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Lay abstract 
 The infant gut microbiota is essential for building a beneficial relationship 
between the gut microbes and the infant. Breastfeeding is associated with a 
reduced risk of developing asthma. Infants who are not breastfed and are 
exposed to antibiotics have a higher risk of developing asthma. Previous studies 
have shown that certain gut bacteria are associated with a reduced risk of 
asthma. This is because these bacteria have a wide variety of enzymes 
specialized in utilizing the carbohydrates found in human breast milk. However, 
we do not fully understand the mechanism behind the protective effects. In this 
study, I investigated how these bacteria utilize these carbohydrates and found 
that they have varying capacities to degrade them. I also describe a method to 
predict and assign the breakdown of carbohydrates in breast milk to the specific 
genes using computational methods. The breakdown of these carbohydrates 
varied in these bacteria. This work may help to identify better probiotic strains and 
carbohydrate supplements for infants that cannot be breastfed. 
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Abstract 
 The gut microbiota in early life influences host health and the risk of 
chronic diseases, including asthma. The infant gut microbiota composition is 
shaped by multiple determinants such as birth mode, breastmilk feeding 
practices, and the environment. Previous studies have identified specific taxa 
associated with protection from atopy and asthma including Bifidobacterium. 
Human Milk Oligosaccharides (HMOs) are an abundant component of breastmilk; 
however, infants cannot digest them as they lack the necessary enzymes.  
Bifidobacterium produce specific glycoside hydrolases (GHs) that hydrolyze 
HMOs and release short chain fatty acids, which are beneficial for the infants. 
The colonization of B. longum subsp. infantis (B. infantis) in the first year of life is 
predicted to be protective against asthma development. However, there are other 
Bifidobacterium species or B. longum subspecies that colonize the infant gut as 
well as strain diversity in GHs.  

In this study, I used both comparative genomics and phenotypic screening of 
118 Bifidobacterium strains. Comparative genomics identified strain specific 
differences in GHs and phenotypic screening showed variability in HMOs 
degradation among strains. By constructing sequence similarity networks for GHs 
involved in HMO degradation, I assigned subtypes to GH proteins. These 
subtypes were hypothesized to have different functions and substrate specificity. 
Using the machine learning data of the GH subtype profiles combined with HMO 
utilization assay data, I mapped specific degradation reactions to GH subtypes. 
Lastly, metagenomic reads were mapped against selected Bifidobacterium strains 
and GH subtype genes. Although B. infantis is associated with a reduced asthma 
risk, I observed that this strain was also abundant in some subjects with an 
asthma phenotype. Overall, our metagenomic read mapping analysis suggests 
that asthma development is not solely determined by one Bifidobacterium strain 
or GH subtype. Instead, it appears that multiple factors contribute to asthma risk. 
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CHAPTER 1. Introduction  
1 Introduction 

1.1 The human gut microbiome 

The human body harbors trillions of microorganisms, and the gut 

microbiota is the collection of microorganisms in the gastrointestinal tract (Yang et 

al., 2016). This microbial community, known as the microbiota, comprises 

bacteria, viruses, fungi, parasites, archaea, and other microorganisms. The term 

‘microbiota’ represents the microorganisms, while ‘microbiome’ includes the 

microbiota, their genetic material, structural components, and metabolites (Berg 

et al., 2020). 

1.1.1 The infant gut microbiome 

The infant gut microbiota helps establish a lifelong mutualistic relationship 

between the gut microbial community and its respective host (Thursby & Juge, 

2017). It plays a significant role in early life; it prevents pathogen colonization, 

produces vitamins and amino acids, and helps maintain the integrity of the gut 

epithelial cells (Ahearn-Ford et al., 2022). According to the sterile womb 

paradigm, the maturation of the infant gut microbiota is believed to start at birth 

(Milani et al., 2017). However, this dogma is challenged by the in utero 

colonization hypothesis, which proposes that gut colonization begins before birth 

through contact with a placental microbiome (Perez-Muñoz et al., 2017). 

However, the research supporting in utero colonization hypothesis is limited due 
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to the lack of contamination controls and molecular methods that lack the 

sensitivity to detect microorganisms with low biomass (Perez-Muñoz et al., 2017). 

Kennedy et al. (2023) reviewed recent studies that described microbial 

populations in human fetuses and concluded that microbial signals detected in 

fetal microbial populations are likely due to contamination during fetal sample 

collection or the processes of DNA extraction and sequencing (Kennedy et al., 

2021). 

At birth, gut maturation is influenced by the mode of delivery and 

gestational age (Milani et al., 2017). Then, it is influenced by many factors, 

including feeding regime, environment, maternal diet, and lifestyle (Lordan et al., 

2024; Sarkar et al., 2021). Vaginally delivered infants developed bacterial 

communities like the mother’s fecal and vaginal microbiota consisting of 

Lactobacillus and Prevotella. Stearns et al. (2017) investigated how bacterial 

communities develop in infants born vaginally with no antibiotic exposure 

compared to those exposed to antibiotic prophylaxis (IAP) for Group B 

Streptococcus (GBS). They found that IAP for GBS was associated with delayed 

expansion of Bifidobacterium and a persistence of Escherichia. Additionally, 

longer durations of IAP exposure led to a greater delay in the maturation of the 

microbial community. On the other hand, infants born via Caesarean section (C-

section) displayed a less diverse gut microbiota, characterized by lower levels of 

Bacteroides, Escherichia and Bifidobacteria and an increase in genera 
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Enterobacteriaceae and Clostridium during the first 12 weeks of life (Stearns et 

al., 2017).  

Feeding mode is another major factor influencing early life microbial 

colonization. Breastfed infants were mostly dominated by Bifidobacterium and 

Bacteroides, which efficiently utilize human milk oligosaccharides in the breast 

milk (Harmsen et al., 2000; Lv et al., 2022). In contrast, formula-fed infants 

displayed a more diverse microbiota with a higher abundance of C. difficile and 

Escherichia coli than breastfed infants (Shaw et al., 2020). Colonization of C. 

difficile is associated with a higher risk of developing atopic outcomes, including 

eczema, recurrent wheezing, and atopic sensitization (Penders et al., 2007). 

Following weaning and the introduction of solid foods, the infant gut microbiota 

begins to resemble an adult-like microbiome primarily dominated by Firmicutes 

and Bacteroidetes. Diet remains crucial in driving changes in the microbiome’s 

composition and diversity over the first three years (Koenig et al., 2011). 

However, these changes in the infant gut microbiota are not limited to microbial 

compositional change but also involve alterations in the concentration of 

metabolites such as short-chain fatty acids (SCFAs) (Trompette et al., 2014).  

1.2 Human Breast Milk  

  Breast milk provides ideal nutrition for the infant and is rich in 

macronutrients (e.g., proteins, carbohydrates, vitamins, and fats), minerals, 

hormones, cytokines, and growth factors. Many factors influence its composition 
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and vary by ethnicity, mother's age, lactation stage, and among different 

individuals (Ballard & Morrow, 2013; Han et al., 2021).  

1.2.1 Human Milk Oligosaccharides  

Breast milk contains many beneficial substances, including human milk 

oligosaccharides (HMOs) (Boix-Amorós et al., 2019). HMOs contain a lactose 

core and are built from five monosaccharides: glucose (Glc), galactose (Gal), N-

acetylglucosamine (GlcNAc), fucose (Fuc), and the sialic acid (NeuAc) (Figure 

1.1). The lactose core can be elongated with repeats of lacto-N-biose type 1 

(LNB; Galβ1-3GlcNAc) or N-acetyllactosamine (LacNAc; Galβ1-4GlcNAc), 

sialylated and/or fucosylated, resulting in over 200 HMO structures identified to 

date, which are a result of elongation of 19 core structures (Spicer et al., 2022; 

Zhang et al., 2021). HMOs can reach 20-25 g/L concentrations in human 

colostrum, which decreases to 5-10 g/L in mature breast milk (Bode, 2012).  

The composition of HMOs varies among women, and interpersonal 

variations are associated with secretor status and Lewis blood type (Bode, 2015). 

Fucosylation of HMO is determined by two enzymes, a1-2-fucosyltransferase 

(FUT2) and a1-3/4-fucosyltransferase (FUT3). The FUT2 enzyme, encoded by 

the secretor gene (Se), adds fucose via a1-2 linkages. In contrast, the FUT3 

enzyme, encoded by the Lewis blood group (Le), adds fucose via a1-3/4 linkages 

(Bode, 2015; Han et al., 2021; Spicer et al., 2022). HMOs are indigestible by 

infants themselves due to the lack of enzymes to cleave the glycosidic linkage. 
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Instead, they are digested by Carbohydrate-Active enZYmes (CAZymes) 

expressed by microbes in the gut (Thomson et al., 2018). 

1.2.2 Functions of Human Milk Oligosaccharides 

HMOs have been demonstrated to play many roles, including acting as 

prebiotics, preventing pathogen infections, and modulating epithelial cell 

responses (Bode, 2012). Prebiotics are “selectively fermented substances that 

induce specific changes in the composition and/or activity of the gastrointestinal 

microbiota, leading to improvements in the host's health and well-being” (Pandey 

et al., 2015). HMOs are often considered bifidogenic, meaning they selectively 

stimulate the growth of bifidobacteria, although only specific bifidobacterial strains 

can efficiently utilize HMOs (Milani et al., 2017). Bifidobacterial strains are 

predominant colonizers in breastfed infants due to their ability to metabolize 

HMOs efficiently. Previous genomic analyses have revealed that bifidobacterial 

strains from infants possess a broad set of genes for carbohydrate utilization, 

including genes that code for ATP-Binding cassette (ABC) transporters, and 

CAZymes like and glycoside hydrolases (GHs) and carbohydrate-binding proteins 

(Milani et al., 2016; Thomson et al., 2018). However, HMO-degrading genes are 

limited to a few Bifidobacterium strains and are not present in all Bifidobacterium 

species. Bifidobacterium longum subsp. infantis (B. infantis) is known to be the 

most efficient HMO utilizer, possessing a gene cluster for importing and 

processing HMOs, including four GHs, solute binding proteins, and ABC 

transporters facilitating the HMO utilization (Sela et al., 2008). 
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Although many studies focus on bifidobacteria-HMO interactions, some 

microbes from other taxa also utilize HMOs. Certain Bacteroides species 

including Bacteroides fragilis, Bacteroides ovatus, Bacteroides thetaiotaomicron, 

Bacteroides stercorsis, Bacteroides caccae, and Bacteroides vulgatus, have the 

ability to metabolize HMO as their sole carbon source (Marcobal et al., 2010, 

2011). Additionally, a recent study has shown that Akkermansia muciniphila can 

degrade HMO structures such as 2’-fucosyllactose (2’FL), lacto-N-tetraose (LNT), 

lactose, and lato-N-triose II (LNT II) in vitro in a strain-dependent manner, using 

key-glycan degrading enzymes and GHs (Kostopoulos et al., 2020; Luna et al., 

2022). A unique gene cluster that facilitates the degradation of HMO derivative 

lacto-N-biose (LNB) was discovered in Lactobacillus casei (Bidart et al., 2014). 

Although these gut microbes have a limited capacity to degrade HMOs compared 

to Bifidobacterium strains, they may still play an essential role in shaping the 

infant gut microbiota composition.  

The protective effects of HMOs can be categorized into two mechanisms. 

The first involves HMOs exerting selective pressure that enables beneficial 

bacteria to outcompete other microbes including pathogens, thereby protecting 

infants from infections (Ackerman et al., 2017). The degradation of HMOs 

produces organic acids that acidify the environment and inhibit the growth of 

pathogens (Tan et al., 2014). The second mechanism involves direct interaction 

with pathogens. Many viral and bacterial pathogens attach to the glycocalyx, a 

carbohydrate-rich layer attached to the epithelial cells composed of mucins, 
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glycoproteins, and glycolipids, to infect the host (Argüeso et al., 2021; Kavanaugh 

et al., 2015). The structural similarity between HMOs and cell surface glycan 

receptors causes pathogens to bind to HMOs instead of cell surface glycans, 

blocking their attachment to epithelial cells (Newburg & Grave, 2014). For 

instance, fucosylated HMOs, such as 2’FL, inhibit the adhesion of Campylobacter 

jejuni (C. jejuni), a leading cause of bacterial diarrhea and infant mortality (Ruiz-

Palacios et al., 2003). A study of breastfed Mexican infants concluded that lower 

levels of specific fucosylated HMOs were significantly associated with higher 

rates of pathogenic diarrhea (Morrow et al., 2004). More specifically, reduced 

levels of 2’FL were associated with an increased incidence of C. jejuni-induced 

diarrhea. HMOs can also act as antivirals by mimicking histo-blood group 

antigens (HBGAs), vital for norovirus attachment (Koromyslova et al., 2017). 

In addition to mimicking cell surface glycans, HMOs influence pathogen 

colonization through biofilm formation. Biofilms are clusters of bacteria attached 

to surfaces and each other, providing increased resistance to antimicrobials 

(Vestby et al., 2020). A study investigating HMOs as antibiofilm agents found their 

antibiofilm activity against Streptococcus agalactiae (Group B Streptococcus) by 

quantifying biofilm and analyzing structural differences (Ackerman, Doster et al., 

2017). While the mechanism behind this activity remains unclear, it has been 

hypothesized that the external sugars provide the bacterial community with 

abundant nutrients, reducing the need for biofilm formation. Alternatively, HMOs 
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might disrupt the bacterial communication pathways essential for biofilm 

formation (Ackerman, Doster, et al., 2017; Lin et al., 2017) 

Lastly, HMOs can directly affect intestinal epithelial and immune cell 

responses. The glycocalyx serves as a barrier against toxins, and its impairment 

can lead to gastrointestinal issues. Kong et al. (2019) demonstrated that 2’FL and 

3-fucosyllacotse (3-FL) increased the thickness of adsorbed albumin within the 

glycocalyx of Caco-2 cells. Enhanced albumin adsorption is linked to improved 

glycocalyx stability and anti-pathogenic effects (Kong et al., 2019). In vitro studies 

have demonstrated that HMO treatments can inhibit cell proliferation and promote 

increased epithelial differentiation. High doses of 3’-sialyllactose (3′SL) and 6’-

sialyllactose (6′SL) significantly decreased cell proliferation in HT-29 and Caco-2 

BBe cells (Holscher et al., 2017). HMOs also influence the immune system by 

either increasing the expression of different Toll-like receptors (TLRs) or inhibiting 

TLR signaling (Asakuma et al., 2010). For instance, 3’SL and 6’SL are known to 

elevate levels of both TLR2 and TLR4, whereas lacto-N-fucopentaose I (LNFP I) 

specifically enhances TLR4 expression. Previous research revealed that 2’FL, 

6’SL, and lacto-N-neo-tetraose (LNnT) inhibit TLR5, whereas 3-FL targets TLR5, 

7, and 8 in vitro (L. Cheng et al., 2019). These findings highlight how varying 

HMO combinations can result in diverse immune modulation effects, potentially 

offering new strategies for disease prevention in infants.  
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1.2.3 Human Milk Oligosaccharides in infant formula  

 Breastfeeding is considered the gold standard for infant nutrition, and the 

World Health Organization (WHO) recommends exclusive breastfeeding for the 

first six months after birth (Gallier et al., 2015; Walker, 2010). However, following 

this recommendation can be challenging due to health issues or insufficient milk 

production by mothers (Oftedal, 2012; Walker, 2010). In this case, infant formula 

is often used to meet the infant’s nutritional needs. Infant formula milk, usually 

based on cow’s milk, aims to replicate the benefits of human breast milk including 

HMOs, which are unique in breast milk and cannot be found in the milk of other 

mammals (Hegar et al., 2019).  

Infant formulas often contain bioactive agents such as probiotics, 

prebiotics like HMOs, fructooligosaccharides (FOS) and galactooligosaccharides 

(GOS), and post-biotics (Fabiano et al., 2021). Previous studies found that infant 

formula supplemented with HMO shifted the microbiome composition towards 

that of breastfed infants with higher bifidobacteria (Bosheva et al., 2022). Due to 

the complexity of synthesizing HMOs, current formulations typically contain 

simple HMO structures, 2’FL and LNnT (Puccio et al., 2017). Clinical trials have 

demonstrated that adding HMOs to infant formula is safe, well-tolerated, and 

supports age-appropriate growth (Marriage et al., 2015; Puccio et al., 2017). 

When infants were given formula supplemented with 2'FL (0.2 and 1.0g/L) with a 

caloric density similar to breast milk, no weight, length, or head circumference 

differences were observed. The absorption profiles of 2’FL in these formulas were 
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comparable to those in breastfed infants, with 2’FL detected in both plasma and 

urine (Marriage et al., 2015).  

Similarly, research on infant formula supplemented with two HMOs 

displayed benefits for infant growth, tolerance, and morbidity. This first 

randomized, controlled clinical trial of formula supplemented with both 2’FL and 

LNnT reported reduced morbidity, particularly bronchitis, in infants who received 

supplemented formula (Puccio et al., 2017). However, few studies have 

investigated the impact of HMO-supplemented infant formulas on infant health. 

The limited research results in scarce evidence of their potential preventive 

benefits, highlighting the need for more controlled clinical trials to understand the 

effects of HMO-supplemented formula better (Fabiano et al., 2021).   

1.3 Asthma and breastfeeding 

Asthma is a chronic disease that typically develops in childhood, affecting 

about 334 million people worldwide burdening public health systems (Ahmadizar 

et al., 2017; Asher & Pearce, 2014; Ferrante & La Grutta, 2018). Risk factors of 

asthma include wheezing and atopy; however, asthma can be difficult to 

diagnose as wheezing episodes are challenging to define, and not all wheezing 

infants develop respiratory disease (Morgan et al., 2005).  

Factors present in early life, such as being a preterm infant, having a low 

birth weight, maternal asthma, and breastfeeding practices, may increase the risk 

of developing asthma. Many studies have investigated the association between 
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breastfeeding practices and the risk of asthma development, concluding that 

breastfeeding is protective against asthma or wheezing disorders (Azad et al., 

2017; den Dekker et al., 2016; Oddy et al., 1999; Xue et al., 2021). This 

protective effect of breastfeeding could be due to its role in preventing infections 

in the respiratory tract, promoting lung growth, and supporting the maturation of 

the immune system (Turfkruyer & Verhasselt, 2015; Victora et al., 2016; 

Waidyatillake et al., 2013). For mothers with asthma, breastfeeding was 

associated with a reduction in wheezing episodes in their infants (Azad et al., 

2017). Exclusive breastfeeding reduced the incidence of wheezing by 62% 

compared to no breastfeeding, while partial breastfeeding reduced it by 37%. 

However, breastfeeding supplemented with formula did not display significant 

protection against wheezing episodes (Azad et al., 2017). Notably, a meta-

analysis indicated that the evidence for this association varies between studies, 

potentially due to differences in study design, study populations, and infant 

feeding practices that need to be better documented (Xue et al., 2021). 

Previously, the Canadian Healthy Infant Longitudinal Development (CHILD) Study 

examined whether infant feeding practices, including breastfeeding and 

expressed breast milk, are associated with asthma (Arrieta et al., 2015; Dai et al., 

2023; Dai et al., 2022). The study found that any infant feeding practices other 

than direct breastfeeding led to a higher likelihood of possible asthma diagnosis 

at 3 years (Arrieta et al., 2015). Compared to exclusively breastfed infants, those 

who received expressed milk had a 43% increased likelihood of asthma 
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diagnosis, whereas those who were only given formula had a 79% higher 

likelihood (Klopp et al., 2017). 

An increased risk of pediatric asthma development was observed in infants 

exposed to antibiotics who were not breastfed (Dai et al., 2023; Donovan et al., 

2020). A previous metagenomic study has reported that infants exposed to 

antibiotics without breastfeeding had a 3-fold increased risk of developing asthma 

than the infants who were breastfed (Dai et al., 2023). Numerous studies have 

identified specific taxa associated with reduced risk for developing atopy and 

asthma including Bifidobacterium  (Akay et al., 2014; Fang et al., 2022). The 

protective effect of breastfeeding was associated with the enrichment of B. 

longum subspecies infantis (Dai et al., 2023).  

1.4 Bifidobacteria 

Bifidobacteria are Gram-positive anaerobes and dominant in the stools of 

breastfed infants (Hidalgo-Cantabrana et al., 2017). They belong to the genus 

Bifidobacterium, within the family Bifidobacteriaceae, order Bifidobacteriales and 

phylum Actinobacteria. The genus Bifidobacterium contains more than 90 species 

and multiple subspecies (Turroni et al., 2022). Species commonly found in the 

human gut microbiome contain Bifidobacterium breve (B. breve), B. longum 

subsp. infantis (B. infantis), B. longum subsp. longum (B. longum), and 

Bifidobacterium bifidum (B. bifidum), Bifidobacterium adolescentis (B. 

adolescentis), Bifidobacterium catenulatum (B. catenulatum), and Bifidobacterium 

pseudocatenulatum (B. pseudocatenulatum) (Turroni et al., 2012).  
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1.4.1 Carbohydrate Active Enzymes  

Enzymes involved in carbohydrates are known as Carbohydrate-Active 

enZYmes or CAZymes. Due to the diversity of mono- and polysaccharides, 

CAZymes are a diverse family of enzymes that degrade complex carbohydrates 

with high specificity (Cantarel et al., 2009). They have been categorized into 

different families based on their amino acid sequence similarities, protein folds, 

and enzymatic mechanisms. As CAZymes classification is based on the similarity 

of amino acid sequences, it integrates these enzymes' structural and mechanistic 

features (Henrissat, 1991). The CAZy database covers five different protein 

domains: Glycoside Hydrolases (GHs), Glycosyl Transferases (GTs), 

Polysaccharide Lyases (PLs), Carbohydrate Esterases (CEs), and Carbohydrate-

Binding Modules (CBMs). Glycoside Hydrolases (GHs) contain glycosidases, 

which are responsible for the hydrolysis of glycosidic linkages, and 

transglycosidases, which are responsible for the rearrangement of glycosidic 

bonds (Cantarel et al., 2009; Henrissat, 1991). Glycosyltransferases (GTs) are 

responsible for the synthesis of glycosidic linkages (Wiederschain, 2009). 

Polysaccharide lyases (PLs) perform non-hydrolytic cleavage of glycosidic bonds 

(Linhardt et al., 1987). Carbohydrate esterases (CEs) hydrolyze carbohydrate 

esters to facilitate the GHs activity (Armendáriz-Ruiz et al., 2018). Lastly, 

Carbohydrate-binding modules (CBMs) are non-catalytic proteins that increase 

the interaction between the enzyme and substrate (Boraston et al., 2004).  
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1.4.1.1 Glycoside Hydrolases 

 Glycoside Hydrolases (or glycosyl hydrolases) (EC 3.2.1.x) are essential 

enzymes to bifidobacteria, enabling them to adapt in the host environment by 

breaking down complex carbohydrates (Pokusaeva et al., 2011). Unlike the 

International Union of Biochemistry enzyme nomenclature based on substrate 

specificity and molecular mechanism, a classification by CAZy is based on amino 

acid sequence similarities and 3-dimensional structure. Thus, enzymes within the 

same GH family may have different substrate specificity and modes of action 

(Van Den Broek et al., 2008). As mentioned above, GHs are a group of enzymes 

responsible for the hydrolysis of glycosidic linkages in carbohydrates. These 

enzymes achieve this through two different catalytic mechanisms, retaining and 

inverting. The retaining mechanism involves a double displacement process, 

which is an intermediate. In contrast, the inverting mechanism has a single 

displacement mechanism, resulting in a product with reversed stereochemistry 

compared to the substrate (Van Den Broek et al., 2008). Moreover, some GHs 

exhibit transglycosylation activity, catalyzing the transfer of a glycosyl group to 

form a new glycosidic bond (Qin et al., 2017). One of the GHs exhibiting 

transglycosylation activity is b-galactosidases, which can produce prebiotics from 

lactose (Rabiu et al., 2001).  

1.4.2 Carbohydrate utilization by bifidobacteria  

Simple carbohydrates, including lactose and sucrose, are degraded in the 

upper gut by the host and other microbes present in the upper gastrointestinal 
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tract (O’Callaghan & van Sinderen, 2016). Non-digestible carbohydrates, such as 

complex plant-derived polysaccharides and host-derived carbohydrates (e.g., 

HMOs), are metabolized in the lower gut where bifidobacteria inhabit (Pokusaeva 

et al., 2011). The genus Bifidobacterium evolved to have one of the highest 

numbers of genes involved in carbohydrate metabolism among gut commensals 

(Milani et al., 2016). According to the CAZy classification, the bifidobacterial 

pangenome is predicted to contain 3385 genes, which include 57 GH families, 13 

GT families, and 7 CEs (Milani et al., 2014). Additionally, over 12% of annotated 

open reading frames of the bifidobacterial genome are predicted to code for 

enzymes associated with carbohydrate utilization (Milani et al., 2014). The 

genetic makeup of bifidobacteria for utilizing glycans is often found in glycan-

specific gene clusters, which contain enzymes related to transporting sugar, 

carbohydrate-specific ABC transporters, substrate-binding proteins (SBPs), and 

GHs (Pokusaeva et al., 2011). Bifidobacteria degrade hexose sugars (e.g., 

glucose and fructose) through a process called “bifid shunt”, where the fructose-

6-phosphoketolase enzyme is involved (Pokusaeva et al., 2011). The bifid shunt 

is an ATP-generating pathway that also produces SCFAs. Theoretically, it yields 

2.5 ATP from 1 mole of glucose, along with 1.5 moles of acetate and 1 mole of 

lactate (Palframan et al., 2003).  

Bifidobacterial species’ ability to access HMOs is a characteristic limited to 

bifidobacterial species associated with infants (Alessandri et al., 2021). Many 

studies have identified gene clusters dedicated to milk carbohydrate degradation. 
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Based on microarray and functional analysis, B. breve is known to possess a 

gene cluster specialized in utilizing LNT and LNnT (James et al., 2016). In 

addition, Garrido et al. (2016) discovered the FHMO cluster (Fucosylated Human 

Oligosaccharide utilization cluster) that contains two fucosidases and genes 

associated with the import of fucosylated molecules in infant-born B. longum 

strain. However, the genomic arrangement of clusters displays inter- and intra-

species variability, and the presence of gene members from these HMO clusters 

does not consistently lead to bacterial growth in the presence of the given HMOs. 

Lawson et al. (2020) demonstrated that while B. breve strains had essential GHs 

for fucosylated HMO degradation, but they did not grow on 2’FL. This could be 

due to the absence of second fucosidase (GH29) or essential transport genes 

(Lawson et al., 2020).  

Bifidobacterial strains associated with breastfed infants use two different HMO 

degradation strategies (Kim et al., 2013). HMO degradation can occur either 

intracellularly or extracellularly. During the HMO metabolism by B. infantis, B. 

longum, and B. breve, intact HMOs are imported into the cytoplasm through ABC 

transporters, where intracellular GHs degrade them. Alternatively, for B. bifidum, 

extracellular GHs degrade HMOs into mono- and/or disaccharides, which are 

then transported into the cell (Thomson et al., 2018). Upon degradation, 

derivatives of HMO enter the central metabolism pathway (Kim et al., 2013). 

Metabolism of HMOs leads to the production of SCFAs (specifically lactate, and 

acetate) (Henrick et al., 2018; Ioannou et al., 2021; Kim et al., 2013). These 
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SCFAs have many effects, such as acidifying the gut, protecting it from pathogen 

colonization, and improving intestinal barrier function and immune cell 

development (Lordan et al., 2024). Acetate produced by B. infantis acts as a 

carbon source for butyrate-producing microbes, illustrating a process known as 

cross-feeding (Milani et al., 2017). Cross-feeding is often observed within 

bifidobacterial species or with other bacteria (Xiao et al., 2024).  B. infantis 

degrades HMO and produces monosaccharides, lactate and acetate which are 

further utilized by Anaerostipes caccae to produce butyrate (Chia et al., 2021). 

When Bifidobacterium species such as B. bifidum and B. longum degrade HMOs 

extracellularly, they release mono- or disaccharides into their surroundings. This 

promotes cross-feeding among other bifidobacterial species with less efficient 

HMO utilizing capacity (Xiao et al., 2024).  

1.5 Central Paradigm 

1.5.1 Central Hypothesis and Objectives 

While breastfeeding is associated with the infant gut microbiome and 

reduced risk of developing asthma, the utilization of HMOs by microbes, 

metabolites that are produced as a result of HMO degradation, and their 

relationship with the microbiome remain unknown (Azad et al., 2017; Dai et al., 

2023; Klopp et al., 2017; Miliku & Azad, 2018). To address this gap, the CHILD 

study was designed to investigate the causal role of gut microbiome in childhood 

asthma (Dai et al., 2022). The CHILD cohort study is a prospective longitudinal 
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birth cohort study investigating the roles of genetics, genomics, and environment 

in developing asthma and allergies.  

The focus of my work was to identify the specific GH genes in the infant 

gut microbiome, associated with a decreased risk of developing asthma 

symptoms. Rather than focusing on species and subspecies, the study aimed to 

identify specific GH genes responsible for protecting infants against asthma as 

the capacity to degrade HMOs and produce metabolites is not limited to a single 

species or subspecies alone. Therefore, I hypothesized that HMO utilization 

would be strain-specific, and mapping GH proteins to specific HMO 

degradation activities coupled with metagenomic data would identify 

specific protective genes. 

1.5.2 Aims 

To address the hypothesis, the research aimed to:  

1. Identify strain-specific differences, GH genes, and HMO specificity in 

Bifidobacterium using comparative genomics and functional assays 

(Chapter 2) and, 

2. Using metagenomic data from the CHILD study, investigate the specific 

gene and pathway associated with protection from asthma (Chapter 3).  
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Figure 1.1. Structural diversity of Human Milk Oligosaccharides (HMOs). 
HMOs are constituted of five different monosaccharides, glucose (blue circle), 
galactose (yellow circle), N-acetyl-D-glucosamine (blue rectangle), fucose (red 
triangle), and sialic acid (purple diamond), in various number and linkages, 
providing high structural diversity. Structures were visualized using DrawGlycan 
(Cheng et al., 2017). 
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CHAPTER 2. Strain diversity in 
Glycoside Hydrolases of 
Bifidobacterium species 
2 Strain diversity in Glycoside Hydrolases of Bifidobacterium species  

2.1 Introduction  

Human milk oligosaccharides (HMOs) are an abundant breastmilk component 

(Boix-Amorós et al., 2019). HMOs in the breastmilk selectively enrich the growth 

of beneficial microorganisms leading to a healthy gut microbiome (Thomson et 

al., 2018). However, they cannot be digested by the infants themselves as they 

lack the enzymes. Previous studies have discovered that many Bifidobacterium 

species have a highly conserved HMO utilization gene cluster allowing 

preferential utilization of HMO (Garrido et al., 2016; Thomson et al., 2018b). 

Bifidobacterium produces specific glycoside hydrolases (GHs) that can break 

down HMOs leading to the production of short-chain fatty acids (Janeček & 

Svensson, 2022; Lordan et al., 2024; Wardman et al., 2022). A previous 

metagenomic study found a correlation between colonization with Bifidobacterium 

longum subsp. infantis (B. infantis) in the first year of life and reduced risk of 

developing asthma, intermediate wheezing, and permanent atopy (Dai et al., 

2023). However, infants colonized with B. infantis could still develop asthma, 

while those colonized with other Bifidobacterium species may not. Furthermore, 
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there are numerous Bifidobacterium species and other Bifidobacterium longum 

(B. longum) subspecies that colonize the infant gut, as well as strain-level 

differences in GHs and capacity to metabolize HMOs (Ioannou et al., 2021a; 

Zabel et al., 2020). With a long-term goal of identifying the specific set of 

bifidobacterial genes driving this protective effect against asthma, I have applied 

comparative genomics and a functional screen to identify GHs and functional 

differences between Bifidobacterium subspecies and strains. 

Previous studies have observed substrate specificity of a-fucosidases, a large 

enzyme family that utilizes fucosylated substrates (Cantarel et al., 2009). For 

instance, both a-fucosidases (GH29 and GH95) were necessary for B. breve to 

successfully grow on 2-, 3-, and 4-linked fucosylated HMOs (Ruiz-Moyano et al., 

2013). However, while the GH95 enzymes showed a preference for 1-2 fucosyl 

linkages, the GH29 enzymes preferred 1-3 and 1-4 linkages in B. 

pseudocatenulatum strains which highlights the substrate specificity of GH 

enzymes (Shani et al., 2022). I observed in our isolate collection that one strain 

can possess multiple genes encoding for members of the same GH family and I 

predict that the different proteins from the same GH family have different 

functions and substrate specificities. Therefore, in the present study, I used a 

bioinformatic approach to investigate whether different GH proteins from the 

same GH family have different substrate specificities and functions.  



M.Sc. Thesis – Grace Kim; McMaster University – Biochemistry & Biomedical Sciences 

 22 

2.2 Methods 

2.2.1 Sources of bacterial strains and microbial culturing  

The Surette lab has a large strain collection of human microbiome isolates 

including bifidobacteria. All strains were previously isolated and whole genome 

sequences were available. We restricted our analysis to strains we had available 

so we could complement comparative genomics with functional studies. A total of 

118 strains of Bifidobacterium were selected and cultured to create my stock 

collection (Table 2.1). From the frozen stocks in the lab, all strains were grown on 

Brain Heart Infusion (BHI) agar (Fisher Scientific) supplemented with 1mg/L 

vitamin K, 10mg/L hemin, and 0.5g/L L-cysteine (BHI3) and incubated 

anaerobically for 24 hours using an ANANOXOMAT jar (10% H2, 10% CO2, 85% 

N2) at 37℃. Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass 

Spectrometry (MALDI-TOF-MS) on a Bruker Biotyper was used to confirm the 

identification of the cultured microorganism. Glycerol stocks of each strain were 

made using pure bacterial colonies on agar, suspended in 1 mL of BHI3 broth 

with 15% glycerol, aliquoted in each cryovial and two 96 well plates, and stored at 

-80℃.  

To add the diversity of strains, 11 B. longum strains isolated from infant 

stool provided by Dr. Jennifer Stearns were evaluated. They were grown in BHI3 

agar, and a single colony was picked for MALDI-ToF identification. The individual 

spectra from each isolate were compared to remove isolates of the same strain 
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and four different types of peak patterns were observed. One strain from each 

peak pattern was selected and whole genome sequencing was carried out using 

Illumina NextSeq2000. Genomic DNA isolation, library construction, and Illumina 

sequencing were carried out as described previously with raw read processing 

(Derakhshani et al., 2020). Assembly, annotation, and taxonomic classification 

using Unicycler v0.5.0, Bakta v1.5.0 and GTDB-Tk v.2.4.0, respectively (Bolger et 

al., 2014; Wick et al., 2017; Schwengers et al., 2021; Chaumeil et al., 2020). 

2.2.2 Optimizing growth conditions  

To identify the optimal growth condition, the strains were cultivated in 

different base media, methods to minimize the evaporation of the culture, carbon 

sources, shaking conditions, and different plate types, including 48-well plate and 

deep 96-well plates.  

Using a 96-pin replicator, all bacterial strains in two 96-well plates were 

transferred to two BHI3 agar and incubated for 48 hours anaerobically in 

ANANOXOMAT jar as described previously. After 48 hours, 96-pin replicator was 

used to inoculate four 96-well plates containing 100 µL of BHI3 broth. Two 96-well 

plates were incubated with a breathable membrane and the other two plates were 

overlaid with 50 µL of sterile mineral oil. The plates were incubated anaerobically 

in an ANANOXOMAT jar. The same procedure was used to evaluate the growth 

in different media, tryptic soy broth (TSB), and peptone-yeast glucose (PYG) 

broth. 
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2.2.3 Phenotypic screening under different carbon sources 

 After optimizing the growth conditions, the 118 strains were cultured in PY 

broth supplemented with a carbohydrate, autoclaved glucose, or a filter-sterilized 

carbohydrate including FOS (fructooligosaccharide), N-acetyl-D glucosamine or 

glucose. Gently, 50 µL of sterile mineral oil was overlaid on the liquid culture in a 

96-well plate. The liquid cultures were incubated anaerobically in an 

ANANOXOMAT jar at 37℃ and after 48 hours, the OD600 readings were 

measured using a microplate reader. 

2.2.4 Comparative genomics 

Taxonomy and subspecies assignments of 118 Bifidobacterium genomes 

were carried out using GTDB-Tk v.2.4.0 with whole genome assemblies 

(Chaumeil et al., 2020). Panaroo v.1.4.2 was used to construct a core genome 

alignment, defined as a set of genes shared by over 95% of strains (Tonkin-Hill et 

al., 2020). A phylogenetic tree was constructed for each species using FastTree 

v2.1 and visualized using R v.4.4.0 (Letunic & Bork, 2021; Price et al., 2010). 

CAZy genes of 8 Bifidobacterium species were identified using dBCAN2 (a 

database of CAZy) (Price et al., 2010; Zhang et al., 2018). The output files of 

Panaroo (gene presence and absence data) and dbCAN2 were compared to 

identify the genes associated with carbohydrate metabolism. Based on the 

presence and absence of the CAZy genes, the unweighted pair group method 

with arithmetic mean (UPGMA) was used for clustering and visualized in R 
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v.4.4.0 using tidyverse v.2.0.0, ggtree v.3.12.0 and ape v.5.8 packages for each 

species (Paradis & Schliep, 2019; Wickham et al., 2019; Yu et al., 2017). 

The genus-level phylogenetic trees were constructed by using GTDB-Tk 

v.2.4.0 for the multiple sequence alignment (MSA) of 120 bacterial marker genes 

(bac120) identified in the input sequences and FastTree v.2.1 was used to 

construct a tree of the MSA (Chaumeil et al., 2020; Price et al., 2010). Panaroo 

was used to construct a genus-level core gene alignment, as described 

previously, using a protein family sequence identity threshold of 50% and a core 

threshold of 40% (Tonkin-Hill et al., 2020).  

2.2.5 Strains selection  

 Analysis of the phenotypic screens and comparative genomics was used 

to remove strain redundancy in this collection. When strains were under the same 

cluster for both core-gene alignment and CAZy presence and absence tree, their 

growth under different carbon sources and the sources of the stains were 

compared. This was done for all 118 strains by species.   

2.2.6 Extracting GH protein sequences, building SSNs and identifying GH 

subtypes 

dbCAN2 uses three tools (HMMER, DIAMOND, and eCAMI) to identify 

CAZy profiles, specifically GH proteins (Zhang et al., 2018). GH protein 

sequences were extracted for further analysis if predicted by at least two of the 

three tools as well as all annotations identified using HMMER. For example, 
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when both HMMER and DIAMOND predicted gene group_3119_1 to be 

GH13_30, the corresponding protein sequence was extracted. After retrieving all 

the GH protein sequences, they were categorized by different GH families. The 

number of GH present in each GH family is shown in Table 2.3. Further analysis 

was limited to the specific GH families known to be involved in HMO degradation 

(GH2, GH20, GH29, GH33, GH42, GH95, GH112, GH136) (Ioannou et al., 

2021b; Saito et al., 2020) 

Within each GH family, a protein multiple sequence alignment was 

performed using MAFFT, and submitted to EFI-EST (Enzyme Function Initiative – 

Enzyme Similarity Tool, https://efi.igb.illinois.edu/ ) to generate a SSN (Oberg et 

al., 2023; Rozewicki et al., 2019; Zallot et al., 2019). The minimum alignment 

score threshold for drawing edges was determined to be 35%, indicating that 

nodes that share over 35% sequence identity are connected by edges (Zallot et 

al., 2019). The percent identity (% id) threshold for nodes varied for each GH 

protein, established as % id which resulted in the minimum number of nodes and 

edges. After deciding on the threshold, Cytoscape v.3.8.2 was used to visualize 

the SSNs to identify clusters within each GH family (Shannon et al., 2003). After 

visualizing SSNs for GH proteins, protein sequences were submitted to Uniprot to 

visualize domain structures for each cluster present in each SSN (Bateman et al., 

2023). Based on the average protein sequence length and the number of 

domains, nodes and clusters were assigned GH subtypes and annotated with 

different colors. Alphabetical labels were used to represent different clusters of 

https://efi.igb.illinois.edu/
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SSNs (e.g. GH20A), and subscripts indicating numbers were used to show 

variations in protein sequence length and domain structure within the same 

clusters (e.g. GH20A1).  

2.3 Results 

2.3.1 Comparative genomics and phenotypic screening to capture the strain 

diversity 

Comparative genomics was performed to capture the strain diversity in our 

collection of 118 Bifidobacterium strains (Table 2.1). Replicates of the strains 

isolated from the same source often exist in the lab strain collection. To capture 

the diversity of the strain collection and to select strains for further analysis, 

comparative genomics and phenotypic screening were performed.  

Phylogenetic trees were constructed based on Panaroo core genome 

alignment of each species (Figure 2.1- 2.10). Carbohydrate-Active enZYmes 

(CAZymes) are responsible for the synthesis and degradation of polysaccharides. 

Genes that encode for CAZymes were selected and used to construct a CAZy 

gene presence and absence tree (Figure 2.1.A). A small number of CAZy genes 

are conserved across all the strains, indicating that a limited set of CAZy genes 

contributed to the core genome alignment tree. The remaining CAZy genes 

represent accessory genes that are present in some but not all strains. 

Additionally, the strains exhibit diversity in CAZy families which contributes to 

their capabilities of carbon degradation. Two B. adolescentis strains (GC814, 
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821) are in the same cluster based on the core genome alignment tree, but the 

CAZy gene content varies (Figure 2.1.A & B). Five B. longum strains (GC398, 

399, 400, 462, 681, 710) are in the same cluster in the core genome alignment 

tree (Figure 2.5.A) and possess identical CAZy gene presence and absence 

(Figure 2.5.B). In this case, both trees and carbohydrate degradation data were 

used to select strains. 

Isolates were cultured under different carbon sources including autoclaved 

glucose, filter-sterilized N-acetyl-D-glucosamine, glucose, fructose, or FOS. The 

capability to degrade carbon sources is strain-specific. The majority of 

Bifidobacterium strains efficiently degraded filter-sterilized glucose; however, not 

autoclaved glucose. Autoclaving the carbohydrate sources had a negative impact 

on the growth. N-acetyl-D-glucosamine is degraded poorly compared to other 

carbon sources, despite being a building block of HMOs. FOS was tested as it is 

one of the common prebiotics added to infant formula and utilized by most of the 

B. longum strains (Lordan et al., 2024).  

Genus-level phylogenetic trees of all Bifidobacterium species were 

constructed using GTDB-Tk (marker gene-based) and Panaroo (core gene-

based) (Error! Reference source not found.). The phylogenetic tree based on 

the core genome alignment had a higher resolution than the marker gene-based 

tree.  
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2.3.2 Sequence Similarity Network of GHs associated with HMO 

degradation 

The distribution of GH families among Bifidobacterium species varies, and 

it is summarized in Error! Reference source not found.. The heatmap represents 

the distribution of GH families and the number of genes for each GH family for 

each genome. The distribution of GH family genes differs between species and 

within species. Some GH families are common to all isolates (e.g., GH2, 42, 36, 

77), whereas some GH families are species-specific (e.g., GH89, 110 in B. 

bifidum). Genes for multiple members of the same GH family also varied between 

species and strains. For example, genes for the GH43 family were most 

abundant in B. scardovii. It is important to note that not all these GH families are 

predicted to play a role in HMO degradation.   

SSNs were generated, visualized, and categorized for all the GH families 

that are known to take part in HMO degradation (Error! Reference source not 

found.Error! Reference source not found.). In a SSN, each node represents a 

cluster of closely related GH protein and is connected with an edge (Oberg et al., 

2023; Zallot et al., 2019). The size of the nodes reflects the number of genes 

contained within the node. Deciding on the alignment score threshold is important 

as the network will be fragmented when the alignment score threshold is too high, 

whereas multiple families will be merged into a single cluster when the alignment 

score is too low(Oberg et al., 2023; Zallot et al., 2019). Nodes were indicated with 

colors based on the average protein sequence length within each node, as well 
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as their domain structures, which were identified using Uniprot. Categorizing 

SSNs allowed the identification of GH subtypes (e.g. GH2A1, GH2A2, GH2B). I 

hypothesize that GH subtypes will have different substrate specificities even if 

they belong to the same GH family.  

For example, the 118 strains contained 361 predicted GH2 proteins. SSN 

was generated at 55 % identity resulting in a total of 39 nodes and 190 edges 

(Error! Reference source not found.). I identified 18 subtypes for GH2 proteins. 

GH2 cluster B (GH2B) was categorized not only based on the average protein 

sequence length but also the number of protein domains. GH2B1 had two protein 

domains whereas GH2B2 had one protein domain. Similarly, GH33B2 had one 

protein domain, while GH33B1 had two. The node can represent different GH 

proteins from the same Bifidobacterium species or different Bifidobacterium 

species. Our strain collection contains one B. infantis strain, however B. infantis, 

has two unique GH2 clusters, GH2A5 and GH2G.  

2.4 Discussion 

 This chapter had two main objectives. First, comparative genomics and 

functional assays (growth on different carbohydrates) were used to characterize 

strains within each Bifidobacterium species. Comparative genomics revealed 

variability in the presence of CAZymes, and GH genes, among strains. These 

differences in GH gene profiles may have influenced their ability to utilize different 

carbohydrate sources. For example, FOS, commonly supplemented in infant 

formulas was only used by a few Bifidobacterium species (Fabiano et al., 2021). 
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Most strains preferred filter-sterilized glucose over other carbohydrate sources 

and did not utilize N-acetyl-D-glucosamine well despite its role as a building block 

of HMOs (Kunz et al., 2000). This pattern was observed in most of the 

Bifidobacterium strains in our collection, except a few strains from B. bifidum, B. 

sp002742445 and B. dentium. Strains from these species respectively utilized 

fructose, FOS, and N-acetyl-D-glucosamine the most. Similar to GH gene 

profiles, differences in carbohydrate utilization were observed both between 

species and within species. As described previously, comparative genomics and 

phenotypic screens were used to select strains. Selected strains were further 

investigated for their ability to utilize HMOs (Chapter 3).  

The second objective was to use sequence similarity networks (SSNs) to 

compare and subtype GH families across Bifidobacterium species and strains. 

Bifidobacterium has an extensive collection of enzymes associated with 

carbohydrate metabolism among gut commensals (Milani et al., 2016). In our 

strain collection, 58 GH families were identified, totaling 7296 GHs. According to 

the previous study on different bifidobacterial genomes, GH13 family members 

were dominant as Bifidobacterium are specialized in breaking down various 

complex plant polysaccharides (Milani et al., 2016). This was also observed in my 

study, where the most predominant GH family was GH13, which represents 

enzymes responsible for hydrolyzing the α-glucosidic linkages in carbohydrates 

(Bottacini et al., 2018). The second most abundant GH family was GH43, which 

includes enzymes such as endo-β-xylanases and xylosidases involved in xylan 
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degradation (Cantarel et al., 2009; Wardman et al., 2022). Interestingly, the B. 

infantis strain AM1522 lacked a representative of GH43. Other highly represented 

GH families are GH3 and GH42, which include β-galactosidase, an enzyme 

responsible for degrading lactose (Cantarel et al., 2009; Wardman et al., 2022).  

Out of the 58 identified GH families, only 8 known to be associated with 

HMO utilization were visualized for SSNs. When visualizing SSNs, deciding 

thresholds for nodes and edges is crucial. A minimum alignment score of 35% for 

edges is recommended, as annotations between sequences with less than 35% 

identity are considered unreliable (Zallot et al., 2019). The threshold for a node 

was determined based on achieving the minimum number of nodes and edges, 

and it varied for each GH family. At higher percent identities, fewer nodes are 

observed, and nodes start to separate as the percent identity is decreased. 

However, this was not always the case. Some nodes remained separate at a high 

percent identity and remained distinct even when the percent identity was 

reduced. This suggests that these enzymes may have unique functions within 

their GH family.  

One Bifidobacterium strain can possess more than one GH family 

member, and each GH family catalyzes the hydrolysis of a specific glycosidic 

linkage. SSNs nodes were categorized into subtypes to determine which 

glycosidic linkages in each HMO are cleaved by the specific versions of a GH 

family member. Subtypes were assigned based on both the protein length and 

the number of protein domains, as protein length could indicate the presence of 
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another protein domain or carbohydrate-binding modules (Henrissat & Davies, 

2000). Domains are structural or functional units within an enzyme, each with a 

specific role, and their presence often correlates with the overall length of the 

protein (Marsden & Orengo, 2008). Notable, GH subtypes such as GH42A5, 

GH2G, GH20A2, GH33A1, and GH33B2, were exclusively present in the single B. 

infantis strain in our collection. These GH subtypes were further analyzed in 

Chapter 3 with HMO utilization assay data and machine learning to assign 

specific enzymatic reactions to these GH subtypes. Additionally, the protein 

sequences of these GH subtypes were used to build a reference database for 

metagenomics read mapping in Chapter 4.  

Further investigating these GH subtypes using AlphaFold, a tool that 

predicts the three-dimensional protein structures, will be valuable. It will provide 

insights into the substrate specificity of these GHs, structural features, and 

interactions with other enzymes or substrates, particularly HMOs (Jumper et al., 

2021).   

A limitation of this study and any comparative genomics study is that the 

genome assemblies may be incomplete, and some genes may also be missed in 

the prediction and annotation. Another limitation of this study is that the SSN 

visualization was restricted to just 8 GH families known to be involved in HMO 

degradation. However, many enzymes within GH families remain 

uncharacterized, and their enzymatic functions are unknown (Lombard et al., 

2014). For instance, GH20 comprises 23102 enzymes, but only 133 have been 
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characterized (Lombard et al., 2014). Therefore, expanding the SSN analysis to 

include all the GH families in our bifidobacterial strain collection would provide a 

more comprehensive and unbiased view.  
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Figure 2.1. Comparative genomics and phenotypic screening of 
Bifidobacterium adolescentis. A. A phylogenetic tree based on the core gene 
alignment generated from Panaroo v.1.4.2 with FastTree v.2.1 (Tonkin-Hill et al., 
2020; Price et al., 2010). Taxonomy and subspecies assignments were carried 
out using GTDB-Tk v.2.4.0 (Chaumeil et al., 2020). B. Presence and absence of 
CAZy genes were identified by using Panaroo and dbCAN2 (Tonkin-Hill et al., 
2020; Zhang et al., 2018). CAZy gene presence is displayed in blue and absence 
in green. C. Carbohydrate metabolism profile of B. adolescentis in PYG media 
(lacking glucose) supplemented with autoclaved glucose, filter-sterilized fructose, 
FOS, N-acetyl-D-glucosamine or glucose. 
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Figure 2.2. Comparative genomics and phenotypic screening of 
Bifidobacterium bifidum. A. A phylogenetic tree based on the core gene 
alignment generated from Panaroo v.1.4.2 with FastTree v.2.1 (Tonkin-Hill et al., 
2020; Price et al., 2010). Taxonomy and subspecies assignments were carried 
out using GTDB-Tk v.2.4.0 (Chaumeil et al., 2020). B. Presence and absence of 
CAZy genes were identified by using Panaroo and dbCAN2 (Tonkin-Hill et al., 
2020; Zhang et al., 2018). CAZy gene presence is displayed in blue and absence 
in green. C. Carbohydrate metabolism profile of B. bifidum in PYG media (lacking 
glucose) supplemented with autoclaved glucose, filter-sterilized fructose, FOS, N-
acetyl-D-glucosamine or glucose. 
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Figure 2.3. Comparative genomics and phenotypic screening of 
Bifidobacterium catenulatum. A. A phylogenetic tree based on the core gene 
alignment generated from Panaroo v.1.4.2 with FastTree v.2.1 (Tonkin-Hill et al., 
2020; Price et al., 2010). Taxonomy and subspecies assignments were carried 
out using GTDB-Tk v.2.4.0 (Chaumeil et al., 2020). B. Presence and absence of 
CAZy genes were identified by using Panaroo and dbCAN2 (Tonkin-Hill et al., 
2020; Zhang et al., 2018). CAZy gene presence is displayed in blue and absence 
in green. C. Carbohydrate metabolism profile of B. catenulatum in PYG media 
(lacking glucose) supplemented with autoclaved glucose, filter-sterilized fructose, 
FOS, N-acetyl-D-glucosamine or glucose.  
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Figure 2.4. Comparative genomics and phenotypic screening of 
Bifidobacterium faecale. A. A phylogenetic tree based on the core gene 
alignment generated from Panaroo v.1.4.2 with FastTree v.2.1 (Tonkin-Hill et al., 
2020; Price et al., 2010). Taxonomy and subspecies assignments were carried 
out using GTDB-Tk v.2.4.0 (Chaumeil et al., 2020). B. Presence and absence of 
CAZy genes were identified by using Panaroo and dbCAN2 (Tonkin-Hill et al., 
2020; Zhang et al., 2018). CAZy gene presence is displayed in blue and absence 
in green. C. Carbohydrate metabolism profile of B. faecale in PYG media (lacking 
glucose) supplemented with autoclaved glucose, filter-sterilized fructose, FOS, N-
acetyl-D-glucosamine or glucose. 
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Figure 2.5. Comparative genomics and phenotypic screening of 
Bifidobacterium longum. A. A phylogenetic tree based on the core gene 
alignment generated from Panaroo v.1.4.2 with FastTree v.2.1 (Tonkin-Hill et al., 
2020; Price et al., 2010). Taxonomy and subspecies assignments were carried 
out using GTDB-Tk v.2.4.0 (Chaumeil et al., 2020). B. Presence and absence of 
CAZy genes were identified by using Panaroo and dbCAN2 (Tonkin-Hill et al., 
2020; Zhang et al., 2018). CAZy gene presence is displayed in blue and absence 
in green. C. Carbohydrate metabolism profile of B. longum in PYG media (lacking 
glucose) supplemented with autoclaved glucose, filter-sterilized fructose, FOS, N-
acetyl-D-glucosamine or glucose. 
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Figure 2.6. Comparative genomics and phenotypic screening of 
Bifidobacterium pseudocatenulatum. A. A phylogenetic tree based on the core 
gene alignment generated from Panaroo v.1.4.2 with FastTree v.2.1 (Tonkin-Hill 
et al., 2020; Price et al., 2010). Taxonomy and subspecies assignments were 
carried out using GTDB-Tk v.2.4.0 (Chaumeil et al., 2020). B. Presence and 
absence of CAZy genes were identified by using Panaroo and dbCAN2 (Tonkin-
Hill et al., 2020; Zhang et al., 2018). CAZy gene presence is displayed in blue 
and absence in green. C. Carbohydrate metabolism profile of B. 
pseudocatenulatum in PYG media (lacking glucose) supplemented with 
autoclaved glucose, filter-sterilized fructose, FOS, N-acetyl-D-glucosamine or 
glucose.  
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Figure 2.7. Comparative genomics and phenotypic screening of 
Bifidobacterium scardovii. A. A phylogenetic tree based on the core gene 
alignment generated from Panaroo v.1.4.2 with FastTree v.2.1 (Tonkin-Hill et al., 
2020; Price et al., 2010). Taxonomy and subspecies assignments were carried 
out using GTDB-Tk v.2.4.0 (Chaumeil et al., 2020). B. Presence and absence of 
CAZy genes were identified by using Panaroo and dbCAN2 (Tonkin-Hill et al., 
2020; Zhang et al., 2018). CAZy gene presence is displayed in blue and absence 
in green. C. Carbohydrate metabolism profile of B. scardovii in PYG media 
(lacking glucose) supplemented with autoclaved glucose, filter-sterilized fructose, 
FOS, N-acetyl-D-glucosamine or glucose.  
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Figure 2.8. Comparative genomics and phenotypic screening of 
Bifidobacterium stercorsis. A. A phylogenetic tree based on the core gene 
alignment generated from Panaroo v.1.4.2 with FastTree v.2.1 (Tonkin-Hill et al., 
2020; Price et al., 2010). Taxonomy and subspecies assignments were carried 
out using GTDB-Tk v.2.4.0 (Chaumeil et al., 2020). B. Presence and absence of 
CAZy genes were identified by using Panaroo and dbCAN2 (Tonkin-Hill et al., 
2020; Zhang et al., 2018). CAZy gene presence is displayed in blue and absence 
in green. C. Carbohydrate metabolism profile of B. stercorsis in PYG media 
(lacking glucose) supplemented with autoclaved glucose, filter-sterilized fructose, 
FOS, N-acetyl-D-glucosamine or glucose.  
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Figure 2.9. Comparative genomics and phenotypic screening of 
Bifidobacterium sp002742445. A. A phylogenetic tree based on the core gene 
alignment generated from Panaroo v.1.4.2 with FastTree v.2.1 (Tonkin-Hill et al., 
2020; Price et al., 2010). Taxonomy and subspecies assignments were carried 
out using GTDB-Tk v.2.4.0 (Chaumeil et al., 2020). B. Presence and absence of 
CAZy genes were identified by using Panaroo and dbCAN2 (Tonkin-Hill et al., 
2020; Zhang et al., 2018). CAZy gene presence is displayed in blue and absence 
in green. C. Carbohydrate metabolism profile of B. sp002742445 in PYG media 
(lacking glucose) supplemented with autoclaved glucose, filter-sterilized fructose, 
FOS, N-acetyl-D-glucosamine or glucose.  
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Figure 2.10. Carbohydrate dependent growth of Bifidobacterium dentium. 
Carbohydrate metabolism profile of B. dentium in PYG media (lacking glucose) 
supplemented with autoclaved glucose, filter-sterilized fructose, FOS, N-acetyl-D-
glucosamine or glucose. 
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Figure 2.11. Genus-level phylogenetic trees of all Bifidobacterium species 
used in the study inferred using GTDB-Tk and Panaroo. A. A phylogenetic 
tree based on the core genome alignment of all Bifidobacterium species using 
Panaroo v.1.4.2 (Tonkin-Hill et al., 2020). B. A phylogenetic tree constructed 
based on the multiple sequence alignment of the 120 GTDB-Tk bacterial marker 
genes (bac120) present in strains (Chaumeil et al., 2020). FastTree v.2.1 was 
used to construct both trees (Price et al., 2010). 
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Figure 2.12. Clustering of bifidobacterial strains based on the abundance of 
GH genes. The heatmap illustrates the distribution and abundance of GH genes 
in bifidobacterial strains. White represents the absence of GH genes, bright grey 
indicates the presence of 1 GH gene, dark grey indicates 2-7 GH genes, light 
blue indicates 8-13 GH genes, dark blue indicates 14-19 GH genes, and black 
indicates 20-24 GH genes.  
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Figure 2.13. SSN of GH2 CAZy family. GH2 protein sequences were retrieved 
from 67 Bifidobacterium strains using dbCAN2 and submitted to EFI-EST to build 
the SSN (Zallot et al., 2019; Zhang et al., 2018). Cytoscape was used for 
visualization (Shannon et al., 2003). Each of the nodes contains sequences with 
more than 55% identity. Nodes are connected by an edge when the pairwise 
sequence identity is over 35 %. A total of 39 nodes and 190 edges are present. 
The node size represents the number of genes present in the node. Alphabetical 
labels were used to represent different clusters of SSNs (e.g. GH2A), and 
subscripts indicating numbers were used to show variations in protein sequence 
length and domain structure within the same clusters (e.g. GH2A1). 

BA D E

F

C

H I J KG

Cluster Sequence 
length

# of 
genes

GH2A1 745 1

GH2A2 197 31

GH2A3 495 1

GH2A4 336 1

GH2A5 1045 191

GH2B1 897 15

GH2B2 911 20
GH2C 720 59

GH2D1 853 10

GH2D2 800 6

GH2E 639 10

GH2F 591 1
GH2G 607 1
GH2H 1138 1
GH2I 661 1
GH2J 1936 10
GH2K 948 2

% 
identity

# of 
nodes

#  of 
edges

Full 361 27616
95 43 258
90 42 236
80 40 195
55 39 190

Activities in GH2 EC #
α-L-arabinopyranosidase EC 3.2.1.-
β-1,3-galactosidase EC 3.2.1.-
β-galacturonidase EC 3.2.1.-
β-galacturonidase RGII 
specific EC 3.2.1.-
Lactase EC 3.2.1.108
Glycyrrhizin β-glucuronidase EC 3.2.1.128
β-D-galactofuranosidase EC 3.2.1.146
Mannosylglycoprotein endo-
β-mannosidase EC 3.2.1.152
Exo-β-1,4-glucosaminidase EC 3.2.1.165
β-glucosidase EC 3.2.1.21
β-galactosidase EC 3.2.1.23
β-mannosidase EC 3.2.1.25
β-glucuronidase EC 3.2.1.31
Xylan β-1,4-xylosidase EC 3.2.1.37
β-N-acetylhexosaminidase EC 3.2.1.52
α-L-arabinofuranosidase EC 3.2.1.55
β-galactosidase EC 3.2.1.23
β-mannosidase EC 3.2.1.25
β-glucuronidase EC 3.2.1.31
Xylan β-1,4-xylosidase EC 3.2.1.37
β-N-acetylhexosaminidase EC 3.2.1.52
α-L-arabinofuranosidase EC 3.2.1.55
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Figure 2.14. SSN of GH20 CAZy family. GH20 protein sequences were 
retrieved from 67 Bifidobacterium strains using dbCAN2 and submitted to EFI-
EST to build the SSN (Zallot et al., 2019; Zhang et al., 2018). Cytoscape was 
used for visualization (Shannon et al., 2003). Each of the nodes contains 
sequences with more than 45% identity. Nodes are connected by an edge when 
the pairwise sequence identity is over 35 %. A total of 16 nodes and 61 edges are 
present. The node size represents the number of genes present in the node. 
Alphabetical labels were used to represent different clusters of SSNs (e.g. 
GH20A), and subscripts indicating numbers were used to show variations in 
protein sequence length and domain structure within the same clusters (e.g. 
GH20A1). 

B C

D E

A

Cluster Sequence 
length

# of genes

GH20A1 697 79

GH20A2 201 1

GH20B 1061 10

GH20C 1114 10

GH20D 1628 10

GH20E 670 1

% identity # of nodes #  of edges

Full 111 3424
100 28 261
95 18 85
90 17 72
45 16 61

Activities in GH20 EC #
β-1,6-N-
acetylglucosaminidase EC 3.2.1.-
β-N-acetyl-6-sulfo-
glucosaminidase EC 3.2.1.-
Lacto-N-biosidase EC 3.2.1.140
β-N-acetylhexosaminidase EC 3.2.1.52
Mannosyl-glycoprotein endo-
β-N-acetylglucosaminidase EC 3.2.1.96
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Figure 2.15. SSN of GH29 CAZy family. GH29 protein sequences were 
retrieved from 67 Bifidobacterium strains using dbCAN2 and submitted to EFI-
EST to build the SSN (Zallot et al., 2019; Zhang et al., 2018). Cytoscape was 
used for visualization (Shannon et al., 2003). Each of the nodes contains 
sequences with more than 85% identity. Nodes are connected by an edge when 
the pairwise sequence identity is over 35 %. A total of 9 nodes and 26 edges are 
present. The node size represents the number of genes present in the node. 
Alphabetical labels were used to represent different clusters of SSNs (e.g. 
GH29A), and subscripts indicating numbers were used to show variations in 
protein sequence length and domain structure within the same clusters (e.g. 
GH29A1). 

  

Cluster Sequence 
length

# of genes

GH29A1 459 24

GH29A2 700 2

GH29A3 1494 10

GH29B 496 2

% identity # of nodes #  of edges
Full 38 651
100 12 52
95 10 33
85 9 26

Activities in GH29 EC #
α-1,3-L-galactosidase EC 3.2.1.-
α-1,4-L-fucosidase EC 3.2.1.-
α-L-galactosidase EC 3.2.1.-
α-L-glucosidase EC 3.2.1.-
α-1,3-L-fucosidase EC 3.2.1.111
α-1,6-L-fucosidase EC 3.2.1.127
α-L-fucosidase EC 3.2.1.51
α-1,2-L-fucosidase EC 3.2.1.63

BA
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Figure 2.16. SSN of GH33 CAZy family. GH33 protein sequences were 
retrieved from 67 Bifidobacterium strains using dbCAN2 and submitted to EFI-
EST to build the SSN (Zallot et al., 2019; Zhang et al., 2018). Cytoscape was 
used for visualization (Shannon et al., 2003). Each of the nodes contains 
sequences with more than 95% identity. Nodes are connected by an edge when 
the pairwise sequence identity is over 35 %. A total of 8 nodes and 19 edges are 
present. The node size represents the number of genes present in the node. 
Alphabetical labels were used to represent different clusters of SSNs (e.g. 
GH33A), and subscripts indicating numbers were used to show variations in 
protein sequence length and domain structure within the same clusters (e.g. 
GH33A1). 

  

A C DB

Cluster Sequence 
length

# of genes

GH33A1 395 1

GH33A2 1796 10

GH33A3 835 10

GH33B1 765 5

GH33B2 761 1

GH33C 540 1

GH33D 528 1

% identity # of 
nodes

#  of 
edges

Full 29 373
100 9 25
95 8 19

Activities in GH33 EC #
Trans-sialidase EC 2.4.1.-
2-keto-3-deoxynononic acid 
hydrolase / KDNase EC 3.2.1.-
Kdo hydrolase EC 3.2.1.124
Exo-α-sialidase EC 3.2.1.18
Anhydrosialidase EC 4.2.2.15
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Figure 2.17. SSN of GH95 CAZy family. GH95 protein sequences were 
retrieved from 67 Bifidobacterium strains using dbCAN2 and submitted to EFI-
EST to build the SSN (Zallot et al., 2019; Zhang et al., 2018). Cytoscape was 
used for visualization (Shannon et al., 2003). Each of the nodes contains 
sequences with more than 95% identity. Nodes are connected by an edge when 
the pairwise sequence identity is over 35 %. A total of 5 nodes and 9 edges are 
present. The node size represents the number of genes present in the node. 
Alphabetical labels were used to represent different clusters of SSNs (e.g. 
GH95A), and subscripts indicating numbers were used to show variations in 
protein sequence length and domain structure within the same clusters (e.g. 
GH95A1). 

  

Cluster Sequence length # of genes

GH95A1 784 6

GH95A2 331 10

GH95B 1960 10

% identity # of nodes #  of edges
Full 26 285
100 7 20
95 5 9

Activities in GH95 EC#
α-L-galactosidase EC 3.2.1.-
α-L-fucosidase EC 3.2.1.51
α-1,2-L-fucosidase EC 3.2.1.63

A B
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Figure 2.18. SSN of GH112 CAZy family. GH112 protein sequences were 
retrieved from 67 Bifidobacterium strains using dbCAN2 and submitted to EFI-
EST to build the SSN (Zallot et al., 2019; Zhang et al., 2018). Cytoscape was 
used for visualization (Shannon et al., 2003). Each of the nodes contains 
sequences with more than 80% identity. Nodes are connected by an edge when 
the pairwise sequence identity is over 35 %. A total of 3 nodes and 3 edges are 
present. The node size represents the number of genes present in the node. 
Alphabetical labels were used to represent different clusters of SSNs (e.g. 
GH112A), and subscripts indicating numbers were used to show variations in 
protein sequence length and domain structure within the same clusters (e.g. 
GH112A1). 

  

A

Cluster Sequence 
length

# of 
genes

GH112A1 752 63

GH112A2 185 1

% 
identity

# of 
nodes

#  of edges

Full 64 2016
100 17 136
95 6 15
85 4 6
80 3 3

Activities in GH112 EC#
β-galactoside phosphorylase EC 2.4.1.-
β-1,3-galactosyl-N-

acetylhexosamine phosphorylase EC 2.4.1.211

D-galactosyl-β-1,4-L-rhamnose 

phosphorylase EC 2.4.1.247
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Figure 2.19. SSN of GH42 CAZy family. GH42 protein sequences were 
retrieved from 67 Bifidobacterium strains using dbCAN2 and submitted to EFI-
EST to build the SSN (Zallot et al., 2019; Zhang et al., 2018). Cytoscape was 
used for visualization (Shannon et al., 2003). Each of the nodes contains 
sequences with more than 45% identity. Nodes are connected by an edge when 
the pairwise sequence identity is over 35 %. A total of 25 nodes and 217 edges 
are present. The node size represents the number of genes present in the node. 
Alphabetical labels were used to represent different clusters of SSNs (e.g. 
GH42A), and subscripts indicating numbers were used to show variations in 
protein sequence length and domain structure within the same clusters (e.g. 
GH42A1). 

 

  

% identity # of nodes #  of edges

Full 341 32533
100 82 2116
70 27 261
45 25 217

Cluster Sequence 
length

# of 
genes

GH42A1 689 216

GH42A2 620 6

GH42A3 478 34

GH42A4 724 21

GH42A5 873 1

GH42A6 1236 3

GH42B 705 9

GH42C 709 51

Activities in GH42 EC #
α-L-arabinopyranosidase EC 3.2.1.-
β-1,3-galactosidase EC 3.2.1.-
β-galactosidase EC 3.2.1.23
β-L-arabinosidase EC 3.2.1.88

B C
A
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Figure 2.20. SSN of GH136 CAZy family. GH136 protein sequences were 
retrieved from 67 Bifidobacterium strains using dbCAN2 and submitted to EFI-
EST to build the SSN (Zallot et al., 2019; Zhang et al., 2018). Cytoscape was 
used for visualization (Shannon et al., 2003). Each of the nodes contains 
sequences with more than 100% identity. Nodes are connected by an edge when 
the pairwise sequence identity is over 35 %. A total of 7 nodes and 15 edges are 
present. The node size represents the number of genes present in the node. 
Alphabetical labels were used to represent different clusters of SSNs (e.g. 
GH136A), and subscripts indicating numbers were used to show variations in 
protein sequence length and domain structure within the same clusters (e.g. 
GH136A1). 

  

% identity # of nodes #  of edges
Full 20 126
100 7 15

Cluster Sequence 
length

# of 
genes

GH136A1 1706 1

GH136A2 1368 9

GH136A3 1612 6

GH136B 975 4

Activities in GH136 EC#
Lacto-N-biosidase (Lewis 
antigen a/b specificity) EC 3.2.1.-
Lacto-N-biosidase EC 3.2.1.140

BA
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Table 2.1. Summary of bifidobacterial strains in the lab collection. The 
sources of these strains are stool or sputum. The strain collection includes 8 
Bifidobacterium species and 118 strains. 

Species Number of strains 
Bifidobacterium 
adolescentis 

50 

Bifidobacterium longum 37 
Bifidobacterium bifidum 10 
Bifidobacterium scardovii 9 
Bifidobacterium 
catenulatum 

7 

Bifidobacterium 
sp002742445 

3 

Bifidobacterium breve 1 
Bifidobacterium dentium 1 
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Table 2.2. Summary of selected Bifidobacterium strains for HMO utilization 
assay1. 

 
1Bifibacterial strains were selected based on phenotypic screens and comparative genomics.  

Species Strain Species Strain 
Bifidobacterium 
adolescen2s 

GC2517 Bifidobacterium faecale GC583 
GC3181 GC586 
GC2671 GC607 
GC2459 Bifidobacterium 

pseudocatenulatum 
GC941 

GC2688 GC1061 
GC2529 GC914 
GC2686 Bifidobacterium scardovii GC90 
GC3173 GC94 
GC641 GC95 
GC749 GC87 
GC821 Bifidobacterium 

sp002742445 
GC2539 

GC612 GC2464 
Bifidobacterium bifidum GC2403 GC2502 

GC2524 Bifidobacterium breve GC96 
GC2491 Bifidobacterium 

catenulatum 
GC2512 

GC2503 GC1099 
GC2475 GC2505 
GC2470 GC1100 
GC2397 Bifidobacterium stercorsis GC859 
GC2408 GC666 
GC2492 GC659 
GC2523 GC854 

Bifidobacterium longum GC783 GC657 
SP351 GC863 
GC134 GC659 
GC2527 GC663 
GC2454 GC725 
GC900 Fusicatenibacter 

saccharivorans 
GC474 

GC400 GC313 
GC2463 Coprococcus eutactus GC567 
GC2477 Enterococcus faecium GC33 
GC3184 Blau2a lu2 GC555 
AM1493 Blau2a producta GC553 
AM1328 Lactobacillus rhamnosus GC38 
AM1522 Bacteroides cellusily2cus GC234 
AM1321 Bacteroides ovatus GC401 
GC2504 GC137 
GC2528 Bacteroides xylanisolvens GC232 
GC2474 
GC681 
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Table 2.3. The distribution of GH family within the collection of 67 
Bifidobacterium genomes, with 58 GH families and a total of 7296 GHs 
identified. 

GH 
family 

Number 
of GH 

 GH 
family 

Number 
of GH 

GH1 76  GH29 38 
GH101 34  GH3 588 
GH109 117  GH30 116 
GH110 10  GH31 199 
GH112 64  GH32 167 
GH115 9  GH33 29 
GH120 75  GH35 56 
GH121 41  GH36 287 
GH123 20  GH38 203 
GH125 36  GH39 35 
GH127 146  GH42 341 
GH129 56  GH43 870 
GH13 1375  GH5 206 

GH130 9  GH50 1 
GH136 20  GH51 250 
GH140 1  GH53 25 
GH146 34  GH59 11 
GH151 1  GH73 14 
GH154 1  GH76 3 
GH16 29  GH77 230 

GH172 120  GH78 19 
GH18 18  GH8 56 
GH2 361  GH84 20 

GH20 111  GH85 23 
GH23 324  GH89 10 
GH25 214  GH91 3 
GH26 49  GH92 1 
GH27 38  GH94 62 
GH28 18  GH95 26 
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CHAPTER 3: Mapping Glycoside 
Hydrolases to HMO Utilization with 
Machine Learning and to 
Metagenomic Data from CHILD1 
3 Mapping Glycoside Hydrolases to HMO Utilization with Machine Lemic ata 

3.1 Introduction 

In Chapter 2, Bifidobacterium strain differences in families were identified 

and GH family subtypes were classified using SSN. I hypothesized that these GH 

subtypes would act on specific HMOs. Using comparative genomics and 

functional assays, I prioritized a set of Bifidobacterium isolates that represented 

species and strain diversity in our collection (Table 2.2) for further analysis. By 

combining HMO utilization data with GH subtype distribution in strains, I sought to 

assign some GH subtypes to the utilization of specific HMOs. Furthermore, using 

information from strain HMO utilization and GH subtypes, I can revisit the CHILD 

metagenomic data to look for gene-specific enrichment in asthma phenotypes.  

To investigate how specific GH enzymes are involved in HMO metabolism, 

HMO utilization of strains prioritized in Chapter 2 was carried out. The study 

 
1 Data presented in this work was facilitated through collaborations. Dr. Lars Bode provided the 
purified pooled HMOs for my growth experiments, and his group carried out the analysis of HMO 
degradation. Dr. Nick Dimonaco assisted with the implementation of the WEKA decision tree 
software. Dr. Shahrokh Shekarriz carried out the metagenomic read mapping and assisted with 
the analysis. Dr. Charisse Peterson provided the CHILD metagenomic data. 
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aimed to evaluate the HMO utilization capability of the selected strains and 

determine the specific HMO metabolism pathway for bifidobacterial strains by 

gathering data from the SSN subtypes from Chapter 2 and the HMO utilization 

assay. HMO degradation reaction was assigned to GH subtype genes using 

decision trees. A decision tree is a machine-learning technique that forecasts 

outcomes based on input data. It comprises nodes and branches to illustrate how 

decisions are made under various conditions (Mitchell, 1997). In this chapter, a 

machine learning decision tree algorithm applied to HMO degradation and GH 

subtypes (from the SSN analysis) was used to identify the specific GH genes 

linked to high HMO degradation.  

The metagenomic data from the CHILD study was mapped against the 

strains and their GH subtypes to investigate whether a stronger association of 

GH subtypes with asthma protection is observed compared to B. infantis. Two 

strategies were employed for metagenomic read mapping. First, nine 

bifidobacteria strains, including those that efficiently degraded HMOs and strains 

that did not, were used for mapping the metagenomic reads. Second, the GH 

subtypes were used to create a database. Mapping the metagenomic reads 

against this database allowed for the identification of genes associated with 

asthma protection.  This unbiased approach aimed to identify GH subtype genes 

enriched in individuals who developed asthma versus those who did not. 
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3.2 Methods 

3.2.1 Growth curve generation and HMO utilization assay  

Selected strains were cultured from the frozen stocks into the BHI3 agar 

and incubated for 24 to 48 hours in the ANOXOMAT jar (10% H2, 10% CO2, 85% 

N2). This includes specific bifidobacteria isolates prioritized in Chapter 2 (Table 

2.2) and a few non-bifidobacteria strains for comparison (Table 3.1). A single 

colony of each strain was picked and grown overnight in 1 mL of PYG broth in an 

anaerobic chamber. The PYG broth, which was supplemented with 15 g/L of 

pooled HMOs (pHMOs, a gift from Dr. Lars Bode, University of San Diego, 

California (UCSD), USA) was inoculated with 5% (v/v) seed culture and overlaid 

with 50 µL of sterile mineral oil to prevent evaporation. The 96-well plate was 

transferred to an Epoch 2 microplate spectrophotometer under anaerobic 

conditions and incubated for 48 hours at 37℃ , while OD600 readings were 

recorded every 30 minutes, with each reading used to generate a growth curve. 

After 6 h, 12 h, and 24 h of incubation, 25 µL of spent media was collected for 

glycoprofiling (Figure 3.1). The spent media was centrifuged at 4,000 rpm for 5 

minutes and stored at -80℃. 

3.2.2 Glycoprofiling of HMO 

 Glycoprofiling was done by Dr. Lars Bode from UCSD (University of San 

Diego, California). HMOs were analyzed using high-performance fluorescence 

liquid chromatography (HPLC) after labeling them with fluorescent tag 2-
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aminobenamide (2AB), as previously described (Autran et al., 2018; Bode et al., 

2012). Nineteen individual HMOs structures were quantified, based on the 

retention time and mass spectrometry (Figure 1.1): 2’-fucosyllactose (2’FL), 3-

fucosyllactose (3-FL), 3’-sialyllactose (3’-SL), 6’-sialyllactose (6’SL), 

difucosyllactose (DFLac), difucosyllacto-N-hexaose (DFLNH), difucosyllacto-N-

tetraose (DFLNT), disialyllacto-N-hexaose (DSLNH), disialyllacto-N-tetraose 

(DSLNT), fucodisialyllacto-N-hexaose (FDSLNH), fucosyllacto-N-hexaose 

(FLNH), lacto-N-fucopentaose (LNFP), lacto-N-hexaose (LNH), lacto-N-

neotetraose (LNnT), lacto-N-tetraose (LNT), sialyl-lacto-N-tetraose b (LSTb), and 

sialyl-lacto-N-tetraose c (LSTc).  

 The HMO glycoprofiling data from UCSD included the percentage of each of 

the nineteen HMOs remaining compared to the standard controls at each time 

point 6, 12, and 24h. Using the percentages of HMOs remaining at the 24h 

timepoint, degradation values were categorized with a threshold of 80. 

Percentages of HMOs lower than 80, indicating HMO degradation, were 

converted to 1; values between 80 and 120, indicating no degradation, were 

converted to 0; and values higher than 120, indicating HMO accumulation, were 

converted to 2. These values were used to visualize the heatmap of HMO 

utilization assay data.  

3.2.3 Machine Learning using WEKA  

For machine learning analysis, strains were excluded from the study when 

their OD600 readings were smaller than 0.12, indicating no growth, and when no 
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HMO degradation was observed, but instead accumulated. For specific HMOs, 

the data was simplified as follows: values below 80% were converted to 1, 

indicating degradation, while 80% or higher values were converted to 0, 

indicating no degradation or potential accumulation. We then identified GH 

families associated with HMO degradation and gathered their corresponding GH 

subtypes. The HMO degradation data and GH subtypes were compiled and 

saved as CSV files. These CSV files were subsequently converted into WEKA's 

Attribute-Relation File Format (ARFF) using a custom Python script. For each 

HMO, we utilized the J48 algorithm as a classifier to analyze the data and 

generate decision trees with a minimum number of two objects, covering all 

nineteen HMOs.  

3.2.4 Metagenomics study design  

A total of 76 metagenomic read data from the CHILD study was provided 

by Dr. Charisse Peterson (University of British Columbia) (Table 3.3). Two 

different approaches were employed for metagenomics read mapping (Figure 

3.2). First, metagenomics read mapping was performed against nine strains 

comprising of good and poor HMO degraders selected based on the HMO 

degradation data. Second, metagenomics reads were mapped against all GH 

subtype genes. A reference database was created by extracting the gene 

sequences for all strains’ GH subtypes and CD-HIT was performed at 99% (Fu et 

al., 2012). The read mapping was performed using bwa-mem, and the resulting 

SAM file was converted to a BAM file using SAM tools (Li et al., 2009; Li & 
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Durbin, 2009). HTSeq was used to count the number of aligned reads (Anders et 

al., 2015). Further analysis, including normalization, was done using a 

generalized linear model in R using the following packages: glmmTMB v.1.1.9, 

ggplot2 v.3.5.1, tidyverse v.2.0.0, dplyr v.1.1.4 and ggpubr v.0.6.0 (Brooks et al., 

2017; Kassambara, 2020; Wickham, 2016; Averick, et al., 2019; François, et al., 

2019). 

3.3 Results 

3.3.1 Bifidobacterium strain-specific HMO degradation profiles 

To assess the capability of Bifidobacterium species to metabolize HMOs, 

HMO utilization assay and glycoprofiling were conducted on 78 strains. This 

group included Bifidobacterium species as well as other species known to 

metabolize HMOs, such as Bacteroides, Fusicatenibacter, Coprococcus, 

Enterococcus, Lactobacillus, and Blautia strains (Marcobal et al., 2011; Ward et 

al., 2006). The concentrations of HMOs remaining after bacterial culture 

compared to the standard controls were quantified at 6 h, 12 h, and 24 h time 

points. The heatmap and hierarchical clustering of the growth data are displayed 

in Figure 3.3. The heatmap of the HMO degradation pattern at a 24 h time point 

displays the strain heterogeneity of HMO degradation. The growth of each strain 

is confirmed by the OD600 readings obtained during the growth curve generation. 

This data provides insight into which HMO is utilized first and which is not utilized 

for each strain.  
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In general, B. longum and B. bifidum metabolized HMOs well compared to 

other species. Some B. longum strains degrade HMOs better than other strains 

and accumulation of HMOs was observed. Three B. bifidum strains (GC2470, 

GC2475 and GC2492) could utilize all nineteen HMO structures. However, not all 

B. longum and B. bifidum strains utilized HMOs well, indicating both strain and 

species heterogeneity. The B. infantis strain, AM1522, efficiently utilized most of 

the HMO structures, aligning with previous literature that B. infantis is a good 

HMO degrader due to its dedicated HMO gene cluster (Chichlowski et al., 2020; 

Underwood et al., 2014; Ward et al., 2006). Despite 2’FL being one of the most 

common HMOs to assess HMO degradation activity, it was utilized by 17 strains 

out of 78 strains (Hegar et al., 2019). Three B. bifidum strains could degrade all 

19 HMOs, and the B. infantis strain, AM1522, grew well in pHMOs-supplemented 

media and degraded most HMO structures. LNT was the most commonly 

degraded HMO, and all B. longum strains were able to degrade LNT. HMO 

structures were accumulated across several Bifidobacterium species, B. 

adolescentis, B. pseudocatenulatum, B. catenulatum, B. scardovii, and B. 

stercorsis. These were HMOs that could be generated from larger HMOs or 

glycoside transferase activity and these accumulations were not further 

investigated.  
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3.3.2 Using machine learning to identify GH subtypes associated with HMO 

degradation and assigning enzymatic reactions 

  A decision tree was visualized for each of the nineteen HMOs to predict 

the GH subtypes associated with HMO degradation. The degradation threshold 

was determined as 80% and a few strains with low growth (OD600 < 0.12) and no 

HMO utilization were excluded from the analysis as they could represent false 

negatives and adversely affect the decision tree analysis. The number of nodes 

and branches present in the decision tree differed for each HMO. In the decision 

tree for 2’FL (Figure 3.4.A), the branch corresponding to GH20B = 1, which 

indicates the presence of GH20B, comprises 8 of 52 cases in the data. The 

numbers in the parentheses represent how many cases fall into the category, with 

the number after the slash symbol in the parentheses representing the 

misclassified cases. As displayed in Figure 3.4.A, the decision tree predicts that 

the absence of GH20B (GH20B = 0) and GH136B leads to no degradation (0) of 

2’FL in 36 of 52 instances, excluding the three misclassified cases. The absence 

of GH20B (GH20B = 0) but the presence of GH136B (GH136B = 1) leads to 

degradation (1) of 2’FL in 2 of 52 cases. 

The decision tree predicted that GH20B and GH29A1 are associated with 

the degradation of 3-FL (Figure 3.4.B). GH20 comprises β-N-

acetylglucosaminidase and lacto-N-biosidase, which cleave the linkage between 

galactose and N-acetyl-D-glucosamine (Kitaoka, 2012; Lombard et al., 2014). 

However, N-acetyl-D-glucosamine is not a building block of 3-FL. GH29 includes 
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α-galactosidase, α-glucosidase and α -fucosidase (Lombard et al., 2014). Among 

these, 1,3-α-L-fucosidase hydrolyzes the fucose unit from galactose, making 

GH29A1 responsible for the hydrolysis of fucose in 3-FL (Ashida et al., 2009). 

Similarly, GH20B and GH136B were predicted to be involved in DFLNH 

degradation (Figure 3.5.B). Both GH20 and GH136 contain lacto-N-biosidase. 

However, lacto-N-biosidase from GH20 is responsible for cleaving β-1,3 and β-

1,6 linkage, whereas the enzyme from GH136 cleaves only the β-1,3 linkage 

(Lombard et al., 2014). Thus, the β-1,3 linkage between N-acetyl-D-glucosamine 

and galactose in DFLNH can be cleaved by either GH20B or GH136B, while the β-

1,6 linkage is cleaved exclusively by GH20B. 

The complexity of the decision tree varies. For instance, the decision tree 

for 3’SL has one decision node (Figure 3.4.C), while the decision tree for LNH 

has three decision nodes (Figure 3.6.D). Of the 19 decision trees, 13 had GH20B 

as the root node, which is the topmost feature of the tree representing the first 

decision (Mitchell, 1997).  

3.3.3 Metagenomic read mapping to identify GH genes that are enriched 

and depleted in asthma samples from the CHILD study 

 Metagenomic read mapping was performed using two complementary 

approaches as previously described. Based on the HMO utilization assay data, 

six good and three poor HMO utilizing Bifidobacterium strains were selected 

(Table 3.2). These nine stains included two Bifidobacterium species, B. bifidum 

and B. longum. The relative abundance of these strains was calculated based on 
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the number of total reads present in each metagenomic sample. Nine strains 

were highly abundant in many of the metagenomic samples. AM1522 strain, B. 

infantis, was particularly abundant in some samples from individuals diagnosed 

with possible asthma at age 5 (Figure 3.9.A). Compared to samples collected at 

3 months, there was generally a decrease in the abundance of B. bifidum and B. 

longum by 1 year (Figure 3.9.B). Additionally, the relative abundance of the 

AM1522 strain decreased from 3 months to 1 year. The metagenomic samples 

were organized based on StrainPhlAn results, which characterize strains based 

on species-specific marker sequence differences (Figure 3.9.C) (Truong et al., 

2017). “Infantis” indicates a high abundance of B. infantis, “Other” indicates the 

presence of other B. longum subspecies, and “None” indicates that no B. longum 

subspecies were detected. Most samples dominated by B. infantis according to 

StrainPhlAn had a high relative abundance of AM1522, except for one sample 

(7_118038_1_4). 

The genome coverage was widely distributed in samples not diagnosed 

with asthma at age 5. Three samples—two from the non-asthma group and one 

from the possible asthma group—had high abundance and coverage of AM1522, 

suggesting this strain best represents these subjects (Figure 3.10). Metagenomic 

read mapping was also performed against GH subtypes identified using SSN 

(Chapter 2). Figure 3.11 displays that GH2K, GH13A5, GH13B1, GH2I, GH136A1, 

GH2E, GH13B5 and GH95A2 are enriched in the asthma group compared to 
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individuals who did not develop asthma. Many GH subtypes were depleted in the 

asthma group, with GH2A4 and GH2A1 being particularly depleted.    

3.4 Discussion  

In Chapter 2, SSN was used to assign GH subtype genes which are 

hypothesized to have different substrate specificity and enzymatic activity. To 

assign enzymatic reactions and functions to GH subtype genes, Bifidobacterium 

species’ ability to utilize HMOs was evaluated. A total of 76 selected strains were 

subjected to HMO utilization assay and glycoprofiling in collaboration with Dr. 

Lars Bode (UCSD). Glycoprofiling measured HMO concentrations at 3 different 

time points (6 h, 12 h and 24 h). For further analysis, the degradation profile at 24 

h time point was used.  

In Figure 3.3, “No degradation” indicates that no degradation of the HMO 

structure was observed. This could be possible that these Bifidobacterium strains 

may need more than 24 hours to metabolize HMOs, lack growth components in 

the media, or simply cannot utilize those HMO structures. “Accumulation” 

suggests that the HMO structure increased over time, possibly due to the release 

of new compounds that are not further degraded while degrading other HMOs. 

For example, LNFP III accumulation might occur as LNnT undergoes sialyation. 

Alternatively, LNT accumulation may result from the cleavage of N-acetyl-D-

glucosamine in DSLNT releasing LNT. To clarify this, evaluating the growth of 

these Bifidobacterium strains on individual HMOs rather than pooled HMOs could 

provide a better understanding. 
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In Chapter 2, I observed strain-level differences in carbohydrate utilization, 

which were also evident in HMO utilization. Bifidobacterium species isolated from 

humans are generally categorized into two types, adult-type and infant-type 

Bifidobacterium (Lin et al., 2022). Adult-type Bifidobacterium, found in adult stool 

samples, includes B. adolescentis, B. pseudocatenulatum, and B. catenulatum 

(Turroni et al., 2011; Wong et al., 2018). In contrast, infant-type Bifidobacterium 

encompasses species like B. infantis, B. longum, B. breve and B. bifidum and 

they possess genes and enzymes specific for utilizing HMOs, giving them a 

growth advantage over other microbes (Asakuma et al., 2011). Our study 

observed that B. longum and B. bifidum strains efficiently degraded HMOs 

compared to other Bifidobacterium species. While 2’FL is a common prebiotic 

added to infant formulas and used to assess HMO degradation, many strains did 

not utilize it, whereas LNT was the most commonly degraded HMO (Puccio et al., 

2017). Duar et al. (2020) assessed the ability of 12 Bifidobacterium strains to 

metabolize LNT, LNnT and 2’FL and concluded that these strains metabolized 

LNT and LNnT more effectively than 2’FL. This suggests LNT is a strong 

candidate for use as a prebiotic and aligns with earlier research that examined 

LNT as an additive of infant formula (Hu et al., 2023). 

Machine learning was used to identify the GH subtype genes that are 

associated with HMO degradation. The model was trained on the HMO 

glycoprofiling data at 24 h timepoint. Among 19 decision trees, GH20B was most 

often found as the root node. GH20 enzymes are responsible for cleaving N-
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acetyl-D-glucosamine containing substrates but with varying specificities 

(Lombard et al., 2014). GH20B was only present in B. bifidum strains in our 

collection and may be responsible for the strain's ability to degrade a wide variety 

of HMOs, as indicated by our glycoprofiling data. Although decision trees helped 

assign GH subtypes to enzymatic reactions, some trees lacked resolution. This 

may be due to inaccurate predictions of GH subtype activity. To assess this, the 

predicted GH subtypes could be cloned and tested with the substrate. Mass 

spectrometry analysis could determine if the substrate is degraded or not. 

Alternatively, predicted GH subtypes may be associated with other GH enzymes 

or carbohydrate-binding modules. For instance, for 3’SL, GH20B activity may be 

inhibited by the sialic acid but it may co-occur with other sialidases. Expanding 

the analysis to include all GH families and higher resolution mass spectrometry 

data where degradation products would be identified would resolve some of 

these issues. It would also allow more sophisticated analysis and improve the 

assignment of GH subtypes to specific reactions.  

A previous metagenomic study has linked the protective effect of 

breastfeeding to the enrichment of B. infantis (Dai et al., 2023). However, I 

hypothesized that the protective effect is not solely due to the presence of B. 

infantis, but rather to a specific set of genes that may be found in some strains of 

Bifidobacterium species. To identify GH subtypes associated with asthma 

protection, metagenomic read mapping was performed with two approaches. 

Metagenomic reads mapped against nine selected strains revealed that the 
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AM1522 (B. infantis) strain was relatively abundant even in samples with asthma 

phenotype, suggesting that B. infantis colonization alone does not confer asthma 

protection. A decrease in the relative abundance of B. bifidum and B. longum was 

observed at 3 months compared to 1 year, coinciding with an increased diversity 

in the infant gut microbiota. As infants transition from milk feeding to the 

introduction of solid foods at 6 months, their gut microbiota undergoes changes 

and becomes diverse (Differding et al., 2020). During this period, alpha diversity 

increases, and the microbial community shifts from being dominated by 

Bifidobacterium to being dominated by Bacteroidetes and Firmicutes. The relative 

abundance of the AM1522 strain decreases over time as B. infantis is one of the 

most prevalent microbes in early life during breastfeeding.  

Metagenomic read mapping was carried out against GH subtype genes to 

look for gene-specific enrichment in asthma phenotypes. GH2A4 and GH2A1 

genes were highly depleted in asthma phenotypes and were only present in one 

B. adolescentis strain (GC641) in our collection, despite GC641 degrading only 

two of nineteen HMOs. These genes may be present in other B. infantis isolates, 

or other strains may contribute to the protection against asthma. This suggests 

that asthma development is not solely influenced by one Bifidobacterium strain. 

Rather, factors associated with risk likely vary among different phenotypes. 

Larger datasets could offer more precise predictions regarding the impact of 

Bifidobacterium strains and GH gene distributions on asthma risk, which will be 

the focus of future studies.   
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Figure 3.1. Workflow describing the growth curve experiment and HMO 
utilization assay. Supernatant of bacterial culture was sent to UCSD for 
glycoprofilling. Figure constructed using BioRender.  
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Figure 3.2. Workflow of metagenomic read mapping. Two strategies were 
used for metagenomic read mapping. First, metagenomic reads were mapped 
against nine selected strains. Second, metagenomic reads were mapped against 
GH subtype genes.  
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Figure 3.3. HMO utilization profiles of bifidobacterial strains at the 24 hr 
time point. Seventy-eight strains were cultured in media supplemented with 15 
g/L pHMOs. Glycoprofiling was conducted at the 24 hr time point to track the 
utilization of each of the nineteen HMOs. Grey indicates no degradation (80-120), 
white indicates degradation (<80), and black indicates accumulation (>120). 
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Figure 3.4. J48 decision tree predicting the GH subtypes highly associated 
with HMO degradation. A. 2’FL. B. 3-FL. C. 3’SL. D. 6’SL. The numbers in 
parentheses represent the total sample count and the instances that were 
classified incorrectly. The table displays information about the GH subtypes 
predicted to be involved in the enzymatic reaction of each substrate. Potential 
cleavage sites of the glycosidic linkage are indicated with an arrow. 
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Figure 3.5. J48 decision tree predicting the GH subtypes highly associated 
with HMO degradation. A. DFLac. B. DFLNH. C. DFLNT. D. DSLNT. The 
numbers in parentheses represent the total sample count and the instances that 
were classified incorrectly. The table displays information about the GH subtypes 
predicted to be involved in the enzymatic reaction of each substrate.  
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Figure 3.6. J48 decision tree predicting the GH subtypes highly associated 
with HMO degradation. A. DSLNH. B. FDSLNH I. C. FLNH. D. LNH. The 
numbers in parentheses represent the total sample count and the instances that 
were classified incorrectly. The table displays information about the GH subtypes 
predicted to be involved in the enzymatic reaction of each substrate. Potential 
cleavage sites of the glycosidic linkage are indicated with an arrow. 
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Figure 3.7. J48 decision tree predicting the GH subtypes highly associated 
with HMO degradation. A. LNT. B. LNnT. C. LSTb. D. LSTc. The numbers in 
parentheses represent the total sample count and the instances that were 
classified incorrectly. The table displays information about the GH subtypes 
predicted to be involved in the enzymatic reaction of each substrate. Potential 
cleavage sites of the glycosidic linkage are indicated with an arrow. 
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Figure 3.8. J48 decision tree predicting the GH subtypes highly 
associated with HMO degradation. A. LNFP I. B. LNFP II. C. LNFP III. 
The numbers in parentheses represent the total sample count and the 
instances that were classified incorrectly. The table displays information 
about the GH subtypes predicted to be involved in the enzymatic reaction 
of each substrate. Potential cleavage sites of the glycosidic linkage are 
indicated with an arrow. 
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Figure 3.9. Relative abundance of nine Bifidobacterium strains in 76 
metagenomic samples from the CHILD study. A. CHILD metagenomic 
samples are categorized based on asthma diagnosis at age 5. B. CHILD 
metagenomic samples are organized by based on the time of the visit where 
stool samples were collected. C. CHILD metagenomic samples are arranged 
according to StrainPhlAn output. “Infantis” indicates enrichment of B. infantis, 
“Other” represents the presence of other B. longum subspecies, and “None” 
indicates that no B. longum subspecies were detected by StrainPhlAn. NA; no 
asthma, A; asthma, PA; possible asthma.  
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Figure 3.10. Relative abundance and genomic coverage of nine 
Bifidobacterium strains in 76 metagenomic samples from the CHILD study. 
Each dot represents the metagenomic sample. A. CHILD metagenomic samples 
are categorized based on asthma diagnosis at age 5. B. CHILD metagenomic 
samples are organized based on the time of the visit where stool samples were 
collected C. CHILD metagenomic samples are arranged according to StrainPhlAn 
output. “Infantis” indicates enrichment of B. infantis, “Other” represents the 
presence of other B. longum subspecies, and “None” indicates that no B. longum 
subspecies were detected by StrainPhlAn.  
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Figure 3.11. Changes in GH subtypes in individuals with asthma compared 
to those without asthma. X-axis represents the log fold change.  
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Table 3.1. Summary of non-bifidobacteria strains for HMO utilization assay. 

Species Strain 
Bacteroides cellulosilyticus GC234 
Bacteroides ovatus GC401 

GC137 

Bacteroides xylanisolvens GC232 
Blautia luti GC555 
Blautia producta GC553 
Coprococcus eutactus GC567 
Enterococcus faecium GC33 
Fusicatenibacter saccharivorans GC474 

GC313 
Lactobacillus rhamnosus GC38 
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Table 3.2. Nine selected strains for metagenomic read mapping.  

Species HMO degradation 
profile  

Strain 

Bifidobacterium 
longum subsp. 
infantis 

Good AM1522 

Bifidobacterium 
longum 

Good  
 

GC2454 
GC2504 

Poor 
 

GC134 
GC2477 
GC2527 

Bifidobacterium 
bifidum 

Good 
 

GC2408 
GC2475 
GC2492 
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Table 3.3. CHILD Cohort study Metadata. Metagenomic data was provided by 
Dr. Charisse Peterson (UBC). The table presents metadata of 76 individuals, 
including information on study visits at 3 months and 1 year, as well as their 
asthma diagnosis at age 5.  

Sample ID Visit StrainPhlAn Asthma Diagnosis 
7.754297.1.4 3 month Other Asthma 
7.754346.1.4 1 year Other Asthma 
7.083760.1.2 3 month Infantis No Asthma 
7.088962.1.4 3 month Infantis No Asthma 
7.357113.1.4 3 month Infantis No Asthma 
7.350108.1.4 3 month Infantis No Asthma 
7.232727.1.4 3 month Infantis No Asthma 
7.048263.1.2 3 month Infantis No Asthma 
7.332268.1.4 3 month Infantis No Asthma 
7.128692.1.2 3 month Other No Asthma 
7.196791.1.2 3 month Other No Asthma 
7.350184.1.4 1 year Infantis No Asthma 
7.229469.1.4 3 month Other No Asthma 
7.118040.1.2 1 year Infantis No Asthma 
7.196851.1.3 1 year Other No Asthma 
7.064664.1.2 3 month Other No Asthma 
7.126489.1.4 3 month Infantis No Asthma 
7.443614.1.4 1 year Other No Asthma 
7.332364.1.4 1 year Infantis No Asthma 
7.357191.1.4 1 year Infantis No Asthma 
7.232787.1.4 1 year Infantis No Asthma 
7.373625.1.4 3 month Other No Asthma 
7.527089.1.4 1 year Other No Asthma 
7.139205.1.4 3 month Infantis No Asthma 
7.479634.1.4 1 year Other No Asthma 
7.229529.1.4 1 year Other No Asthma 
7.373723.1.4 1 year Other No Asthma 
7.527005.1.4 3 month Other No Asthma 
7.118012.1.2 1 year Infantis No Asthma 
7.118082.1.2 1 year Other No Asthma 
7.128733.1.3 1 year Other No Asthma 
7.443512.1.4 3 month Other No Asthma 
7.118019.1.4 1 year Infantis No Asthma 
7.126530.1.2 1 year Infantis No Asthma 
7.139246.1.4 1 year Infantis No Asthma 
7.479552.1.4 3 month Other No Asthma 
7.339266.1.4 3 month None No Asthma 
7.339362.1.4 1 year None No Asthma 
7.368399.1.4 3 month None No Asthma 
7.368497.1.4 1 year None No Asthma 
7.138860.1.2 3 month None No Asthma 
7.138901.1.2 1 year None No Asthma 
7.215719.1.2 3 month None No Asthma 
7.215779.1.2 1 year None No Asthma 
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7.522075.1.4 3 month None No Asthma 
7.522157.1.4 1 year None No Asthma 
7.615447.1.4 3 month None No Asthma 
7.615543.1.4 3 month None No Asthma 
7.752695.1.4 3 month None No Asthma 
7.752743.1.4 1 year None No Asthma 
7.754113.1.4 3 month None No Asthma 
7.754161.1.4 1 year None No Asthma 
7.529601.1.2 3 month None No Asthma 
7.529685.1.2 1 year None No Asthma 
7.047725.1.3 3 month None No Asthma 
7.116886.1.3 1 year None No Asthma 
7.047754.1.4 3 month None No Asthma 
7.116934.1.4 1 year None No Asthma 
7.203004.1.4 3 month None No Asthma 
7.203064.1.4 1 year None No Asthma 
7.259785.1.4 3 month None No Asthma 
7.259845.1.4 1 year None No Asthma 
7.292812.1.4 3 month None No Asthma 
7.292886.1.4 1 year None No Asthma 
7.646722.1.4 3 month None No Asthma 
7.646818.1.4 1 year None No Asthma 
7.235771.1.4 3 month Infantis Possible Asthma 
7.235833.1.4 1 year Infantis Possible Asthma 
7.048262.1.4 3 month Infantis Possible Asthma 
7.049752.1.4 3 month Other Possible Asthma 
7.116932.1.4 1 year Other Possible Asthma 
7.118038.1.4 1 year Infantis Possible Asthma 
7.413122.1.4 3 month None Possible Asthma 
7.413224.1.4 1 year None Possible Asthma 
7.172542.1.2 3 month None Possible Asthma 
7.172600.1.3 1 year None Possible Asthma 
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CHAPTER 4. Conclusion 
4 Conclusion 

While breastfeeding is associated with the infant gut microbiome and the risk 

of asthma development, the utilization of HMOs by microbes and their 

relationship with the microbiome is not yet fully understood (Dai et al., 2023; Dai 

et al., 2022). To address this knowledge gap, CHILD cohort study was designed 

to investigate the causational roles of gut microbiome in pediatric asthma.  Using 

data from the CHILD cohort study, the study aimed to determine the bacterial 

genes that are associated with decreased risk of developing or exacerbating 

asthma symptoms that act though HMO utilization, rather than focusing on 

specific Bifidobacterium species.  

In this thesis, I have applied both computational methods and functional 

assays to profile 118 Bifidobacterium strains’ GH genes and assess their ability to 

utilize HMOs. I performed comparative genomics and phenotypic screening to 

select strains to evaluate their capacities to degrade HMOs. I observed that 

different Bifidobacterium strains have varying abilities to degrade different 

carbohydrate sources (Chapter 2). Comparative genomics analysis suggested 

that one bifidobacterial strain can possess multiple genes within the same GH 

family. I hypothesized that those GH genes have distinct substrate specificity and 

act on different glycosidic linkages. To explore this, I constructed SSNs for GHs 
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involved in HMO degradation and classified GH genes within the same family into 

subtypes.   

Selected Bifidobacterium strains and a few non-Bifidobacterium strains were 

subjected to HMO utilization assay and glycoprofiling which measured how much 

HMOs were consumed at different time points (Chapter 3). This analysis 

indicated strain-specific differences in HMO degradation, highlighting the 

importance of studying diverse strains. The HMO degradation data were used to 

train a machine learning model and construct decision trees for nineteen HMOs. 

These decision trees provided insights into which GH subtypes are associated 

with the degradation of each HMO. While some GH subtypes could be linked to 

specific degradation reactions, the resolution of our data was insufficient to 

assign all the GH subtypes. Mass-spectrometry data showing degradation 

products will allow me to refine these assignments.  

I used the HMO utilization data and selected six good and three poor HMO 

degraders for further analysis. We sought to identify GH subtype genes that are 

protective against asthma development by mapping the metagenomic data from 

the CHILD study to these strains and GH subtype genes (Chapter 3). I observed 

that B. infantis was present and relatively abundant among individuals with 

asthma phenotypes. Additionally, a decrease in the relative abundance of B. 

infantis over time was observed, coinciding with an increased diversity in the 

infant gut microbiota. Our metagenomic read mapping suggests that asthma 
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development is influenced by a combination of factors rather than a single 

Bifidobacterium strain or GH subtype gene.  

This thesis was not able to identify specific GH subtype genes associated with 

asthma risk. However, both in vitro and in silico approaches were used to study 

the HMO utilization in Bifidobacterium strains and to assign the GH proteins to 

HMO degradation. The study also suggests that asthma development is not 

limited to the presence of specific bacterial taxa. Expanding the analysis to all the 

GH families instead of GH families related to HMO degradation and using larger 

datasets of the CHILD study for metagenomic read mapping will offer more 

precise predictions. 

The positive correlation between breastfeeding and bifidobacteria in infants is 

mediated through HMO utilization (Dai et al., 2023). However, the mechanisms 

behind this reduced risk of developing asthma are not completely understood. It 

may be an indirect effect when HMOs promote the expansion of bifidobacteria 

resulting in colonization resistance and reduced infection (Ackerman et al., 2017). 

The expansion of the bifidobacteria may slow the development of a more diverse 

microbiome, potentially altering the pathways of immune development (Depner et 

al., 2020). Alternatively, HMO utilization may activate the pathways in 

bifidobacteria that act directly on host pathways. In support of this, metagenomic 

analysis of CHILD samples has identified pathways independent of HMO 

utilization that are enriched in infants with a reduced asthma risk (C Peterson, 

personal communication). To explore the latter mechanism and understand the 
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impact of HMO utilization on other processes in the bacteria, RNA-seq could be 

performed to identify genes and pathways induced or repressed during in vitro 

HMO consumption. This could be complemented by metabolomic analysis.  

There were a number of limitations to this study. I had access to only one B. 

infantis strain, so expanding the strain collection for this subspecies would be 

beneficial. Although many B. infantis genomes are available for analysis, 

combining comparative genomics and SSN analysis of GH proteins with 

experimental data on HMO utilization was essential for my work. Therefore, I 

restricted the bioinformatics analysis to the strains that I had access to. Another 

limitation was the data on HMO utilization. I only had information on whether a 

specific HMO was degraded. Higher resolution data showing the breakdown 

products would have allowed for a more refined mapping of GH subtypes to 

substrates. Nonetheless, this work lays the foundation for further studies on HMO 

degradation by bifidobacteria and could ultimately lead to rationally designed 

synbiotics of specific Bifidobacterium strains and HMOs to improve early life 

microbiome development for infants that cannot be breastfed.  

Numerous studies are investigating the relationship between breastfeeding 

and asthma risk. One such study, which used network analysis, explored how 

milk microbes impact childhood asthma and allergic sensitization in milk-fed 

children (Yi Fang et al., 2024). The study found that greater diversity in human 

milk microbiota (HMM) was associated with a lower risk of childhood asthma, 

while higher levels of Lawsonella were linked to increased allergic sensitization 
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(Yi Fang et al., 2024). The study also highlighted the role of host genetics in 

influencing HMM and its potential effects on childhood asthma and atopy (Yi 

Fang et al., 2024). This highlights that multiple factors contribute to the 

development of asthma in childhood, and it is crucial to address these aspects in 

future research. 

Another recent study used fecal metagenomics to examine the development 

of gut microbiota in newborns and assess microbial priority effects (Shao et al., 

2024). This research identified different gut microbiota patterns, each led by 

specific bacteria and shaped by factors such as the mother's age and ethnic 

background (Shao et al., 2024). One pattern dominated by Enterococcus faecalis 

displayed unstable microbiota and high pathogen levels, while another pattern led 

by Bifidobacterium species, like B. longum and especially B. breve, exhibited a 

more stable microbiota and better pathogen resistance (Shao et al., 2024). This 

is likely due to their ability to utilize HMOs from breast milk (Sela et al., 2008). 

Interestingly, while B. infantis is known for its specialization in HMO utilization, it 

was absent or present in only small proportion of the UK and other Western 

cohorts, suggesting a potential lack of natural reservoirs for this species in these 

populations (Shao et al., 2024; Taft et al., 2022). Instead, other Bifidobacterium 

species or strains, like B. breve or B. longum, have taken over this functional 

niche. Given the limited success of probiotic B. infantis strains in establishing 

themselves in the gut microbiota of newborns, it is crucial to thoroughly examine 

the functional characteristics of naturally occurring and stable primary colonizers, 
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such as B. breve, in future studies (Shao et al., 2024). When studying the link 

between breastfeeding, reduced asthma risk, and the ability of bifidobacterial 

strains to utilize HMOs, it is crucial not to focus solely on the presence or 

absence of B. infantis, given its low prevalence in Western countries. Instead, the 

emphasis should be on the genes responsible for driving the beneficial outcomes. 
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