
Synchronizing Real-Time Control In

Centralized Automotive E/E Architectures

Synchronizing Real-Time Control In

Centralized Automotive E/E

Architectures

By

Mostafa Ayesh, B.Eng.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements for the Degree

Master of Applied Science

McMaster University

© Copyright by Mostafa Ayesh, 2024

Master of Applied Science (2024) McMaster University

(Software Engineering) Hamilton, Ontario

Title: Synchronizing Real-Time Control In Centralized Auto-

motive E/E Architectures

Author: Mostafa Ayesh, B.Eng. (McMaster University)

Supervisors: Dr. Alan Wassyng & Dr. Richard Paige

Number of Pages: vii, 45

ii

Abstract

Automotive technologies have been rapidly evolving with the introduction of

electric powertrains, Advanced Driver-Assistance System (ADAS) and Over

The Air (OTA) upgradability. Existing decentralized architectures are not an

optimal choice for these applications due to significant increases in cost and

complexity. The transition to centralized architectures enables heavy com-

putation to be delegated to a limited number of powerful Electronic Control

Units (ECUs) called domain or zone controllers. The remaining ECUs, known

as smart actuators, will perform well-defined and specific tasks, receiving new

parameters from the dedicated domain/zone controller over a network. Net-

work bandwidth and time synchronization are the two main challenges in this

transition. New automotive standards have been developed to address these

challenges. Automotive Ethernet and Time Sensitive Networking (TSN) are

two standards that are well suited for centralized architectures.

This thesis presents a synchronization mechanism that leverages these two

standards, to establish precise control synchronization between the centralized

ECUs and the smart actuators. Additionally, a testing methodology is intro-

duced to evaluate the synchronization performance between the centralized

ECU and the smart actuator within a TSN network.

iii

Acknowledgments

I want to express my gratitude to Dr. Alan Wassyng for the opportunity to

pursue my Master’s degree and his continued support throughout the years.

His mentorship has been critical in shaping my academic journey and guiding

me through its challenges.

I also extend my thanks Dr. Victor Bandur and Dr. Vera Pantelic for their

assistance with my research. Their expertise and invaluable feedback were

crucial to this thesis.

Finally, I would like to express my deepest appreciation to my family,

especially my parents. Their endless encouragement and unwavering belief in

me have been my greatest source of motivation throughout this journey. I

truly couldn’t have reached this milestone without their support, and for that,

I am eternally grateful.

iv

Contents

Descriptive Note ii

Abstract iii

Acknowledgments iv

Table of Contents vii

List of Figures viii

List of Acronyms ix

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 3

1.2.1 Centralized Architectures 4

1.2.2 Real-Time Control Synchronization 4

1.3 Contributions . 6

1.4 Outline . 7

2 Background 8

2.1 E/E architectures . 8

2.1.1 Electronic Control Unit (ECU) 8

2.1.2 Decentralized Architectures 10

2.1.3 Centralized Architecture 10

2.1.4 Inter-ECU Communication 12

2.1.4.1 Automotive Ethernet 13

2.1.4.2 Time Sensitive Networking (TSN) 14

v

2.1.4.3 Time Synchronization 15

2.1.4.4 Traffic Scheduling 15

2.2 Problem Definition . 16

2.2.1 Domain Centralized Architecture 16

2.2.2 Real-Time Control . 17

2.2.3 Clock Drift . 18

2.2.4 Peripheral Event Generation 20

2.3 TSN Hardware . 20

2.4 TSN Time Synchronization . 22

2.4.1 Reference Time . 23

2.4.2 Clock Drift Correction 23

3 Peripheral Synchronization using TSN 24

3.1 Introduction . 24

3.2 Electric Motor Control . 24

3.2.1 Timing Requirements . 25

3.2.2 Domain Centralized Motor Control 26

3.3 Hardware Requirements . 27

3.3.1 Pulse Per Second (PPS) 27

3.3.2 Pulse Width Modulation (PWM) Peripheral Synchro-

nization . 28

3.4 Control Synchronization . 28

4 Evaluation 30

4.1 Methodology . 30

4.1.1 Measuring Drift . 30

4.2 Testing . 32

4.2.1 Hardware Configuration 32

4.2.2 Software Configuration 32

4.2.3 Test Setup . 33

4.2.3.1 Pulse Width Modulation (PWM) 33

4.2.3.2 Pulse Per Second (PPS) 33

4.3 Results . 34

4.3.1 Measurements . 34

vi

5 Conclusion & Future Work 40

5.1 Conclusion . 40

5.2 Future Work . 41

vii

List of Figures

1.1 I\O event scheduler. From Sorensen, O’Sullivan, and Aaen [14] . 5

2.1 ECU . 8

2.2 Decentralized Architecture . 10

2.3 Domain Centralized Architecture 11

2.4 Zone Architecture . 12

2.5 Decentralized Architecture ECU 17

2.6 Domain Centralized Architecture 18

2.7 Oscillator frequency deviations 19

2.8 Clock Drift . 19

2.9 Peripheral Event Generation . 21

2.10 TSN Hardware Setup . 21

2.11 generalized Precision Time Protocol (gPTP) setup 22

3.1 Motor Control ECU . 25

3.2 Decentralized Motor Control . 25

3.3 Domain Centralized Motor Control 26

3.4 Pulse Per Second Clock Generation 27

3.5 Synchronization Setup . 28

4.1 Clock Drift . 31

4.2 Test Setup . 33

4.3 Oscilloscope Sample Capture . 35

4.4 Drift Capture Example . 35

4.5 Drift (5KHz PWM, 20 Hz Sync) 37

4.6 Drift (20KHz PWM, 20 Hz Sync) 38

viii

List of Acronyms

OTA Over The Air

ADAS Advanced Driver-Assistance System

ECU Electronic Control Unit

CAN Controller Area Network

TSN Time Sensitive Networking

MII Media-Independent Interface

PWM Pulse Width Modulation

E/E Electrical and Electronic

IEEE Institute of Electrical and Electronics Engineers

802.1AS Timing and Synchronization for Time-Sensitive Applications

PPS Pulse Per Second

gPTP generalized Precision Time Protocol

GM Grand Master

ix

PHY Physical layer

EMI Electromagnetic Interference

RFI Radio Frequency Interference

FOC Field Oriented Control

MAC Medium Access Control

CPU Central Processing Unit

ADC Analog Digital Converter

SOA Service Oriented Architecture

RAM Random Access Memory

x

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

Chapter 1

Introduction

1.1 Motivation

The automotive industry is experiencing a significant architectural shift driven

by the rapid evolution of vehicle technologies towards advanced safety sys-

tems, electrical powertrains, and connected vehicles. Vehicle features such

as Advanced Driver-Assistance System (ADAS) (Advanced Driver Assistance

System), electric motor control, battery management systems are designed

as real-time control systems that require high computing power and strict

timing. Supporting these systems with existing decentralized Electrical and

Electronic (E/E) architectures significantly increases cost and complexity [11].

Decentralized E/E architectures have traditionally relied on Controller

Area Network (CAN) as their communication network. While CAN is a ro-

bust network, its limited bandwidth is insufficient for high-bandwidth appli-

cations. Furthermore, CAN is a bus based network, where Electronic Control

Units (ECUs) are connected to a single communication channel and only one

ECU is allowed to transmit at any given moment.

1

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

In contrast, Centralized E/E architectures [12] are designed to consolidate

computationally intensive tasks within high performance ECUs while low level

hardware control is delegated to less powerful and cost-efficient ECUs. The

increased volume of data transmission needed by centralized E/E architectures

cannot be satisfied with CAN.

Automotive Ethernet is a high-speed communication network designed to

meet the demands of the automotive environment. It offers a significant in-

crease in data rates compared to older networks such as CAN. The enhanced

data rates make it a great fit for centralized E/E architectures. To meet the

requirements of real-time control systems, Time Sensitive Networking (TSN)

[15] is used in conjunction with Automotive Ethernet. TSN is a set of Institute

of Electrical and Electronics Engineers (IEEE) standards enabling low-latency

and deterministic communication over automotive Ethernet. It allows critical

data packets to be transmitted at predetermined timing, making it ideal for

high-frequency, high-precision real-time control applications.

Adopting centralized E/E architectures, Automotive Ethernet and TSN,

enables the development of advanced automotive systems. The process of mi-

grating from decentralized E/E architectures to centralized E/E architectures

introduces many challenges. The most relevant challenge to this work is en-

suring synchronization between various ECUs across the vehicle, in order to

maintain its performance and safety.

The phenomenon central to this thesis is clock drift, which refers to varia-

tions in the time measured by each ECU in a vehicle. Clock drift results from

slight differences in the electrical and physical clock circuitry of ECUs and can

degrade the performance of real-time control systems, potentially leading to

failure.

2

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

This thesis presents an approach to address this problem using automotive

Ethernet in conjunction with the TSN standards. By leveraging TSN compli-

ant hardware to generate synchronization signals, the effects of clock drift can

be mitigated, ensuring synchronized real-time control.

Electric motor control was selected for this work, with the goal of achieving

synchronized control between a domain controller that executes the algorithms

and a smart actuator generating the Pulse Width Modulation (PWM) signals

delivered to the motor. Achieving precise PWM control is crucial for main-

taining the performance and efficiency of electric motors. Clock drift between

smart actuators and the domain controller, as well as between the smart actu-

ators themselves, can affect the timing on of the PWM pulses, degrading the

control system’s performance.

In this thesis, a method utilizing TSN compliant hardware and software

will be proposed to ensure that the timing of the PWM pulses generated by

each smart actuator are synchronized to the domain controller.

Additionally, an evaluation method will be introduced and used to assess

the performance of the proposed approach. This method involves measuring

the drift between the output PWM signals and a reference signal generated

from a network synchronized clock. The measured drift will be used to compare

the synchronization performance between different configurations.

1.2 Related Work

The need to develop centralized Electrical and Electronic (E/E) architectures

to meet the increasing demands of modern automotive technologies is evident

in the multitude of white papers written by the automotive industry. More-

3

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

over, there is a growing academic literature studying centralized automotive

architectures and evaluating enabling technologies and standards [2][5][6][16].

However, despite extensive research focusing on centralized architectures, there

is a notable gap in the literature that addresses the challenges in synchronizing

real-time automotive control systems.

1.2.1 Centralized Architectures

This thesis proposes a solution utilizing a centralized E/E architecture. Vari-

ous literature highlight the benefits centralized architectures have over tradi-

tional decentralized architectures.

The work by Bandur et al. [5] studies the motivation behind centralized ar-

chitectures and the supporting technologies that address some of the challenges

introduced by centralized architectures. The main supporting technologies dis-

cussed in their work related to the work of this thesis are Automotive Ethernet

and Time Sensitive Networking (TSN).

Kanajan et al. [10] proposes criteria for evaluating the performance of ar-

chitectural models for centralized architectures. Control latency, which they

define as the end-to-end latency from sensor to actuator, is one of these criteria

that is important to this thesis. One of the goals of the proposed synchroniza-

tion method is to minimize the control latency and improve the performance

of the system.

1.2.2 Real-Time Control Synchronization

This section reviews the literature related to real-time control synchronization.

The available literature focuses on real-time motor control synchronization in

4

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

industrial applications [7][14].

Sorensen, O’Sullivan, and Aaen [14] present a solution for synchronizing

multi-axis motion control over real-time networks, although targeting an indus-

trial application. The implementation involves the use of additional external

hardware to generate the synchronization signals.

Figure 1.1 illustrates the proposed solution, which includes an external net-

work controller and an I\O event scheduler for each motor. The additional

hardware is used to synchronize the algorithms and the hardware signals gen-

erated to the motors.

Figure 1.1: I\O event scheduler. From Sorensen, O’Sullivan, and Aaen [14]

Additionally, Dan Burlacu, Mathe, and Teodorescu [7] introduce a solution

for synchronizing PWM signals, utilizing EtherCAT’s Distributed Clock mech-

anism. Similar to Sorensen, O’Sullivan, and Aaen [14], this approach requires

external hardware for generating synchronization signals.

Unlike the approaches presented by Sorensen, O’Sullivan, and Aaen [14]

and Dan Burlacu, Mathe, and Teodorescu [7], which rely on external hardware

for generating synchronization signals, the implementation in this thesis does

5

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

not require additional hardware. The proposed implementation leverages TSN

compliant hardware within the smart actuator to generate the synchronization

signals. This approach eliminates the need for external hardware synchroniza-

tion signals, reducing both the cost and the complexity of the system.

1.3 Contributions

This thesis contributes the following:

• Analyzing existing and emerging hardware and software technologies de-

signed to address the identified challenges including Automotive Eth-

ernet and Time Sensitive Networking (TSN), to identify suitable hard-

ware for synchronized real-time control in centralized Electrical and Elec-

tronic (E/E) architectures

• Identifying the challenges and requirements associated with migrating

real-time control applications from decentralized E/E architectures to

centralized E/E architectures.

• Proposing an approach for synchronizing real-time control applications

within centralized E/E architectures. This approach leverages Institute

of Electrical and Electronics Engineers (IEEE) 802.1 TSN standards as

well as Ethernet hardware generated Pulse Per Second (PPS) signals to

synchronize real-time control across a vehicle’s network.

• Introducing a methodology for evaluating the performance of real-time

control synchronization in centralized E/E architectures. The methodol-

ogy uses clock drift as a metric to measure synchronization performance.

6

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

• Demonstrating the synchronization approach and evaluating its perfor-

mance using the evaluation methodology. The demonstration includes

an implementation using specialized hardware and software platforms.

1.4 Outline

The thesis is structured as follows:

• Chapter 2 contains the background information relevant to this work.

This includes the architectural changes that enable advanced automotive

applications, as well as technologies that support these architectures such

as Automotive Ethernet and Time Sensitive Networking (TSN). It fur-

ther details

• Chapter 3 proposes a method for synchronizing Pulse Width Modula-

tion (PWM) signals generated by smart actuators.

• Chapter 4 is dedicated to evaluating the proposed method.

• Chapter 5 contains conclusions and directions for future work.

7

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

Chapter 2

Background

2.1 E/E architectures

2.1.1 Electronic Control Unit (ECU)

Figure 2.1: Electronic Control Unit (ECU)

8

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

An ECU is an embedded system that is responsible for monitoring and

controlling different vehicle components such as headlights and electric motors.

The main component of an ECU is the Central Processing Unit (CPU), which

handles all the calculations and decision making within the ECU. The CPU

communicates with the other components of the ECU over a peripheral bus.

In addition to the CPU, an ECU also includes Flash for storing the software

as well as Random Access Memory (RAM) for temporary data storage during

runtime.

An ECU also contains various peripherals designed to interact with specific

vehicle systems. These may include:

• Pulse Width Modulation (PWM) which generates precisely timed

electrical pulses configurable by the CPU

• Analog Digital Converter (ADC) responsible for sampling analog

signals and converting them to digital data for processing by the CPU

• Ethernet, enabling communication between various ECUs within the

vehicle

Another important component of the ECU is clock generation. Clock sig-

nals with various frequencies are required to drive each component of the ECU.

An oscillator is used by the clock generation component to generate different

clocks throughout the ECU. Due to sharing the same oscillator, there is an

inherent synchronization between the different components of the ECU.

Figure 2.1 represents a simplified ECU, showing various components as

well as how clock signals are connected within the ECU.

9

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

2.1.2 Decentralized Architectures

Most vehicles on the road today rely on decentralized Electrical and Elec-

tronic (E/E) architectures. These architectures consist of over 100 ECUs [3]

each dedicated to specific functions. This approach reduces the complexity of

both software & hardware within each ECU but imposes limitations on the

processing capabilities [4]

Figure 2.2: Decentralized Architecture

A simplified decentralized architecture diagram can be seen in Figure 2.2.

ECUs communicate with each other over a distributed network such as Controller

Area Network (CAN). A Central Gateway is used to bridge vehicle’s inter-

nal networks, providing secure communication between ECUs as well as rout-

ing traffic between different networks such as CAN or FlexRay. For high-

bandwidth applications, the network used and the central gateway may intro-

duce bottlenecks.

2.1.3 Centralized Architecture

A centralized architecture allows the vehicle to have a small number of a few

powerful ECUs capable of more advanced processing than traditional ECUs.

10

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

These processing tasks could include advanced arithmetic, hardware decod-

ing/encoding, machine learning inference, etc.

There are different types of centralized architectures. The two main types

of centralized architectures are domain architectures and zonal architectures.

Figure 2.3: Domain Centralized Architecture

Figure 2.3 demonstrates an example Domain Centralized Architecture. It

organizes a vehicle’s architecture into functional domains such as Advanced

Driver-Assistance System (ADAS), Infotainment, etc. Each domain consists

of a domain controller and one or more smart actuators (SA).

In a Zone-oriented centralized architecture, shown in Figure 2.4, a vehicle

is divided into zones by the physical location of the ECUs. It consists of

zone controllers, each connected to a group of smart actuators (SA). There

is also a high performance central vehicle compute that can perform complex

computations for all the zones in the vehicle. A central gateway routes and

manages the traffic between the Zone controllers and the Central Gateway. The

main benefit is a simpler architecture due to the reduced number of ECUs and

shorter cable length for networking [1].

A domain centralized architecture is used as a basis for this thesis, detailed

11

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

Figure 2.4: Zone Architecture

information about such architecture will be discussed in 2.2.1.

The centralization of processing performed by the powerful ECUs requires a

high-bandwidth, low-latency communication network to ensure adequate data

flow throughout the vehicle’s network.

2.1.4 Inter-ECU Communication

Communication between ECUs is vital for the overall E/E system. The choice

of communication network is influenced by the architecture. Traditional au-

tomotive network technologies including CAN and FlexRay do not satisfy the

bandwidth or latency required for a centralized architecture. Automotive Eth-

ernet is being adopted to address some of those challenges when migrating to

centralized architectures.

12

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

2.1.4.1 Automotive Ethernet

Ethernet enables high bandwidth and low latency networks [3] used for various

applications. However, traditional Ethernet has physical limitations that make

it unsuitable for use in automotive applications.

Automotive Ethernet is designed to address these physical limitations [13]

in a number of ways:

• Meets Electromagnetic Interference (EMI) and Radio Frequency Inter-

ference (RFI) requirements for automotive applications

• Reduces the weight of the harness by using single twisted pair as opposed

to two twisted pairs used by traditional Ethernet

Furthermore, the greatest advantage of Automotive Ethernet over existing

automotive networks (such as CAN, CAN-FD, FlexRay) is the significant in-

crease in the data transmission rate. The result is increased bandwidth and

reduced latency that allows real-time control of the network.

Technology Maximum Data Transmission Rate

Auto Ethernet (100BASE-T1) 100 Mbps

Auto Ethernet (1000BASE-T1) 1000 Mbps

CAN 1 Mbps

CAN-FD 8 Mbps

FlexRay 10 Mbps

In addition to the improvements in data transmission rates, Automotive

Ethernet enables more complex network topologies. Existing CAN, CAN-

FD and FlexRay networks are limited to bus topologies. A bus topology

is unsuitable for centralized architectures, because it allows only one device

13

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

to transmit at a time, reducing overall bandwidth and offering limited redun-

dancy if a link becomes non-functional. In contrast, Automotive Ethernet uses

network switches, facilitating advanced traffic control that allows concurrent

transmission from multiple ECUs and supporting Service Oriented Architec-

tures (SOAs) as well as Over The Air (OTA) capabilities.

A modern vehicle consists of multiple real-time control systems, performing

various functionalities including but not limited to propulsion control, stability

control, safety, and driver assistance. These systems require low latency and

precise timing to ensure functionality.

Traditional Ethernet’s traffic model is best-effort, meaning data is delivered

without any timing or order guarantees. This model is unsuitable for real-time

automotive systems. Time Sensitive Networking (TSN) standards address

these challenges by enabling precise time synchronization and deterministic

traffic scheduling [16].

2.1.4.2 Time Sensitive Networking (TSN)

TSN [15] is a set of standards developed by the IEEE 802.1 Working Group.

These standards aim to provide deterministic and precise time synchronization

and traffic scheduling capabilities in Ethernet networks.

Time synchronization is a key aspect of TSN, as it ensures that all devices

in the network have a common and accurate view of time. This is essential for

real-time applications that rely on precise timing, such as industrial automa-

tion and control systems. When devices in the network are synchronized, their

events can be coordinated in a deterministic matter.

Traffic scheduling is another important aspect of TSN. It allows traffic

prioritization and bandwidth allocation to specific traffic flows based on real-

14

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

time requirements. This ensures that critical traffic is delivered on time.

2.1.4.3 Time Synchronization

802.1AS [8], also known as generalized Precision Time Protocol (gPTP), is a

protocol for synchronizing the clocks on networked devices. It allows devices

on a network to communicate with high time precision, making it ideal for

applications where accurate timing is critical, such as real-time control.

gPTP uses a master-slave model, defined as follows:

• Grand Master (GM): Serves as the reference clock for the network

time, distributed to the other devices on the network. The Grand Mas-

ter (GM) is selected based on its precise physical clock, ensuring syn-

chronization across the network.

• Slave: Receives timing information from the GM and adjusts its clock

to maintain synchronization. The synchronization is performed using

special gPTP packets carrying time information.

2.1.4.4 Traffic Scheduling

802.1Qbv [9] is a standard that defines the timing behavior of traffic in a

network. It allows devices to prioritize time-sensitive traffic and ensure that it

is delivered on time, making it suitable for applications that require predictable

and deterministic behavior, such as industrial automation and control systems.

802.1Qbv defines a mechanism for scheduling traffic on a network, allowing

a network schedule to specify the precise time at which a frame should be

transmitted and to assign different priorities to different frames. This allows

15

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

time-sensitive traffic to be given higher priority and to be delivered on time,

even in the presence of other traffic on the network.

2.2 Problem Definition

2.2.1 Domain Centralized Architecture

The processing of tasks for each vehicle function in a decentralized architecture

is performed by a dedicated ECU specifically built for that function. Recent

advancements in automotive technologies required the introduction of complex

processing tasks. Such tasks require a significant increase in processing power

and are more suitable to be carried out by an Electronic Control Unit (ECU)

much more powerful than a traditional one. Additionally, these tasks require

low latency and precise timing to ensure optimal performance and reliability.

A domain centralized architecture divides a vehicle into multiple logical

domains, each encompassing an aspect of vehicle functionality (eg. powertrain,

chassis). A domain consists of a domain controller and multiple smart

actuators as seen in figure 2.3.

A domain controller in a centralized architecture is a powerful ECU

doing most of the heavy processing tasks. By delegating these tasks to a

domain controller, the compute requirements for the other ECUs in the domain

which are known as smart actuators are reduced.

A smart actuator is an ECU responsible for the signal-level interactions

with a vehicle’s sensors (eg. radar, ultrasound, etc.) and/or actuators (eg.

motor, headlights, etc.). It may collect measurements and send the results to

the domain controller for processing. It may also receive commands from the

16

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

domain controller and alter its output signals accordingly.

2.2.2 Real-Time Control

Real-time hardware control applications consist of three major components:

signal acquisition, processing and signal generation.

The control process starts with signal acquisition, typically sampling input

analog and/or digital hardware signals. The data collected is used to calculate

new control parameters. Finally, hardware output is reconfigured with the

new control parameters. There are timing requirements for each step of the

control process. In traditional automotive architectures, the control process is

integrated into a single ECU and timing is enforced locally.

Figure 2.5: Decentralized Architecture ECU

Figure 2.5 shows an ECU in a decentralized Electrical and Electronic (E/E)

architecture. All steps of the control process are carried out by the ECU,

starting with the input signal acquired and ending with the output signal

generated. The hardware and software components of the ECU are responsible

for enforcing the timing of all the steps of the control process.

The control process in a centralized architecture may be divided between

a domain controller and one or more smart actuators.

Figure 2.6 shows three ECUs in a domain centralized E/E architecture. The

two smart actuators perform the input signal acquisition task. The acquired

signals are communicated to a domain controller which performs the required

17

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

Figure 2.6: Domain Centralized Architecture

processing. The parameters calculated from processing are communicated back

to the smart actuators. The smart actuators generate output signals using the

calculated parameters.

The domain controller and the smart actuator must be time synchronized

to enforce the timing requirements of the application.

2.2.3 Clock Drift

Clock drift is a phenomena where two clocks become de-synchronized over a

period of time. This is due to one of the clocks running slightly faster or slower

than the other clock.

Clocks are generated from the output of an oscillator. An oscillator output

frequency may also deviate from the intended value over time caused by a

number of factors, including temperature changes, aging of the components,

and variations in the power supply. These deviations result in clock drift.

In addition to that, each ECU uses its own oscillator, and they may vary

slightly in frequency.

Figure 2.7 shows an example of two oscillators running at slightly different

frequencies. Although the variance may look minimal, it can cause instability

issues in high precision control applications such as electric motor control.

Figure 2.8 illustrates the phenomenon where two clocks configured to run

at identical frequency, drift apart. Small variations in the frequencies of the

18

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

Figure 2.7: Oscillator frequency deviations

Figure 2.8: Clock Drift

two clocks can cause one clock to run faster or slower than the other, result-

ing in the time measured by one clock to be shorter or longer than the other

clock. Peripherals rely on these clocks to generate interrupts, control hardware

signals, etc. If clocks become de-synchronized, the events generated by periph-

erals become de-synchronized. Therefore, the clocks have to be periodically

19

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

synchronized to minimize the amount of drift, reducing jitter and ensuring

synchronized control.

2.2.4 Peripheral Event Generation

Peripherals generate periodic events using a set of counters and configurable

compare values. These events can be interrupts, hardware control signals, etc.

The counters are periodically incremented using a signal generated by a clock

source. A counter is continuously checked against one or more configurable

compare values. When the counter exceeds a configurable compare value an

event is generated and the counter is reset. A compare value is configured to

store the time period of an event. Figure 2.9 shows how peripheral events are

generated.

Clock drift causes inaccuracies in the time measured by these counters

leading to de-synchronized events. Correcting clock drift is critical to ensuring

these events are synchronized and are generated at a known network time.

Time Sensitive Networking (TSN) can be utilized to address this issue main-

taining synchronized control across the network.

2.3 TSN Hardware

Special hardware is required to support Time Sensitive Networking (TSN)

standards including time synchronization and traffic scheduling. Figure 2.10

shows an example of a TSN-compliant Ethernet setup. Data is received over

Ethernet by the Physical layer (PHY) and transmitted over a standard in-

terface called Media-Independent Interface (MII) to the Medium Access Con-

trol (MAC).

20

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

Figure 2.9: Peripheral Event Generation

Figure 2.10: TSN Hardware Setup

To enable time synchronization, a TSN-enabled MAC and/or PHY hard-

ware is required. When a frame is received over Ethernet, the reception time

is recorded by a TSN-enabled PHY or MAC. This timestamp is added to

the incoming frame, ensuring the timing information is available throughout

the communication process. The generalized Precision Time Protocol (gPTP)

software stack extracts the timestamp from each incoming frame and updates

the necessary hardware to achieve time synchronization.

21

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

2.4 TSN Time Synchronization

Maintaining a shared timestamp between all Electronic Control Units (ECUs)

in a vehicle enables synchronized real-time control. In addition to TSN-

compliant hardware, a generalized Precision Time Protocol (gPTP) imple-

mentation is required to achieve time synchronization.

• Sharing a timestamp between all the devices on the network. The gPTP

Grand Master (GM) communicates its current timetamp to all gPTP

slaves over Ethernet.

• Minimizing drift between the clocks of all the devices on the network.

Figure 2.11: gPTP setup

Figure 2.11 demonstrates an example network with one GM and two slaves.

In this network, the domain controller was selected as the gPTP GM and the

smart actuators are gPTP slaves. The GM uses a good accuracy oscillator to

generate a precise clock and shares the timestamp information with the rest

22

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

of the network. Every device is connected to the network through an Ether-

net connection and all the traffic in the network is routed through Ethernet

switches. The Ethernet switches also need to support gPTP in order to achieve

time synchronization between gPTP slaves the and the GM.

2.4.1 Reference Time

The gPTP GM broadcasts synchronization messages across the network. These

messages contain the information required for determining the current times-

tamp on the GM. The information is extracted from the messages and stored

in the internal timestamp counters on each gPTP slave. When a gPTP slave

is sending data over Ethernet, it attaches the timestamp from these counters

to the outgoing Ethernet frame. In addition to that, the application running

on the gPTP slave can access these counters to determine the current GM

timestamp. By knowing the current GM time, the application can schedule

future events to occur at a precise time known to other devices on the network.

2.4.2 Clock Drift Correction

The second mechanism calculates the ratio between the rate of the slave’s

clock and the rate of the GM clock. The calculated ratio is used to adjust the

increment rate of the slave’s internal counters to be closer to the increment

rate on the GM. These adjustments correct the clock drift between the slave

and the GM.

23

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

Chapter 3

Peripheral Synchronization

using TSN

3.1 Introduction

Peripheral synchronization is crucial for enforcing timing and performance

requirements on real-time control systems in centralized Electrical and Elec-

tronic (E/E) architectures. It ensures that any signals generated by the pe-

ripheral occur at a predetermined time, which is known to all the Electronic

Control Units (ECUs) involved in the control process. Electric motor con-

trol was selected as a driver for the methodology due to its strict real-time

requirements.

3.2 Electric Motor Control

Electric motor control is a real-time closed-loop system with strict latency

requirements. Time determinism is required in each step of the control process.

24

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

Figure 3.1: Motor Control Electronic Control Unit (ECU)

Electric motor control is handled by a dedicated ECU for each electric motor

in the vehicle. An example setup can be seen in Figure 3.1.

Electric motors are operated by sending Pulse Width Modulation (PWM)

signals to their internal coils, one signal for each phase of the motor. The duty

cycle of each PWM signal controls the output torque generated by the motor.

These duty cycles are calculated using Field Oriented Control (FOC).

FOC involves a set of algorithms used to calculate the output duty cycles

for each phase of the motor. The inputs to these algorithms are the current

motor parameters, including the motor speed, motor angle, and the amount

of electrical current of each phase.

3.2.1 Timing Requirements

Figure 3.2: Decentralized Motor Control

Figure 3.2 shows an example timing diagram for the motor control process.

The process begins with at the start of the PWM time period. A trigger is

sent to the Analog Digital Converter (ADC) to start the phase measurements.

Once the measurements are ready, they are handed to the FOC algorithms.

25

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

The FOC algorithms calculate a new set of duty cycles the PWM signals to

the motor’s phases. Finally, the PWM output is updated with the new duty

cycles. The control process is repeated at the start of the next time period. In

order to maintain functional motor control, the sequence needs to be completed

before the start of the following PWM time period.

3.2.2 Domain Centralized Motor Control

The FOC algorithms require a considerable amount of computation. These

processing requirements drive up the cost of each ECU responsible for motor

control. Migrating the execution of the FOC algorithms to a centralized do-

main controller simplifies the hardware requirements and reduces the cost of

the motor control ECUs. It also enables more advanced control algorithms

especially for multi motor vehicles.

Figure 3.3: Domain Centralized Motor Control

A domain centralized motor control timing diagram can be seen in figure

3.3. When phase measurements are ready, they are transmitted over Ethernet

from the smart actuator to the domain controller that performs the FOC

algorithms. The calculated duty cycles are transmitted back to the smart

actuator that is used to update the output PWM

Timing requirements are enforced locally in decentralized motor control

using timers and interrupts. However, in centralized motor control, additional

hardware and software are required to meet the same requirements.

26

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

3.3 Hardware Requirements

Specialized hardware components and features are required to support the pro-

posed peripheral synchronization method. A Pulse Per Second (PPS) hardware

component is required to generate an internal synchronization signal as input

to the Pulse Width Modulation (PWM) peripheral. In addition to that, the

target PWM peripheral has to support external synchronization.

3.3.1 Pulse Per Second (PPS)

Figure 3.4: Pulse Per Second Clock Generation

PPS is a configurable output signal generated using the Time Sensitive Net-

working (TSN) enabled hardware’s counters. The implementation of generalized

Precision Time Protocol (gPTP) ensures that the hardware counters store the

Grand Master (GM)’s timestamp by capturing and processing the synchro-

nization broadcast messages received from the GM. By using the synchronized

counters, the PPS is synchronized to the GM’s clock. Despite its name, the

time period of the generated PPS signal can be configured to be greater than

or less than one second, enabling high precision time synchronization. There-

fore, the PPS output signal can be used as a synchronization source for other

peripherals.

The hardware capability to generate output signals or interrupts derived

from the synchronized gPTP clock is required to achieve synchronization. The

PPS should have a configurable frequency up to the PWM peripheral’s maxi-

27

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

mum required frequency for the application and cannot be greater, otherwise

it will lead to generating signals with shorter than required time period.

fPPS ≤ fPWM

3.3.2 PWM Peripheral Synchronization

The PWM peripheral should support external synchronization. External syn-

chronization can be achieved using external pulses, each pulse resetting the

internal time period counters to their initial values. This ensures that the

beginning of the PWM period is aligned with a specific timestamp which is

shared with other devices on the network. The PWM peripheral must provide

a signal input path for these external pulses.

3.4 Control Synchronization

Figure 3.5: Synchronization Setup

The primary goal of the synchronization is to deterministically apply the

Pulse Width Modulation (PWM) parameters calculated by the Field Oriented

Control (FOC) algorithms. This can be achieved by ensuring the PWM output

pulses are synchronized to the shared Grand Master (GM) timestamp.

28

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

Figure 3.5 demonstrates the synchronization of motor control using Time

Sensitive Networking (TSN) hardware and software and is an expanded version

of Figure 3.4. The synchronized signal from the Pulse Per Second (PPS)

module is used to synchronize the output of PWM module to the electric

motor, resulting in synchronized motor control.

The synchronization method and the hardware requirements were devel-

oped to support the hardware platform available for evaluation. There was

only one component within the hardware that supports generating signals syn-

chronized to the GM and that is the PPS module. Therefore, the PPS module

was selected to generate the signal used to synchronize the PWM output.

Chapter 4 will introduce a hardware configuration used for synchronizing

PWM signals as well as a methodology to evaluate the performance of syn-

chronization.

29

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

Chapter 4

Evaluation

4.1 Methodology

4.1.1 Measuring Drift

The drift between the Pulse Width Modulation (PWM) signal and the syn-

chronized generalized Precision Time Protocol (gPTP) clock can be used as a

criterion to evaluate the performance of peripheral synchronization. The lower

the amount of drift, the better the synchronization.

To measure the amount of drift between the PWM signal and the network

Grand Master (GM) clock, a reference signal is generated. The reference signal

is synchronized to the GM time using gPTP. The frequency of the reference

signal is equal to the frequency and duty cycle of the PWM signal.

At every pulse of the synchronization signal, the PWM output is syn-

chronized to the network. In other words, the time difference between the

edgePWM pulse and the edge of the reference signal is at its minimum value.

During the time between two pulses of the synchronization signal, the PWM

30

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

signal drifts from the reference signal. The amount of drift can be calculated

from the change in the time difference between the edge of the PWM signal

tPWM and the edge of the reference signal tREF . Figure 4.1 has two plots

showing the minimum and maximum time difference between the edges.

(a) min(tPWM − tREF) (b) max(tPWM − tREF)

Figure 4.1: Clock Drift

The following formula can be used to calculate the maximum amount of

drift between the PWM signal and the reference signal:

Drift = max(tPWM − tREF)−min(tPWM − tREF)

The higher the frequency of the synchronization signal, the more frequently

the PWM signal is synchronized and the lower the amount of drift. Therefore,

to achieve the best synchronization performance while maintaining the desired

PWM period, the synchronization frequency should be equal to the PWM

frequency

fSY NC = fPWM

31

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

4.2 Testing

4.2.1 Hardware Configuration

The development hardware selected for the test setup was the NXP S32K39

platform for the following reasons:

• Time Sensitive Networking (TSN) enabled Ethernet Medium Access Con-

trol (MAC) and Physical layer (PHY) supporting time synchronization

and hardware time-stamping

• Pulse Per Second (PPS) capable hardware for generating signals syn-

chronized to the network time

• Pulse Width Modulation (PWM) peripheral supporting up to 20KHz

output frequency (required for motor control) as well as external trigger

support to re-synchronize the PWM signals

4.2.2 Software Configuration

In addition to hardware support, specific software including generalized Pre-

cision Time Protocol (gPTP) stack as well as peripheral drivers is needed.

For this evaluation, a more focused configuration was created using only one

Electronic Control Unit (ECU) with the following assumptions:

• The time registers in the Ethernet peripheral are synchronized to the

network time. This is handled by gPTP in a fully functional network.

• The PPS generates signals at a predetermined time that is known to the

other ECUs on the network.

32

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

4.2.3 Test Setup

Figure 4.2: Test Setup

Figure 4.2 shows the hardware setup used for this evaluation. A clock

synchronized to the gPTP Grand Master (GM) is an input to the PPS module

and is used to generate two signals, a synchronization signal and a reference

signal. This results in both signals being synchronized to the gPTP GM. The

synchronization signal generated by the PPS is used to synchronize the output

of the PWM module.

4.2.3.1 Pulse Width Modulation (PWM)

The PWM peripheral was configured as follows:

• External synchronization signal is enabled

• The output duty cycle is set to 50%

• The output frequency is set for each test case

4.2.3.2 Pulse Per Second (PPS)

Two PPS output signals were configured as follows:

• A synchronization signal with a duty cycle of 50% and a set frequency

fSY NC for each test case

– fSY NC × n = fPWM , where n is an integer

33

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

– fSY NC ≤ fPWM , otherwise PWM time period is shortened, and

control is affected

• A reference signal with an output frequency fREF and duty cycle equal

to the PWM output

4.3 Results

4.3.1 Measurements

Signal measurements were collected using an oscilloscope. The oscilloscope

channels were setup as follows:

Channel Signal Color
1 Pulse Width Modulation (PWM) Output (Phase A) Yellow
2 Pulse Per Second (PPS) Generated Synchronization Signal Magenta
3 PPS Generated Reference Signal Cyan

Table 4.1: Oscilloscope Setup

Figure 4.3 shows an example capture from the oscilloscope of the evaluation

setup recorded over 1000µs. In this capture the PWM output and the PPS

generated reference signal have a frequency of 8 KHz and a duty cycle of 50%.

The PPS generated synchronization signal has a frequency of 4 KHz and a

duty cycle of 50%. The PWM output is synchronized at the leading edge of

the PPS generated synchronization signal.

In addition to capturing the signals, the oscilloscope’s statistics feature

was used to measure the drift between the PWM output signal and the PPS

generated reference signal.

34

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

Figure 4.3: Oscilloscope Sample Capture

Figure 4.4: Drift Capture Example

Figure 4.4 shows an example of the statistics measured by the oscilloscope.

Compared to Figure 4.3, this is a 40µs capture displaying only the PWM

35

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

output in yellow and the PPS reference signal in cyan. A sufficient number of

samples are collected with the oscilloscope to make the statistics more accurate,

providing a reliable measurement of the synchronization performance. The

oscilloscope trigger is configured on the leading edge of the PPS generated

reference signal (channel 2). We can observe the leading edge of the PWM

output drifting from the reference signal. The statistics of the most importance

for the evaluation are the minimum and maximum time difference between the

leading edges of the PWM signal (in yellow) and the PPS generated reference

signal (in cyan). They can be seen at the bottom of figure 4.4 where the

minimum is 5.309µ and the maximum is 36.48µ.

In figure 4.4 the measured data is as follows:

PWM Frequency 5 KHz
Synchronization Frequency 1 Hz

min(tPWM − tREF) 5.309µs
max(tPWM − tREF) 36.48µs

Using the formula in the measuring drift section above we can calculate

the maximum drift as:

Drift = 36.48µs− 5.309µs = 31.171µs

The calculated value is the worst-case drift of the PWM signal from the

PPS generated reference signal and therefore from the Grand Master (GM)

clock in a Time Sensitive Networking (TSN) network.

Since the motor control algorithms are synchronized to the PWM time

period, calculating the drift as a percentage of the PWM time period will

allow the comparison of the performance of the synchronization across different

PWM frequencies.

36

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

A PWM signal with a frequency of 5 KHz has a time period of 200µs. The

drift calculated as a percentage is:

Drift% = 31.171
200

= 15.559%

Using a 1 Hz synchronization signal for a 5 KHz PWM, we can limit our

worst-case drift to 15.56% of the time period.

We can further improve the synchronization by increasing the frequency

of the synchronization signal. Figure 4.5 shows a reduction in the maximum

amount of drift due to the increased frequency of the synchronization signal.

Figure 4.5: Drift (5KHz PWM, 20 Hz Sync)

Drift = 15.14µs− 13.65µs = 1.49µs

Drift% = 1.49
200

= 0.745%

A drift of less than 1% of the PWM time period is achievable with a 20 Hz

synchronization frequency. However, if we maintain the same synchronization

frequency while increasing the PWM frequency, the amount of drift increases.

37

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

Figure 4.6: Drift (20KHz PWM, 20 Hz Sync)

In Figure 4.6 the setup is using a 20 KHz PWM and a 20 Hz synchroniza-

tion signal. By calculating the drift, we observe a significantly higher drift of

12.086% compared to the 0.745% drift at 5 KHz PWM frequency.

Drift = −2.368µs− (−8.411)µs = 6.043µs

Drift% = 6.043
50

= 12.086%

38

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

fSY NC

fPWM 20,000 10,000 8,000 5,000 4,000

1 — — 39.44 15.586 9.749
2 — — 19.12 7.75 3.932
4 — 14.76 9.68 3.86 2.46
8 31.048 7.521 4.88 1.77 1.211
10 24.016 6.047 3.92 1.504 0.96
20 12.086 3.069 1.926 0.745 0.464
100 2.3896 0.613 0.386 0.145 0.097
1,000 0.238 0.057 0.038 0.15 0.008
4,000 0.054 — 0.016 — 0.003
5,000 0.04 0.008 — 0.005 —
8,000 — — 0.002 — —
10,000 0.018 0.004 — — —
20,000 0.008 — — — —

Table 4.2: Test results

Table 4.2 contains the measurement of the tested PWM output and syn-

chronization signal configurations. The values in the table are the maximum

drift represented as a percentage of the PWM time period. At a given PWM

frequency fPWM , increasing the synchronization frequency fsync reduces the

maximum amount of drift before the PWM signal is resynchronized.

As mentioned in 4.1.1, to achieve the best synchronization performance,

the frequency of the synchronization signal should be equal to the frequency

of the PWM signal. A worst-case drift of less than 0.01% of PWM time period

is achievable using the described synchronization method for the frequencies

tested when fPWM = fSY NC is highlighted in the table. To put the results

in perspective, the precision allowable by the 16-bit PWM peripheral used in

this evaluation is 1
216

= 0.0015%.

39

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

Chapter 5

Conclusion & Future Work

5.1 Conclusion

Real-time control in centralized Electrical and Electronic (E/E) architectures

requires synchronization to meet the timing and performance requirements.

Although Time Sensitive Networking (TSN) standards offers time synchro-

nization between Electronic Control Units (ECUs) in a vehicle, they are lim-

ited to guaranteeing a shared timestamp across all network devices. Achieving

real-time control synchronization requires additional implementation.

This thesis proposes a method utilizing Pulse Per Second (PPS) signals

generated from a generalized Precision Time Protocol (gPTP) synchronized

clock and evaluates its performance. The evaluation results demonstrate that

the proposed synchronization method effectively synchronizes the Pulse Width

Modulation (PWM) generated signals with the network time, ensuring accu-

rate synchronization between the smart actuator and the domain controller.

40

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

5.2 Future Work

The synchronization and evaluation methods proposed in this thesis focus on

synchronizing the Pulse Width Modulation (PWM) peripheral’s output and

make assumptions about the rest of the setup. Additionally, although the

motor control application used demonstrated good performance, it may not

be a practical use case due to its sensitivity to timing inaccuracies.

The following can be explored to expand upon this work:

• Centralized zonal architectures are becoming the preferred solution over

domain centralized architectures, the work can be adapted to such ar-

chitectures with minimal changes.

• The performance of synchronization was evaluated by assuming ideal

Time Sensitive Networking (TSN) synchronization performance. Assess-

ing the impact of TSN synchronization performance on the application

is necessary for a complete evaluation of the performance of the system.

• Applying the synchronization method to less strict applications might

be more feasible. One of these applications could be Advanced Driver-

Assistance System (ADAS) camera frame synchronization, which re-

quires a lower frequency compared to the motor control application (5-60

Hz vs 2-20KHz).

41

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

Bibliography

[1] Peter Aberl, Stefan Haas, and Arun Vemuri. “How a Zone Architecture

Paves the Way to a Fully Software-Defined Vehicle”. en. In: (2023).

[2] Alan Amici. Advanced ethernet could safeguard AVs against network de-

lays. en. May 2019. url: https://www.axios.com/2019/05/15/

advanced - ethernet - could - safeguard - avs - against - network -

delays (visited on 11/20/2023).

[3] Automotive Ethernet: An Overview. en. url: https://support.ixiacom.

com/resources/automotive-ethernet-overview (visited on 06/06/2024).

[4] Victor Bandur et al. “A Domain-Centralized Automotive Powertrain

E/E Architecture”. In: Apr. 2021. doi: 10.4271/2021-01-0786.

[5] Victor Bandur et al. “Making the Case for Centralized Automotive E/E

Architectures”. In: IEEE Transactions on Vehicular Technology 70.2

(Feb. 2021). Conference Name: IEEE Transactions on Vehicular Technol-

ogy, pp. 1230–1245. issn: 1939-9359. doi: 10.1109/TVT.2021.3054934.

url: https://ieeexplore.ieee.org/document/9337216 (visited on

11/20/2023).

42

https://www.axios.com/2019/05/15/advanced-ethernet-could-safeguard-avs-against-network-delays
https://www.axios.com/2019/05/15/advanced-ethernet-could-safeguard-avs-against-network-delays
https://www.axios.com/2019/05/15/advanced-ethernet-could-safeguard-avs-against-network-delays
https://support.ixiacom.com/resources/automotive-ethernet-overview
https://support.ixiacom.com/resources/automotive-ethernet-overview
https://doi.org/10.4271/2021-01-0786
https://doi.org/10.1109/TVT.2021.3054934
https://ieeexplore.ieee.org/document/9337216

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

[6] BOSCH. 230831-bosch-xc-whitepaper-ee-architektur-en.pdf. url: https:

//www.bosch-mobility.com/en/mobility-topics/ee-architecture/

(visited on 11/20/2023).

[7] Paul Dan Burlacu, Laszlo Mathe, and Remus Teodorescu. “Synchro-

nization of the distributed PWM carrier waves for modular multilevel

converters”. In: 2014 International Conference on Optimization of Elec-

trical and Electronic Equipment (OPTIM). Bran, Romania: IEEE, May

2014, pp. 553–559. isbn: 978-1-4799-5183-3. doi: 10.1109/OPTIM.2014.

6851001. url: http://ieeexplore.ieee.org/document/6851001/

(visited on 04/08/2024).

[8] IEEE 802.1AS-2020 Timing and Synchronization for Time-Sensitive Ap-

plications. en. url: https://standards.ieee.org/ieee/802.1AS/

7121/ (visited on 06/06/2024).

[9] IEEE 802.1Qbv-2015 IEEE Standard for Local and metropolitan area

networks – Bridges and Bridged Networks. en. url: https://standards.

ieee.org/ieee/802.1Qbv/6068/ (visited on 09/04/2024).

[10] S. Kanajan et al. “Exploring Trade-off’s Between Centralized versus De-

centralized Automotive Architectures Using a Virtual Integration Envi-

ronment”. In: Proceedings of the Design Automation & Test in Europe

Conference. Vol. 1. ISSN: 1558-1101. Mar. 2006, pp. 1–6. doi: 10.1109/

DATE.2006.243895. url: https://ieeexplore.ieee.org/document/

1656943 (visited on 03/22/2024).

[11] Thomas Liebetrau. “E/E Architecture Transformation How it impacts

value chain and networking technologies”. In: AmE 2022 - Automo-

tive meets Electronics; 13. GMM-Symposium. Sept. 2022, pp. 1–7. url:

43

https://www.bosch-mobility.com/en/mobility-topics/ee-architecture/
https://www.bosch-mobility.com/en/mobility-topics/ee-architecture/
https://doi.org/10.1109/OPTIM.2014.6851001
https://doi.org/10.1109/OPTIM.2014.6851001
http://ieeexplore.ieee.org/document/6851001/
https://standards.ieee.org/ieee/802.1AS/7121/
https://standards.ieee.org/ieee/802.1AS/7121/
https://standards.ieee.org/ieee/802.1Qbv/6068/
https://standards.ieee.org/ieee/802.1Qbv/6068/
https://doi.org/10.1109/DATE.2006.243895
https://doi.org/10.1109/DATE.2006.243895
https://ieeexplore.ieee.org/document/1656943
https://ieeexplore.ieee.org/document/1656943

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

https://ieeexplore.ieee.org/abstract/document/10025908 (vis-

ited on 08/06/2024).

[12] Varun M. Navale et al. “(R)evolution of E/E Architectures”. English. In:

SAE International Journal of Passenger Cars - Electronic and Electrical

Systems 8.2 (Apr. 2015). Number: 2015-01-0196, pp. 282–288. issn: 1946-

4614, 1946-4622. doi: 10.4271/2015-01-0196. url: https://www.

sae.org/publications/technical-papers/content/2015-01-0196/

(visited on 09/05/2024).

[13] Emanuel Panholzer et al. “Method for prediction of EMI Emissions from

Automotive Ethernet to Vehicle Antennas”. English. In: Advances in Ra-

dio Science. Vol. 19. ISSN: 1684-9965 Issue: E. Copernicus GmbH, Dec.

2021, pp. 139–146. doi: 10.5194/ars-19-139-2021. url: https://

ars.copernicus.org/articles/19/139/2021/ (visited on 06/06/2024).

[14] Jens Sorensen, Dara O’Sullivan, and Christian Aaen. “Synchronization

of Multi-Axis Motion Control Over Real-Time Networks”. In: PCIM

Europe 2018; International Exhibition and Conference for Power Elec-

tronics, Intelligent Motion, Renewable Energy and Energy Management.

June 2018, pp. 1–7. url: https://ieeexplore.ieee.org/document/

8402996 (visited on 03/25/2024).

[15] Time-Sensitive Networking (TSN) Task Group. url: https://1.ieee802.

org/tsn/ (visited on 09/04/2024).

[16] Yanli Xu and Jinhui Huang. “A Survey on Time-Sensitive Networking

Standards and Applications for Intelligent Driving”. en. In: Processes

11.7 (July 2023). Number: 7 Publisher: Multidisciplinary Digital Pub-

lishing Institute, p. 2211. issn: 2227-9717. doi: 10.3390/pr11072211.

44

https://ieeexplore.ieee.org/abstract/document/10025908
https://doi.org/10.4271/2015-01-0196
https://www.sae.org/publications/technical-papers/content/2015-01-0196/
https://www.sae.org/publications/technical-papers/content/2015-01-0196/
https://doi.org/10.5194/ars-19-139-2021
https://ars.copernicus.org/articles/19/139/2021/
https://ars.copernicus.org/articles/19/139/2021/
https://ieeexplore.ieee.org/document/8402996
https://ieeexplore.ieee.org/document/8402996
https://1.ieee802.org/tsn/
https://1.ieee802.org/tsn/
https://doi.org/10.3390/pr11072211

M.A.Sc. Thesis – Mostafa Ayesh McMaster University – CAS

url: https://www.mdpi.com/2227- 9717/11/7/2211 (visited on

11/20/2023).

45

https://www.mdpi.com/2227-9717/11/7/2211

	Descriptive Note
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Acronyms
	Introduction
	Motivation
	Related Work
	Centralized Architectures
	Real-Time Control Synchronization

	Contributions
	Outline

	Background
	E/E architectures
	Electronic Control Unit (ECU)
	Decentralized Architectures
	Centralized Architecture
	Inter-ECU Communication
	Automotive Ethernet
	Time Sensitive Networking (TSN)
	Time Synchronization
	Traffic Scheduling

	Problem Definition
	Domain Centralized Architecture
	Real-Time Control
	Clock Drift
	Peripheral Event Generation

	TSN Hardware
	TSN Time Synchronization
	Reference Time
	Clock Drift Correction

	Peripheral Synchronization using TSN
	Introduction
	Electric Motor Control
	Timing Requirements
	Domain Centralized Motor Control

	Hardware Requirements
	Pulse Per Second (PPS)
	PWM Peripheral Synchronization

	Control Synchronization

	Evaluation
	Methodology
	Measuring Drift

	Testing
	Hardware Configuration
	Software Configuration
	Test Setup
	Pulse Width Modulation (PWM)
	Pulse Per Second (PPS)

	Results
	Measurements

	Conclusion & Future Work
	Conclusion
	Future Work

