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Abstract

We investigate the abilities of neural models to model astrophysical gases, addressing

limitations in traditional numerical solvers such as energy bottlenecks, resolution ef-

fects, grid anisotropy effects, and strict time-stepping constraints. In particular, we

focus on simulations of turbulent flows and thermochemical networks in the interstel-

lar medium (ISM).

We employ the chaotic Kuramoto-Sivashinsky (KS) equation as a one-dimensional

testbed for neural network architectures commonly employed in simulations of three-

dimensional hydrodynamical turbulence. We benchmark a wide range of state-of-

the-art neural architectures. Our experiments demonstrate that hierarchical context

aggregation, residual connections, and group equivariance play a critical role in cap-

turing faithful dynamics and spectral properties of turbulent flows.

Additionally, we model the thermochemical evolution of astrophysical gas using

a residual neural network (ResNet) trained on data generated by the CHIMES code.

The network predicts the evolution of chemical abundances and thermal states across

a range of densities, temperatures, and metallicities, effectively integrating over large

timesteps to mitigate the stiffness issues of conventional solvers.

Our findings suggest that modern deep learning methods may provide a viable

and efficient alternative to traditional numerical solvers for astrophysical simulations.
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Chapter 1

Introduction

The interstellar medium (ISM) was first discovered over 100 years ago, when Hart-

mann (1904) measured stationary CaII lines while observing the Delta Orionis star

system. These stationary lines implied that the absorption did not originate from the

star’s atmosphere, but rather matter along the star’s line of sight. Since then, our

understanding and knowledge of astrophysical gas a grown enormously.

A large portion of the mass budget of baryons in galaxies is in gas (Tielens,

2005). The origin and evolution of observed galaxies and the associated gas are tightly

coupled via cyclic process which exchange gas and dust through various heating,

cooling and feedback processes. Gas clouds in the ISM collapse to form stars while

the stars eject feedback gas back into the ISM (Tielens, 2005).

Observing these systems provides limited data on their origin and evolution, as

the processes that drive them operate on a huge range of times scales and length

scales. Due to the impossibility of performing direct experiments on such systems,

astrophysicists often turn to simulations to validate theory on their detailed evolution.
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Modern simulations use highly parallel numerical methods to solve equations gov-

erning the astrophysical gas (such as Gasoline, AREPO, Athena, KROME and other codes

discussed in 1.2.2). These methods involve carefully crafted time-stepping schemes

with strict stability and convergence criteria, and resolution requirements to capture

all the detailed physical processes across all the relevant scales, which can create

extreme computational requirements. For any practical simulation, the accuracy rel-

ative to the true physics is always limited by the resolution and the numerical method

chosen.

Astrophysical equations (ODEs for chemistry and cooling, PDEs for hydrody-

namics) can involve steep gradients, and are governed by stiff equations that create

highly nonlinear trajectories. These properties mean highly restrictive time-stepping

constraints such as the Courant (CFL) condition (for hydrodynamics) or very fast

reactions (for chemistry), must be considered with numerical solvers. However, in the

case of stiff equations particularly, the physical system often spends a lot of time at

equilibrium and so the overall system can evolve slowly, suggesting new approaches

could be more efficient.

Recent advancements in machine learning have shown promise to outperform tra-

ditional solver codes in both accuracy and speed (Branca and Pallottini, 2023; Rosof-

sky and Huerta, 2020; Stachenfeld et al., 2021; Sulzer and Buck, 2023). Neural net-

works have a time and memory complexity that depends only on the architecture

an the dimensions and depth of the layers in the network. In particular, they can

represent highly non-linear functions, offering promise to evolve physical dynamical

systems without being limited by the same time step constraints that traditional

solver codes require. In addition, neural networks (in particular, autoencoders) can

2
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compress data and automatically discover efficient representations in latent space

(Hinton and Salakhutdinov, 2006). This too could lead to savings in memory and

time. These potential savings apply to a many areas in numerical physics. In as-

trophysics specifically, we expect that hydrodynamics solvers and chemical network

solvers can benefit greatly from machine learning approaches.

In the remainder of the introduction, I describe astrophysical scenarios where

machine learning methods could be helpful for the reasons presented above. I also

describe current standard numerical treatments and their limitations. In Chapter 2,

I give an overview of machine learning methods and model architectures, discussing

their mathematical prescriptions and use cases. In Chapter 3, I showcase our ex-

periments applying such methods to simulate the time-evolution of the astrophysical

systems (and simple analogues) discussed in this introduction. The final chapter re-

views the results we find, as well as future directions for training neural models to

evolve astrophysical simulations.

1.1 Astrophysical Gas

Gas is ubiquitous throughout the universe, much of it in the form of plasma (Ferriere,

2001). In principle, we must then consider not only hydrodynamics but magneto-

hydrodynamics, ionization sources, and detailed chemistry. In addition, there are

complex and numerically difficult-to-resolve processes such as turbulence, accretion,

cooling, and the formation of bound objects that then feed back into the resolved

medium. The interstellar medium (ISM) is a key focus in astrophysics and all these

important processes are represented there.

3

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.A.Sc. Thesis – E. McF.; McMaster University – Physics and Astronomy

1.1.1 Modeling the Interstellar Medium

The ISM consists of gas and plasma between stars within galaxies. This environment

is a source of material for giant molecular clouds (GMCs), which serve as formation

sites for new stars and planets (Tielens, 2005). The ISM features a wide range of

physical processes, including gas hydrodynamics, plasma magneto-hydrodynamics,

radiative transfer, heating and cooling processes, and non-equilibrium chemistry.

The self-gravity of GMC clouds can be strong and the Mach numbers very high,

leading to large dynamic ranges in the density of the ISM as a whole. Padoan et al.

(1997), conducted simulations of hydrodynamic turbulence, studying the density PDF

and its relationship to the Mach number of the gas. The mass distribution was

dominated by only a small fraction of the volume. Kritsuk et al. (2007) fit the width

of the log-normal density PDF with the mach number of the gas following the scaling

law σ2 = ln(1 + b2M2). At higher mach numbers (for example, ∼ 6) the width of the

density distribution can span 6 or more orders of magnitude (Kritsuk et al., 2007).

4
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Figure 1.1: Density PDF of the Fourier-filtered density field, above and below the
sonic scale ls, the transition from supersonic to subsonic turbulence (Federrath

et al., 2020).

To resolve both the rarified gas and the dense gas, one must use a large number

of discretized cells (or particles, depending on the method) which comes at great

computational cost. The low-viscosity and high-density setting of the ISM, often

containing supersonic shocks, is challenging and expensive to model, and typically

forces a limited resolution which will ultimately compromise accuracy. Thus, there is

a constant need in the field for faster and more efficient ways to model ISM turbulence

both at and below the grid scale.

1.1.2 Modeling Heating and Cooling

The thermal evolution of an astrophysical gas can be determined by solving heating

and cooling functions, which depend on temperature, density, and metallicity (includ-

ing the details of the chemical composition) (Sutherland and Dopita, 1993b). The

5
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short timescales at play within the chemical reaction networks (including their ther-

mal evolution) in the ISM cause them to often be the limiting factor in the simulation

costgs. For example, the line cooling rate for metals scales as Λmetal ∝ nHne, meaning

very dense regions require short timescales to accurately resolve their evolution. On

the other hand, most of the gas sits close to an equilibrium temperature so that the

actual time to see temperature changes is typically quite long. Cooling rates depend

strongly on the ionization state of the gas, with ionized gas cooling rates orders of

magnitude greater than that for neutral gases at T < 104 K (Gnedin and Hollon,

2012). In collisional ionization equilibrium (CIE), cooling and heating functions can

be parameterized using temperature, density, and metallicity (Sutherland and Dopita,

1993b).

6
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Figure 1.2: Normalized CIE cooling functions as a function of metallicity, with more
metal-rich environments showing greater cooling rates (Sutherland and Dopita,

1993a).

1.2 Modeling Hydrodynamical Turbulence

Understanding and accurately modeling turbulence is essential for faithful modelling

of star formation, galaxy evolution, and the dynamics of the ISM. The fundamental

equations of hydrodynamics are the Euler equations, which describe the conservation

7
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of mass, momentum, and energy in a fluid:

∂ρ

∂t
+∇ · (ρv) = 0 (1.2.1)

∂(ρv)

∂t
+∇ · (ρvv + P I) = 0 (1.2.2)

∂E

∂t
+∇ · [(E + P )v] = 0 (1.2.3)

where ρ is density, v is velocity, P is pressure, and E is total energy density.

Turbulence arises when these equations are solved in regimes of high Reynolds

number, where inertial forces dominate over viscous forces. In astrophysical contexts,

the Reynolds numbers are often extremely high, leading to fully developed turbulence

across a wide range of scales.

Turbulence plays an important role in regulating the density distribution and

the flow of gas throughout the ISM. In galaxy simulations, turbulence below the re-

solved grid scale can suppress star formation rate by combating gravitational collapse

(Schmidt and Federrath, 2011).

1.2.1 Kolmogorov Theory

The classical theory of turbulence, developed by Kolmogorov (1941), predicts a cas-

cade of energy from large scales to small scales. In the inertial range, where neither

energy injection nor dissipation dominates, the energy spectrum follows a power law:

E(k) ∝ k−5/3 (1.2.4)

8
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where k is the wavenumber. This -5/3 slope is a characteristic of fully developed,

incompressible turbulence.

However, astrophysical turbulence often involves compressible fluids, magnetic

fields, and self-gravity, complicating this picture. For instance, in supersonic turbu-

lence, which is common in GMCs, the energy spectrum can steepen to E(k) ∝ k−2

(Burgers, 1948). A log-normal relationship between the mach number M and the

density ρ has been demonstrated in simulations (Bauer and Springel, 2012; Lemaster

and Stone, 2008; Squire and Hopkins, 2017), and accurately resolving both ends of

this density distribution is of great importance in an astrophysical context.

However, accurately capturing turbulence in numerical simulations remains chal-

lenging. It requires resolving a wide range of scales, from the energy injection scale

to the dissipation scale. Moreover, numerical dissipation can affect the inertial range,

and different numerical schemes often produce widely different results, especially in

the highly compressible regime relevant to many astrophysical problems (Schmidt

and Federrath, 2011; Schmidt et al., 2006).

1.2.2 Numerical Methods and Limitations

Particle methods

Smoothed Particle Hydrodynamics (SPH) is a commonly used representative La-

grangian numerical method, where fluid elements move with the flow. We use SPH

as a representative Lagragian method as it shares constraints with similar methods

(e.g. AREPO). SPH codes have been widely used to study turbulence in astrophysi-

cal settings. SPH works by approximating fluid elements as particles, which interact

with each other through a kernel function (Monaghan, 1992).

9
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In SPH, the fluid is represented by a set of particles with positions ri, velocities

vi, and masses mi. The density at any point is estimated by:

ρ(r) =
∑
j

mjW (r− rj, h) (1.2.5)

where W (r, h) is a smoothing kernel (typically a cubic spline function or similar)

and h is the smoothing length.

The equations of motion for the particles are derived from the Lagrangian form

of the fluid equations:

dvi
dt

= −
∑
j

mj

(
Pi
ρ2i

+
Pj
ρ2j

+ Πij

)
∇iWij (1.2.6)

where Pi is the pressure of particle i, and Πij is an artificial viscosity term to

handle shocks:

Πij =


−αcijµij+βµ2ij

ρij
, vij · rij < 0

0, vij · rij ≥ 0

(1.2.7)

The energy equation is:

dui
dt

=
Pi
ρ2i

∑
j

mjvij · ∇aiWij (1.2.8)

where ui is the specific internal energy.

SPH naturally handles large density contrasts and complex geometries by allowing

the discretized units to move with the flow of gas, making it an enticing choice for

astrophysical contexts. However, SPH can fail to represent the full inertial range of
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the turbulent cascade, suppressing energy levels expected near the grid scale. (Price,

2012).

The accuracy of SPH codes can be limited by issues such as excessive artificial

viscosity and gradient errors (Bauer and Springel, 2012). SPH, in its default imple-

mentation, introduces spurious pressure forces in regions with steep density gradients

(Agertz et al., 2007). Agertz et al. (2007) showed that SPH has difficulties in modeling

multiphase flows and fluid instabilities (i.e. Kelvin-Helmholtz and Reyleigh-Taylor).

Despite promising fixes to SPH (Wadsley et al., 2008) through better modelling of

turbulent diffusive processes, the need to constantly identify and resolve such artifacts

is a recurring problem with existing numerical methods.

Common SPH codes used for astrophysical scenarios include GADGET (Springel,

2005), Gasoline (Wadsley et al., 2017), and ChaNGa (Jetley et al., 2008).

Grid Methods

Grid-based methods solve the fluid equations by discretizing space into a mesh of cells.

The fluid variables are defined at fixed points in space, typically cell centers or faces.

Grid codes evolve these variables in time by calculating fluxes between neighboring

cells.

The discretized form of the Euler equations in a finite-volume scheme can be

written as:

∂Ui

∂t
+

1

∆x
(Fi+1/2 − Fi−1/2) = 0 (1.2.9)

where Ui is the vector of conserved quantities in cell i, ∆x is the cell width, and

Fi±1/2 are the fluxes at the cell interfaces.
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A primary limitation of grid methods is that they explicitly advect material be-

tween cells. This process is diffusive at levels that can exceed physical viscosity and

conduction by large margins and also depends explicitly on the velocity. In this sense

they are not Galilean-invariant. This is a key physical property we might seek to

recover with alternative methods. The practical impacts of these errors are velocity-

dependent smearing effects close to the resolution scale which can couple badly to

cooling and other key small scale processes.

Popular grid-based astrophysical fluid dynamics codes include: RAMSES (Teyssier,

2002), Athena++ (Stone et al., 2020), ENZO (Bryan et al., 2014), FLASH (Fryxell et al.,

2000), and CHOLLA (Schneider and Robertson, 2015).

Additionally, there are hybrid methods, such as AREPO (Weinberger et al., 2020),

which uses a moving Voronoi mesh to accurately resolve the gas distribution. These

methods have similar limitations.

1.2.3 Limitations of Hydrodynamics Codes

These state-of-the-art numerical methods suffer many long-standing drawbacks, in-

cluding energy bottlenecks, the Gibbs phenomenon, grid anisotropy, CFL constraints.

Additionally, traditional codes have expensive scaling laws, typically as N
(
1D4/3)

where N1D is the number of cells per dimension. For example, a state-of-the-art

hydrodynamical simulation on a 10, 0003 grid by Federrath et al. (2020) required

∼ 65, 000 compute cores on the SuperMUC supercomputer, consuming ∼ 50 million

core hours to simulate 9 turbulent crossing times.

Despite ad hoc fixes to solver codes (for example, treatments for SPH with im-

proved modelling of turbulent diffusive processes in SPH (Wadsley et al., 2008)), the
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need to constantly identify and resolve such artifacts is a recurring problem with

existing numerical methods.

Bottleneck Effects

Bottleneck effects refer to an artificial buildup of energy at small scales near the

dissipation range in numerical turbulence simulations.

As shown in Figure 1.3, both grid-based and SPH codes exhibit bottleneck ef-

fects to varying degrees in subsonic turbulence simulations, where the energy spectra

deviate from their expected Kolmogorov scaling at small scales.
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Figure 1.3: Velocity power spectra for subsonic turbulence simulations presented by
Bauer and Springel (2012). Their results showcase the resolution dependence of the
results of both the AREPO grid code (top) and the GADGET SPH code (bottom),

with resolutions ranging from 643 to 5123 cells.

Various sub-grid prescriptions exist to conrol the flow of turbulent energy at the

scale of numerical dissipation (Schmidt and Federrath, 2011; Schmidt et al., 2006),

often using spectral filtering smaller modes out of the flow field, and relying on the

sub-grid model (of limited accuracy) to capture effects from smaller scales.

Machine learning shows great promise to relieve these bottleneck effects. Con-

sider a well-resolved 1283 turbulent grid. While running an identical simulation on a
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smaller (323) grid, bottleneck effects will surely arise as energy dissipates at this new

grid scale. On the other hand, training a neural network on a downsampled version of

the well-resolved grid would offer a model that accurately predicts the exact dynam-

ics and energy spectrum of the original well-resolved grid, but with these dynamics

applied to the downsampled grid. Indeed, Stachenfeld et al. (2021) followed this exact

methodology with a compressible turbulent box and found near-perfect faithfulness

to the original well-resolved energy spectrum, while running the neural simulation on

a very course grid (see figure 2.5)

Gibbs phenomenon

The Gibbs phenomenon refers to the occurrence of oscillatory artifacts near sharp

discontinuities or steep gradients when approximating a discontinuous function using

a finite Fourier series (Gibbs, 1899). In numerical simulations of fluid dynamics, they

present as spurious oscillations (“ringing” artifacts) near shock fronts or other sharp

transitions in the flow.

Various techniques can be introduced to mitigate this effect, such as slope lim-

iters, spectral filtering, and Adaptive mesh refinement (AMR) near discontinuities.

However, these approaches come at the cost of reduced accuracy or increased com-

putational complexity, and may introduce additional numerical artifacts.

It has been demonstrated that, with the usage of neural networks, the Gibbs

phenomenon does not occur (Mylavarapu et al., 2018).
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Grid Anisotropy

Grid anisotropy is an artifact in grid-based fluid simulations where the discrete mesh

introduces preferred directions aligned with grid axes. This can lead to non-physical

results, especially for poorly resolved flows or those aligned diagonally to the grid.

While higher-order schemes can reduce these effects, they require more compute and

do not completely remove the effect.

Neural methods, although usually performed on an identical grid, do not evolve

the flow according to strict flux-transfer schemes and thus do not suffer from similar

anisotrophy issues. In particular, convolutional neural networks process the infor-

mation from all neighbouring cells with the same treatment, regardless of if they lie

along the cartesian axes (see 1.4.11), allowing fluxes to flow diagonally in the same

manner as they do when aligned with the grid.

CFL condition

The Courant-Friedrichs-Lewy (CFL) condition is a necessary condition for the sta-

bility of explicit time integration schemes in numerical methods for solving partial

differential equations (Courant et al., 1967). For fluid dynamics simulations, it can

be expressed as:

C =
u∆t

∆x
≤ Cmax (1.2.10)

where C is the Courant number, u is the characteristic velocity, ∆t is the time

step, ∆x is the spatial discretization, and Cmax is the maximum allowed Courant

number.

The CFL condition limits the timestep according to the spatial resolution and
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the fastest signal speed in the system. This constraint ensures that information does

not propagate across more than one cell per time step, which is a requirement for

numerical stability.

Machine learning methods show promise to completely avoid such a constraint, as

they are not bound by any particular numerical scheme and thus may learn a system’s

evolution operator out to arbitrarily large timesteps (Stachenfeld et al., 2021). It is

important to note that one must still respect the speed of information propagation. A

method that does not follow the standard CFL condition would still have to include

the influence of all data out to a distance ∼ csound∆t - such as using a large receptive

field in the convolution kernel

1.3 Thermochemistry

The chemical and thermal evolution of astrophysical gases plays an important role in

determining structure formation and galaxy evolution. Here, we describe the main

chemical and cooling processes that are important in the temperature range 102 .

T . 108 K relevant for the interstellar and intergalactic medium.

The evolution of the chemical abundances is governed by a set of rate equations

of the form:

dni
dt

=
∑
j

kijnjne −
∑
l

kilnine (1.3.1)

where ni is the number density of species i, ne is the electron number density, and kij

and kil are the rate coefficients for formation and destruction processes respectively

(Gnedin and Hollon, 2012). The dominant processes include collisional ionization,
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radiative and dielectronic recombination, charge transfer reactions, and photoioniza-

tion.

The cooling function Λ and heating function Γ determine the net cooling rate per

unit volume:

dU

dt
= n2

b [Γ(T, ...)− Λ(T, ...)] (1.3.2)

where U is the thermal energy density and nb is the total baryon number density

(Sutherland and Dopita, 1993b). The cooling function has contributions from various

atomic and ionic species:

Λ =
∑
i

Λi (1.3.3)

For metal-enriched gas in the ISM and IGM, the key cooling processes are:

• Metal line transitions (e.g. C, O, Ne, Fe)

• Collisional excitation of H and He

• Recombination

• Free-free emission (bremsstrahlung)

These can be expressed in the general form:

Λi = fi(T )nenj (1.3.4)

where fi(T ) is a temperature-dependent cooling rate coefficient (Katz et al., 1996).

Metal line cooling dominates at temperatures T . 107 K and can be approximated

as:

Λmetal ≈ nHneΛZ(T, Z) (1.3.5)
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where ΛZ(T, Z) is the metal cooling function dependent on temperature and metal-

licity (Wiersma et al., 2009).

The presence of an external radiation field introduces additional complexity through

photoionization and photoheating processes. Gnedin and Hollon (2012) showed that

the cooling and heating functions in this case can be approximated as

{Γ,Λ}(T, nb, Z, Jν) ≈
2∑
i=0

(
Z

Z�

)i
{Γ,Λ}i(T, rj, nb) (1.3.6)

where rj are combinations of the normalized photoionization rates.

Solving this chemistry for metals out of equilibrium is computationally expensive

and rises steeply as the number of species increases (Smith et al., 2017). This problem

is further compounded by the fact that chemical rate equations are typically stiff

(Richings et al., 2014a) and the chemical timescale is often orders of magnitude shorter

than the hydrodynamical timescale. The dispersion and mixing of ejecta from stellar

winds and supernovae across the ISM can cause galaxies to become very enriched

with metals (Annibali and Tosi, 2022). For these reasons, researchers turn to either

pre-computed tabulated datasets, or use highly optimized solver codes to accurately

model the chemical and thermal evolution of an astrophysical gas (Robinson et al.,

2024), which can become infeasible as the number of physical parameters sampled

increases the dimension of the table.

Many such solver codes are available for astrophysical chemistry and cooling, in-

cluding CHIMES (Richings et al., 2014a,b), KROME (Grassi et al., 2014), Cloudy (Ferland

et al., 2013), and Grackle.

Equilibrium solvers, such as Cloudy, determine the steady-state composition.

They are suitable when the chemical equilibrium timescale << dynamical timescales.
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Non-equilibrium solvers, like CHIMES and KROME evolve the chemical composition over

time, necessary when chemical timescales >> dynamical timescales, allowing for ac-

curate resolution of this out-of-equilibrium behaviour. Grackle uses tabulated data

from Cloudy with additional non-equilibrium chemistry for a Hydrogen and Helium

chemical network.

Codes such as Cloudy allow simulators to pre-compute and tabulate cooling rates

for various conditions. Of course, the accuracy of such a method is limited by its

resolution, which is ultimately constrained by the machine’s memory. Note that the

dimensionality of this table can be impossibly high (> 150) to incorporate all chemical

species, in which case a table is impossible.

1.4 Machine Learning

Most notable machine learning methods in recent years have been based on neural

networks. Neural methods involving deep layers of trainable parameters have enjoyed

success due to several factors, including the maturation of GPU-accelerated comput-

ing, breakthroughs in optimization techniques, architectural improvements, and the

increasing scale of available data and computational resources.

Recent neural methods have shown particular promise due to several key devel-

opments in the field. The maturation of GPU-accelerated computing has enabled the

training of much larger and more complex models. Breakthroughs1 in optimization,

such as the Adam algorithm (Kingma and Ba, 2014), have significantly improved the

1Breakthrough is no exaggeration; optimization algorithm Adam (Kingma and Ba, 2014) was the
most cited paper of the decade

20

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.A.Sc. Thesis – E. McF.; McMaster University – Physics and Astronomy

training dynamics of deep neural networks. Architectural innovations like convolu-

tional neural networks, attention mechanisms, group-equivariant neural networks, and

neural ODEs/SDEs have expanded the capabilities and applicability of these mod-

els (see 2.1). Furthermore, the increasing scale of available data and computational

resources has allowed for the training of increasingly sophisticated models.

While deep neural networks have dominated recent machine learning research in

physics, it is worth noting that some methods explored in recent literature do not

use deep neural networks to approximate physical functions. Instead, these methods

attempt to discover the underlying symbolic equations for a given physical dynamics

dataset. Examples of such methods include SINDy (Brunton et al., 2016), PySR (Cran-

mer, 2023), and AI Feynman (Udrescu and Tegmark, 2020). These approaches aim to

provide interpretable models that can offer insights into the fundamental equations

governing physical systems.

1.4.1 Artificial Neural Networks

Artificial neural networks (ANNs) are computational models inspired by the biological

structure of neural networks found in the brain (McCulloch and Pitts, 1943). The

neurons within the cerebral cortex are organized in 6 distinct layers, an arrangement

that increases its computational efficiency (Miyashita, 2022). Similarly, an ANN

consists of layers of connected nodes acting as artificial neurons.

In an ANN, each neuron receives a weighted sum of signals from neurons in the

previous layer, along with a bias term. Mathematically, for a neuron j in layer l, its
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input zlj is computed as:

zlj =
∑
i

wlija
l−1
i + blj (1.4.1)

where wlij is the weight connecting neuron i in layer l − 1 to neuron j in layer l,

al−1i is the activation of neuron i in layer l − 1, and blj is the bias term for neuron j

in layer l.

Figure 1.4: Diagram of an artificial neural network, showing operations at each
layer. Arrows indicate the direction of information flow through the network

(LeCun et al., 2015)

The output of each neuron, known as its activation, is then passed through a

non-linear function f , typically a sigmoid or a rectified linear unit (ReLU) (Agarap,

2018):

alj = f(zlj) (1.4.2)
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These activation functions at each layer allow the network to express non-linear

relationships.

Artificial neural networks learn hierarchical representations of data through mul-

tiple layers of these non-linear transformations (LeCun et al., 2015). This architec-

ture allows deep neural networks to capture complex, non-linear relationships in very

high-dimensional datasets. Indeed, we find many such high dimensional non-linear

problems across many domains of physics, making deep neural networks a promising

candidate to improve physical simulations.

The universal approximation theorem (Cybenko, 1989; Hornik et al., 1989a) (see

section 1.4.3) states that a feedforward network with a single hidden layer containing

a finite number of neurons can approximate continuous functions on compact subsets

of Rn, under mild assumptions about the activation function. This implies a wide

applicability of neural networks to various problem domains. Motivated by this fun-

damental theoretical result, many recent works have shown various successes applying

models with deep-learning-based architectures to enhance physics simulations (Boral

et al., 2023; Branca and Pallottini, 2023; Chattopadhyay et al., 2022; Guan et al.,

2023; Li et al., 2021; Lu et al., 2021; Raissi et al., 2019; Rosofsky and Huerta, 2020;

Sulzer and Buck, 2023; Wang et al., 2022, 2020).

1.4.2 Backpropagation

The loss function L defines how the model’s output y is to be optimized using a

ground truth dataset ŷ. Consider a loss function such as the mean squared error:

L =
1

n

n∑
i=1

(yi − ŷi)2 (1.4.3)
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where yi represents the true value, ŷi is the predicted value, and n is the total

number of samples.

Backpropagation provides an efficient way to compute the gradient of the loss

function with respect to the network parameters, which is then used to update these

parameters through gradient descent or its variants.

The algorithm consists of two main phases: the forward pass and the backward

pass. In the forward pass, the input data is propagated through the network to

compute the output and the associated loss. For a regression task with mean squared

error loss, L, this can be expressed as:

ŷ = f(x; θ), L =
1

n

n∑
i=1

(ŷi − yi)2 (1.4.4)

where f is the neural network function, x is the input, θ are the network pa-

rameters, ŷ is the predicted output, y is the true output, and n is the number of

samples.

In the backward pass, the gradient of the loss with respect to the network param-

eters is computed using the chain rule of calculus. This process starts at the output

layer and moves backwards through the network:

For the output layer:

∂L

∂ŷ
=

2

n
(ŷ − y) (1.4.5)

For hidden layers:

∂L

∂hl
=

∂L

∂hl+1

∂hl+1

∂hl
(1.4.6)

where hl represents the pre-activation values of layer l.
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For the network parameters:

∂L

∂θ
=
∂L

∂h

∂h

∂θ
(1.4.7)

Finally, the parameters are updated using gradient descent

θt+1 = θt − η
∂L

∂θ
(1.4.8)

or, in most recent literature, an adaptive momentum-based optimizer such as Adam

(Kingma and Ba, 2014):

θt+1 = θt − η
mt√
vt + ε

where mt and vt are the first and second moment estimates, and ε is a small

constant to prevent division by zero.

1.4.3 Universal Approximation Theorem

The Universal Approximation Theorem, established by Cybenko (Cybenko, 1989) and

Hornik (Hornik et al., 1989b), is a highly motivating theorem for the use of neural

networks as novel solutions to many problems in physics.

Let C(X,Rm) denote the set of continuous functions from a subset X of a Eu-

clidean Rn space to a Euclidean space Rm. Let σ ∈ C(R,R), where (σ ◦ x)i = σ(xi).

Assume σ is not a polynomial function, then for every n,m ∈ N, any compact set

K ⊂ Rn, any continuous function f ∈ C(K,Rm), and any ε > 0, there exist k ∈ N,

W ∈ Rk×n, b ∈ Rk, and C ∈ Rm×k such that
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supx∈K ‖f(x)− g(x)‖ < ε

where g represents a layer in a neural network, g(x) = C · (σ(Wx+ b)).

The theorem establishes that a feedforward network with a single hidden layer and

a finite number of neurons can approximate any continuous function on Rn, given

certain conditions are met. The theorem is trivially generalized to networks with

multiple layers by using the same construction for the first layer and approximating

the identity function with subsequent layers. It should be noted that this is an

existence proof, and does not specify how such a layer (or layers) can be constructed.

1.4.4 The Manifold Hypothesis

In most cases, training data is generated using a by sampling across a wide array

of physical variables. The network’s ability to learn an efficient latent space repre-

sentation is essential to making accurate predictions. The dynamics of this latent

space are highly constrained by underlying physics, and are presumed to reside on

a manifold of significantly lower dimension than that of the input variables. This is

the manifold known as hypothesis (Lee and Carlberg, 2020) and motivates the use

of Autoencoder networks (a model trained to learn the identity function on the in-

put variables, with a low-dimensional information bottleneck in the inner-most layer

(Hinton and Salakhutdinov, 2006)).

1.4.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs), first introduced by Fukushima (1980) and

later developed by Lecun et al. (1998) have been very successful in problems that

exhibit translational equivariance, such as image recognition. CNNs use convolutional
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layers, which apply small (typically 3x3) learnable kernel matrix (also known as a

filter) that slides over the input data. In this text, we use the word convolution and

correlation interchangeably, as they are equivalent for all provided explanations and

proofs, with the indices being easier to manipulate.

The continuous convolution operation between two functions f and g is defined as:

(f ∗ g)(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ (1.4.9)

This operation measures the overlap between f and a reversed version of g as a

function of the amount of translation between them. In the discrete case, which is

more relevant to CNNs, the 1D convolution can be expressed as:

(f ∗ g)[n] =
∞∑

m=−∞

f [m]g[n−m] (1.4.10)

In a convolutional layer, each filter performs a convolution operation over the

input. For a 2D input I and a kernel K, the convolution operation is defined as:

(I ∗K)ij =
∑
m

∑
n

Ii+m, j + nKm,n (1.4.11)

This operation is performed across a ”channel” dimension with multiple filters,

each producing an output known as a feature map. The use of shared weights (filters)

across the input space introduces translation equivariance, a key property that makes

CNNs particularly effective for many tasks in computer vision (LeCun et al., 2015).

CNNs may also include pooling layers, which perform downsampling operations

to reduce the spatial size of the feature maps. A common pooling operation is max
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pooling, defined as:

yij = max
(m,n)∈Rij

xmn (1.4.12)

where Rij is a local region in the input centered at position (i, j).

The combination of convolutional and pooling layers allows CNNs to learn hier-

archical representations of the input data, capturing both local and global features.

This operation is lossy, as the max pooling operation removes data from the previous

layer.

1.4.6 Train-test split

By isolating a training set and testing set from the initial dataset, the model can

easily be trained on the training set and evaluated on the unseen test set, helping to

assess how well your model generalizes to new data. Typically, a dataset split would

look as follows:

• Training set: 70-90% of the data, used for model optimization.

• Validation set: 5-10% of the data, used for tuning hyperparameters of the

network (such as learning rate or layer size) and early stopping.

• Test set: The remainder of the data, held out entirely during training and

used only for final evaluation of the network’s ability to generalize to new data.

The high-dimensional nature of astrophysical simulations often leads to prohibitively

large datasets. For example, a full 3D hydrodynamical simulation with chemical evo-

lution can easily exceed terabytes in size (Federrath et al., 2020). If the problem
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admits it, selective sampling can be used, which considers regions of parameter space

with significant variation, avoiding oversampling of quiescent regions. Additionally,

data augmentation can be used to generate “new” rows of data by permuting the

inputs in a manner that leaves the problem invariant.
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Chapter 2

Review of Modern Machine

Learning

2.1 Neural Architectures

2.1.1 Residual Connections

Residual connections are a structural modification in neural networks where the out-

put of a layer is added to the input of that layer, allowing direct propagation of

information across multiple layers. This addition operation enables the network to

learn residual functions, which can be thought of as the difference between the desired

mapping and the identity mapping

Residual connections (also known as skip connections), introduced by He et al.

(2015), have become key in the design of deep neural networks. The output of a given

30



M.A.Sc. Thesis – E. McF.; McMaster University – Physics and Astronomy

layer in a residual network y is computed as:

y = F (x,Wi) + x (2.1.1)

where x is the input to the layer, F (x, {Wi}) represents the residual of the function

to be learned, and {Wi} are the weights of the layers.

Figure 2.1 shows three consecutive layers (n, n + 1, and n + 2), with a skip

connection between layer n and the output of layer n+ 2. The output of layer n+ 2

is added to the output of layer n via the skip connection. This structure allows

the network to learn residual functions with reference to the layer inputs, which can

improve training dynamics and overall performance.

Layer n Layer n+ 1 Layer n+ 2 +

Skip Connection

Output

Figure 2.1: Illustration of the connections between layers within a residual block

He et al. (2015) showed that the residual of a function is empirically easier to learn

than the function itself. They also offered a mechanistic explanation: skip connections

allow the gradients to flow nearly unchanged, preventing gradients from approach-

ing zero (the vanishing gradient problem) as they are backpropagated through deep

networks.

Later work by Li et al. (2018) debated this reasoning and posited that skip con-

nections improve convergence via a smoothing effect on the highly non-convex loss

landscape (see 2.2. They demonstrated that the loss landscape for models with resid-

ual connections is smoother and more convex, which they proposed as a reason for
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its superior training dynamics. Residual (skip) connections have become a standard

component in many state-of-the-art neural network architectures.

Figure 2.2: Comparison of loss landscapes for networks with and without residual
connections (Li et al., 2018) across two representative directions in parameter space.
Networks with residual connections have smoother and more convex loss landscapes,

which can improve training dynamics.

2.1.2 U-Net

The U-Net architecture, introduced by Ronneberger et al. (2015), is a CNN origi-

nally designed for biomedical image segmentation. Its U-shaped structure consists

of convolutional layers, contracting the input dimensions and expanding the channel

dimension to capture context from across the input, and a symmetric expanding path

that enables context aggregation across this downsampled spatial domain and learn-

ing of hierarchical spatial features. Skip connections are included between layers of

equal shape.
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Figure 2.3: U-net architecture. Each blue box corresponds to a multi-channel
feature map. White boxes represent copied feature maps (Ronneberger et al., 2015).

The contracting path follows the typical architecture of a convolutional network,

comprising repeated application of convolutions, each followed by an activation and

a max pooling operation for downsampling. At each downsampling step, the number

of convolution kernels is multiplied. The expanding path consists of an upsampling of

the feature map followed by a convolution that halves the number of feature channels,

eventually arriving at the shape of the first convolutional layer.

The U-Net architecture (figure 2.3) has proven highly effective not only in image

segmentation (Ronneberger et al., 2015) but has become popular in various other

domains. Its success can be attributed to its ability to capture both local and global

spatial features, and its efficient use of feature information through skip connections.

Building upon the U-Net architecture, Wang et al. (2019) introduced the Tur-

bulent Flow Net (TF-Net) for turbulent flow prediction. TF-Net decomposes the

turbulent flow with trainable spectral filters. In TF-Net, three identical encoders
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process three scale components separately, while a shared decoder learns the inter-

actions among these components. Each encoder-decoder pair can be viewed as a

modified U-Net.

Wang et al. (2019) demonstrated that TF-Net outperforms standard U-Net and

other baselines in turbulent flow prediction, achieving a modest 11.1% reduction in

prediction RMSE and more significant improvements in preserving physical properties

such as energy spectrum and turbulence kinetic energy.

2.1.3 Dilated Convolution

The receptive field of a neuron in a CNN refers to the region in the input space that

can influence the neuron’s activation.

Dilated convolutions (Yu and Koltun, 2016), also known as atrous convolutions,

are a generalization of standard convolutions that allow for receptive fields to cap-

ture information across spatial domains larger than that of the filter size. A one

dimensional dilated convolution operator ∗l with dilation factor l is defined as:

(F ∗l k)(p) =
∑
s+lt=p

F (s)k(t) (2.1.2)

where F is the input feature map, k is the filter, and p is the spatial position. The

standard convolution is simply the 1-dilated convolution.

Dilated convolutions allow for expansion of the receptive field without any loss

of resolution or coverage (as would occur in a vanilla CNN). For example, consider

applying 3x3 filters with exponentially increasing dilation:

Fi+1 = Fi ∗2i ki for i = 0, 1, . . . , n− 2 (2.1.3)
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The size of the receptive field of each element in Fi+1 is (2i+2 − 1) × (2i+2 − 1).

Thus the receptive field can grow exponentially while the number of parameters only

grows linearly. This property makes dilated convolutions well-suited for tasks that

require multi-scale contextual information at high resolutions.

0 1 1 1 1 0 1
0 0 1 0 1 0 0
0 0 1 1 1 1 1
0 0 0 1 0 0 0
0 0 1 1 1 0 1
0 1 1 0 0 0 0
0 1 0 0 0 0 0

∗
1 0 1
0 1 0
1 0 1

=

2 4 4 4 4
1 2 3 2 2
2 2 5 3 4
1 3 2 2 0
2 3 2 1 2

0 1 1 1 1 0 1
0 0 1 0 1 0 0
0 0 1 1 1 1 1
0 0 0 1 0 0 0
0 0 1 1 1 0 1
0 1 1 0 0 0 0
0 1 0 0 0 0 0

1 1 1

1 1 1

1 1 1
∗

1 0 1
0 1 0
1 0 1

=
2 4 4
2 5 4
2 2 2

Figure 2.4: A standard matrix convolution, equivalent to dilation = 0 (top), vs. a
matrix convolution with dilation = 1 (bottom). The receptive field of the dilated

kernel is wider, without requiring a larger kernel matrix.

Dilated convolutions (Yu and Koltun, 2016), similarly to the U-Net, offer a way

to incorporate long-range heirarchical relationships across the spatial domain, and

naturally they have been employed for predicting the evolution of turbulent flow

Stachenfeld et al. (2021).

2.1.4 Group Equivariant Convolutional Neural Networks

Group Equivariant Convolutional Neural Networks (G-CNNs), introduced by Cohen

and Welling (2016), extend the concept of translation equivariance in standard CNNs

(described in 1.4.5 to more general types of transformations. The motivation behind
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these network is to design convolutional architectures that are equivariant to certain

group actions. A function Φ is said to be equivariant to a group action T if:

Φ(Tgx) = T ′gΦ(x) (2.1.4)

for all elements g of the group, where Tg and T ′g are the actions of T on the input

and output spaces respectively.

G-CNNs achieve this equivariance by defining convolution operations over the

group rather than just over the input space. Herein, as done by Cohen and Welling

(2016), we use the words correlation and convolution interchangeably. For a group

G, the G-correlation is defined as:

[f ? ψ](g) =
∑
h∈G

∑
k

fk(h)ψk(g
−1h) (2.1.5)

where f is the input feature map, ψ is the filter, and k indexes the channels. This

operation is equivariant to the action of G, as can be shown through the following

derivation:
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[Luf ? ψ](g) =
∑
h∈G

∑
k

[Luf ]k(h)ψk(g
−1h) (2.1.6)

=
∑
h∈G

∑
k

fk(u
−1h)ψk(g

−1h) (2.1.7)

=
∑
h∈G

∑
k

fk(h)ψk(g
−1uh) (2.1.8)

=
∑
h∈G

∑
k

fk(h)ψk((u
−1g)−1h) (2.1.9)

= [f ? ψ](u−1g) (2.1.10)

= [Lu(f ? ψ)](g) (2.1.11)

where Lu is the left-regular representation of G.

The G-CNN architecture typically consists of multiple G-convolution layers, each

followed by a nonlinearity which also commutes with the group action. G-CNNs have

shown superior performance on tasks with symmetries inherent in the data, such

as rotation-invariant image classification (Cohen and Welling, 2016). By explicitly

encoding symmetries into the network architecture, G-CNNs can often achieve better

sample efficiency during training and better generalization during testing compared

to standard CNNs

Alternatively, an ad hoc regularization term can be added to the loss function when

training a standard CNN to encourage the learning of equivariant latent structures:

L = LMSE + β ‖T (f(x))− f(T (x))‖2 (2.1.12)

where LMSE is the mean squared error loss, f(x) is the output of the neural
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network for input x, T is the transformation from the symmetry group, and β is a

hyperparameter that controls the strength of the regularization.

2.1.5 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986) are a type of sequence-

to-sequence (Seq2seq) model, which unlike previously discussed architectures, accept

states at multiple timesteps (the input sequence) and produce a new sequence of

states.

RNNs can be unrolled in time, effectively creating a deep feedforward network

with shared weights across layers:

ht = fh(Whhht−1 +Wxhxt + bh)

yt = fy(Whyht + by)

where xt is the input at time step t, ht is the hidden state at time step t,yt is the

output at time step t, W represents weight matrices, b represents a bias term, and f

is the activation function.

However, vanilla RNNs struggle to learn long-term dependencies due to the van-

ishing gradient problem. As the error gradients are backpropagated through many

time steps, their floating point values tend to either vanish or explode, making it

difficult for the network to learn long-range dependencies (Bengio et al., 1994).

To address this issue, more advanced RNN architectures have been introduced,

such as Long Short-Term Memory (LSTM) networks (Hochreiter and Schmidhuber,
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1997). These architectures introduce gating mechanisms that allow the network to

selectively remember or forget information over long sequences, mitigating the van-

ishing gradient problem. Note that we will not return to RNNs in this work, as they

have been ubiquitously replaced by LSTMs in recent literature.

2.1.6 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks, introduced by Hochreiter and Schmid-

huber (1997), they are a type of recurrent neural network (RNN) that avoid the

vanishing gradient by introducing gates which regulate the flow of gradients during

a backward pass and regulate the flow of information during a forward pass. The

LSTM architecture consists of a memory cell ct and three gating mechanisms: input

gate it, forget gate ft, and output gate ot:

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

c̃t = tanh(Wc · [ht−1, xt] + bc)

ct = ft � ct−1 + it � c̃t

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot � tanh(ct)
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where xt is the input vector at time t, ht is the hidden state, W and b are learn-

able parameters, σ is the sigmoid function, and � denotes element-wise multipli-

cation. The cell state ct allows for long-term memory preservation, while the gating

mechanisms control information flow, enabling the network to learn long-range depen-

dencies. In essense, this method’s route of improving the loss landscape is somewhat

similar to that of residual networks (described in 2.1.1), allowing information to flow

directly across many layers as needed.

2.1.7 Transformers

Transformers are sequence-to-sequence models that have revolutionized natural lan-

guage processing and other sequence-based tasks. They are built on the attention

mechanism introduced by Vaswani et al. (2017). The core of this mechanism is the

scaled dot-product attention. The attention mechanism uses a set of three learned

matrices: the queries (Q), keys (K), and values V .

The queries, keys, and values each play a distinct role in the attention mechanism.

Queries represent the current context or position for which we want to compute

attention. Keys are used to match against queries to determine relevance. Values

contain the actual information that we want to aggregate based on the attention

weights.

The attention mechanism works by a dot product between the queries and keys,

which are then used to weight the values. This process allows the model to choose

which relevant parts of the input sequence to aggregate (or, in the terminology of

transformers, which inputs to “attend” to) when producing each output element. By

doing so, attention allows with global context aggregation, enabling the model to
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learn which long-range dependencies it should capture.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.1.13)

where Q is the query matrix, K is the key matrix, V is the value matrix, dk is the

dimension of the keys, and n is the sequence length. The 1√
dk

factor prevents the dot

products from growing too large in magnitude for large values of dk.

Transformers have overtaken RNNs and LSTMs in nearly all applications due to

their superior performance. The attention mechanism allows the model to “attend”

to different parts of the input sequence when producing each element of the output

sequence, enabling the capture of long-range dependencies within a sequence without

the need for recurrent connections, and without the vanishing gradient problem.

2.1.8 Neural ODEs

Some of works discussed in further sections use neural ordinary differential equa-

tions in their architecture. Consider a neural network h with learnable parameters θ

predicts the next timestep:

ht+1 = ht + f(ht, θ) (2.1.14)

These iterations are equivalent to the Euler discretization of a continuous transfor-

mation. As the number of layers increase and timestep size decreases, the dynamics

of hidden layers can be parameterized with an ordinary differential equation (ODE)

41

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.A.Sc. Thesis – E. McF.; McMaster University – Physics and Astronomy

specified by a neural network (Chen et al., 2018):

dh(t)

dt
= f̄(h(t), t, θ) (2.1.15)

This idea has been extended to stochastic differential equations (Neural SDEs)

specifically for use in a turbulence prediction model (Boral et al., 2023).

2.2 Neural Methods for Turbulent Flows

We now discuss existing applications of neutral networks to physical problems. Hy-

drodynamics codes are computationally expensive and central to astrophysical sim-

ulation. There are many aspects of these codes that can potentially benefit from

machine learning techniques.

Most literature focuses on solving the Euler equations at the global grid scale,

using network architectures that share some equivariance properties with the hydro-

dynamical equations to manage this increased computational challenge. However,

specific components of the numerical solution can be addressed in isolation.

There are several considerations when evaluating these new ideas. A primary one

is accuracy and the potential for an improved treatment compared to a traditional

solver. However, computational expense is always an overwhelming concern in nu-

merical work. Given the considerable expense of evaluating a neural network even

once, it is typically going to be much more expensive (by orders of magnitude) than a

straightforward explicit solution of the hydrodynamics equation for a single timestep

on a per cell basis.
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2.2.1 Neural Riemann Solvers

Ruggeri et al. (2022) trained a fully connected neural network to act as a Riemann

solver at each cell interface. This methodology is not easily extended to large-scale 3D

simulation grids, as it requires one forward pass of the network at each cell interface,

at each timestep. This is more expensive than an explicit Riemann solver in most

cases.

2.2.2 Incompressible Turbulence

SPARTA (Sparse Regression of Turbulent Stress Anisotropy) (Schmelzer et al., 2020)

is a deterministic symbolic regression method for discovering algebraic Reynolds stress

models directly from high-fidelity simulation data. The method constructs models as

tensor polynomials built from a library of candidate functions. SPARTA regular-

izes the loss to encourage sparsity in the inferred models. SPARTA demonstrated

improved predictions over a commonly used traditional eddy-viscosity (k-ω SST)

(Menter, 1994) model model, even at higher Reynolds numbers.

Portwood et al. (2019) apply Neural ODEs to model the time evolution of turbu-

lent kinetic energy dissipation. learn the dynamics of kinetic energy k and dissipation

rate ε extracted from DNS datasets. Their model first runs a forward pass through an

RNN to encode the spatial and temporal data, then a Neural ODE model to predict

trajectories in latent space ht governed by dht
dt

= f(ht, θ) where f specifies the dynam-

ics in latent space and θ are neural network parameters. A decoder then maps back

to data space to complete the evolution. Their model outperforms a state-of-the-art

analytic model for turbulent dissipation (Perot and de Bruyn Kops, 2008). When

predicting dissipation rate evolution, errors remained within 1-2% of direct numerical
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simulations compared to over 10% for existing models (Portwood et al., 2019).

Boral et al. (2023) introduce a data-driven learning approach called neural ideal

Large Eddy Simulation (niLES) that uses neural stochastic differential equations (NS-

DEs), learning the stochastic equation to evolve the state in latent space. As is a

common theme in recent literature, their method uses encoder-decoder architecture.

In this case, the encoder maps from the filtered flow field to the latent space. The

authors demonstrate improved accuracy in long-term flow statistics and enhanced

stability for extended rollouts compared to deterministic closure models (Boral et al.,

2023).

2.2.3 Compressible Turbulence

Stachenfeld et al. (2021) present a neural simulator for 3D compressible turbulence

which outperforms the Athena++ code (Stone et al., 2020) on a 323 grid across a

variety of metrics when compared to a “ground truth” 1283 grid. The learned neural

model offered reduced error in the energy field, reduced error in the energy spectra,

and improved faithfulness to the shape of the true energy spectrum. Their network,

running on a single GPU, improves wall-clock simulation time by 1000x compared to

Athena++ running on an 8-core CPU.
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Figure 2.5: Energy errors and energy spectra for Athena++ compared to the dilated
residual convolutional network trained in Stachenfeld et al. (2021). The neural

model, having been trained on dynamics from a higher resolution grid, is able to
resolve a significantly more faithful energy spectrum than the traditional Athena++

code on an equivalent course grid.

Dang et al. (2022) introduce a Transformer architecture dubbed TNT to learn

turbulent dynamics using the now-ubiquitous attention mechanism introduced by

Vaswani et al. (2017). TNT uses a novel Temporal Mutual Self Attention (TMSA)

mechanism (Liang et al., 2022), which combines temporal and spatial data into a

single unified vector for downstream use in the transformer network. They show

significant significantly lower RMSE and a higher R2 than predictions from a U-net

(Dang et al., 2022).

2.3 Neural Methods for Astrochemistry

Previous works have used various neural methods to approximate the chemical and

thermal evolution of astrophysical gas: Sulzer and Buck (2023) proposed a Neural

ODE (Chen et al., 2018) solver to accelerate an astrochemical reaction network for

a prescribed evolution scenario at a given temperature and density. They used an
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autoencoder to reduce the dimensionality of the chemical species before evolving the

state in latent space. They found a speed-up of 55x compared to a standard ODE

solver, while maintaining a median errors ∼ 0.015. It is worth keeping mind that this

was a very constrained scenario with just two test cases to be learned. It is unclear

whether such a small, fast network could handle more general problems.

Galligan et al. (2019) developed a neural emulator called deepCool to follow total

cooling rates, total heating rates, and metal-line only cooling rates of irradiated gas.

They trained on a high-resolution cosmological simulation, using CLOUDY to generate

the data for ∼850,000 cells. Their architecture consists of an input layer with 9 di-

mensions (temperature, density, metallicity, and 6 radiation parameters), two hidden

layers of 20 neurons each, and one output neuron. The networks achieved median

fractional errors of 6.3%, 6.6%, and 3.8% for total cooling, heating, and metal-line

cooling rates respectively. However, there were extreme outliers with (multiple) or-

der of magnitude errors and it was not clear when they occurred (i.e. if they were

problematic in practice).

They found little to no increase in simulation runtime when deployed in an isolated

disk galaxy test with a simpler, standard cooling function without local variations

due to the radiation field. Galligan et al. (2019) emphasized the importance of local

radiation fields, as neglecting this can lead to cooling rates that are an order of

magnitude too strong for a significant fraction of cells.

Cifuentes et al. (2021) used a neural approach to predict isothermal chemical

evolution, however as Branca and Pallottini (2023) point out, its generalization to a

scenario with thermal evolution is non-trivial.
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2.3.1 Chemulator

Holdship et al. (2021) introduced Chemulator, a neural network-based emulator for

emulating thermochemistry. They employed an autoencoder to reduce the dimension-

ality of the chemical abundances, temperature, an density variables and then trained

an ensemble of “emulator” models to predict the thermochemical evolution in latent

space. To generate their dataset, Chemulator used Latin Hypercube Sampling (LHS)

to efficiently sample the physical parameters within specified ranges. Specifically,

they sampled 10,000 initial conditions in log-space for a set of 9 physical parameters,

leading to a dataset containing 2× 107 rows of abundances at various stages of chem-

ical evolution. Chemulator presents with a mean squared error of 1.7 × 10−4 for a

single time step, exhibiting stabile predictions out to 1000 time steps. The authors

demonstrated a speed-up ∼ 50,000x compared to the ULCHEM code.
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Figure 2.6: Comparison of predicted and actual values for time steps in the test set,
for chemulator (Holdship et al., 2021). The median prediction is denoted by a line,
while the shaded region represents the range predicted by 95% of the models. The
colors correspond to the number of time steps emulated, illustrating the predicted
chemical evolution over varying timescales. Despite their network showing great

promise towards the feasibility of learning such a generalized evolution operator, the
errors may span multiple orders of magnitude in some cases.
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2.3.2 Branca and Pallotini models

Branca and Pallottini (2023) trained a physics-inspired neural network (PINN) (Raissi

et al., 2019) to evolve an astrophysical chemical reaction network, giving speed-ups

up to a factor of ∼ 200 with respect to traditional ODE solvers.

Further, they found the traditional solver code had simulation times that vary by

roughly 30% for different initial density and temperature, while their neural method

gives no variation. Their method additionally used a deep Galerkin method (DGM)

(Sirignano and Spiliopoulos, 2018) to model chemical evolution. It is noteworthy

that, unlike the works referenced above, Branca and Pallottini (2023) do not use

an autoencoder-emulator architecture, likely a by-product of the PINN approach

being unable to work in learned latent spaces, requiring physically interpretable state

variables to compute the loss function.

Very recent works by Branca and Pallottini (2024) showcase a neural emulator

for non-equilibrium ISM photo-chemistry using a DeepONet architecture (Lu et al.,

2021) consisting of two feed-forward neural networks (dubbed branch and trunk).

Their model emulates a chemical network with 9 species and 52 reactions, including

H2 formation. They trained separate emulators for temperature and each chemical

species. The training set, generated using KROME (Grassi et al., 2014), sampled initial

conditions in ranges −2 ≤ log(n/cm−3) ≤ 3.5 for density, log(20) ≤ log(T/K) ≤ 5.5

for temperature, and −6 ≤ log(ni/n) < 0 for species fractions. A key innovation was

incorporating arbitrary radiation fields with 10 energy bins. The emulator achieved

relative errors below 3% for most species, with a 128x speedup compared to the

traditional ODE solver.

A key difference between these works is the range of T , nH , Z, and the number
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of species. Chemulator used a network of 33 species, with gas densities from 101 to

106 cm−3, temperatures from 101 to 104 K, and metallicity Z from 10−2 to 100.5 . A

larger network of 215 species was tested but proved too difficult to emulate (Holdship

et al., 2021). Branca and Pallottini (2023) focused on a simpler network of 9 species

and 46 reactions, exploring densities between 10−2 and 103 cm−3 and temperatures

from 101 to 105 K, achieving speed-ups of up to 200 times using PINNs, though with

significantly less complexity in parameter space than Chemulator.

Sulzer and Buck’s work used a chemical network with 29 species and 224 re-

actions, focusing on a constant temperature of 50 K, cosmic ray ionization rate of

ζ = 10−16s−1, and total density of ntot = 104cm−3 (Sulzer and Buck, 2023). This

setup is significantly less complex than the larger network explored by Holdship et al.

(2021); it covers a narrower range of physical parameters, and accordingly they find

near-perfect fits in chemical abundance measurements on this reduced setup.
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Chapter 3

Learning Dynamical Systems

3.1 Kuramoto-Sivashinsky (KS) Equation

The equations of hydrodynamics are complex and non-linear, exhibiting chaotic sensi-

tivity to initial conditions, but also recurring features that are recognizable as correct

fluid flow. These include transient shocks and filamentary structures, and also per-

sistent properties such as density distributions and turbulent spectra.

3D Hydrodynamics is computationally expensive and thus hard to use to efficiently

study neural PDE solvers. We expect to get key insights from smaller systems that

have the same complex behaviours.

The Kuramoto-Sivashinsky (KS) equation can be used as a 1D “toy model” for

3D hydrodynamical turbulence. The symmetries inherent in the KS equation make

the equation of interest for understanding how models with different equivariance

properties are able to evolve turbulent flows. Namely, translational and reflectional

symmetry allow for the use of convolutional and group-equivariant architectures re-

spectively. Translational symmetry is equivalent to Galilean invariance.
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The KS equation is a nonlinear partial differential equation (PDE) that exhibits

spatiotemporal chaos (Kuramoto and Yamada, 1976; Sivashinsky, 1977). It was orig-

inally developed to study instabilities in flame front propagation. The PDE has a

diffusive second-order term, an “anti-diffusive” fourth-order term, and a nonlinear

advection term.

∂u

∂t
+ u

∂u

∂x
+
∂2u

∂x2
+
∂4u

∂x4
= 0

3.1.1 Managing Chaos

While neural networks show promise to predict turbulent flows, the authors often fail

to present their model performance in the context of chaos. For example, Stachenfeld

et al. (2021) present a convincing turbulence model by some metrics but don’t discuss

their time-evolution in the critical context of the chaotic timescale. One may see

predictions diverge from ground truth and incorrectly assume that this means their

model architecture performs poorly. In reality, the system is chaotic, we expect

predictions to diverge on a finite timescale.

In chaotic systems, nearby trajectories diverge exponentially in time, at a rate

characterized by the Lyapunov exponents λi. The largest Lyapunov exponent λ1 de-

termines the timescale over which predictions remain valid, known as the Lyapunov

time τλ = 1/λ1. For a system with state vector x(t), the divergence of nearby trajec-

tories is given by:

|δx(t)| ≈ eλ1t|δx(0)| (3.1.1)

where δx(t) represents the separation between trajectories.
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In many cases, computing Lyapunov exponents (and thus Lyapunov times) is non-

trivial and often done with numerical methods (Sandri, 1996). For this reason, we

build on the work of Edson et al. (2019), which suggests a maximum Lyapunov expo-

nent ∼ 0.1 for the KS equation on a spatial domain of N = 64. To best understand

model performance in the context of this chaotic system, we study how trajectories

diverge in neural models compared to the traditional solver across Lyapunov times,

and in the traditional solver itself when perturbed at various scales (see Figure 3.1)

Figure 3.1: Rolled out time evolutions from the numerical solver, perturbed from
the floating point error scale to 10% of the maximum amplitude. Transitions to

chaos can be observed on the order of the Lyapunov timescale, as visualized in this
video https://www.emcf.xyz/kschaos
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3.1.2 Symmetries of the KS equation

The Kuramoto-Sivashinsky equation exhibits several symmetries (Cvitanovi et al.,

2010). All of which are shared with 3D hydrodynamical turbulence.

1. Translational Symmetry: Represented by the group Z1,

Tδu(x, t) = u(x+ δ, t)

leaves the equation unchanged for any constant δ.

2. Reflectional Symmetry: Represented by the cyclic group C2,

Ru(x) = −u(−x)

leaves the equation unchanged. Note that this requires negation of the field it-

self, unlike the reflection transformation for which the hydrodynamics equations

are equivariant, Ru(x) = u(−x)

3. Galilean Invariance: Represented by the group SGal(3),

u(x− ct, t) = u(x, t)− c

leaves the equation unchanged for any constant c. Since u is a velocity, describes

a transformation moving reference frame with constant relative velocity c
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3.1.3 Data generation

To generate evolution data for the KS equation, we use a spectral scheme that com-

bines the Crank-Nicolson method for the linear terms and the second-order Adams-

Bashforth method for the nonlinear terms. To further test generalization of neural

networks in our own study, we apply group operations to the dataset corresponding to

the symmetries of the system at hand as a form of data augmentation. We generate

a reshaped dataset by sampling the entire flow field at each timestep and pairing it

with the following timestep.

3.1.4 Training and validation

We introduce KSBench, a benchmarking code to formally evaluate any model architec-

ture for solving the time-evolution of turbulent flows. KSBench measures the training

dynamics, rolled out prediction errors, and the spectrum of the u(x) field in the KS

equation. It accepts a wide variety of model architectures, and accomodates input

structures for both sequential (Seq2seq) and non-sequential models. To promote fair

comparison, we initialize each model between 80,000 to 90,000 trainable parameters,

with model depth and layer width varying to accommodate each model’s architectural

constraints. We train for 5 epochs with a learning rate of 10−4 with 17000 timesteps

generated across 100 different initial conditions.

Models are validated in three ways: (one) mean squared error in the u(x) field

during training, (two) mean squared error as they evolve a flow over time, and (three)

the spectrum of the u(x) field, time-averaged after the transition to chaos. The MSE

is given by:
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MSE =
1

N

N∑
i=1

(yi − ŷi)2

where yi is the true value, ŷi is the predicted value, and N is the number of

samples.

The spectrum is computed using the discrete Fourier transform (DFT) of the

spatial field u(x) at each time step:

|û(k)|2 =

∣∣∣∣∣
N−1∑
x=0

u(x)e−2πikx/N

∣∣∣∣∣
2

where k is the wavenumber, N is the number of spatial points, and û(k) is the

Fourier coefficient at wavenumber k. The time-averaged spectrum is then calculated

by averaging |û(k)|2 over multiple time steps after one Lyapunov time:

〈|û(k)|2〉t =

∫ ∞
tλ

|û(k, t)|2dt

3.1.5 The NN models

We evaluate seven different neural network architectures for solving the time-evolution

of the Kuramoto-Sivashinsky equation. each model was chosen to have between

80, 000 and 90, 000 parameters. We aimed to use a consistent number of layers and

neurons per layer, however these numbers vary widely due to architectural constraints

inherent within the network (for example, doubling the dimension of the transformer

embedding layer quickly explodes its total parameter count by over an order of mag-

nitude. The U-Net suffers a similar issue with forming a fair architecture: channel

counts halving/doubling in each en- coder/decoder step mean that adding one layer
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to the encoder necessitates an additional layer in the decoder, and an additional

doubling of channel count in the hidden layers. The effects of these architectural

constraints on the depth and width of the networks is explored in 4.1.

• Vanilla CNN: A standard convolutional neural network with 9 1D convolutional

layers (1 encoder, 7 hidden, 1 decoder), each with 64 channels and kernel size

3.

• GCNN: A group-equivariant convolutional neural network with 1 layer to lift

into the reflection group R, 4 group convolutional layers, and 1 final convolu-

tional layer. Hidden layers have 42 channels and kernel size 3.

• Dilated ResNet (DilatedResidualCNN): A CNN with 1 input convolutional

layer, 1 dilated residual block (containing 7 dilated convolutions with rates [1,

2, 4, 8, 4, 2, 1]), and 1 output convolutional layer. All layers have 64 channels

and kernel size 3.

• Dilated ResNet GCNN (DilatedResidualGCNN): A group-equivariant version

of the dilated CNN, with 1 layer to lift into the reflection group R, 1 dilated

residual block (7 group dilated convolutions), and 1 final convolutional layer.

Hidden layers have 32 channels and kernel size 3.

• ConvLSTM: A convolutional long short-term memory network with 1 ConvL-

STM layer (84 hidden channels, kernel size 3) followed by a 1x1 convolutional

layer.

• U-net: A U-shaped convolutional network with 3 encoder blocks, 1 bottleneck

block, and 3 decoder blocks. Each block contains 2 convolutional layers. The
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bottleneck has 96 channels, with channel counts halving/doubling in each en-

coder/decoder step.

• Transformer (TNT1D): An attention-based model with patch embedding (patch

size 16), positional and temporal embeddings, 1 transformer encoder layer with

1 attention head, and an output projection. The embedding dimension is 20.

3.1.6 Results

Figure 3.2 shows the rolled out test set predictions versus Lyapunov time for each

model architecture, along with the ground truth data. This visual representation al-

lows us to directly observe how well each model captures the spatiotemporal evolution

of the KS equation.

58

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.A.Sc. Thesis – E. McF.; McMaster University – Physics and Astronomy

Figure 3.2: Rolled out test set predictions vs Lyapunov time for each model
architecture (lower), along with ground truth data (top).
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Figure 3.3 shows the training dynamics and rollout performance of different archi-

tectures. Despite showing similar loss during training, the dilated GCNN performs

slightly better when generalized to our test data than the dilated CNN. Models with

no ability to aggregate wide-range context along the spatial domain (the Vanilla CNN,

GCNN, and ConvLSTM) are unable to predict a stable and accurate time-evolution.

The U-net and transformer are also unable to make convincing rolled out predictions

(see figure 3.2) in this prescribed testbed scenario, despite their ability to learn spatial

dependencies on any scale.

Figure 3.3: MSE vs training batch (left) and average MSE of rolled out time
evolutions (right) for a variety of model architectures.

The time-averaged spectrum in figure 3.4 shows that dilated networks, particularly

the dilated residual GCNN, excel in capturing both large-scale modes and the peak

of the spectrum. This ability to accurately represent the flow across a wide range of

length scales is critical for turbulent flows, thus we expect this model would perform

exceptionally well for 3D hydrodynamical turbulence. The dilated architectures per-

forming better, and the equivariant model outperforming other models, aligns with

findings in the literature (Cohen and Welling, 2016; Stachenfeld et al., 2021).
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Figure 3.4: Spectra, time-averaged throughout the chaotic regime t > tλ. Dilated
networks are better able to capture large modes corresponding to long-range spatial

dependencies. They also better match the solver at the peak of the spectrum,
corresponding to the filament width.

The vanilla CNN and GCNN, while showing reasonable performance during train-

ing, struggle with long-term predictions. This is likely due to their limited receptive

field, which prevents them from capturing the full range of spatial interactions in the

system.

The ConvLSTM, despite its ability to model temporal dependencies, does not

perform as well as the dilated architectures. This suggests that for the KS equation,

capturing long-range spatial dependencies is more critical than explicit modeling of

temporal dependencies.

The U-net and transformer, despite their theoretical ability to capture dependen-

cies at any scale, do not perform as well as expected in this context. In the case of

the transformer, the poor performance is likely an outlier due to the parameter count

limit constraining the architecture required for the transformer to learn a sufficient
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evolution operator. This is further discussed in 4.1.

The dilated residual CNN and dilated residual GCNN consistently outperform

other architectures across all metrics. These models effectively capture spatial de-

pendencies within an appropriate range, unlike models with with a limited receptive

field (Vanilla CNN, GCNN, and ConvLSTM) The group-equivariant nature of the

GCNN models better respect the symmetries inherent in the KS equation, leading to

improved generalization.

3.2 Thermochemical Evolution

Chemistry is increasingly important to interpret astrophysical simulations. We ob-

serve the universe in specific emission and absorption lines, so we need to know what

state elements are in to make predictions that can be compared to observed data.

We also have advancements in simulations methods that can follow feedback in de-

tail (creating the elements and evolving their abundances) and predict the radiation

fields that photo-ionize and excite ions and molecules (For example, RAMSES-RTZ

(Katz, 2022)). This leads to complex chemical reaction networks of over one hundred

species with many hundreds of reactions that need to be solved. In addition, these

reactions are typically fast so that the solvers may need to take many steps over a

typical hydrodynamical timestep. This has created a situation where traditional nu-

merical solvers for chemical networks can be the most expensive part of some modern

simulations. Faster neural network solvers are thus an active area for study.

Prior work described in section 2 shows progress in using neural networks to

simulate astrochemical systems. However, there are gaps in these studies such as
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selecting relatively simple networks, studying limited cases, and learning a fixed-

timestep solver.

In this work, we seek to address the limitations of existing astrochemical mod-

els. Firstly, future solvers will need to handle significantly larger ranges of densities,

temperatures, and metallicities and with significantly more chemical species than pre-

vious studies. Secondly, we could benefit from the ability to efficiently and accurately

integrate abundances and temperature over arbitrary timescales significantly larger

than the reaction timescale.

3.2.1 Functions of many parameters

The cooling rate can be considered to be a function of many parameters. The basic

ones are temperature, density and metallicity. Radiation fields require 6 or more

parameters to describe. Modern metal yields typically require at least 3 parameters

covering alpha element, iron and carbon pathways. However, these approaches assume

equilibrium. If we wish to treat non-equilibrium conditions, the count rapidly exceeds

100 as every ion or molecular abundance must be considered as an input parameter.

Many prior approaches have relied on tabulated cooling rate data, accessed at

runtime. A brute force approach would require an N dimensional table for N input

parameters. Even just 10 points per parameter would require 4 terabytes of data for

N = 12 parameters (4 × 10N bytes per float, accessible on every core). Even a bare

bones 2 points per parameter hits this limit with N = 40 parameters.

We find favorable memory, accuracy, and time trade-offs with neural networks

compared to tables for approximating functions with a large dynamic range across a

large number of dimensions, such as the physical parameter space of an astrophysical
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gas with many parameters (e.g. abundances and state information such as density,

temperature and radiation fields).

Figure 3.5: We compared memory requirement, inference time, and root mean
squared error for a lookup table, an interpolated lookup table, and a deep neural
network. Neural networks show favourable errors and inference times when tested
with comparable memory requirements, with a diminishing return on model size.

Inference times are wall-clock measurements on an 8 core CPU and an NVidia RTX
3060 GPU

Further motivated by the result from this test, we begin constructing a feed-

forward network to predict the nonequilibrium evolution operator for the (very high

dimensional) thermochemical state of an astrophysical gas.
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3.2.2 Data generation

For our best performing network, We create a training set representing the thermo-

chemical evolution of a gas at a wide range of physical parameters (density, temper-

ature, and metallicity), and we train a feed-forward neural network to predict the

chemical abundances and thermal state of the gas every 10 timesteps of the numeri-

cal solver. We use CHIMES (Richings et al., 2014a,b) to generate our training dataset.

The physical parameter space was sampled as follows:

Variable Range Sampling

log T (Temperature) [2, 6] K ∆ log T = 0.2

log nH (Density) [−2, 2] cm−3 ∆ log nH = 0.2

logZ (Metallicity) [0, 0.5] ∆ logZ = 0.1

∆t (Timestep) 1 Myr Constant

log ni
nH

(Abundances) [-10, 0] N/A*

ζ (Cosmic Ray Rate) 1.8× 10−16 s−1 Constant

UV Field Haardt and Madau (2001) Constant

Table 3.1: Physical variables and ranges for our CHIMES Simulations, excluding
chemical abundances

*Abundances were chosen by letting runs with no thermal evolution reach equi-

librium.

To efficiently sample across a large number of physical variables, we run a num-

ber of simulations without thermal evolution and run them to equilibrium, creating

plausible initial conditions for any given density and temperature. It should be noted

that individual runs which took prohibitively long (> 5 minutes) to reach equilibrium
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were automatically ended and used as-is.

Figure 3.6: Samples of time-evolution of chemical abundances from the CHIMES

solver, at various nH and T , plotted at a constant Z

3.2.3 Time Evolution Data

We wish to use this data to train a network to evolve between two states at two differ-

ent times. The two states will not necessarily be at equilibrium so all the abundances

are both input and output parameters. For time evolution of our initial attempt, we

also need to input ∆t as a parameter. For our final model we use constant timestep

and thus do not need to include this parametre.
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Our data sample preparation pipeline consists of the following steps:

1. A sliding window method, moving two pointers t1 and t2 along the time dimen-

sion to sample chemical and thermal states.

2. Log-scaling and clipping of abundance ratios to the range [−10, 1] and the tem-

perature to the range [0, 10].

3. Skipping of “stagnant” data where ∆T < 0.1 K

4. Normalization of all data to the range [0, 1] for stable training.

3.2.4 Network architecture

We test a ResNet (He et al., 2015) with encoder-decoder layers to allow the efficient

encoding of relationships in the high-dimensional chemical network. The network

consists of:

• 2 Encoder layers to for initial state vector (temperature, density, abundances)

• 8 Residual blocks, each containing 2 fully connected layers with 512 neurons,

with activation functions of learnable steepness

• 2 decoder layers to output the evolved state vector

When trained with a activation function σ(x) = tanh(x/s) as introduced by

(Sulzer and Buck, 2023), the steepness s can offer better fits at sharper gradients

(see figure 3.7). We implement these activations throughout the network.
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Figure 3.7: Our test of various activation functions and model scales in capturing a
sharp discontinuity. Networks that are larger in scale are better able to approximate

sharper gradients. Adding a trainable steepness parameter in the activation also
improves performance on this task.

3.2.5 Training and validation

We are working with a larger array of species and a wider dynamic range of tem-

peratures and density than previously demonstrated networks. Thus, we want to

learn a very efficient latent space representation to reduce the dimensionality of the

problem. Real astrochemical systems are highly constrained by underlying physics

and how they evolved to their current state. For example we do not expect arbitrary

combinations of high and low ionization states. For this reason, we equip the network

with an encoder, ResNet processor, and decoder layers, trained to learn the identity

function on the given data.

3.2.6 Results

Many issues arose during our initial training runs, such as failure for the loss function

to converge to acceptable levels of error when trained on a dataset containing variable

heating rates Γ. Initially, we also attempted to allow an arbitrary timestep as an
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input, to allow the model to learn the entire time-integration of the ODEs, rather

than predicting for a fixed timestep. Our interpretation is that the initial target was

too general and thus difficult for the network to learn, possibly due to insufficient

flexibility (free parameters) available to the network or a lack of sufficient training

data.

Figure 3.8: Predicted chemical abundance evolution compared to the ground truth
data, shown for select species. This highly unstable model was trained on a very
large number (157) of species, and an adaptable timestep input ∆t. The problem
domain was also very large compared to previous works discussed in 2.3, spanning

across −4 < nH < 4, 2 < T < 8, and −1 < Z < 0.5
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Through many iterations of model sizes, dataset sizes, and problem simplification,

we discovered that learning to make stable predictions with an adaptable timestep

was exceptionally difficult, and this was compounded by the number of species. Only

after constraining the problem domain to only variable temperatures, densities, and

metallicities, did we arrive at a model with acceptable performance.

We evaluated the performance of our neural network model in predicting the

thermochemical evolution of astrophysical gases across a range of initial conditions.

Figure 3.9 presents the predicted trajectories alongside the ground truth for various

species and temperature, under different initial conditions of nH and T at a fixed

metallicity log(Z) = 0 within the test set.
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Figure 3.9: Predicted thermochemical trajectories for the test set. Predicted
trajectories do not precisely follow the ground truth, however it is notably able to
predict, within the correct order of magnitude, the final equilibrium state for many

species. Errors are shown for select species of interest.

To quantify the model’s performance, we calculated error statistics for the final

timestep predictions on the test set. Table 3.2 shows the mean, maximum, and

minimum absolute errors in log space for temperature and selected species.
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Table 3.2: Mean absolute error (MAE), maximum absolute error, and minumum
absolute error in log space for final timestep (t = 1000 Myr) predictions, after 100

rolled out inferences of the network

Output MAE Max Min

T (K) 0.5119 0.8550 0.0122

nHI/nH 0.4881 0.5871 0.4012

nHII/nH 0.8113 1.735 0.3258

nH2/nH 1.217 1.678 0.9501

nCO/nH 1.337 1.859 0.5309

nCII/nH 0.5711 1.056 0.0798

nOI/nH 0.2478 0.4555 0.1010

nOIII/nH 0.7556 2.277 0.1372

nH2O/nH 0.7701 1.398 0.2930

nOH/nH 0.7380 1.685 0.0983
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Chapter 4

Conclusion

4.1 Discussion

Our review in 2 revealed several trends in the application of neural networks to

fluid dynamics and astrochemistry. In fluid dynamics, we observed a shift towards

architectures that can capture long-range spatial dependencies, such as the dilated

convolutions used by Stachenfeld et al. (2021). For astrochemistry, recent works

like Holdship et al. (2021) and Branca and Pallottini (2023) have demonstrated the

potential of emulating complex chemical networks across a given range of physical

states, albeit with limitations in the range of physical parameters and number of

species considered.

Our experiments with KSBench offer a much clearer direction towards improving

state-of-the-art neural turbulence models. They suggests that future turbulence mod-

els can likely benefit from aggregating context hierarchically throughout the spatial

domains, and incorporating relevant group symmetries into the network’s architec-

ture. Given that the orders of the symmetry groups involved in the 3D hydrodynamics
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equations are greater than that of the 1D KS equation, one may expect equivariance

to symmetry transformations to become more important. The U-Net is unable to

make convincing rollout predictions; we suspect this is due to the downsampling

process at each layer causing significant information loss through each forward pass.

Indeed, Stachenfeld et al. (2021) preferred a dilated architecture to a U-Net archi-

tecture in the same setting, although by a less significant margin. The Transformer

and the Convolutional LSTM are also unable to effectively learn dynamics within the

given training epochs. For the transformer, this is likely a due to the architectural

constraints required for this scenario: to keep the transformer network below 90,000

parameters, the latent dimension must be prohibitively small (about 4x smaller than

models without attention mechanisms). To ensure a fairer comparison between mod-

els, an obvious solution would be to increase the parameter count of all tested models

to allow the transformer to effectively encode the dynamical state. This, given the

small spatial domain of the dataset, would invite the overfitting problem – which

would likely require us to artificially increase the spatial domain to increase the com-

plexity of the problem.

Our thermochemistry model demonstrates that neural models can feasibly learn

an evolution operator for thermochemical network across a large number of species,

by reducing the training space to near-equilibrium states. As shown in Figure 3.9,

the model captures the overall trends for many species and temperature profiles, even

when using a timestep 10x larger than that of the CHIMES solver code. Errors in

table 3.2 show we can often predict abundances and temperatures within an order

of magnitude. An interesting observation is the ability to find a roughly correct

correct equilibrium state despite deviations in the transient behavior. Notably, our
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neural network model is able to produce predictions on a significantly larger (10x)

timestep than the original solver. This demonstrates the potential for neural network

approaches to overcome traditional time-stepping constraints in stiff thermochemical

systems. Furthermore, our network demonstrated a 8.74x faster wall-clock time to

simulate 500 Myr on two NVidia V100 GPUs compared to CHIMES on a 16 core CPU.

The errors presented in table 3.2 are notably lower compared to the abundance

errors produced by Chemulator, however it should be noted that Chemulator covers

a much larger range in abundance and metallicity space than the model we present,

albeit with fewer species. Models from Branca and Pallottini (2023) and Branca

and Pallottini (2024) emulate 9 species exhibit significantly lower errors with only 9

species. These works along with ours demonstrate that neural models have the ability

to achieve: low errors with many species in a slim range of physical conditions, low

errors with few species in a wide range of conditions, and moderate errors when

simulating many species across a wide range of conditions. This suggests that future

models will be able to exploit an increased data and model scale to achieve low errors

among many species and conditions.

4.2 Future Directions

4.2.1 Arbitrary timestepping

Many recent works (Branca and Pallottini, 2023; Dang et al., 2022; Holdship et al.,

2021; Wang et al., 2019) focus on predicting the next timestep of a simulation. Our at-

tempts were unable to successfully learn an evolution operator at arbitrary timescales,

however we were able to take timesteps 10x larger than the solver code uses. Given
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that neural models are not bound by the same timestepping constraints as finite

difference methods, further work should be done to examine how to produce stable

evolution predictions far above the solver code’s timestep and at any timestep input

by the user.

4.2.2 Self gravity

Early results from neural self-gravitating simulations take one further step towards

fully neural astrophysical simulation. Auddy et al. (2024) introduced GRINN (Gravity-

Informed Neural Network), a PINN for hydrodynamic systems with self-gravity.

GRINN approximates the solutions ρ, v, and φ as outputs of a neural network N (X; θ),

with X as space-time coordinates and θ as network parameters. The network is

trained by minimizing a loss function incorporating PDE residuals and boundary/initial

conditions. For 3D simulations, GRINN was over an order of magnitude faster than its

finite difference method counterpart. As the model is a traditional MLP, the question

of how to improve the efficiency of the architecture is a clear next step to explore. In

particular, future work should explore what network architectures can learn to effi-

ciently evolve a flow within a gravitational potential while maintaining the benefits

of equivariance properties and dilation.

4.2.3 Radiative transfer

To extend our thermochemical model, a clear next step would be to incorporate radia-

tive transfer effects by generating a new dataset using CHIMES that includes varying

radiation fields, and retrain our model on this expanded parameter space. Robinson

et al. (2024) explored using a gradient boosting (that is, learning an optimal ensemble
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of weak prediction models) method, XGBoost, to predict gas cooling and heating func-

tions in the presence of an incident radiation field, where their models outperformed

traditional interpolation tables at fixed metallicity, reducing mean squared errors by

over an order of magnitude.

4.2.4 Heating rates

To integrate our thermochemical model into a full hydrodynamic simulation, one

should include PdV work to account for on the specific internal energy evolution due

to adiabatic compression or expansion. This term may be incorporated into our neural

network model as an additional input feature, however during our experiments we

found no success in learning the complexity added by this seemingly simple additional

energy parameter.
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Figure 4.1: Thermal evolution history for thermochemical simulations with
CHIMES at various constant heating rates. Although we prepared this larger

dataset, it was not used due to failure to converge during training.

4.2.5 Kolmogorov-Arnold networks

Neural networks offer diminishing returns in error as the parameter count increases

(as can be seen in figure 3.5), which Kolmogorov-Arnold Networks (KANs) (Liu

et al., 2024) offer to remedy. Rather than learning weights connecting the nodes and

passing results through fixed activation functions, KANs learn activation functions

at the nodes and have no weights at all. Liu et al. (2024) ran benchmark results at

various model scales which suggest that KAN performance does not taper off with

model size with the same scaling law as traditional feed-forward neural networks.
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With more favourable scaling laws, a large network should, in theory, be able to learn

to make more accurate predictions in larger dynamical spaces.

4.2.6 Transformers

There is a growing trend in recent literature of Transformer-based methods replacing

many MLP-based methods. Examples include ViT and MViT for general computer

vision tasks, Turbulence Neural Transformer (TNT) (Dang et al., 2022) for turbulent

hydrodynamics, and Chemformer for predicting the synthesis of chemical reactions

(Irwin et al., 2022).

Building on our initial experiments with transformers in KSBench, it is evident

that a modification must be made for a more comprehensive and fair evaluation

of transformer-based architectures. Our previous transformer implementation was

constrained by the parameter count limit, resulting in a prohibitively small latent

dimension. To address this, we plan to increase the overall parameter budget for all

models in our comparison, allowing for a more capable transformer architecture.

The importance of capturing long-range spatial information seems clear from our

work and that of (Stachenfeld et al., 2021; Yu and Koltun, 2016). Building on our

initial experiments with transformers in KSBench, a more comprehensive and fair

evaluation of transformer-based architectures for turbulent flow prediction should

be conducted. Our previous transformer implementation was constrained by the

parameter count limit, resulting in a prohibitively small latent dimension. To address

this, the overall parameter budget for all models could then be increased, allowing

for a more capable transformer architecture.
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Future studies will likely benefit from the improvement that the attention mecha-

nism (Vaswani et al., 2017) offers in this direction, which can operate on information

from arbitrarily long-range dependencies in its input sequence. Indeed, the recent

advent of vision transformers (ViT) (?) and hierarchical techniques such as Mul-

tiscale ViT (MViT) (Fan et al., 2021) show promise to aggregate information from

multiple length scales more efficiently than traditional ViT models, which have been

successfully applied to computer vision problems.

There is ongoing discussion on the superiority of transformers to convlutional

methods (Bai et al., 2021; Liu et al., 2022), including evidence that its better per-

formance is not a direct result of its inherent architecture differences (Smith et al.,

2023). If we increase the resolution of our solver and allow for models with larger

parameter counts, These performance questions can be formally evaluated for physics

problems using our benchmarking framework.

4.2.7 PINNs

The integration of physical constraints and domain knowledge into neural networks,

as demonstrated by Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019),

offers a promising direction for improving accuracy and physical consistency. Physics-

inspired neural ODE methods (Grassi et al., 2014; Sulzer and Buck, 2023) are promis-

ing candidates to be generalized to give robust predictions in a wide range physical

conditions, and our own works could likely benefit from using physics-inspired terms

in the loss function.
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and Tegmark, M. (2024). Kan: Kolmogorov-arnold networks. arXiv preprint

arXiv:2404.19756. 48 pages, 20 figures. Codes are available at this https URL.

Lu, Y., Chen, H., Lu, J., Ying, L., and Blanchet, J. H. (2021). Machine learning

for elliptic pdes: Fast rate generalization bound, neural scaling law and minimax

optimality. arXiv preprint arXiv:2110.06897.

McCulloch, W. S. and Pitts, W. H. (1943). A logical calculus of the ideas immanent

in nervous activity. Bulletin of Mathematical Biophysics, 5:115–133.

Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering

applications. AIAA Journal, 32(8):1598–1605.

Miyashita, Y. (2022). Operating principles of the cerebral cortex as a six-layered

network in primates: beyond the classic canonical circuit model. Proceedings of the

Japan Academy, Series B, 98(3):93–111.

Monaghan, J. J. (1992). Smoothed particle hydrodynamics. Annual Review of As-

tronomy and Astrophysics, 30:543–574.

Mylavarapu, R. T., Mylavarapu, B. K., and Sekhar, U. S. (2018). Interpolation of

generalized functions using artificial neural networks. Journal of Computer and

Communications, 6(7):41–52.

Padoan, P., Nordlund, A., and Jones, B. J. T. (1997). The universality of the stellar

89

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.A.Sc. Thesis – E. McF.; McMaster University – Physics and Astronomy

initial mass function. Monthly Notices of the Royal Astronomical Society, 288:145–

152. Accepted 1997 January 23, Received 1996 December 2, In original form 1996

July 5.

Perot, J. and de Bruyn Kops, S. (2008). Modeling turbulent dissipation at low and

moderate reynolds numbers. Journal of Fluid Mechanics, 611:173–200.

Portwood, G. D. et al. (2019). Turbulence forecasting via neural ode. arXiv preprint

arXiv:1911.05180.

Price, D. J. (2012). Resolving high Reynolds numbers in smoothed particle hydro-

dynamics simulations of subsonic turbulence. Monthly Notices of the Royal Astro-

nomical Society: Letters, 420:L33–L37.

Raissi, M., Perdikaris, P., and Karniadakis, G. (2019). Physics-informed neural net-

works: A deep learning framework for solving forward and inverse problems in-

volving nonlinear partial differential equations. Journal of Computational Physics,

378:686–707.

Richings, A. J., Schaye, J., and Oppenheimer, B. D. (2014a). Non-equilibrium

chemistry and cooling in the diffuse interstellar medium - i. optically thin regime.

Monthly Notices of the Royal Astronomical Society, 440(4):3349–3369.

Richings, A. J., Schaye, J., and Oppenheimer, B. D. (2014b). Non-equilibrium chem-

istry and cooling in the diffuse interstellar medium - ii. shielded gas. Monthly

Notices of the Royal Astronomical Society, 442(3):2780–2796.

Robinson, D., Avestruz, C., and Gnedin, N. Y. (2024). Exploring the dependence

of gas cooling and heating functions on the incident radiation field with machine

90

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.A.Sc. Thesis – E. McF.; McMaster University – Physics and Astronomy

learning. Monthly Notices of the Royal Astronomical Society, 528(1):255–269. Pub-

lished: 18 December 2023.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks

for biomedical image segmentation. In Proceedings of the International Conference

on Medical Image Computing and Computer-Assisted Intervention (MICCAI).

Rosofsky, S. G. and Huerta, E. A. (2020). Artificial neural network subgrid models

of 2-d compressible magnetohydrodynamic turbulence. Phys. Rev. D, 101:084024.

Ruggeri, M., Roy, I., Mueterthies, M. J., Gruenwald, T., and Scalo, C. (2022). Neural-

network-based Riemann solver for real fluids and high explosives; application to

computational fluid dynamics. Physics of Fluids, 34(11):116121.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations

by back-propagating errors. Nature, 323:533–536.

Sandri, M. (1996). Numerical calculation of lyapunov exponents. Mathematica Jour-

nal, 6(3):78–84.

Schmelzer, M., Dwight, R. P., and Cinnella, P. (2020). Discovery of algebraic reynolds-

stress models using sparse symbolic regression. Flow, Turbulence and Combustion,

104:579–603.

Schmidt, W. and Federrath, C. (2011). A fluid-dynamical subgrid scale model

for highly compressible astrophysical turbulence. Astronomy & Astrophysics,

528:A106.

Schmidt, W., Hillebrandt, W., and Niemeyer, M. J. (2006). A localised subgrid scale

91

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.A.Sc. Thesis – E. McF.; McMaster University – Physics and Astronomy

model for fluid dynamical simulations in astrophysics. Astronomy & Astrophysics,

450:265–281.

Schneider, E. E. and Robertson, B. E. (2015). Cholla: A new massively parallel hydro-

dynamics code for astrophysical simulation. The Astrophysical Journal Supplement

Series, 217(2):24.

Sirignano, J. and Spiliopoulos, K. (2018). Dgm: A deep learning algorithm for solving

partial differential equations. Journal of Computational Physics, 375:1339–1364.

Sivashinsky, G. I. (1977). Nonlinear analysis of hydrodynamic instability in laminar

flames. Acta Astronautica, 4:1177–1206.

Smith, B. D., Bryan, G. L., Glover, S. C. O., Goldbaum, N. J., Turk, M. J., Regan,

J., Wise, J. H., Schive, H.-Y., Abel, T., Emerick, A., O’Shea, B. W., Anninos, P.,

Hummels, C. B., and Khochfar, S. (2017). Grackle: a chemistry and cooling library

for astrophysics. Monthly Notices of the Royal Astronomical Society, 466:2217–

2234. Advance Access publication 2016 December 17.

Smith, S. L., Brock, A., Berrada, L., and De, S. (2023). Convnets match vision

transformers at scale. arXiv preprint arXiv:2310.16764.

Springel, V. (2005). The cosmological simulation code gadget-2. Monthly Notices of

the Royal Astronomical Society, 364:1105–1134.

Squire, J. and Hopkins, P. F. (2017). The distribution of density in supersonic tur-

bulence. Monthly Notices of the Royal Astronomical Society, 471(3):3753–3767.

Stachenfeld, K., Fielding, D. B., Kochkov, D., Cranmer, M., Pfaff, T., Godwin, J.,

Cui, C., Ho, S., Battaglia, P., and Sanchez-Gonzalez, A. (2021). Learned coarse

92

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.A.Sc. Thesis – E. McF.; McMaster University – Physics and Astronomy

models for efficient turbulence simulation. arXiv preprint arXiv:2112.15275. (2022)

International Conference on Learning Representations.

Stone, J. M., Tomida, K., White, C. J., and Felker, K. G. (2020). The athena++

adaptive mesh refinement framework: Design and magnetohydrodynamic solvers.

The Astrophysical Journal Supplement Series, 249(1):4.

Sulzer, I. and Buck, T. (2023). Speeding up astrochemical reaction networks with

autoencoders and neural odes. arXiv preprint arXiv:2312.06015. Accepted at the

”Machine Learning and the Physical Sciences” Workshop at NeurIPS, 2023.

Sutherland, R. S. and Dopita, M. A. (1993a). Cooling functions for low-density

astrophysical plasmas. The Astrophysical Journal Supplement Series, 88:253–327.

Received 1991 May 6; accepted 1993 February 2.

Sutherland, R. S. and Dopita, M. A. (1993b). Cooling functions for low-density

astrophysical plasmas. Astrophysical Journal Supplement, 88:253.

Teyssier, R. (2002). Cosmological hydrodynamics with adaptive mesh refinement: a

new high resolution code called ramses. Astronomy and Astrophysics, 385:337–364.

Tielens, A. G. G. M. (2005). The Physics and Chemistry of the Interstellar Medium.

Cambridge University Press, Cambridge, UK.

Udrescu, S.-M. and Tegmark, M. (2020). AI Feynman: A physics-inspired method

for symbolic regression. Science Advances, 6(16).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,

., and Polosukhin, I. (2017). Attention is all you need. In Advances in Neural

Information Processing Systems, pages 5998–6008.

93

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.A.Sc. Thesis – E. McF.; McMaster University – Physics and Astronomy

Wadsley, J. W., Keller, B. W., and Quinn, T. R. (2017). Gasoline2: A modern sph

code. Monthly Notices of the Royal Astronomical Society, 471(2):2357–2369.

Wadsley, J. W., Veeravalli, G., and Couchman, H. M. P. (2008). On the treatment of

entropy mixing in numerical cosmology. Monthly Notices of the Royal Astronomical

Society, 387(1):427–438.

Wang, R., Cao, Z., Zhou, X., Wen, Y., and Tan, R. (2022). Physics-guided machine

learning for wind-farm power prediction: Toward interpretability and generalizabil-

ity. ACM Transactions on Cyber-Physical Systems.

Wang, R., Kashinath, K., Mustafa, M., Albert, A., and Yu, R. (2019). To-

wards physics-informed deep learning for turbulent flow prediction. arXiv preprint

arXiv:1911.08655.

Wang, R., Kashinath, K., Mustafa, M., Albert, A., and Yu, R. (2020). Towards

physics-informed deep learning for turbulent flow prediction. In Proceedings of the

26th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining.

Weinberger, R., Springel, V., and Pakmor, R. (2020). The arepo public code release.

The Astrophysical Journal Supplement Series, 248(2):32.

Wiersma, R. P. C., Schaye, J., and Smith, B. D. (2009). The effect of photoionization

on the cooling rates of enriched, astrophysical plasmas. Monthly Notices of the

Royal Astronomical Society, 393(1):99–107.

94

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.A.Sc. Thesis – E. McF.; McMaster University – Physics and Astronomy

Yu, F. and Koltun, V. (2016). Multi-scale context aggregation by dilated convolu-

tions. In Proceedings of the International Conference on Learning Representations

(ICLR).

95

http://www.mcmaster.ca/
https://physics.mcmaster.ca/

	Abstract
	Acknowledgements
	Notation, Definitions, and Abbreviations
	Introduction
	Astrophysical Gas
	Modeling the Interstellar Medium
	Modeling Heating and Cooling

	Modeling Hydrodynamical Turbulence
	Kolmogorov Theory
	Numerical Methods and Limitations
	Particle methods
	Grid Methods

	Limitations of Hydrodynamics Codes
	Bottleneck Effects
	Gibbs phenomenon
	Grid Anisotropy
	CFL condition


	Thermochemistry
	Machine Learning
	Artificial Neural Networks
	Backpropagation
	Universal Approximation Theorem
	The Manifold Hypothesis
	Convolutional Neural Networks
	Train-test split


	Review of Modern Machine Learning
	Neural Architectures
	Residual Connections
	U-Net
	Dilated Convolution
	Group Equivariant Convolutional Neural Networks
	Recurrent Neural Networks (RNNs)
	Long Short-Term Memory (LSTM)
	Transformers
	Neural ODEs

	Neural Methods for Turbulent Flows
	Neural Riemann Solvers
	Incompressible Turbulence
	Compressible Turbulence

	Neural Methods for Astrochemistry
	Chemulator
	Branca and Pallotini models


	Learning Dynamical Systems
	Kuramoto-Sivashinsky (KS) Equation
	Managing Chaos
	Symmetries of the KS equation
	Data generation
	Training and validation
	The NN models
	Results

	Thermochemical Evolution
	Functions of many parameters
	Data generation
	Time Evolution Data
	Network architecture
	Training and validation
	Results


	Conclusion
	Discussion
	Future Directions
	Arbitrary timestepping
	Self gravity
	Radiative transfer
	Heating rates
	Kolmogorov-Arnold networks
	Transformers
	PINNs



