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Abstract

This thesis summarizes work done in the simulation of cellular and dendritic growth in 

directional solidification of dilute binary alloys using a phase-field model. This model is 

solved on a dynamic adaptive grid using a linear isoparametric formulation of the finite ele

ment method. The spacing of the primary dendritic branches are examined for a wide range 

of thermal gradients and alloy compositions using a power spectral analysis technique. This 

spacing is found to undergo a maximum as a function of increasing velocity, in agreement 

with experimental observations. Our simulations are compared to directional solidification 

experiments of PVA-ETH, SCN-ACE and SCN-SAL alloys and we demonstrate that the 

spacing selection is described by a crossover scaling function from the emergence of cellu

lar growth into the dendritic growth regime. This scaling function is dependent upon only 

dimensionless groupings of the material dependent lengthscales and the process parameters 

at which the system is cooled. We validate our results by showing that both the simulated 

materials and published experimental data collapse onto this single universal curve.
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Nomenclature

a Thermal diffusion constant

λ1 Dimensionless scaled primary wavelength

V Dimensionless scaled velocity

β Interface kinetics coefficient

△C Difference between solidus and liquidus concentrations

△Gr Gibbs Free energy difference for nucleation of radius r

△GV Gibbs Free energy difference for bulk phase

ϵ4 anisotropy constant

7 Interfacial energy

k Local curvature

A Free parameter proportional to the nucleation energy

7



λ1 Primary dendrite spacing

λc Onset critical wavelength

λMS Mullins-Sekerka wavelength

λtheory Theoretical calculation of the onset critical wavelength

μ Chemical potential

v Stability parameter

vo Unit volume

ωk Amplification rate

Φ Order Parameter

t Characteristic time of a simulation

A(n) Anisotropic function

at Anti trapping coefficient

C Solute concentration

Cl Concentration from the liquidus side of the binary phase diagram

Co Initial alloy concentration

Clo The liquidus concentration corresponding to Co
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cp Specific heat at constant pressure

Cs Concentration from the solidus side of the binary phase diagram

Ceq Equilibrium concentration

Cint Concentration on the interface

D Generalized solute diffusion coefficient

Dl Solute diffusion coefficient in the liquid phase

do Generalized capillary length

dc° Chemical capillary length

dto Thermal capillary length

Ds Solute diffusion coefficient in the solid phase

E Finite element error approximation

F Free energy

fk frequency corresponding to wavenumber k

Bulk free energy

G Thermal Gradient

Gl Gibbs Free energy in the liquid phase
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Gs Gibbs Free energy in the solid phase

K Solute partition coefficient

k Wave frequency

kB Boltzmann’s constant

kmean Weighted mean average wavenumber

L Latent heat of fusion

l*D Diffusion length at the onset critical velocity

lD Diffusion length

lT Thermal Length

Itr Variable Thermal Length

ml Liquidus slope

no Number of atoms

nr Number of nucleation sites of radius r

Pk Power of wavenumber k

R Gas constant

r radius of nucleation
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T Temperature

t Time

Tm The melting temperature

Tint Temperature on the interface

U Dimensionless temperature field

V Velocity

Vc Planar to unstable critical velocity

IV Interface width

xn Normalized tip length

xroot Position of the base of the dendrite

Xtip Tip position of the dendrite

yN Normalized dendrite width

Ymax Maximum width of a dendrite from its center
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Chapter 1

Introduction

It is well known that the microstructure of materials establishes many of their industri

ally important mechanical properties. In the manufacture of industrially cast alloys some 

of the most time-consuming and expensive processes are focused on the control and re

finement of microstructure. The first, and perhaps most important, step in the formation 

of the alloy is the solidification process. This process establishes the initial length scales 

and morphology of the microstructure. The length scales established during soldification 

set the scaling of microstructure during subsequent thermomechanical processing. Under

standing microstructure formation during solidification is therefore an important step in the 

formation of metal alloys.

This thesis will examine microstructure formation in directionally solidified binary al

loys of succinonitrile(SCN) and pivalic acid(PVA). These are both transparent organic al- 

loys(often refered to as ’’organic analogues of metals”) which are amenable to direct in-situ 
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observation during the solidification process. We quantify dendritic spacing selection for 

directional solidification as a function of the process parameters as well as the alloy com

position.

This thesis has 6 chapters. Chapter 1 will give an overview of solidification. We will 

begin with a review of the theory of nucleation and grain growth and their importance in 

the mechical properties of alloys. In this section we will cast the kinetics of solidification 

in the context of a sharp-interface mathematical model that self-consistently describes the 

interplay of reaction, diffusion, surface tension and non-equilibrium kinetics during solid

ification. We will use this model to elucidate the length and time scales that enter into 

microstructure selection. Chapter 2 will introduce the phase-field method as a more fun

damental and efficient method to model solidification and other phase transformation phe

nomena. Chapter 3 will discuss a new computational method developed for very efficient 

multi-scale simulation of phase-field(and related) models. Chapter 4 begins with an exam

ination of recent directional solidification experiments, conducted at McMaster university 

by Dr. Jack Kirkaldy’s group. The experiments will form the back drop against which we 

will validate our modeling results. We report on new directional solidification simulations 

for material and process parameters similar to those of the above experiments, and propose 

a new way to examine wavelength selection in directional solidification based on power 

spectrum analysis. Chapter 5 ties together experiments and simulations by introducing a 

universal scaling function that has been developed to describe wavelength selection over 

a wide range of alloys and solidification process parameters. Chapter 6 concludes and
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discusses our results.

1.1 Strength and Microstructure

Many different lengths scales are inherent in matter, and each has their own importance in 

determining the overall properties of materials. The nanoscopic scale deals with atoms and 

their interactions. In a solid the atoms are bound together, and in the case of a crystal can 

be arranged into organized lattice structures. But generally this organization is imperfect. 

Atoms can be missing from their lattice positions or can be sitting between other atoms, 

both of which cause distortions of the lattice. These imperfections are called vacancies and 

interstitials, respectively. Other crystal defects exist in the form of dislocations, where an 

extra crystal plane is inserted in the lattice, causing a dislocation line in the crystal. When 

a material is deformed, new dislocations are created and the dislocation lines move around. 

A material’s strength is largely due to the interaction of dislocations with each other and 

with grain boundaries.

In the perfect material the energy of fracture is enormous, as one needs to break every 

bond between every atom along a plane. Defects allow for the concentration of applied 

stresses, leading to material deformation at much lower energy, due to dislocation cores 

moving about. A determining factor of the strength of a material is how easily these cores 

can move. A dislocation core can look much like in figure 1.1 (left). For the core to move 

we must slide the extra plane of atoms over by one plane. An applied force overcomes an
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energy barrier, bonds are broken and reattached afterwards. Figure 1.1 (middle) and (right) 

shows the core as it moves along in a process called ’glide'. The energy barrier needed to 

overcome is directly proportional to the atomic bonds between the atoms, for the core to 

move it must break a bond. This also reflects the fact that different materials with different 

atomic bonds will result in different material stiffnesses.

Figure 1.1: Left: A dislocation in a crystal structure. Middle: Shear force applied causing 
the atomic planes to shift. Right: Dislocation has moved to the right. [50]

In most cast materials the motion of dislocations is controlled by structure at the mi

croscale. When a crystal is formed it is made of many impinged crystal grains all with 

different orientations, as shown in figure 1.2. This grouping of materials is classified as a 

polycrystal. In any given crystal, or grain, within the polycrystal, there will be dislocations. 

These dislocations will move about when forces are applied. But when a core attempts to 

pass from one grain to another, the direction of the core must be changed to correspond 

with the crystalline orientation of the new grain, see figure 1.3. This results in the necessity
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of applying more force to move the dislocation.

From this argument one could hypothesize that the more 

times a dislocation has to change its direction in the course 

of an applied force, the harder the material is to plastically 

deform as it requires the extra energy to move the cores 

around. This would mean that a higher density of crystals 

Figure 1.3: Dislocations 
move through grains and 
must change directions if 
they pass from one grain to 
another. [50]

with differing orientations would result in a material that 

would require more energy to plastically deform. While 

this is only part of what actually goes on, it has been shown that as the size of the grain gets 

smaller, the strength of the material increases, this is shown in figure 1.4.
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Since the grain size is a factor in how strong a material will be, an important question 

to ask is: ’’What sets the length scales of the grains?”

Figure 1.4: The Hall Petch Relationship. [71]

1.2 Solidification: Applications

Part of determining how to predict the grain size is first determining how the grains form 

and how they form is in turn determined by the process in which a material has been cast. 

The factors which can determine this ultimate outcome vary from the materials used to the 

cooling process.

Traditionally when a metal is cast into ingots it is first cooled and then after the initial 

structure has been established, the metal is cold rolled, or themo-mechanically processed to 
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obtain a desired microstructure. This type of treatment results in an alteration of the initially 

formed dendritic grains, but is very energy and time consuming. New techniques have 

been developed that use reduced amounts of cold rolling and thermo-mechanical treatment 

after casting. This results in a decrease in energy and time in the casting process, and 

therefore a decrease in the cost. However, such processes leave much of the original as- 

cast structure intact, making the importance of pattern prediction in solidification a critical 

step in controlling the overall product quality of such alloys.

One such technique is called strip casting. Strip casting, fig 1.5, involves taking a 

molten metal, running it through rollers or belts, at a set cooling rate producing sheets of 

metal that are coiled with minimal cold rolling. Therefore, the original cast structure is 

prominent in the metal and this structure will influence the properties of the alloy formed.

Another example in which the original cast structure is important is in the formation of 

turbine blades. Since turbine blades move very quickly in a circular direction, most of the 

applied force is centripetal, due to the rotation. The casting procedure often used to form 

these materials is directional solidification. This causes the grains formed to be long and 

in the direction of the force. But the original cast structure is maintained in the solidified 

material and prediction of grain sizes is important in obtaining an optimized material.
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1.3 Solidification: Overview

The general theory of solidification will be reviewed, starting with the basics of nucleation 

followed by solidification in pure materials and binary materials. We will then review pre

vious work on dendritic growth. Directional solidification will then be introduced and some 

of the work done in this field will be reviewed. The important length scales of solidification 

are discussed and two theories of controlling the formation of dendritic instabilities will be 

discussed.
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1.3.1 Solidification: Nucleation Theory

Solidification is the process of going from a disordered liq

uid state into an ordered crystalline state when the temper

ature is lowered below the melting temperature Tm- The 

driving force for solidification is governed by the free en

ergy. When the temperature is sufficiently lowered (T <

Figure 1.6: Relationship of 
Tm) the bulk Gibbs free energy of the solid becomes lower surface and bulk energy dur

ing nucleation. Results in a 
than that of the Gibbs free energy of the liquid. When this critical nucleus size.[19] 

occurs the liquid will be driven towards the lower energy state, and solid will form.

There is an inherent energy barrier which must be overcome in order for the liquid to 

solidify. Even though the bulk free energy of the solid is lower than the bulk free energy 

of the liquid(Gs < Gl), the liquid may not be able to undergo the transition because to 

create the solid it must first create a nucleated site which also creates an interface between 

the solid and liquid phases. For small nuclei this interface can raise the energy state more 

than the conversion to solid lowers the energy and therefore may not be stable.

At any given temperature the liquid has long range disorder and some short range order, 

(ie. If we were to zoom in to a few atoms it may look as though it were a solid, but upon 

zooming out we can see that there is in fact, no long-range order.) As the temperature is 

lowered below the melting point the correlation length over which atoms can spontaneously 

become ordered grows. These short-range order sites are candidated for nucleation clusters.
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When the size of one of these sites is large enough that the decrease in its bulk free energy 

is larger than the increase in its surface energy, the nucleated grain will grow. This is 

shown graphically in figure 1.6. If we assume that the nucleation point is a sphere1 we can 

calculate the critical radius at which the nucleation is stable by minimizing the Gibbs free 

energy.

4
△Gr = — -7rr3AGv + 4?rr27 (1.1)

o

Equation 1.1 assumes that the nucleated crystal occurs due to spontaneous fluctuations 

in the bulk of the liquid. Effective nucleation energies are usually smaller than △Gv since 

nucleation occurs on impurity surfaces(lowering the surface energy which drives the crystal 

to break apart). The latter process is called heterogeneous nucleation.

Statistically it can be calculated how many nucleated sites will occur at a given under

cooling (T — Tm). This is done for homogeneous nucleation by determining the energy to 

spontaneously form a solid sphere equal to the critical radius. Using the theory of statistical 

mechanics[71, 19, 4] the average number of homogeneous nucleation sites is given by,

nr = noe{ k"T (1.2)

where no is the total number of atoms in the sample.

1It is not obvious that this is the case, but results in the minimum surface energy for an isotropic crystal.
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1.3.2 Solidification: Pure Materials

Once a system has nucleated and the solid grows into the liquid, the dynamics of the system 

are determined by the type of material that is being solidified. In the case of a pure material 

the morphology is determined ultimately by the temperature diffusion within the material, 

the cooling rate at which it is grown, its surface tension energy and its crystalline anisotropy.

As a solid-liquid interface advances the entropy of the solidifying material drops, re

sulting in an excess of energy which is released as latent heat of fusion. For a flat interface 

the heat generated by this transition maintains the interface close to the melting tempera

ture, therefore unless heat is diffused away from the interface solidification will cease. The 

flux of heat at the interface is related to the latent heat by the flux conservation

OT dT\ Lv
Q-— x- -a+—x+ = — V (1.3)

dx tnt dx tnt Cp

where a± is the coefficient of thermal conductivity on the solid/liquid side of the inter

face, L is the latent heat of fusion and cp is the specific heat at constant pressure, assumed 

to be constant in both phases here, and V is the local normal velocity of the interface.

The diffusion of heat away from the interface is governed by the heat diffusion equation,

^ = V(a(£)VT) (1.4)
1/6

Equations 1.3 and 1.4 control the diffusion of heat from and the corresponding ad
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vancement of, the interface. This allows for a planar interface to advance forward through 

the liquid. We note that the implicit dependence of V as temperature makes this problem 

highly non-linear and extremely difficult to solve in real situations.

When the liquid is supercooled (T < Tm) the interface advancement can become un

stable. This is because if a protrusion of the interface occurs, the tip of this protrusion 

would cause a steepening of the temperature field in front of it and subsequently heat is 

diffused away from the interface faster. This leads to an instability that favours growth of 

the protrusion, and is in fact the origin of dendritic growth.

The effect of curvature in solidifying interfaces leads to a lowering of the local melting 

temperature(Tint) according to the Gibbs-Thompson condition.

T^t = TM - d^K,-(1-5) 

where dto is the thermal capillary length, k is the local curvature of the interface, and 

is a kinetic constant(or function) that is often introduced to account for non-equilibrium 

effects in rapid solidification.[40, 19, 4]

In real situations and β depend on the local crystalline anisotropy of the solidifying 

grain. Their presence is critical to account for dendritic morphology in solidification [10]. 

Equation 1.5 corrects for the local increase in free energy due to curved interfaces and 

coupled with equations 1.3 and 1.4, describes the physics of a solidifying front for a pure 

material.
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1.3.3 Solidification: Binary Alloys

For the case of binary alloys solidification is largely controlled by mass transport(particularly 

in isothermal conditions). Diffusion of impurities is in turn controlled by the underlying 

phase-diagram of the particular alloy2. The simplest binary-alloy phase diagram is shown 

2at least for low to intermediate cooling rates

in figure 1.7.

Figure 1.7: Binary phase diagram for CuNi.[71 ]

This diagram is obtained by the minimizing the Gibbs free energy of a Cu-Ni mix

ture at different temperatures. For a given undercooling(quench) into the co-existence re- 

gion(point B) solidification proceeds while maintaining concentrations Cs/Cl on either 

side of the solid/liquid interface, respectively. The flux of solute accross the interface is 

related to the local normal velocity at the interface and to Cs and CL by mass conservation,
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expressed as

(L6)

where Ds is the rate of diffusion in solid and DL is the rate of diffusion in the liquid. 

Diffusion of impurities in bulk phases is governed by Fick’s law

= V(D(f)VC(x)) (1.7)
Cz t

where D(x) is the diffusion function, which depends on x since it is different in each 

phase, and C(x) is the local impurity concentraion.

The typical thermal diffusion in materials examined in this thesis is four orders of mag

nitude faster than solute diffusion(^- = IO'1). As a result the thermal diffusion is assumed 

to be instantaneous in the material and thermal diffusion may be neglected. This is a rea

sonable approximation when cooling rate is not too high.

Once again the curved morphology of dendrtitic microstrucures is controlled by the 

effects of surface tension. In the case of alloy solidification the corresponding Gibbs- 

Thomson condition is described by

-0V (1.8)

where dc° is the chemical capillary length, k is the curvature of the interface, β is the 

kinetics coefficient and V is the local velocity normal to the interface.
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1.3.4 Review of Dendritic Growth

Understanding dendritic growth rates and mor

phology has been the topic of intense investiga

tion in recent years. The dendrite forms the fun

damental unit of solification. As such its prop

erties elucidate much of the fundamental physics 

of length scale selection in solidification.

The process of solidification in metals be

comes difficult to study in the laboratory for a 

number of reasons. Two in particular are quite Figure 1.8: Succinonitrile crystal.[49]

obvious. Metals reach their liquid state at high temperatures, requiring sophisticated(and 

expensive) high temperature apparatus to do the study. Another difficulty in using metals is 

their opacity. It becomes impossible to say anything about the kinetics of dendritic growth 

when the interface cannot be seen. Materials scientists have turned to organic materials 

[27] to study the fundamental nature of solidification. Crystals such as succinonitrile have 

the advantage of transitioning from the liquid to solid phase near room temperature and 

the liquid state is transparent(figure 1.8). Such organic materials have been classified as 

’organic analogues of metals’ due to their similar crystalline behaviour.

Isolated dendritic growth has been characterized by many experiments and phase field 

simulations.(The phase field method is discussed in chapter 2). The main effort has fo-
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Figure 1.9: Tip velocities as a function of time for various undercoolings. The points repre
sent phase-field simulations and the horizontal lines are solutions of the stefan problem(ie. 
solvability theory)[58]

3000.0 4000.0

cused on studying steady-state dendritic growth rates and tip radii. The prevailing the

ory developed to explain the steady-state properties of dendritic growth in pure mate

rials is the theory of solvability. Solvability theory predicts, from the surface tension 

anisotropy, a range of allowable tip speeds and radii. Comparisons with experiments[26] 

have found that the largest such allowable growth rate is selected, corresponding to the 

smallest allowable tip radius. Figure 1.9 shows a plot of dimensionless tip velocity vs 

dimensionless time (^-vs|) for 2D dendrites grown at 2 different undercoolings where 

Τ is a characteristic time of the simulation. Solvability theory has been found to hold 

for large undercoolings, but at low undercoolings the growth rates are slow and solv

ability theory must be abandoned in favour of one that deals with competitive dendritic 

interactions.[30, 75, 73, 66, 46, 47, 7, 9, 36, 26, 65, 59]

27



1.3.5 Transient Scaling in Dendritic Growth

When the diffusion fields emanating from different dendritic branches overlap, the solvabil

ity theory used to describe dendritic tip evolution is no longer valid. In this case a dynamic 

theory of dendritic growth is needed. This regime occurs at low undercoolings, such as, for 

example, in the central, equiaxed, regions of cast ingots.

Figure 1.10: A single dendrite grown in the IDGE project.[51 ] The crystal tip region is 
overlayed at different times.

The dynamics of dendritic growth in the presence of long-range diffusion interactions is 

defined using the concepts of scaling theory [59]. In this context dendritic morphology has 

been shown to be self-similar in time. Considering the dendritic crystals in figure 1.10 what 

this means is that crystals corresponding to different times can be mapped onto a ’univeral’ 

form by a suitable scaling of length scales.

Specifically, by defining the normalized width of a dendrite by
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Figure 1.11: Computed and experimental single dendrite shapes scaled at different 
times.[59J 3D simulations done with an extension of the model in [59] and are courtesy 
of Dr. Jonathan Dantzig at the university of Illinois at Urbana-champaign(2002)

ymax
(1.9)

where is maximum width of the dendrite measured from the center, and a normal- 

ized length given by

X root
-t' N 

%tip ^root
(1.10)

where xroot defines the base of the dendrite3, it has been been found that dendritic 

3where it emerges from the solidification nucleus

structures corresponding to very different times and materials during solidification collapse 

onto a universal function, a function, shown in 2D and 3D in figure 1.11. As we will see 

later in this thesis, the scaling concept is a powerful way to describe length scale selection 
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in other solidification problems.

1.3.6 Directional Solidification

Directional solidification involves the competitive process of many dendrites growing in 

arrays. Every dendrite has its own solute and temperature field, which interact and overlap 

with those of other dendrites. Their interaction results in a competition for growth which is 

dominated by microsegregation and long-range diffusion. This competitive process during 

growth establishes the final microstructure of the solidified material in a way that cannot 

be predicted by merely knowing the properties of single dendrites.

Figure 1.12: A directional solidification experimental apparatus.[20]

In directional solidification experiments the arrays of dendrites grown have the same 

crystalline orientation and at the same cooling rate. The resultant growth will undergo a 
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transition from planar to dendritic followed by a coarsening into a steady state.[55, 53, 14, 

3, 5, 35, 23, 67, 12, 13,41]

A typical setup to study directional solidifica

tion is shown in figure 1.12. A sample is placed 

in a temperature gradient G, such that the solid 

is below the melting temperature (T < Tm) and 

the liquid is above it (T > Tm), while the inter

face is at the melting temperature. The solid is 

slowly pulled into the region below the melting 

temperature and the interface slowly advances. 

This results in a relationship of V and G giving a 

cooling rate VG. Once the cooling rate surpasses 

a critical value the interface will become unstable 

and a pattern will initially be selected. This pat

tern is analagous to the complex dendritic struc

tures found near the walls of cast alloys.

Three distinct regions have been classified in 

the literature. A region where a planar interface 

exists both at very low cooling rates(Low V if we 

Figure 1.13: Top: Cell structures 
under varied cooling rates[23]. 
Bottom: Dendrite structure( Image
from E.Bodenschatz website at 
milou.msc.cornell.edu/solidification.html)

consider G fixed) and again at very high cooling 

rates, figure 1.13(a)[42, 31, 64]. As the cooling rate is increased from the lower velocity 
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regime an instability forms and a cellular pattern emerges as shown in Figure 1.13 (b- 

h). Increasing the cooling rate further results in a transition from the cellular to dendritic 

patterns, 1.13 (bottom).

Figure 1.14: Primary Wavelengths and Amplitudes plotted vs pulling velocity for a succi
nonitrile experiment[38]

The ’wavelengths’ of selected patterns can be classified as; (1) the primary spacing(the 

tip to tip separation of the primary dendritic fingers), and (2)the secondary spacing(the 

tip to tip separation of the side branches). The primary wavelength(λ1) vs the pulling 

velocity(V) exhibits a highly non-trivial behaviour. Figure 1.14 shows λ1 vs V for direc

tionally solidified SCN-Acetone 0.13mol% alloy grown at G = 13K/mm. The velocity 

axis corresponds to cooling rates ranging from 0 — \K/s. Changing cooling rates and alloy 

compositions gives entirely different values of λ1vsV(see chapter 4). [38, 67, 25]

One of the main aims of this thesis will be to characterize the universal features of
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λ1vsV, for different material and process parameters(V and G). Before we embark on 

this investigation, we digress to discuss the nature of solidification instabilities leading to 

dendritic structure.

1.4 Length Scales in Directional Solidification

1.4.1 The Thermal Length

One of the inherent length scales in solidification processes is the thermal length. The 

thermal length lt, is understood by examining the dilute region of a simple binary phase 

diagram, figure 1.15. Physically lT corresponds to the length over which the fixed thermal 

gradient varies between the solidus and liquidus lines, for an alloy concentration Co.

Concentration

Figure 1.15: Simple binary phase diagram showing solid and liquidus equilibrium lines. It 
is defined from the temperature separation of these two lines at a concentration Co
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To quantify It consider a planar front advancing at velocity V, and an average alloy 

concentration Co. Solute is rejected ahead of the interface as the front advances, maintain

ing the solid concentration of the interface at CS(T) and the liquid side concentration at 

Cl(T). The simple binary phase diagram in figure 1.15 relates these two concentrations by

= (III)

where K is the solute partition coefficient.

For a fixed thermal gradient the thermal length is constant and is the physical distance 

between the temperatures at which the solidus and liquidus lines of the phase diagram cross 

the concentration Co, as shown in figure 1.15. Mathematically It is thus given by

G

1.4.2 The Diffusion Length

Another important length scale in alloy solidification is the diffusion length. This length 

scale characterizes the diffusion of solute away from the interface and is important in the 

determination of instabilities and the final wavelengths selected.

The difference in the liquid side concentration Cl and the concentration Co causes 

the solute to diffuse away from the moving interface producing a concentration profile
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Figure 1.16: The diffusion length is shown in the above diagram, it is calculated to be the 
decay length over which most of the rejected impurities are diffused.

dependent upon both the diffusion coefficient(D) and the local interfacial velocity(V). The 

form of this concentration profile in steady-state is given mathematically by

C|=C.(l + ^el) (1.13)

From equation 1.13 the diffusion length is determined to be

= (1.14)

1.4.3 Surface Tension and Capillarity

The third length scale relevant to solidification is set by the surface tension energy, and is 

called the capillary length. This lengthscale is important in establishing the length scale of 
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dendritic patterns.

Capillarity emerges in the Gibbs-Thomson condition in its connection to surface tension 

energy and is defined by

o - L2 (1.15)

for pure materials and

< = 7 = L T
(AC)2 de ^Ccpmi °

(1.16)

for alloys.

1.5 Planar Instabilities

The transition from planar to unstable solidification fronts is controlled by a competition of 

the above length scales. These are well documented in the literature[40, 52] and are very 

important in establishing the main results of this thesis(Chapter 4 and 5).

1.5.1 Constitutional Supercooling

Consider directionally cooling a dilute binary alloy through the phase diagram shown in 

figure 1.15. As a planar solidification front advances into a thermal gradient G, with a 

velocity V, the local undercooling, say T2, of the interface determines the solid side and 
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liquid side concentrations, Cs/Cl. The liquid-side concentration will diffuse from the 

interface by equation 1.7 and the planar interface velocity is controlled by equation 1.6.

The planar front will be stable as long as the temperature immediately in front of the 

interface and the corresponding concentration (equation 1.13) are above the liquidus line 

of the binary phase diagram. Graphically this is illustrated in figure 1.17. If the gradient of 

the concentration profile ahead of the interface is steeper than the liquidus line the interface 

will become unstable. Equating the liquidus concentration, Cl = (TM — T)/ml, to Cl in 

equation 1.13 gives

Concentration

Figure 1.17: Binary phase diagram overlayed with planar concentration profile. One line 
shows no constitutional supercooling(CS), thus a planar interface and the other shows CS 
resulting in an unstable interface.

(Tm - T^/mt = Co(l + (1 - K)/K * exp(-z * V/D)) (1.17)

The velocity at which the interface becomes unstable can be calculated from the deriva
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tive of equation 1.17 (with respect to the position z) evaluated at the interface(z=O) and 

T = Gz + Tint[ 19]. The resultant derivation establishes the criterion

DG
Vc = —7i---- h'xni

mi(l - K)Clo

This is the constitutional supercooling criterion for the emergence of dendritic insta

bilities. Note that it is equal to Id/it = At this level of description constitutional 

supercooling does not incorporate surface tension effects, and as such is only valid at very 

low cooling rates.

1.5.2 Mullins-Sekerka Theory

The Mullins-Sekerka instability theory incorporates surface tension effects and predicts 

the selected length scale that initially emerges when the cooling rate exceeds a critical 

value. We note that the traditional constitutional supercooling describes when the inter

face will become unstable, but it tells nothing of the emerging length scales of patterns 

that emerge. Moreover by neglecting the effects of surface tension, it underestimates the 

velocity(cooling rate) at which the interface becomes unstable.

The Mullins-Sekerka theory is a linear-stability analysis which examines the amplifi

cation of wavelengths promoted by thermal fluctuations of a stable solid/liquid interface. 

Once a critical cooling rate(pulling velocity) is surpassed some wavelengths are slowly am

plified, while others decay. One particular wavelength is amplified more than any other and 
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at very low cooling rates this fastest growing wavelength is given by

(1.19)

This is the wavelength that is amplified the most and thus it out grows all other wave

lengths becoming the initially selected wavelength.[40, 23, 52] Indepth calculations of the 

Mullins-Sekerka instabilities are given in [40] for different interface shapes and processes.

The calculation of the amplification rate for the directional solidification of a binary 

alloy is beyond the scope of this thesis but its details are presented in Ref[40], The wave

length selection used in this thesis makes the following assumptions:

l)Solute Diffusivity vanishes in the solid phase(Ds —> 0).

2)Latent heat at the interface is instantly diffused away.

3)The thermal conductivities in the solid and liquid phases are the same.

The amplification rate wk of a given wave vector(ie frequency) k = 2π/λ, for these 

assumptions is found to be

11 2 K  2DL
"k = (9/D - 2 + 2K’)(1 - - --V(klD? - - —(1-20) 

V Z q^D —---- । ^D

where q = ^(1 + ^1 + (kln)2\ Id is the diffusion length, k is a wave frequency, 

v = 21t/Id is the stability parameter, Dl is the solute diffusion constant in the liquid, K 

is the partition coefficient and V is the interfacial velocity.
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-------- Unstable Interface

0J01

Figure 1.18: Amplification rate(wk) plotted vs wave number k = 2π/λ for 3 difference 
velocities. The cases of an unstable interface, the stability criteria and a stable interface 
are all shown.

ωk vs k is illustrated for 3 different velocities in figure 1.18. The maxima represents the 

frequency with the maximum amplification rate. If the rate at any frequency is positive the 

interface becomes unstable and perturbations of this frequency grow. This fastest growing 

frequency can be extracted by solving,

-^ = 0 (1.21)
ak

The dominant wavelength λdorn = 2π/kdorn(V) is calculated by solving equation 1.21 

for k as a function of V, producing kdom(V). Increasing the instability parameter v(figure 

1.18 lower to upper lines) results in the maxima of the curve to increase and cross wk = 0, 
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this is the criteria for planar stability for the Mullins-Sekerka instability analysis.
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Chapter 2

Phase Field Method

Modelling solidification with the sharp interface model poses significant problems of com

putational and fundamental practicality [63, 16]. The sharp interface model applies bound

ary conditions at an infinitely sharp interface. To simulate solidification in this approach 

the interface must be explicitely tracked. In simple cases this can be done with interface 

tracking algorithms, but with complicated growth topologies the problem of interface track

ing becomes unmanageable in 2D and 3D. Also, the sharp-interface model doesn’t make a 

direct connection to the free energy of a solidifying system, making it difficult to extend to 

more complex situations1.

In this chapter we will illustrate the phase field method, focusing on the specific model 

1For example when elasto plastic effects are incorporated into solidification or certain solid-state trans

formations, it is not obvious what the ’’sharp-interface” model should be and one needs to begin from the 

fundamental thermodynamics of the problem.
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for alloy solidification that we use in our work.

2.1 Phase Field - Pure Material

We begin our illustration of the phase

field method by examining the sim

ple case of solidification of a pure 

material.[18, 27, 37, 54, 56, 60, 68] Two 

fields are needed to describe the solidifi

cation process using the phase field ap

Figure 2.1: Schematic of an interface of the 
phase field in 1D. The solid phase has a value 
of Φ = 1, a smooth transition through the inter
face and a value of (Φ)= —1 in the liquid.

proach; the thermal field and a field of 

the ’’order parameter”, a function which 

describes the solid, liquid and the phase boundary between them. The order parameter, 

Φ, is defined such that it has a constant value in the solid phase(Φ = 1) and a continuous 

transition to the liquid phase(Φ = — 1) over a finite interface width W, as illustrated in 

figure 2.1. The growth of the interface is manifested as a propagation of the Φ — field as 

illustrated in figure 2.2.

The phase field method begins with the free energy(F) of the solid-liquid system ex

pressed in terms of the temperature and the order parameter Φ. This is given by

F = I(|W(r7)W|2 - + - XUPW)dV (2.1)
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Where U = (T — TM)/(L/Cp) is the dimen

sionless temperature field, TM is the melting tem

perature, L is the latent heat of fusion and cp is 

the specific heat at constant pressure. The con

stant λ is proportional to the inverse of the nucle- Figure 2 2. Schematic of an advanc. 
ing interface. The form of the interface 

ation energy ∆Gnuc2- shape changes little, hut advances mostly

2In cases where we are not concerned with modeling nucleation kinetics but, rather, the kinetics of den

dritic microstructure, A can be treated as a free parameter
3It can be shown rigorously that in the limit when W -> 0(i.e. a sharp-interface limit of the phase-field 

model) the form of is insignificant and all that enters the picture are its limits[ 15, 16, 17, 22, 33, 74]

as a propagating front.

|W(n)VΦ2 controls the surface tension en

ergy, and W(n) is the interface thickness. The dependence of W on n, the local normal 

to the solid-liquid interface[33, 74, 22, 34], is used to model surface tension anisotropy.

The function P(Φ) is an algebraic function3 of Φ, and is required to take on the limits 

P(Φ = ±1) = ±1 and P'(Φ = ±1) = Φ. In this thesis P(Φ) = Φ - Φ + Φ. The function 

h() = — — XJJP(Φ)represents the normalized bulk free energy density. Its form

is shown in figure 2.3, which illustrates the relative changes of the free energy between 

the bulk solid(Φ = +1) and liquid(Φ = —1) as the temperature changes. For a known 

temperature field U(x, t), the equation of motion for Φ is given by

^ = - = W2V2<I> - <£ + 03 - t) (1 - <52)2 (2.2)
dt of)
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For this overview we have assumed W, the inter

face width, is constant to keep the mathematical develop

ment simple here. The expression is a variational 

derivative of the integral expression F as the function Φ.

The dimensionless temperature U(x, t) is coupled to 

the dynamics of Φ(x, t) through a modified heat diffusion 

equation

Figure 2.3: The double well is de
fined everywhere. Top: T < Tm 
The well shifts towards the solid. 
Bottom: T > Tm The well shifts 
to the liquid.

= (2.3)CZ b £ Op Cz b

The last term represents a ’’blip” of latent heat re

leased at the advancing solidification front. Its form is related to Φ(x, t) as illustrated in 

figure 2.2. It should be noted that in the limit when the interface width W -> 0, the above 

solidification model reduces exactly to the sharp interface model of a pure material as dis

cussed in chapter l.[ 15, 22, 33, 74, 17] A derivation of this result is beyond the scope of 

this thesis.

Phase-field models of solidification and solid-state transformations have been devel

oped to capture the dynamics of microstructure formation. Figure 2.4 illustrates the ver

satility of the phase field method in the study of phase transformations, for example, the 

morphological changes of single crystals(left), the effects of heat convection in solidifica- 

tion(middle) and the study of spinodal decomposition(right)[l, 33, 2, 61, 11,75, 66, 48, 7].
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Figure 2.4: Left:A 2D pure dendrite grown with the thermal Phase Field[59] Mid
dle: Convective effects tested on 3D dendrites[30] Right:Spinodal Decomposition using 
Phase Fields pmc.polytechnique.fr/mp/Recherche.html

2.2 Phase Field - Binary Alloy Solidification

Analogously to the phase field for the pure material, we now illustrate the model for binary 

alloy solidification used in the simulations completed in this thesis. This model describes 

solidification of a dilute binary alloy with a partition coefficient K and couples an order 

parameter Φ to a concentration field C. As in the pure material Φ(x) is constructed to take 

on the values Φ = 1 in the solid phase, <^ = —1 in the liquid phase and is interpolated 

continuously between these states in the interface region.

The free energy density of a dilute binary alloy in terms of the order parameter Φ,, the 

concentration C, and the temperature T, is given by

F = I\W(n)\7<t,\2 + fD^) + fAB(<t>,C,T)]dV (2.4)
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where | W (n) ∆Φ|2 is as described in the case of a pure material, fD(Φ) = H(—

is a double well potential with H proportional to the nucleation energy barrier and fab is 

the free energy of mixing in either phase, given by

fAB = fa(Tm) - + —^(ClnC - C) + (2.5)

where,

= e + y 9iW

Ae = es - eL

Cs +
e _ 2

(2.6)

and

W) = (2.7)
2 Z1M

is the entropy as a function of phase.

The function fa(Tm) is the free energy of the pure material, ∆TS(Φ) is the entropic 

contribution due to a phase difference and temperature difference(AT) from the melting 

temperature. The term ^-(ClnC - C) is the contribution due to the entropy of mixing 

and is the enthalpy contribution as a function of phase. R is the gas constant, Tm is 

the melting temperature, vo is the unit volume, Sl and Ss are the liquid and solid entropies 
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respectively, ϵs and ϵL are the bond energies of solid and liquid states and g1 and g2 are 

functions for interpolating 0 between solid and liquid states where the limits of g1,2 (Φ  

±1) = 1 and g'1,2(0 = ±1) = 0.

The diffusion of solute is given by the generalized Fick’s law

— = V(M(0,C)V/i) (2.8)

where M(C,Φ )=D Lq(Φ)C in the dilute limit, q(Φ) is a function that interpolates

the mobility(M) between its solid and liquid values and μ is the chemical potential given

by

6F
»=5C =

RTwlnC _ Ae z,. 
—---- + e + (2.9)

the corresponding equation for 0 is given by the variational derivative as in the pure

model

2 = -^ = W
ot dtp O(p

(2.10)

where t = 1/Hk and ϐfAB/ϐϕ is given by

df _ GAc(l - K) t
Of - UMM

(2.11)

where the concentration in the interface is described by
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C0(x) = C'e^(1+!n>('Wj:>> (2.12)

which is the steady state concentration profile and ϕo(x) is the form of the phase-field 

across a stationary solid/liquid interface, given by the solution of

dxz oQq
(2.13)

Co(x) is constructed by noting that the chemical potential, equation 2.9, is constant(μeq) 

across the solid-liquid interface, ie,

RT
^eq = ---- —lnC0 + 6(</>o) (2.14)

manipulating equation 2.14 and substituting equation 2.6 gives equation 2.12.

The binary phase diagram is constructed from the chemical potential, equation 2.14. At 

equilibrium the chemical potential on the solid side of the interface is found to be

RT^eq = —^InCs + e(l) (2.15)

while on the liquid side it is given by

PT
Veq =——lnCL + t(-l) (2.16)

yo

Equation 2.15 and 2.16 immediately produce the partition coefficient,
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cs
K = —p = e rtm 

Cl
(2.17)

while applying the double tangent construction to the bulk free energy, equation 2.5,

/ab(-C Cl) - fAB(C Cs) = ^{Cl - Cs) (2.18)

The liquidus slope of the characteristic dilute limit of a simple binary phase diagram is 

found to be

Lvo

Using the identity(requires much algebra),

Ui ITlix

equation 2.10 is recast in the form of the phase equation similar to that in [32], ie,

= + (2.21)
Ot 1 — A

where

RTm(1 - k?Clo 
voH

(2.22)

In our work we have used g'2 = (1 - ϕ2)2.
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In directional solidification temperature is modeled using a thermal gradient through 

which the interface is pulled at a velocity V. Since the thermal diffusion is orders of magni

tude greater than the solute diffusion(which governs the rate of dendritic growth) ~ 104 

the thermal gradient is taken to be constant[40j. This is often called the ’’frozen field” 

approximation. This thermal field is defined by

T = To + G(z - Vt) (2.23)

where G is the frozen thermal gradient, z is the distance along the growth direction 

from a point at which T = TO and which moves with velocity.

For convenience we work in units where space is rescaled by W, time by T and temper

ature by ml(l — K)CO where Co is the initial alloy concentration, mt is the liquidus slope 

and k is the partition coefficient. In these units the temperature field is given by

0 = (l-K)(z-Vt)/lT (2.24)

and the dimensional pulling velocity is

V = Vrt/W (2.25)

where VR is the real pulling velocity. The dimensionless diffusion constant is given as,

D = Dlt/W2 (2.26)
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where Dl is the diffusion constant in the liquid. Diffusion in the sample is controlled

by

D =

where,

(2.27)

= 1 + K-(1-^ + —2~ (2.28)

and where £ = Ds/Dl = 10-4.

Surface tension anisotropy is incorporated into the phase-field model using fourfold 

symmetry and is specified in terms of n = ∆ϕ /|∆ϕ|, the unit normal to the interface. The 

form of this anisotropy is

4(n) = [1 - 3e4][l + + (n,)4)] (2.29)

where e4 is the anisotropy constant. The anisotropic interface width is defined as 

Wo(n) = WA(n) and the characteristic time To(n) = TA2 (n) [33, 57, 74, 32]. Anisotropy 

appears in both to and Wo to make the interface kinetics term β = 0 in the sharp interface 

limit.

In non-dimensional units the final form of the phase-field model[32] we use is given by 

the solute diffusion equation,
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and the phase field equation,

A2^

ac „
-^7 = -V -J ot

(2.30)

V • + 0(1 - 02)

,2\2

|v- |V0| 
4—

2dA2(n)

<W).
(2.31)

where eu = 2(C/C'f)/(1 + k — (1 — k)(/>) and flux j = —DCq^Vu — atC°(l — 

k^e^^dt^n is a solute anti-trapping term for when do « wo

The free phase field coefficients W, t, λ and the anti-trapping flux coefficient at are all 

inter-related through an asymptotic analysis [32], which maps the phase-field model onto 

the sharp interface limit stated earlier in this thesis:

(1) solute diffusion in the bulk phases, Fick’s Law,

(2) flux conservation at phase-boundaries, and

(3) the Gibbs-Thomson condition

Establishing a connection between the phase field model and the sharp interface limit 

leaves us with only one free parameter, A, which doesn’t influence the final results. Solving 

the phase field equations in the limit of local interface equilibrium4, ie β = 0, the rela

4The value for interface kinetics coefficient β is under investigation, for small interface velocities the 

approximation of = 0 is valid
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tionships between the phase field coefficients and the corresponding material constants are

obtained. These are given here without proof. The capillary length dc°,

d^/W ≈ 0.8839/A (2.32)

the solute diffusion coefficient D,

D ≈ 0.6267A (2.33)

and the anti trapping coefficient at,

at, = l/(2v^) (2.34)

Applying this model allows for the simulation of competative dendritic systems. Shown 

in figure 2.5 is the time evolution of the concentration field for a dendritic array with a 

gradient G = 9.75K/mm and a pulling velocity V = 30μm/s. Microsegregation of solute 

in the solid takes place between the dendrites as the dendrites grow.
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Figure 2.5: Phase field simulation of the concentration field for directional solification 
of the binary alloy PVA-0.813%ETH in a gradient G = 9.75K/mm and V = 30μm/s at 
times 6.7s, 8.7s, 10.6s, 13.5s, 18.3s and 28.9s. Blue is low concentration and red represents 
a high concentration.
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Chapter 3

Computational Methods

3.1 Phase Field and Multiscaling

The simplest method of computing time dependent solutions of the phase field equations 

described above is to solve the PDEs using finite differencing methods to calculate the 

gradients and to update each nodal point in a uniform mesh by explicit timestepping. The 

interface width of a solidifying material using the phase field method is generally on the 

order of 10-9 to 10-8m while the final dendritic structure can be on the order of 10-4m. 

As much as 6 orders of magnitude difference occurs in the growth of dendritic structures 

and even in the 2D case this can generate a static uniform mesh with as many as 1012 nodal 

points. This results in unrealistically long computation times and memory management 

becomes almost impossible. What is required is a method which can dynamically deal 

with multiscale problems.
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3.2 Dynamic Adaptive Grid Method

The dynamic adaptive grid method alters the numerical mesh resolution dynamically as the 

computation is advanced through time. This allows the system to resolve to needed accu

racy in regions of importance and to save computation time and memory by unresolving 

where such accuracy is not required. In solidification, regions of importance means regions 

near the solid/liquid interface, where the phase transition is occuring. This principle applies 

to any problem where

interfacelength(orArea) 
domainarea(orVolume) 

such as in solidification and solid state transformations.

The dynamic adapative grid method creates a non-uniform mesh that automatically 

places higher densities of nodal points near moving interfacees and much lower densities 

of nodal points away from the moving interfaces. This unstructured numerical grid is 

represented as a finite element mesh.

The dynamic adaptive grid adjusts the local resolution at an increment of time(t + ∆t) 

by use of a function which estimates the local error(based on fluxes of the fields) on the 

current mesh at time(t). The error estimator we use is given by

E= |Vϕ|+ϒ|VU| (3.2)

where ϕ is the phase, U is the temperature or solute concentration and 7 is a prefactor 
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to set the importance of the slower varying diffusion field in the error calculation. If the 

local error is too large at the current resolution, the grid is further refined locally.

D2I D22 D23D24

Figure 3.1: Pictoral diagram of a quad-tree structure used in adaptive meshing. An element 
splits and creates 'children' beneath it in the tree structure. If any element has no children 
it is ' active'[ 58]

Dynamic adaptive meshing is applied to an FEM mesh of quadrilateral and triangular 

elements. Square elements are used for ease of refinement and for regular interpolation 

of the fields, but nodal mismatches can occur between elements of differing resolutions. 

This is resolved by the addition of linear triangular elements used to bridge these elements. 

Figure 3.1 [58] shows a sequence of successive grid refinements and the associated data- 

structure used to code the refinement procedure numerically.

Figure 3.2 illustrates the dynamic adaptive mesh in action by showing the mesh for 

5 different times. At t = 0.96s the grid is symmetrical around the interface with little 

alterations and at t = 9.6s the interface has broken up and primary branches have emerged, 

the mesh has adapted to maintain the grid resolution at the interface. Times t = 11.5s and 
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t = 14.4s show the continued growth of the dendrites and the emergence of sidebranches, 

finally t = 29.8s the merger of side branch interfaces results in some unresolving of the 

mesh.

3.3 Application to the Phase Field

Equations 2.30 and 2.31 are solved on the dynamic adaptive grid. The equations are dis

cretized using a linear isoparametric formulation of the finite element method[62]. Time 

integration of the discrete equations is done explicitly. The phase-field model was simu

lated in 2D with zero-flux boundary conditions in both C and ϕ [57, 74]. All direction 

solidification simulations begin with a planar solidification front which is initialized with 

a small-amplitude random perturbation. To reach convergence the model was run with a 

minimum grid spacingof dxmin = 0.39 in all cases. Explicit time integration was used, 

with a time step dt = 0.008 as in Ref[32]. We used various values of A, which merely set 

the length and time scales of our simulations. Data from different A values can be rescaled 

onto one another.
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Figure 3.2: Dynamic Adaptive Grid for directional salification in a gradient G = 
9.75K/mm and V = 30μm/s at times 0.96s, 9.6s, 11.5s, 14.4s and 29.8s
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Chapter 4

Dendrite Spacing Selection in

Directional Solidification

Chapters 4 and 5 report the main results of this thesis. The goal of this thesis is to find a 

material-independent scaling relationship for primary dendritic spacing in directional so

lidification as a function of the material and process parameters. This chapter overviews ex

perimental data previously published by Dr. Jack Kirkaldy’s group at McMaster University 

[38, 42] for primary wavelength selection in directional solidification and reports on new 

phase field simulations conducted by myself on directional solidification. We simulated 

directional solidification in two dimensions, and compared our results to Dr. Kirkaldy’s 

data, which was also effectively two dimensional1.

'By avoiding capillary effects Dr. Kirkaldy’s experimental data features a distinct absence of 3D side 

branching, indicating 2D dendritic growth
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As in many previous directional solidification 

experiments[69, 8, 23, 6, 44, 45, 43, 70, 31, 38, 

42, 67, 12, 13], the experimental data of [38, 42] 

were done using alloys of pivalic acid(PVA) and 

succinonitrile(SCN). The alloying elements were 

salol, acetone and ethanol. Figure 4.1 illustrates 

a simplified schematic of the aparatus used to run 

the diectional solidification experiments of [38,

Figure 4.1: Diagram of directional so
lidification, cold and hot plates create a 
temperature gradient and the interface is 
pulled toward the cold side.

42]. The experiments are run by creating a solid

liquid planar interface2 between two parallel plates. A temperature gradient G, is applied 

2The interface is rough on the scale of nanometers

across the interface and the material is pulled at a velocity V through the gradient as shown 

in figure 4.1.

Our model simulates the above setup, as the experiments, except that the gradient is 

pulled toward the hot plate with a velocity V.

4.1 Survey of Experiments

This section summarizes experimental data of primary wavelength(λ1) selection previously 

published by Dr. Jack Kirkaldy[38, 42]. These directional solidification experiments are 

run between parallel plates in which 3D effects are minimized by using a film thickness 
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of 55μm << ld. An initial planar front is pulled back into the temperature gradient G 

at a velocity V. Three sets of λ1 vs V have been published in refs [38, 42], pivalic acid 

alloyed with ethanol(PVA-ETH), succinonitrile with acetone(SCN-ACE) and sucinonitrile 

with salol(SCN-SAL).

Experimental Primary Wavelength vs Pulling Velocity

0.0001

oo

o

oE

o SCN-Salol 0.25mol% G=0.013K/pm
+ SCN-acetone 0.13mol% G=0.013K/|am
■ PVA-ethanol 0.13mol% G=0.0185 K/gm

o ■
o

o

Ie-06 le-05 0.0001
V(m/s)

Figure 4.2: Primary Wavelength(λ1) vs Velocity(V) from experiments of PVA and SCN 
copied with permission from Refs [38, 42]

The pivalic acid(PVA) experiments were run with 0.13mol% ethanol in a thermal gradi

ent G = 18.5K/mm and pulling velocities varied from 6μm/s to 166μm/s. The PVA ther

mal capillary length dc° = 1.1E — 8m, the liquid diffusion constant DL = 6E — 10m2/s 

and the partition coefficient K = 0.16.

The succinonitrile(SCN) experiments run with 0.13mol% acetone had a thermal gra
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dient G = 13K/mm and pulling velocities varied from 5.2μm/s to 167μm/s. The 

SCN thermal capillary length dc° = 2.65E — 8m, the liquid diffusion constant DL = 

9.2E — 10m2/s and the partition coefficient K = 0.1.

The succinonitrile(SCN) experiments run with 0.25mol% salol had a thermal gradient 

G = 13K/mm and pulling velocities varied from 3.2μm/s to 83μm/s. The SCN thermal 

capillary length dc° = 2.65E — 8m, the liquid diffusion constant DL = 4E - 10m2/s and 

the partition coefficient K = 0.2.

The primary wavelengths(λ1) were extracted from published plots of λ1 vs V. This 

data is plotted in figure 4.2 and shows an increase in wavelength as the pulling velocity 

is increased above a critical value, a subsequent peak followed by a slower decrease in 

wavelength as the velocity continues to increase. We will use this data for comparison to 

our phase field simulations in Chapter 5.

4.2 Phase-Field Simulations

This section reports on our new directional solidification phase-field simulation data corre

sponding to 3 different alloys of PVA, cooled in 3 different gradients(1800K/mm, 625K/mm 

and 9.75K/mm) at various velocities ranging from the planar onset and into the dendritic 

regime. Figure 4.3 shows the growth of dendritic microstructures as a function of time in 

an alloy of PVA-0.813%ETH cooled at V = 20μm/s and a gradient of G = /mm.

One of the most fundamental issues confronting the investigation of dendritic microstruc-
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Figure 4.3: The time evolution of the solid-liquid interface from a phase field simulation 
using parameters such that V = 20μm/s and G = 9.75K /mm at times of 4.8s, 13.5s, 
16.4s, 19.2s,23. 1s and 29.8s

ture selection is identifying the length scales characterizing the microstructure. In cases 

where solidification experiments are run for a very long time(such as the experiments 

discussed above[38, 42]) the identification of a primary wavelength is relatively straight 

forward. In more realistic situations, where the microstructure never quite reaches its ideal 

steady-state structure3, the length scales that develop can be identified more precisely using 

a Power Spectral Analysis(PSA) technique(discussed in detail below). This method repre

sents a relatively new approach to length scale measurements of this type[28]. The basic 

3this is mainly the case for low cooling rates
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idea of PSA is that it breaks up the power of a given signal into its component frequencies, 

indicating the relative importance of each frequency to the signal. In our implementation 

of PSA, the signal is the outline of the solid-liquid interface as shown in figure 4.3.

We ran numerous phase-field directional solidification simulations(such as in figure 

4.3) and analyzed the time development of dendrite spacing using our PSA method. Our 

investigations revealed that in directional solidification the frequencies corresponding to 

the steady-state inter-dendritic spacings are established relatively early after the emergence 

of dendritic branches. Thus one of our main findings is the steady-state scale of primary in- 

terdendritic spacing sets in quite early, while less important scales(ie tip shape refinement) 

take much longer to establish. This will be discussed in more detail after we introduce in 

detail the PSA analysis methods.

4.2.1 Power Spectrum Analysis and Length Scale Extraction

PSA [21, 24, 72] uses the principles of fourier series to extract the various frequencies in

herent in the data. Each frequency present in the data has a corresponding power connected 

to it which shows how strongly the data will exhibit that particular frequency. Spatial fre

quencies in data emerge when features are repeated periodically(such as dendrite fingers in 

directional solidification). As dendrites are the most obvious periodic feature in the data 

the power spectrum analysis is an ideal technique in which to characterize the structure.

Fourier’s Theorem states ”a function f(x), having a spatial period L, can be synthe
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sized by a sum of harmonic functions whose wavelengths are integral submultiples of

L(L,L/2,L/3,L/4,etc.)’’[21]. This can be represented mathematically by:

f(x) = v + + J2(Bmsm(27r^)) (4.1)
2 m L m L

where,

2 fL TYl
Am = - f(x)cos(27t—x)dx (4.2)

L Jo L

2 fL 772Bm = - / f(x)sin(2TT—x)dx (4.3)
L Jo L

Fourier transformations can be applied onto any function f(x). However digital data 

does not have a continuous function f(x) defined at all points in space from 0 to L. Instead 

we have a discrete signal f(n), n = 1, 2..N where n is a discrete step corresponding to a 

distance ∆x. The discrete fourier transform, an approximation of the continuous fourier 

transform, is given by

TV—1

Bk = (4-4)
71=0

where the spatial frequency is given by fk = k/(N∆x), N is a data binning resolution 

defined such that ∆ = L/N and L is the system size.

This transformation, applied to the data for every frequency, will result in a correspond

ing complex function which upon taking the magnitude squared will result in a power spec
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trum Pk = |Fk|2. Figure 4.4(bottom) shows a power spectrum of a directionally solidified 

dendritic array at a snapshot in time during solidification, figure 4.4(top). We clearly see a 

peak corresponding to a wavelength that closely matches the interdendritic spacing in the 

top figure. We note that this simulation was run to very late times so that the structures in 

figure 4.4 are close to steady state. We note secondary smaller peaks in the power spectrum, 

which correspond to the length scales such as the dendritic thickness, etc...

Z

256

Figure 4.4: Top: Interface position of dendritic array. Bottom: The corresponding power 
spectrum Pk vs k = fkL.(The units W are defined in chapter 2 as the interface width.)
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4.2.2 Applying PSA to Dendritic Time Evolution

Interface Position over Time

Time 3

Time 2

0 X(W) 3200

Time 1

Figure 4.5: (Right)The power spectrums of the evolution of interfacial growth. (Left) The 
corresponding interface profiles. Timel: Planar front begins to become unstable. Time2: 
The mullins-sekerka(MS) wavelength begins to emerge. Time3: The MS wavelength grows 
in amplitude, coarsens and selects a new wavelength. Time4: With late times the peak shifts 
in small amounts and the spread of k sharpens.

Using our power spectrum analysis technique we can predict the time development of 

primary dendritic spacings. Figure 4.5 shows the power spectrum evolution over time and 

the corresponding dendritic structures for a PVA-0.813%ETH allow cooled at V = 0.2 and 

G = 0.00191, we find that as time progresses the peak shifts, but also the variance of the 

frequencies diminishes. Calculating the mean weighted average of the frequency over 256 

frequencies,
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kmean = = L/X, (4.5)
LkyO ^k

gives us the progression of the average primary dendrite spacing where L is the selec

tion size and Pk is the corresponding power of frequency k/L.

Figure 4.6: kmean, calculated from equation 4.5 plotted vs 1/time. Three distinct regions 
are shown, the planar interface, the MS wavelength and finally a steady state as t →∞.

A plot of kmean vs 1/time for 4 different pulling velocities is shown in figure 4.6 for the 

parameters shown in data set 1. There are 3 distinct regions of importance in this plot. The 

early time region is the planar front with random noise fluctuations, therefore the average 

is the expected k value of 128. When the interface breaks up new frequencies begin to 

grow and the Mullins-Sekerka instability emerges, the mean frequency plateaus for a time. 

Once the Mullins-Sekerka wavelengths grow to a finite amplitude dendrite fingers begin to 

70



coarsen and the final steady state wavelength emerges. This wavelength can be extracted 

by interpolating the plots to the origin. Figure 4.7 shows a blow up of the V = 0.006 case 

from figure 4.6.

We simulated directional soldification in various alloys and used the above power spec

trum analysis method to extract information about the time evolution and spacing selection 

of the steady-state inter-dendritic spacing. This data is discussed below.

Extracting the wavelength from the fourier data

Figure 4.7: For a single data run the steady state value can be extracted by interpolating 
1/time —> 0. The spread in the two solid lines indicates the bracket of error in extracting 
a steady-state wavenumber from our simulations. This error is about 1 wavenumber.
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4.2.3 Primary Wavelength Data

Data Set 1

Our first simulation modelled directional solidification in a PVA-10%ETH alloy cooled 

at various pulling velocities in a thermal gradient corresponding to 1800K/mm. The initial 

conditions were set such that the initial concentration profile in the liquid was in the steady 

state for a planar interface at the set pulling velocity of the interface. The velocity and 

the primary wavelength measurements, extracted using the power spectrum technique, are 

listed in table 4.1. Length was measured in units of W = 3.12xl0-8m and time units of 

t = 1.32x10-6s. Figure 4.8 (top) shows the concentration field for the data run where V = 

0.006. Figure 4.8 (bottom) shows the interface position and the wavelength is extracted by 

applying the power spectrum technique to the data.

Table 4.1: Data Set 1

Velocity^) Wavelength (W)

0.004 200 D(W2/T) 0.8147

0.005 229 K 0.15

0.006 229 G(K/W) 0.002

0.0075 200 A 1.3

0.01 178 co 0.1

0.03 123 dCO(W) 0.681
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Figure 4.8: Top: Concentration profile for V = 0.006 from data set 1. Red is high con
centration black is low concentration. Bottom: The corresponding interface position is 
calculated by plotting the position of = 0
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Data Set 2

Our second simulation modelled directional solidification in a PVA-10%ETH alloy 

cooled at various pulling velocities in a thermal gradient correstponding to 625K/mm. The 

initial concentration profile was set in both the solid and liquid as constant(no calculated 

profiles). The system was then allowed to naturally evolve and the concentration profile 

selected itself. The velocity and the primary wavelength measurements, extracted using 

the powerspectrum technique are listed in table 4.2. Length was measured in units of 

W = 7.2xl0-8 and time units of t = 1.62xl0-5s. These runs see the first emergence 

of dendritic sidebranches. The interface and concentration data is plotted in figure 4.9 for 

V = 0.07.

Table 4.2: Data Set 2

Velocity(^) Wavelength (W)

0.02 291 D(W2/t) 1.88

0.05 213 K 0.15

0.07 188 G(K/W) 0.0015

A 3

Co 0.1

0.295
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Figure 4.9: Top: Concentration profile for V = 0.07 from data set 2. Red is high concentra
tion blue is low concentration. Bottom: The corresponding interface position is calculated 
by finding 0 = 0
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Data Set 3

Our final simulation modelled directional solidification in a PVA-0.813%ETH alloy 

cooled at various pulling velocities in a thermal gradient correstponding to 9.7K/mm. This 

set is as in data set 2 where the initial concentration profile was set in both the solid and 

liquid to be constant. But we push the computational limit by increasing the parameter A 

to 20. This allows us to run realistic gradients and system sizes and in a shorter amount of 

time we can run systems close to steady states in all regions of the primary wavelengths(The 

velocities are varied close to the planar onset and into the dendritic regime.) Length was 

measured in units of W = 4.8.x10-7m and time units of t = 4.81xl0-3s. An example of 

this is shown in figure 4.10(both concentration fields and interfacial data).

Table 4.3: Data Set 3

Velocity(^) Wavelength (W)

0.032 178 D(W2/T) 12.534

0.05 200 K 0.16

0.08 229 G(K/W) 0.00191

0.09 229 A 20

0.1 200 Co 0.00813

0.2 168 dCO(W) 0.0442

0.3 145

0.6 114
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Figure 4.10: Top: Concentration profile for V = 0.3 from data set 3. Red is high concentra
tion blue is low concentration. Bottom: The corresponding interface position is calculated 
by finding ϕ = 0.
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4.3 Primary Wavelength Selection

The primary wavelength λ1 is plotted vs velocity in figure 4.11 for data set 1.

Primary Wavelength(λl) vs Velocity

Figure 4.11: λ1 vs V for data set l in units of w and t.

The solid vertical line is the boundary above which the mullins-sekerka planar insta

bility develops, beyond this point the wavelength increases from a finite value, peaks and 

then decreases with increasing velocity. Figure 4.12 shows the primary wavelengths for all 

3 of our simulated data sets. The inset shows the experimental data [42, 38, 31] of pivalic 

acid and succinonitrile from figure 4.2. In each case there is a critical planar velocity, an 

increase to a maximum, and a decreasing spacing as V is increased. Data set 2 does not 

feature a peak because we did not simulate any velocities small enough to produce the peak.
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Figure 4.12: All 3 data sets over plotted, errorbars are included  for dataset 3 and errors are 
similar for the other two data sets. In the inset is experimental data from the literature [38, 
42]. The difference in wavelengths between different alloy and processing parameters is 
evident.

Figure 4.12 shows a clear dependence on λ1 to both cooling rate (V and G) and alloy 

composition. We note that as a check of our power spectral method we initially collected 

data of the primary wavelengths of the dendrites in relation to their velocities by counting 

the peaks(figures 4.8-4.10) by hand for late times when the data coarsened and reached a 

steady state. The two approaches produce the same result.
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Chapter 5

Scaling Primary Wavelengths

The data shown in chapter 4 shows a dependence of the inter-dendritic spacing as a func

tion of the alloy concentrations and the solidification process parameters used. Previous 

research has involved the piecemeal fitting of regions of data to power laws[38, 69, 67] 

and the use of geometric arguments [39] in an attempt to predict primary wavelengths in 

directional solidification. Neither of these approaches produce one consistent theory that 

predicts the primary wavelengths over the entire range of cooling rates.

It was shown earlier in this thesis that the morphology of isolated dendritic crystals can 

be normalized to a single universal shape based upon the length scales of the crystal. Ex

tending the notion of scaling to directionally solidified arrays of dendrites, we have created 

a new approach to wavelength prediction and have produced a unified scaling function that 

predicts primary wavelength in directional solidification as a function of the pulling ve

locity, thermal gradient and alloy composition. This chapter derives the properties of this 
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scaling formulation and describes the physical motivation behind it.

5.1 Scaling Theory

The premise of scaling is quite simple. A function is needed to map a given alloy’s primary 

spacing λ1 vs V curve to a universal curve featuring a dimensionless wavelength(λ1) vs 

a dimensionless velocity(V). The universal curve is constructed by combining the length 

scales and reference points unique to each material. Returning to the plots of λ1 vs V 

reported in chapter 4(figures 4.2 and 4.12), we can see some of the important features 

which will be key to this scaling analysis.

Each alloy exhibits a unique transition velocity(Vc) at which a planar front becomes 

unstable to the growth of cellular fingers. If a scaling function exists, then its origin(along 

the velocity axis) must coincide with this point. In chapter 1 a critical planar velocity is 

calculated using two methods. The first, and simpler, method is through constitutional su

percooling but this method does not consider the capillarity effects of the interface in deter

mining Vc. A more accurate calculation is through the second method, the mullins-sekerka 

linear stability analysis, which gives a modified Vc dependent upon capillarity.(Note: The 

accuracy of Vc becomes particularly important as V —> Vc in the scaling curve.)

Next we examine figure 5.1 and note that with increasing velocity the planar inter

face becomes unstable, λ1 increases, peaks and then decreases. The nature of this peak 

can be described by the competitive process of the diffusion length(lD) and the thermal
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Primary Wavelength(λ1) vs Velocity

Figure 5.1: λ1 vs V for dataset /. Shown are Vc, Vp and the extrapolated λc all unique to
this alloy and cooling parameters.

length(lt). As the velocity is increased the diffusion length decreases due to its veloc

ity dependence(equation 1.14), while the traditional thermal length(equation 1.12) remains 

constant. Figure 5.2 plots the ratio of these two length scales at the extracted peak velocity 

for two of our simulated data sets and the three experimental data sets from Ref [42]. This 

ratio is found to be constant.

(5.1)

From equation 5.1 we can extract a theoretical velocity for the peak position as
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Ratio Ld/Lt vs Peak Velocity

0.5 -
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0 le-05 2e-05 3e-05 4e-05 5e-O5 6e-05

Peak. Velocity(Vp)

Figure 5.2: as a funcion of the velocity of the peak Vp, the two points on the right were 
shifted by order of 103 to be shown on the plot.

P ClT (5.2)

Since Vp will play the role of a velocity scale we set C = 1.

Finally, extrapolating the upward branch of the raw λ1 vsV curves back to the velocity

Vc(As in figure 5.1), it is clear that each alloy has its own unique onset steady state wave

length, denoted λc.(more will be said about obtaining this important length scale below)

Using the competitive process between lD and lt and the aforementioned points(Vc, Vp, λc), 

the axes of any given λ1 vs V plot can be scaled such that all materials are mapped onto a 

single universal curve. This is done by scaling the velocity axis(V) to the critical and peak 

velocities as
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O - Vc
Vp

(5.3)

which can be more elegantly expressed in terms of the fundamental length scales as

where l*D is the diffusion length at the critical velocity as calculated from mullin-sekerka 

instability theory(Chapter 1). Finally the wavelength(λ1) axis is scaled to the onset wave

length λc and multiplied by a ratio of the diffusion length to the thermal length. This 

gives,

Ax = (5.5)
Ac It

After extracting λc for all our simulations as well as for all the data published in [38, 

42] we can collapse all the data of figures 4.2 and 4.12(both experiments and phase field 

simulations) onto a single universal curve. This is plotted in figure 5.3

Applying the generality of the universal curve in figure 5.3 to all 2D directionally so

lidified alloys allows us to predict the inter-dendritic spacing of any(dilute) binary alloy.

Mathematically we can write the scaling function in figure 5.31 for the primary branch 

selection in the form

'Often referred to as a ’’crossover scaling function” since it captures the details of length scale selection 

continuously over different growth regimes.
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Figure 5.3: The Computed and experimental data[38, 42] scaled to a single function using 
alloy and process length and velocity scales.

λ1 = (5.6)
Id Id

where is the function plotted in figure 5.3(shifted by the material constant lT/l*D

This mapping shows that scaling works for different materials in the determination of 

the primary branches and it is remarkable in that it extends to the cellular regime on either 

side of the peak and, at higher velocities, into the dendritic regime. This scaling is depen

dent only on inherent length scales of a solidifying alloy and the onset critical wavelength. 

These length scales are easily calculated from the previous theoretical calculation shown in 
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this thesis, and l*D = 2D/Vc where Vc is calculated from the mullins-sekerka analysis in 

Chaper 1. Let us turn now to the determination of λc.

5.2 Determination of λc

Because accurate data near Vc is difficult to obtain either numerically and experimentally, 

λcwas selected so as to obtain the best data collapse to the universal curve of figure 5.3. 

Once Ac was obtained we investigated its relation to the known length scales inherent in 

directional solidification. Two methods were used to theoretically calculate  λc and are 

summarized below.

5.2.1 Tip Geometry

In this calculation we use the tip shape to geometrically determine Ac as in [39J. We 

begin by finding λ1 as in [39] which assumes that the tip shape can be approximated by an 

ellipsoid2. The ellipsoid has a tip radius R, a major axis a, and a minor axis b. The minor 

axis b is calculated from the following relation for ellipsoids

b2
Roa— (5.7)

a

If we assume that the major axis is the amplitude of the tip(proportional to lt), the 

2While this method predicts the power laws of the primary spacing in the dendritic regime the wavelength 

is off from experimental values by a material dependent shift
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tip radius is the mullins-sekerka wavelength λMS, while the steady state wavelength is the 

width of the ellipse(λ1 = 26), as shown in figure 5.4, then the wavelength is extracted by 

solving equation 5.7 giving,

(5.8)

this predicts λc by calculating λMS at V = Vc

Figure 5.4: Ellipsoidal tip shape, λ1 is calculated by setting arrays of these and calculating 
the minor axis b

Variable Thermal Length - lTR

For large velocities the thermal length is constant. When V —> Vc this is no longer true 

and the thermal length becomes a function of the velocity.

Figure 5.5 illustrates the steady-state concentration profiles of four different velocities
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Concentration

Figure 5.5: Overlaying the concentration profile onto the binary phase diagram shows 
the conditions for a stable interface and illustrates the velocity dependent thermal length 
lTR(V).

overlayed on a binary phase diagram with increasing velocity going from right to left. The 

lowest velocity represents the concentration profile ahead of the interface corresponding to 

a stable front. The next velocity consists of a profile that represents the critical velocity 

after which the interface will break up into cells or dendrites according to constitutional 

supercooling. The 4th velocity is the profile corresponding to the case where dendrite 

tips grow out to reach the maximum allowed amplitude lt. The 3rd profile is the line of 

interest. This particular profile suggests that at some intermediate velocities(between planar 

solidification and maximum amplitude fingers reaching lT) the amplitude of a primary 

dendrite tip is limited by the tip undercooling, which becomes dependent upon the velocity. 

[39, 29] We denote this amplitude scale ltr(V).

The calculation of Itr starts similarly to the constitutional supercooling calculation.
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We begin with equation 1.13 and from the phase diagram,

Tm-T
(5.9)

and the temperature in our directional solidification problem is given by

T — Gz + Tint (5.10)

and from equation 5.9 we obtain Tint = Tm — ^-m. Equating both 5.9 and 1.13 results 

in a relation of the temperature, alloy composition, position, velocity and Diffusion as

By substituting equation 5.10 into equation 5.11 the crossover position on the phase 

diagram is calculated as

1- K mi
Gz — — Comi(l H----——e * ) + Co— (5.12)

Solving this equation for z explicitly is very difficult, but the equation can be further 

simplified in terms of existing length scales as

z = ^(l — e 7) (5.13)

solving equation 5.13 for z gives z = ltr(V)
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Calculating both the reduced thermal length(sets scale of the amplitude) and the mullins- 

sekerka wavelength(approximation of the tip radius) at the mullins-sekerka critical velocity 

Vc, we propose a revised prediction for λc as

Ac — vAms^t«(Vc) (5.14)

5.2.2 Alternate λc

An alternate form for Ac is proposed in the literature[67, 42] and is taken by examina

tion of the mathematical form of the Mullins-Sekerka wavelength. The Mullins-Sekerka 

wavelength can be approximated by λms ~ yj^od^ for a planar interface in isothermal con

ditions. But the Mullins-Sekerka wavelength is calculated by assuming that the interface 

perturbation has a vanishingly small amplitude. By calculating lTR at Vc and examining 

experimental amplitudes[38, 42] near Vc we note that the amplitudes are not vanishingly 

small. The addition of lT is suggested in the literature to account for the non-zero amplitude 

in the form of the geometric mean of It, Id and dc°

Ac ex (lodolr)3 (5.15)
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5.2.3 Theory Comparison to Fit

The data in figure 5.3 was scaled to a selected λc so as to reach the best possible fit to the 

data. To test the viability of our prediction of Adequation 5.14) as well as the prediction 

from the literature(equation 5.15) we show in figure 5.6 a plot of our extracted Ac(the one 

leading to data collapse in figure 5.3) against the Ac predicted in equations 5.14 and 5.15.

Figure 5.6: λc : Fit plotted against two theoretical extractions in units of dco .

All values of Ac were plotted in units of the capillary length to bring the data into a 

small enough range for better comparison. If either of the theories for Ac from the literature 

were in agreement with our extracted Ac from the experiments of [38, 42] and our phase

91



field simulations, we would expect

Xc — Q^theory (5.16)

While the relationship in figure 5.6 fits well to a linear function, the fit does not extrap

olate through the origin and therefore we find an additional material dependent correction 

to the theoretical predictions of Adequation 5.14 and 5.15). Specifically, our results(figure 

5.6) predict instead

Ac — Ot A theory^ + ~T—~) (5.17)
^theory

Inspection of equation 5.17 shows that λc ∞ λtheory are in agreement only for large λc. 

This indicates that geometrical constructions of dendrite spacings that consider dendrite 

morphology as an ellipsoid are incorrect near the instability onset Vc.

92



Chapter 6

Conclusions

To summarize, we began, in chapter 1, with an overview of solidification, its applications 

and different methods in which it is studied. Pattern selection in solidification was char

acterized in terms of length scales. Directional solidification in particular was shown to 

be characterized by 3 lengths scales, the thermal length(lT), the diffusion length(lD) and 

the capillary length(dco). We outlined the criteria for stability of a solidification front in 

the simple case of the constitutional supercooling limit and using the capillarity dependent 

Mullins-Sekerka instability analysis. From this analysis we could extract the initial insta

bility wavelengths and calculate the planar to cellular onset velocity. Chapter 2 introduced 

the phase field method and overviewed a derivation of the phase field model for a binary 

alloy used in our work. Chapter 3 reviews numerical methods used to simulate the phase 

field model efficiently using adaptive mesh refinement methods. Chapter 4 reports on the 

data collected from our phase field simulations on primary wavelengths and which were 
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compared to published experimental data. The data was analyzed using a power spectrum 

algorithm applied to the solid/liquid interface. This technique was shown to be a robust 

way to analyze length scale selection in phenomena where multiple scales are competing.

The purpose of this thesis was to show that the length scale selection process in direc

tional solidification was universal and that the interdendritic spacings could be predicted 

from material to material if the basic properties of the material and the process param

eters were known. A scaling function was produced describing wavelength selection in 

directional solidification with the anisotropy parallel to the growth direction.

Ai = >cp/(p) (6.1)
I'D I'D

The data for three different experiments published in the literature and three experi

ments using phase field simulations were all shown to scale across a wide range of veloc

ities, ranging from the low velocity regime of rising wavelength, into the cellular regime 

past the peak and also into the dendritic regime.(shown in figure 5.3) This scaling requires 

only knowledge of the three length scales(lT, lD and dc°) and the planar to onset velocity as 

calculated in chapter 1.

We have explicitly demonstrated scaling in 2D solidification, and would expect to find 

scaling collapse in 3D by repeating our analysis. Consequently, we would expect the se

lected wavelength in 3D to display a maximum for intermediate pulling velocities beyond 

Vc, similar to what was observed in the 2D case. We would also expect the scaling func
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tion to be very robust with respect to changes in the solid diffusivity and/or magnitude of 

surface tension anisotropy, as they simply renormalize Vc and λc Future extensions of 

this work will involve an extension of our scaling analysis to spacing selection in strip-cast 

alloys.
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