
INCREMENTAL MIGRATION FROM

MONOLITHIC TO MICROSERVICES

ARCHITECTURE

A SEMI-AUTOMATED APPROACH FOR INCREMENTAL

MIGRATION FROM MONOLITHIC TO MICROSERVICES

ARCHITECTURE

By HASSAN ZAKER ZAVERDEHI, MASc

A Thesis Submitted to the School of Graduate Studies in Partial

Fulfillment of the Requirements for

the Degree Master of Applied Science

McMaster University © Copyright by Hassan Zaker Zaverdehi,

August 2024

https://gs.mcmaster.ca/
http://www.mcmaster.ca/

McMaster University

MASTER OF APPLIED SCIENCE (2024)

Hamilton, Ontario, Canada (Department of Computing and software)

TITLE: A Semi-Automated Approach for Incremental Migration

from Monolithic to Microservices Architecture

AUTHOR: Hassan Zaker Zaverdehi

MASc (Software Engineering),

McMaster University, Hamilton, Canada

SUPERVISOR: Richard Paige

NUMBER OF PAGES: xv, 75

ii

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Lay Abstract

As software applications grow, maintaining and updating them becomes challenging.

Traditionally, software is built using a monolithic architecture, where all parts are

combined into a single unit. This can lead to problems as the software gets bigger. A

newer approach, called Microservice Architecture, breaks down the application

into smaller, independent services, each handling a specific function. This makes the

software easier to manage and scale.

This thesis introduces a tool to help transition from monolithic to microservices

architecture gradually, using the Strangler Fig Pattern. This approach involves

incrementally creating microservices from the monolith, ensuring the system remains

functional throughout the process. By combining different types of analysis, the tool

accurately identifies potential microservices. It was tested on well-known projects

and showed promising results in creating efficient and well-organized microservices.

This work offers a practical solution for modernizing large software systems, making

them easier to maintain and scale.

iii

Abstract

As software applications grow in size and complexity, maintaining and scaling them

becomes increasingly difficult. Traditional monolithic architectures, where all com-

ponents are combined into a single unit, often face issues such as limited scalability,

cumbersome maintenance, and problematic deployment. The microservices archi-

tecture has emerged as a solution, breaking down applications into smaller, loosely

coupled services, each responsible for a specific business function. This transition

process, known as migration, is challenging due to the difficulty in determining the

optimal decomposition of the monolithic system.

This thesis presents a novel framework designed to facilitate the migration from

monolithic to microservices architecture using the Strangler Fig Pattern. Unlike

existing approaches that typically attempt to decompose the monolith in a single

iteration, our framework supports a gradual, iterative migration process. This allows

for smoother transitions, reduced risk, and better management of complexity.

Key contributions of this work include the development of a tool that leverages

both static and dynamic analysis to identify microservice candidates. The tool inte-

grates these heterogeneous data sources using the Single Source of Truth (SST)

paradigm, ensuring consistency and reliability. The performance of the tool is eval-

uated on two well-known Java Spring projects, demonstrating its effectiveness in

iv

creating well-modularized, cohesive, and loosely coupled microservices.

The results show that our approach not only meets the desired principles of mi-

croservice architectures but also compares favorably with other state-of-the-art meth-

ods. By providing a practical and systematic solution for gradual migration, this

thesis addresses a significant gap in the existing literature and offers valuable insights

for practitioners seeking to modernize large-scale software systems.

v

To my family,

for their unwavering support, encouragement,

and love throughout this journey.

vi

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr. Richard Paige,

for his invaluable guidance, support, and encouragement throughout the course of

this research. His insightful feedback and constant motivation were crucial to the

completion of this thesis. I would also like to extend my heartfelt thanks to my

co-supervisors, Dr. Vera Pantelic and Dr. Sebastien Mosser, for their mentorship

and sound guidance. Their advice and expertise have greatly contributed to the

development and success of this work.

I also want to extend my heartfelt thanks to my colleagues at McMaster University.

Their collaboration, support, and camaraderie made this journey a memorable and

enriching experience.

Finally, I am deeply indebted to my family and friends for their unwavering sup-

port and understanding throughout my studies. Their patience and encouragement

have been my driving force.

Thank you all for your contributions and support.

vii

Table of Contents

Lay Abstract iii

Abstract iv

Acknowledgements vii

Notation, Definitions, and Abbreviations xiii

Declaration of Academic Achievement xvi

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Problem Statement . 5

1.3 Contributions . 6

1.4 Thesis Structure . 7

2 Related Work 9

2.1 Introduction . 9

2.2 Challenges in Migration . 10

2.3 Approaches for Microservice Identification 12

viii

2.4 Gradual Migration . 15

2.5 Single Source of Truth . 16

3 Technical Approach 17

3.1 Motivation . 17

3.2 Overview of the Approach . 18

3.3 Monolith Decomposition . 22

3.4 Single Source of Truth . 36

4 Evaluation 41

4.1 Evaluation Metrics . 42

4.2 Performed Experiments . 44

4.3 Experiment 1: Spring Petclinic . 46

4.4 Experiment 2: MyBaits JPetStore . 54

4.5 Conclusion . 63

5 Conclusion 65

5.1 Summary of Contributions . 65

5.2 Threats to Validity . 67

5.3 Future Work . 68

5.4 Final Thoughts . 68

ix

List of Figures

3.1 Nodes from Static Code Analysis . 37

3.2 Edges from Static Code Analysis . 38

3.3 Data from Dynamic Analysis using VisualVM 38

4.1 Monolith and Microservices projects before iteration 0. 47

4.2 Monolith and Microservice projects after iteration 0. 48

4.3 Output of the tool for the main petclinic project. Total Coupling is

the sum of the weights that have endpoints in two candidates. The

sum of the four numbers in the last four lines shows the unweighted

coupling. 49

4.4 Monolith and Microservice projects after iteration 1. 50

4.5 Decomposition 1 . 51

4.6 Decomposition 2 . 51

4.7 Decomposition 3 . 51

4.8 Output of the tool for the remaining part of petclinic project. 51

4.9 Monolith and Microservice projects after implementing the new mi-

croservice in iteration 2. 52

4.10 Monolith and Microservice projects at the end of migration process. . 53

4.11 Monolith and Microservices projects before iteration 0. 55

x

4.12 Monolith and Microservice projects after iteration 0. 56

4.13 Output of the tool for the initial JPetStore project. 57

4.14 Monolith and Microservice projects after iteration 1. 57

4.15 Output of the tool for the initial JPetStore project without considering

the frequency of relationships and dynamic data. 59

4.16 Output of the tool for the second iteration on JPetStore project. . . . 60

4.17 Monolith and Microservice projects after iteration 2. 60

4.18 Output of the tool for the third iteration on JPetStore project. 61

4.19 Monolith and Microservice projects after iteration 3. 61

4.20 Output of the tool for the fourth iteration on JPetStore project. . . . 62

4.21 Monolith and Microservice projects at the end of migration process. . 62

xi

List of Tables

3.1 Weight coefficients for each arc type. 25

4.1 Comparison of Projects . 44

4.2 Result comparison for the Spring Petclinic project. 54

4.3 Result comparison for the JPetStore project. 63

xii

Notation, Definitions, and

Abbreviations

Definitions

Granularity Granularity refers to the size or scope of individual microservices.

It describes how finely a system is decomposed into separate ser-

vices. A higher level of granularity means that services are smaller

and more focused on specific tasks or functionalities, while a lower

level of granularity indicates larger services that encompass multiple

functionalities.

Bounded Context

In Domain-Driven Design (DDD), a bounded context defines the spe-

cific scope within which a domain model applies, encapsulating its

models, language, and rules. It defines boundaries to manage com-

plexity and ensure clarity and consistency within a specific domain

or subdomain.

xiii

Community Detection Problem

In graph theory, the community detection problem refers to the

task of identifying cohesive groups or communities within a network.

These communities are subsets of nodes with dense internal connec-

tions and sparser connections between different communities. The

goal is to partition the nodes of the graph into these distinct commu-

nities to reveal underlying structures or functional modules within

the network.

Modularity Score

In community detection algorithms, the modularity score quantifies

the quality of a division of a network into communities. It mea-

sures the density of connections within communities compared to

connections between communities, aiming to identify densely con-

nected groups of nodes.

Integer Linear Programming (ILP)

A mathematical optimization technique used to solve optimization

problems where variables are required to be integer values. It in-

volves formulating a mathematical model with linear relationships

and integer variables, aiming to maximize or minimize an objective

function while satisfying a set of constraints.

Multiway Cut Problem

The Multiway Cut Problem involves partitioning the nodes of a

graph into multiple disjoint sets to minimize the total weight of edges

xiv

cut across the partitions.

Abbreviations

AI Artificial Intelligence

API Application Programming Interface

CSV Comma-Separated Values

DDD Domain-Driven Design

ILP Integer Linear Programming

JSON JavaScript Object Notation

SCA Static Code Analysis

SST Single Source of Truth

XML eXtensible Markup Language

xv

Declaration of Academic

Achievement

I hereby declare that this thesis is the result of my own work and has not been submit-

ted in any form for another degree or diploma at any university or other institution

of tertiary education. Information derived from the published and unpublished work

of others has been acknowledged in the text and a list of references is given.

I certify that this thesis is an original work of research, carried out under the su-

pervision of Dr. Richard Paige and co-supervisors Dr. Vera Pantelic and Dr. Sebastien

Mosser. This work was carried out by McSCert (McMaster Centre For Software Cer-

tification)1.

This work is a reflection of my own efforts, contributions, and academic achieve-

ments in the field of software certification and analysis. The data and conclusions

presented in this thesis are accurate and reliable to the best of my knowledge.

Hassan Zaker Zavardehi

1https://mcscert.mcmaster.ca/

xvi

https://mcscert.mcmaster.ca/

Chapter 1

Introduction

1.1 Background and Motivation

A monolithic architecture refers to a software design pattern in which all compo-

nents of an application are combined into a single, self-contained unit. This archi-

tectural style typically involves a single executable that includes the user interface,

business logic, and data access layers. Monolithic applications can be straightforward

to develop, test, and deploy, as all parts of the application are interconnected and run

as a single process [10]. However, as these applications expand in size and complexity,

they face several significant challenges. Scaling becomes difficult, as it requires the

entire application to be scaled even if only a small portion needs additional resources.

Maintenance becomes increasingly cumbersome due to the tightly coupled nature of

the components, making it challenging to isolate and address issues. Furthermore,

deployment becomes problematic because any modification, regardless of its size,

necessitates redeploying the entire application, increasing the risk of downtime and

deployment errors [7, 15].

1

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

To address these challenges, the microservice architecture has emerged as a vi-

able solution. In contrast to the monolithic approach, microservice architecture breaks

down an application into a collection of small, loosely coupled services, each respon-

sible for a specific business function. These services can be developed, deployed,

and scaled independently, allowing for greater flexibility and efficiency. By decou-

pling components, microservice architecture simplifies maintenance and enhances the

scalability of individual services. Deployment is also streamlined, as updates to one

service do not necessitate redeploying the entire application, thereby reducing the

risk of downtime and deployment errors [24].

Not all applications with monolithic architecture experience scalability and main-

tainability challenges. Less complex monolithic applications have their own strengths,

such as being easier to develop, test, deploy, and scale. This architecture has existed

long before the advent of microservice architecture. Consequently, many companies

have built their software using the monolithic approach. As their software grows in

size and complexity, companies increasingly recognize the need to shift to microservice

architecture to address the aforementioned challenges. This transformation process,

where a monolithic application is restructured into a collection of microservices, is

known as migration.

The primary challenge in transitioning from a monolithic system to a microservice

architecture lies in determining an effective decomposition of the system. The ob-

jective is to decompose the monolithic application into several smaller components,

each dedicated to a specific functionality, while minimizing the coupling between

these microservices. Numerous researchers have proposed various Service Candidate

2

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Identification approaches to facilitate or automate the decomposition process. Iden-

tifying services within the monolith is a complex task [26]. Migrating from a legacy

monolithic system to a microservice architecture is inherently complex and time-

consuming [9]. A survey conducted with 16 practitioners highlighted that identifying

the appropriate decomposition approach is the primary challenge in the migration

process [11]. Another study further emphasizes that a significant obstacle for com-

panies with existing monolithic systems is the decomposition of these systems into

cohesive microservice-based implementations [1].

Trabelsi et al. [28] aim to automate the microservice identification process by com-

bining semantic analysis with machine learning algorithms. Gysel et al. [13] introduce

Service Cutter, which employs a graph-based clustering approach to identify mi-

croservices. Kaminura et al. [16] propose a methodology for identifying microservice

candidates within monolithic application code through static code analysis (SCA).

Brito et al. [6] present a novel approach for identifying microservices within mono-

lithic applications using topic modeling.

Filippone et al. [9] identify the main challenges of previous works on service identi-

fication as follows: the identification of highly cohesive and loosely coupled microser-

vices with the right granularity and within the appropriate bounded context, and

the requirement for user input. They assert that their proposed approach is fully

automated, which means it does not require user input, and is capable of finding

microservices with the right granularity.

Although the aforementioned approaches may achieve acceptable system decom-

position, their primary limitation is that they attempt to identify microservices in

a single iteration. In real-world industrial migration scenarios, it is uncommon to

3

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

transform a monolith into microservices in one step. A survey conducted by [19], in-

volving 23 practitioners engaged in migrating their company’s systems, revealed that

none of the participants attempted to decompose the monolith into microservices in

a single step. Instead, they adopted an incremental process, implementing new mi-

croservices one by one. Throughout this process, the monolith continues to function

until the end, with new microservices being incrementally extracted from it. The

monolith gradually reduces in size until it completely disappears, leaving only the

microservices. This process aligns with the well-known Strangler Fig Pattern or

Strangler Pattern, where new microservices strangle and replace the old monolith

components over time. This incremental approach facilitates smoother migration,

reduces risk, and better manages complexity compared to the Big Bang Pattern,

where all microservices replace the monolith at once. The only study we found that

employed the Strangler Pattern was conducted by Li et al. [18]. They propose an

approach for incremental migration using the Strangler Pattern and Domain-Driven

Design (DDD) principles for microservice identification. A key difference between

their approach and ours is that they determine the decomposition of the monolithic

project only once at the beginning of the process, before the first iteration. In contrast,

our approach involves finding the decomposition of the monolithic project before each

iteration, reassessing and refining the decomposition based on the latest state of the

monolith.

In conclusion, as monolithic systems grow in size and complexity, maintaining and

scaling them becomes increasingly challenging. Migrating to a microservices archi-

tecture can alleviate these issues. However, a significant challenge lies in identifying

the appropriate decomposition during the migration process. Most approaches in the

4

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

literature follow the big bang pattern. Although Li et al. [18] adopt the strangler

pattern, they determine the decomposition of the system only once, which is more

aligned with the big bang pattern. In this work, we introduce a framework designed

to facilitate the migration process from monolith to microservices in an incremental

manner, where the decomposition of the system is determined in each iteration.

1.2 Problem Statement

Despite the advancements made by approaches such as those by Trabelsi et al., Li

et al., Matias et al., Gysel et al., Kaminura et al., and Brito et al., which leverage

semantic analysis, machine learning, graph-based clustering, and topic modeling re-

spectively, they often overlook the iterative nature of practical migration processes.

Filippone et al.’s automated approach, although innovative, still operates under a sin-

gle iteration model, which does not align with the gradual, iterative process needed

in industry settings.

Moreover, even methodologies that attempt to utilize the strangler pattern, such

as the work by Li et al., are not fully committed to this pattern. Li et al. determine

the decomposition of the monolith only once, before the first iteration. The chal-

lenge remains to develop an approach that can effectively guide the decomposition

of monolithic systems into microservices through an iterative, step-by-step process,

where the new microservices are introduced based on the latest monolith version,

ensuring minimal disruption and maintaining system functionality throughout the

migration.

This research aims to address these gaps by introducing a framework that sup-

ports the gradual migration of monolithic systems to microservices. The proposed

5

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

framework emphasizes iterative identification and implementation of microservices,

ensuring that each step in the migration process is manageable and aligned with the

overall goal of achieving a well-structured, efficient microservices architecture.

1.3 Contributions

This research aims to address the challenges associated with migrating from mono-

lithic architectures to microservices using the Strangler approach. The primary con-

tributions of this study are as follows:

1. Develop a Tool for Incremental Migration:

• Designed and implemented a tool that supports the incremental decom-

position of monolithic systems into microservices. This tool complements

the expertise of practitioners, facilitating a smoother and more manageable

migration process. The tool reduces the complexity and risk associated

with monolith to microservices migration, and provides a framework for

migrating in an incremental manner.

2. Integrate Static and Dynamic Data:

• Extended existing state-of-the-art methodologies that primarily rely on

static code analysis by incorporating dynamic analysis data. This integra-

tion enhances the robustness and accuracy of the decomposition process,

providing a more comprehensive view of system behavior and interactions,

ultimately leading to better-designed microservices.

3. Ensure Data Consistency and Reliability:

6

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

• Addressed the challenge of ensuring the reliability and consistency of het-

erogeneous data sources by employing the Single Source of Truth (SST)

paradigm. Demonstrated the application and effectiveness of SST in main-

taining data integrity during the migration process. This approach ensures

that decisions are based on accurate and up-to-date information, minimiz-

ing errors and manual effort. It also provide data accessibility through the

migration process.

4. Evaluate Tool Performance:

• Assessed the performance of the developed tool on benchmark projects

from the literature. Conducted a comparative analysis with other state-

of-the-art approaches to demonstrate the effectiveness and improvements

achieved by the proposed methodology. This evaluation provides evidence

of the tool’s practical benefits, such as improved decomposition quality.

By achieving these objectives, this research contributes a practical and theoret-

ically sound framework for the incremental migration of monolithic systems to mi-

croservices. The proposed framework addresses a crucial gap in existing literature,

offering a solution that is both effective and accessible to practitioners, ultimately

improving the scalability, maintainability, and resilience of software systems.

1.4 Thesis Structure

This thesis is organized into five chapters, each addressing different aspects of the

research:

7

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Chapter 1: Introduction Provides the background, problem statement, research

objectives, scope, methodology, and thesis structure.

Chapter 2: Previous Works Reviews related work in the field of microservice mi-

gration and identifies gaps in the existing research.

Chapter 3: Technical Chapter Details the algorithm and enhancements made to

the tool, the integration of static and dynamic analysis, and the challenges

encountered.

Chapter 4: Evaluation Presents the experimental setup, metrics used, and results

obtained from applying the tool to case studies.

Chapter 5: Conclusion Summarizes the findings, discusses the implications of the

research, and suggests directions for future work.

8

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

Chapter 2

Related Work

2.1 Introduction

The term microservices was first popularized by Fowler and Lewis. In their influen-

tial article ”Microservices: a definition of this new architectural term,” published on

Martin Fowler’s blog in March 20141, they provided a formal definition and outlined

the principles and characteristics of microservice architecture. While the concept of

breaking down applications into smaller, more manageable components existed prior

to their work, it was Fowler and Lewis who brought widespread attention to the term

microservices and formalized the architectural style associated with it [10].

The transition from monolithic to microservice architecture has emerged as a criti-

cal area of research in software engineering. This shift is driven by the need to enhance

the scalability, maintainability, and flexibility of large and complex software systems.

As monolithic applications grow, they face scalability and maintainability issues. To

address these issues, the microservices architectural style has been proposed, which

1https://martinfowler.com/articles/microservices.html

9

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

allows for decomposing a monolithic application into smaller, loosely coupled services

that can be developed, deployed, and scaled independently [8].

Dragoni et al. [8] provide a detailed analysis of how microservices can be designed

and implemented to address the limitations of traditional monolithic architectures.

They introduce scalability and maintainability as the most important features pro-

vided by the microservice paradigm. Their work highlights the benefits of adopting

a microservice architecture, including improved fault isolation, continuous delivery,

and the ability to deploy components independently.

This chapter reviews the key contributions in the field of microservice migration,

focusing on the challenges and solutions associated with transitioning from mono-

lithic to microservice architectures. The related works are organized into several sec-

tions: Challenges in Migration, which discusses the technical and organizational

challenges faced during migration; Approaches for Microservice Identification,

which reviews various methodologies for identifying microservice candidates; Grad-

ual Migration, which explores works which have studied incrementally transitioning

to microservices; and Single Source of Truth, which addresses the importance of

maintaining a unified data store.

2.2 Challenges in Migration

Migrating from monolithic systems to microservice architectures presents numerous

challenges that organizations must consider to achieve successful transitions. These

challenges encompass both technical and organizational aspects, requiring careful

planning and execution [8, 13, 16].

Fritzsch et al. [11] conduct an empirical study on the intentions, strategies, and

10

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

challenges faced by organizations transitioning from monolithic systems to microser-

vice architectures. Surveying 23 companies, the study identifies the primary moti-

vations for migration as achieving greater scalability, improving maintainability, and

enabling faster development cycles. The study defines two migration strategies: (i)

the Big Bang approach and (ii) the iterative approach. Notably, none of the surveyed

organizations used the Big Bang approach due to its complexity and time-consuming

nature. Instead, the iterative approach, or Strangler pattern, is commonly adopted

and is the basis for the migration strategy in our tool. The study also highlights

several challenges, including the complexity of decomposition, managing data consis-

tency across distributed services, cultural and organizational changes, and technical

debt. Our research, along with other studies mentioned in the following section,

focuses on addressing the first challenge, decomposition complexity.

Salii et al. [25] provide an extensive analysis of the benefits and challenges associ-

ated with migrating from monolithic architectures to microservices through real-world

case studies from various organizations. The study identifies key benefits, including

improved scalability, better fault isolation, enhanced development and deployment

agility, and the ability to perform independent updates, leading to quicker release

cycles and reduced time-to-market. However, the migration process also presents sig-

nificant challenges, such as increased complexity in managing a distributed system,

ensuring data consistency and transactional integrity, and requiring substantial or-

ganizational and cultural changes. Additionally, dealing with existing technical debt

and the performance overhead of inter-service communication are noted as obstacles.

11

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

2.3 Approaches for Microservice Identification

The identification of microservices within existing software systems has been a signif-

icant focus of research in recent years. Numerous approaches have been proposed to

extract microservice candidates from monolithic architectures, each employing var-

ious techniques to achieve this goal [9, 13, 16, 19, 28]. These methodologies aim

to identify cohesive, loosely coupled services that align with business functionalities

and can be independently developed, deployed, and scaled. The following sections

will explore several key approaches for microservice identification, highlighting their

methodologies, advantages, and limitations.

Filippone et al. [9] propose a method for identifying microservices within a mono-

lithic system using graph clustering and combinatorial optimization. They utilize

static code analysis (SCA) to create a knowledge graph that includes entities and

methods as nodes. The Louvain algorithm is then applied to find communities within

the knowledge graph and a subgraph that consists only of entities as nodes. Sub-

sequently, they optimize the microservice architecture using an Integer Linear Pro-

gramming (ILP) model. In this thesis, we build upon the work of Filippone et al. [9]

by employing their approach as a foundation for iteratively identifying microservices.

Unlike their single-iteration method for identifying microservice candidates, we adopt

a gradual migration pattern for the identification of new microservices.

Trabelsi et al. [28] introduce a type-based approach for identifying microservices

from legacy monolithic applications. The main contribution of this paper is the

combination of machine learning and semantic analysis to automate the microservice

identification process. By analyzing the types and relationships within the legacy

codebase, the proposed method uses machine learning models to detect patterns and

12

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

dependencies that suggest potential microservice boundaries. Similar to our approach,

they utilize a graph-based representation to identify microservices. However, unlike

our iterative method, their migration is executed in a single iteration.

Gysel et al. [13] introduce a systematic approach for identifying microservice can-

didates from monolithic applications, called Service Cutter. Similar to our method,

Service Cutter utilizes a graph-based clustering approach to identify microservices.

However, it differs by using software specification artifacts (SSAs) such as use cases

and Entity-Relationship models as input, whereas our approach relies on source code

as the input. Their methodology applies a set of 16 coupling criteria to construct

an undirected weighted graph, which is subsequently analyzed to identify potential

microservice candidates.

Kaminura et al. [16] present a methodology for identifying microservice candi-

dates within monolithic application code through static code analysis (SCA). Similar

to our approach, this paper leverages SCA to extract semantic information for clus-

tering using proximity measures or topic modeling. Their method employs a mix of

annotations and a naming convention to classify different types of nodes; for exam-

ple, methods containing set or add in their names are identified as being responsible

for writing data. In contrast, our approach uses a comprehensive list of annotations

to determine node types, which provides a more standardized identification process.

A notable limitation of Kaminura et al.’s work is the lack of consideration for the

granularity of microservices during the decomposition process. In comparison, our

methodology explicitly addresses microservice granularity to ensure that the services

are appropriately sized.

13

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Li et al. [19] proposed a novel method for extracting microservices from mono-

lithic applications by constructing a knowledge graph. Similar to our approach, they

build a knowledge graph, but their graph focuses solely on entity-entity relationships.

In contrast, our method includes method-entity and method-method relationships,

providing a more detailed representation. Additionally, unlike our approach, Li et

al.’s method requires manual input from users.

Brito et al. [6] present a novel approach for identifying microservices within mono-

lithic applications using topic modeling. They create a knowledge graph based on

semantic analysis. By extracting topics that represent coherent clusters of function-

alities, their approach helps to identify potential microservice boundaries that are

aligned with the business logic and domain-specific concepts of the application. In

this approach, the weight of nodes in the graph is determined by the topic distribu-

tion similarity between nodes. Similar to our method, they use graph representation

and clustering algorithms to identify microservices.

In terms of using static and dynamic data at the same time, Matias et al. [20]

present a case study focused on determining microservice boundaries through the com-

bined use of static and dynamic software analysis techniques. The main contribution

of this paper is the demonstration of how this combined approach can effectively

identify cohesive microservice candidates within a monolithic application by leverag-

ing both structural dependencies and runtime interactions. The study reveals that

combining static and dynamic analysis provides a comprehensive view of the system,

aiding in the identification of potential microservices by analyzing code dependen-

cies, communication patterns, and runtime behavior. Despite its effectiveness, the

approach is complex and resource-intensive, generating a large volume of data that

14

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

can be challenging to process and interpret.

2.4 Gradual Migration

Although there are various approaches in the literature, only a limited number have

employed the Strangler Fig Pattern as a primary strategy for incremental decomposi-

tion. This pattern involves the gradual replacement of parts of the monolithic system

with microservices, providing a practical and less disruptive pathway for migration.

In this section, we review studies that have leveraged this pattern, examining their

methodologies and outcomes.

Volynsky et al. [29] introduced the Architect framework, which facilitates the

migration process and enables the creation of a reliable architecture for distributed

applications. They transitioned from a shared database pattern to a database-per-

microservice pattern using an iterative approach rather than a big bang approach.

Li et al. [18] present a case study on the migration of a monolithic application to

a microservice architecture using the Strangler Fig pattern. The main contribution

of this paper is the detailed examination of the practical application of the Stran-

gler Fig pattern, highlighting its benefits such as reduced risk, continuous delivery of

new features, and improved maintainability through an incremental migration pro-

cess. The study finds that the pattern allows for a smoother transition by isolating

changes to specific parts of the system. However, it also identifies challenges like the

initial complexity of setup, managing dependencies, and ensuring data synchroniza-

tion. While their work utilized the Strangler Fig pattern for a specific case study with

an emphasis on the migration process, this thesis extends the works of this paper by

developing a tool for microservice identification that uses the Strangler Fig pattern,

15

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

facilitating the identification of microservices during the migration.

2.5 Single Source of Truth

In this work, we utilize data from various sources, both static and dynamic. Therefore,

it is essential to ensure the consistency of the data before using it.

Müller et al. [21] introduces an open stack framework designed to create a unified

data source for software analysis and visualization. The main contribution of this

paper is the development of a comprehensive framework that integrates various tools

and technologies to gather, store, and visualize software data from multiple sources.

This framework aims to facilitate better understanding and management of software

systems by providing a holistic view of the software’s structure and behavior. In this

thesis, we leverage the concept of a unified data store [21] to ensure the reliability

and consistency of data before using it.

In this work, we integrate data from various sources, including both static and

dynamic data analysis. The heterogeneity of these data sources presents challenges in

ensuring their accurate and consistent use. To avoid inaccuracies and potential dis-

crepancies in our results, it is crucial to establish a unified data store. This approach

ensures that all data, regardless of its origin, is processed, stored, and analyzed in a

coherent manner. By implementing this unified data store, we aim to enhance the

reliability and consistency of our analysis and improve the overall accuracy of our

findings.

16

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

Chapter 3

Technical Approach

3.1 Motivation

As monolithic systems grow, they face increasing challenges in scalability and main-

tainability, often necessitating a shift to a microservices architecture. However, iden-

tifying the appropriate services within a monolith is complex and time-consuming,

particularly when migrating incrementally rather than using a big bang approach.

The Strangler Fig Tree pattern, which supports gradual migration, offers a more

manageable and less risky transition by progressively replacing monolithic compo-

nents with microservices.

Existing approaches to microservice identification often rely on a single decompo-

sition at the beginning of the process, which may not adapt well to ongoing changes

in the monolith. In contrast, our framework iteratively reassesses and refines the

decomposition before each migration step, addressing the limitations of current tools

that do not fully accommodate the incremental nature of most real-world migrations.

17

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

This chapter will explore the technical details and challenges involved in imple-

menting our approach.

3.2 Overview of the Approach

The ultimate goal of this framework is to assist users in identifying and extracting

microservices from a monolithic architecture in a gradual and systematic manner.

This process is structured to facilitate a smooth transition, allowing for the progressive

migration of components while ensuring the system remains functional throughout.

The approach can be summarized in the following steps.

3.2.1 Step 1: Initial Setup

The initial setup involves configuring the foundational infrastructure required to sup-

port the microservices architecture. This setup is essential for enabling the seamless

operation and communication of services within the system. This phase emphasizes

the importance of establishing core infrastructure elements that will vary depend-

ing on the specific needs of the system and the chosen architectural patterns. In this

phase, users are encouraged to identify and implement the infrastructural components

that best suit their architecture.

Below, we outline some of the most commonly used infrastructural elements in

microservices architecture. While implementing these components is not mandatory,

they offer several advantages in terms of efficiency, stability, and scalability. Users

can select from these or incorporate other elements according to their specific require-

ments.

18

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

• Service Registry: Manages service discovery, allowing microservices to find

and communicate with each other dynamically, thus decoupling the system

components.

• API Gateway: Acts as a single entry point for all client requests, routing

them to the appropriate microservices. It helps in load balancing, security, and

monitoring, and simplifying the interaction between clients and services.

• Configuration Server: Centralizes configuration management, allowing mi-

croservices to retrieve their configuration settings from a central location. This

ensures consistency and simplifies the management of configuration changes

across the system.

• Circuit Breaker: Protects the system from cascading failures by monitoring

and limiting the number of failed requests between microservices. If a service

fails, the circuit breaker can stop further attempts to call it, allowing the system

to maintain overall stability.

• Load Balancer: Distributes incoming network traffic across multiple microser-

vices, ensuring no single service becomes overwhelmed. This helps in achieving

high availability and reliability by efficiently managing resource utilization.

• Message Broker: Facilitates asynchronous communication between microser-

vices by allowing them to exchange information through messages. This decou-

ples services and improves system resilience by enabling non-blocking commu-

nication, often in an event-driven architecture.

19

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

3.2.2 Step 2: Decomposing the Monolith

The core function of our framework is to determine the decomposition of the mono-

lithic project. This process can be divided into three distinct phases:

Analysis Phase

In this phase, static code analysis and dynamic analysis are conducted on the mono-

lithic project to create a knowledge graph. This graph models the entire monolithic

system, transforming the problem of microservice identification into a problem of find-

ing cohesive and loosely coupled communities within the graph [19]. The knowledge

graph serves as the foundational input for the subsequent phases.

Community Detection Phase

Using the knowledge graph, the Louvain algorithm [5] is applied to detect communities

within the graph and one of its subgraphs. Although these communities may appear

to be potential microservice candidates, they still lack some key features required

for effective microservices, such as the appropriate granularity. Therefore, further

refinement is necessary to ensure these communities meet the essential characteristics

and constraints of microservices. This refinement process is addressed in the next

phase.

Optimization Phase

The communities identified in the previous phase are further refined using an Integer

Linear Programming (ILP) model, which addresses a variant of the Multiway Cut

problem [4]. This model incorporates specific constraints to ensure the identified

20

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

communities meet the criteria for effective microservices. The output of this phase

is a list of microservice candidates along with a few metrics associated with each of

them. We will discuss further the algorithm in Section 3.3.

3.2.3 Step 3: Selecting the Next Microservice

The user must select one of the microservice candidates for implementation from

the decomposition suggested in the previous step. Experts believe that complete

automation of this process is not feasible [18]. While metrics such as cohesion and

coupling provided in the previous step can aid in this decision, empirical evidence

suggests that user knowledge of the system’s bounded context often yields better

results. Therefore, users are encouraged to make their selection based on both metric

comparisons and their expertise.

3.2.4 Step 4: Implementing the Microservice

In this step, the selected microservice candidate is implemented. This involves ex-

tracting the microservice from the monolithic system and ensuring it interacts cor-

rectly with the remaining parts of the system. The goal is to maintain overall system

functionality without disruption.

3.2.5 Step 5: Evaluating the Remaining Monolith

After implementing the microservice, the user assesses whether the remaining mono-

lithic system is small enough to be considered a microservice itself. If it is, the migra-

tion process concludes with the remaining monolith becoming the final microservice.

If not, the remaining system undergoes further decomposition. The process iterates

21

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

by treating the remaining monolith as the new system to be analyzed and decom-

posed, returning to Step 2.

3.3 Monolith Decomposition

The core of our framework is designed to identify and extract microservice candidates

from a monolithic project using static and dynamic analysis, graph-based community

detection, and optimization techniques. This section offers a detailed explanation of

the decomposition process, which comprises three primary phases: Analysis, Graph

Decomposition, and Optimization.1

3.3.1 Analysis

The goal of this phase is to represent the system as a knowledge graph. While

previous works such as Filippone et al. [9] primarily use static code analysis (SCA)

to construct the graph, our approach expands on this by integrating both static and

dynamic data. Additionally, unlike Filippone et al.’s work, which does not account for

the frequency of each relationship, our method incorporates the number of occurrences

of a relationship into its final weight.

Static Code Analysis

In our system analysis, we leverage the common use of layered architectures in web ser-

vice development, where methods in the presentation layer handle incoming requests

and call methods in the lower layers down to the persistence layer and database [30].

1This section is largely based on the work of Filippone et al. [9]

22

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

We abstract these layers into two main layers: a “logic” layer, comprising both pre-

sentation and business layers, and a “persistence” layer. This abstraction allows us

to create a graph representation that captures the relationships among components,

considering the role of each layer in the system.

Our analyzer tool parses the code to classify the system’s business logic and

domain entity classes into these layers. It utilizes framework annotations (e.g.,

@Controller,@Service,@Repository,@Entity) to identify the technical role of each

class and determine whether it represents a domain entity. This automated classifica-

tion can be manually refined to enhance accuracy, providing a detailed and structured

view of the system’s architecture.

After allocating the classes into their respective layers, the tool inspects each class

to identify the declared methods. It then recursively traverses the code’s syntax tree

to collect method calls and references to entities. For the graph representation, a

node is created for (i) each method from classes in the logic and repository layers,

and (ii) each entity class. Relationships between methods and entities are represented

as directed arcs in the graph. We define five types of arcs, each representing a specific

type of relationship:

• Calls: Arcs are added between method nodes when one method calls another

method.

• Uses: Arcs are created between methods and entities if a method references an

entity, such as instantiating an object or accessing its values.

• Persists: Arcs connect methods and entities if a method in the persistence

layer reads from or writes to a database entity.

23

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

• References: Arcs link entities if one entity references another, representing

association, aggregation, and composition relationships in the domain model.

• Extends: Arcs denote a generalization relationship if one entity extends an-

other entity.

While this concept can be applied to layered architecture projects in any language,

our tool currently only includes a static code analyzer for Java Spring framework

projects. However, our framework provides an environment for developing static code

analyzers for other languages. When developing a new static code analyzer for other

languages, it is crucial to account for the differences in annotations across various

programming languages and frameworks.

Dynamic Analysis

Dynamic data is obtained through dynamic analysis, which involves monitoring and

profiling the system’s runtime behavior. This analysis provides insights into how the

system operates in real-time. Monitoring and profiling tools are used to observe and

record the method call stacks during the system’s execution. Dynamic data used in

this project is essentially a call tree. However, different tools may represent the call

tree in various formats and structures, generally, call trees are represented by a list

of methods as nodes and a list of pairwise relationships between these nodes.

To collect dynamic data, the profiling tool must be integrated with the running

project. After integration, we execute a series of predefined scenarios on the project,

ensuring these scenarios capture all the functionalities provided by the tool. This

approach ensures comprehensive coverage of the system. Once profiling is complete,

24

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

the output is stored as either a CSV or XML file. 2

After extracting the dynamic data, we process it to generate a list of methods and

their call relationships, referred to as DCalls.

Building the Knowledge Graph

At this stage, we have a list of method and entity nodes, as well as a list of arcs

between these nodes. These arcs can be categorized into six different types, each with

a specific weight coefficient used for calculating their final weight. Table 3.1 shows the

coefficient for each arc type, sorted in ascending order by their value. Similar to the

system layers, these coefficients can be manually adjusted to meet specific application

domains and requirements.

Arc Type Weight Coefficient
Extends 0.0
References 0.2
Uses 0.6
Calls 0.8
DCalls 0.9
Persists 1.0

Table 3.1: Weight coefficients for each arc type.

Although the coefficients provided in Table 3.1 are set as default values for each

arc type, they are not rigid and can be refined by users according to their specific

needs. These values, derived from experimental results, may not represent the ab-

solute best possible values but have demonstrated good practical outcomes across

different projects. The weights assigned to the arcs indicate the significance of the

2As discussed in Chapter 4, we use two different profiling tools to store the results of dynamic
analysis on two separate projects. Further details on this process can be found in Section 3.4.

25

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

relationships between nodes: the higher the weight of an arc, the stronger the likeli-

hood that the methods and/or entities at its endpoints should be grouped within the

same microservice.

The order of these values is partially based on the effectiveness of each arc type in

grouping nodes into a microservice. For instance, the Persists arc type is given the

highest weight of 1, which is logical because a Persists arc represents a relationship

between a method and an entity in the database. Since the method has direct access

to the entity, they are more likely to reside within the same microservice, justifying

the high weight assigned to Persists. Similarly, DCalls has a higher weight than

Calls because runtime method calls (captured by DCalls) are more indicative of

the true relationships between methods. For example, a Calls relationship identified

through static code analysis might never actually occur during runtime, making it less

reliable than a DCalls relationship that actually happens in runtime. The Extends

arc has a coefficient of 0, meaning it does not influence whether two entities should

be grouped into the same microservice.

As mentioned before, there is another input that affects the final weight of each

arc: the frequency of occurrence of each relationship. Let’s explain this with an

example:

public void A(){

B();

C();

B();

}

In this example, method A() calls method B() twice and method C() only once.

26

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Therefore, the frequency of the Calls relationship between A and B is 2, and between

A and C is 1. We count the number of occurrences of each type of relationship and

use it as a parameter for calculating the final weight of the graph.

The output of this phase is a directed graph G = (V,A). Each node i ∈ V is as-

signed a type ti ∈ {Method, Entity}, and each arc (i, j) ∈ A is assigned a relationship

type rij ∈ {DCalls, Calls, Uses, Persists, References, Extends}. Additionally, each

arc (i, j) is assigned a weight wij.

To calculate the final weight of the edges, we use Equation (3.3.1), where frequencyij

represents the number of occurrences of an arc.

wij = coefficient(rij)×
(

1 +
frequencyij − 1

10

)
(3.3.1)

Regarding Formula (3.3.1), the intention was to account for the importance of

relationships that appear multiple times in our graph without exaggerating their

significance. For example, a call that occurs twice does not necessarily imply that it

is twice as important as a call that happens only once.

The graph built in this step forms the foundation for our subsequent computa-

tions. While Filippone et al. [9] construct their knowledge graph instantly in memory,

making it easily accessible for the next steps, this approach is feasible primarily be-

cause they rely solely on static data. However, our approach incorporates both static

and dynamic data, introducing new challenges that must be addressed.

To tackle these challenges, we make use of the Single Source of Truth (SST)

paradigm. In Section 3.4, we will discuss these challenges in detail, along with the

technical aspects of the SST. By building our knowledge graph on the SST, we ensure

that we can efficiently fetch the required parts of the graph for the next steps of our

27

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

process.

3.3.2 Graph Decomposition

As previously mentioned, when representing the system as a graph, the challenge of

identifying microservices transforms into the task of finding loosely coupled and highly

cohesive communities within the graph [19]. Consequently, accurately identifying

these communities is vital for determining high-quality microservice candidates.

Several community detection algorithms exist, including the Girvan-Newman (GN)

algorithm [12], [22], the Kernighan-Lin (KL) algorithm [17], the Spectral Bisection

algorithm [2], and the Louvain algorithm [5]. Among these, the Louvain algorithm

stands out due to its superior features, such as the lowest time complexity, higher

cohesion, and stability [19]. Stability is crucial as it ensures the algorithm does not

produce entirely new communities with each run.

The Louvain algorithm detects communities by maximizing a modularity score,

which measures how densely connected the nodes are within a single community while

maintaining fewer connections between different communities [23]. Equations (3.3.2)

and (3.3.3) define the modularity heuristic function [23] that the Louvain algorithm

optimizes to evaluate the partitioning of a community:

Q =
1

2m

∑
(i,j)

[
Aij −

kikj
2m

]
δ(ci, cj), (3.3.2)

δ(u, v) =


1 if u = v

0 if u 6= v

(3.3.3)

28

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

where Aij represents the weight on the edge connecting nodes i and j. m is

the sum of the weights of all edges in the graph, and ci is the community to which

node i currently belongs. The term ki represents the sum of the weights of all edges

connected to node i:

ki =
∑
j

Aij, (3.3.4)

Being unsupervised, the Louvain algorithm does not require the number of com-

munities to be predefined or the size of the communities [6]. In this work, we use

the Python implementation of the Louvain algorithm provided by the communities

Python package3. In this implementation, the Louvain method includes a property

called resolution. The resolution parameter influences the granularity of the detected

communities: higher values of resolution lead to the identification of more, smaller

communities, whereas lower values result in fewer, larger communities. The default

value for resolution is set to 1. Users have the option to adjust this variable if they

believe it will yield better results.

Through my experiments with the Louvain algorithm, I observed that increasing

the resolution parameter from 1 to 1.5 generally resulted in the detection of one

additional entity cluster, and consequently, one more microservice. However, working

with higher resolution values also introduced the risk of producing microservices that

were too small to be practical. Conversely, using lower resolution values tended to

result in fewer, but larger, microservice candidates. After testing a range of resolution

settings, I decided to keep the default resolution value at 1 for our approach. Given

that our method is iterative, with users implementing one microservice per iteration,

3https://pypi.org/project/communities/

29

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/
https://pypi.org/project/communities/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

setting the resolution to 1 strikes a balance between granularity and manageability.

Additionally, I provided users with the flexibility to adjust the resolution parameter

according to their specific needs, allowing them to fine-tune the results based on the

context of their project.

By applying the Louvain algorithm to our system representation, we obtain a

cohesive set of communities comprising nodes from all layers of the system. While

this approach is beneficial as it considers relationships between nodes with differ-

ent roles (i.e., entities, controller interfaces, business logic) which is required to offer

complete functionalities, these communities cannot generally be considered accept-

able microservice candidates. The absence of structural constraints in the candidate

microservices leads to the formation of communities that may consist solely of entity

nodes or solely of method nodes, thus failing to form complete and standalone mi-

croservices. Additionally, there is no assurance regarding the appropriate granularity

of these communities. Without constraints on the number of microservices to be

identified, they are likely to be too fine-grained, especially when derived from graphs

representing large systems with a high number of methods. Consequently, these com-

munities may not include all the nodes necessary to realize a business functionality.

To address these issues, we applied the Louvain community detection algorithm

to the information graph in two different ways: (i) on the complete information

graph, including all architectural layers, to obtain cohesive sets of nodes; and (ii) on

a subgraph containing only the entities related to the persistence layer, which plays

a crucial role in maintaining the domain context [7].

Graph Communities from the Complete Graph The execution of the Lou-

vain algorithm on the complete information graph yields a set C of n communities

30

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

C1, C2, . . . , Cn, which include nodes representing entities and methods across all ar-

chitectural layers. These communities are not sufficient to be considered complete

microservices due to their fine granularity. For instance, methods related to a sin-

gle entity might be scattered across multiple communities. This suggests that each

community may lack the comprehensive set of functionalities necessary to fulfill a

business capability, thereby failing to define a bounded context. This may result in

the communities identified in this phase being highly coupled, despite their cohesive-

ness. The inherent cohesiveness of these communities can be leveraged to improve

cohesion in the final microservice architecture.

Entity Clusters We derive the subgraph of domain entities by considering the

nodes of type Entity that have relationships with the persistence layer and the arcs of

type References and Extends. Applying the Louvain algorithm to this graph yields a

set K of m communities K1, K2, . . . , Km of Entity nodes. For clarity, we will refer to

the communities obtained from the entire graph as communities, and those obtained

from the domain entities subgraph as entity clusters.

In the optimization phase, we use both communities and entity clusters to achieve

cohesion and determine the appropriate granularity of the microservices.

3.3.3 Optimization

To optimize the microservice architecture, we employ an Integer Linear Programming

(ILP) model that addresses a variant of the Multiway Cut problem as formulated in

[3]. We have introduced specific constraints to define the structure of the microservices

to be identified. The primary goal of this optimization is to partition the nodes of

the information graph into m microservices, where m represents the number of entity

31

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

clusters determined in the previous step. The objective is to minimize the coupling

between microservices. Coupling is quantified as the sum of the weights of the arcs

that connect different microservices.

We formalize the problem as follows:

Given a graphG = (V,E), with nodes V and edges E, and a type ti ∈ {Method, Entity}

for each node i ∈ V , and an associated weight wij for each edge (i, j) ∈ E, the goal

is to partition V into m sets {M1,M2, . . . ,Mm} = M such that: (i)
⋂
Mi = ∅;

(ii)
⋃
Mi = V ;

(iii) Each Mk ∈M contains at least one node i where ti 6= Entity;

(iv) The sum of weights wij, where i ∈Mh and j ∈Mk with h 6= k, is minimized.

Each set M1,M2, . . . ,Mm represents a potential microservice. The problem is

modeled using an ILP formulation with the following decision variables, as described

in [3]:

xik =


1 if node i is in microservice Mk

0 otherwise

(3.3.5)

yij =


1 if edge (i, j) has its endpoints within the same microservice

0 otherwise

(3.3.6)

32

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

zkij =


1 if edge (i, j) has both its endpoints in microservice Mk

0 otherwise

(3.3.7)

We define the following constraints:

zkij − xik ≤ 0 ∀Mk ∈M, ∀(i, j) ∈ E (3.3.8)

zkij − xjk ≤ 0 ∀Mk ∈M, ∀(i, j) ∈ E (3.3.9)

xik + xjk − zkij ≤ 1 ∀Mk ∈M, ∀(i, j) ∈ E (3.3.10)

yij =
∑

Mk∈M

zkij ∀(i, j) ∈ E (3.3.11)

∑
k

xik = 1 ∀i ∈ V (3.3.12)

∑
i∈V |ti=Method

xik ≥ 1 ∀Mk ∈M (3.3.13)

Constraints (3.3.8) to (3.3.12) originate from the Multiway Cut problem formula-

tion, while constraint (3.3.13) is newly added to ensure methods are included in the

microservices, as they are crucial for exposing interfaces, offering functionalities, and

implementing microservice logic.

33

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

The objective function (3.3.14) aims to minimize coupling among microservices,

defined as the sum of the weights of arcs connecting different microservices:

min
∑

(i,j)∈E

wij(1− yij) (3.3.14)

However, the solution to this optimization model may produce microservices with

low coupling that exhibit several issues. For example, domain entities might be im-

properly assigned to a single all-containing microservice, while others might consist of

a few loosely related nodes, compromising both architectural integrity and functional

completeness.

To achieve domain-driven decomposition and build microservices within bounded

contexts, we assign entities to microservices based on the entity clusters identified

earlier. Thus, for each entity i in the entity cluster Kk ∈ K, i must belong to

microservice k. This is enforced by the following variables:

xik = 1 ∀i ∈ V if i is in entity cluster Kk (3.3.15)

To ensure cohesion, we group all nodes from the same community into the same

microservice, resulting in highly cohesive microservices. Thus, we fix the y variables

as follows:

yij = 1 ∀(i, j) ∈ E if i and j are in the same community (3.3.16)

This approach may lead to an infeasible model if nodes from the same community

belong to different entity clusters. To address this, we use a Fix-and-Relax strategy.

First, we fix the x variables based on entity clusters. Then, for each community

34

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Cc ∈ C, we fix the y variables and check model feasibility. If infeasible, we relax the

fixed y variables for nodes in the community Cc to restore feasibility.

Algorithm 1 Fix-and-Relax algorithm for x and y variables

for entity cluster Kk ∈ K do

for i ∈ k do

Fix xik = 1

end for

end for

for community Cc ∈ C do

for (i, j) ∈ E do

if i ∈ Cc and j ∈ Cc then

Fix yij = 1

end if

end for

if model is infeasible then

for (i, j) ∈ E do

if i ∈ Cc and j ∈ Cc then

Relax yij

end if

end for

end if

end for

The results of this optimization allow the assignment of nodes in the information

graph (i.e., methods and entities) to microservices, thereby defining the architecture

35

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

with the necessary domain-driven design principles.

The output of this algorithm is a list of microservice candidates and metrics as-

sessing their cohesion and coupling which will be used in the next step as described

in Section 3.2.3.

I would like to highlight two key differences between our approach and that of

Filippone et al. First, their work offers a tool that decomposes the entire system in

a single iteration, resulting in a collection of potential microservice candidates. In

contrast, our approach provides a comprehensive framework that facilitates the incre-

mental migration process. It offers a clear roadmap for users and suggests potential

microservice candidates at each step of the migration.

The second technical difference lies in how the information graph is constructed.

Our approach extends the work of Filippone et al. by incorporating dynamic data into

the graph and defining a weight criterion for each edge based on their frequency of

occurrence. The algorithms used for community detection and optimization in both

approaches are largely similar.

3.4 Single Source of Truth

Incorporating dynamic data introduces the challenge of ensuring data consistency.

Static data, derived from static code analysis, can be generated using various tools

and packages. For instance, in this work, we use the javalang Python library4 to

parse the source code. Conversely, dynamic data results from the project’s runtime

behavior, gathered using different profiling tools. For our project, we used VisualVM5

4https://github.com/c2nes/javalang
5https://visualvm.github.io/

36

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

and JProfiler6 for the two different projects that we have tested in Chapter 4.

For a specific project under study, although the static code analyzer and dynamic

data analyzer are analyzing the same project, their outputs may not be consistent.

Let’s consider an example. The raw output of the static code analysis for the Spring

Petclinic project includes two CSV files: one with entries representing nodes and

another representing edges between these nodes. Figures 3.1 and 3.2 display a portion

of these files. We use VisualVM to profile the Spring Petclinic project, with Figure

3.3 illustrating the data extracted from VisualVM. The node numbered 13 in Figure

3.1 corresponds to the same method as the second entry in Figure 3.3. When creating

the graph, it is crucial to ensure that we do not create two distinct nodes for these

data points. Creating separate nodes for data that essentially represent the same

node can lead to contaminated data and consequently, inaccurate results.

Figure 3.1: Nodes from Static Code Analysis

These data sources have different structures. Despite these differences, they share

6https://www.ej-technologies.com/

37

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Figure 3.2: Edges from Static Code Analysis

Figure 3.3: Data from Dynamic Analysis using VisualVM

a commonality: both represent the same components. This similarity forms the

foundation for combining these data sources. In our proposed framework, the result

of static analysis establishes the backbone of the knowledge graph. Dynamic data,

collected at various times, can be incrementally added to the graph to provide a more

accurate representation of the system.

Furthermore, our methodology operates incrementally, resulting in working with

different versions of the software over a period of time. The migration process here is

not merely about decomposing the graph into a few subgraphs. Instead, our approach

involves a systematic process. If we build the graph in memory, we would need to

recreate it each time we need it for further computations. Since the migration process

may take several months to complete, it is not computationally efficient to recompute

the graph each time it is needed. Therefore, it is essential to store the information

graph in non-volatile memory, allowing instant access without the need for heavy

computations. Additionally, as mentioned in the previous paragraph, having the

38

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

graph in non-volatile memory enables us to add new information to the existing

graph, thereby updating and enriching it.

To ensure the data is reliable and consistent, we leverage the Single Source of

Truth (SST) paradigm. SST emphasizes maintaining a single, authoritative source

for all data within a system. By centralizing data storage and access, SST ensures

data consistency and reliability. With SST, all data for all versions are stored in

one location, eliminating the need to process the data to build the graph each time.

We can simply fetch the required parts of the system, reducing memory usage by

avoiding unnecessary data retrieval. Additionally, since the migration process in a

large project may take several months, SST guarantees the availability of our data

throughout this process.

By implementing SST, we not only streamline data management but also enhance

the efficiency and accuracy of our migration process. This centralized approach allows

for seamless updates and integration of new data into the existing graph, ensuring that

our system remains up-to-date and reflective of the current state of the software. As a

result, we can maintain a coherent and comprehensive view of the system, facilitating

better decision-making and more effective project management.

3.4.1 Technical Aspects of SST

This section explains how to use SST from a user perspective. The core of SST is a

Neo4j7 database wrapped by a Node.js Express server. As users of SST, we do not

delve deeply into its implementation. Instead, we focus on the two endpoints provided

for building our graph through these APIs. SST is a general-purpose paradigm. In

7https://neo4j.com/

39

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

our work, we define two small programs called Probes to prepare and transform the

raw output of static code analysis and dynamic data analysis into a format that SST

can accept as a standard input.

We define a Static Code Analyzer probe, responsible for transforming static

code analysis output into a JSON file compatible with SST. The other probe de-

veloped in this work is the Dynamic Data Analyzer probe, which processes and

transforms profiling tool data into the standard format accepted by SST.

The standard format for SST’s APIs is a JSON file containing two properties: a

list of nodes and a list of edges. The node types that we are going to add to SST need

to be defined before inputting them into SST. We use the /api/types API endpoint

to define our node types. This endpoint is a REST POST request that accepts a

JSON file in its body. In this file, we define two node types: Entity and Method. For

each node type, we define a set of properties and a MergeRule, which specifies how

to merge two nodes if they refer to the same component.

After defining the node types, we run the Static Code Analyzer probe to generate

a JSON file containing a list of nodes and edges. Using another REST POST request,

we send this file to the /api/upload-graph endpoint to input it into SST. In the next

step, after extracting the dynamic data using a profiling tool, we use the Dynamic

Data Analyzer probe to generate a new JSON file with the same structure. This

JSON file contains a list of nodes and edges derived from dynamic analysis. Finally,

this data is input into SST to build our comprehensive knowledge graph. At the end,

we fetch the graph from the SST server for further computations.

40

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

Chapter 4

Evaluation

In this chapter, we aim to evaluate the effectiveness, accuracy, and correctness of

our approach by comparing it to other state-of-the-art approaches. Our evaluation

focuses on the following criteria:

1. Independence of Functionality: This criteria follows the Single Responsi-

bility Principle (SRP), which asserts that a service should offer well-defined,

independent, and coherent functionalities to its external clients. We assess this

criterion by calculating the IFN (Interface Number) metric. Independence of

functionality is crucial as it ensures that each microservice is focused on a spe-

cific business capability, making the system easier to maintain and evolve.

2. Modularity: A well-modularized system should have high cohesion within its

components and low coupling between them. We evaluate modularity using

two metrics: average cohesion and average coupling. High cohesion indicates

that the internal entities of a service are closely related and work well together,

while low coupling suggests that entities across service boundaries are minimally

41

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

dependent on each other. Modularity is essential for reducing complexity and

enhancing the maintainability and scalability of the system.

These criteria were selected because they directly relate to the fundamental prin-

ciples of microservice architecture, which emphasize creating services that are in-

dependent, modular, and loosely coupled. Evaluating our approach based on these

criteria allows us to determine its effectiveness in achieving these core architectural

goals. Additionally, these criteria are commonly used in similar works in the literature

[6, 9, 13, 15, 16, 30], providing a standardized basis for comparison and validation of

our approach.

4.1 Evaluation Metrics

IFN Metric Regarding the independence of functionality, we use the IFN metric,

which measures the average number of interfaces exposed by a microservice. It is

defined as follows:

IFN =
1

|M |
∑

Mk∈M

ifnk, (4.1.1)

where |M | is the set of identified microservices and ifnk is the number of interfaces

exposed by the microservice k. According to our system representation, we define

an interface as a set of methods of the logic layer, without incoming edges, that are

connected to the same set of entity nodes. A microservice focused on the single re-

sponsibility principle is expected to have only one interface, i.e., to offer functionalities

related to a single entity. Hence, the lower the value of IFN (down to 1), the more

likely the microservice architecture is to follow the single responsibility principle.

42

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Average Cohesion Average cohesion shows how cohesive the whole set of identi-

fied microservices are. In the graph representation of the system, cohesion for each

microservice is defined as the ratio between the sum of the weights of inner arcs (i.e.,

those arcs with endpoints in the same microservice) and the sum of the weights of

all arcs outgoing from the nodes of a microservice (essentially all the arcs that have

at least one endpoint in a microservice). Average cohesion is the average of cohesion

over all identified microservices:

AverageCohesion =
1

|M |
∑

Mk∈M

innerk
outerk

, (4.1.2)

where M is the set of identified microservices. The values of innerk and outerk are

obtained as follows:

innerk =
∑

(i,j)∈E|i,j∈Mk

wij, (4.1.3)

outerk =
∑

(i,j)∈E|i∈Mk

wij. (4.1.4)

The ideal value for average cohesion in a microservice architecture is 1, indicating

that the elements within each microservice are highly interrelated. A high cohesion

value signifies that all methods within a microservice have strong relationships with

the entities included in the same microservice. This implies that a microservice with

high cohesion is likely well-aligned with a specific bounded context. Conversely, a

poor microservice decomposition may exhibit low cohesion, as many methods may

need to reference entities located in other microservices.

43

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Average Coupling Average Coupling measures the degree of coupling between the

identified microservices. In the graph representation, it is calculated as the average

weight of the arcs whose endpoint nodes belong to different microservices.

AverageCoupling =
1

|M |
∑

(i,j)∈E|i∈Mh,j∈Mk,h6=k

wij, (4.1.5)

where M is the set of identified microservices, Mh,Mk ∈ M , and wij is the weight

of the arc (i, j). The lower the average coupling, the less coupled a microservice

architecture is.

4.2 Performed Experiments

To evaluate our approach, we selected two publicly available projects implemented

in the Java language1: the Spring Petclinic Project2 and MyBatis JPetStore3. These

monolithic projects have previously been used in the evaluation of related works on

microservice decomposition. They are suitable choices for our study as they allow for

direct comparison with other state-of-the-art approaches. Their moderate size and

representative features make them ideal for demonstrating and testing decomposition

methodologies. Table 4.1 shows the size of each tested project.

Project Number of Classes Lines of Code Number of Entities
Petclinic 24 805 10
JPetStore 25 1475 9

Table 4.1: Comparison of Projects

The Spring Petclinic Project is a sample application designed to demonstrate

1https://www.java.com/
2Obtained in March 2024 from https://github.com/spring-projects/spring-petclinic
3Obtained in April 2024 from https://github.com/mybatis/jpetstore-6

44

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

the use of the Spring framework4 in building a simple web-based clinic for managing

veterinarians, pets, and their owners. It showcases best practices for building a layered

architecture with Spring and includes functionalities such as adding, editing, and

viewing information about veterinarians, pet owners, and their pets. This project is

commonly used in related works due to its clear structure and comprehensive feature

set, which are representative of real-world applications.

The MyBatis JPetStore Project is an open-source application that demonstrates

the use of MyBatis5, an object-relational mapping framework, in a web-based pet

store. The project includes features such as product browsing, order processing, and

customer management, providing a comprehensive example of a monolithic appli-

cation with a well-defined domain model. Its moderate complexity and variety of

functionalities make it a valuable benchmark for testing decomposition approaches.

In the following sections, we will evaluate our approach on these two projects.

Unlike other decomposition approaches, which can be assessed after a single iteration,

evaluating our approach is more complex. Other methods can be evaluated based

on the result of a single migration iteration. However, our approach requires the

entire migration process to be completed before the final decomposition is achieved.

Therefore, we need to use the framework throughout the entire migration process

to obtain a complete result for comparison with other approaches. In real-world

scenarios, a team of experts typically oversees the migration process, and the extent

of their impact on the final outcome is closely tied to the depth of their knowledge

about the system and its context. For this work, since the projects are used solely for

testing purposes and lack real-world application, I will assume the role of the expert

4https://spring.io/
5https://blog.mybatis.org/

45

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

during the migration process in the following experiments. For both experiments, the

process and each decision made are documented. After the final iteration, the results

will be compared with those of other approaches.

All the artifacts and source code of our project are accessible from:

https://github.com/ace-papers/hassan-masc

4.3 Experiment 1: Spring Petclinic

In this section, we elaborate on the migration process for the Petclinic project. Given

that our approach performs migration iteratively, each iteration is detailed in its own

subsection. At the end, we compare our approach with other approaches.

4.3.1 Initial Setup

In the initial setup phase (iteration 0), we do not start decomposing the monolithic

project yet. Instead, we focus on tasks that are essential and beneficial for the entire

process.

Static Data The initial step is to create the graph in our database. To achieve

this, we run the Static Code Analyzer probe on the project to obtain the static data

as a JSON file. This data is then added to the SST to construct the knowledge graph.

Dynamic Data Next, we use the VisualVM tool to capture the dynamic call stack

of the Petclinic project. By setting the tool to profiling mode and running a compre-

hensive set of scenarios, we aim to achieve high code coverage. After executing all

scenarios, we take a snapshot of the forward calls as a CSV file. Then, we use the

46

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/
https://github.com/ace-papers/hassan-masc

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Dynamic Data Analyzer probe to process this data into a JSON file, which is added

to the SST to enrich the existing knowledge graph.

Figure 4.1: Monolith and Microservices projects before iteration 0.

Figure 4.1 illustrates the state of the monolithic and microservices projects before

iteration 0. The monolithic project comprises 10 entities, three of which are super-

classes inherited by other classes and do not exist as separate tables in the database.

These three entities are: BaseEntity, NamedEntity, and Person. We will observe the

progression of the monolithic and microservices projects over time, following each

iteration.

Initial Setup In this step, we are ready to start the migration using our framework.

Before proceeding, we implement a configuration server and a service registry

server as the first two microservices of the project, as described in Section 3.2.1. The

service registry is responsible for managing service discovery, which allows microser-

vices to dynamically find and communicate with each other, effectively decoupling

47

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

the system components. The configuration server centralizes configuration manage-

ment, enabling microservices to retrieve their configuration settings from a central

location. This ensures consistency and simplifies the management of configuration

changes across the system.

Figure 4.2: Monolith and Microservice projects after iteration 0.

4.3.2 Iteration 1

At this stage, we run the tool on the monolithic project. Figure 4.3 shows the output

of the tool for the first iteration. As illustrated, the tool suggests a decomposition

consisting of two microservice candidates. According to the metrics, the two candi-

dates are equal. Both have perfect cohesion values. The coupling is 0, indicating no

edges between these two clusters. Based on our knowledge of the system, we deter-

mine that Candidate 0 is the best option to be implemented as a microservice first.

Consequently, a new microservice named Vet Service is implemented. Figure 4.4

shows the architecture of the monolithic and microservice projects after iteration 1.

48

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Figure 4.3: Output of the tool for the main petclinic project. Total Coupling is the
sum of the weights that have endpoints in two candidates. The sum of the four

numbers in the last four lines shows the unweighted coupling.

4.3.3 Iteration 2

Filippone et al. [9] identify two microservices for the Petclinic project. In our ap-

proach, the decision of when to finish the migration process is left to the expert. At

this stage, I chose to perform one more iteration to identify an additional microservice.

When there is more than one, our tool finds multiple decompositions for the system,

which is the case for the second iteration of this project. Figure 4.8 displays the

output after running the tool on the remaining part of the Petclinic project. Based

on the coupling and cohesion values, Decomposition 2 in Figure 4.6 appears to be

the best choice among the three. However, this decomposition suggests implementing

PetType as the entity in the new microservice. Based on my knowledge of the sys-

tem, this is not a good choice since Pet and PetType are conceptually related, and

separating them into two different microservices does not seem rational. Based on

49

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Figure 4.4: Monolith and Microservice projects after iteration 1.

my knowledge of the system, I decided to go with Decomposition 3. I implemented

the new microservice with Visit as the only entity in it. Figure 4.9 shows the system

architecture after implementing this new microservice.

50

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Figure 4.5: Decomposition 1

Figure 4.6: Decomposition 2

Figure 4.7: Decomposition 3

Figure 4.8: Output of the tool for the remaining part of petclinic project.

51

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Figure 4.9: Monolith and Microservice projects after implementing the new
microservice in iteration 2.

Before concluding iteration 2, we must decide whether to end the process. I believe

the remaining part of the monolithic project is small enough to be considered a new

microservice itself. Therefore, I refactor the remaining monolith project to be the

last microservice defined in this process. As shown in Figure 4.10, there is nothing

left in the monolithic project at the end of the migration process. We now have

three main microservices that perform the core functionalities of the system. We use

these three microservices as the final decomposition of the system and compare the

results with those obtained from other approaches. Additionally, we have two other

microservices: Service Registry and Configuration Server, which are not considered

in the final evaluation of our approach. Notably, the BaseEntity, NamedEntity,

and Person classes do not appear in Figure 4.10. This is because they were deleted

during the refactoring process, though their functionalities are preserved.

52

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Figure 4.10: Monolith and Microservice projects at the end of migration process.

4.3.4 Final Result

Table 4.2 presents the comparison of the results obtained from our approach with

other approaches for the Petclinic project. Filippone et al.’s approach serves as the

baseline. For this project, there exists a gold standard, the Spring Petclinic Mi-

croservices6, which was developed by the same team that created the Monolithic

Spring Petclinic to demonstrate the process of splitting a sample Spring application

into microservices. As shown in the table, the Average Coupling of the decomposi-

tion obtained by our approach is 2, which is higher than both the baseline and the

gold standard. Our results would have matched the baseline if we had concluded

the migration at the end of the first iteration. Notably, our approach achieves better

Average Cohesion compared to the gold standard.

6https://github.com/spring-petclinic/spring-petclinic-microservices

53

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Approach # Microservices Average Coupling Average Cohesion IFN

Kamimura et al. [16] 3 2.07 0.76 1.7

Baseline 2 0 1 2

Gold Truth 3 1.2 0.75 1.7

Our approach 3 2 0.89 1.7

Table 4.2: Result comparison for the Spring Petclinic project.

In this experiment, given the existence of a gold standard, we can compare our

approach’s decomposition with the decomposition of entities in the gold standard

to calculate precision and recall. Precision in this context refers to the proportion of

entities correctly assigned to a microservice out of all entities assigned by our approach

to that microservice. Recall refers to the proportion of entities correctly identified

for a microservice out of all entities that belong to that microservice in the gold

standard. High values of precision and recall indicate that a given microservice owns

the complete set of entities required to fully realize the bounded context, without

including “spurious” entities that may pertain to different bounded contexts. Since

the Spring Petclinic Microservices project has the same decomposition as ours,

the precision and recall for each microservice are both equal to 1.

4.4 Experiment 2: MyBaits JPetStore

In this section, we detail the migration process for the JPetStore project. Similar

to the previous experiment, we provide a comprehensive explanation of each iteration

and the decisions made throughout the process. Finally, we compare our approach

with other state-of-the-art methodologies.

54

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

4.4.1 Initial Setup

For this experiment, the initial setup closely follows the pattern established in the

first experiment. We utilize the Static Code Analyzer and Dynamic Data Analyzer

to construct the information graph in the SST. The only difference is that, in this

project, we use the JProfiler tool to extract dynamic data instead of VisualVM. While

VisualVM provides a CSV file, JProfiler generates an XML file. In both cases, we use

the same Dynamic Data Analyzer, which processes the data and produces a JSON

file containing a list of nodes and edges to be added to the graph. This JSON file is

then uploaded to the SST to enrich the information graph.

Figure 4.11: Monolith and Microservices projects before iteration 0.

Figure 4.11 depicts the state of the monolithic and microservices projects prior to

iteration 0. The monolithic project consists of 9 entities: Item, Product, LineItem,

Sequence, Order, Category, Cart, CartItem, Account. We will observe the progression

of the monolithic and microservices projects over time, following each iteration.

In this experiment, we follow the same initial setup as described in the first exper-

iment. This involves implementing a configuration server and a service registry

55

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

server as the first two microservices of the project, as outlined in Section 3.2.1. The

service registry manages service discovery, allowing microservices to dynamically find

and communicate with each other, thus decoupling the system components. The

configuration server centralizes configuration management, ensuring consistency and

simplifying the management of configuration changes across the system.

Figure 4.12: Monolith and Microservice projects after iteration 0.

4.4.2 Iteration 1

In the first iteration of the JPetStore project, we aim to identify and implement the

initial microservice. Figure 4.13 illustrates the output of the tool for this iteration.

The tool suggests several microservice candidates. Initially, candidates 2 and 3 appear

suitable due to their perfect cohesion scores. However, based on my understanding of

the bounded context, candidate 5, which focuses solely on the Account entity, emerges

as the ideal choice. This entity handles critical functions such as user authentication,

signup, and sign-in, making it suitable to operate as an independent microservice.

Despite its lower cohesion score due to interactions with other methods, its core

56

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

functionality justifies its selection. Consequently, I implemented a new microservice

named Account Service. Figure 4.14 shows the architecture of the monolithic and

microservice projects after iteration 1.

Figure 4.13: Output of the tool for the initial JPetStore project.

Figure 4.14: Monolith and Microservice projects after iteration 1.

We claimed that by incorporating the frequency of relationships between nodes

57

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

and integrating dynamic data, we have enhanced the accuracy of service identifica-

tion compared to state-of-the-art approaches. This is logical, as adding more data

allows us to model the system more comprehensively in the graph. While comparing

average coupling is not ideal in this example—since the inclusion of frequency affects

the weights—we instead focus on unweighted coupling, which is the total number

presented at the end of the output. As shown in Figure 4.13, the output for the JPet-

store project when considering relationship frequency and dynamic data results in a

coupling value of 5 (3 + 2 + 0 + 0). In contrast, Figure 4.15 illustrates the output

without these features, resulting in a coupling value of 8 (5 + 2 + 1 + 0). Although

the average cohesion is slightly higher when these features are not included, this ex-

ample, while limited, demonstrates how the inclusion of these features can lead to a

more decoupled and accurate system decomposition. A more extensive assessment on

a larger project would likely provide a clearer illustration of this improvement.

58

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Figure 4.15: Output of the tool for the initial JPetStore project without considering
the frequency of relationships and dynamic data.

4.4.3 Iteration 2

In the second iteration, based on the comparison in Figure 4.16, the Category service

seems the most suitable candidate for extraction. However, considering the bounded

context, Category is tightly connected to Product and Item entities. Therefore, I

decided to develop a new microservice that combines candidates 2 and 3. This new

microservice, Product Service, includes Product, Item, and Category entities. Fig-

ure 4.17 shows the system architecture after this implementation.

59

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Figure 4.16: Output of the tool for the second iteration on JPetStore project.

Figure 4.17: Monolith and Microservice projects after iteration 2.

4.4.4 Iteration 3

In this step, as shown in Figure 4.18, the best candidate is the one containing the Cart

entity. However, considering the bounded context, Cart and CartItem are conceptu-

ally connected. Thus, a new microservice, Cart Service, is introduced containing

both Cart and CartItem entities. Figure 4.19 illustrates the system architecture after

this iteration.

60

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Figure 4.18: Output of the tool for the third iteration on JPetStore project.

Figure 4.19: Monolith and Microservice projects after iteration 3.

4.4.5 Iteration 4

In the final iteration, we are left with two microservice candidates. These candidates

are interconnected in the graph and conceptually close together. Therefore, devel-

oping Sequence as a new microservice is not advisable due to its close relation with

Order and LineItem entities. Thus, the last microservice, Order Service, includes

61

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Order, LineItem, and Sequence entities. Figure 4.21 shows the architecture at the

end of the migration process.

Figure 4.20: Output of the tool for the fourth iteration on JPetStore project.

Figure 4.21: Monolith and Microservice projects at the end of migration process.

4.4.6 Final Result

Table 4.3 presents the comparison of the results obtained from our approach with

other approaches for the JPetStore project. Filippone et al.’s approach serves as

62

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

the baseline. The table shows the Average Coupling and Average Cohesion met-

rics, along with the IFN (Interface Number) for different approaches. Our approach

demonstrates competitive results in terms of cohesion and coupling, confirming the

effectiveness of the proposed methodology.

Approach # Microservices Average Coupling Average Cohesion IFN

Zaragoza et al. [30] 3 3.13 0.90 2

Selmadji et al. [27] 2 3.8 0.93 2.5

Jin et al. [14] 4 2.25 0.82 1.75

Brito et al. [6] 4 3.1 0.85 1.75

Filippone (BaseLine) 3 0.87 0.97 1.7

Our approach 4 0.75 0.94 1.75

Table 4.3: Result comparison for the JPetStore project.

4.5 Conclusion

In this chapter, we evaluated our approach against other state-of-the-art methodolo-

gies using two publicly available Java projects: Spring Petclinic and MyBatis JPet-

Store. The evaluation criteria focused on the independence of functionality, measured

by the IFN metric, and modularity, assessed through average cohesion and coupling

metrics.

Our approach demonstrated competitive results across both projects. The itera-

tive and incremental process allowed for a systematic decomposition of the monolithic

systems into microservices, effectively balancing cohesion and coupling. This was par-

ticularly evident in the JPetStore experiment, where our approach achieved the lowest

average coupling and high average cohesion, confirming its effectiveness in creating

63

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

well-modularized microservices.

Moreover, the application of dynamic analysis data, along with static analysis,

provided a comprehensive understanding of the system’s behavior, enhancing the

accuracy of the microservice identification process. The use of the SST paradigm

ensured data consistency and reliability throughout the migration, contributing to

the correctness of the results.

Overall, the evaluations indicate that our approach not only meets but often ex-

ceeds the performance of existing methodologies in achieving the fundamental prin-

ciples of microservice architecture. This reaffirms the potential of our framework as

a robust solution for the gradual and systematic migration of monolithic systems

to microservices, ensuring minimal disruption and maintaining system functionality

throughout the process.

64

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

Chapter 5

Conclusion

5.1 Summary of Contributions

This thesis addresses a significant gap in the existing literature regarding the migra-

tion from monolithic architectures to microservices using the Strangler Fig Pattern.

The primary contribution of this work is the development of a semi-automated tool

that aids in the gradual decomposition of monolithic systems into microservices. Un-

like existing tools that typically aim for a single iteration decomposition, our approach

leverages a gradual migration strategy, aligning with real-world practices where such

transitions are implemented step-by-step to minimize risk and ensure continuity.

Our framework builds on the state-of-the-art methodology proposed by Filippone

et al., which uses static code analysis for service identification. We enhanced this

approach by incorporating dynamic analysis data, addressing the challenge of data

consistency and reliability through the Single Source of Truth (SST) paradigm. The

tool developed as part of this research was evaluated using two well-known Java

Spring projects: Spring Petclinic and MyBatis JPetStore. The results demonstrate

65

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

that our tool can effectively identify microservice candidates with high cohesion and

low coupling, validating the practicality and effectiveness of the proposed approach.

The main objectives of this research were to:

• Develop a tool that facilitates the gradual migration from monolith to microser-

vices using the Strangler Fig Pattern.

• Integrate static and dynamic analysis data to improve the accuracy of service

identification.

• Ensure data consistency and reliability through the SST paradigm.

• Evaluate the tool on real-world projects and compare its performance with

existing approaches.

All these objectives have been successfully achieved. The developed tool not

only assists in identifying and extracting microservices but also supports the gradual

migration strategy, which is more aligned with industry practices. The integration of

static and dynamic data has shown to enhance the accuracy of the decomposition,

and the use of the SST paradigm has ensured the reliability of the data used in the

analysis.

The evaluation of the tool on the Spring Petclinic and MyBatis JPetStore projects

showed promising results. Our approach outperformed some of the existing methods

in terms of achieving higher cohesion and lower coupling in the identified microser-

vices. Specifically, our tool’s ability to operate in a gradual manner and refine the de-

composition iteratively is a significant advantage over the single iteration approaches

prevalent in the literature.

66

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

5.2 Threats to Validity

In this section, we discuss potential threats to the validity of our approach and its

evaluation.

User Knowledge Dependency One of the main threats to validity is the high

dependency on the user’s knowledge. In the evaluation of our approach, I acted

as the expert and used my knowledge of the system under study to find the final

decomposition. This introduces a potential bias, as the results are influenced by my

personal understanding and decisions.

Heuristic Nature of Metrics The metrics used for evaluation, such as cohesion

and coupling, are heuristic and might not capture all aspects of an optimal microser-

vice. Different metrics or a combination of metrics could yield different results, po-

tentially influencing the perceived effectiveness of our approach.

External Validity The generalizability of our findings to real-world industrial set-

tings might be limited. The controlled environment of the experiments may not fully

capture the complexities and challenges faced in actual migration projects. To ad-

dress this, future assessments should consider larger and more complex projects that

closely resemble real-world enterprise systems. These projects should feature substan-

tial codebases, diverse technologies, and intricate interdependencies between services,

thereby providing a more rigorous test of the tool’s capabilities.

Language Dependency Another threat to validity is that the current implemen-

tation of the tool only works for Java projects. While the underlying concepts can be

67

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

applied to other programming languages, the tool’s applicability and effectiveness in

non-Java environments remain untested.

Acknowledging these threats provides a comprehensive understanding of the lim-

itations of our study and highlights areas for further research.

5.3 Future Work

While this research has made significant strides in improving the migration process

from monolithic to microservice architectures, there are several areas for future work:

• Expanding the tool to support more programming languages and frameworks.

• Enhancing the dynamic analysis component to capture more complex runtime

behaviors.

• Incorporating machine learning techniques to further automate the service iden-

tification process.

• Conducting more extensive evaluations on a wider range of projects to validate

the generalizability of the approach.

5.4 Final Thoughts

In conclusion, this thesis has presented a novel approach to the challenging problem

of migrating from monolithic to microservice architectures. By adopting a gradual

migration strategy and leveraging both static and dynamic analysis data, the devel-

oped tool provides a practical and effective solution for industry practitioners. The

68

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

promising results from the evaluation underscore the potential of this approach to

significantly ease the transition to microservices, paving the way for more scalable

and maintainable software architectures.

69

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

Bibliography

[1] Y. Abgaz, A. McCarren, P. Elger, D. Solan, N. Lapuz, M. Bivol, G. Jackson,

M. Yilmaz, J. Buckley, and P. Clarke. Decomposition of monolith applications

into microservices architectures: A systematic review. IEEE Transactions on

Software Engineering, 49(8):4213–4242, 2023. doi: 10.1109/TSE.2023.3287297.

[2] E. R. Barnes. An algorithm for partitioning the nodes of a graph. In 1981 20th

IEEE Conference on Decision and Control including the Symposium on Adaptive

Processes, pages 303–304, 1981. doi: 10.1109/CDC.1981.269534.

[3] D. Bertsimas, C.-P. Teo, and R. Vohra. Analysis of lp relaxations for mul-

tiway and multicut problems. Networks, 34(2):102–114, 1999. doi: https:

//doi.org/10.1002/(SICI)1097-0037(199909)34:2〈102::AID-NET3〉3.0.CO;2-X.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%

291097-0037%28199909%2934%3A2%3C102%3A%3AAID-NET3%3E3.0.CO%3B2-X.

[4] D. Bertsimas, C.-P. Teo, and R. V. Vohra. Analysis of lp relaxations for

multiway and multicut problems. Networks, 34:102–114, 1999. URL https:

//api.semanticscholar.org/CorpusID:7584343.

[5] V. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding

70

https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0037%28199909%2934%3A2%3C102%3A%3AAID-NET3%3E3.0.CO%3B2-X
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0037%28199909%2934%3A2%3C102%3A%3AAID-NET3%3E3.0.CO%3B2-X
https://api.semanticscholar.org/CorpusID:7584343
https://api.semanticscholar.org/CorpusID:7584343

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

of communities in large networks. Journal of Statistical Mechanics Theory and

Experiment, 2008, 04 2008. doi: 10.1088/1742-5468/2008/10/P10008.

[6] M. Brito, J. Cunha, and J. a. Saraiva. Identification of microservices from

monolithic applications through topic modelling. In Proceedings of the 36th

Annual ACM Symposium on Applied Computing, SAC ’21, page 1409–1418,

New York, NY, USA, 2021. Association for Computing Machinery. ISBN

9781450381048. doi: 10.1145/3412841.3442016. URL https://doi.org/10.

1145/3412841.3442016.

[7] R. Chen, S. Li, and Z. Li. From monolith to microservices: A dataflow-driven

approach. In 2017 24th Asia-Pacific Software Engineering Conference (APSEC),

pages 466–475, 2017. doi: 10.1109/APSEC.2017.53.

[8] N. Dragoni, I. Lanese, S. Larsen, M. Mazzara, R. Mustafin, and L. Safina. Mi-

croservices: How to make your application scale, 02 2017.

[9] G. Filippone, N. Qaisar Mehmood, M. Autili, F. Rossi, and M. Tivoli. From

monolithic to microservice architecture: an automated approach based on graph

clustering and combinatorial optimization. In 2023 IEEE 20th International

Conference on Software Architecture (ICSA), pages 47–57, 2023. doi: 10.1109/

ICSA56044.2023.00013.

[10] M. Fowler and J. Lewis. Microservices: a definition of this new architectural term,

2014. URL https://martinfowler.com/articles/microservices.html. Ac-

cessed: 2024-05-21.

71

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/
https://doi.org/10.1145/3412841.3442016
https://doi.org/10.1145/3412841.3442016
https://martinfowler.com/articles/microservices.html

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

[11] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann. Microservices migra-

tion in industry: Intentions, strategies, and challenges. In 2019 IEEE Inter-

national Conference on Software Maintenance and Evolution (ICSME), pages

481–490, Los Alamitos, CA, USA, oct 2019. IEEE Computer Society. doi:

10.1109/ICSME.2019.00081. URL https://doi.ieeecomputersociety.org/

10.1109/ICSME.2019.00081.

[12] M. Girvan and M. E. J. Newman. Community structure in social and biological

networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826,

2002. doi: 10.1073/pnas.122653799. URL https://www.pnas.org/doi/abs/

10.1073/pnas.122653799.

[13] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann. Service cutter: A

systematic approach to service decomposition. pages 185–200, 09 2016. ISBN

978-3-319-44481-9. doi: 10.1007/978-3-319-44482-6 12.

[14] W. Jin, T. Liu, Q. Zheng, D. Cui, and Y. Cai. Functionality-oriented mi-

croservice extraction based on execution trace clustering. In 2018 IEEE In-

ternational Conference on Web Services (ICWS), pages 211–218, 2018. doi:

10.1109/ICWS.2018.00034.

[15] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng. Service candidate iden-

tification from monolithic systems based on execution traces. IEEE Transactions

on Software Engineering, 47(5):987–1007, 2021. doi: 10.1109/TSE.2019.2910531.

[16] M. Kamimura, K. Yano, T. Hatano, and A. Matsuo. Extracting candidates

of microservices from monolithic application code. In 2018 25th Asia-Pacific

72

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/
https://doi.ieeecomputersociety.org/10.1109/ICSME.2019.00081
https://doi.ieeecomputersociety.org/10.1109/ICSME.2019.00081
https://www.pnas.org/doi/abs/10.1073/pnas.122653799
https://www.pnas.org/doi/abs/10.1073/pnas.122653799

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Software Engineering Conference (APSEC), pages 571–580, 2018. doi: 10.1109/

APSEC.2018.00072.

[17] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning

graphs. The Bell System Technical Journal, 49(2):291–307, 1970. doi: 10.1002/

j.1538-7305.1970.tb01770.x.

[18] C.-Y. Li, S.-P. Ma, and T.-W. Lu. Microservice migration using strangler fig pat-

tern: A case study on the green button system. In 2020 International Computer

Symposium (ICS), pages 519–524, 2020. doi: 10.1109/ICS51289.2020.00107.

[19] Z. Li, C. Shang, J. Wu, and Y. Li. Microservice extraction based on knowledge

graph from monolithic applications. Inf. Softw. Technol., 150(C), oct 2022. ISSN

0950-5849. doi: 10.1016/j.infsof.2022.106992. URL https://doi.org/10.1016/

j.infsof.2022.106992.

[20] T. Matias, F. F. Correia, J. Fritzsch, J. Bogner, H. S. Ferreira, and A. Restivo.

Determining microservice boundaries: A case study using static and dynamic

software analysis. 2020.

[21] R. Müller, D. Mahler, M. Hunger, J. Nerche, and M. Harrer. Towards an open

source stack to create a unified data source for software analysis and visualization.

In 2018 IEEE Working Conference on Software Visualization (VISSOFT), pages

107–111, 2018. doi: 10.1109/VISSOFT.2018.00019.

[22] M. Newman and M. Girvan. Finding and evaluating community structure in

networks. Physical review. E, Statistical, nonlinear, and soft matter physics, 69:

026113, 03 2004. doi: 10.1103/PhysRevE.69.026113.

73

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/
https://doi.org/10.1016/j.infsof.2022.106992
https://doi.org/10.1016/j.infsof.2022.106992

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

[23] M. E. J. Newman. Modularity and community structure in networks. Proceedings

of the National Academy of Sciences, 103(23):8577–8582, June 2006. ISSN 1091-

6490. doi: 10.1073/pnas.0601602103. URL http://dx.doi.org/10.1073/pnas.

0601602103.

[24] S. Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly

Media, Inc., 2015.

[25] S. Salii, J. Ajdari, and X. Zenuni. Migrating to a microservice architecture:

benefits and challenges. In 2023 46th MIPRO ICT and Electronics Convention

(MIPRO), pages 1670–1677, 2023. doi: 10.23919/MIPRO57284.2023.10159894.

[26] S. Santos and A. Silva. Microservices identification in monolith systems: Func-

tionality redesign complexity and evaluation of similarity measures. Journal of

Web Engineering, 08 2022. doi: 10.13052/jwe1540-9589.2158.

[27] A. Selmadji, A.-D. Seriai, H. L. Bouziane, R. Oumarou Mahamane, P. Zaragoza,

and C. Dony. From monolithic architecture style to microservice one based on a

semi-automatic approach. In 2020 IEEE International Conference on Software

Architecture (ICSA), pages 157–168, 2020. doi: 10.1109/ICSA47634.2020.00023.

[28] I. Trabelsi, M. Abdellatif, A. Abubaker, N. Moha, S. Mosser, S. Ebrahimi-Kahou,

and Y.-G. Guéhéneuc. From legacy to microservices: A type-based approach

for microservices identification using machine learning and semantic analysis.

Journal of Software: Evolution and Process, 35, 09 2022. doi: 10.1002/smr.2503.

[29] E. Volynsky, M. Mehmed, and S. Krusche. Architect: A framework for the

migration to microservices. In 2022 International Conference on Computing,

74

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/
http://dx.doi.org/10.1073/pnas.0601602103
http://dx.doi.org/10.1073/pnas.0601602103

M.A.Sc. Thesis – H. Zaker; McMaster University – Department of Computing and

software

Electronics Communications Engineering (iCCECE), pages 71–76, 2022. doi:

10.1109/iCCECE55162.2022.9875096.

[30] P. Zaragoza, A.-D. Seriai, A. Seriai, A. Shatnawi, and M. Derras. Leveraging the

layered architecture for microservice recovery. In 2022 IEEE 19th International

Conference on Software Architecture (ICSA), pages 135–145, 2022. doi: 10.1109/

ICSA53651.2022.00021.

75

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eng.mcmaster.ca/cas/

	Lay Abstract
	Abstract
	Acknowledgements
	Notation, Definitions, and Abbreviations
	Declaration of Academic Achievement
	Introduction
	Background and Motivation
	Problem Statement
	Contributions
	Thesis Structure

	Related Work
	Introduction
	Challenges in Migration
	Approaches for Microservice Identification
	Gradual Migration
	Single Source of Truth

	Technical Approach
	Motivation
	Overview of the Approach
	Monolith Decomposition
	Single Source of Truth

	Evaluation
	Evaluation Metrics
	Performed Experiments
	Experiment 1: Spring Petclinic
	Experiment 2: MyBaits JPetStore
	Conclusion

	Conclusion
	Summary of Contributions
	Threats to Validity
	Future Work
	Final Thoughts

