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LAY ABSTRACT 

Idiopathic pulmonary fibrosis is a disease of unknown cause (idiopathic) that affects the 

lungs (pulmonary) and leads to abnormal and excessive scar tissue formation (fibrosis). 

This causes serious breathing difficulties for IPF patients, and progressive damage in the 

lungs eventually leads to fatal respiratory failure. Currently, there is no cure for IPF. 

Treatment options are limited, with only two approved anti-fibrotic drugs that can slow 

down disease progression but cannot halt or reverse it. Thus, there is a need to further 

investigate the underlying processes driving the disease and new potential ways to treat it. 

Macrophages are a type of white blood cell and the most common immune cells in the lung. 

It is believed that they play a key role in IPF and contribute to the process of “scarring gone 

wrong” by interacting with other cells and possibly even transforming into other disease-

related cell types. However, macrophages can be challenging to study and their exact mode 

of action remains to be deciphered. Monocytes, another type of white blood cell, exist 

mainly in the blood and are pre-cursor cells for macrophages. In IPF, it is believed that 

monocytes leave the bloodstream and enter the lung tissue, where they differentiate into 

macrophages that contribute to disease processes. Despite being increased in the blood of 

IPF patients, very little is known about monocytes in IPF. This PhD thesis begins by 

exploring the evidence for profibrotic processes in macrophages from human IPF lung 

tissue, and their potential ability to transform into scar-producing cells. As little is known 

about this process in lung fibrosis, we also formally glean evidence from other forms of 

fibrosis, including kidney and cardiac. Next, we establish and validate a novel, biologically-

relevant system to study profibrotic macrophages using precision-cut lung slices, which 



Ph.D. Thesis – M. Vierhout                    McMaster University – Medical Sciences 

 iv 

addresses the challenges of studying macrophages in a way that translates to lung disease. 

Finally, we investigate monocytes collected from the blood of IPF patients to better 

understand the attributes and processes of these cells, their link to macrophages, and future 

potential ways to target them. 
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ABSTRACT 

Idiopathic pulmonary fibrosis (IPF) is a fatal and relentless form of interstitial lung disease, 

characterized by excessive deposition of extracellular matrix in the lung tissue, declining 

lung function, and ultimately, respiratory failure. The prognosis of IPF is relatively poor 

and comparable to some aggressive forms of cancer, with a median survival of just 3 to 5 

years after diagnosis. Etiology of IPF remains widely unknown and anti-fibrotic 

interventions options are limited, with just two drugs, nintedanib and pirfenidone, being 

approved for treatment of the disease. Although these medications slow disease progression 

and may extend survival, they are not curative and cannot halt or reverse fibrogenesis. Thus, 

there is a critical need to investigate the mechanisms that drive disease and strategies to 

target them. It is believed that macrophages are vital contributors implicated in the 

pathogenesis of IPF. Through secretion of profibrotic mediators, interaction with various 

cell types, and mediation of wound healing responses, multiple studies have shown that 

macrophages drive profibrotic processes. The quantities of both alternatively activated 

macrophages in the lung and circulating monocytes in the blood have been found to be 

increased in IPF patients. Additionally, depletion of these cells in animal models of 

pulmonary fibrosis have shown that they are fundamental for development of the fibrotic 

response. However, the detailed attributes and mechanisms of these cells remain to be 

elucidated. Recently, there has been growing interest in the mechanism of macrophage-

myofibroblast transition (MMT), where macrophages transform into myofibroblast-like 

cells that are key effectors in fibrosis. We begin by exploring the evidence for MMT in 

lung tissue from IPF patients, to gain further insight into the profibrotic mechanisms of 
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macrophages present in the disease. Through mining of a single cell RNAseq dataset of 

lung tissue explants from IPF patients and controls, and using our curated biobank of IPF 

surgical lung biopsies for various tissue-based assessments, we demonstrate findings 

supporting myeloid origin of ACTA2/α-SMA positive cells in IPF. Next, we establish and 

validate a novel, translational approach for investigation of macrophage profibrotic 

programming in the lung. Given the interactive and dynamic nature of macrophages, as 

well as their high degree of phenotypic plasticity, traditional in vitro systems present major 

limitations in the translation of research findings to true macrophage behaviour in disease. 

Precision-cut lung slices (PCLS) are living tissue slices derived from the full organ which 

bypass the limitation of  artificially recreating the lung architecture and recapitulating the 

sophisticated microenvironment. Using our polarization cocktail and PCLS, we develop a 

moderate-throughput, biologically-relevant system for profibrotic macrophage 

programming in the lung. We also demonstrate induction of overall features of fibrosis in 

our system, which we show may be attributable to MMT, as described previously. 

Complementing our novel platform, we also describe the implementation of high-content 

imaging using Iterative Bleaching Extends Multiplexity (IBEX) to explore cellular 

phenotype and spatial characteristics in PCLS, which has potential for expansion to other 

cultured organ slice systems. Lastly, we investigate the attributes and mechanisms of 

circulating monocytes isolated from the blood of IPF patients. We confirm their increased 

quantity in IPF and uncover an aberrant metabolic phenotype. We show that gatekeeper 

enzyme PDK4 may function as a potential associated target that is also implicated in 

macrophage polarization, and further explore the mechanistic involvement of aberrant 
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metabolism using our developed PCLS system. Overall, the findings presented in this thesis 

support the pursuit of knowledge to better understand the profibrotic contribution of 

macrophages and monocytes in IPF, and offer insights for the development of novel 

therapeutic interventions in fibrosis.  
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Thesis Graphical Abstract:  

This figure depicts the overall accepted pathobiology for idiopathic pulmonary fibrosis 

(IPF). In summary, disease-related processes are thought to initiate with epithelial 

insult, which then cascades into recruitment of macrophages to the site of injury. 

Macrophages secrete profibrotic mediators including CCL18 and TGF-β, which lead 

to hallmark functions of fibrosis including fibroblast recruitment and proliferation, 

fibroblast to myofibroblast differentiation, and deposition of extracellular matrix 

(ECM) in the lung. Macrophages may also directly contribute to myofibroblast 

populations through macrophage-myofibroblast transition (MMT). Additionally, 

circulating monocytes in the blood have been shown to be increased in IPF, and are 

believed to contribute to profibrotic macrophage populations in the lung. However, 

very little is known about the overall characteristics and potential disease-driving 

features of these monocytes. 

The chapters of this thesis are depicted throughout this figure by blue boxes, which 

are laid out in relation to the according IPF pathobiological factors each chapter 

investigates. Chapter 2 focuses on the process of MMT in IPF and fibrosis overall. 

Chapter 3 entails the development of a biologically relevant approach to study 

profibrotic macrophage polarization in the lung, which also involves aspects related to 

MMT. Chapter 4 directly builds on Chapter 3 with the establishment of a detailed 

methodology for visual and quantitative comprehensive phenotyping of macrophages 

in precision-cut lung slices (PCLS) using high-content immunolabelling. Lastly, 

Chapter 5 focuses on the investigation of the potential dysregulated properties of 
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circulating monocytes in IPF, as precursor cells for pulmonary macrophages. Figure 

created using BioRender.com. 
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Fibrotic Lung Disease and Idiopathic Pulmonary Fibrosis 

Epidemiologic data has shown that 45% of all deaths in the developed world are linked 

to chronic fibroproliferative disease [1]. Fibrotic disorders comprise a range of 

pathologies and can impact various organs in the human body, largely being classified 

by extensive tissue remodelling and accumulation of excessive extracellular matrix 

(ECM) components in affected tissues [2]. This aberrant scarring and pathologic tissue 

remodelling can significantly compromise organ function, potentially cascading into 

failure and, in severe cases, death [1]. With the recent emergence and ongoing 

infections of the COVID-19 pandemic, fibrosis, especially in the lung, has been 

increasingly on the global radar [3,4].  

Interstitial lung diseases (ILD) are classified by deleterious wound healing processes 

which produce chronic inflammation and fibrosis in the lung tissue. Among ILDs, 

idiopathic pulmonary fibrosis (IPF) is one of the most prevalent subtypes and the most 

lethal [5]. Common symptoms of IPF include dyspnea, persistent dry cough, chronic 

fatigue, and declining lung function [6], with disease progression ultimately leading to 

respiratory failure. The prognosis of IPF is poor and similar to some forms of 

aggressive cancer, with a median patient survival of 3 to 5 years after diagnosis [7]. 

Although the cause and pathogenesis of IPF remain widely unknown, it has been 

shown that smoking, certain environmental exposures, and genetic polymorphisms 

constitute disease risk factors [8,9]. In attempt to better understand indicators of 

progression in IPF and fibrotic ILD, there has been a strong interest in biomarker 

studies in fibrosis patients [10–14], with an increasing focus on the circulatory 



Ph.D. Thesis – M. Vierhout                    McMaster University – Medical Sciences 

 6 
 

compartment [12,15,16]. Currently, there are two approved antifibrotic therapies for 

IPF: nintedanib and pirfenidone. Both medications slow progression and can extend 

survival time in IPF [17]. However, neither drug is curative nor able to reverse 

fibrogenesis, and so there is a critical need to develop new treatment options. Overall, 

IPF remains an etiologically complex, poorly understood, and aggressive form of 

fibrosis, warranting further investigation and elucidation of its disease-driving factors. 

Key Cellular Players of Interest in Pathophysiology of IPF 

Macrophages and Fibrotic Lung Disease  

Macrophages are the most common immune cells in the lung [18]. They are 

remarkably plastic, heterogenous cells with a broad range of effector functions as key 

orchestrators of immunomodulation in the lung. Pulmonary macrophages are stratified 

into the two broad categories of alveolar (AM) and interstitial (IM) macrophages, 

based on their localization in the lung [19]. AM are understood to arise from the yolk 

sac during embryonic development, and during a healthy state are primarily a self-

sustaining population with minimal contribution from the circulation [19]. They are 

responsible for various homeostatic roles in the lung, including catabolizing surfactant 

and clearing pathogens and debris. However, in settings of lung injury there is 

recruitment of circulating monocytes from the blood to the tissue, where they then 

differentiation into monocyte-derived AM [19]. IM are smaller than AM and are 

believed to play a role in immunoregulation and barrier immunity [19]. Generally, IM 

are widely understudied in the setting of disease, however they are known to play a 

role in tissue remodelling [19], which supports their fibrotic potential. The 
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classification of macrophages further branches into polarization states, which is a 

highly debated area of research. Historically, it was believed that macrophage 

polarization was a dichotomy, consisting of opposite “M1 pro-inflammatory” and “M2 

anti-inflammatory” macrophages. This was widely based on in vitro classification, and 

it is now accepted that macrophage polarization exists along a spectrum with 

dynamically shifting activation states [20].   

Although the pathogenesis of IPF is widely unknown, it is predominantly agreed upon 

that epithelial injury initiates the cascade of fibrogenic processes in the lung [8]. 

Macrophages are then recruited to the site of injury and release of a combination of 

profibrotic mediators, including cc-chemokine ligand 18 (CCL18) and transforming 

growth factor beta (TGF-β) [21], fuelling a multifaceted sequence of fibrogenesis in  

the lung. Specifically, macrophage-mediated signalling stimulates migration and 

proliferation of fibroblasts, as well as their differentiation into myofibroblasts, overall 

resulting in the deposition of ECM components in the lung [21]. While it is believed 

that AM are the primary source of TGF-β in lung fibrosis, both AM and IM are 

implicated in profibrotic processes in the lung, with ongoing investigation to clarify 

their differential roles [19,22]. Additionally, various markers associated with “M2-

like” programming, including CCL18, TGF-β, cluster of differentiation (CD) 206, 

interleukin (IL) 10, and arginase 1 are expressed by macrophages involved in fibrosis 

[23,24]. Notably, levels of both CD206 and CD163, were significantly increased in 

serum of IPF patients [25]. CD206 levels were also linked to increase mortality risk 

[25], which is in line with previous studies reporting the association of serum CCL18 
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levels with disease progression in IPF [26]. Furthermore, supporting their multifaceted 

functionality, recent studies unveiled a mixed activation state of macrophages in IPF 

that involves both pro-inflammatory and pro-fibrotic characteristics [27]. It has also 

been shown that macrophages are essential for the development of lung fibrosis. In 

bleomycin-induced murine models of pulmonary fibrosis, that macrophage depletion 

led to amelioration of the fibrotic response, centralizing the functional role of 

macrophages in fibrogenesis [28]. Undoubtedly, macrophages play a dynamic role in 

the development of fibrosis and are highly adaptable mediators. Further investigation 

is needed to elucidate a comprehensive understanding of these dynamics and how they 

can be targeted or modulated in the context of therapeutics for fibrosis. 

Circulating Monocytes and Fibrotic Lung Disease 

Monocytes are circulating cells derived from the bone marrow, which are involved in 

innate and adaptive immunity. Although monocytes are much less understood in IPF 

than macrophages, it is believed that as precursors of macrophages, monocytes may 

play an impactful role in mediating fibrogenesis. In response to epithelial injury and 

dysregulated immune signalling, monocytes are recruited to the lung where they 

differentiate into profibrotic macrophages and contribute to the aberrant wound 

healing milieu [29].  Lineage-tracing experiments in animal models of lung fibrosis 

have demonstrated contribution of monocytes to both IM and AM populations in the 

lung [19]. Additionally, in an in vivo murine lung fibrosis study, deletion of CCR2, a 

critical receptor for monocyte recruitment, protected mice from developing fibrosis, 

thus demonstrating the important role of recruited monocytes in orchestrating fibrotic 
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responses [30]. In the human three main subsets of monocytes exist, being classical 

(CD14+CD16-), intermediate (CD14+CD16+), and non-classical (CD14dimCD16+). 

Classical monocytes are the most common subset, followed by non-classical and then 

intermediate. Classical monocytes are also believed to have the highest inflammatory 

activity and entry into the tissue, while intermediate monocytes are inflammatory but 

do not actively patrol the bloodstream, and non-classical are generally considered anti-

inflammatory. 

Importantly, multiple studies have shown that circulating monocyte number is 

increased in IPF and predictive of poor disease outcomes [31–34], suggesting a 

potential association between these cells and disease progression. Given the ongoing 

challenge of prediction of mortality in IPF, this is of potential clinical relevance.  

Additionally, in a published IPF biomarker study reporting a 52-gene signature for 

prediction of transplant-free survival using peripheral blood mononuclear cells 

(PBMC), cellular deconvolution revealed that monocytes were the main contributors 

to the high-risk profile [12]. However, very little is known about the properties of 

monocytes in IPF. Further investigation is required to elucidate potential targetable 

aspects of monocyte behaviour in IPF and their relationship to profibrotic macrophage 

polarization. 

Avenues of Interest: Dysregulated Mechanisms in IPF 

Macrophage to Myofibroblast Transition 

Monocytes are highly plastic cells that have been shown to have diverse 

transformation options including monocyte to endothelial cell transition, monocyte to 
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dendritic cell transition, monocyte to macrophage transition, and ultimately, 

macrophage–myofibroblast transition (MMT). This was a term introduced by Nikolic-

Paterson et al. in 2014 to describe the transition of bone marrow-derived monocytes 

into myofibroblasts in the kidney [35]. Evidence for MMT likely existed before this 

time, and it was reported almost a decade earlier that blood monocytes in culture 

transformed into fibroblast-like cells with spindle-shaped morphology [36]. 

Studies directly reporting evidence for MMT have been mainly conducted in the 

kidney [37]. Overall, studies demonstrating evidence of MMT in lung fibrosis are 

especially limited. DiCampli et al. 2021 exhibited that cells of monocytic origin 

contribute to the mesenchymal cell population, which then differentiate into 

myofibroblasts in a murine model of bronchiolitis obliterans  [38]. This was shown in 

via CX3CR1 lineage tracing. More recently, the role of MMT in a rodent lung silicosis 

model was also exhibited [39]. The importance of circulating fibrocytes, defined as 

CD45-collagen-1 copositive cells, in IPF patients has been previously reported, 

substantiating the involvement of hybrid monocytic mesenchymal cells in human 

biology in IPF [40]. However, more evidence in patients is needed to explore this 

notion further. 

Cellular Metabolism in IPF 

Metabolic dysfunction is implicated in the pathophysiology of lung disease [41]. In 

IPF lung cells, mainly fibroblasts and epithelial cells, these perturbations contribute to 

a decreased ability to adapt to cellular stress, overall increasing vulnerability to injury 

and subsequent fibrogenesis [42]. As the main metabolic organelle, mitochondria are 
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responsible for generation of ATP from glucose. In normal conditions, 70% of the 

cell’s metabolic needs are supplied by oxidative phosphorylation (OXPHOS) – a 

highly efficient energy production pipeline [43]. However, under certain conditions, 

cells may switch from OXPHOS to glycolysis as their primary source of energy 

production. While metabolic flexibility can be beneficial and allow cells to adapt to 

various stimuli, such as low oxygen levels or increased demands for energy 

production, the shift from OXPHOS to glycolysis may also be pathologic. The 

metabolic preference for glycolysis, even in the presence of adequate oxygen levels, 

is termed the Warburg effect. The Warburg effect has historically been a hallmark 

characteristic of many cancers, giving cells a survival advantage and allowing them to 

evade apoptosis [44]. OXPHOS downregulation has been linked to poor clinical 

outcomes across all cancer types [45]. Although glycolysis is a faster process for 

energy production than OXPHOS, it is significantly less efficient and yields lactate as 

a by-product. 

The Warburg effect and diminished capacity for OXPHOS have been linked to the 

pathogenesis of IPF [46,47]. Lung myofibroblasts adopt an enhanced glycolytic 

program in IPF [47]. It is believed that this contributes to the fibrotic landscape and 

perpetually sustains the disease state, as lactic acid levels were found to be increased 

in the lungs of IPF patients which in turn led to activation of TGF-β and further 

myofibroblast differentiation [48,49]. The Warburg effect has also been observed in 

epithelial cells and macrophages in pulmonary fibrosis [50]. It has been found that 

alveolar macrophages in IPF have reduced OXPHOS-related gene expression and 
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damaged mitochondria [27]. Additionally, inhibition of glycolysis in alveolar 

macrophages from a murine pulmonary fibrosis model led to a decrease of “M2-like” 

markers [51]. 

In healthy individuals, monocytes are one of the most energetic cell types and function 

with high levels of both OXPHOS and glycolysis [41]. Therefore, shifts in this balance 

may be characteristic of disease. Dysregulated metabolism and OXPHOS have been 

found in monocytes from sarcoidosis patients, as well as circulating cells in COPD 

[41,52]. Recent work has demonstrated that targeting the mitochondria in human 

monocytes with treatment of hydrogen sulfide augmented monocyte phenotype, 

shifted cellular metabolism, and reduced expression of profibrotic markers CD206 and 

CD163 [53]. Overall, modulation of monocyte metabolism and phenotype may have 

therapeutic potential in fibrotic lung disease but requires further investigation in 

patient-derived samples. 

Pyruvate Dehydrogenase Kinase 4 and Disease 

Pyruvate dehydrogenase (PDH) is an enzyme that catalyzes the conversion of pyruvate 

into Acetyl-CoA. The PDH complex connects glycolysis with the citric acid cycle and 

OXPHOS, and overall mediates the transition from anerobic metabolism in the cytosol 

to aerobic metabolism in the mitochondria [54]. Pyruvate dehydrogenase kinase 

(PDK) inhibits the activation of the PDH complex, thus signifying it as a gatekeeper 

kinase between glycolysis and OXPHOS, and master regulator of metabolic shifts. 

Among the four isoforms of PDK, PDK4 is invariably upregulated in mitochondrial 

dysfunction-related metabolic diseases, rendering it a strong indicator of metabolic 
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pathology [58]. A schematic displaying PDK’s involvement in cellular metabolism 

can be found in Figure 1.  

PDK4 expression has been shown to be implicated in multiple diseases, with the 

majority of published research being in the cancer field. Studies have demonstrated 

that PDK4 plays a role in the promotion of malignancy in acute myeloid leukemia, 

ovarian cancer, and bladder cancer [44,59]. As an indicator of poor prognosis in 

various patient settings, increased PDK4 expression has been found in breast cancer, 

gastric cancer, pulmonary arterial hypertension, and sepsis-induced cardiomyopathy 

[44,60–62]. Monocytic-specific increases in PDK4 expression have also been reported 

in disease, with significantly increased PDK4 mRNA levels found in CD14+ 

monocytes from patients with acute-respiratory distress syndrome (ARDS) and 

coronary artery disease [63,64]. PDK has also been shown to be related to lung 

fibrosis. In animal models of pulmonary fibrosis, PDK was shown to be significantly 

upregulated in lung myofibroblasts [50,65].  

Dichloroacetate (DCA) is a well-established PDK inhibitor that has passed phase I and 

II toxicity testing in humans [66]. DCA has traditionally been used for the treatment 

of lactic acidosis, however it is also being explored as an alternative cancer therapy. 

Clinical trials with DCA for brain and colon cancer were shown to have favorable 

outcomes [67,68]. Its utility as a potential antifibrotic and restorer of mitochondrial 

function through the promotion of OXPHOS has been demonstrated in animal models. 

Specifically, treatment with DCA administered through drinking water led to 

suppression of bleomycin-induced lung fibrosis, and effectively regulated PDK-
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mediated glycolytic reprogramming [65]. Furthermore, in human and murine 

fibroblasts treated with TGF-β, PDK inhibition decreased α-SMA expression in a 

dose-dependent manner [65]. These in vivo and in vitro studies were largely fibroblast-

focused, and the specific effects of DCA-mediated PDK inhibition on macrophages 

and other cells in the context of lung fibrosis remains to be investigated. 
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Figure 1: Pyruvate dehydrogenase kinase in cellular metabolism 

In cellular metabolism, the connection between glycolysis and the TCA cycle + 

OXPHOS is mediated by PDH (light blue), which converts pyruvate into Acetyl-CoA. 

PDK (red) is a kinase that inhibits PDH, and thus serves as a gatekeeper kinase for 

OXPHOS. Figure created using BioRender.com. 
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Modelling Lung Research in a Translation Manner: Precision-Cut Lung Slices 

Precision-cut lung slices (PCLS) are living tissue slices generated from the whole lung 

that are cultivated ex vivo. The lung is one of the body’s most complex organs, with a  

highly unique architecture and cellular composition [69]. Compared to traditional in 

vitro cell and organoid culture systems, PCLS offer the benefit of naturally containing 

all cells, structures, and cell-matrix interactions found in the lung. This eliminates the 

need for scientist-made recreation and thus bypasses limits related to biological 

accuracy and translation. This is especially pertinent for highly plastic, interactive cells 

like macrophages, whose complex phenotypes cannot be fully understood in two-

dimensional in vitro systems. Studies have demonstrated the ability to model features 

of fibrosis in PCLS [70], as well confirmed the presence of immune cells in PCLS 

including macrophages [71]. However, studies specifically examining profibrotic 

programming of macrophages using a PCLS system have not yet been reported. 
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OVERARCHING AIM AND CORE OBJECTIVES OF THESIS    

The overarching aim of this PhD thesis is to investigate and ultimately interfere with 

profibrotic macrophage programming contributing to the pathogenesis of pulmonary 

fibrosis. This is fundamentally connected to the central hypothesis of the thesis, which 

is that modulating aberrant mechanisms governing macrophage activation status will 

hamper fibrogenesis in the lung. To address this from multifaceted angles, we 

developed the following constellation of interrelated key objectives: 1: Assess the 

presence of novel profibrotic mechanism MMT in the IPF lung, which has shown to 

be implicated in other forms of fibrosis (Chapter 2). 2: Establish a biologically-

relevant, translational system to investigate macrophage profibrotic programming in 

the lung (Chapter 3). The established system will also include features related to the 

process of MMT. 3: Further building on the system developed in chapter 3, solidify 

means to perform comprehensive visual and quantitative phenotypic analysis of lung 

macrophages, and determine this in the established system (Chapter 4). 4: Uncover the 

profibrotic features of monocytes in IPF and examine their relationship with disease 

progression (Chapter 5). 5: Investigate the mechanistic implications of the identified 

dysregulated features on lung macrophage profibrotic polarization, also using the 

translational system developed in chapter 3. Overall, the findings from these 

investigations fed into the central knowledge paradigm for understanding the 

contribution of macrophages to the pathogenic landscape of IPF. A detailed depiction 

of the multi-component pathobiology for IPF, as well as the relationship to each of the 
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chapters in this thesis to the overall landscape of lung fibrosis, can be found in the 

Thesis Graphical Abstract.  
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MONOCYTE AND MACROPHAGE DERIVED MYFIBROBLASTS: IS IT FATE? 
 
Megan Vierhout, Anmar Ayoub, Safaa Naiel, Parichehr Yazdanshenas, Spencer D Revill, 

Amir Reihani, Anna Dvorkin-Gheva, Wei Shi MD and Kjetil Ask 
 
This chapter contains a perspective article which includes original data and results as well 
as a comprehensive systematic approach examining the evidence for MMT. This work 
offers new insights on the concept of MMT across a range of organ systems and fibrotic 
disorders, including IPF. Through mining of a scRNAseq dataset of lung tissue explants 
from IPF patients and controls, we show that a subset of cells in the lung that have 
myofibroblast features co-express markers of monocytic origin (ACTA2+MAFB+). Using 
our curated biobank of lung tissue from IPF patients, consisting of FFPE surgical lung 
biopsies, we performed various histological staining assessments with histochemical, 
immunohistochemical, and FISH techniques to examine macrophage and myofibroblast 
expression pattern in the IPF lung. We observed coexpression of MAFB, ACTA2, and 
CD68 transcripts, as well as localization of α-SMA and CD68 proteins in similar areas, 
suggesting that ACTA2/α-SMA positive cells in lungs of IPF patients could stem from the 
myeloid lineage. Exploring evidence for MMT across a range of fibrotic disorders 
uncovered involvement of this process in several diseases, including kidney fibrosis, 
cardiac fibrosis, and pancreatic malignancy. Concordant with the evidence we examined in 
IPF, multi-organ MMT involvement was substantiated by coexpression of macrophage 
markers (such as CD68 and F4/80) and myofibroblasts (α-SMA). Overall, the work 
outlined in this chapter provides mechanistic insights for the role monocytes and 
macrophages in fibrogenesis, as well as their complex interplay with myofibroblasts, 
supporting these cells as driving profibrotic contributors in the landscape of multi-organ 
fibrosis, including IPF. 
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LIST OF ABBREVIATIONS 

a-SMA: a-smooth muscle actin 

BMDM: bone marrow derived macrophages 

CD: cluster of differentiation 

COL1A1: collagen type 1 alpha 1 

ECM: extracellular matrix  

FAP: fibroblast activation protein 

FFPE: formalin-fixed paraffin-embedded 

FSP1: fibroblast-specific protein 1 

GFP: green fluorescent protein 

H2O2: hydrogen peroxide  

H&E: hematoxylin and eosin 

ILD: interstitial lung disease 

IPF: idiopathic pulmonary fibrosis 

IR: ischemia-reperfusion 

MMT: macrophage-myofibroblast transition 

MPS: Mononuclear Phagocytic System 

M2: alternatively activated macrophage phenotype  

PDAC: pancreatic ductal adenocarcinoma 

PMA: phorbol 12-myristate 13-acetate 

RES: Reticuloendothelial System 

SGK-1: serum- and glucocorticoid-inducible kinase 1 
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TCF: T-cell factor 

TGF-β: transforming growth factor beta 

UUO: unilateral ureter obstruction 

YFP: yellow fluorescent protein 
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ABSTRACT 

Since the discovery of the myofibroblast over 50 years ago, much has been learned about 

its role in wound healing and fibrosis. Its origin, however, remains controversial, with a 

number of progenitor cells being proposed. Macrophage-myofibroblast transition, or 

MMT, is a recent term coined in 2014 that describes the mechanism through which 

macrophages, derived from circulating monocytes originating in the bone marrow, 

transformed into myofibroblasts and contributed to kidney fibrosis. Over the past years, 

several studies have confirmed the existence of MMT in various systems, suggesting that 

MMT could potentially occur in all fibrotic conditions and constitute a reasonable 

therapeutic target to prevent progressive fibrotic disease. In this perspective, we examined 

recent evidence supporting the notion of MMT in both human disease and experimental 

models across organ systems. Mechanistic insight from these studies and information from 

in vitro studies is provided. The findings substantiating plausible MMT showcased the co-

expression of macrophage and myofibroblast markers, including CD68 or F4/80 

(macrophage) and a-SMA (myofibroblast), in fibroblast-like cells. Furthermore, fate-

mapping experiments in murine models exhibiting myeloid-derived myofibroblasts in the 

tissue further provide direct evidence for MMT. Additionally, we provide some evidence 

from single cell RNA sequencing experiments confirmed by fluorescent in situ 

hybridization studies, showing monocyte/macrophage and myofibroblast markers co-

expressed in lung tissue from patients with fibrotic lung disease. In conclusion, MMT is 

likely a significant contributor to myofibroblast formation in wound healing and fibrotic 

disease across organ systems. Circulating precursors including monocytes and the 



Ph.D. Thesis – M. Vierhout                    McMaster University – Medical Sciences 

 24 
 

molecular mechanisms governing MMT could constitute valid targets and provide insight 

for the development of novel antifibrotic therapies, however further understanding of these 

processes is warranted.  
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INTRODUCTION 

Myofibroblasts were first introduced by Gabbiani et al. in 1971 for their role in wound 

healing and tissue granulation1. Since their discovery, many have studied the mechanisms 

of collagen deposition and the characteristics of myofibroblasts in fibrotic conditions2–5. 

Myofibroblasts have been distinguished by the expression of alpha-smooth muscle actin 

(a-SMA), a marker not expressed by quiescent fibroblasts6–8, making it unique to 

differentiated myofibroblasts. 

Although the origin of these cells remains unclear and controversial, a number of pathways 

to their emergence have been proposed. The main contributing precursor is local 

recruitment from connective tissue fibroblasts9. Local mesenchymal stem cells and bone 

marrow-derived stem cells constitute other possible origins9. Alternatively, polarized 

epithelial and endothelial cells can differentiate into cells of mesenchymal phenotype and 

myofibroblasts through the epithelial-mesenchymal transition and endothelial-

mesenchymal transition, respectively10.  

The concept of bone marrow-derived circulatory myofibroblast progenitors was first 

published in 1994 by Bucala et al. with the observation of circulating fibrocytes at the site 

of tissue injury11. These novel cells were characterized by the co-expression of bone 

marrow marker CD (cluster of differentiation) 34, and fibroblast markers collagen and 

vimentin11. Fibrocytes have been identified to be increased in fibrotic disease and 

associated with severity, where fibrocyte numbers were correlated with early mortality12. 

Additional studies have demonstrated that these fibrocytes had markers associated with 

monocytic origin and labeled them as “profibrotic monocytes”13. These circulating cells 
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are thought to extravasate from the circulation into injured and inflammatory areas where 

they can differentiate into myofibroblasts and contribute to extracellular matrix (ECM) 

deposition14.  These ideas are consistent with recent findings whereby circulating 

monocytes have been identified to be increased and associated with lower survival in a 

variety of fibrotic diseases15–17, however, the differences between monocytes and fibrocytes 

have not been clearly delineated. 

Monocytes, a natural precursor for macrophages, are highly plastic bone-marrow derived 

circulating cells that are most commonly classified by the expression of CD1418. The 

monocyte’s capacity to be a precursor cell for diverse transformation options can be 

appreciated through the monocyte to endothelial cell transition19, monocyte to dendritic cell 

transition20, monocyte to macrophage transition20, and ultimately, the macrophage-

myofibroblast transition (MMT), which is a term coined by Nikolic-Paterson et al. in 2014 

to describe the transition of bone marrow-derived monocytes into myofibroblasts in the 

kidney21. However, plausible evidence for MMT prevailed before this time. In 1991, Labat 

et al. discovered that blood monocytes in culture transformed into fibroblast-like cells and 

coined these cells “neo-fibroblasts”22. Monocyte-derived mesenchymal cells were also 

denominated by Kuwana et al., who found that spindle-shaped cells emerged from cultured 

CD14 monocytes23. Despite scientific efforts, uncovering progenitor phenotypes and the 

regulatory components of the MMT mechanisms has been challenging24. Due to the 

heterogenous nature of macrophages and fibroblasts, there is a lack of consensus in 

characterizing their behaviours and phenotypes25,26.  Since Metchnikoff’s discovery of the 

macrophage system in the late 1880s, there has been a debate on whether 
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fibrocytes/fibroblasts should be included in the Reticuloendothelial System (RES) or in the 

updated classification of the Mononuclear Phagocytic System (MPS), mostly due to the 

lower phagocytic capacity of fibroblasts27. Therefore, we are proposing here that fibrocytes 

and monocytes can contribute to the pool of myofibroblasts, however the exact relationship 

between fibrocytes and MMT is not understood. It has been suggested that the RES and 

MPS systems need to be revisited and updated classifications may be required28–31.  

Although it has been shown that circulating precursors are able to transform into 

myofibroblast-like cells in several in vitro systems and in situ, evidence of MMT remains 

scarce. In this perspective review, we used a systematic approach to curate the current 

evidence accumulated since the term MMT was coined by Nikolic-Paterson et al. in 201421, 

supporting the notion that myofibroblasts share monocyte or macrophage markers to 

provide a perspective on MMT across organ systems in humans and experimental models. 

We further address the need for additional studies to confirm that MMT acts as a significant 

contributor to myofibroblast accumulation and progressive fibrotic disease, and constitutes 

a valid therapeutic target. The 13 reviewed articles highlight various clinical, in vivo, and 

in vitro designs utilized to assess MMT. Of the 13 studies, nine (69%) were focused on 

kidney fibrosis, two (15%) on lung disease (fibrosis and tuberculosis), one (7%) on cardiac 

fibrosis, and one (7%) on pancreatic cancer. The main outcomes to evaluate MMT were 

co-expression of monocyte/macrophage (CD68 and F4/80) and fibroblast/myofibroblast 

[a-SMA, Collagen I, fibroblast-specific protein 1 (FSP1), fibroblast activation protein 

(FAP)], cell morphology, gene expression, and protein expression. Inhibitors and drugs 

targeting pathways of interest were often used to determine if mechanisms were critical for 
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MMT. While reviews (n=12) were excluded, nine addressed MMT, specifically in 

kidney14,32–36, liver37, and fibrosis overall38. A summary of the included studies and their 

results can be found in Table 1.  

EVIDENCE OF MMT IN KIDNEY DISEASE 

Kidney Fibrosis 

Kidney fibrosis is characterized by a substantial accumulation of myofibroblasts in the 

interstitial space39. These myofibroblasts create and deposit fibrillar matrix, which leads to 

deterioration of the architecture of the tissue39. This results in increased stiffness, disrupted 

blood flow, and decreased nephron function39. It has been shown that myofibroblasts also 

act as inflammatory cells, releasing cytokines and chemokines that can lead to kidney tissue 

damage39. 

Human 

MMT cells, which express both monocyte/macrophage and fibroblast/myofibroblast 

markers, were seen to be largely present and elevated in investigations of kidney fibrosis 

in human chronic allograft disease, where over 60% of a-SMA+ cells were CD68+ 40. The 

dual positive cell quantity was significantly higher in diseases that did not have active 

fibrosis, including diabetic kidney disease and end-stage renal disease40. This was 

correlated with clinical measures in biopsies from chronic renal allograft rejection patients, 

where more than 50% of myofibroblasts were CD68+a-SMA+, and the quantity of these 

cells was correlated with severity of fibrosis and renal allograft function41. MMT 

macrophages in kidney disease also have a predominant alternatively activated (M2) 
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phenotype, which was supported by CD68+a-SMA+CD206+ cells in a fibrotic region of 

crescentic glomerulonephritis tissue42. 

Mouse 

The unilateral ureter obstruction (UUO) and ischemia-reperfusion (IR) injury murine 

models were mainly used to study kidney fibrosis. In multiple studies, evidence for MMT 

in fibrotic kidney tissue from mice with UUO was observed by the co-expression of F4/80 

and a-SMA via immunofluorescence and flow cytometry40–45. In the IR injury model, the 

accumulation of F4/80+a-SMA+ cells was also observed, in addition to CD206+a-SMA+ 

cells40,46. 

Various fate mapping/lineage tracing studies with green fluorescent protein (GFP) or 

Tomato-marked bone marrow-derived cells have demonstrated that myofibroblasts in the 

kidney were derived from the bone marrow. In these studies, over 90% of macrophage-

myofibroblast double positive cells in the UUO model were determined to be of myeloid 

lineage44, and were demonstrated to express collagen I in addition to F4/80 and a-

SMA42,44,47, supporting the notion that a significant portion of myofibroblasts is derived 

from the circulatory pool.  

Rat 

In a glomerulosclerosis model of diabetic rats, intraglomerular MMT was observed. The 

presence of CD68+a-SMA+ cells was detected by immunofluorescence and flow 

cytometry, demonstrating the involvement of MMT in diabetic nephropathy48.  

In the above studies, the most commonly identified mechanism was the Smad3 pathway, 

where Smad3 knockout mice had decreased MMT and fibrosis40,41,45,47. Other critical 
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targets in kidney fibrosis include CXCL1043, Pou4f140, A2B adenosine receptor48, β-

catenin44, Rac146, and Src45, which were shown to be required for MMT through silencing 

or treatment with inhibitors. 

EVIDENCE OF MMT IN LUNG DISEASE 

Lung Fibrosis 

In lung fibrosis, myofibroblasts possess a pathologic phenotype defined by augmented 

proliferation and survival49. The lung interstitium is riddled with myofibroblast 

accumulations and deposition of collagen and ECM49. Myofibroblasts assemble in 

fibroblastic foci and as these regions expand, they eventually dismantle the alveolar 

basement membrane49.  

Rat 

MMT was studied in UUO-induced pulmonary fibrosis, where approximately 30% of 

myofibroblasts in the lung were derived from MMT. Cells co-expressing CD68 and a-

SMA were characterized as double positive cells (CD68+a-SMA+)50. F4/80+a-SMA+ cells 

were also present, and triple co-expression showed collagen I staining in the majority of 

these cells, further supporting the MMT phenotype50. Lastly, approximately 35% of the 

myofibroblasts were co-positive for M2 macrophage marker, CD206, in the fibrotic lung 

tissue, demonstrating that cells likely transitioned through an M2 state prior to 

myofibroblast transition50. This study also demonstrated that inhibiting mineralocorticoid 

receptor reduced MMT50. 

While the UUO model was successfully used to model pulmonary fibrosis in this study, it 

should be noted that this is not a conventional model for interstitial lung disease (ILD). 
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This model may result in a smaller proportion of invading monocytes as compared to 

primary pulmonary fibrosis models. Although there have been a number of studies using 

primary pulmonary fibrosis models where macrophage depletion resulted in a reduction of 

myofibroblasts and fibrosis51,52, this does not provide direct evidence for MMT. 

Additionally, the UUO model involves an acute inflammatory response that is not typical 

of progressive ILD. Future studies are needed to investigate MMT in primary pulmonary 

fibrosis models. 

Human 

To our knowledge, there are currently no studies claiming that MMT occurs in human lung 

fibrosis. To investigate MMT in human lung tissue, we recently examined dual expression 

of CD68 and ACTA2 in publicly available single cell RNA sequencing (scRNAseq) 

datasets containing samples from donors and IPF patients and found that approximately 

50% of ACTA2+ (a-SMA gene)  cells were CD68+31. In order to better characterize MMT 

cells, additional markers and multiplex analysis, both in vitro and in vivo are required. 

These potential targets can be studied with various methods to explore their expression and 

involvement in human disease. In order to trace cells from myeloid origin, markers that 

remain consistently expressed after entering the tissue are required. An example is the 

monocytic marker MafB, which was earlier proposed to be a suitable marker to follow 

myeloid cells in vivo53. MafB is a transcription factor that regulates the differentiation and 

activity of monocytes and macrophages54. It has been shown to be lineage specific, and is 

specifically expressed in CD14+ monocytes54 and not in other hematopoietic lineages55. 

This specificity differentiates MafB from other myeloid transcription factors55. To 
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determine a potential suitability to identify myeloid-derived parenchymal myofibroblasts, 

we examined MafB expression in a publicly available scRNAseq dataset from IPF patients 

and controls (Figure 1). Overall, 27 cell populations were defined in the dataset (Figure 

1A. i.). As expected, MafB was found to be significantly upregulated in the monocyte (fold 

change = 2.07) and macrophage (fold change = 2.01) cell populations, with the addition of 

conventional dendritic cells (fold change = 1.46) (Figure 1A. ii-iv.). We then looked at the 

expression of ACTA2 and found that the majority of cells that appear to have a relatively 

high expression belong to the fibroblast, myofibroblast, and smooth muscle cell populations 

(Figure 1B. i.)  When we examined co-expression of MafB and ACTA2, we found that 

26.9% of ACTA2+ cells expressed MafB (Figure 1B. ii.). Interestingly, this proportion was 

similar to the proportion (30%) of CD68+a-SMA+ cells seen in the myofibroblast 

population in the lung fibrosis paper included in this review50. We then further examined 

potential colocalization of mRNA using fluorescent in situ hybridization on archived 

formalin-fixed paraffin-embedded (FFPE) surgical lung biopsies from an IPF patient. In 

Figure 2, we show three separate regions in a section of IPF lung tissue. Plausible 

colocalization of MafB, ACTA2, and CD68 RNA transcripts can be seen in the tissue. 

Tissues were also stained with hematoxylin and eosin (H&E), and a-SMA and CD68 

immunohistochemistry. Serial sections stained with a-SMA and CD68 show localization 

of these proteins in similar areas. This could suggest that ACTA2/a-SMA positive cells in 

lungs of IPF patients could stem from the myeloid lineage, however further investigation 

is required to determine if these cells are specific to MMT. Overall, these types of strategies 

may assist in future exploration of MMT. 
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Tuberculosis 

Granulomas are present in tuberculosis as a barrier against the infection, which differs from 

other lung fibrosis where wound healing occurs to restore damaged tissue architecture56. 

Fibroblasts have been found to be present in granuloma-associated fibrosis in tuberculosis, 

however their purpose and stimulating factors remain unclear56. 

Non-Human Primate (Macaque) 

A study focusing on tuberculosis-related granulomas, and specifically in granuloma-

associated fibrosis, used a systems biology approach to show that MMT can play an 

important role in the dynamics of granuloma-associated fibrosis in tuberculosis lungs. The 

results were confirmed in the non-human primate model, where CD11+a-SMA+ cells were 

present in the fibrotic regions of granulomas from tuberculosis-infected macaque lung 

tissue57. This study also reported that STAT1 and STAT3 signaling must occur in a 

concerted manner for macrophages to undergo MMT, as predicted by computational 

simulations57. It should be noted that the tuberculosis model also involves an acute 

inflammatory response that is atypical in progressive ILD. 

EVIDENCE OF MMT IN HEART DISEASE 

Cardiac Fibrosis 

In cardiac fibrosis, myofibroblasts arise from cardiac fibroblasts activated by various 

stressors including stretch, inflammation, and cytokines58. Cardiac myofibroblasts are 

characterized by increased ECM production and the ability to contract58. These cells can 

also secrete growth factors that lead to hypertrophy of cardiomyocytes59. 

Mouse 
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A myocardial infarction and heart failure model in transgenic mice was utilized to study 

myocardial remodeling and fibrosis. Yellow fluorescent protein expression restricted to the 

myeloid lineage allowed for fate mapping experiments. Evidence for MMT in the heart 

included the co-expression of fibroblast markers collagen I, prolyl-4-hydroxylase, FSP1, 

and FAP in yellow fluorescent protein positive cells in the heart tissue60. According to these 

findings, macrophages adopt a fibroblast-like phenotype, allowing the neo-expression of 

the aforementioned markers at the site of myocardial healing.  

EVIDENCE OF MMT IN CANCER 

Pancreatic Ductal Adenocarcinoma  

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibrotic response that 

involves cancer-associated fibroblasts, tumor-associated macrophages, and ECM61. 

Cancer-associated fibroblasts are believed to play a role in cancer initiation and 

progression61. These cells may also secrete ECM and chemokines, leading to 

chemoresistance and hindrance of the delivery of therapeutics61.  

Human 

CD68+a-SMA+ and CD68+FSP1+ cells were detected in FFPE pancreas tissue from PDAC 

patients61, demonstrating proof of MMT in this disease. CD14+ monocytes isolated from 

PDAC patients co-expressed a-SMA and CD68 when cultured without other stimuli61. 

Some of these cells also acquired a spindle-shaped morphology61. Additionally, 

transcriptomic analysis of PDAC tissue found that monocytes cultured in the presence of 

hydrogen peroxide (H2O2) exhibited upregulation of the p53 pathway, indicating that 

macrophage-to-myofibroblast transition is induced by stabilizing p53 through reactive 
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oxygen species generation61. In vitro studies showed that oxidative stress can activate the 

p38-MAPK pathway and promote MMT61. 

EVIDENCE OF MMT IN VITRO 

Multiple in vitro studies with bone marrow-derived macrophages demonstrated the ability 

of these cells to transition into myofibroblasts. A schematic summary of these studies can 

be seen in Figure 3. Bone marrow-derived macrophages (BMDM) from mice were 

commonly used to test the effects of various compounds on MMT. MMT in these cells was 

exhibited by colocalization of macrophage markers (F4/80 or CD68) and a-SMA in several 

studies, after stimulation with transforming growth factor beta (TGF-β)40,43–45,47. The 

morphology of these cells also evolved to be spindle-shaped with cytoplasmic 

extensions43,45. Treatment of BMDM with IL-4 also stimulated expression of ECM and a-

SMA at the protein level. In human macrophages derived from CD14+ monocytes, in vitro 

assessments demonstrated a time-dependent increase of multiple fibroblast markers, 

including a-SMA, collagen type 1 alpha 1 (COL1A1), FSP1, and collagen secretion, after 

treatment with phorbol 12-myristate 13-acetate (PMA)60. The co-expression of these 

markers in vitro suggests a likely mechanism that links macrophages and myofibroblasts 

and contributes to disease progression. 

MECHANISMS INVOLVED IN MMT 

Kidney 

Limited information is available on how the MMT process occurs. In the reviewed studies, 

a wide range of interventions were used to test the involvement of pathways and 

mechanisms in MMT. The most commonly studied mechanism was Smad3, which was 
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investigated in four kidney fibrosis studies40,41,45,47. Overall, Smad3 is required for MMT, 

as exhibited by decreased MMT and fibrosis in Smad3 knockout mice40,41,45,47. Smad3 is a 

mediator of TGF-β signalling, suggesting that MMT occurs through a TGF-β dependent 

pathway. This is also further supported by the multiple in vitro studies that induced MMT 

with TGF-β stimulation40,43–45,47. As a transcription factor, Smad3 is translocated to the 

nucleus after TGF-β binds to its receptor. One study identified transcription factor Pou4f1 

as a Smad3 target in kidney fibrosis, and demonstrated it to be a crucial downstream 

regulator of MMT40. Pou4f1 was also found to be present in MMT macrophages in fibrotic 

sites, as indicated by α-SMA colocalization40. Another identified target of the Smad3 

pathway in kidney fibrosis is proto-oncogene tyrosine protein kinase Src45. Src was shown 

to be required for MMT both in vivo and in vitro45. It is a Smad3 target gene and is 

upregulated in MMT macrophages45. The Smad3/TGF-β pathway has been implicated in 

fibrotic disease62–64, and its relevance in MMT may also suggest that this process is critical 

for fibrogenesis.  

Related to the Smad3 pathway are β-catenin and T-cell factor (TCF). It has previously been 

demonstrated that Wnt/β-catenin signaling is required for the differentiation of 

mesenchymal stem cells into myofibroblasts65. TGF-β/Smad signalling participates in 

crosstalk with the Wnt/β-catenin pathway, with the convergance of the pathways occuring 

at the activation of β-catenin via β-catenin/TCF, making β-catenin/TCF key to profibrotic 

processes44. In kidney fibrosis, it was shown that inhibition of β-catenin interaction with 

TCF reduced MMT, as this redirected the TGF-β pathway to β-catenin binding to Foxo1 
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instead of  TCF44. A summary of the Smad3/TGF-β and β-catenin MMT mechanisms can 

be seen in Figure 4A. 

A2B adenosine receptor has also been shown to play a role in renal fibrosis48.  When diabetic 

rats were treated with an A2B adenosine receptor antagonist, reduced glomerulosclerosis as 

well as decreased macrophage infiltration and MMT were observed48. Activation of this 

receptor in the glomeruli has previously been seen to release TGF-β66, and treatment with 

antagonists has resulted in decreased collagen and α-SMA levels in the kidney67,68. 

Another MMT mechanism that has been observed in kidney fibrosis is dependent on 

CXCL1043. When CXCL10 was knocked down or targeted with pterostilbene, a bioactive 

compound found in blueberries, in a murine model of kidney fibrosis, MMT was 

decreased43. CXCL10 protein was also shown to be increased in UUO mice43. CXCL10 

has overall played a controversial role in fibrosis, with studies indicating that it has both 

profibrotic69 and antifibrotic70,71 functions. 

The final MMT mechanism in the kidney involves Rac1, a member of the Rho family 

GTPase, that was also shown to play a significant role in kidney fibrosis46. Rac has 

previously been identified as a potential therapeutic target in fibrosis, and has been shown 

to play a role in the fibrotic phenotype of fibroblasts72,73. Rac1 was seen to be activated in 

the kidneys after IR, and treating mice with a Rac1 inhibitor led to a reduction in α-SMA 

levels and ECM proteins, and impaired accumulation of M2 macrophages and MMT46.  

Lung 

In the UUO-induced lung fibrosis model highlighted in this review, the mineralocorticoid 

receptor was seen to play a key role in MMT. Aldosterone, a mineralocorticoid steroid 
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hormone, binds to the mineralocorticoid receptor in the cytosol50. Mineralocorticoid 

receptor then transfers to the nucleus50. This receptor has been involved in various animal 

models of fibrosis50, and antagonists have been demonstrated to attenuate pulmonary 

fibrosis in bleomycin rodent models74. Mineralocorticoid-sensitive inflammation and 

fibrosis involves serum- and glucocorticoid-inducible kinase 1 (SGK-1), which upregulates 

NF-κB and leads to the expression of inflammatory mediators50. Increased expression of 

SGK-1 has been linked to lung fibrosis50. In this rat UUO model of lung fibrosis, blocking 

mineralocorticoid receptor with eplerenone was seen to reduce the quantity of MMT cells50. 

This study exhibited increased quantity of mineralocorticoid receptor in UUO lungs, 

however it was not specific to a certain cell type.  

Additionally, in the computational simulations conducted to study tuberculosis-related 

granuloma-associated fibrosis in the lung, it was predicted that macrophages undergoing 

MMT must experience a concerted signalling process involving transcription factors 

STAT1 and STAT357. STAT1 stimulation promotes an inflammatory phenotype, while 

STAT3 provides an anti-inflammatory signal57, and inflammatory macrophage transition 

into myofibroblasts has previously been demonstrated in fibrosis42. According to the model, 

STAT1 signalling must be initiated first, followed by initiation of STAT3 signaling 

approximately 7 days later57. These mechanisms are outlined in Figure 4B. 

Pancreas 

In PDAC studies, in vitro experiments demonstrated that oxidative stress through exposure 

to H2O2  induced MMT61. Oxidative stress can activate the p38-MAPK pathway, which can 

induce a-SMA expression in monocytes/macrophages61. In the pancreas, p38-MAPK has 
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been linked to pancreatitis and inhibition studies have shown alleviation of the 

inflammatory response75. p38-MAPK is also a downstream target of TGF-β, and blocking 

this pathway has been shown to be associated with decreased ECM production76. This 

supports that the p38-MAPK axis, governed by oxidative stress stimulation, may be 

important in MMT. This mechanism is illustrated in Figure 4C. 

FUTURE DIRECTIONS 

The current evidence is from a collection of organ systems in human, mouse, rat, and non-

human primate experimental models. A schematic representation of the MMT process 

highlighted in this review can be seen in Figure 5. Given the direct proof, as demonstrated 

through lineage tracing, co-expression of known markers of both cell types and inhibition 

of key MMT mechanisms, the literature suggests that there is accumulating evidence that 

MMT is a contributor to fibrotic processes. Previous studies have depleted the monocyte 

and macrophage population in vivo with clodronate treatment and other strategies and 

showed decreased quantities of myofibroblasts and resulting fibrosis51,52,77. The 

explanation for this was attributed to the belief that macrophages are indirectly required for 

differentiation and recruitment of myofibroblasts in the tissue. However, eliminating these 

cells may also deplete progenitor populations and therefore have a direct effect on 

myofibroblast quantities. With MMT evidence in mind, a shift in interpretation of the 

conclusions of previous macrophage depletion studies may be considered. 

To our knowledge, there are four substantial limitations that need to be considered in MMT 

investigations. The first is surrounding the effect of the microenvironment on the MMT 

process. It is clear that circulating cells are not the only contributor to fibrogenesis and the 
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progression of fibrotic disease. If fibrosis developed only from contributions of the 

circulatory component, multiple organ systems would be impacted in a single patient. 

Therefore, the microenvironment may also play a key role in causing these cells to 

transition, and there is likely a complex interplay between circulating cells and the 

microenvironment in the tissue. Circulating monocytes and resident macrophages are 

dynamic components of the immune system. This entails that they can specialize in a tissue-

specific fashion to control the homeostasis of several organs. Monocytes are known to give 

rise to most tissue-resident macrophages78. However, Gordon & Taylor79 proposed that 

under normal conditions, macrophage proliferation occurs locally to regenerate tissue-

resident cells, with the circulating progenitors having little role in this process. 

Furthermore, monocyte-derived macrophages emerge in response to local trauma, 

infection, or inflammation79. This suggests that the tissue microenvironment controls the 

plasticity of circulating monocytes78,79, which, in turn, regulates MMT and the fibrotic 

crosstalk. Although evidence suggests the important role of circulatory cells in 

myofibroblast differentiation, in absence of favorable tissue landscape, these progenitors 

are insufficient for the initiation and progression of MMT. Further studies are required to 

investigate the fibrotic microenvironment in disease. 

Another limitation is associated with morphology of MMT cells. Spindle-like morphology 

is characteristic of myofibroblasts, and cells undergoing MMT were shown to attain this 

morphology. M2 macrophages have been reported to acquire a spindle-shape morphology 

that could be considered fibroblast-like80,81. A number of the MMT studies in this review 

showed a predominant M2 macrophage phenotype or colocalization with M2 macrophage 
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marker CD20640,42,46,50. This may demonstrate that the cells transitioned through an M2 

state before becoming myofibroblasts. M2 macrophages can also release TGF-β82, which 

may play a role in the MMT process. However, studies that identified M2 macrophages to 

have a spindle shape did not investigate if they were in a transitional state, and whether 

they would ultimately become myofibroblast-like cells. Therefore, these results require 

further consideration. This point overall also raises caution that the observation of cells 

acquiring a spindle-like morphology is not solely indicative of MMT, and needs to be 

combined with other assessments, such as staining. 

While the studies included in this review provide adequate data for characterization of cells 

resulting from MMT, there is limited evidence in the literature regarding their functionality. 

A distinguishing feature of myofibroblasts is their contractile nature6,7, however this has 

not yet been directly demonstrated in MMT studies. Further investigation of the contractile 

and functional properties of MMT myofibroblasts, both in vitro and in vivo are required. 

Additionally, the current MMT literature mainly focuses on colocalization of a-SMA with 

monocyte/macrophage markers. A principal characteristic of myofibroblasts is the presence 

of a-SMA in their stress fibres, which plays a large role in the function and contractile 

nature of these cells7. In some of the literature examined in this review, a-SMA+ 

macrophages were shown to express a-SMA in the cell membrane45,61 or dispersed 

throughout the cell41,43,44,47,47,48,50,60 via high resolution imaging of immunofluorescence 

staining. This is a limitation of the evidence supporting MMT, and further studies are 

required to examine stress fibres in MMT cells. 
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Lastly, there is little mechanistic insight currently available to support potential MMT 

processes, especially in cardiac fibrosis. Further mechanistic studies are required to better 

understand the role of MMT in vitro and in vivo. It is not clear whether there is crosstalk 

between the mechanisms explored in this review, and further research is required to 

elucidate this. Linked to the deficit of information regarding mechanisms, the information 

on the extent of MMT and role of myofibroblasts in fibrotic disease progression is very 

limited. The clinical observation, based on examination of fibrotic tissues, is that 

myofibroblasts reside in the fibrotic areas and are responsible for the deposition of ECM. 

These observations are almost exclusively based on cross-sectional observations as serial 

surgical biopsies are usually not performed in the clinical setting. The progressive nature 

of fibrosis is variable and little information or biomarkers exist in any fibrotic system 

indicative of progressive disease. Most animal models recapitulate fibrotic processes but 

are usually not progressive in nature and not suited to study progressive disease. The key 

observation in the cited literature is that myofibroblasts, seen as a-SMA+  cells, often share 

markers of myeloid nature, seen as CD68 or F4/80 positive cells, and could be derived from 

circulating cells. Once mechanistic insights are gained from experimental studies, it is 

crucial to also explore targets of interest in samples of human disease. 

Further investigations are required to elucidate the properties and functions of cells 

undergoing MMT. More complex systems, and potentially ex vivo studies, can be used to 

study the role of the microenvironment and gain mechanistic insight in MMT. Studies to 

provide evidence of cells to contract in in vitro and in vivo systems are also warranted, as 

well as investigations to further examine stress fibres in these cells. Other circulatory cells, 
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such as the closely related fibrocyte, also warrant additional exploration as a potential 

contributor to the myofibroblast pool.  Additionally,  development of scRNAseq platforms 

allows examination of RNA abundance with high accuracy and sensitivity, in addition to 

very high throughput83. This opens opportunities to define and study various cell 

populations, which may have great utility in MMT. Various methods are being developed 

for characterization of dynamics between these populations, among them are calculations 

of trajectories84, and of RNA velocity85. While building trajectories is a non-directional 

approach and therefore requires a prior assumption and knowledge of directionality 

between the examined cells, the RNA velocity method allows researchers to find 

directionality of change, by yielding a high-dimensional vector, which predicts a future 

state of individual cells. Such a method has extraordinary potential for revealing the 

dynamics between monocytes, macrophages and myofibroblasts. In addition, new 

technology, such as scRNAseq in combination with genetic barcoding allows simultaneous 

identification of lineage histories and transcriptomic profile for single cells in mice, which 

will accurately define the ancestry of monocytes, distribution and mobilization of the 

progeny, and their tissue destination and fate in either physiological or pathological 

conditions86.   

In conclusion, there is accumulating evidence that MMT may occur in multiple organ 

systems, including the kidneys, lung, heart and pancreas. It is important to highlight that 

conclusions supporting the presence of MMT were linked to the co-existence of 

monocyte/macrophage and myofibroblast attributes in cells and tissue, lineage tracing and 

fate mapping strategies, and severity of disease in the studied models. We propose that 
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further studies and molecular phenotyping techniques are required to better characterize the 

features of these MMT cells. 
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Figure 1: scRNAseq dataset comprised of samples obtained from peripheral lung 

tissue removed at the time of lung transplant surgery from patients with IPF (n = 12) 

and from nonfibrotic controls (n = 10). 

Data were obtained from a publicly available dataset containing samples from donors and 

IPF patients (GSE135893). The dataset contained samples obtained from peripheral lung 

tissue removed at the time of lung transplant surgery from 12 patients with IPF and from 

10 non-fibrotic donors. Processing, analysis, and visualizations were performed using 

Seurat package87 in R. Cell populations were defined using the markers from the source 

paper related to the dataset. After examination of the expression level distributions for 

MafB and ACTA2 genes, all cells showing levels of expression > 0 were defined as 

“positive” for that gene. 

A: 

i. UMAP plot of cell populations. Overall, 27 cell populations were defined in the dataset. 

ii. UMAP plot showing levels of expression of MafB. The majority of cells that appear to 

have a relatively high expression of MafB (purple) belong to the monocyte, 

macrophage, and conventional dendritic cell populations. 

iii. Violin plot of MafB expression across various cell populations. Several cell 

populations exhibited various extents of elevated expression of MafB. 

iv. Cell populations in which MafB was found to be significantly upregulated: monocytes 

(fold change = 2.07), macrophages (fold change = 2.01) and conventional dendritic 

cells (fold change = 1.46) (adjusted p<0.05). 

B: 
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i. UMAP plots showing expression of MafB and ACTA2 separately and superimposed 

together. As seen in panel A. ii., the majority of cells that appear to have a relatively 

high expression of MafB (red) are in the monocyte, macrophage, and conventional 

dendritic cell populations. The majority of cells that appear to have a relatively high 

expression of ACTA2 (green) are in the fibroblast, myofibroblast, and smooth muscle 

cell populations. Co-expression of the two markers is also shown. The colour legend 

reflecting the levels of expression is included on the right.  

ii. Number of cells selected based on their levels of MafB and ACTA2 expression 

(expression level of 0 was considered as negative). Out of all ACTA2 positive cells, 

26.9% were positive for MafB (red arrow). 
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Figure 2: Staining of FFPE lung tissue from an IPF patient. Three separate regions 

(A,B, and C) from IPF lung tissue are shown together and separately. Sections were stained 

with H&E,  a-SMA (IHC), CD68 (IHC) and triple positive MafB+ACTA2+CD68 

fluorescent in situ hybridization (FISH). Serial sections stained with a-SMA and CD68 

IHC show localization of these proteins in similar areas. As can be seen in the MafB, 

ACTA2 and CD68 channels, colocalization of MafB (pink), ACTA2 (red) and CD68 

(green) RNA transcripts are present in cells in the lung tissue.  

Work completed using human lung tissues was as previously described88. In short, 

procedures using human tissues were approved by the Hamilton Integrated Research Ethics 

Board (11-3559 and 13-523-C). FFPE IPF lung tissue samples were acquired from the 

biobank for lung diseases at St. Joseph’s Hospital in Hamilton, Ontario, and selected based 

on the evaluation of trained molecular pathologists and radiologists. IHC staining was 

completed with Agilent Dako CD68 (M0876) and a-SMA (M0851) antibodies. 

Commercially available RNAscope® (ACD Bio) fluorescent in situ hybridization assay 

was used for staining of MafB (400808), ACTA2 (311818), and CD68 (560598) stained 

with a Leica BondRX. Slides were digitized using an Olympus VS120 slide scanner at 20X 

(histological and immunohistochemical stains) and 40X magnifications (fluorescent in situ 

hybridization) and visualized with HALO image analysis software (Indica Labs, 

v3.2.1851.229). 
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Figure 3: Schematic representation of in vitro MMT studies. Macrophages were derived 

from monocytes from human blood or murine BMDM. Cells were treated with M-CSF or 

PMA, TGF-b, and inhibitors of mechanisms under investigation. Several outcomes were 

measured to assess MMT, including dual immunofluorescence, flow cytometry, 

morphology changes, and ECM and a-SMA protein assessments. Created with 

BioRender.com 
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Figure 4: Mechanisms for MMT highlighted in this review.  

A: In the kidney, transcription factor Smad3 is translocated to the nucleus after TGF-β 

binds to its receptor. Pou4f1 and Src have been identified as targets of Smad3 target in 

kidney fibrosis, and involved downstream in MMT. b-catenin also plays a role in MMT, 

and its binding to TCF promotes MMT. b-catenin/Foxo1 binding, however, reduces MMT. 

B: In the lung, mineralocorticoid receptor has been seen to interact with SGK-1, which 

upregulates NF-κB and leads to the expression of inflammatory mediators. Although the 

mechanism is not fully elucidated, mineralocorticoid receptor has been claimed to be 

necessary for MMT in a lung fibrosis model, as blocking it reduces MMT. It should also 

be noted that exhibited increased quantity of mineralocorticoid receptor was seen in a 

UUO-induced lung fibrosis model50, however it was not specific to a certain cell type. 

STAT1 and STAT3 signalling have also been seen to be required for MMT in granuloma-

associated fibrosis in tuberculosis. 

C: In the pancreas, it has been proposed that oxidative stress via H2O2  can induce MMT in 

PDAC. Oxidative stress activates p38-MAPK, which can induce a-SMA expression in 

monocytes/macrophages. Created with BioRender.com 
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Figure 5: Schematic representation of MMT process highlighted in this review. 

Monocytes leave the bone marrow and enter the circulation. From there, they extravasate 

and enter various tissues in the body, where they can transform into macrophages and then 

myofibroblasts. Several key mechanisms have been identified for transition into 

myofibroblasts, including Smad3, CXCL10, Pou4f1, A2B adenosine receptor, b-catenin, 

Rac1, and Src in the kidney, mineralocorticoid receptor, STAT1 and STAT3 in the lung, 

and p53 and p38-MAPK in the pancreas. Created with BioRender.com 
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TABLES 

Table 1: Summary of Included Studies 
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Table 1: To systematically identify the scientific literature providing plausible evidence for 

MMT, the following PubMed search string was established: ‘(monocyte/fibroblast 

transition) OR (monocyte/myofibroblast transition) OR (monocyte-fibroblast transition) 

OR (macrophage-fibroblast transition) OR (macrophage-myofibroblast transition) OR 

(fibrocyte-fibroblast transition) OR (MMT AND fibroblast AND macrophage)’. The 

publication date was filtered from 2014 to 2021. This yielded a total of 41 results. The 

search was last updated on 5 February 2021. Primary research articles in the English 

language that included evidence of direct MMT through co-expression of 

monocyte/macrophage and fibroblast/myofibroblast markers were included. Manuscripts 

that did not demonstrate a direct link to MMT, including studies showing cells indirectly 

required for fibroblast differentiation, were excluded. All articles were screened by at least 

two independent reviewers. Based on the selection criteria, a total of 13 studies (out of 41) 

were included in this review. Abbreviations: CD, cluster of differentiation; COL1A1, 

collagen type 1 alpha 1; ECM, extracellular matrix; FAP, fibroblast activation protein; 

FSP1, fibroblast specific protein 1; GFP, green fluorescence protein; PDAC, pancreatic 

ductal adenocarcinoma; RAAS, renin-angiotensin-aldosterone system; TGF-β, 

transforming growth factor beta; YFP, yellow fluorescent protein; α-SMA, alpha-smooth 

muscle actin. 
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A NOVEL EX VIVO APPROACH FOR INVESTIGATING PROFIBROTIC 

MACROPHAGE POLARIZATION USING PRECISION-CUT LUNG SLICES 
 

Megan Vierhout, Anmar Ayoub, Pareesa Ali, Vaishnavi Kumaran, Safaa Naiel, Takuma 
Issihki, Joshua F. Koenig, Martin R.J, Kolb, and Kjetil Ask 

 
IPF is a fatal form of ILD with an uncompromising disease course and relatively short 
survival time. Given the limited availability of antifibrotic treatment options, there is a 
critical need to implement novel approaches to investigate emerging experimental 
treatments and disease mechanisms. Macrophages have been shown to have key 
implications in wound healing and fibrosis. They are remarkably interactive cells with a 
strong phenotypic plasticity, and swiftly adapt to their surrounding microenvironment. 
Thus, to maximize translation of research to lung disease, there is a need to study 
macrophages in multifaceted, complex systems that are representative of the lung. In this 
chapter, we establish a novel approach to study profibrotic macrophage polarization using 
PCLS. As PCLS are living tissue preparations derived from the lung that are cultured ex 
vivo, the limitations of artificially recreating the lung architecture and  recapitulating the 
sophisticated milieu are overcome. We developed and validated a moderate-throughput, 
biologically-translational, viable model to study profibrotic programming of macrophages 
Using a polarization cocktail (PC), consisting of IL-4, IL-13, and IL-6, we show that 
multiple markers of macrophage profibrotic polarization, including Arginase-1, CD206, 
YM1, and CCL17, were induced in PCLS. Through tissue microarray-based histological 
assessments, we directly visualized and quantified Arginase-1 and CD206 staining in PCLS 
in a moderate-throughput manner. To further examine these cells and delineate phenotype 
of polarized macrophages, we using high-plex immunolabelling with the Iterative 
Bleaching Extends Multiplexity (IBEX) method,  and showed that the PC effects both 
interstitial and alveolar macrophages. Substantiating the profibrotic properties of the 
system, we also showed expression of extracellular matrix components and fibrotic markers 
in stimulated PCLS. Finally, we demonstrated that clodronate treatment diminishes the PC 
effects on profibrotic macrophage readouts, supporting the specific contribution of 
macrophages to the profibrotic attributes observed in our PCLS. Overall, our findings 
support a suitable complex model for studying ex vivo profibrotic macrophage 
programming in the lung, with future capacity for investigating experimental therapeutic 
candidates and disease mechanisms in pulmonary fibrosis. 
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ABSTRACT 

Idiopathic pulmonary fibrosis (IPF) is fatal interstitial lung disease characterized by 

excessive scarring of the lung tissue and declining respiratory function. Given its short 

prognosis and limited treatment options, novel strategies to investigate emerging 

experimental treatments are urgently needed. Macrophages, as the most abundant immune 

cell in the lung, have key implications in wound healing and lung fibrosis. However, they 

are highly plastic and adaptive to their surrounding microenvironment, and thus to 

maximize translation of research to lung disease, there is a need to study macrophages in 

multifaceted, complex systems that are representative of the lung. Precision-cut lung slices 

(PCLS) are living tissue preparations derived from the lung that are cultured ex vivo, which 

bypass the need for artificial recapitulation of the lung milieu and architecture. Our 

objective was to establish and validate a moderate-throughput, biologically-translational, 

viable model to study profibrotic polarization of macrophages in the lung using murine 

PCLS. To achieve this, we used a polarization cocktail (PC), consisting of IL-4, IL-13, and 

IL-6, over a 72-hour time course. We first demonstrated no adverse effects of the PC on 

PCLS viability and architecture. Next, we showed that multiple markers of macrophage 

profibrotic polarization, including Arginase-1, CD206, YM1, and CCL17 were induced in 

PCLS following PC treatment. Through tissue microarray-based histological assessments, 

we directly visualized and quantified Arginase-1 and CD206 staining in PCLS in a 

moderate-throughput manner. We further delineated phenotype of polarized macrophages, 

and using high-plex immunolabelling with the Iterative Bleaching Extends Multiplexity 

(IBEX) method, showed that the PC effects both interstitial and alveolar macrophages. 
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Substantiating the profibrotic properties of the system, we also showed expression of 

extracellular matrix components and fibrotic markers in stimulated PCLS. Finally, we 

demonstrated that clodronate treatment diminishes the PC effects on profibrotic 

macrophage readouts. Overall, our findings support a suitable complex model for studying 

ex vivo profibrotic macrophage programming in the lung, with future capacity for 

investigating experimental therapeutic candidates and disease mechanisms in pulmonary 

fibrosis. 

 

Keywords: pulmonary fibrosis, macrophages, precision-cut lung slices, macrophage 

programming, profibrotic polarization, ex vivo 
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INTRODUCTION 

Fibrotic interstitial lung diseases (ILD) are a group of debilitating disorders characterized 

by excessive scarring of the lung tissue and declining respiratory function. Idiopathic 

pulmonary fibrosis (IPF) is one of the most common ILD subtypes, for which the cause 

remains unclear and prognosis is relatively short, with patients surviving a median of 3 to 

5 years after diagnosis [1]. There are only two approved antifibrotic therapies for IPF, 

nintedanib and pirfenidone. Despite slowing the progression of disease, neither are curative 

or reverse fibrosis [2,3]. Given the poor prognosis and limited treatment options for fibrotic 

lung disease, investigation is urgently needed to delineate pathogenesis, as well as to 

develop novel approaches to rapidly screen emerging experimental treatments and their 

respective effects on the lung microenvironment.  

Macrophages, the most abundant immune cells in the lung, have vital implications in 

mediating the pathology of lung fibrosis [4,5]. Specifically, there is evidence supporting 

the contribution of profibrotic alternatively activated macrophages to aberrant wound 

healing [6–9], rendering these cells and their programming critical targets of interest in the 

context of lung fibrosis. Notably, macrophages are incredibly plastic cells with a dynamic 

phenotypic spectrum. They are highly interactive and swiftly adapt to their surrounding 

microenvironment, participating in a complex crosstalk of multifaceted signalling [9]. As 

such, evaluation of macrophages and their programming in vitro, although favoured for 

throughput and speed in preclinical screening studies, is limited for modelling authentic 

macrophage behaviour in the lung and fibrotic milieu. Therefore, to maximize translation 
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to disease, there is a need to study macrophages in an environment that better represents 

the lung. 

Precision cut lung slices (PCLS) are living tissue preparations derived from the lung that 

are cultured ex vivo. Historically, PCLS were used for pulmonary airway studies, mainly 

focusing on smooth muscle and airway epithelial cells [10,11]. More recently, research 

involving PCLS has become increasingly popular for the study of numerous cellular 

mechanisms, fibrosis, infection, inflammation, senescence, disease-relevant stimuli, and 

experimental treatments [12]. A primary advantage of the PCLS system is that slices 

contain all resident cells of the lung and maintain intercellular interactions and cell-to-

matrix relationships which are not found in traditional two-dimensional cell culture or 

three-dimensional organoid systems [13]. Conventional systems face limitations related to 

physiologically accurate lung cell and extracellular matrix (ECM) localization patterns, 

which are overcome in PCLS as lung structures do not need to be artificially recapitulated 

[14]. The nature of the PCLS model is also less time- and resource-intensive than in vivo 

disease models, and in honouring the 3 Rs of Replacement, Reduction, and Refinement, 

markedly decreases the number of animals needed for experiments [15]. As numerous 

slices can be obtained from lungs of various mammals, PCLS have been leveraged for their 

high-throughput potential, especially for screening compounds [16–19]. Thus, there is a 

need to develop readouts that are also throughput-conducive to best maximize the potential 

of this platform. 

Recent single-cell RNA sequencing (scRNAseq) studies have demonstrated the 

preservation of immune cells in PCLS [20], including proliferating macrophages, alveolar 
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macrophages, and monocyte-derived macrophages. Despite being disconnected from the 

influence of the circulating immune system and thus incoming monocyte infiltration, 

Blomberg et al. (2023) have recently exhibited proliferative capacity of macrophages in 

their murine PCLS model of pre-cancer malignancy [21]. Additionally, Alsafadi et al. 

(2017) [22] successfully induced multiple fibrotic changes in human PCLS using a fibrotic 

cocktail (FC). Using this FC, Lang et al. (2023) recently showed induction of fibrosis-

related marker genes in human PCLS, which were similar to a signature observed in 

macrophages from pulmonary fibrosis patients [23]. Overall, this evidence offers the 

suggestion that PCLS may constitute a suitable medium for the study of macrophage 

programming in the lung, and further investigation is needed to study profibrotic 

polarization and modes to measure this. 

Our group has previously demonstrated that the addition of IL-6 to the traditional 

alternative programming cocktail of IL-4 and IL-13 effectuated a hyperpolarized 

profibrotic phenotype in murine and human macrophages in vitro [24]. Therefore, we 

postulated that the profibrotic effects of this cocktail could be applied in an appropriate ex 

vivo system, potentially contributing to the development of a novel translational model for 

studying pulmonary profibrotic macrophages. Here, we evaluate the potential of employing 

this cocktail to establish and validate a moderate-throughput, complex, viable model to 

study profibrotic polarization of macrophages in the lung using PCLS. We demonstrate that 

treatment with IL-4+IL-13+IL-6, referred to as the polarization cocktail (PC), effectively 

induces profibrotic programming of ex vivo macrophages in murine PCLS over a 72-hour 

time course study. We implement the use of multiple readouts, with a focus on establishing 
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throughput of the model, especially through quantitative histological readouts using tissue 

microarray-based approaches. Substantiating the profibrotic properties of the system, we 

also show expression of ECM and fibrotic markers in PCLS following PC treatment. 

Finally, we demonstrate that clodronate treatment diminishes the effects of the PC on 

profibrotic macrophage readouts. 

 
METHODS 
 
Animal Utilization 

All work involving animals was approved by the McMaster University Animal Research 

Ethics Board (Animal Utilization Protocol #23-19) and was conducted in accordance with 

the Canadian Council on Animal Care guidelines. Wildtype female C57BL6/J mice (The 

Jackson Laboratory) aged 8–12 weeks were housed in pathogen-free conditions at the 

McMaster University Central Animal Facility. Mice were kept on a 12-hour light/12-hour 

dark cycle and provided access to water and food ad libitum. 

PCLS Generation and Culture 

Animals were anesthetized with isoflurane and exsanguinated by severing the inferior vena 

cava. After sacrifice, the lungs were perfused by injecting 5mL of warm PBS into the right 

ventricle of the heart to flush out residual blood. The trachea was cannulated and 1.3mL of 

40°C 1.5% low-melting point agarose (Invitrogen) dissolved in Hanks’ Balanced Salt 

Solution (HBSS) was slowly infiltrated into the lungs via the cannula, followed by a 0.2mL 

bolus of air to ensure agarose reached the lower airways. During lung inflation, mice were 

kept on a heating pad to maintain a warm temperature to prevent premature gelling of 

agarose. After inflation, mouse bodies were transferred onto ice and left to cool for 30 
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minutes to ensure complete gelling of agarose prior to excision of lungs. Lungs were then 

carefully excised, and lobes were separated. Each lobe was then affixed to a specimen 

holder, externally embedded in 2% agarose, and individually sliced (500µm thickness) in 

HBSS using a Compresstome VF-510-0Z vibrating microtome (Precisionary Instruments; 

speed setting: 1.5, oscillation setting: 9). PCLS cores (2mm or 4mm diameter) were 

obtained from full slices using a tissue puncher. Figure 1 depicts a schematic of 

experimental overview for the study. 

After slicing, PCLS were cultivated in DMEM culture medium supplemented with 10% 

fetal bovine serum, 2 mM L-Glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin, 

and 2.5 µg/mL amphotericin B at 37°C, 5% CO2. Medium was changed 3 times and PCLS 

were left in the incubator overnight to acclimate prior to treatment. At the time of treatment, 

PCLS were moved to 96-well plates and treated with a polarization cocktail (PC) consisting 

of recombinant IL-4 (40 ng/mL), IL-6 (10 ng/mL), and IL-13 (100 ng/mL; PeproTech), or 

a control cocktail (CC) consisting of only medium and diluent. We have previously shown 

that this triple cytokine combination stimulates profibrotic hyperpolarization of 

macrophages in vitro [24], however for ex vivo purposes we increased concentrations 

(while maintaining the same component ratios). Samples were harvested at 24-hour 

intervals over a 72-hour time course. For clodronate experiments, PCLS were subjected to 

a 24-hour pre-treatment period with liposomal clodronate (10-3000µM; Encapsula 

NanoSciences), followed by CC or PC treatment for 48 hours. 

Water-Soluble Tetrazolium-1 (WST-1) Assay 
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PCLS (4mm diameter) were incubated (37°C, 5% CO2) with 10µL of WST-1 reagent 

(Roche) in 100µL of culture media for 1 hour. After incubation, supernatant was transferred 

to a fresh 96-well plate and absorbance was measured at 450nm using a plate reader. 

Tissue Microarray Generation and Brightfield Histology 

PCLS (2mm diameter) were fixed in 10% neutral-buffered formalin for 24 hours and then 

transferred to 70% ethanol. Fixed tissues were embedded in paraffin. Tissue microarrays 

were generated from the formalin-fixed paraffin embedded (FFPE) PCLS with the TMA 

Master II (3D Histech Ltd), by taking 2mm punches (containing full PCLS) from the 

original blocks and inserting them in a host paraffin block. FFPE histology was conducted 

at the John Mayberry Histology Facility at the McMaster Immunology Research Centre. 

5µM sections were cut using a microtome (Leica) and stained with hematoxylin and eosin 

(H&E) and immunohistochemical (IHC) stains for Arginase-1, CD206, and α-SMA. 

Antibody information can be found in Supplementary Table 1. IHC was completed using 

a Bond RX immunostainer (Leica). Full slides were digitized (20X brightfield) using an 

Olympus VS120 Slide Scanner (Evident Scientific) at the Firestone Molecular Imaging and 

Phenotyping Core Facility (MPIC). Histological quantification was performed using 

HALO image analysis software (version 3.5, Indica Labs). For Arginase-1, CD206, and 

H&E, the Multiplex IHC module was used. For α-SMA, airways and vessels were excluded 

and the Area Quantification module was used. To calculate Percentage of Positive Cells, 

total number of cells per PCLS tissue core (determined by nuclear detection with 

hematoxylin staining) and number of cells positive for the protein of interest in the PCLS 

tissue core (determined by DAB staining) were quantified. Number of stain-positive cells 
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was divided by number of total cells, and multiplied by 100% to obtain Percentage of 

Positive Cells. To calculate Percentage of Positive Area, total tissue area per PCLS tissue 

core (determined by optical density detection) and tissue area that was positive for the 

protein of interest in the PCLS tissue core (determined by DAB staining) were quantified. 

Positive tissue area was divided by total tissue area, and multiplied by 100% to obtain 

Percentage of Positive Tissue Area. To calculate H-Score, all cells in the tissue core were 

detected, and each cell was ranked (high, medium, low, negative) based on its average 

intensity of signal for protein of interest (DAB). H-Score was then quantified by accounting 

for the proportion and intensity of the signal ranking using the following equation: H-Score 

= 100 !"#$%#&
"#%#&#'. 

Iterative Bleaching Extends Multiplexity (IBEX) Fluorescent Histology 

Multiplex staining of PCLS was achieved using IBEX, an open-source method for serial 

multi-marker immunolabelling [25,26]. PCLS (2mm diameter) were fixed in 

Cytofix/Cytoperm (BD Biosciences) diluted 1:4 in PBS, for 24 hours at 4°C. Tissue was 

then transferred to a 30% sucrose solution for cryoprotection for 48 hours at 4°C. Following 

fixation and cryoprotection, PCLS were embedded in optimal cutting temperature (OCT) 

compound and frozen using liquid nitrogen and isopentane. 12µM cryosections of fixed-

frozen tissue were cut using a cryostat (Leica) and placed in chambered cover glasses. 

Tissues were incubated with the primary antibody staining solution overnight at 4°C. When 

needed, the secondary antibody staining solution was applied for 1 hour at 37°C. Antibody 

information can be found in Supplementary Table 2. After staining, Fluoromount-G 

mounting medium (Southern Biotech) was added. Multiplex imaging (20X fluorescent) 
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was performed using an inverted confocal microscope (Zeiss LSM 980) at the McMaster 

University Centre for Advanced Light Microscopy (CALM). Tile images of the entire 

tissue were captured using a Plan-Apochromat 20X objective (0.8 numerical aperture), with 

pixel dimensions of 0.124um x 0.124um and a pinhole size of 1 Airy unit. Following image 

acquisition, mounting medium was removed and fluorophores were bleached by applying 

a 1mg/mL solution of lithium borohydride (Sigma-Aldrich) for 15 minutes. Tissues were 

stained with the next round of antibodies and the procedure was repeated iteratively as 

described. For histological analysis, serial image rounds were merged in HALO image 

analysis software, using DAPI as the alignment fiducial channel. For α-SMA staining, 

airways and vessels were excluded to focus on parenchymal expression. Quantification was 

performed using the Highplex FL module. Total number of cells per PCLS tissue core 

(determined by nuclear detection with DAPI staining) and number of cells positive for the 

proteins of interest in the PCLS tissue core (multiple fluorophores) were quantified. 

Arginase Activity Assay 

PCLS (4mm diameter) were homogenized in lysis buffer (0.1% Triton-X supplemented 

with sodium orthovanadate, PMSF, DTT and bovine lung aprotinin) using a Bullet Blender 

Bead Homogenizer (Next Advance). Homogenates were then centrifuged at maximum 

speed to remove remaining insoluble debris, and the arginase activity assay was carried out 

as previously described [7]. Briefly, lysates were diluted with 25mM Tris-HCl to form a 

1:1 mixture, from which 25μL was transferred to a 96-well PCR plate containing 2.5μL 

10 mM manganese chloride per sample well. The plate was then incubated in a thermal 

cycler at 56°C for 10 minutes. 25μL of 0.5M L-arginine then added, followed by another 
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thermal cycler incubation at 37°C for 30 minutes. Urea standards, 200μL of 

sulfuric+phosphoric acid solution, and 10μL of 9% alpha-isonitrosopropiophenone were 

added to the plate. A final thermal cycler incubation was completed at 95°C for 30 minutes. 

After allowing the plate to cool for 5 minutes, 150μL from each well was transferred to a 

fresh 96-well flat bottom plate and absorbance was read at 550nm using a plate reader. 

Enzyme Linked Immunosorbent Assay (ELISA) 

YM1 and CCL17 protein levels were measured in PCLS (4mm diameter) supernatant using 

commercially available ELISA kits (R&D Systems), according to the manufacturer’s 

protocol. Of note, CCL17 levels that were too low to be detected were assigned the lower 

limit of detection. 

RNA Isolation and cDNA Synthesis 

PCLS (4mm diameter) were snap frozen using liquid nitrogen and were stored at -80°C 

until extraction. PCLS RNA isolation protocol was adapted from previously published 

studies [27,28]. Six PCLS per condition were pooled and homogenized in TRIzol Reagent 

(Invitrogen) using a bead mill. Phase separation was completed with chloroform and gel 

density tubes (Qiagen). The aqueous phase was then collected and RNA was extracted 

using the RNeasy Fibrous Tissue Mini Kit (Qiagen). RNA was converted to cDNA via 

reverse transcription using qScript cDNA SuperMix (Quantabio) according to the 

manufacturer’s instructions. 

Quantitative Real-Time Polymerase Chain Reaction (PCR) 

PCR was performed using the QuantStudio 3 system (Applied Biosystems), with Advanced 

qPCR Mastermix (Wisent) and ThermoFisher Scientific Predesigned TaqMan Gene 
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Expression Assay primer pairs (information found in Supplementary Table 3). Using 

GAPDH as the reference gene, relative expression was calculated as 2-DCT. 

Sircol Soluble Collagen Assay 

The Sircol Soluble Collagen Assay 2.0 (Biocolor) was used to measure secreted soluble 

collagen in PCLS (4mm) supernatant, according to the manufacturer’s instructions. 

Statistical Analysis 

Results were expressed as the mean ± standard error of the mean (SEM). Comparisons of 

two groups were performed with an unpaired two-tailed t test, while more than two groups 

were compared with ANOVA followed by Sidak’s multiple comparisons test. Statistical 

analyses were performed using GraphPad Prism 10. A P value less than 0.05 was 

considered statistically significant. 
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RESULTS 

Development of Optimized PCLS Experimental Workflow  

In the development of our experimental workflow, our objective was to establish a robust 

moderate-throughput approach to lung macrophages in an ex vivo environment. To 

maximize our throughput capacity, as well as normalize the size of PCLS, we created 

punches (2mm or 4mm in diameter) from full-lobe slices using a handheld tissue coring 

tool. We found punching the cores post-slicing, as opposed to taking cores from pre-sliced 

lobes, allowed for better control over the uniformity of core size. Figure 1A contains a 

photographic depiction of the workflow for processing murine lungs for PCLS generation. 

We have also included a summary of potential technical issues faced during the slicing 

process and troubleshooting solutions in Supplementary Table 4. On average, from 

slicing all lobes of a murine lung we are able to obtain approximately 40 4mm PCLS or 70 

2mm PCLS (500uM thickness) per mouse (taking approximately 1.5 to 2 hours from 

sacrifice to incubator). In developing means to increase throughput of our PCLS studies, 

we introduced a tissue microarray-based approach for FFPE histology (Figure 1C). While 

previous studies have performed fundamental histological assessments on PCLS, these 

analyses have generally been limited in throughput. Constructing tissue microarrays from 

PCLS allows us to achieve this and evaluate approximately 80 PCLS cores (2mm diameter) 

on a single slide and using a tissue thickness of 500uM maximizes the quantity of FFPE 

serial sections that can be used for histological staining. Additionally, extracting adequate 

amounts and quality of RNA from PCLS has been reported as a challenge due to limitations 

of small tissue mass and interference from agarose [27,29]. Using a modified protocol 
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derived from Stegmayr et al. (2020) [27] and Michalaki et al. (2022) [28], we isolated RNA 

using 6 pooled PCLS per condition (see Methods). For the purpose of gene expression 

readouts via PCR, we obtained adequate RNA quantity and quality, from both control and 

PC-treated samples (Supplementary Figure 1). 

Murine Precision-Cut Lung Slices (PCLS) Remain Viable and Structurally Intact 

Throughout Culture Time course with Polarization Cocktail (PC) Treatment 

First, to assess the utility and viability of our PCLS experimental system and treatment 

cocktail for subsequent macrophage polarization studies, we performed metabolic and 

histological evaluations at 24-hour intervals throughout the 72-hour culture period. Similar 

to previously published studies on human PCLS [22,30,31], we utilized the water-soluble 

tetrazolium (WST-1) assay and H&E histological staining to achieve this. Over the 72-hour 

time course in culture, PCLS maintained high viability and stable total cell numbers. 

Viability assessment of PCLS measured through mitochondrial activity using WST-1 assay 

(Figure 2A) demonstrated that CC- and PC-treated PCLS remained viable over 72 hours, 

and exhibited an increase in metabolic activity at the 48 and 72-hour timepoints, which may 

indicate tissue recovery after preparation [31]. Histological examination of H&E stained 

PCLS on an FFPE tissue microarray (Figure 2B), and quantification of cell number with 

HALO image analysis software (Figure 2C), confirmed that PCLS maintained structure 

and a consistent quantity of cells per total tissue area. No adverse effects from treatment 

with the PC were detected. Additionally, as our objective was to study and modulate 

macrophages in the PCLS system, we confirmed that macrophages persisted throughout 

the time course and were still present in the slices at the 72-hour timepoint, as also seen at 



Ph.D. Thesis – M. Vierhout                    McMaster University – Medical Sciences 

 85 
 

baseline (0-hour) (Figure 2D). Overall, this allowed us to verify the integrity and suitability 

of our experimental system and PC intervention for investigation of ex vivo macrophage 

polarization. 

Treatment with the PC Induces Markers of Alternatively Activated Macrophages in 

PCLS Tissue and Supernatant  

Next, we aimed to determine if the PC could polarize macrophages to an alternatively 

activated phenotype ex vivo, as we have previously shown in murine and human 

macrophages in vitro [24]. To investigate profibrotic macrophage polarization in the PCLS 

system, we began by measuring markers of profibrotic macrophages in the tissue (lysates) 

and soluble secretions (supernatant). Arginase-1, chitinase-3-like-protein-3 (YM1, gene 

name Chil3), CC chemokine ligand 17 (CC17), and cluster of differentiation 206 (CD206, 

gene name MRC1) are all established markers used to phenotype murine alternatively 

activated macrophages [32], which were found to be induced in PCLS with treatment of 

the PC (Figure 3). More specifically, arginase activity, determined by conversion of L-

arginine to urea, was found to be increased in the lysates of PC-stimulated PCLS at all 

timepoints (24, 48, and 72 hours) during the time course, compared to CC-treated controls 

(Figure 3A). With regards to soluble markers, secreted YM1 and CC17 levels were 

increased with treatment of the PC at the 48 and 72-hour timepoints (Figure 3B,C), as 

measured by ELISA. At the gene expression level, treatment with PC led to increased gene 

expression of Arg1, MRC1, and Chil3, relative to GAPDH, at all timepoints throughout the 

time course (24, 48, and 72 hours; Figure 3D-F). Overall, these findings suggest the 
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successful polarization of profibrotic pulmonary macrophages in the ex vivo PCLS 

environment, as exhibited through various quantitative assays. 

Histological Markers Characteristic of Profibrotic Macrophages are Increased 

Throughout Polarization Time course 

Following the observations outlined in Figure 3, we proceeded to directly visualize 

polarized macrophages in the cocktail-treated PCLS tissue. We elevated the throughput 

capacity of our PCLS histological readouts through the construction of tissue microarrays 

containing numerous FFPE PCLS cores (see Methods), which could then be stained and 

analyzed on a single slide. To quantitatively assess alternatively activated macrophages 

throughout the time course, brightfield immunohistochemical (IHC) staining was 

performed on the tissue microarrays and whole-slide images were acquired. We observed 

that IHC staining for established alternatively activated macrophage markers, Arginase-1 

and CD206, were increased with treatment of the PC (Figure 4A,B). Specifically, using 

HALO quantification we found that the percentage of positive cells, as well as staining 

intensity, assessed by HALO H-Score which accounts for marker staining strength and 

proportion, were increased at all time course intervals for both Arginase-1 (Figure 4C) and 

CD206 (Figure 4D). In terms of cellular localization, it was observed that Arginase-1 and 

CD206 positive macrophages exist in both the alveolar lumen and interstitium of PCLS 

(Figure 4E). Overall, these findings complement the results displayed in Figure 3 and 

visually confirm the presence of profibrotic macrophage polarization with PC treatment, as 

well as demonstrate the utility of a moderate-throughput histological approach for PCLS 

assessments. 
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PC Induces Polarization in Both Interstitial and Alveolar Macrophages, as 

Determined by Highly Multiplexed Staining (IBEX) to Assess Macrophage Phenotype  

As the findings presented with traditional single-stain IHC established a foundation for 

characterizing the macrophages in the PC-stimulated PCLS, to better understand these cells 

we then sought to employ a high-content, multiplex imaging approach. Using Iterative 

Bleaching Extends Multiplexity (IBEX), an open-source method for serial multi-marker 

immunolabelling [25,26], we aimed to further investigate macrophage phenotype. Markers 

and antibodies used in our panel can be found in Supplementary Table 2. While Figure 4 

conveys that Arginase-1 and CD206 IHC were increased in PCLS with treatment of the 

PC, and staining was present in cells that morphologically resemble macrophages, other 

cell types in the lung can also express these markers. To overcome the limitation of single-

plex staining, we used IBEX to investigate macrophage-specific cells (defined as 

CD45+CD68+CD11c+) in the PCLS. First, to substantiate our findings, we examined overall 

profibrotic polarization (characterized by Arginase-1+CD206 expression) in the 

macrophage population (defined as CD45+CD68+CD11c+Arg1+CD206+ cells) (Figure 

5A). Arg1+CD206+ macrophages were increased with PC treatment (48 hours), expressed 

as percentage of total cells in the PCLS (Figure 5B), as well as percentage of total 

macrophages (Figure 5C).  Next, we aimed to evaluate if our PC could induce polarization 

in both interstitial (IM) and alveolar macrophages (AM), which are the two primary broad 

categories of macrophages found in the lung. In the context of lung fibrosis, both IM and 

AM are believed to play important roles in disease pathogenesis [33]. Delineating the exact 

contributions of IM and AM is a vital topic in the field under active investigation. Our 
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brightfield IHC assessments, shown in Figure 4E, portray that Arginase-1 and CD206 

positive cells were present in both the interstitium and alveolar lumen in PCLS. However, 

it is unclear if PC treatment definitively increases quantity of macrophage-specific 

polarization in each of these compartments. Thus, we aimed to evaluate polarization in IM 

and AM using IBEX. Murine IM and AM have been historically stratified based on the 

presence of CD11b and SiglecF expression, respectively [34]. We therefore used these 

markers, in combination with the general macrophage and polarization markers used in 

Figure 5A-C, to examine profibrotic polarization in IM and AM (Figure 5D,E). We 

observed that PC treatment (48-hours) increased the number of Arg1+CD206+ IM, 

expressed as percent of total IM (Figure 5F), as well as Arg1+CD206+ AM, expressed as 

percent of total AM (Figure 5G). Collectively, these results support the accumulated 

evidence that the PC successfully induces profibrotic macrophage polarization in our PCLS 

system. Additionally, these profibrotic macrophages also demonstrate evidence for 

proliferation, as shown by Ki-67, Arginase-1, and CD206 serial section IHC 

(Supplementary Figure 2). This is aligned with the current understanding of profibrotic 

macrophages in the pathology of lung fibrosis, involving the processes of cellular 

accumulation, division, and activation [5,6]. 

Expression of Extracellular Matrix and Fibrotic Markers in PCLS Treated with PC 

We have demonstrated the ability of the PC, consisting of IL-4, IL-13, and IL-6, to 

influence ex vivo macrophage polarization in PCLS. This is in alignment with in vitro 

studies that have shown the ability of these cytokines to hyperpolarize macrophages to the 

profibrotic phenotype [7,24]. Additionally, in vivo overexpression of IL-6 in the bleomycin 
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lung fibrosis model induced an exacerbation of the fibrotic response, increased frequency 

of lung Arg1+CD206+ macrophages, and increased gene expression of IL-4 receptor in 

these macrophages (thus likely rendering them more susceptible to polarization by IL-4 

and IL-13), demonstrating critical interplay between these cytokines, macrophages, and 

fibrosis [7]. While our primary objective in this study was to establish an ex vivo model 

suitable for studying pulmonary profibrotic macrophage polarization, given the key role of 

macrophages in fibrogenesis we speculated that it would be logical to investigate features 

related to fibrosis in our system. Using IHC staining of FFPE tissue microarrays, we 

evaluated the expression of α-SMA in PCLS subjected to CC or PC treatment (Figure 6A). 

HALO quantification of parenchymal α-SMA staining, excluding major airways and 

vessels, revealed an increase in α-SMA positive area at 48 and 72 hours in the PC-

stimulated PCLS (Figure 6B). In the culture supernatant, we observed an increase in 

secreted soluble collagen with PC treatment at the 72-hour timepoint, as measured with 

Sircol Soluble Collagen Assay (Figure 6C). Normalized gene expression of α-SMA 

(ACTA2), extracellular matrix (ECM) component fibronectin (FN1), and ECM 

glycoprotein tenascin-C (TNC) were elevated in PC-treated PCLS lysates at the 72-hour 

(TNC), or both the 48 and 72-hour (ACTA2 and FN1) timepoints (Figure 6D-F). Of note, 

gene expression of these three markers (ACTA2, FN1, TNC) has also been shown to be 

increased in a published model of fibrosis in human PCLS [22]. Lastly, to better understand 

the phenotype α-SMA+ cells in the PCLS, we performed multiplex image analysis with 

IBEX. Our group has previously explored macrophage to myofibroblast transition (MMT), 

which is a debated scientific theory that myofibroblasts can arise from macrophage 
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populations. The majority of studies on MMT include evidence of cellular co-expression 

of both macrophage and myofibroblast markers, which we have shown in lung tissue from 

IPF patients [52]. Lineage-tracing studies have also demonstrated that labelled cells from 

the bone marrow are found as myofibroblasts in various fibrotic disorder models, including 

in the lung, kidney, and eye [51,56-57]. Therefore, we sought explore possible evidence for 

MMT in the profibrotic macrophage PCLS system. In PC-treated PCLS, the α-SMA+ cell 

population in the parenchyma had increased co-expression of the marker profile of 

Arg1+CD206+ profibrotic macrophages (Figure 6 G,H). These results suggest that in 

addition to augmenting macrophage polarization, the PC may also have fibrosis-inducing 

properties in our experimental system. MMT processes may describe the increase in 

percentage of α-SMA+ cells co-expressing markers of Arg1+CD206+ macrophages in our 

system, and serve as a potential source of α-SMA+ cells. 

Clodronate Treatment Diminishes Effects of PC on Profibrotic Macrophage Readouts 

Finally, in order to substantiate the role of macrophages in the observed responses in the 

PCLS, we conducted a depletion study using liposomal clodronate. Clodronate is known 

for its ability to selectively deplete macrophages both in vitro and in vivo [35], and has been 

used in murine bleomycin studies to demonstrate that macrophages are required for lung 

fibrosis [36]. PCLS were pre-treated with liposomal clodronate for 24 hours, followed by 

48 hours in culture with the CC or PC. Confirming clodronate-mediated depletion, 

macrophage quantity was decreased in PCLS, determined by counting visible alveolar 

macrophages in H&E stained tissue (Figure 7A,B). We next evaluated expression of 

profibrotic macrophage markers that are known to be induced by the PC. We observed that 
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clodronate pre-treatment diminished PC-induced arginase activity in a dose-dependent 

manner (Figure 7C). Similarly, secreted YM1 (Figure 7D) and CCL17 (Figure 7E) in 

PCLS supernatant exhibited a dose-dependent decrease. In IHC-stained FFPE PCLS, 

clodronate dose-dependent reductions in Arginase-1 (Figure 7F,G) and CD206 (Figure 

7H,I) positive cells and staining intensity (H-Score) were identified. With regards to 

features related to fibrosis, we observed a reduction in soluble collagen with all doses of 

clodronate (Figure 7J). Additionally, there was a trend of reduction in α-SMA expression 

in the FFPE PCLS tissue (Figure 7K,L). Overall, our results suggest that macrophages 

have a key role in the profibrotic phenotype observed in our PCLS system.  
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DISCUSSION 
 
Given the poor prognosis, debilitating symptoms, and gap in curative treatments for IPF, 

advancement of translational models and screening tools for preclinical therapies are 

especially critical. Macrophages are key regulators in tissue repair, however their plasticity 

and heterogeneity mean macrophage phenotypes are highly context-dependent, overall 

making the investigation of their precise contributions to disease challenging. In this study, 

we harness the potential benefits offered by the PCLS platform in establishing a novel 

strategy to investigate the profibrotic programming of lung macrophages, which have been 

demonstrated to be fundamental players in lung fibrosis [4–9]. In our model we have 

exhibited capacity for profibrotic macrophage programming with the treatment of a 

polarization cocktail, which is shown to be induced at multiple points throughout a 72-hour 

time course. This builds on the current literature revealing ex vivo immune competency in 

multiple PCLS disease models, including premalignancy, fibrosis, asthma, COPD, viral 

infection, bacterial infection, inflammation, and immunotoxicity [23,28,37–42]. Despite 

being disconnected from the circulating immune system, several studies have reported the 

presence and persistence of macrophages in PCLS. As demonstrated by Sompel et al. 

(2023), macrophages are the most abundant immune cell in murine PCLS [41]. 

Understandably, contribution to the lung macrophage population by incoming monocyte 

recruitment is absent in PCLS. Blomberg et al. (2023) have recently exhibited the capacity 

of macrophages to proliferate in a murine PCLS model of pre-cancer malignancy [21], 

which may contribute to the persistent presence of macrophages ex vivo.  Additionally, 

scRNAseq analysis of cellular phenotype stability in PCLS demonstrated the preservation 
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of immune cells including proliferating macrophages, alveolar macrophages, and 

monocyte-derived macrophages, although alveolar macrophage quantity was reported to be 

decreased after 120 hours of culture [20]. In the context of fibrosis, using scRNAseq 

analyses on human PCLS treated with the fibrosis cocktail developed by Alsafadi et al. 

(2017), Lang et al. (2023) showed induction of expression of fibrosis-related marker genes 

shown in a population of macrophages found in pulmonary fibrosis patients [22,23]. Taken 

together, our findings and the published evidence support the use of PCLS as a valid 

platform to investigate macrophage polarization and programming in the lung. 

Previous findings from our group and others have shown that in vitro stimulation of human 

and murine macrophages with a combination of IL-4, IL-13 and IL-6 resulted in enhanced 

profibrotic programming to a hyperpolarized phenotype [7,24,43]. In the current study, we 

aimed to investigate if repurposing this cytokine combination (here termed the PC) could 

achieve similar polarization effects in an ex vivo setting. Similar to the published results, 

we observed an increase in profibrotic macrophage markers evoked with the PC in our ex 

vivo system, including Arginase-1, CD206, YM1, CCL17, and arginase enzymatic activity 

[7,24,43]. To elicit profibrotic macrophage polarization, it is believed that the PC 

components work in synergy. IL-4 and IL-13 effectuate profibrotic macrophage 

polarization via IL-4 receptor alpha (IL-4Rα) signalling, and it has been shown that IL-6 

upregulates IL-4Rα in macrophages in vitro [43,44], thus potentially increasing the 

propensity for polarization. It is plausible that similar processes are occurring with PC 

treatment ex vivo, however further investigations are required to delineate the molecular 

mechanism of action of profibrotic macrophage polarization in the PCLS. 
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Pulmonary macrophages are broadly categorized into IM and AM, which are both believed 

to participate in fibrogenic processes in lung fibrosis [9]. The delineation of their specific 

roles is a key topic of current investigation in the field, especially for IM which have been 

vastly understudied [33].  AM, residing in the lung alveoli, have been shown to alter tissue 

remodelling and interact with fibroblasts to enhance ECM synthesis [33,45]. IM, which are 

present in the lung interstitium,  are less understood but are believed to be involved in 

initiation of fibrosis and partake in crosstalk with fibroblasts [33]. Circulating monocytes 

have been shown to contribute to the maintenance of both AM and IM, however both 

populations also demonstrate capacity for self-renewal [33]. In our PCLS model, we show 

the that the PC induces polarization in both IM and AM, thus demonstrating potential to be 

used as a tool to study these cells and their respective properties further. To target the 

specific role of IM in the relative absence of AM in future studies, AM could be largely 

washed out with repeated bronchoalveolar lavage fluid collection, prior to PCLS 

generation. Additionally, previous studies have shown retained functionality of these cells 

in PCLS, where IM were substantial antigen-uptaking cells of house dust mite extract ex 

vivo [46].  

The primary objective for our study was to establish an ex vivo model for profibrotic 

macrophage programming in PCLS, using the PC. In addition to macrophage polarization, 

we interestingly observed other features related to fibrosis in our model, including ECM 

and α-SMA expression, particularly at later timepoints in the time course. The current 

paradigm of pathogenesis for pulmonary fibrosis is multifactorial and is believed to be 

initiated with insult to the lung epithelium. The resulting inflammatory response involves 
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recruitment of macrophages to the site of injury, which through a series of mediators 

eventually cascades into activation of fibroblasts and resulting ECM deposition, resulting 

in fibrosis [9]. One plausible explanation for the observed fibrotic characteristics in our 

model is that the slicing of the lungs to generate PCLS functions as an injury, which then 

activates an intrinsic wound healing response in the tissue. This has been suggested 

previously [47], and may also explain why we see increased expression of some markers 

in our control PCLS, including FN1, Arginase activity, and Arg-1 IHC, compared to 

baseline. Providing external cytokines through administration of the PC further exacerbates 

the macrophage response and involvement, thus resulting in the development of fibrosis-

like features in the PCLS. Additionally, although shown to effect macrophages, the addition 

of the PC to PCLS culture does not solely target one cell type, and can influence a variety 

of cells. IL-4 and IL-13 have historically been shown to stimulate collagen synthesis in 

fibroblasts [48,49]. IL-4Rα signalling also plays a role in tissue remodelling, and has also 

been demonstrated to be essential for the development of lung fibrosis in vivo [50]. Thus, 

another potential explanation is direct modulation of fibroblasts by the PC, in addition to 

macrophages, cultivating fibrotic features. Furthermore, our group has previously shown 

that overexpression of IL-6 in a bleomycin-induced lung fibrosis model led to increased 

accumulation of profibrotic macrophages (Arg1+CD206+), as well as IL-4Rα expression, 

and worsened the fibrotic response [7]. This further supports the multifaceted interplay 

between the cytokines in the PC, polarized macrophages, and the fibrotic response.  

Compared to traditional in vitro models, PCLS forgo the need for researcher-made 

recapitulation of the lung microenvironment, and present advantages of increased 
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complexity, preserved architecture, and resident cell milieu, which substantiate their 

translatability in the study of lung pathology [53]. The ex vivo system is also less demanding 

of resources and time relative to in vivo models of disease, supporting utility especially in 

early stages of compound testing. Our goal was to establish a translational platform to study 

macrophage behaviour in fibrotic systems, with moderate-throughput that could be used 

for a variety of readouts. We introduce an approach to expand the throughput of direct 

histological evaluation in organ slices by constructing tissue microarrays, which can house 

approximately 80 PCLS that can be stained, imaged, and analyzed on a single slide. In the 

era of exponentially growing interest in spatial biology, there is also reasonable potential 

capacity for these analyses in cultured organ slice systems, which can be performed with 

the use of high-content imaging pipelines such as IBEX and other established 

methodologies. Future assessments using comprehensive gene profiling, such as RNAseq 

or microarray analyses, are also achievable with the attained RNA quantity and quality 

from our system. Additionally, multiple PCLS studies, including in the fibrosis field, have 

utilized human tissue to model disease and investigate disease mechanisms. These studies 

are highly robust and representative of human biology, as they are derived directly from 

human tissue. However, working with fresh human tissue presents logistical limitations, 

including inconsistencies in agarose filling, variability in baseline tissue viability, amount 

of tissue available, and/or lack of access to human tissue altogether. Murine models are 

therefore convenient tools to bypass these limitations, and can be used in synergy with 

human models to conduct screening on preclinical mechanisms and experimental treatment 

candidates. Overall, given the current set-up of our system, we believe our approach has 
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potential for future expansion in several domains, including bleomycin pulmonary fibrosis 

models, PCLS generation from other species including humans, evaluation of pulmonary 

stretch and mechanotransduction, and testing of experimental treatments. The pipeline is 

scalable, and throughput could be increased further with the addition of multiple tissue 

slicers to simultaneously generate slices from multiple lobes, which is currently our time-

limiting step.  

The overarching objective for the further development of this work is maximizing the 

translatability of this approach for the study of disease. Several synergistic components are 

flow  into this. Firstly, as the goal is to model human fibrotic lung disease, we aim evaluate 

and understand the expression of a panel of profibrotic macrophage markers found in IPF, 

including SPP1, MERTK, FABP4, FABP5, GPNMB, and CD63 [58,59]. As macrophages 

are a highly diverse and heterogenous cell type, it is important to gain a comprehensive 

understanding of the disease-relevant phenotypes that are being represented in models used 

to investigate disease processes. While we have already identified polarized alveolar and 

interstitial macrophage compartments in the PC-treated PCLS, further delineating 

macrophage subsets through the addition of a panel of disease-relevant markers would 

further advance the model. Adding to this repertoire, as pro-inflammatory signalling also 

plays a role in the pathogenesis of fibrosis, it would be advantageous to characterize the 

expression pattern of these mediators in our system as a stride towards the overarching goal 

of optimizing the disease-translational qualities of this model. Previous PCLS models of 

fibrosis have reported a mixed bag of induced characteristics, including profibrotic, 

inflammatory, and ECM-related factors, thus demonstrating the complexity of the fibrotic 
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milieu [22]. It would also be useful to directly compare the PC used in this study with other 

previously published studies that employed fibrosis-inducing cocktails. We have already 

drawn similarities between the PC model and established PCLS-based fibrosis models, 

including the published FC in human PCLS [22] and PCLS derived from bleomycin-

exposed mice [55]. As also observed in the published models, the PC induced ECM (FN1, 

TNC, secreted collagen), as well as myofibroblast (ACTA2/α-SMA) marker expression. 

Interestingly, while macrophage infiltration and activation are key components of the in 

vivo bleomycin lung fibrosis model, few studies have examined the involvement of 

profibrotic lung-resident macrophages in ex vivo slices derived from these animals, 

warranting further investigation in this area. While this study is focused on the evaluation 

of macrophages, it would also be useful to assess factors related to other key fibrotic 

components in these models, including epithelial cell aberration, MMP expression, and 

inflammatory mediators. Future multi-arm studies focused on the direct cross-evaluation 

of the PC with established fibrotic inducers and models would allow us to fill critical 

knowledge gaps related to the capability of our approach and provide insight into 

effectively modelling the multifactorial landscape of fibrosis. 

Additionally, another future directive of the model is to delineate the origin of the α-

SMA+Arg1+CD206+ cells in this system, understand the expression pattern of this 

population over time, as well as explore a hypothetical link to MMT, further investigations 

focusing on cellular phenotyping throughout the duration of the time course are needed. 

Such studies are vital for broadening comprehension of the fibrosis-related features of the 

model and their relationship to the surrounding cellular microenvironment. Although we 



Ph.D. Thesis – M. Vierhout                    McMaster University – Medical Sciences 

 99 
 

have established a foundation for these evaluations using IBEX, our study was limited to a 

cross-sectional snapshot at the 48-hour timepoint. Future studies are required to fully 

understand the timing of myofibroblast formation in this system. In relation to model 

optimization and comprehensive understanding, in Figure 3 it is unclear why there is an 

overall decrease of MRC1 gene expression, while CD206 protein levels are sustained over 

time. We initially postulated that this might be partially attributed to the known decrease 

of alveolar macrophages in PCLS (which can express high levels of CD206) [21,54] 

however this has been reported to occur around 120 hours in culture, and would likely also 

be reflected in the protein expression. Further investigation with in-situ hybridization 

techniques to spatially examine gene expression pattern and accompanying cellular 

morphology would be highly useful for elucidating this.  

 In summary, we have established and validated a moderate-throughput, complex, viable 

model to study profibrotic polarization of macrophages in the lung using PCLS. Stimulation 

of PCLS with the PC effectively induces polarization of macrophages to a profibrotic 

phenotype. Our model provides means for interrogation of programming of profibrotic lung 

macrophages with the benefits of increased translatability, with future capacity for 

investigating novel therapeutic candidates and modes of action in pulmonary fibrosis.  
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Figure 1. Schematic of overall experimental workflow. (A) Processing of murine lung 

for generation of PCLS. i. After sacrifice, lungs are infiltrated via the trachea with 1.5% 

low-melting point (LMP) agarose. Tissue is left to cool on ice in order for agarose to 

completely solidify prior to excision of lungs. ii. Filled lungs are excised from the body. iii. 

Lobes are separated to be sliced one at a time. iv. PCLS (500µm thickness) are generated 

from slicing each lobe using a Compresstome vibrating microtome. v. PCLS cores (2mm 

or 4mm in diameter) are punched from full lobe slices. (B) Experimental pipeline and 

readouts. i.,ii. Lungs are removed, sliced, and cored to create PCLS. After slicing, PCLS 

are placed in culture medium and left in incubator overnight to acclimate prior to treatment. 

iii. PCLS are moved to 96-well plates and treated with polarization cocktail (PC; IL-4+IL-

6+IL-13). Baseline samples can also be harvested at this time (Day 0). iv.,v. Macrophage 

polarization occurs over 72-hour time course. Samples are harvested at 24-hour intervals 

throughout the time course. vi. Various readouts can be conducted on the polarized and 

control PCLS, including viability assays (WST-1), arginase activity assay, RNA expression, 

measurement of secreted components in supernatant, traditional brightfield 

immunohistochemistry (on FFPE PCLS, in tissue microarrays), multiplex immunostaining 

with Iterative Bleaching Extends Multiplexity method (IBEX; on fixed-frozen PCLS), and 

evaluation of fibrotic features (determined via histology, RNA expression, and secretions 

in supernatant). (C) Tissue microarray (TMA) generation from FFPE PCLS for histological 

evaluations. i. Original FFPE blocks containing PCLS. ii. 2mm punches are taken and 

inserted in parent TMA blocks. iii. Sections are taken from TMA and stained for 

histological evaluations, including quantitative assessment with HALO Image Analysis 
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Software. Note: After fixation and prior to embedding, a small amount of eosin can be 

added to the ethanol storage solution to lightly colour the tissue, increasing ease of visibility 

during the embedding process. Figure created using BioRender.com. 
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Figure 2. Murine Precision-Cut Lung Slices Maintain Viability and Structural 

Integrity in Culture Throughout Polarization Cocktail Treatment Time course. (A) 

Viability of precision-cut lung slices (PCLS) cultured with control cocktail (CC) or 

polarization cocktail (PC), assessed via water-soluble tetrazolium-1 (WST-1) assay. 

Absorbance values are expressed as percent of signal measured at Day 0. (n=3 mice, 5 

slices per condition). (B) Hematoxylin and eosin (H&E) staining of PCLS (formalin-fixed, 

paraffin-embedded) throughout 72-hour time course. (C) Cell count per mm2 of tissue, 

quantified from whole slide images of H&E stained tissue microarrays using HALO image 

analysis platform (n=3 mice, 3-4 slices per condition). (D) Presence of macrophages in 

PCLS at baseline and 72-hour timepoint shown in H&E stained tissues. Arrows point to 

macrophages in alveolar spaces. * indicates P<0.05, ** indicates P<0.01, *** indicates 

P<0.001, and **** indicates P<0.0001, where * represents a significant difference 

compared to baseline (Day 0). Data are displayed as mean ± S.E.M.  
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Figure 3. Treatment with the Polarization Cocktail Induces Markers of Alternatively 

Activated Macrophages in Precision-Cut Lung Slice Tissue and Supernatant. (A) 

Arginase activity measured as mM Urea in PCLS tissue homogenates (n=3 mice, 3-4 slices 

per condition). (B,C) Secreted Chitinase-3-like protein 3 (YM1) and CC chemokine ligand 

17 (CCL17) protein levels in PCLS supernatant measured via ELISA (n=3 mice). (D,E,F) 

Normalized gene expression of Arginase 1 (Arg1), CD206 (MRC1) and YM1 (Chil3) in 

PCLS tissue, relative to GAPDH (n=3 mice, 6 slices pooled per condition).  *
 
 indicates 

P<0.05; ** indicates P<0.01; *** indicates P<0.001; and **** indicates P<0.0001; where 

* represents a significant difference between the two treatment groups at the respective 

timepoint. Data are displayed as mean ± S.E.M. 
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Figure 4. Histological Markers Characteristic of Profibrotic Macrophages are 

Increased Throughout Polarization Time course. (A) Representative images of 

Arginase-1 immunohistochemical (IHC) staining in CC- and PC-treated PCLS throughout 

time course. (B) Representative images of CD206 IHC staining in CC- and PC-treated 

PCLS throughout time course. (C) HALO quantification of Arginase-1 cell positivity and 

staining intensity (H-Score). (D) HALO quantification of CD206 cell positivity and 

staining intensity (H-Score). (E) Arginase-1 and CD206 expression in macrophages located 

in both the alveolar lumen and interstitium, indicated by red and green arrows, respectively 

(72-hour timepoint). (n=3 mice, 3-4 slices per condition). * indicates P<0.05; *** indicates 

P<0.001; and **** indicates P<0.001; where * represents a significant difference between 

the two treatment groups at the respective timepoint. Data are displayed as mean ± S.E.M.  
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Figure 5. PC Induces Polarization in Both Interstitial and Alveolar Macrophages, as 

Determined by Highly Multiplexed Staining (IBEX) to Assess Macrophage Phenotype 

in PCLS. (A) Confocal fluorescent images of fixed-frozen multiplex stained (IBEX) PCLS 

treated with the CC and PC (48-hour timepoint). Markup for HALO detection of 

Arg1
+
CD206

+ 
profibrotic macrophages (defined as CD45

+
CD68

+
CD11c

+
Arg1

+
CD206

+ 

cells) , as well as 20X representative images of Arginase-1 (green) and CD206 (magenta) 

staining in these cells, are shown. Cell nuclei are stained with DAPI (blue). (B,C) HALO 

quantification of Arg1
+
CD206

+
 profibrotic macrophages in CC- and PC-treated PCLS, 

expressed as percent of total cells and percent of total macrophages (n=3 mice). (D,E) 

Representative images of staining panels for Arg1
+
CD206

+
 interstitial macrophages (IM) 

(defined as CD45
+
CD68

+
CD11c

+
CD11b

+
Arg1

+
CD206

+ 
cells) and Arg1

+
CD206

+
 alveolar 

macrophages (AM) (defined as CD45
+
CD68

+
CD11c

+
CD11b

-
SiglecF

+
Arg1

+
CD206

+ 
cells) 

in PCLS. Cell nuclei are stained with DAPI (blue). (F) HALO quantification Arg1
+
CD206

+
 

IM, expressed as percent of total IM. (G) HALO quantification Arg1
+
CD206

+ 
AM, 

expressed as percent of total AM. (n=3 mice). *
 
 indicates P<0.05; and ** indicates P<0.01; 

where * represents a significant difference between the two treatment groups. Data are 

displayed as mean ± S.E.M.  
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Figure 6. Expression of Extracellular Matrix and Fibrotic Markers in PCLS Treated 

with PC. (A) α-SMA IHC staining in CC- and PC-treated PCLS throughout time course. 

(B) HALO quantification of α-SMA positive parenchymal area (n=3 mice, 3-4 slices per 

condition). (C) Secreted soluble collagen in PCLS supernatant measured with Sircol 

Soluble Collagen Assay (n=3 mice). (D,E,F) Normalized gene expression of α-SMA 

(ACTA2), Fibronectin (FN1) and Tenascin-C (TNC) in PCLS tissue, relative to GAPDH 

(n=3 mice, 6 slices pooled per condition). (G) Confocal fluorescent images of multiplex 

stained (IBEX) PCLS treated with the CC and PC (48-hour timepoint). Markup for HALO 

detection of α-SMA+ cells (parenchyma), and cells that co-express α-SMA and markers 

for Arg1+CD206+ macrophages, is shown. 30X magnification images (CC- and PC-treated 

PCLS) of α-SMA (turquoise), Arg1 (green) staining, and CD206 (magenta) staining are 

also shown. Cell nuclei are stained with DAPI (blue). (H) HALO quantification of α-SMA 

and Arg1+CD206+ profibrotic macrophage marker co-expression in CC- and PC-treated 

PCLS, expressed as percent of α-SMA+ cells in the parenchyma (n=3 mice). *
 
 indicates 

P<0.05; ** indicates P<0.01; and *** indicates P<0.001; where * represents a significant 

difference between the two treatment groups at the respective timepoint. Data are displayed 

as mean ± S.E.M.  
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Figure 7. Clodronate Treatment Diminishes Effects of PC on Profibrotic Macrophage 

Readouts. PCLS were pre-treated with liposomal clodronate for 24 hours, followed by 48 

hours in culture +/- PC. (A) Macrophage quantity per 1000 cells in PCLS, determined by 

counting visible alveolar macrophages in H&E stained tissue (n=3). (B) H&E images of 

CC- and PC-treated PCLS, +/- clodronate pre-treatment. Black arrows point to alveolar 

macrophages. (C) Arginase activity in PCLS homogenates treated with CC or PC, +/- 

clodronate pre-treatment (n=3 mice, 3 slices per condition). (D,E) Secreted YM1 and 

CCL17 protein levels in PCLS supernatant measured via ELISA (n=3 mice). (F) HALO 

quantification of Arginase-1 IHC cell positivity and staining intensity (H-Score). (G) 

Representative images of Arginase-1 IHC staining in CC- and PC-treated PCLS, +/- 

clodronate pre-treatment. (H) HALO quantification of CD206 IHC cell positivity and 

staining intensity (H-Score). (I) Representative images of CD206 IHC staining in CC- and 

PC-treated PCLS, +/- clodronate pre-treatment. (n=3 mice, 3-4 slices per condition). (J) 

Secreted soluble collagen in PCLS supernatant measured with Sircol Soluble Collagen 

Assay (n=3 mice). (K) HALO quantification of α-SMA positive parenchymal area (n=3 

mice, 3-4 slices per condition). (L) Representative images of α-SMA IHC staining in CC- 

and PC-treated PCLS, +/- clodronate pre-treatment. *,# indicates P<0.05; **,## indicates 

P<0.01; *** indicates P<0.001; and ****,#### indicates P<0.0001; where * represents a 

significant difference between the clodronate pre-treated groups (patterned bars) and their 

respective CC or PC control group (solid-colored bars), and # represents a significant 

difference between the CC and PC groups (solid-colored bars). Data are displayed as mean 

± S.E.M. 
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SUPPLEMENTARY MATERIAL 
 
Supplementary Table 1: Antibody Information for FFPE IHC 
  

Target Name Clone Host Species Supplier Catalog Number 

α-SMA 1A4 Mouse Agilent Dako M0851 

Arginase-1 D4E3M Rabbit Cell Signaling Technology Cs93668 

CD206 - Rabbit Abcam ab64693 

 
 
 
Supplementary Table 2: Antibody Information for IBEX 
 

Target Name Clone Host 
Species Supplier Catalog Number Fluorophore 

α-SMA 1A4 Mouse Invitrogen M0851 eFluor660 

Arginase-1 D4E3M Rabbit 
Cell 

Signaling 
Technology 

Cs93668 - 

CD11b M1/70 Rat BD 
Biosciences 557397 PE 

CD11c N418 Hamster Invitrogen MCD11C20 AF488 
CD206 C068C2 Rat BioLegend 141709 AF488 

CD45  
30-F11 Rat BioLegend 103144 AF594 

CD68 FA-11 Rat BioLegend 137004 AF647 

Siglec F E50-2440 Rat BD 
Biosciences 552126 PE 

Anti-Rabbit - Goat Invitrogen A11008 AF488 
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Supplementary Table 3: Taqman PCR Primer Information 
 

Gene Catalog # (ThermoFisher Scientific) 

ACTA2 Mm01546133_m1 
Arg1 Mm00475988_m1 
Chil3 Mm00657889_mH 
FN1 Mm01256744_m1 

GAPDH Mm99999915_g1 
MRC1 Mm00485148_m1 

Tnc Mm00495662_m1 
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Supplementary Table 4: Troubleshooting Issues in Generation of Murine PCLS 
 

   
Issue 

  
Potential Reasons Solutions 

Uneven filling of 
lung lobes 

• Premature gelling of 
agarose in proximal airways 

• Ensure LMP agarose is at a temperature of 
40°C (no less than 37°C) directly prior to 
infiltration1 

• Utilize heating pad and/or heat lamp to keep 
mouse body warm1 

• Pour warm (37°C) HBSS on lungs directly 
prior to infiltration1 

• Inject bolus of air (~0.2mL) into lungs to push 
agarose into distal airways1 

Lungs are not fully 
inflated after 
agarose infiltration 

• Premature gelling of 
agarose in proximal airways 
 

• Too small of volume of 
agarose used for infiltration 

• See above1 
 

 
• Inject volume equivalent to total lung capacity 

of mouse (~1mL-1.3mL, depending on size of 
animal)2 

Agarose leakage 
while filling lung 

• Premature gelling of 
agarose in proximal 
airways, leading to blockage 
and subsequent 
rupture/damage 
 

• Infiltration volume 
exceeded total lung capacity 

• See above1 
 

 

 

 

 
• See above2 

Agarose leakage 
after filling lung 

• Canula and/or syringe 
removed before agarose 
fully solidified 

 
• Canula loose and/or ligature 

not secured tightly enough 

• Leave canula and syringe in place while mouse 
body is on ice and agarose fully solidifies (30 
minutes) 
 

• Ensure depth of canula insertion in the trachea 
is not too shallow. Secure tightly with double-
knotted ligature  

Tissue is not being 
sliced by vibratome 

• Inadequate infiltration of 
lungs with agarose 
 

• Tissue is not properly 
secured to vibratome 
specimen holder  

• See above1,2 
 
 

• Ensure bottom side of tissue is completely 
glued to specimen holder. Do not allow glue to 
touch anywhere else on tissue 

Tissue tearing 
while slicing 

• Lung tissue is overfilled 
with agarose 
 

• Inappropriate vibratome 
speed and/or oscillation 

• See above2 
 

 
• Lower vibratome speed and/or raise oscillation 

Megan Vierhout
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Supplementary Figure 1: RNA Extraction Quantity and Quality Measures from Murine 
PCLS 
 

 
 
Figure S1. RNA Extraction Quantity and Quality Measures from Murine PCLS. Six PCLS 

(4mm diameter) were pooled for each sample. (A) Total RNA extracted from each sample. (B) 

A260/A260 ratio. n=18 PCLS from 3 mice. Results represent mean ± S.E.M. with samples taken 

from all timepoints.  
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Supplementary Figure 2: Ki-67 Immunohistochemical Staining Throughout Polarization 
Time Course 
 

 

Figure S2. Immunohistochemical staining on serial slide sections throughout polarization 

time course. Representative images of serial sections of CC- and PC-treated PCLS stained with 

Ki-67, Arginase-1 and CD206. 
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Highly Multiplexed Imaging for Cellular Phenotyping in Murine 
Precision-Cut Lung Slices Using Iterative Bleaching Extends 

Multiplexity (IBEX) 
 

Megan Vierhout, Mouhanad Babi, Joao Bronze de Firmino, Andrea Radtke, Ziv Yaniv, 
Martin R.J. Kolb, Joshua F. Koenig*, Kjetil Ask* 

 
 
 

This chapter contains an invited submission on our developed protocol for cellular 
phenotyping in precision-cut lung slices using highly multiplexed imaging (IBEX). This 
complements the work presented in chapter 3, and delves deeper into the specifics of the 
protocol. Although IBEX has been shown to work on a multitude of organs, tissues, and 
species, to our knowledge it has not previously been reported in cultured ex vivo organ 
slices, which adds to the novelty of the paper. Although cellular phenotyping in PCLS and 
other ex vivo organ slice models is critical for understanding the disease-like features of 
these systems, this has been traditionally challenging due to the interference of agarose and 
relatively small tissue mass.  This hinders the overall ability to comprehensively assess 
effects of stimulated responses and treatments. Here, we present a protocol for 
immunophenotyping in PCLS using IBEX, demonstrating its utility and application 
through our work on assessing profibrotic pulmonary macrophage phenotype. This 
platform has high potential for versatility and can be applied to ex vivo cultured slices from 
other organ systems. 
 
 
 
 
Author Contributions: 
MV: conceptualization, methodology, formal analysis, investigation, writing – original 
draft, writing – review & editing; MB: methodology, software, writing – original draft; 
JBdF: methodology; AR: methodology, resources; ZY: methodology, resources; MK: 
supervision, funding acquisition, resources; JFK: supervision, resources, methodology; 
KA: conceptualization, supervision, project administration, funding acquisition, resources. 
 
 
 
 
To be submitted to STAR (invited)

CHAPTER 4   
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Highly Multiplexed Imaging for Cellular Phenotyping in Murine Precision-Cut 

Lung Slices Using Iterative Bleaching Extends Multiplexity (IBEX) 
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HIGHLIGHTS 

• Pipeline for detailed cellular immunophenotyping in ex vivo cultured precision-cut 

lung slices (PCLS) 

• Fixation, preservation, staining, and imaging of cultured PCLS for high-quality 

quantitative multiplex microscopy 

• Application of iterative staining and bleaching with IBEX to maximize marker 

quantity 

• Techniques to increase throughput and conserve time  

• Tunable to various cell types and treatment conditions. Expandable to ex vivo slices 

from other organs 
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SUMMARY 

Ex vivo precision-cut lung slices (PCLS) serve as a translational model for investigating 

mechanisms related to lung disease, however capacity for comprehensive cellular 

phenotyping is limited. Here, we present a protocol for immunophenotyping in PCLS using 

Iterative Bleaching Extends Multiplexity (IBEX). We specifically assess pulmonary 

macrophage phenotype in murine PCLS following culture with a cytokine cocktail to 

induce profibrotic programming. We include details for the complete pipeline for fixed-

frozen sample preparation, cryosectioning, blocking, staining, microscopy, bleaching, and 

image quantification.  

For complete details on the use, execution, and application of this protocol, please refer to 

Vierhout et al. (2024).1  
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GRAPHICAL ABSTRACT 
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BEFORE YOU BEGIN 

We present a protocol for immunophenotyping in PCLS using IBEX – an open-source 

method for high-content immunostaining and imaging.2,3 We present a protocol for using 

IBEX on PCLS generated from C57Bl/6 mice (500µM thickness, 2mm diameter) to 

evaluate macrophage phenotype following ex vivo culture with a profibrotic polarization 

cocktail, as previously described.1 PCLS contain all pulmonary cell types and avoid the 

need for scientist-made artificial recapitulation of the lung, as they maintain the lung’s 

natural cellular interactions, microenvironment, and architecture.4 The utilization of such 

biologically-translational models is highly useful to study plastic, phenotypically-diverse 

cells like macrophages, which are believed to be key players in multiple respiratory 

diseases including fibrosis.5,6 Macrophages are highly interactive and dynamically respond 

to their microenvironment, and so their activation states are limitedly reproduced in 

monoculture systems grown on plastic.7–9 An ex vivo approach allows for the flexibility to 

induce disease-like states with endless options for stimuli, and so a comprehensive 

understanding of the induced cellular phenotype is required to establish robust systems. 

However, the small tissue mass of PCLS and requirement to fill the lung tissue with agarose 

prior to slicing pose challenges for various downstream applications including RNA 

isolation and flow cytometry.10 This limits the capacity for cellular phenotyping in PCLS, 

and thus hinders the overall ability to comprehensively assess effects of stimulated 

responses and treatments, for which understanding is critical in in disease-model systems. 

In order to overcome this challenge, as well as confirm that the profibrotic macrophage 

markers we observed through supernatant, lysate, and traditional brightfield 



Ph.D. Thesis – M. Vierhout                    McMaster University – Medical Sciences 
 
 

 
 

139 

immunohistochemistry assays1 were indeed being induced in macrophage-specific cells in 

the lung, we performed cellular phenotyping with a panel of commercially-available 

antibodies using IBEX. Using HALO image analysis platform, we performed a quantitative 

evaluation to compare control and profibrotic cocktail-treated PCLS. Additionally, as 

alveolar and interstitial macrophages are both thought to play important roles in lung 

fibrosis, we dove deeper into phenotyping and examined these subpopulations using the 

markers in our panel. IBEX has proven useful for multiplex immunostaining of multiple 

organs, tissue types and species,2,3 however, to our knowledge its application has not been 

previously reported in ex vivo cultured organ slices. This platform is highly tunable to 

various antibody marker panels and treatment conditions, and can be applied to ex vivo 

cultured slices from other organ systems and species. A repository of IBEX-validated 

antibodies can be found in the public IBEX Knowledge Base.11 

Institutional permissions 

All procedures involving animals were approved by the McMaster Animal Research Ethics 

Board (AUP# 23-19), and were performed in accordance with the guidelines of the 

Canadian Council on Animal Care (CCAC). Ensure required ethics approvals from relevant 

institutions are obtained prior to beginning the work.  

PCLS preparation  

   Timing: 1 day, 1.5 to 2 hours per mouse to slice all 5 lung lobes 

1. Generate PCLS using fresh murine lung tissue, according to previous protocol.1 

a. Sacrifice mice, cannulate trachea, and inflate lung with agarose. 
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b. Slice lung tissue using Compresstome vibrating microtome, or available 

precision tissue slicing apparatus (500µM thickness). 

c. Using manual coring tool, punch 2mm cores from full lobe slices. 

2. Once slicing and coring is complete, leave PCLS to normalize overnight in culture 

medium in incubator (37°C, 5% CO2), prior to beginning any treatment/stimulation.  

Note: Detailed methods and troubleshooting guide on PCLS generation can be found in 

Vierhout et al.1 

Culture and stimulation of PCLS 

   Timing: 24 to 72 hours 

3. Culture PCLS with polarization cocktail to stimulate profibrotic programming of 

macrophages, according to previous protocol.1 

a. Treat PCLS with polarization cocktail (IL-4+IL-6+IL-13) in culture medium. 

Culture 1 PCLS per well in a 96-well plate. 

Note: We have previously tested macrophage polarization readouts at various time 

points (24,   48, and 72 hours). For this experiment, PCLS were cultured for 48 hours. 

Select culture time based on desired outcomes. 

Preparation of buffers for fixation and cryoprotection 

   Timing: 10 minutes 

4. Prepare fixation/permeabilization solution. 

Critical: Cytofix/Cytoperm™ contains formaldehyde and is toxic. Wear gloves, lab 

coat, and appropriate personal protective equipment (PPE). Avoid direct contact. Only 

handle open containers in a fume hood.  
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a. Dilute Cytofix/Cytoperm™ 1:4 in 1X phosphate-buffered saline (PBS) in a 

50mL conical tube. 

b. Wrap outside of tube with aluminum foil to protect solution from light.  

c. Store at 4°C. 

5. Prepare cryoprotection solution. 

a. Add sucrose (30% w/v) to 1X PBS in autoclaved 100mL glass bottle. 

Note: Sucrose is slow to dissolve. Lightly swirl the capped bottle periodically until 

 dissolved. 

b. Store at 4°C. 

Preparation of staining buffer 

   Timing: 10 minutes 

6. Prepare Triton-BSA buffer, to be used for blocking and as an antibody diluent 

during staining. 

a. Add bovine serum albumin (BSA) to 1X PBS (1% w/v) in autoclaved 100mL 

glass bottle. 

b. Add Triton X-100 (0.3% v/v) to BSA-PBS mixture. 

Note: Triton X-100 is viscous and can be difficult to transfer by pipette. Use 

small syringe instead of pipette. 

c. Lightly swirl capped bottle until BSA and Triton are dissolved. 

d. Store at 4°C. 
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Mouse aSMA eFluor660 (1:200 dilution) Invitrogen 
Cat#50-9760-82; 
RRID AB_2574362 

Rabbit Arginase-1  (1:50 dilution) Cell Signaling Technology 
Cat#Cs93668;      
RRID AB_2800207 

Rat CD11b PE (1:100 dilution) BD Biosciences 
Cat#557397;         
RRID AB_396680 

Hamster CD11c AF488 (1:200 dilution) Invitrogen 
Cat#MCD11C20; 
RRID AB_10373244 

Rat CD206 AF488 (1:100 dilution) BioLegend 
Cat#141709;        
RRID AB_10933252 

Rat CD45 AF594 (1:20 dilution) BioLegend 
Cat#103144;        
RRID AB_2563458 

Rat CD68 AF647 (1:100 dilution) BioLegend 
Cat#137004;        
RRID AB_2044002 

Rat Siglec F PE (1:50 dilution) BD Biosciences 
Cat#552126;         
RRID AB_394341 

Goat Anti-Rabbit AF488 (1:50 dilution) Invitrogen 
Cat#A-11008;      
RRID AB_143165 

Fc Block (1:100 dilution) BD Biosciences 
Cat#553141;        
RRID AB_394656 

Chemicals, peptides, and recombinant proteins 
Recombinant murine Interleukin 4 Peprotech Cat#214-14 
Recombinant murine Interleukin 6 Peprotech Cat#216-16 
Recombinant murine Interleukin 13 Peprotech Cat#210-13 

Cytofix/Cytoperm™ BD Biosciences 
Cat#554722;        
RRID AB_2869010 

Sucrose Sigma-Aldrich Cat#S0389 
Triton X-100 Sigma-Aldrich Cat#93443 
DAPI (1:1000 dilution) Invitrogen Cat#D1306 
Chrome-Alum Gelatin Newcomer Supply Cat#1033A 
Fluoromount-G mounting medium Southern Biotech Cat#0100-01 
Lithium Borohydride (LiBH4) Sigma-Aldrich Cat#222356 
Optimal Cutting Temperature (OCT) Compound Sakura Cat#4583 
Isopentane Sigma-Aldrich Cat#A1933 
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Bovine serum albumin Sigma-Aldrich Cat#A9418 
Sulfuric acid Sigma-Aldrich Cat#258105 
Liquid nitrogen  N/A  N/A 

Software and algorithms 

HALO image analysis software Indica Labs 
Highplex FL module; 
RRID SCR_018350 

Other 

Mouse: C57Bl/6 The Jackson Laboratory 
Cat#000664;        
RRID MGI:2159769 

Compresstome vibrating microtome  Precisionary Instruments VF-510-0Z 
Incubator N/A N/A 
Small paintbrush (to handle PCLS) N/A N/A 
Cryomold (Intermediate) Tissue-Tek Cat#62534-15 
Chambered coverglasses Lab-Tek Cat#155380 

Cryostat Leica  
CM3050 S;             
RRID SCR_016844 

Humidity chamber for slide staining  N/A  N/A 
Vacuum aspirator  N/A  N/A 
Warm room or oven (37°C)  N/A  N/A 

Confocal microscope Zeiss  
LSM 980;                
RRID SCR_025048 

 

MATERIALS AND EQUIPMENT 

Fixation/permeabilization solution 

Reagent Final concentration Amount 

Cytofix/Cytoperm™ 25% (v/v) 4 mL 
1X PBS N/A 6 mL 
Total Volume  10 mL 

Fixation/permeabilization solution can be stored at +4°C for up to 2 weeks (keep solution 
protected from light by wrapping outside of tube with aluminum foil). 

Critical: Cytofix/Cytoperm™ contains formaldehyde and is toxic. Wear gloves, lab coat, 
and appropriate PPE. Avoid direct contact. Only handle open containers in a fume hood. 
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Cryoprotection solution 

Reagent Final concentration Amount 

Sucrose 30% (w/v) 33 g 
1X PBS N/A 100 mL 
Total Volume  100 mL 

Cryoprotection solution can be stored at +4°C for up to 3 months. 

Staining buffer 

Reagent Final concentration Amount 

BSA 1% (w/v) 1 g 
Triton X-100 0.3% (v/v) 0.3 mL 
1X PBS N/A 100 mL 
Total Volume  100 mL 

Staining buffer can be stored at +4°C for up to 1 week. 

 

STEP-BY-STEP METHOD DETAILS 

Note: Tissue processing and staining protocols are adapted from IBEX protocols by Radtke 

et al. (2020 and 2022).2,3 

Harvesting cultured PCLS for fixation/permeabilization 

   Timing: 20 minutes and 1 day 

This step outlines the harvesting of PCLS from culture plates after incubation, and proper 

sample handling for fixation and permeabilization of the tissue. 

Note: Perform this step in a biological safety cabinet (BSC). 

1. Prepare pre-labelled 1.5 mL Eppendorf tubes and pipette 500uL of 

fixation/permeabilization solution into each tube. 

2. Remove PCLS culture plate from incubator and place in BSC. 
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3. Harvest PCLS from culture plate and put in Eppendorf tubes containing 

fixation/permeabilization solution (1 PCLS per tube). 

4. Close lids and transfer tubes to 4°C. 

5. Leave PCLS to fix/permeabilize for 24 hours (4°C). 

Cryoprotection 

   Timing: 30 minutes and 2 days 

This step explains the transfer of fixed/permeabilized PCLS tissue to sucrose solution for 

cryoprotection, in preparation for the subsequent freezing step. 

Note: Perform this step in a BSC. 

6. Prepare pre-labelled 1.5 mL Eppendorf tubes and pipette 1mL of 30% sucrose into 

each tube. 

7. For each sample, also prepare a second 1.5 mL Eppendorf tubes and pipette 1mL of 

cold 1X PBS into each tube. 

8. Remove PCLS from Cytofix/Cytoperm™ and place in PBS tube for 5 minutes to 

rinse off fixative. 

9. Transfer PCLS to 30% sucrose tubes (1 PCLS per tube). 

10. Leave PCLS to cryoprotect for 48 hours (4°C). 

Note: At end of 48-hour cryoprotection period, PCLS should be sunken to bottom of 

Eppendorf tube. 

 

OCT Embedding and Freezing 

   Timing: 1 hour 
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This step describes the embedding of fixed/permeabilized/cryoprotected PCLS in optimal 

cutting temperature (OCT) compound. The freezing protocol uses isopentane to achieve 

gradual freezing to avoid compromising the tissue with freezing artifacts. 

11. Fill cryomolds with OCT.  

Note: Take care to avoid creating large bubbles. If bubbles are present, attempt to pop 

them with a pipette tip. Carefully move remaining bubbles to the edges of the mold, 

away from where the tissue will be embedded. 

12. Carefully remove PCLS from sucrose and place in OCT-filled cryomolds.  

Note: 3 PCLS (same treatment condition, biological/technical replicates) can be placed 

in each cryomold.  

Critical: If using biological replicates, take note of the placement of PCLS from each 

mouse in the cryomold (as seen in Figure 1A). 

13. Put liquid nitrogen in foam cryo-dewar and place dewar in fume hood. 

Critical: Wear appropriate PPE and eye protection while handling liquid nitrogen. 

14. Pour approximately 250mL of isopentane in clean 500mL glass beaker.  

15. Carefully place beaker in liquid nitrogen cryo-dewar. 

Critical: Right before freezing, push all PCLS down to bottom of cryomold to ensure 

all are frozen in same plane (as seen in Figure 1B). Keep cryomold level when handling 

to prevent movement and slanting of tissue. 

16. Using large forceps, submerge bottom surface of cryomold in isopentane to 

gradually freeze PCLS in OCT (Figure 1C). 
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Critical: Only submerge the bottom surface (not the entire cryomold) in isopentane. 

Full submersion may lead to irregular freezing and formation of freezing artifacts. 

Critical: Perform freezing in fume hood. Take care to avoid direct contact with liquid 

nitrogen    and wear appropriate PPE and eye protection. 

17. Remove frozen blocks from cryomolds. 

Note: If freezing multiple samples, temporarily place each frozen filled cryomold at -

20°C or -80°C to prevent thawing while processing rest of samples. 

18. Using a scalpel, carefully cut off a small piece from the bottom right corner of the 

block to serve as a reference landmark for the placement of the frozen tissues in the 

same block (Figure 1D). 

19. Store blocks at -80°C until cryosectioning. 

Note: We have found that labelled 12-well plates work well for block storage, but any 

suitable preferred container can be used. 

Pause point: Fixed-frozen PCLS in OCT blocks can be stored long-term at -80°C. We have 

tested up to 6 months with no observed compromise of the PCLS, and the original IBEX 

protocol states that tissues can be left frozen for several years2. 

 

Cryosectioning 

   Timing: 3 hours 

This step outlines cutting the OCT-embedded PCLS with a cryostat. Cryosections are 

adhered to chambered coverglasses for subsequent staining, imaging, and bleaching. 
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20. Coat chambered coverglasses (Figure 2A) with an even layer of chrome-alum 

gelatin adhesive using a cotton swab dipped in the solution.  

21. Leave chambers to dry at 37°C for 1 hour. 

Optional: Coverglasses can also be coated the day before cryosectioning and left to dry 

at room temperature overnight. 

22. Take OCT blocks out of -80°C freezer and store at -20°C for one hour prior to 

cryosectioning. 

Critical: Wear cut-resistant gloves while operating cryostat and take precaution while 

handling sharp objects. 

23. Using cryostat, cut fixed-frozen PCLS (three per OCT block) at thickness of 12um. 

Carefully place cryosections in chambered coverglasses and allow tissue to adhere 

completely flat (Figure 2B). 

Critical: Pre-cool coverglasses by keeping them in the cryostat chamber. A cold surface 

prevents automatic sticking of the freshly cut section, and allows for gentle 

maneuvering while it is being placed in the coverglass. Once the cryosection is in the 

correct position, warm the bottom surface of the coverglass with thumb to cause 

cryosection to adhere. 

Critical: Ensure that OCT does not curl under tissue and impede full contact of tissue 

with coverglass surface.  

24. Label lid and side of each coverglass with sample IDs. 

25. Leave coverglasses with adhered cryosections to dry for 1 hour at 37°C, or 

overnight at room temperature. 
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Pause point: Dried PCLS cryosections can be left at room temperature for up to 3 days 

before staining. 

 

Blocking and Staining 

   Timing: 1.5 hours and overnight 

This step describes the Fc-blocking and staining of PCLS cryosections with panel of 

primary antibodies for downstream multiplex microscopy. 

26. Prepare blocking buffer by diluting Fc block 1:100 in staining buffer (Triton-BSA). 

27. Rehydrate tissue by adding 1mL of 1X PBS to each chamber and incubating for 5 

minutes. 

28. Aspirate 1X PBS with vacuum aspiration system, taking care not to damage or 

scratch tissue. 

29. Add 250uL of blocking buffer to each chamber and incubate for 1 hour at room 

temperature. 

30. While samples are blocking, make antibody staining mixtures in staining buffer. 

With our current set up, 4 antibody-fluorophore conjugates (AF488, PE, AF594, 

AF647) plus DAPI can be imaged in one panel round.  

Note: Antibody dilutions used are indicated in key resource table. Add Fc block at 

1:100 to antibody staining panel. 

Critical: Briefly centrifuge antibodies before pipetting to reduce non-specific signal 

from unbound fluorophore. 

31. Set up staining humidity chamber by filling with tap water.  
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32. After blocking is complete, aspirate blocking solution and add 250uL of antibody 

staining solution to each chamber.  

33. Incubate in humidity chamber (covered to protect samples from light) overnight at 

4°C 

 

Washing, secondary antibody staining (optional), and mounting 

Timing: 20 minutes (no secondary antibody staining) or 1.5hrs (secondary antibody 

staining) 

This step explains washing to clear unbound primary antibody, secondary antibody staining 

(if needed), and addition of mounting media to chambered coverglasses prior to imaging. 

34. Carefully remove humidity chamber from 4°C fridge.  

35. Aspirate antibody staining mixture. 

Critical: If using multiple staining mixtures, take caution not to use same aspirator tip 

between staining mixtures. 

36. Add 2mL 1X PBS per chamber, leave to soak for 2 minutes, and aspirate. 

37. Repeat step 36 twice more for a total of 3 washes. 

Optional: If adding secondary antibody, prepare in staining buffer with Fc block and 

incubate in humidity chamber for 1 hour at 37°C. Repeat triple PBS wash as described in 

steps 36 and 37. 

38. After washing, add 1mL of Fluoromount G mounting medium to each chamber, 

taking care to not create bubbles. 

39. Protect chambers from light and store at 4°C until imaging 
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Pause point: Samples can be stored for two to three days before imaging, however best 

image quality is obtained when performed on same day of staining. 

 

Imaging PCLS with confocal microscopy 

Timing: 1 day, 20 minutes set up and 20 to 30 minutes image acquisition per full    

PCLS  

This step describes set-up of the confocal microscope for efficient multiplex imaging of the 

full PCLS tissues through acquisition of a tiled image. 

Note: This protocol has been written with specific detail to the Zeiss LSM 980 microscope, 

however a similar workflow can be adapted to any commercial line-scanning confocal. 

40. Start computer and microscope. 

a. Turn on computer connected to microscope. 

b. Switch on Zeiss LSM 980 confocal microscope. 

c. Open Zeiss ZEN Blue software. 

Note: Ideally, the system is turned on at least an hour prior to the experiment to 

allow for warm-up. 

41. Wipe bottom of chamberglass with Kimwipe and lens cleaning solution to clean 

away fingerprints and debris, then load it on microscope stage.  

Note: Ideally, start with the brightest sample when optimizing the acquisition settings 

for the experiment. 

42. If available, use the AI sample finder feature in the Acquisition tab of ZEN Blue to 

capture an overview image of the slide. 
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43. While in the Locate tab, use the 10× objective and the eyepiece (in widefield 

epifluorescence mode) to focus on the sample using the DAPI channel or another 

bright channel. Switch to the 20× (NA 0.8) objective and refocus the sample. 

44. In the Acquisition tab, configure confocal acquisition tracks in Imaging Setup 

(Figure 3A-C). 

a. Select all fluorophores (“Dyes”) to detect based on staining panel.  

b. Combine some of the spectrally-distinct channels into single confocal tracks 

(e.g., Track 1: DAPI and AF594, Track 2: AF488 and AF647) to increase 

speed of acquisition while imaging full PCLS with multiple fluorophores. 

For 5 colours (DAPI, AF488, PE, AF594, AF647), 3 confocal tracks are 

sufficient. 

c. Adjust detection range for each channel to minimize spectral overlap 

between fluorophores and select the appropriate excitation lasers. 

Note: Use Thermofisher Spectraviewer as a guide to visualize excitation and 

emission spectra of each fluorophore in panel, as well as overlap. 

(https://www.thermofisher.com/order/fluorescence-spectraviewer) 

d. Select “Frame” track switching to minimize spectral overlap and 

accommodate different dichroic mirrors. 

45. In the Acquisition Mode window, maximize resolution by adjusting pixel size to 

Nyquist (click on the Confocal button beside Sampling).  

https://www.thermofisher.com/order/fluorescence-spectraviewer
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46. To maximize speed, set the scan zoom to 0.6× – 1.0×, increase scan speed to the 

maximum (unless the image noise becomes significantly high) and enable 

bidirectional scanning. 

47. Finetune laser settings for optimal imaging of each marker (Figure 3D). 

Critical: Do not look directly at laser with eyes at any point during experiment. 

a. For each confocal track, go “Live” to preview each fluorophore. 

b. Set pinhole size to 1 Airy unit (AU). 

c. Adjust laser powers and detector gains to best detect each fluorophore 

without saturating pixels. 

i. Use Range Indicator feature to ensure that pixels are not saturated. 

d. Adjust the histogram maximum display range accordingly to easily view 

image (or click on Best Fit). 

Critical: If comparing intensities across multiple tissues/samples stained for the same 

markers, all samples must be imaged with identical settings.  

Note: To ensure that settings are kept consistent, open a previous image and click on 

Reuse button to load previous settings. 

48. Set up tile scan to image full PCLS tissue.  

a. Enable the tile function. In the Tile Viewer, draw a polygon contour around 

the tissue border using the overview image generated by the AI Sample 

Finder.  
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Note: If this feature is not available, acquire a preview tile scan using a low-

magnification lens (e.g., 5×) with a low-resolution acquisition setting. Drag and 

drop the overview tile into the Navigation window and draw the tissue contour. 

b. Draw tile regions around all tissues on the slide (Figure 3E). This will allow 

the microscope to automatically image all three tissues in a row, minimizing 

needed hands-on time. 

c. Under the Focus Surface and Support Points section of the Tiles tab, add 

support points across tissue tile regions (also seen in Figure 3E). Ensure 

that the Focus Strategy is set to use the Z Values defined in Tiled Setup. 

i. For full 2 mm diameter PCLS, place at least 10 support points.  

ii. Verify support points by enabling live view in the DAPI channel and 

ensure that the sample is in focus across all support points. 

49. Click on Start Experiment to begin image acquisition. In our experience, this takes 

approximately 20-30 mins per full PCLS tissue. 

 

Fluorophore bleaching and restaining 

   Timing: 45 minutes and overnight 

This step explains inactivation of fluorophores (bleaching) in the stained sample with 

reducing agent lithium borohydride (LiBH4), and subsequent restaining of the tissue with a 

new round of antibodies. 

50. After image acquisition is complete, carefully remove all mounting medium out of 

chamber with pipette. 
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51. Wash by adding 2mL 1X PBS to each chamber. Leave to soak for 2 minutes and 

aspirate with vacuum aspirator. 

52. Repeat step 51 twice more for a total of 3 washes. 

53. Prepare bleaching solution. 

Critical: LiBH4 is highly flammable! Perform all LiBH4 handling and bleaching steps 

in fume hood. 

a. Weigh LiBH4 in a small glass beaker using a microbalance. 

b. Add distilled water to dissolve LiBH4 to a final concentration of 1mg/mL. 

54. Add 1mL of bleaching solution to each chamber and leave to incubate for 15 

minutes. 

Note: Small bubbles will form around tissue. If bubbling is not observed, this may indicate 

LiBH4 reagent has oxidized and is no longer effective, and needs to be replaced. 

55. After incubation, carefully remove bleaching solution with pipette and place in 

waste beaker. 

a. Neutralize LiBH4 waste by carefully adding sulfuric acid in a drop-wise 

manner, until solution no longer bubbles. Dispose by pouring on absorbent 

pad. 

56. Wash sample by adding 2mL 1X PBS to each chamber. Leave to soak for 2 minutes 

and aspirate. 

Note: Tissue may become more prone to lifting and/or slipping after bleaching. Take 

caution to keep direct suction from the vacuum away from the tissue. 

57. Repeat step 56 twice more for a total of 3 washes. 
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58. Perform next round of antibody staining, as previously described in steps 30-39. 

Note: Blocking step is not required before restaining. 

Note: DAPI and AF594 do not bleach and should not be included in restaining rounds. 

 

Imaging of subsequent staining rounds 

Timing: 1 day, 20 minutes set up and 20 to 30 minutes image acquisition per full  

PCLS 

This step outlines the imaging of subsequent staining rounds, and the critical need to ensure 

that the same Z plane in the tissue is being imaged across rounds to allow for successful 

image fusion of multiple rounds.  

59. Set up microscope and imaging parameters as described above in steps 40 to 49. 

a. If using same panel of fluorophores, laser track settings can be re-used. 

b. Adjust gain and laser power for each marker, keeping settings consistent 

across samples. 

60. When setting up tile scans, focus each support point using DAPI and match with 

DAPI image in the same area from previous round to ensure the same Z plane is 

being imaged (Figure 3F). 

Note: Bleaching, restaining, and imaging of subsequent rounds can be repeated as desired 

for experimental purposes. However, we have noticed an increase in autofluorescence with 

each round of bleaching and thus suggest placing markers with lower expression in earlier 

staining rounds. 
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Image fusing and quantitative analysis 

   Timing: 2 days 

This final step outlines the use of HALO image analysis software to fuse multiple rounds 

into a single image for each PCLS tissue, as well as quantitative analysis of markers and 

cellular phenotypes. 

61. Import all images into HALO image analysis software. 

Optional: For ease of image management, rename all channels from fluorophore names 

(e.g.   AF488) to marker names (e.g. CD206). 

62. Register serial imaging rounds on same tissue with image registration tool, selecting 

the setting for serial stain registration. 

63. Fuse images using fuse serial stain tool. 

a. Select middle staining round (ie. round two out of three) as registration 

target. 

b. Select DAPI as fusing reference channel.  

c. Verify alignment of fusion by simultaneously turning on DAPI channels 

from all rounds. Figure 4A displays an example of successful alignment of 

DAPI channels from sequential rounds in a fused image. 

i. If rounds are not properly aligned, adjust the image fusion by 

manually adding reference points with the landmark tool. 

64. In fused images, assign distinct pseudocolour to each channel for ease of 

visualization. 
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65. Adjust histogram settings to have optimal visualization for each channel, keeping 

settings consistent across all images. 

66. To now analyze fused multiplex images (examples seen in Figure 4B), launch 

Highplex FL analysis module to develop algorithm for detection of markers. 

a. Select dyes to quantify. If want to use all, select “autofill”. 

b. Set phenotypes for cell types to quantify, based on marker criteria. In this 

paper, we quantify general macrophages (Figure 4C i. “Phenotype 1”, 

defined as CD45+CD68+CD11c+ cells) and profibrotic macrophages 

(Figure 4C ii. “Phenotype 2”, defined as 

CD45+CD68+CD11c+Arg1+CD206+ cells), as we were interested in 

evaluating if our IL-4+IL-6+IL-13 polarization cocktail could induce this 

phenotype in PCLS. 

c. Use “real-time tuning” window to set parameters for nuclear detection on 

DAPI channel. 

d. Use “real-time tuning” window to set parameters for detection of each 

marker. 

e. Name and save analysis algorithm to study folder. 

67. Run analysis with developed Highplex algorithm on all tissues. 

a. Resulting analysis will yield detection of all nuclei (DAPI, as seen in Figure 

4D i.), cellular positivity for each individual stain (example for CD45 shown 

in Figure 4D ii.), and multiplex analysis for each defined phenotype 

(example for Arg1+CD206+ Macrophages seen in Figure 4D iii.). 
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EXPECTED OUTCOMES 

PCLS are 1iving tissue preparations that contain all pulmonary cell types, and preserve the 

cellular interactions, architecture, and microenvironment of the lung, thus ultimately 

serving as a powerful biologically-translational model for respiratory research4. This is 

especially critical when studying plastic, phenotypically-diverse cells like macrophages 

that are highly responsive to cues in their microenvironment and limitedly recapitulated in 

traditional two-dimensional in vitro cell culture systems7. The ex vivo nature of the system 

provides versatility, as an endless range of mediators and compounds can be applied to 

stimulate disease-like states and experimental treatment angles. In these experimental 

systems, it is essential to have a comprehensive understanding of induced cellular 

phenotype. However, due to the requirement of agarose instillation to generate slices, as 

well as the relatively small mass of tissue, downstream applications such as RNA 

assessment and flow cytometry have proved challenging10, thus creating barriers for 

cellular phenotyping in PCLS. While immunostaining on PCLS has been performed 

previously, this has initially been done on full fixed slices rather than cryosections, thus 

increasing the susceptibility to autofluorescence by the large amount of agarose gel content. 

Hoffman et al. (2018) have demonstrated robust multiplex staining in PCLS, but 

acknowledge the limitation of content throughput with immunostaining due to constraint 

of available fluorophores that can be used at once12, which our work aims to overcome with 

iterative rounds of staining. This protocol provides a detailed, multi-step breakdown of a 

pipeline for processing, sectioning, iterative rounds of staining+imaging+bleaching (using 

IBEX), and quantitative analysis of highly multiplexed immunolabelling for the 
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determination of macrophage phenotype in PCLS. Using a customizable panel of 

commercially-available antibodies conjugated to different fluorophores across the 

spectrum (see Key Resources Table), we specifically visualized and detected macrophages 

(CD45+CD68+CD11c+ cells) in the control and polarization cocktail-treated (IL-4+IL-

6+IL-13) PCLS (Figure 5A). Using established profibrotic macrophage markers Arginase-

1 and CD206, we were also able to specifically detect macrophages that had a profibrotic 

phenotype (CD45+CD68+CD11c+Arg1+CD206+ cells). Using HALO image analysis 

platform, we were able to specifically quantify profibrotic macrophages in full-tissue 

images, based on cellular marker co-positivity (using the inputted custom phenotype 

criteria). Using the pipeline described in this protocol, we demonstrated visually and 

quantitatively that PCLS treated with our polarization cocktail had a significant increase in 

profibrotic (Arg1+CD206+) macrophages, expressed as percentage of total cells and 

percentage of macrophages (Figure 5B,C, as seen in Vierhout et al. 20241). Delving deeper 

into the phenotype of these macrophages, we also used additional markers to define 

alveolar and interstitial macrophages, which are broadly the two main macrophage 

populations in the lung, and are both believed to play critical roles in lung fibrosis13. We 

observed that our polarization cocktail was able to program both alveolar and interstitial 

macrophages to a profibrotic phenotype (Figure 6, as seen in Vierhout et al. 20241). 

Overall, this protocol is suitable and feasible for visual and quantitative macrophage 

phenotyping in murine PCLS. It has potential for customizability to other panels and ex 

vivo tissue slice systems, especially due to the versatile and open-source nature of IBEX. 
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LIMITATIONS 

The major limiting timestep in this protocol is time spent imaging. Microscope set up 

requires approximately 20 minutes per tissue, and image acquisition then takes 

approximately 20-30 minutes for a full PCLS (2mm diameter) using 5 colours. We have 

introduced modifications to minimize time, such as including three PCLS per 

chamberglass, placing two channels on a laser track, and setting up acquisition for three 

tiled images at once so they are automatically sequentially imaged by the microscope. 

However, if testing multiple treatment conditions with multiple biological/technical 

replicates, timing presents a limitation for throughput of the readout. We suggest using 

high-content quantitative imaging in synergy with other readouts suitable for higher 

throughput, such as brightfield immunohistochemistry and protein assessments. Examples 

of this in the context of our research question can be found in our full study1. 

 

TROUBLESHOOTING 

Problem 1: Difficulty sectioning tissue using cryostat (related to Step 23). 

Potential solution:  

• Make sure tissue OCT blocks are left to warm up at -20°C (either in cryostat 

chamber or -20°C freezer) for 1 hour before sectioning. Blocks that are too cold 

will not cut well. 

• If tissue seems teared/fragmented, freezing artifacts may be present. Ensure that 

cryoprotection step, as well as gradual freezing of OCT block using isopentane (and 
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only submerging the bottom surface, not the whole cryomold), are properly 

followed. 

• As PCLS tissues are limited in size/thickness and can be easily depleted, it is best 

to use a few extra “practice” samples to test cryostat set up prior to cutting precious 

samples. 

 

Problem 2: Non-specific signal/background in microscopy images (related to Steps 47-

49). 

Potential solution:  

• Check IBEX reagent resource repository on public IBEX Knowledge-Base11 to 

check if antibody of concern has been used before and the accompanying 

conditions. 

• Include unstained tissue, which is subjected to all parts of the protocol but is 

incubated in staining buffer without antibodies/DAPI, to determine if background 

may be caused by any component of the tissue processing/staining protocol, or 

imaging settings. 

• Perform antibody optimization: 

o Optimize antibody concentrations with single-stained tissues prior to full 

experiment. We typically use a range of test concentrations, including 1:20, 

1:50, 1:100, and 1:200. 
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o If using secondary antibodies, run a secondary-only control to determine if 

background is caused by non-specific binding of secondary antibody 

(Figure 7). 

 

Problem 3: High autofluorescence in microscopy images (related to Step 47-49). 

Potential solution:  

• Ensure tissue does not dry out at any point during the protocol. 

• If increased autofluorescence is seen in subsequent staining/imaging rounds after 

bleaching, ensure that LiBH4 is kept on tissue for no longer than 15 minutes. 

Reducing bleaching time to 10 minutes may also be useful.  

• Put markers with weaker signal in earlier staining rounds. 

 

Problem 4: Tissue loss after washing/bleaching (related to Step 56, and all wash/aspiration 

steps). 

Potential solution:  

• Ensure slides are always freshly coated with chrome-alum gelatin adhesive (same 

day of cryosectioning or day before).  

• When cryosectioning, ensure that no OCT curls underneath tissue, which would 

interfere with adherence to coverglass.  

• When aspirating liquids from chambers, take care to not scrape or aspirate tissue.  
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Problem 5: Difficulty with image fusion – serial images are not properly aligned (related 

to Step 63). 

Potential solution:  

• In our experience, HALO works well to fuse and align the images easily 

approximately 90% of the time. For the other 10% of the time, further adjustment 

is needed by manually adding reference points with the landmark tool to correct the 

alignment.  

• During image acquisition, it is important to ensure that the same Z plane is being 

imaged in the tissue across all rounds. If the same cells are not imaged, 

fusion/alignment and accurate multiplex detection will not work. 

• If tissue loss/movement occurs with bleaching, washing, and aspiration across 

rounds, this will also affect image fusion (See Problem 4 above for potential 

solution).  

 

RESOURCE AVAILABILITY 

Lead contact 

Further information and requests for resources and reagents should be directed to and will 

be fulfilled by the lead contact, Joshua F.E. Koenig (koenigjf@mcmaster.ca).  

Technical contact 

Questions about the technical specifics of performing the protocol should be directed to 

the technical contact, Megan Vierhout (vierhom@mcmaster.ca). 

Materials availability 
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This study did not generate new unique reagents. 

Data and code availability 

This study did not generate new datasets or code; originally published data can be found 

in our original manuscript.1 Any additional information required to reanalyze the data 

reported in this paper is available from the lead contact or technical contact upon request. 
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Figure 1: Embedding and freezing fixed PCLS in OCT
A: 3 PCLS in liquid OCT in cryomold; overhead perspective.
B: 3 PCLS in liquid OCT in cryomold; lateral perspective. 
C: Freezing PCLS+OCT in beaker of isopentane placed in liquid nitrogen.
D: Frozen PCLS embedded in OCT. Bottom right corner of OCT is cut to indicate orientation of 
samples.
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Figure 2
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Figure 2: Chambered coverglass for PCLS staining
A: Chambered coverglass used for IBEX staining.
B: PCLS cryosections (3) cut on chambered coverglass.
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  Figure 3
A B C

D E

F
DAPI

Round 1                      Round 2 Figure 3: Settings for image acquisition on 
confocal microscope (Zeiss LSM 980)
A,B,C: Optimized track and channel setup, with 
fluorescence detection ranges adjusted to minimize 
spectral overlap between dyes.
D: Example of laser power and gain settings for
channel.
E: Tile regions drawn on sample finder overview to 
capture the full tissue, with focus support points 
(yellow) distributed across the field.
F: Alignment of Z-plane across multiple rounds of
imaging, based on DAPI channel.
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  Figure 4
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Figure 4: Image analysis using HALO Highplex FL Module
A: Alignment of DAPI channels from sequential staining rounds on PCLS (used as a reference 
channel during image fusion). 
B: Examples of fused multiplex PCLS images from multiple staining rounds.
C: Set phenotypes for i. General Macrophages and ii. Profibrotic (Arg1+CD206+) Macrophages, 
defined by positivity of markers.
D: Example of markup of HALO analysis, showing i. DAPI (nuclear), ii. CD45 (single stain), and iii. 
profibrotic macrophage (multiplex) detection.

B

i. Nuclei (DAPI) ii. CD45 (AF594)
C
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Figure 5: Quantifying profibrotic macrophage phenotype in PCLS
A: Markers defining profibrotic macrophage phenotype.
B: HALO detection of profibrotic macrophages in full PCLS.
C: Quantification of profibrotic macrophages in control and treated PCLS, expressed as % total cells and % 
total macrophages (graph adapted from Vierhout et al. 20241).

Macrophages (CD45+CD68+CD11c+ cells) with profibrotic (Arg1+CD206+) phenotype
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  Figure 6
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Figure 6: Marker panels defining alveolar and interstitial macrophage populations
A: Alveolar macrophages in control and treated PCLS.
B: Interstitial macrophages in control and treated PCLS.
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Figure 7
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Figure 7: Determination of non-specific signal and/or autofluorescence using only 
secondary antibody and unstained tissue. The top row shows the same settings used to 
acquire the stained sample image on the left, while the bottom row is the same image with 
gamma settings increased to show presence of tissue.
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IDENTIFICATION OF ABERRANT METABOLIC PHENOTYPE IN 
CIRCULATING MONOCYTES IN IDIOPATHIC PULMONARY 
FIBROSIS THROUGH TRANSCRIPTOMIC PROFILING AND 

IMPLICATIONS ON PROFIBROTIC MACROPHAGE 
POLARIZATION 

 
 

Megan Vierhout, Anna Dvorkin-Gheva, Anmar Ayoub, Safaa Naiel, Quan 
Zhou, Alexander Noble, Albina Tyker, Pareesa Ali, J.C. Cutz, Asghar Naqvi, 

Martin R.J. Kolb, Kjetil Ask*, Nathan Hambly* 
 
Elevated blood monocyte count has been reported in IPF patients and shown to be linked 
to poor disease outcomes. These monocytes are believed to migrate into the lung and 
differentiate into profibrotic macrophages which contribute to fibrogenesis. However, little 
is known about their properties in IPF. In this chapter, we investigated these macrophage 
precursor cells in IPF through exploring the transcriptomic attributes of monocytes isolated 
from the blood of IPF patients and controls using RNA sequencing. We found that both 
monocytes in the blood, and profibrotic macrophages in the lung, were increased in IPF 
patients. Our transcriptomic findings identified an aberrant metabolic profile in IPF, as well 
as potential association of monocytic attributes with features related to disease severity. We 
then applied this information to delve into mechanistic studies  on the contribution of the 
identified aberrant features to profibrotic macrophage polarization, using macrophage and 
precision-cut lung slice polarization systems. Overall, this chapter outlines a translational 
study,  using patient-derived signatures and identification of targets of interest to modulate 
profibrotic cell behaviour, offering insight into the activation status of these cells in IPF. 
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Identification of Aberrant Metabolic Phenotype in Circulating Monocytes in 

Idiopathic Pulmonary Fibrosis Through Transcriptomic Profiling and Implications 

on Profibrotic Macrophage Polarization 
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ABSTRACT 

Patients with idiopathic pulmonary fibrosis (IPF) have shown elevated circulating 

monocyte counts linked to poor outcomes. These monocytes are believed to migrate into 

the lung and differentiate into profibrotic macrophages, however little is known about their 

properties. Here, we investigated the transcriptomic attributes of monocytes from IPF 

patients and identified an aberrant metabolic profile. We then mechanistically assessed this 

in profibrotic macrophages. 

RNA sequencing was performed on CD14+ blood monocytes from IPF patients and 

controls. Monocyte-derived profibrotic macrophages were histologically assessed in IPF 

surgical lung biopsies. Mechanistic in-vitro (THP-1 and RAW264.7) and ex-vivo [murine 

precision-cut lung slices (PCLS)] studies employed a profibrotic macrophage 

hyperpolarization cocktail (IL-4+IL-6+IL-13) +/- dichloroacetate (PDK inhibitor). 

Profibrotic macrophage activation was evaluated via protein expression of CCL18, IL-10, 

Arginase-1, CD206, and YM1. 

Both monocytes (blood) and profibrotic macrophages (lung) were increased in IPF patients. 

Transcriptomic analyses revealed downregulation of oxidative phosphorylation 

(OXPHOS) in IPF monocytes, aligning with the finding that PDK4, a gatekeeper kinase 

between glycolysis and OXPHOS, was drastically upregulated. Inhibition of PDK (and thus 

promotion of OXPHOS) using dichloroacetate in-vitro decreased CCL18, Arginase-1, and 

IL-10, supporting that downregulated OXPHOS is associated with a profibrotic 

macrophage phenotype. This was confirmed in PCLS studies, where inhibiting PDK 

reduced profibrotic macrophage markers Arginase-1, CD206, and YM1. 
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Our results highlight a novel metabolic target in monocytes and macrophages in pulmonary 

fibrosis. Mechanistic studies reveal that this altered metabolic state influences profibrotic 

macrophage polarization, offering insight into alternative activation states of these cells in 

IPF.  
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INTRODUCTION 

Idiopathic pulmonary fibrosis (IPF) is a fatal, progressive disease involving excessive 

scarring of the lung tissue. IPF is associated with early mortality, with a median survival of 

just 3 to 5 years after diagnosis [1]. Currently, there are no curative pharmacologic therapies 

for IPF. Lung transplant is a beneficial option for IPF patients, however eligibility is 

generally restricted to a relatively short time frame. Additionally, many IPF patients die 

while awaiting lung transplant, suggesting that transplant referral is often initiated too late 

in the disease course [2]. The disease trajectory of IPF is often unpredictable, and periods 

of rapid patient decline or acute symptom worsening, also termed acute exacerbations, can 

be deadly [3]. Overall, methods for prognostication and prediction of acute exacerbations 

in IPF are urgently needed to optimize transplant referral and optimize patient-centred 

treatment strategies. 

Elevated circulating monocyte count has been reported in multiple cohorts of IPF patients 

[4–7]. Additionally, monocyte levels have been shown to be associated with poor disease 

outcomes, and even potentially predictive of acute exacerbations [6]. A 52-gene risk profile 

for mortality in IPF patients using peripheral blood mononuclear cells not only showcased 

the possibility of disease outcome prediction in circulating cells, but demonstrated that 

monocytes were the main cellular source of the features related to high risk [8]. This 

suggests that monocyte characteristics may be related to profibrotic processes in IPF. 

Furthermore,  as precursor cells for macrophages, it has been demonstrated that circulating 

monocytes contribute to profibrotic macrophage populations in the fibrotic lung [9]. Thus, 

the phenotype of monocytes needs to be further elucidated to understand their potential 
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relationship to pulmonary profibrotic macrophage programming and progression in the 

landscape of IPF. 

Here, we perform transcriptomic profiling on CD14+CD16- blood monocytes, as the most 

common monocyte subset, isolated from IPF patients. We demonstrate their increased 

quantity in IPF, as well as association with disease features such as lung function decline. 

We also uncover an aberrant metabolic phenotype classified by decreased oxidative 

phosphorylation (OXPHOS) and increased OXHPOS gatekeeper enzyme PDK4, which we 

mechanistically explore further through macrophage polarization studies. 
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METHODS 

Research Ethics 

Collection and utilization of human lung tissues and blood was approved by the Hamilton 

Integrated Research Ethics Board (HiREB# 11-3559 and 13-523-C; and HiREB# 2017). 

Work involving animals was approved by the McMaster Animal Research Ethics Board 

(AUP# 23-19).  

Tissue Microarray Creation 

Human lung tissue microarrays were constructed from formalin-fixed paraffin-embedded 

(FFPE) surgical lung biopsies from IPF patients and non-fibrotic controls, with the 

guidance of molecular pathologists (AN and JCC). Regions of interest were selected from 

hematoxylin and eosin (H&E) stained slides of the parent surgical lung biopsy blocks. 

Using a TMA Master II (3D Histech Ltd), cores from parent blocks were punched and 

inserted into host paraffin blocks. Two tissue microarrays were used in this study: tissue 

microarray 1 containing 0.6mm cores from IPF patients (cores taken from both fibrotic and 

non-fibrotic regions) (n=24) and controls (non-involved areas of lung cancer resections) 

(n=17); and tissue microarray 2 containing 2mm cores from IPF patients (fibrotic areas) 

(n=55).  Demographic information is included in Supplementary Table 1. 

For tissue microarrays containing murine precision-cut lung slices (PCLS), full tissues were 

inserted in host blocks using 2mm cores. 

In-situ Hybridization (RNAscope®) 

RNAscope® (ACD Bio) fluorescent in-situ hybridization for CCL18, CD68, MAFB, 

CD163, and MRC1 was performed using commercially available assays. Staining was 
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completed at the John Mayberry Core Histology Facility at the McMaster Immunology 

Research Centre, using the Leica Bond RX immunostainer. 

Immunohistochemistry 

Immunohistochemical (IHC) staining was performed at the John Mayberry Core Histology 

Facility at the McMaster Immunology Research Centre. Staining of CD206 (Abcam 

ab64693) and CD163 (Abcam ab182422) on human lung tissue microarrays was performed 

using the Leica Bond RX. For murine PCLS, tissues were fixed in 10% formalin for 24 

hours and then transferred to 70% ethanol. Fixed tissues were subsequently embedded in 

paraffin. IHC staining on PCLS tissue microarrays was completed for Arginase-1 (Cell 

Signalling Cs93668) and CD206 (Abcam ab64693) on the Leica Bond RX.  

Slide Imaging and Histological Quantification 

Slides were imaged using the Olympus VS120 Slide Scanner (20x brightfield, 40x 

fluorescent). Full slide images of tissue microarrays were quantitatively analyzed using the 

Area Quantification module in HALO Image Analysis Software (Indica Labs). 

CD14+ Monocyte Isolation 

Peripheral blood was obtained from IPF patients and control subjects at the Firestone 

Institute for Respiratory Health. CD14+CD16- monocytes were directly isolated from whole 

blood collected in K2EDTA tubes (BD) using immunomagnetic negative selection 

(STEMCELL Technologies). Cells were then counted, pelleted and lysed with RNA lysis 

buffer. Lysates were stored at -80°C until RNA extraction. For this study, monocytes were 

obtained from 49 IPF patients and 12 control subjects. Demographic information is 

included in Supplementary Table 2 and Supplementary Table 3. 
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RNA Isolation 

RNA was isolated from monocyte lysates using a spin column extraction kit, following the 

manufacturer’s instructions (Macherey-Nagel). Prior to sequencing, RNA quality was 

measured using a High Sensitivity RNA ScreenTape® Device at the McMaster Farncombe 

Metagenomics Facility to confirm an RNA Integrity Number (RIN) of 7 or higher (average 

RIN>9).  

For FFPE lung tissue cores, RNA was isolated using an FFPE-specific spin column 

extraction kit, following the manufacturer’s instructions (Macherey-Nagel).  

NanoString Gene Expression  

NanoString gene expression was conducted using RNA isolated from FFPE lung samples. 

RNA was assessed using the nCounter Analysis System at the McMaster Farncombe 

Metagenomics Facility. Gene expression was normalized using the total counts 

normalization method, and was processed and analyzed using nSolver and R. ACTB, B2M, 

PGK1, POLR2A, PPBI, RPLP2, and UBC were used as housekeeping genes. 

Bulk RNA Sequencing  

RNA sequencing on monocyte samples was conducted at the McMaster Farncombe 

Metagenomics Facility. Directional library preparation was performed using poly-A 

mRNA enrichment (New England Biolabs). Bulk RNA sequencing was completed using 

the Illumina HiSeq 1500, with single end reads of 75 base pairs and an average sequencing 

depth of 9.1 million clusters.  

Reads were mapped using HISAT2 [10] with hg38 (UCSC) reference genome and counted 

using HTSeq [11]. Genes with low expression across samples were removed, and TMM 
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normalization [12] and voom transformation [13] were performed in R. Limma package 

was used for differential expression (DE) analysis [14]. BH correction for multiple testing 

was used to correct p values [15], with p <0.05 denoting statistical significance. Volcano 

plots were created with EnhancedVolcano package in R. For enrichment analysis using 

published datasets, gene set enrichment analysis (GSEA) was used. MATLAB Clustergram 

function and gplots package in R were used to generate the heatmap with hierarchical 

clustering. For visualization of clusters, rgl package in R was used for principal component 

analysis and plots. STRING was used for enrichment of Gene Ontology (GO) processes 

and pathways (querying STRING clusters, Reactome, KEGG, and Wikipathways 

databases). GSEA of differentially expressed genes between IPF and control and between 

the clusters was determined using HALLMARK, C2cp, and C5 gene set databases.  

Analysis of Public IPF Single Cell RNA Sequencing Datasets 

Human IPF single cell RNA sequencing data was obtained from published publicly 

available datasets. Data were either visualized using R or the IPF Cell Atlas 

(GSE135893[16], GSE136831 [17]; https://www.ipfcellatlas.com) 

Cell Culture 

RAW 264.7 macrophages were cultivated in DMEM supplemented with 10% FBS, 2 mM 

L-Glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin, and 2.5 µg/mL amphotericin 

B. For polarization assays, cells were treated with recombinant IL-4 (20 ng/mL), IL-6 (5 

ng/mL), and IL-13 (50 ng/mL) (Peprotech) with or without dichloroacetate (DCA; Sigma-

Aldrich) at a range of concentrations (10-25mM) for 24 hours. 
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THP-1 monocytes were cultivated in RPMI supplemented with 10% FBS, 100 U/mL 

penicillin, and 100 µg/mL streptomycin. THP-1 were differentiated into adherent 

macrophages with treatment of 10ng/mL phorbol 12-myristate 13-acetate (PMA) for 72 

hours. For polarization assays, cells were treated with recombinant IL-4 (20 ng/mL), IL-6 

(20 ng/mL), and IL-13 (20 ng/mL) (Peprotech) for 72 hours, followed by treatment with 

DCA (10mM or 20mM; Sigma-Aldrich) for an additional 72 hours. 

Generation and Culture of PCLS 

Murine PCLS were generated from 8–12-week female C57Bl/6 mice (The Jackson 

Laboratory), as previously described (Vierhout et al. 2024, [18]). Briefly, PCLS were cut 

using a Compresstome (Precisionary) at 500μM thickness and punched at 2mm or 4mm 

diameter, and were cultivated in DMEM culture medium supplemented with 10% fetal 

bovine serum, 2 mM L-Glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin, and 2.5 

µg/mL amphotericin B (37°C, 5% CO2). For polarization assays, PCLS were treated 

recombinant IL-4 (40 ng/mL), IL-6 (10 ng/mL), and IL-13 (100 ng/mL) (Peprotech) with 

or without DCA at a range of concentrations (10-25mM) for 48 hours. 

Water Soluble Tetrazolium 1 (WST-1) Assay 

10μL of WST-1 reagent (Roche) per well was added to 100μL of culture medium with cells 

or PCLS. The plate was incubated for 1 hour at 37°C, prior to reading absorbance of 

supernatant at a wavelength of 450 nm.   

Arginase Activity Assay 

Arginase activity was determined as previously described [19]. Briefly, cells were either 

directly lysed in the culture plate, or PCLS were homogenized using a Bullet Bead 
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Homogenizer (Next Advance) in lysis buffer (0.1% Triton-X supplemented with protease 

inhibitors). Cell or tissue lysates were then diluted with 25mM Tris-HCl and 10 mM 

manganese chloride was added, followed by a heated incubation at  56°C for 10 minutes. 

This was followed by addition of 0.5 M L-arginine and a subsequent heated incubation at  

37°C for 30 minutes. Urea standards, sulphuric+phosphoric acid solution, and 9% α-ISPF 

were added to the plate, followed by a final incubation at 95°C for 30 minutes. Absorbance 

was then read at a wavelength of 550 nm.   

Enzyme Linked Immunosorbent Assay (ELISA) 

IL-10, CCL18, and YM1 ELISAs were performed according to the manufacturer’s 

instructions (R&D Systems).   

Western Blotting 

Western blotting was performed as previously described [20]. Briefly, total protein from 

cell lysates was separated based on molecular weight on SDS polyacrylamide 

electrophoresis gels. Proteins were then transferred to a PVDF membrane using wet 

transfer. After transfer, membranes were blocked at room temperature for one hour in 5% 

BSA. Proteins were detected with ECL substrate and membranes were imaged using a 

ChemiDoc XRS Imaging System (Bio-Rad). Signal was quantified using ImageJ software. 

Primary antibodies used for western blotting were Arginase-1 (BD, 610708), IL-10 

(Abcam, ab133575), CCL18 (Abcam, ab300057), α-tubulin (Cell Signalling Technology, 

2144S), and β-Actin (Sigma-Aldrich, A5316), and secondary antibodies were Anti-rabbit 

(Cell Signalling Technology, 7074S) and Anti-mouse (Cell Signalling Technology, 

7076S). 
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Statistical Analysis 

Statistical analysis of data was performed using GraphPad Prism (Version 10). For 

comparisons between two groups, significance was determined using an unpaired two-

tailed t-test or Mann-Whitney test, based on normality. For more than three-groups, one-

way ANOVA with Tukey’s or Kruskal-Wallis post hoc testing was used, based on 

normality. Normality of the data was determined with a Shapiro-Wilk test. A p value of 

less than 0.05 was considered statistically significant.  

RESULTS 

Circulating Monocytes and Monocyte-Derived Macrophages in IPF Patient Blood 

and Lung Samples. 

To begin, we first substantiated the finding of increased monocyte count in IPF in our 

cohort. CD14+ monocytes were isolated from the blood of IPF patients and control subjects 

and cell count was obtained directly after. We found that monocyte quantity was increased 

in IPF patients compared to control subjects (Figure 1A). We also observed a negative 

correlation between monocyte count and forced vital capacity (FVC) in IPF patients 

(Figure 1B), which is accordance with the finding that monocyte count is linked to poor 

outcomes in IPF. Next, in order to verify the presence of monocyte-derived macrophages 

in the lung, we examined CD14 gene expression in various lung cell populations using a 

published scRNAseq dataset on lung explant tissue removed at the time of surgery from 

IPF and non-fibrotic controls (IPF Cell Atlas, GSE135893[16]). CD14 expression was 

found to be highest in monocytes, macrophages, and proliferating macrophages (Figure 

1C), supporting that these cell populations in the lung are derived from CD14 circulating 
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cells. Further supporting the  presence of monocyte-derived macrophages in the IPF lung, 

we performed dual RNAscope in-situ hybridization to show colocalization of MAFB 

(monocytic transcription factor) and CD68 (macrophage marker) (Figure 1D) in the i. 

airway and ii. interstitium of IPF FFPE lung tissue. Additionally, supporting profibrotic 

programming of MAFB+ cells, triplex in-situ hybridization showed colocalization of 

MAFB (monocytic transcription factor), CD163 (alternatively activated macrophage 

marker) and MRC1 (gene name for CD206, alternatively activated macrophage marker) in 

IPF lung tissue (Figure 1E). Overall, these results demonstrate increase of CD14 monocytes 

in IPF in our cohort, and support the presence of monocyte-derived profibrotic 

macrophages in the lung. 

Macrophages Expressing Markers of Profibrotic Alternative Activation are 

Increased in IPF Lung Tissue. 

Next, we performed a quantitative assessment of profibrotic macrophages in IPF lung. 

Using a tissue microarray containing surgical lung biopsy tissue from IPF patients (n=24) 

and controls (n=17) (tissue microarray 1), we performed immunohistochemical staining for 

established profibrotic macrophage markers CD206 and CD163. After quantifying full 

slide images with HALO image analysis software, we found that both CD206 (Figure 

2A,B) and CD163 (Figure 2C,D) staining was increased IPF lung tissue (in both fibrotic 

and non-fibrotic areas) compared to control tissue. A second tissue microarray was 

constructed using FFPE lung biopsies from multiple IPF patients to be used for analyses 

with clinical parameters (n=55) (tissue microarray 2). Using this TMA, we performed 

correlational analyses of FVC with macrophage immunohistochemistry, and found that 
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FVC is negatively correlated with both CD206 (Figure 2E) and CD163 (Figure 2F). 

Notably, no active smokers were included in correlational analyses as smoking has been 

shown to markedly elevate pulmonary macrophage number [21], thus acting as a 

confounding variable. Additionally, using in-situ hybridization, colocalization of CCL18 

and CD68 mRNA transcripts were observed in IPF lung, supporting that macrophages have 

an alternatively activated phenotype in IPF (Figure 2G). Adding to this, CCL18 gene 

expression was shown to be elevated in RNA isolated from FFPE tissue punches taken 

from IPF lung (Figure 2H), compared to control. 

Transcriptomic Analysis Reveals Differentially Expressed Genes in IPF Monocytes 

Which Show General Similarities to Features of Macrophage Activation and Fibrosis.  

To elucidate the widely unknown characteristics of monocytes in IPF, we performed bulk 

RNA sequencing on RNA isolated from IPF and control monocytes. Differential expression 

analysis yielded 474 significantly differentially expressed (DE) genes (Figure 3A). 

Recently, Wang et al. published a comprehensive list of  “Known Pulmonary Fibrosis 

Genes” that includes human genes associated with lung fibrosis from multiple published 

datasets [22]. To first obtain an overall understanding potential fibrosis-related properties 

of the monocytes, we compared the 474 DE genes in our dataset to the published list and 

found an overlap of 104 genes (Figure 3B). Shared genes (from upregulated genes in our 

dataset) are listed. Gene names that are bolded have been reported to be associated with 

macrophage polarization, while those highlighted in blue have been reported to be involved 

in monocyte recruitment and monocyte-to-macrophage differentiation. Additionally, 

highly DE genes in our dataset that overlap with this list are marked on the volcano plot in 
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Figure 3A. Overall, this suggests that the transcriptomic characteristics of monocytes in 

IPF are related to known fibrotic processes. Subsequently, to further and more precisely 

investigate the potential similarities of our dataset to known IPF-related features, we 

performed gene set enrichment analysis (GSEA) to compare our dataset to published IPF 

datasets. To examine the similarities of our data with known properties of circulating cells 

in IPF, and to gauge if monocytes may have biomarker potential in IPF, we used a published 

52-gene signature in peripheral blood mononuclear cells (PBMC) for outcome prediction 

in IPF (GSE28042 [8]). GSEA revealed significant enrichment; specifically, genes from 

the published PBMC dataset related to longer transplant-free survival were enriched in 

donors in our dataset (and thus downregulated in IPF), which supports similarities between 

the two datasets (Figure 3C). As it is believed that monocytes contribute to cell populations 

in the lung in IPF, we next aimed to evaluate potential similarities with IPF lung tissue. 

Using two published datasets on gene expression signatures in lung tissue from IPF patients 

(GSE53845 and GSE92592 [23,24]), we found that genes upregulated in our donors (and 

thus downregulated in IPF samples) were found to be enriched in the controls of the 

published studies (Figure 3D). This further substantiates the potential fibrosis-related 

transcriptomic features of monocytes in IPF.  

Patient Clusters in Our Dataset Show Association with Features Related to Disease 

Severity, Including Lung Function and Transplant-Free Survival.  

To further visualize our data, we created a heatmap of DE genes (fold change  ≥ 1.5), which 

displayed three clusters, as determined by hierarchical clustering (Figure 4A). Principal 

component analysis showed separation of these clusters, primarily along the PC1 axis 
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(Figure 4B). To assess associations between the transcriptomic characteristics of 

monocytes and disease severity, we then classified the patients in our dataset into categories 

of lung function severity based on FVC and DLCO, according to the literature [25,26]. We 

examined the stratification of these severity categories across the three clusters and found 

that composition of each cluster seemed to gradually increase in overall lung function 

severity (from 1 to 3, with 3 having the highest percentage of severe) (Figure 4C). We also 

found a gradual increase in the percentage death or transplant (assessed in three-year period 

following study visit) across the clusters. The Fisher Exact test was used to demonstrate 

significant differences in the composition of the clusters (Figure 4D). Overall, this 

demonstrates the potential relevance of monocyte profile and phenotype to disease 

outcomes in IPF.  

Gene Ontology Enrichment, Pathway, and Gene Set Enrichment Analysis Reveal 

Downregulation in Metabolism and Mitochondrial Function in IPF Monocytes.  

Building on the findings of association to features of fibrosis and clinical measures, we then 

aimed to further investigate the specific dysregulated processes and pathways that define 

monocyte profile in IPF. Comparing IPF to control subjects, we first performed Gene 

Ontology (GO) analysis. This yielded the discovery of multiple enriched processes, with 

the highest amount relating to Metabolic, biosynthetic, and catabolic processes (Figure 

5A). When examining the top 15 enriched GO processes, we also observed that all except 

one process were downregulated, and a large proportion of processes were related to 

metabolism (yellow) and some to cellular translation (green) (Figure 5B). Similarly, 

pathway analysis revealed downregulation of processes related to metabolism and 
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translation, as well as upregulation of immune activation (red) (Figure 5C). As these 

findings were indicative of metabolic dysregulation, to further explore perturbed processes 

related to metabolism in the data, we performed a gene set enrichment analysis. This 

revealed downregulation of multiple processes related to mitochondrial oxidative 

phosphorylation (OXPHOS) in monocytes in IPF (Figure 5D). Interestingly, this aligns 

with the finding that pyruvate dehydrogenase kinase 4 (PDK4), a gatekeeper kinase that 

inhibits OXPHOS, is the most highly upregulated protein-coding DE gene in our dataset 

(Figure 5E). To further assess the potential suitability of PDK4 as a target in IPF 

monocytes, we examined its overall expression in lung cell populations using the IPF Cell 

Atlas (GSE136831 [17]). This confirmed PDK4 expression in macrophage and alveolar 

macrophage cell populations in the lung (Figure 5F), as well as increased expression in 

IPF versus control (Figure 5G). In summary, this suggests aberrant mitochondrial function 

and metabolism as a possible phenotypic feature of monocytes in IPF. 

Cluster Comparison with GSEA Reveals Multiple Differentially Regulated Processes 

in Most Severe Cluster, Including Downregulated Mitochondrial Function and 

Upregulated Fibrosis-Related Processes. 

After investigating the differential characteristics between IPF and control in Figure 5, we 

then proceeded to analyze the differences between the IPF patients in each cluster in our 

dataset. Using GSEA on the DE genes between each cluster comparison, we found 

numerous differentially regulated processes between clusters (Figure 6A). Information for 

networking modules and corresponding node numbers are included in Supplementary 

Spreadsheet 1. Comparisons with cluster 3, as the “most severe cluster” based on Figure 
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4, had the highest amount of regulated processes, including multiple upregulated processes 

related to fibrosis, such as wound healing, cell adhesion and ECM, and EMT (Figure 6B). 

Processes related to monocyte recruitment and activation, including monocyte infiltration 

and differentiation, and immune response, were also found to be upregulated. Lastly, and 

notably relating to the aberrant mitochondrial findings reported in Figure 5, processes 

related to mitochondrial function were downregulated. Adding to our previous results, we 

examined the expression of PDK4 across clusters, and observed that expression gradually 

increases from cluster 1 to 3 (Figure 6C). Taken together, these results further substantiate 

aberrant mitochondrial/metabolic function in IPF monocytes. 

Effect of PDK Inhibition with DCA on Macrophage Polarization in Monocytic 

Macrophage Cell Lines. 

Given our findings thus far supporting evidence for monocyte-derived profibrotic 

macrophages in IPF lung, aberrant metabolism and decreased OXPHOS, and the link of 

PDK4 as a highly upregulated gene in the IPF monocytes that is a master OXPHOS 

regulator, we aimed to conduct mechanistic studies targeting this access to investigate the 

potential effects on profibrotic macrophage polarization. PDK4 is one of four isoforms of 

pyruvate dehydrogenase kinase, which has been reported to have the highest kinase activity 

[27], however all isoforms inhibit OXPHOS. We employed the use of dicholoroacetate 

(DCA) a well-established pan-PDK inhibitor and orphan drug that has passed human 

toxicity trials [28], to study this axis. Using our polarization cocktail (PC) consisting of IL-

4, IL-13 and IL-6, which we have shown induces hyperpolarization of macrophages to a 

profibrotic phenotype [19], we investigated the effects of DCA treatment, and thus 
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OXPHOS induction, on macrophage polarization in RAW 264.7 (murine) and THP-1 

(human) cells. We first tested a range of DCA concentrations for effects on viability and 

determined that concentrations of up to 25mM are suitable for intervention (Figure 7A), 

which is in-line with previous studies [29,30]. DCA treatment was shown to decrease 

Arginase activity (Figure 7B), as well as IL-10 secretion (Figure 7C), in a dose-dependent 

manner. These findings were corroborated with Arginase-1 and IL-10 protein assessment 

via western blotting (Figure 7 D-F). In THP-1-derived macrophages, treatment with DCA 

resulted in decreased CCL18, which is a known human profibrotic macrophage marker in 

IPF [31], in both the supernatant and cell lysates (Figure 7 G,H). Overall, these results 

support that intervention of the PDK axis interferes with PC-mediated profibrotic 

macrophage programming in vitro, and thus the overall involvement of metabolically 

dysfunctional monocytes and macrophages in fibrosis-related processes.  

Effect of PDK Inhibition with DCA on Macrophage Polarization in Precision-Cut 

Lung Slices. 

Lastly, to conduct mechanistic studies using a system that is translational to lung biology, 

we employed our ex vivo precision-cut lung slice (PCLS) system for studying pulmonary 

macrophage polarization (Vierhout et al., [18]). It is well-known that macrophages are 

incredibly plastic cells with an extensive phenotypic range that cannot be adequately 

captured in traditional two-dimensional in vitro culture. Thus, we extended our mechanistic 

studies to PCLS to gain insight on the effects of PDK inhibition on profibrotic macrophage 

polarization the lung. We generated PCLS from murine lungs and treated them with the PC 

(IL-4, IL-13 and IL-6) to induce profibrotic macrophage polarization. After testing effects 
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on viability up to a DCA concentration of 25mM (Figure 8A), we found a dose-dependent 

decrease of Arginase activity with DCA treatment in activity in polarized PCLS (Figure 

8B). In the supernatant, it was observed that YM1 secretion was decreased with all 

concentrations of DCA treatment (Figure 8C). Using quantitative histological assessments 

on tissue microarrays containing FFPE PCLS, it was observed that DCA treatment 

decreased Arginase-1 IHC in a dose-dependent manner (Figure 8D,E). Additionally, 

CD206 IHC was decreased with 25mM DCA (Figure 8F,G). Overall, these results support 

the mechanistic involvement of the PDK axis, and thus metabolic processes, in PC-

mediated polarization, as well as the contribution of this mechanism to profibrotic 

macrophage polarization in the lung overall. 
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DISCUSSION 

In this study we conduct transcriptomic profiling to unveil the characteristics of circulating 

monocytes in IPF, which were previously largely understudied. Consistent with the 

published literature, we show a significant increase in the quantity of monocytes in IPF [4–

7], as well as a negative correlation with forced vital capacity. We demonstrate that the 

discovered differentially expressed gene signature in IPF monocytes draws parallels with 

known pulmonary fibrosis genes, monocyte recruitment, monocyte to macrophage 

differentiation, and macrophage polarization. Through GSEA, we also show similarities 

between our monocyte dataset and published IPF datasets from both PBMC and lung tissue 

[8,23,24]. Cluster analysis of the data separated the study subjects into three clusters, which 

were seemingly associated with lung function severity. Cluster 3 had the highest percent 

composition of severe disease (based on FVC, DLCO, and death/transplant), followed by 

Cluster 2, and then Cluster 1. Overall, this suggests that at the transcriptomic level, IPF 

monocytes carry known characteristics of disease, which may also be of clinical relevance. 

This provides supportive evidence for the proposed biomarker potential of monocytes in 

IPF. It also suggests that monocytes are involved in underlying processes driving disease 

in IPF, which could potentially constitute novel interventional avenues.   

Through analyses of differential pathways and processes in the IPF vs. control monocytes, 

as well comparison of the IPF monocytes across clusters, we uncovered evidence for 

metabolic and mitochondrial dysregulation. Interestingly, there is growing interest in 

mitochondrial dysfunction in IPF, which is suggested to be a driving factor of disease 

[32,33]. Recently, it was shown that mitochondrial transfer is an effective treatment for 
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pulmonary fibrosis, as this led to decreased fibrosis in the murine bleomycin model as well 

as a humanized spheroid model [34]. Furthermore, and relevant to our study, it has been 

found that dysmorphic mitochondria accumulate in alveolar macrophages in IPF patients 

[35]. These macrophages also displayed decreased capacity for OXPHOS, similar to what 

we observed in our monocytes. Adding to this further, metabolic investigation of 

profibrotic alveolar macrophages in murine pulmonary fibrosis models showed increased 

glycolytic programming, but no dependence on OXPHOS [36]. It has also been previously 

reported that recruited alveolar macrophages, which are derived from circulating 

monocytes, have an increased glycolytic capacity, which is in contrast to resident alveolar 

macrophages which rely on TCA cycle/OXPHOS [37]. Taken together, this evidence 

supports that monocyte-derived macrophages in the lung have a similar metabolic 

phenotype to what was found in our circulating monocytes. This suggests that monocytes 

retain these aberrant features after transitioning into macrophages in the lung, plausibly 

contributing to processes that drive disease. Previous studies have also shown that CD64 is 

upregulated in monocytes in IPF and correlated with extent of fibrosis, and we also see 

significant upregulation of this marker in our cohort [88]. Further substantiating the 

recruitment of monocytes in IPF, CCR2, which is a receptor that is critical for monocyte 

trafficking, is among the top 15 differentially expressed genes in IPF in our dataset. It is 

well-established that macrophages undergo metabolic reprogramming to adapt their 

internal machinery to achieve different activation and polarization states [38,39]. Given the 

potential evidence for retention of monocytic aberrant features from the circulation to the 

lung, it is plausible to postulate that these cells are primed for profibrotic behaviour prior 
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to entering the lung tissue. Further studies employing lineage tracing strategies will need 

to be done to validate such behaviour in monocyte-derived alveolar macrophages in 

fibrosis, as well as elucidate contribution of aberrant monocytes to interstitial macrophage 

populations in the lung, which are generally much less studied than the alveolar 

compartment [40].  

PDK4 has previously been reported as a “targetable kinase” in IPF, with PDK4 IHC-stained 

positive alveolar macrophages reported in the IPF lung [41]. This is consistent with the 

results we found for PDK4 expression using the IPF Cell Atlas, as well as our monocyte 

data. In monocytes specifically, increased PDK4 expression has been reported in multiple 

cancers, as well as ARDS and coronary artery disease, and is linked to poor outcomes [42–

46]. Many cancer cells exhibit a phenomenon termed the Warburg effect, which is a shift 

from OXPHOS to glycolysis even in the presence of oxygen [47]. This is associated with 

PDK, as the master gatekeeper between OXPHOS and glycolysis [47]. This altered 

metabolism contributes to cellular strategies to adapt and evade apoptosis. Therefore, 

resistance to apoptosis as a result of altered metabolic programming may also be a 

contributing factor for the increased monocyte counts observed in IPF. 

In our study, we targeted the PDK axis with DCA, which is a well-established pan-PDK 

inhibitor and an orphan drug that has passed human toxicity trials [28]. There are four 

isoforms of PDK, with PDK4 reported to have the highest kinase activity, however all 

isoforms are known to inhibit OXPHOS [27]. Therefore, we decided to target the PDK axis 

as a whole to investigate the potential mechanistic effects on profibrotic macrophage 

polarization. With DCA treatment, we observed decreases in various profibrotic 
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macrophage markers in vitro, including Arginase-1, IL-10, and CCL18. Interestingly, this 

is in contrast with the published literature that has historically reported increased OXPHOS 

in “M2” macrophages [48]. However, these studies primarily use IL-4 and IL-13 

stimulation, while our polarization cocktail also introduced IL-6 to this combination. IL-6 

is a pleiotropic cytokine with both pro-inflammatory and pro-fibrotic capacities, which our 

group has also shown to not only hyperpolarize macrophages in vitro, but bolster 

profibrotic effects in vivo as well [19,49]. This is in accordance with findings in IPF that 

have shown accompaniment of IL-4 and IL-13 with inflammatory cytokines [50,51], 

supporting that addition of a proinflammatory component to our polarization cocktail 

would effectuate a phenotype that is more representative of IPF. Similar to the diverse and 

transient nature of immune activation of macrophages in IPF, which have been shown to 

have a mix of anti- and proinflammatory markers, it is likely that metabolic programming 

exists on a spectrum as well in profibrotic macrophages, giving them remarkable plasticity 

and adaptability. 

Intriguingly, DCA has been previously investigated for the treatment of pulmonary fibrosis 

in a murine bleomycin model [52]. When administered through drinking water, DCA, and 

thus promotion of OXPHOS, led to a decrease in fibrosis, myofibroblast activation, and 

ECM deposition in the lung [52]. Study assessments were primarily focused on fibroblasts, 

and thus, further investigations on the macrophage-specific effects of DCA in in vivo 

pulmonary fibrosis models are required. In our ex vivo mechanistic evaluations, we 

observed decreased markers of profibrotic macrophage polarization with DCA treatment 

in our PCLS model for macrophage programming. While PCLS are disconnected from the 
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influence of the circulating immune system, monocytes can still enter the lung and give rise 

to alveolar macrophage populations at normal physiological state [53], and so it is plausible 

that some of the alveolar macrophages in the PCLS have monocytic origins. We have 

previously reported the capability of our PCLS system to induce profibrotic polarization in 

both alveolar and interstitial macrophages [18]. To better understand the interplay between 

metabolic and immune activation in ex vivo lung macrophages, further phenotypic analysis 

of macrophages following by DCA treatment, such as through high-content imaging using 

IBEX [18,54,55], would be useful to conduct in future studies. Additionally, both THP-1 

and RAW 264.7 cell lines are leukemic cell lines, and so would naturally display a different 

metabolic profile than primary macrophages. Thus, such intervention studies should also 

be performed in primary cells. 

Lastly, the transcriptomic observations in this work have set the stage for a follow-up study 

to conduct functional assessments of the aberrant metabolic phenotype we observed. This 

can be achieved using extracellular flux analysis, such as with an Agilent Seahorse XF 

Analyzer, to directly measure mitochondrial respiration and glycolysis using freshly-

isolated live cells. While our transcriptomic profile did show downregulation of gene 

expression associated with OXPHOS and mitochondrial function, we cannot definitively 

conclude that glycolytic programming was enhanced in the IPF monocytes to compensate 

for this shift. Therefore, metabolic functional assessments would be useful for providing 

functional metabolic insight through measuring glycolysis, as well as mitochondrial 

respiration. Functional assessments on DCA-treated cells would also be critical for 

demonstrating that PDK-inhibition by this drug is driving the phenotypic change we see, 
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which we cannot currently definitively claim is not, at least in part, also due to off-target 

effects. These studies should be conducted in an external cohort of IPF patients, and be 

compared to monocytes from age-matched controls, for which availability was limited in 

our study. The older age of the IPF compared to the control subjects is a limitation of our 

study, and may be implicated in some of the transcriptional factors we observe. Further 

studies on larger, age-matched populations are required. 

In summary, our results highlight district characteristics in monocytes in IPF, which may 

be related to underlying disease-driving process in IPF. This work unveils novel metabolic 

target in monocytes in IPF, which may contribute to macrophage profibrotic activity in the 

lung. Mechanistic studies reveal that altering metabolic state influences profibrotic 

macrophage polarization ex vivo and in vitro, overall offering insight into alternative 

activation states of these cells in IPF.  
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Figure 1: Circulating Monocytes and Monocyte-Derived Macrophages in IPF Patient 

Blood and Lung Samples.  

A: CD14+ monocyte quantity in blood isolated from IPF and control patients, expressed as 

monocytes per mL blood. *  indicates P < 0.05, data are displayed as mean ± S.E.M. B: 

Correlation of FVC (% predicted) with monocyte count in IPF patient samples (Pearson’s 

correlation). C: CD14 expression in lung cell populations, determined from scRNAseq 

analysis on lung explant tissue removed at the time of surgery from IPF (n=12) and non-

fibrotic controls (n=10) using the IPF Cell Atlas (GSE135893 [16]). D: Dual RNAscope 

in-situ hybridization showing colocalization of MAFB (monocytic transcription factor) and 

CD68 (macrophage marker) in the i. airway and ii. interstitium of IPF lung tissue. E: Triple 

RNAscope in-situ hybridization showing colocalization of MAFB (monocytic transcription 

factor), CD163 (alternatively activated macrophage marker), and MRC1 (gene name for 

CD206, alternatively activated macrophage marker) in IPF lung tissue.  
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Figure 2: Macrophages Expressing Markers of Profibrotic Alternative Activation are 

Increased in IPF Lung Tissue. 

A, B: CD206  and C,D: CD163 immunohistochemical staining in FFPE surgical lung 

biopsies from IPF patients (n=24) and non-fibrotic control subjects (n=17) (tissue 

microarray 1), quantified with HALO image analysis platform. Data are displayed as mean 

± S.E.M. E, F: Correlation of FVC (% predicted) with CD206 and CD163 

immunohistochemical staining in IPF patients (n=55; tissue microarray 2; Pearson’s 

correlation). G: Dual RNAscope in-situ hybridization exhibiting colocalization of CD68 

and CCL18 mRNA transcripts in IPF lung. H: CCL18 mRNA expression from FFPE tissue 

cores taken from in IPF (n=11) and control (n=11) surgical lung biopsies, displayed as box 

and whisker plot. *  indicates P < 0.05; ** indicates P < 0.01.  
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Figure 3: Transcriptomic Analysis Reveals Differentially Expressed Genes in IPF 

Monocytes Which Show General Similarities to Features of Macrophage Activation 

and Fibrosis.  

A: Volcano plot displaying differentially expressed (DE) genes in monocytes from IPF 

versus control subjects. 474 genes were found to be significantly differentially expressed. 

Marked genes in plot overlap with known list of pulmonary fibrosis genes published by 

Wang et al. (2020) [22]. B: Venn diagram comparing DE genes in our dataset (474) to a 

published list of known pulmonary fibrosis genes (3278) [22]. Shared genes (from 

upregulated genes in our dataset) are listed. Gene names that are bolded have been reported 

to be associated with macrophage polarization, while those highlighted in blue have been 

reported to be involved in monocyte recruitment and monocyte-to-macrophage 

differentiation. C: Gene set enrichment analysis (GSEA) of our dataset and a published 52-

gene signature in peripheral blood mononuclear cells (PBMC) for outcome prediction in 

IPF [8]. Specifically, genes from the published dataset related to longer transplant-free 

survival were enriched in donors in our dataset (and thus downregulated in IPF). D: GSEA 

of our dataset and two published datasets on gene expression signatures in lung tissue from 

IPF patients [23,24]. Specifically, genes upregulated in our donors (and thus downregulated 

in IPF samples) were found to be enriched in the controls of the published IPF lung datasets.  
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Figure 4: Patient Clusters in Our Dataset Show Association with Features Related to 

Disease Severity, Including Lung Function and Transplant-Free Survival.  

A: Heatmap of differentially expressed genes (FC ≥ 1.5) arranged by patient clusters 

(Cluster 1- left, Cluster 2- middle, Cluster 3- right). Group (IPF or control) and FVC and 

DLCO categories are marked above the plot, with lung function ranges defining each 

category of severity for FVC and DLCO denoted to the right of the heatmap. B: Principal 

component analysis plot displaying separation of clusters. C: Pie charts depicting 

composition of each cluster based on categories of FVC and DLCO. Percentage of death 

or transplant (Tx) in the three-year period following study sample collection for each cluster 

is included in red. D: Table displaying stratification of subjects in each cluster based on 

lung function category. The Fisher Exact test was used to demonstrate significant 

differences in the composition of the clusters. 
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Figure 5: Gene Ontology Enrichment, Pathway, and Gene Set Enrichment Analysis 

Reveal Downregulation in Metabolism and Mitochondrial Function in IPF 

Monocytes.  

A: Category breakdown of all Gene Ontology Processes that were found to be enriched in 

our dataset (IPF vs. control). Percentage composition of the total number of enriched 

processes is denoted above each bar. B: Top 15 Gene Ontology (GO) Biological Processes 

that were enriched in IPF versus control monocytes. Red bars represent upregulated 

processes, while blue bars represent downregulated processes. Processes related to 

metabolism are marked in yellow; processes related to cellular translation mechanisms are 

marked in green. C: All pathways that were found to be enriched in our dataset. Red bars 

represent upregulated pathways, while blue bars represent downregulated pathways. 

Processes related to immune system activation are marked in red; processes related to 

metabolism are marked in yellow; processes related to cellular translation mechanisms are 

marked in green.  D: Network of Gene Set Enrichment Analysis (GSEA) for metabolism 

and mitochondria modules (found to be downregulated in IPF). Node size represents 

normalized enrichment score, while node colour intensity represents adjusted p-value. E: 

Violin plot of expression of PDK4 in our monocyte dataset (most highly upregulated 

protein-coding DE gene in our dataset). F: Violin plot of overall expression of PDK4 in 

cell populations in lung tissue from IPF patients (n=32) and non-fibrotic controls (n=28) 

determined by scRNAseq (IPF Cell Atlas, GSE136831 [17]). Red arrows point to 

macrophage and alveolar macrophage populations. G: PDK4 macrophage and alveolar 
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macrophage expression in IPF and control subjects (Cell Atlas, subset of plot for 

GSE136831 [17]). 
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Figure 6: Cluster Comparison with GSEA Reveals Multiple Differentially Regulated 

Processes in Most Severe Cluster, Including Downregulated Mitochondrial Function 

and Upregulated Fibrosis-Related Processes. 

A: GSEA network displaying all differentially regulated processes found through 

comparison of cluster transcriptomic profiles. Each node is marked with a number 

corresponding to the module it belongs to. Subnetworks of modules are labelled and colour-

coded. Information for modules and corresponding node numbers are included in 

Supplementary Spreadsheet 1. B: Regulation (upregulation-red, downregulation-green) of 

network processes for each cluster pair comparison. C: PDK4 expression stratified by 

cluster. 
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Figure 7: Effect of PDK Inhibition with DCA on Macrophage Polarization in 

Monocytic Macrophage Cell Lines. RAW 264.7 macrophages were polarized with IL-4, 

IL-6, and IL-13, and treated with DCA for 24 hours. A: Viability was measured in RAW 

264.7 cells with WST-1 assay, displayed as percentage of signal in untreated condition. B: 

Arginase activity expressed as mM Urea in cell lysates. C: Secreted IL-10 protein levels in 

RAW 264.7 supernatant measured via ELISA. D: Western blot images and subsequent 

quantification of E: Arginase-1 and F: IL-10 protein expression levels. 

THP-1 cells were differentiated into macrophages using PMA, and then treated with a 

polarization cocktail (PC; IL-4, IL-6, and IL-13) for 72 hours. Cells were then treated with 

DCA for 72 hours. G: Secreted CCL-18 protein levels in THP-1 supernatant measured via 

ELISA. H: CCL18 protein expression levels measured with Western Blot. *,#  indicates P 

< 0.05; **,## indicates P < 0.01; ***,### indicates P < 0.001; and ****,#### indicates P < 

0.001; where * represents a difference between the CC and PC control samples, and # 

represents a difference between the treatment group and the PC stimulated control. N=2-3 

technical replicates per condition. Data are displayed as mean ± S.E.M.  
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Figure 8: Effect of PDK Inhibition with DCA on Macrophage Polarization in 

Precision-Cut Lung Slices (PCLS).  

A: Tissue viability measured in PCLS with WST-1 assay, expressed as percentage of signal 

in untreated control. B: Arginase activity measured as mM Urea in tissue homogenates. C: 

Secreted YM1 protein levels in PCLS supernatant measured via ELISA. D,E: 

Quantification of Arginase-1 immunohistochemical staining in PCLS (expressed as % 

positive area), performed with HALO image analysis software. F,G: Quantification of 

CD206 immunohistochemical staining in PCLS (expressed as % positive area), performed 

with HALO image analysis software.. *,#  indicates P < 0.05; **,## indicates P < 0.01; 

***,### indicates P < 0.001; and ****,#### indicates P < 0.001; where * represents a 

difference between the unstimulated and stimulated controls, and # represents a difference 

between the treatment group and the stimulated control. N=3 mice, 3-4 slices per condition. 

Data are displayed as mean ± S.E.M.  
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SUPPLEMENTAL INFORMATION 

Supplementary Figure 1: Arginase-1 Full Length Blot for Figure 7D-E
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 Supplementary Figure 2: IL-10 Full Length Blot for Figure 7D,F
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Supplementary Figure 3: α-Tubulin Full Length Blot for Figure 7D-F
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Supplementary Figure 4: CCL18 Full Length Blot for Figure 7H-I
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Supplementary Figure 5: β-Actin Full Length Blot for Figure 7H-I
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Supplementary Table 1: Demographic Characteristics for Tissue Microarrays 
Characteristic IPF (TMA 1) IPF (TMA 2) 

Sex - Male (%) 70.8 66.7 
Age (years) 59.0 ± 10.1 63.1 ± 10.3 

FVC (% predicted) 62.9 ± 23.2 62.7 ± 17.5 
FEV1 (% predicted) 68.1 ± 16.5 67 ± 18.6 
DLCO (% predicted) 42.8 ± 10.9 45.6 ± 16 

Demographic information for the control group subjects was not available. 

Supplementary Table 2: Demographic Characteristics for IPF Monocyte Subjects 

 Characteristic IPF  
 Sex - Male (%) 89.8  

 Age (years) 74.2 ± 1.0  
 FVC (% predicted) 72.0 ± 2.5  
 FEV1 (% predicted) 80.7 ± 2.6  
 DLCO (% predicted) 45.7 ± 2.6  
    

Supplementary Table 3: Demographic Characteristics for Donor Monocyte Subjects 
Characteristic Donor 

Sex - Male (%) 80 

Age (years) 44.8 ± 4.5 
FVC (% predicted) 106.0 ± 5.0  

FEV1 (% predicted) 106.2 ± 6.0 
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In this final chapter, the core concepts presented throughout the thesis will be 

articulated. The results and implications for each chapter have been comprehensively 

discussed in each of the respective chapter sections. Chapter 6 will consolidate this in 

context of the thesis as a whole, and illustrate the synergistic interplay of the findings 

between the chapters, as well as intertwine opportunities for future research. 

Additionally, the relationship of these findings to the current understanding and 

paradigms in the literature will be discussed, as well as the implications of the 

knowledge gained through the work completed in this thesis.  

Cumulative Interplay and Significance of Findings 

The principal objective of this thesis was to investigate the aberrant mechanisms 

governing the profibrotic activation of macrophages in the context of pulmonary 

fibrosis, and ultimately interfere with their programming to hamper fibrogenesis in the 

lung. Fibrosis and aberrant wound healing are implicated in the pathogenesis of a 

multitude of conditions across various organ systems in the body, including cancer, 

COVID-19 infection, endometriosis, inflammatory bowel disease, and fibrotic disease 

(including in the kidney, heart, lung, skin, tendons, and bone marrow). Fibrosis is a 

detrimental disease process and the involvement of extensive scarring can severely 

impair organ function, with approximately 45% of all deaths in the developed world 

being attributed to fibroproliferative disorders [1]. It is believed that similar cellular 

and molecular mechanisms mediate fibrosis across different organs [72], and so there 

is much to be learned by drawing inferences and applying knowledge from other 

fibrotic diseases. In Chapter 2, we focused on the fibrogenic mechanism of 
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macrophage-myofibroblast transition (MMT). MMT is a relatively new disease-

contributing process being explored in fibrosis, with the term being officially coined 

in 2014 by Nikolic-Paterson et al. to explain the finding of monocyte-derived 

macrophages transitioning into myofibroblasts and promoting kidney fibrosis in vivo 

[35]. Majority of the evidence for MMT is in the kidney, however given the potential 

for overlap between fibrotic disorders, as well as the shared importance of 

macrophages and myofibroblasts in these diseases, we decided to explore this concept 

in the context of the lung in IPF. We investigated evidence for MMT in lung tissue 

from IPF patients. Through mining of a scRNAseq dataset of lung tissue explants from 

IPF patients and controls, we demonstrated that a subset of cells in the lung that have 

myofibroblast features co-express markers of monocytic origin (ACTA2+MAFB+). 

Further, using our curated surgical lung biopsy biobank of lung tissue from IPF 

patients, our assessments showed that MAFB, ACTA2, and CD68 transcripts were 

expressed in the same cells, as well as localization of α-SMA and CD68 proteins in 

similar areas. Although numerous studies have reported critical evidence for 

macrophage myofibroblast crosstalk in the pathogenesis of lung fibrosis [29,73–76], 

there is little known about direct transition of monocytes/macrophages to 

myofibroblasts in lung fibrosis. To the best of our knowledge, this was the first report 

of MMT-specific investigation in human-derived samples in IPF. However, it is likely 

that evidence for this may have existed before the official establishment of the MMT 

term in 2014. Evidence for circulating fibrocytes in IPF, defined as blood cells 

expressing CD45 and collagen-1, as well as association of these cells with poor 
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prognosis has been demonstrated [40]. Although pre-MMT establishment, it is 

plausible that these cells could represent a population of monocyte-derived 

mesenchymal-like cells undergoing MMT, further supporting the presence of this 

phenotype and its involvement in disease progression in IPF. 

In Chapter 3, we aimed to develop a novel system that could be used for the 

translational evaluation of profibrotic macrophages in the lung. We established an ex 

vivo model for profibrotic programming of lung macrophages using precision-cut lung 

slices (PCLS), which offers the advantages of increased complexity, conservation of 

lung microenvironment and architecture, and moderate throughput of assessments – 

with the novel introduction of a quantitative histological approach for studying PCLS 

using FFPE tissue microarrays. Although previous studies have demonstrated 

successful modelling of fibrosis using PCLS [70], as well as conserved presence of 

macrophages in the slices [77], such a system had not been established for the specific 

evaluation of profibrotic macrophages. In our work, we show that multiple measurable 

features of profibrotic macrophage programming, including arginase enzyme activity, 

protein expression, soluble secretions, and histological markers, were induced with 

treatment of our polarization cocktail. Further substantiating the fibrotic properties of 

this model, we demonstrate upregulation of features related to fibrosis, including α-

SMA expression, soluble collagen secretion, and ECM gene expression.  Furthermore, 

through the development and optimization of a protocol for high-content 

immunostaining and cellular phenotyping using IBEX, which we describe in detail in 

Chapter 4, we show the ability to determine specific macrophage phenotype in our 
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PCLS. Using a variety of markers, we determine that both alveolar and interstitial 

macrophages undergo profibrotic polarization in our system. Perhaps most notably, 

through high-content phenotyping we also show that there is an increase in our model 

of α-SMA+ cells that co-express the panel of markers we used to define profibrotic 

macrophages (CD45+CD68+CD11c+Arg1+CD206+). In connection with Chapter 2, 

this finding suggests that our PCLS system may also be a suitable model for studying 

features and mechanisms of MMT in the lung. Further investigation is required to 

examine the properties and behaviours of these cells. Overall, this model provides a 

suitable screening tool for a variety of compounds and mechanisms of interest related 

to profibrotic macrophages in the lung, including MMT. 

In Chapter 5, we uncover differential transcriptomic features of monocytes in IPF, as 

well as potential association of monocytic attributes with features related to disease 

severity. Specifically, we identified an aberrant metabolic profile in IPF characterized 

by decreased mitochondrial function and OXPHOS. We then applied this information 

to delve into mechanistic studies on the contribution of the identified aberrant features 

to profibrotic macrophage polarization, using macrophage cultures and our developed 

PCLS polarization system. Coincidentally, some of the first organ slice studies 

reported in the 1920’s were conducted by Warburg (who discovered the Warburg 

effect) to study metabolism [87]. These findings set the stage for further metabolic 

studies on IPF monocytes, especially assessment of metabolic function using 

extracellular flux analysis. In our study we also performed cluster analysis, and show 

that cluster composition is seemingly related to severity of lung function. Interestingly, 
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when examining the differences of IPF patients between clusters with a GSEA 

network, we see that a number of features are upregulated in the more severe clusters. 

Expectedly, we observed traits for monocyte activation, including monocyte 

infiltration and differentiation and immune response. Furthermore, we see 

upregulation of fibrosis-related features including wound healing response and 

remodelling of collagen and ECM, and interestingly, in the system development 

module, we see upregulation of nodes “actin mediated cell contraction”, “smooth 

muscle contraction” and “mesenchymal cell differentiation”. This could signify 

potential MMT in these cells, as a cornerstone functional trait of true α-SMA+ 

myofibroblasts is the ability to contract [78]. This is a prospective area of interest for 

future studies, where functional assessments can be conducted to ultimately determine 

the presence of MMT in these cells. Nonetheless, these findings support a profibrotic 

phenotype of monocytes in IPF. 

A Constellation for Biologically-Translational Research 

One of the mainstays of this thesis was implementing a workflow that could be used 

for translational research in IPF. Given the progressive, fatal, and incurable nature of 

IPF, novel advancements in disease research are urgently required. It is critical that 

researchers continue to implement innovative strategies and explore novel avenues, 

contributing to the discovery of promising disease targets and therapies for treatment 

of IPF. However, the study of IPF presents several challenges. The observed 

complexity and heterogeneity of the disease have led clinicians and researchers to 

believe that IPF may constitute a group of disorders, which may contribute to the 
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explanation of the prevalence of failed clinical trials for treatment of IPF [79]. This 

also significantly adds to the challenge of modelling pulmonary fibrosis in research 

settings, as the drastic heterogeneity observed in patients and overall lack of 

understanding about the disease means that research models likely only encapsulate a 

limited fraction of the true disease manifestation. Compounding this, the lung is one 

of the body’s most complex organs [69], and so modelling and investigating 

pulmonary disorders in ways that are physiologically accurate can be highly 

cumbersome.  

In attempt to navigate these challenges in the context of studying profibrotic 

macrophage polarization in lung fibrosis, this PhD thesis implemented the following 

four components: 1. Development of a novel ex vivo model with increased biological 

relevance (PCLS model for macrophage polarization); 2. Patient-derived signatures 

(IPF monocyte transcriptomic study); 3. Insight into targets (identification of aberrant 

metabolic function in IPF monocytes); and 4. Mechanistic studies (effects of 

modulating these metabolic processes on macrophage polarization). This constellation 

allowed us to approach the investigation of profibrotic macrophage polarization in 

lung fibrosis from multiple angles. To maximize translational capacity of our research, 

we implemented a human-first approach where we collected and assessed samples 

from patients with IPF, and used these patient signatures to guide our discovery of 

potential targets of interest. After uncovering human-informed targets, we then 

conducted mechanistic studies using macrophage polarization models, including the 

novel complex PCLS model we developed, to assess potential disease-modifying 
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potential. This overall allowed us to identify and assess the implications of modulating 

processes that are shown to be present in true human disease, and are associated with 

patient clinical features. 

Hypoxia and Metabolic Perturbation – A Potential Source of Self-Perpetuation 

of Disease in IPF 

Hypoxia is a prominent feature in tissue fibrosis [80]. This is even more pronounced 

in fibrotic lung diseases, as scarring of the lung tissue impairs breathing and impedes 

oxygen diffusion. In the setting of low oxygen levels, normal homeostatic mechanisms 

cause cells to prioritize glycolysis as it is an anaerobic process of ATP production [81]. 

One of the mediating transcription factors of this switch is hypoxia-inducible factor-1 

(HIF-1), which is directly upstream of PDK, thus leading to PDK activation and 

inhibition of OXPHOS [80,82]. In IPF, it has been found that the increased lactate 

levels from glycolytic flux lower pH in the tissue, which results in increased TGF-β 

activation, HIF-1 stabilization, and increased lactate dehydrogenase 5 (LDH5), thus 

promoting fibroblast-to-myofibroblast differentiation [42]. This may establish a self-

perpetuating process of disease, as myofibroblasts are known to secrete ECM 

components and contribute to scarring in the lung, thus overall leading to decreased 

capacity for diffusion of oxygen. Lactate is also a known promoter of M2-like 

macrophage polarization, which may further contribute to this landscape [83]. 

Although it is believed that the Warburg effect, which involves a switch from 

OXPHOS to glycolysis even in the presence of adequate oxygen supply, drives 

metabolic dysregulation, hypoxic environments also naturally contribute to a 
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metabolic shift. Synergy of these processes may promote pathologic adaptation of cells 

to survive in hypoxic environments, effectuating a positive feedback loop that leads to 

a sustained suppression of OXPHOS in fibrotic lung disease. 

Metabolically-Driven Expansion of Monocytes  

Several studies, including our own, have exhibited that monocyte count is increased 

in IPF [31–34]. However, reasons for this expansion are unknown and although 

monocyte count predicts poor disease outcomes, it is not clear how the increased 

quantity is related to pathologic processes. Apoptosis is a programmed cell death 

process that eliminates cells to maintain homeostasis. It is known that abnormal cell 

survival can lead to pathologic states that drive various diseases [84]. Mitochondrial 

dysfunction and high rates of glycolysis promote apoptosis resistance through 

hyperpolarization of the inner mitochondrial membrane and inhibition of apoptotic 

factor release [85]. PDK4 has also been demonstrated to be required for the NF-kB-

mediated pro-survival functions of TNF-α [44]. Adding to the propensity for expanded 

cell populations, it is known that cancer cells resort to the Warburg effect and increased 

glycolysis to allow for hyperproliferation [81]. Therefore, metabolism-mediated 

apoptotic resistance and hyperproliferation may contribute to the increased levels of 

monocytes observed in IPF. 

Clinical Implications 

The future of preclinical investigations in IPF calls for novel strategies, patient-centric 

approaches, and overall increase in translatability for ongoing research [86]. The 

establishment of our PCLS ex vivo system fits into this vision, as it provides a novel 
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strategy for testing the implications of experimental compounds and modulation of 

mechanisms on macrophages in a profibrotic lung environment in a moderate-

throughput manner. The model can also be extended to human tissue, and is tunable 

based on desired outcome, such as through addition of further cytokines for 

stimulation.  

Additionally, the results of our monocyte study in IPF patients provide evidence that 

monocytes exhibit characteristics of disease at the transcriptomic level. Our cluster 

analysis also showed that these characteristics may be related to disease severity. This 

suggests that monocytes in IPF hold potentially relevant clinical information, and in 

addition to the published findings on monocyte count as a biomarker in IPF [31–34], 

examining the profile of these monocytes may provide even more clinically relevant 

insight for prognostication in IPF. This is in accordance with the published study on 

outcome prediction in IPF using PBMC [12], supporting the application of circulating 

cells as suitable and accessible biomarkers in IPF. Further investigation is required to 

elucidate such biomarker potential, including validation cohort studies and association 

of monocyte characteristics with a multimodal assessment of disease severity in IPF, 

including radiographic imaging and symptoms. Assessing the relationship of 

monocytic traits to disease progression through longitudinal studies would also be 

beneficial.  

Concluding Statement 

The findings presented in this thesis contribute to the field by providing novel insight 

on the underlying processes governing profibrotic macrophage programming in the 
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lung, the establishment of a novel biologically-relevant approach to investigate these 

macrophages, discovery of a patient-derived signature in IPF monocytes, and evidence 

for mechanistic involvement of this signature in macrophage polarization. Overall, this 

work supports the pursuit of knowledge to better understand the profibrotic 

contribution of macrophages and monocytes in IPF, and offer insights for novel 

mechanistic avenues and potential therapeutic interventions in fibrosis.  
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