuned to balance the noise and signal components effectively. This balance is

crucial for preserving essential image features while removing noise, a delicate

equilibrium that is vital for maintaining diagnostic accuracy.

4.3 Training the Model

Training the noise-characterized denoising model, fθ, is a crucial step towards

achieving enhanced image quality in low-dose Computed Tomography (CT) imag-

ing. This section delves into training methodology that leverages a characterized

noise model to simulate realistic noisy observations. Our objective is to refine fθ

to proficiently reverse the noise process, thereby restoring the high-quality char-

acteristics of the original image from its degraded version.
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Figure 4.4: Lefts: LDCT test image | Rights: Generated HDCT
Test Image
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4.3.1 Training Objective

The training procedure revolves around the optimization of the loss function L(θ),

which is designed to minimize the discrepancy between the denoised image and the

original clean image. The model’s performance hinges on the effective reduction of

this loss, reflecting the denoising capabilities of fθ. This optimization is performed

across a diversified dataset comprising pairs of low- and high-dose CT images,

facilitating a comprehensive learning environment that encompasses a wide range

of noise patterns and imaging scenarios.

4.3.2 Algorithmic Approach

The training algorithm employs a structured iterative process to fine-tune the

parameters of fθ. The sequence of operations is encapsulated in the following

algorithm 1.

Algorithm 1 Training a noise-characterized denoising model
fθ

1: repeat
2: (x, y0) ∼ p(x, y) ▷ Sample from the data distribution
3: γ ∼ p(γ) ▷ Sample noise level
4: ϵ ∼ Nc(ϵ; Ct) ▷ Sample noise from the characterized model
5: yt = √

γy0 +
√

1 − γϵ ▷ Apply noise to the clean image
6: Take a gradient descent step on:
7: ∇θ∥fθ(x,

√
γy0 +

√
1 − γϵ, γ) − ϵ∥

8: until convergence

This algorithm underscores the cyclical nature of the training process, itera-

tively updating fθ to better model the inverse of the noise application process. By
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alternating between sampling from the characterized noise distribution and up-

dating the model parameters, we systematically drive the model towards optimal

noise reduction performance.

4.3.3 Challenges in Training

Training a denoising model, particularly one characterized by low-dose CT noise,

presents unique challenges. These include ensuring a diverse and representative

training set, managing overfitting, and effectively simulating realistic noise condi-

tions.

4.3.4 Evaluation Metrics

Throughout the training process, the performance of fθ is meticulously evaluated

using a suite of metrics, including but not limited to, the Peak Signal-to-Noise

Ratio (PSNR) and the Structural Similarity Index Measure (SSIM).

The training iteratively refines the model parameters to adapt to the charac-

terized noise features, thus preparing the model for effective denoising of low-dose

CT images.

4.4 Iterative Refinement

In the inference phase, our methodology employs the reverse process iteratively to

refine the noisy images progressively towards a high-fidelity reconstruction. This

iterative refinement process is crucial as it ensures that the denoising closely aligns
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with the actual noise properties characteristic of low-dose Computed Tomography

(CT) scans.

The core of this iterative refinement lies in employing the learned model, fθ,

to gradually eliminate the noise from the low-dose CT images. This process is

informed by the characterized noise at each iteration, enabling the model to effec-

tively reverse the diffusion process introduced during the forward phase.

The refinement procedure is detailed as follows:

1. Start with an initial estimate of the noisy image, which, in the context of

this process, is the output of the forward diffusion step applied to the clean,

high-dose image.

2. At each iteration t, apply the learned denoising model fθ to the current

estimate of the noisy image to predict the noise component ϵ̂t.

3. Update the image estimate by removing the predicted noise from the cur-

rent estimate: yt−1 = f−1
θ (yt, ϵ̂t, γt), where f−1

θ represents the inverse of the

forward model applied by fθ.

4. Repeat steps 2 and 3 for a fixed number of iterations or until a convergence

criterion is met, such as a minimal change between consecutive image es-

timates or reaching a pre-defined level of noise reduction as measured by

appropriate metrics such as PSNR (Peak Signal-to-Noise Ratio) or SSIM

(Structural Similarity Index Measure).

This iterative process is designed to refine the image progressively, ensuring each
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step reduces the noise level while preserving the critical details and structural in-

tegrity of the original CT images. The refinement continues until the reconstructed

image closely approximates the quality and fidelity of a high-dose CT scan, thereby

achieving the objective of enhancing the diagnostic quality of low-dose CT images

without additional radiation exposure to the patient.

The effectiveness of this iterative refinement process is measured by compar-

ing the denoised image with the original high-dose CT image, evaluating both

qualitative aspects, such as visual clarity and detail preservation, and quantitative

metrics, including PSNR and SSIM.

4.5 Conclusion

The development and implementation of the proposed noise-characterized diffusion

model (NCDM) represent a new approach to the enhancement of low-dose Com-

puted Tomography (CT) imaging. The cornerstone of this model is its utilization

of detailed noise characterization combined with advanced diffusion processes. By

specifically targeting the unique noise patterns found in low-dose CT scans, the

NCDM provides a mechanism to significantly improve image quality, fidelity, and

diagnostic value without increasing radiation dosage. Key to the success of this

model is its ability to adapt and refine traditional diffusion equations to suit the

specific challenges presented by CT imaging noise. The incorporation of a forward

and reverse process, informed by precise noise characteristics, enables the effective

simulation and removal of noise while preserving essential anatomical details.
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In conclusion, the noise-characterized diffusion model is an enhancement in the

domain of medical diagnostics and patient safety.
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Chapter 5

Comparative Analysis of

Low-Dose CT-Image

Enhancement Techniques

In this chapter,new objective is to conduct a comparative analysis that evaluates

the efficacy of PALETTE and NCDM vis-à-vis CYCLE-GANs. The emphasis on

CYCLE-GANs, inspired by the pioneering work of McCollough et al. (McCollough

et al. 2020) and further discussed in the MATLAB documentation (MathWorks

2023), sets a high benchmark for performance in enhancing the quality of low-dose

CT (LDCT) images. By comparing these approaches, we aim to uncover insights

that could lead to improvements in diagnostic imaging, ensuring both the safety

of patients through minimized radiation exposure and the reliability of medical

diagnoses.
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5.1 Low-Dose CT-Image Enhancement Using CYCLE-

GAN

This section explores the use of a CYCLE-GAN neural network for the enhance-

ment of noisy low-dose CT images to high-quality high-dose CT images. The

approach leverages low-dose CT images as the source domain and regular-dose

CT images as the target domain (MathWorks 2023). The CYCLE-GAN consists

of two generators, GXY and GY X , along with two discriminators, DX and DY .

Generator GXY aims to transform low-dose CT images into high-dose CT images,

whereas GY X attempts to reconstruct the original low-dose images from the en-

hanced high-dose images. Discriminators DX and DY assess the authenticity of

the low-dose and high-dose images, respectively.

The process begins with an original low-dose CT image, which is fed into GXY ,

resulting in a synthesized high-dose image. This image is then used by GY X to

restore the low-dose CT image, ensuring cycle consistency. The high-dose CT

image, provided for reference, enables quality assessment of the enhanced images.

This cyclic transformation is crucial for maintaining the essential content within

the images, which is vital for accurate medical diagnosis (MathWorks 2023).

In the study conducted by (You et al. 2018), a structurally sensitive multi-scale

deep neural network was utilized for low-dose CT denoising, exhibiting significant

improvements in image quality. The network achieved notable PSNR and SSIM

values, with a PSNR of 29.679 dB and an SSIM of 0.813, indicating the effectiveness

of the approach in producing high-quality CT images (You et al. 2018).
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Figure 5.1: The architecture of a CYCLE-GAN neural network
applied to CT image enhancement.(MathWorks 2023)

5.2 Comparison of PSNR and SSIM Values

In this section, we evaluate the performance of our Noise-Characterized Diffusion

Model (NCDM) against CYCLE-GAN and Palette for enhancing low-dose CT im-

ages. The evaluation metrics used for comparison are the Peak Signal-to-Noise

Ratio (PSNR) and Structural Similarity Index Measure (SSIM), which are stan-

dard metrics for measuring image quality and similarity, respectively.

53

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/


Master of Applied Science– Seyed Mohammad Mehdi Hassani Najafbadi;
McMaster University– ECE Department

5.2.1 PSNR Comparison

PSNR, or Peak Signal-to-Noise Ratio, is a widely utilized metric for assessing the

quality of reconstruction in lossy compression algorithms. It quantifies the rela-

tionship between the highest possible signal power and the power of the corrupt-

ing noise that compromises the accuracy of the signal’s representation. Table 5-1

presents the PSNR values for various methods, namely CYCLE-GAN, PALETTE,

and NCDM, providing a comparative overview of their performance.

Model PSNR (dB) SSIM
CYCLE-GAN 25.50 0.999
Palette 24.54 0.48
NCDM (Our Approach) 37.28 0.935

Table 5.1: Comparative analysis of image enhancement models:
CYCLE-GAN, Palette, and NCDM.

Figure 5.2: Comparison of PSNR values across different methods:
CYCLE-GAN, Palette, and NCDM.

Figure 5.2 illustrates a boxplot analysis of PSNR values for different image

enhancement methods. The CYCLE-GAN method’s results with a lower median

PSNR value and a substantial number of low outliers, suggesting this method
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can sometimes result in lower-quality enhancements. The Palette Methods, repre-

sented in the middle in blue, show a much higher median PSNR value and a wider

range of values, indicating some inconsistency in image enhancement. NCDM,

illustrated on the right in green, has a median PSNR that is comparable to the

Palette Methods but with a narrower interquartile range, suggesting it not only

improves image quality but also does so with greater consistency. In this compari-

son, while the Palette Methods and NCDM both demonstrate an ability to enhance

image quality effectively, NCDM might be preferred for its consistency, evidenced

by a tighter interquartile range, suggesting a reliable enhancement across different

images.

5.2.2 SSIM Comparison

In figure 5.3, the comparative efficacy of image enhancement techniques is eval-

uated using the Structural Similarity Index Measure (SSIM), which assesses how

similar an enhanced image is to a reference. The SSIM comparison across the

CYCLE-GAN, Palette Methods, and NCDM demonstrates varying levels of struc-

tural preservation and image quality enhancement.

The Palette, despite showing improvement over the baseline, has a broad spread

of SSIM scores, indicating some inconsistencies in performance. On the other

hand, both CYCLE-GAN Methods and NCDM present significantly higher SSIM

values, suggesting a superior capability to retain the original image structures

after enhancement. Among them, CYCLE-GAN stands out for its tightly grouped

SSIM scores around a high median value, suggesting that it consistently maintains

structural details well.
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Figure 5.3: Comparison of SSIM values across different methods:
Original, CYCLE-GAN, Palette, and NCDM.

The dual analysis underscores NCDM’s robustness as a technique that consistently

enhances image quality while preserving structural details. In fields where image

fidelity is paramount, such as medical imaging, NCDM’s predictable performance

could be especially valuable. This reliability, as evidenced by its concentrated

SSIM scores and narrow PSNR range, positions NCDM as a potentially superior

choice for high-quality image enhancement.

5.3 Visual Quality Assessment

This section is dedicated to the visual assessment of low-dose CT (LDCT) test

images enhanced by various techniques, including the CYCLE-GAN technique, the

Palette method, and our proposed Noise-Characterized Diffusion Model (NCDM).

This comparison aims to evaluate the effectiveness of each method in reducing
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noise and preserving important image details. The visual outcomes of applying dif-

ferent image enhancement techniques to sample low-dose CT images are depicted

as follows:

• Figure 5.4 showcases the results of the CYCLE-GAN technique, demon-

strating its capability in noise reduction while preserving the anatomical

structures.

• from Figure 5.5 illustrates the improvements achieved with the Palette method,

showing notable advancements in image quality.

• from Figure 5.6 highlights our NCDM technique’s performance, revealing a

significant enhancement in image clarity with finer details and reduced noise

levels.

Through these visual comparisons, we can assess the effectiveness of each method

in mimicking the quality expected from high-dose imaging while using lower radiation-

dose scans.
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Figure 5.4: HDCT image enhanced by the CYCLE-GAN tech-
nique.
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Figure 5.5: HDCT image enhanced by the Palette method.
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Figure 5.6: HDCT image enhanced by our NCDM.
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5.4 Conclusion

The visual and quantitative analysis provided in this chapter emphasizes the effec-

tiveness and advantages of the Noise-Characterized Diffusion Model (NCDM) over

other methods, such as the CYCLE-GAN and Palette. By incorporating detailed

noise characterization and advanced diffusion techniques, NCDM significantly im-

proves the quality and diagnostic value of low-dose CT images.

61

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/


Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis explored the innovative use of generative diffusion models for enhancing

the quality of low-dose CT scans. By integrating detailed noise characterization

with generative diffusion processes, we developed models that improve image clar-

ity and diagnostic utility while minimizing radiation exposure, addressing a critical

concern in medical imaging.

In Chapter 4, we introduced an advanced noise-characterized diffusion model

framework that adapted and extended traditional diffusion model equations to

tackle unique noise patterns observed in low-dose CT images. Our approach in-

corporated both forward and reverse processes, meticulously aligning the model

with the specific challenges presented by CT imaging noise.

The implementation of these models underscores the practical applicability and

effectiveness of generative diffusion techniques in medical imaging. The strategies
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devised in this research exemplify how advanced computational models can be

harnessed to improve patient outcomes.

6.2 Future Work

The achievements of this thesis pave the way for multiple directions for future

research, notably in the optimization and application of generative diffusion models

within and beyond medical imaging:

6.2.1 Model Optimization and Efficiency

Future research could focus on enhancing the computational efficiency and opti-

mization algorithms of noise-characterized diffusion models, enabling faster pro-

cessing times without compromising image quality. This includes developing more

sophisticated models that can handle diverse and complex noise patterns more

effectively.

6.2.2 Expansion to Other Imaging Modalities

While this thesis focused on low-dose CT scans, the methodologies developed can

be adapted and applied to other imaging modalities, such as MRI or PET scans.

Exploring these applications could widen the impact of diffusion models in medical

imaging.

6.2.3 Machine Learning and AI Integration

There is a substantial opportunity to integrate machine learning and AI more

deeply into the development and refinement of diffusion models. This could involve
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using deep learning to improve model training efficiency or employing reinforce-

ment learning for automatic parameter tuning.

6.2.4 Patient-Specific Modeling

Future work could also explore the development of patient-specific diffusion models

that take into account individual variations in anatomy and tissue composition,

potentially leading to personalized imaging techniques that optimize image quality

and diagnostic accuracy for each patient.

By addressing these areas, future research can continue to advance the field

of medical imaging, leveraging the full potential of generative diffusion models to

enhance diagnostic processes while maintaining patient safety.
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