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Abstract
In this thesis, we address construction of effective action for the dissipative systems whose
configuration space coincides with a Lie group. We start by generalizing the classical
system plus reservoir model to the case of position dependent Ohmic dissipation. This is
achieved by coupling the system to a field living in one extra dimension. Then, employing
the Schwinger-Keldysh technique, we construct the general influence functional for a
system on a Lie group which includes the classical contribution and the first quantum
correction within the linear response approximation. Abandoning the linear response
assumption, we generalize the results by requiring the invariance under the dynamical
Kubo-Martin-Schwinger symmetry. This gives us the most general influence functional
with nonlinearly realized symmetry. We explore its systematic reduction to the case of
strictly Ohmic dissipation. Finally, we revisit the field theoretic model of the bath and
show that it produces both the leading and first subleading parts of the most general
influence functional at high temperature.
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Chapter 1

Introduction

Dissipation is a ubiquitous phenomenon in real-world systems, but addressing it at the
quantum level is challenging due to the non-conservative nature of dissipative systems,
which lack a well-defined action functional. The complexity arises from the involvement
of internal degrees of freedom in the dissipative dynamics, where accounting for the vast
number of these degrees is often neither feasible nor desirable. There are situations
where the internal degrees of freedom, or equivalently the bath, are irrelevant and the
whole effect of the bath is encoded in a few coefficients or functions. For example, in the
Brownian motion, when the system’s timescale significantly exceeds the environment’s
correlation time, the dissipative dynamics can be described by the Langevin equation
[Kalmykov and Coffey 2012]. In the Langevin equation, the environmental effects are en-
capsulated by a handful of dissipative coefficients and a Gaussian white noise. Although
we know how to derive the Langevin equation from a microscopic model in the simpler
cases, such as the case of a damped harmonic oscillator [Schwinger 1961], there is no
general recipe to obtain the state dependent Langevin equation (when the dissipation
coefficients are position dependent) [Han et al. 2006; Zhang et al. 2023; Ulbrich et al.
2023; Lau and Lubensky 2007] from first principles. One trick to address this issue is
the system-plus-reservoir model [Caldeira and Leggett 1983a; Feynman and Vernon Jr
2000] which is used to model dissipative quantum tunneling [Caldeira and Leggett 1981;
Caldeira and Leggett 1983a], thermalization in curved spacetime [Colas et al. 2022],
thermalization in non-fermi liquid [Hosseinabadi et al. 2023], the Dicke model [Kirton
et al. 2019], excitation energy transfer [Kundu and Makri 2022], modeling the noise
and friction in nanomechanical systems [Bachtold et al. 2022], and the polaron prob-
lem [Mandal et al. 2020; Mandal et al. 2022; Buchholz et al. 2019; Ruggenthaler et al.
2023; Foley et al. 2023]. This model assumes that dissipation is featureless, allowing the
substitution of the actual dissipative degrees of freedom with a set harmonic oscillators
with gapless energy spectrum. This simplification is primarily technical, as these bath
modes can be integrated out exactly. Alternatively, the universal features of dissipation
can be addressed from an effective field theory point of view. The Brownian motion, for
instance, can be obtained by integrating out the fast degrees of freedom [Van Kampen
and Oppenheim 1986]. It is the subject of this thesis to obtain a recipe to obtain an
effective theory for the dissipative dynamics at high temperature limit which results in
a local in time effective action. At the classical level, we restrict ourselves to the case of
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an arbitrary Ohmic dissipation, while in addressing the (thermal and quantum) noise,
we focus on the case of open dynamics on Lie group to classify the quantum correction
based on symmetries.

This thesis is organized as follows. In the next chapter, the basic background in-
cluding the system plus reservoir model and the double-time path integral is reviewed.
Especially, the system plus reservoir is covered from a new perspective which turns out
to be useful for the purposes of this work in the next chapter. Focusing on the case of
Ohmic friction, we propose a model which is essential in the generalization of the system
plus reservoir model. This model, which is termed the bulk model, gives an action func-
tional to describe the classical dissipative viscous dynamics which nonlinearly realizes the
symmetry. In addition, the model can be used to describe the classical non-holonomic
systems with linear constraints. Postponing the attempt to quantize the model to chap-
ter 6, we propose a microscopic model to describe the dissipative dynamics in chapter
4. We first determine the most general interaction between a system and a bath which
nonlinearly realizes symmetry. Then, by implementing the Schwinger-Keldysh (S-K)
technique [Kamenev 2023], we integrate out the bath degrees of freedom which is as-
sumed to be at finite temperature. This results in an effective action for the system which
is the sum of the action of the free body and the influence functional which encodes the
effects of the bath. In integrating out the bath’s degrees of freedom, we use the linear
response approximation, according to which, only the two-point functions of the bath
are considered to build the influence functional. With the assumption that the response
in the bath dies quickly at high temperature, the theory allows a gradient expansion of
the influence functional which is a series expansion of the powers of the S-K quantum
fields and time derivatives of the S-K classical fields. In defining of the S-K classical
(quantum) field, we do not use the usual definition where the classical (quantum) fields
is the sum (difference) of the forward and backward in time fields. Instead, we use a
definition according which, the classical field transforms covariantly under the underly-
ing nonlinearly realized symmetry and the quantum field is left intact. This makes the
effective action of the theory manifestly covariant under the underlying microscopic sym-
metry and captures the right power counting of the effective theory. The effects of the
bath is encoded in a handful of dissipative coefficients. These coefficients, however, are
not the most general possible dissipative coefficients as they are obtained at the linear
response approximation. The most general dissipative coefficients at high temperature
are allowed by the dynamical Kubo-Martin-Schwinger (DKMS) transformation [Sieberer
et al. 2015; Liu and Glorioso 2018; Akyuz et al. 2024]. This is the subject matter of
chapter (5). In the chapter, using the same definition of the S-K classical and quantum
fields of chapter (4), we derive the most general high temperature effective action of the
dissipative dynamics which nonlinearly realizes symmetry. In contrast to the chapter
4, there is no direct reference to the microscopic details of the bath and the dissipa-
tive coefficients are less restricted. However, one can adhere to different limits, such as
the linear response regime or the Ohmic regime, to reduce the freedom in choosing the
universal dissipative coefficients. Having exploited the linear response approximation in
chapter 4, the Ohmic reduction of the dissipative coefficients is introduced at the end

2
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of the chapter. Then, in chapter 6 we return to the bulk model, but this time at finite
temperature. Mapping the model to a nonlinear sigma model at the lowest order, we
integrate out the bath degrees of freedom, generating the most general state dependent
influence functional at the classical level. In addressing the quantum corrections, we
restrict the bulk model configuration space to a Lie group. We show that it produces
the most general influence functional functional in the strictly Ohmic regime predicted
by the DKMS method at high temperature.

3
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Chapter 2

Some Introductory Remarks

In this chapter, some introductory remarks are reviewed. In the first section, there is
a short discussion on the Langevin equation. Then, a discussion on the system plus
reservoir from a different perspective, and a review of the double time path integral
formalism of open quantum systems are presented.

2.1 Introduction to Classical Dissipative Systems
Having an idealized closed system is just an approximation which in many applications
needs to be moderated. A subset of open dynamics is dissipative dynamics in which the
system of interest (or simply system) loses energy through interaction with an environ-
ment. In the case that the environment is not influenced by the dynamics of the system,
we refer to it as a bath. In this work, we are interested in the long-time behavior of a
dissipative system, where the system plus the bath have reached to the thermal equilib-
rium. Note that, the reduced dynamics of the system, which is obtained by integrating
out the bath degrees of freedom is nonequilibrium in nature. Traditionally, this reduced
dynamics is described by the Langevin equation [Langevin et al. 1908; Van Kampen
1992; Mazo 2008] which for a particle of mass m reads:

m
d2x(t)
dt2

= F (t) − γ
dx(t)
dt

+ η(t), (2.1)

where:

• x(t) is the position of the particle at time t.

• F (t) represents any external deterministic force acting on the particle

• γ is the damping constant coefficient.

• η(t) is a random force representing the thermal fluctuations from the surrounding
environment, often modeled as Gaussian white noise with zero mean and correla-
tion given by ⟨η(t)η(t′)⟩ = 2Dδ(t− t′), where D is the noise intensity.

4
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According to the fluctuation-dissipation theorem, the damping coefficient γ and the
noise intensity D are related to each other through D = γkBT at the temperature
T . The Langevin equation describes Ohmic dissipation, where the dissipative force is
proportional to the velocity of the particle.

The Langevin equation can be written in terms of a path integral formalism using the
Martin-Siggia-Rose (MSR) technique [Martin et al. 1973]. According to this technique,
the Langevin equation is written in terms of a path integral over an auxiliary field x̂.
For instance, at the Smoluchowski limit, when γ dx

dt >> md2x
dt2 , we can write the Langevin

equation in the following functional form∫
Dx δ

(
γ
dx(t)
dt

+ ∂U(x)
∂x

− η(t)
)

=
∫

DxDx̂ ei
∫

dt x̂(t)
(

γ
dx(t)

dt
+ ∂U(x)

∂x
−η(t)

)
(2.2)

where δ
(
F (x)

)
is the delta Dirac functional. This gives us a phenomenological generating

functional to calculate the correlation and response functions,

Z =
∫

DxDx̂ e−S[x,x̂]

S[x, x̂] =
∫
dt

[
x̂(t)

(
dx(t)
dt

+ ∂U(x)
∂x

)
−Dx̂2(t)

]
.

(2.3)

The MRS approach is one of the successful techniques to incorporate the fluctuations
and the dynamics into each other. Yet, this approach is not systematic as it has not been
derived from a microscopic theory and it cannot address the noise at a full nonlinear
level [Liu and Glorioso 2018].

2.2 The Harmonic Bath Model
One of the successful techniques to incorporate the quantum effects into the dissipative
dynamics is the so-called "system plus reservoir" or harmonic bath model [Schwinger
1961, Caldeira and Leggett 1983a]. The basic idea of this model is to use the fact that,

• Dissipation is emergent and it must originate from a full unitary theory,

• (some) dissipative processes are not sensitive to the microscopic details,

• and dissipative degrees of freedom are gapless.

Based on these assumptions, the environment can be modeled by a bunch of harmonic
oscillators with continuous gapless spectrum of frequency as the proxy degrees of freedom
for the environment. Being quadratic, the model is exactly solvable leaving us with an
effective action which in general is nonlocal time.

Let’s review the harmonic bath formalism from a relatively different perspective which
is in close connection with the formalism in chapters 3 and 6. In this model, the envi-
ronment is modeled by a gapless string [Unruh and Zurek 1989]. Let’s go through this
method by an explicit example, one dimensional damped harmonic oscillator. Consider

5
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a one dimensional harmonic oscillator with coordinate q which is coupled to a gapless
field in an extra dimension z at the boundary at z = 0 (see figure 3.2). Showing the
gapless field with ξ(z, t), the action functional of the coupled field and the oscillator
reads

S =
∫
dt

1
2(q̇2 − Ω2q2) + α

∫
dt q̇ ξ

∣∣
z=0 +

∫
z>0

dtdz

(1
2(∂tξ)2 − 1

2(∂zξ)2
)
, (2.4)

where Ω shows the frequency of the harmonic oscillator in the absence of friction and α
is the constant of dissipation. The equation of motion for the gapless string which we
refer to as bulk degrees of freedom reads

∂2
t ξ(z, t) − ∂2

zξ(z, t) = 0. (2.5)

Using the Fourier expansion of ξ(z, t),

ξ(z, t) =
∫ ∞

0

dω

2π ξω(z) exp(−iωt)

the bulk equation of motion becomes

(ω2 + ∂2
z )ξω(z) = 0 (2.6)

with the solution
ξω(z) = Aω exp(iωz) +Bω exp(−iωz). (2.7)

where Aω and Bω are two (ω dependent) constants. The variation of ξ(z, t) at z = 0
results in

−∂zξ(0, t) = αq̇(t) ,

where in the Fourier space and using equation (2.7), it reads

αqω = Aω −Bω. (2.8)

At the boundary, the equation of motion of the damped harmonic oscillator is

q̈ + Ω2q = −αξ̇(0, t) ,

where in the Fourier space becomes(
− ω2 + Ω2)qω = iωα

(
Aω +Bω

)
. (2.9)

Combining equations (2.8) and (2.9) results in

Aω = 1
2

(Ω2 − ω2

iαω
+ α

)
qω, Bω = −A⋆

ω. (2.10)

Quantization of the damped harmonic oscillator at the boundary is equivalent to writing
the operator q and ξ in terms of the creation and annihilation operators and using the

6
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complete basis of space,

q =
∫ ∞

0

dω

2π Cω

(
aω exp(−iωt) + a†

ω exp(iωt)
)
. (2.11)

ξ(z, t) =
∫ ∞

0

dω

2π Cω

((
Ãω exp(iωz) − Ã⋆

ω exp(−iωz)
)
aω exp(−iωt) + H.C

)
(2.12)

where Ãω = Aω
qω

, H.C stands for the Hermitian conjugate, and the commutation relations

[aω, a
†
ω′ ] = 2πδ(ω − ω′) , [aω, aω′ ] = [a†

ω, a
†
ω′ ] = 0 (2.13)

are assumed. Cω is a constant to be determined by imposing the canonical commutation
relation

[ξ(z, t), ξ̇(z′, t)] = iδ(z − z′) .

Introducing tan(ϕω) = ω2−Ω2

ωα2 and using the commutation relations for aω and a†
ω, then

we have

[ξ(z, t), ξ̇(z′, t)] = 2i
∫ ∞

0

dω

2π ω|Ãω|2|Cω|2
(

exp
(
iω(z − z′)

)
+ exp

(
iω(z′ − z)

))
−2i

∫ ∞

0

dω

2π ω|Ãω|2|Cω|2
(

exp
(
iω(z + z′ + 2ϕω)

)
+ exp

(
iω(z′ + z + 2ϕω)

))
. (2.14)

Taking

Cω = 1
2ω1/2|Ãω|

(2.15)

the first integral in (2.14) gives us a delta Dirac function iδ(z − z′), and the second
integral becomes zero which is desired. In addition, we need to prove that with this
choice of Cω, the canonical commutation relation [p, q] = i does hold, where p is the
canonical momentum corresponding to q. The canonical momentum p at the boundary
reads

p = q̇ + α ξ(z = 0, t) =
∫ ∞

0

dω

2π

((
− iω + α(Ãω − Ã⋆

ω)
)
aω exp(−iωt) + H.C

)
(2.16)

= i

∫ ∞

0

dω

2π

(Ω2

ω

)(
aω exp(−iωt) − a†

ω exp(iωt)
)

(2.17)

Using this and the expansion formula for q in terms of the creation and annihilation
operators, then the canonical commutation relation at the boundary can be written as

[q, p] = 2i
∫ ∞

0

dω

2π
dω′

2π CωCω′ω
(

− aωa
†
ω′ + a†

ω′aω
)

exp
(
i(−ω + ω′)t

)
(2.18)

7
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Inserting the obtained value for Cω = 1
2ω1/2|Aω | in this and using the assumed commu-

tators for the creation and annihilation operators one can show that [q, p] = i which is
expected and proves the consistency.

Now, we can calculate different observable quantities of the damped harmonic oscil-
lator. The energy spectrum is not informative due to mixing with the gapless field; the
spectrum is a continuum from zero to infinity. Instead, we calculate the density of states
which is defined via the Laplace transformation of the partition function,

ρ(ϵ) = 1
2πi

∫ c+i∞

c−i∞
dβ Zα[β] exp[βϵ] , (2.19)

where Zα[β] the partition function of the system at temperature T = 1
β , ϵ is the energy

level and c is a positive number which is greater than the smallest real part of the
poles of the partition function. Using the path integral formalism, we can obtain the
partition function of the damped harmonic oscillator. Going into the imaginary time
representation t → −iτ , then the Euclidean action of the oscillator plus the bulk takes
the following form

SE =
∫ β

τ=0
dτ

[1
2
(
(dq
dτ

)2 + Ω2q2)− iα
dq

dτ
ξ
∣∣
z=0 +

∫
z>0

dz

(1
2(∂τξ)2 + 1

2(∂zξ)2
)]

. (2.20)

Using the path integral definition of the partition function

Zα[β] =
∫

[Dq][Dξ] exp[−βSE ] ,

the partition function can be calculated exactly as it is Gaussian in terms of the func-
tions q and ξ. Solving the quadratic path integrals using the Matsubara technique, the
partition function reads

Zα[β]

= βλ̃+λ̃−
4π2Ω Γ

[
− βλ̃+

2π
]

Γ
[

− βλ̃−
2π

]
exp

[
β

2π

(
λ̃+ log(−βλ̃+

2π ) + (λ̃+ → λ̃−)
)]
,

(2.21)

where

λ̃± = −α2

2 ± i

√
Ω2 − α4

4
and Γ[x] is the gamma function. This gives the spectral density of the damped harmonic
oscillator as

ρ(ϵ) =
∞∑

n=1
(Residues of the integrand (2.19) at the poles of the gamma functions)

(2.22)
The poles of the gamma functions are located at β = 0, β+

n = 2πn
λ+

, and β−
n = 2πn

λ−
. The

8
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Figure 2.1: The spectral density of ρ(ϵ) of the damped oscillator for
α2 = 0.05 and Ω = 1. At ϵ = 0, we have ρ(ϵ) = δ(ϵ).

corresponding residues of the integrand are

Res(β = 0) = 1
Ω

Res(β = β+
n )

= 1
Ω(λ−

λ+
)Γ(λ−

λ+
)(−1)n−1

Γ(n) exp(2πnϵ/λ+) exp
(
n(log(−n) − 1) + n

λ−
λ+

(log(−nλ−
λ+

) − 1)
)

Res(β = β−
n ) = Res⋆(β = β+

n ) .
(2.23)

The spectral density for values of α2 = 0.05 and Ω = 1 in the underdamped regime
is depicted in figure (2.1). At the limit of α = 0, the spectral density becomes a set
of discrete delta Dirac functions. Therefore, dissipation gradually broadens the energy
levels, and at the overdamped regime, it completely closes the gap between the energy
levels [Hanke and Zwerger 1995]. Due to dissipation, the particle has a finite lifetime
in the excited energy states and decays into the ground state. We will come back to
the observables of the damped harmonic oscillator in the next chapter and argue that
the calculation of the observables from the bulk model of 3 coincides with that of this
chapter.

2.3 The Feynman-Vernon Model of Open Quantum Sys-
tems

In this section, we present a short summary of the double-time path integral method in
describing dissipative quantum systems. As it was pointed out in the previous chapter,
dissipation is emergent in the sense that it originates from a unitary theory. If we
integrated out part of the universe, the remaining dynamics can be dissipative. This

9
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can be formulated in the language of the density matrix. The density matrix of the
dynamical degrees of freedom is defined over the Hilbert space of the bath and the
system. To obtain the effective time evolution of the system, we partial trace over
the bath degrees of freedom. This picture is used to describe the decoherence and
thermalization [Hornberger 2009; Kaplanek and Burgess 2020; Kaplanek and Burgess
2021; Kanno et al. 2021b; Parikh et al. 2021; Kanno et al. 2021a; Bose et al. 2023; Cho
and Hu 2022; Colas et al. 2024; Tobar et al. 2023; Kanno et al. 2023; Cho and Hu 2023;
Hsiang et al. 2024; Matsumura 2021; Bak et al. 2023; Colas et al. 2022]. To describe the
time evolution of the density matrix, we can use the double-time path integral formalism
[Calzetta and Hu 2009; Kamenev 2023; Sieberer et al. 2023]. In this chapter, we review
the Feynman-Vernon method [Feynman and Vernon Jr 2000] to describe the double-time
path integral formalism. The total density operator ρ̂(t) evolves in time in two opposite
directions according to

ρ̂(t) = U(t)ρ̂(0)U−1(t) (2.24)

where ρ̂(0) refers to the initial density matrix. The density matrix is defined over the
Hilbert space of the system, represented by q, and the Hilbert space of the environment
which is represented by χ. The representation of the density matrix in the q−χ basis is

ρ(qf , q
′
f ;χf , χ

′
f ; t) = ⟨qf , χf |ρ̂(t)|q′

f , χ
′
f ⟩ (2.25)

Using the unity operators in the q − χ basis, 1̂ =
∫

qi,χi
|qi, χi⟩⟨qi, χi|, the density matrix

in the q − χ representation takes the following form:

ρ(qf , q
′
f ;χf , χ

′
f ; t) =

∫
χi,qi;χ′

i,q
′
i

⟨qf , χf |U(t)|qi, χi⟩⟨qi, χi|ρ̂(0)|q′
i, χ

′
i⟩⟨q′

i, χ
′
i|U−1(t)|q′

f , χ
′
f ⟩.

(2.26)
The reduced density matrix of the system of our interest can be obtained by tracing out
the environment degrees of freedom

ρr(qf , q
′
f ; t) =

∫
χf

ρ(qf , q
′
f ;χf , χf ; t). (2.27)

If the environment is in thermal equilibrium and is large enough to be considered as a
bath, one expect that the initial preparation information is lost after the passage of long
enough time. In such a situation we can can start from initial product state ρ̂(0) = ρ̂q⊗ρ̂χ

which simplifies the calculation. Although it looks artificial, but it is plausible in the
situations where we are interested in the long-time behavior of the system where the
intial information is totally scrambled. With the initial product state, then we have

ρr(qf , q
′
f ; t) =

∫
qi,q′

i

ρq(qi, q
′
i)
∫

χf

∫
χi,χ′

i

ρχ(χi, χ
′
i)G(qi, χi; qf , χf ; t)G†(q′

i, χ
′
i; q′

f , χ
′
f ; t)

=
∫

qi,q′
i

ρq(qi, q
′
i)JF V (qi, q

′
i; qf , q

′
f ; t)

(2.28)
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where the Green’s function is given by G(qi, χi; q′
fχf ; t) = ⟨qf , χf |U(t)|qi, χi⟩ and its

Hermitian conjugate is denoted by G†. The Feynman-Vernon functional (FV functional)
is defined by

JF V (qi, q
′
i; qf , q

′
f ; t) =

∫
χf

∫
χi,χ′

i

ρχ(χi, χ
′
i)G(qi, χi; qf , χf ; t)G†(q′

i, χ
′
i; q′

f , χ
′
f ; t). (2.29)

If we use the path integral definition of the Green’s functions, then we can write the FV
functional in the following form

JF V (qi, q
′
i; qf , q

′
f ; t) =

∫ q+(tf )=qf

q+(ti)=qi

Dq+(t)
∫ q−(tf )=q′

f

q−(ti)=q′
i

Dq−(t)ei
(

Sq [q+]−Sq [q−]
)

×
∫

χf

∫
χi,χ′

i

ρχ(χi, χ
′
i)
∫ χ+(tf )=χf

χ+(ti)=χi

Dχ+(t)
∫ χ−(tf )=χ′

f

χ−(ti)=χ′
i

Dχ−(t)ei
(

Sq,χ[q+,χ+]−Sq,χ[q−,χ−]
)

(2.30)

where the part of action which solely depends on the system degrees of freedom has
been shown by Sq and the rest which includes the environment degrees of freedom and
its interaction with the system is shown by Sq,χ. If we solve the path integrals over the
environment degrees of freedom, then we can write the FV functional as

JF V (qi, q
′
i; qf , q

′
f ; t) =

∫ q+(tf )=qf

q+(ti)=qi

Dq+(t)
∫ q−(tf )=q′

f

q−(ti)=q′
i

Dq−(t)ei
(

Sq [q+]−Sq [q−]+I[q+,q−]
)
.

(2.31)

where the influence functional I[q+, q−] is given by

eiI[q+,q−] =
∫

χf

∫
χi,χ′

i

ρχ(χi, χ
′
i)
∫ χ+(tf )=χf

χ+(ti)=χi

∫ χ−(tf )=χf

χ−(ti)=χ′
i

ei
(

S0[χ+]+SI [q+,χ+]−S0[χ−]−SI [q−,χ−]
)
,

(2.32)

where the action Sχ,q is split into a free part Sχ and an interacting part SI . Through
integrating out the bath degrees of freedom, the forward q+ and backward q− degrees of
freedom are mixed with each other, so that the influence functional cannot be split in
the form I[q+, q−] = I+[q+] + I−[q−]. With an interacting potential of the form gVI(t),
the interacting action reads

SI = −g
∫

dtVI(t). (2.33)

According to the definition of the path integral one can write∫ χ+(tf )=χf

χ+(ti)=χi

ei
(

S0[χ+]+SI [q+,χ+]
)

= ⟨χf |T (e−ig
∫ t

0 dt′V̂+I(t′))|χi⟩ (2.34a)

∫ χ+(tf )=χf

χ+(ti)=χi

e−i
(

S0[χ−]+SI [q−,χ−]
)

= ⟨χf |T̃ (eig
∫ t

0 dt′V̂−I(t′))|χi⟩ (2.34b)
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where T (T̃ ) is the time-ordered (anti time-ordered) operator. With this, then the
influence functional can be written in the following condensed form [Boyanovsky 2015]

eiI[q+,q−] = Tr[T (e−ig
∫ t

0 dt′V̂I(t′))ρ̂χ(0)T̃ (eig
∫ t

0 dt′V̂I(t′))]

≡ ⟨T̃ (eig
∫ t

0 dt′V̂I(t′))T (e−ig
∫ t

0 dt′V̂I(t′))⟩ρχ .
(2.35)

Equation (2.35) is the main result of this section which will be used in chapter 4 in
building the influence functional at the linear response level, which means that we ignore
terms of order O(g3) and higher in building the influence functional.
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Chapter 3

Bulk Model: Classical Theory

In this chapter, we propose the bulk model to obtain an action for the Ohmic classical
dissipative systems with arbitrary dependence of dissipative coefficients on the coordi-
nates. It is the generalization of the system plus reservoir model of chapter (2). Finally,
we relate the dissipative dynamics to a certain class of non-holonomic systems with lin-
ear constraints, and in an appropriate limit, the bulk model provides an action for such
non-holonomic systems. The results of this chapter were published in Phys. Rev. E 109,
L052103.

3.1 Ohmic Dissipative Motion In Classical Mechanics
The standard way to account for dissipation in the classical theory of dynamical systems
is by adding non-conservative forces Fi to the Euler–Lagrange equations of motion,

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Fi , (3.1)

where L(q, q̇) is the system Lagrangian, and qi, q̇i are the generalized coordinates and
velocities, respectively. An important type of dissipation is ohmic dissipation when the
extra forces are linear in velocities,

Fi = −Γij(q) q̇j ≡ −∂F

∂q̇i
. (3.2)

The dissipative coefficients Γij(q) form a positive-definite symmetric matrix and are in
general coordinate dependent. In the last equality we have conventionally written the
force as the derivative of the Rayleigh function F (q, q̇) = (1/2)Γij(q) q̇iq̇j .

Fundamentally, the existence of dissipation is due to the interaction of the system
(referred to as central system below) with its environment, also called reservoir or bath.
In many applications the microscopic nature of the reservoir is not important and it
can be modeled as a collection of infinitely many harmonic oscillators [Weiss 2012]. The
action of the harmonic bath coupled to the central system then provides an effective
action, from which Eq. (3.1) can be derived by means of the variational principle. Yet
more importantly, the effective action is key for the application of the path integral
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methods used to study intrinsically quantum phenomena, such as tunneling [Caldeira
and Leggett 1981], and other aspects of open systems in and out of thermal equilibrium
[Sieberer et al. 2023; De Vega and Alonso 2017; Kamenev 2023].

However, as we discuss below, the harmonic bath model fails in the case when dissipa-
tion coefficients Γij(q) have general dependence on the system coordinates. The purpose
of this chapter is to provide a reservoir model for this case. As a byproduct we also
obtain the description of arbitrary gyroscopic forces. Before describing the model, let us
discuss two broad classes of situations where the dependence of Γij on q is essential.

3.2 Dynamics on cosets
Consider a class of systems whose configuration space represents a group manifold or,
more generally, a coset space, and whose dynamics enjoy non-linearly realized symme-
tries. Many physically relevant systems can be cast in this form, from dynamics of
a rigid body, to hydrodynamics [Arnold and Khesin 2008; Marsden and Ratiu 2013].
They appear in particle physics and condensed matter as a consequence of spontaneous
symmetry breaking [Burgess 2000; Brauner 2010]. Development of an effective action
for such systems in dissipative environment, besides conceptual interest, is motivated
by numerous potential applications, for example to Brownian motion of stiff polymers
[Li and Tang 2004], as well as micro and nanoparticles of various shapes [Duggal and
Pasquali 2006; Han et al. 2006; Kraft et al. 2013; Zhang et al. 2019].

Following the standard coset construction [Callan Jr et al. 1969; Burgess 2000;
Brauner 2010], we consider a Lie group G and its subgroup H. The generators of G
are chosen in such a way that the first A of them span the algebra of H, we denote them
by Ha, 1 ≤ a ≤ A. The rest of the G-generators are called broken and will be denoted
by Ĝi, 1 ≤ i ≤ I. The coset G/H representing the configuration space of the system
can be identified with the group elements of the form1

ĝ(q) = eqiĜi . (3.3)

The action of a group element g on the coordinates q 7→ q̃ is given by the left multipli-
cation,

g · ĝ(q) = ĝ(q̃) · h , g ∈ G, h ∈ H . (3.4)

Next, one constructs the Cartan form,

ĝ−1dĝ = Ωi
j(q)dqj Ĝi + Ωa

j (q)dqj Ha , (3.5)

and extracts from it the covariant velocities

Dtq
i = Ωi

j(q) q̇j . (3.6)
1We assume summation over repeated indices.
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Unlike the ordinary velocities q̇i, the covariant velocities transform linearly under (3.4).
They form a linear representation of the subgroup H.

If the dynamics of the system are to respect the symmetry (3.4), its Lagrangian and
Rayleigh function must be invariants constructed from the covariant velocities.2 Thus
we have,

F = 1
2γijDtq

iDtq
j = 1

2γijΩi
k(q)Ωj

l (q) q̇kq̇l , (3.7)

where γij is a constant invariant tensor in the relevant representation of H. In the sim-
plest case when H is empty (G is fully broken) γij is arbitrary, provided it is symmetric
and positive. For a general non-Abelian coset the coefficients of the Cartan form satisfy

∂Ωk
i

∂qj
−
∂Ωk

j

∂qi
̸= 0 , (3.8)

so their dependence on coordinates cannot be avoided by any choice of variables, implying
the coordinate dependence of the dissipative coefficients Γkl = γijΩi

k(q)Ωj
l (q).

3.3 The Bulk Model
Our starting point is the model used in [Unruh and Zurek 1989] to study environment-
induced decoherence. It represents the reservoir as a free massless scalar field ξ(t, z) in
one-dimensional space (bulk) coupled to the central system at a single point z = 0 (bound-
ary), and is equivalent to the more common independent-oscillator model [Caldeira and
Leggett 1983b]. Its straightforward generalization for a central system with several de-
grees of freedom requires equal number of fields and leads to the following action,

S =
∫

z=0

dt
(
L(q, q̇) − βj

i q
iξ̇j
)

+
∫

z>0

dtdz
1
2∂µξi∂

µξi , (3.9)

where βj
i are constant couplings; in the last term we sum over indices µ = t, z with

the Lorentzian metric ηµν = diag(1,−1). Importantly, the coordinate z here is not a
physical dimension, but is introduced merely to parameterize the internal dissipative
degrees of freedom. By taking variation, one derives the dissipative forces, as well as the
equations for the fields,

Fi = −βj
i ξ̇j

∣∣ , ∂µ∂
µξi = 0 , ∂zξi

∣∣ = −βi
j q̇

j , (3.10)

where the vertical bar means fields evaluated at z = 0. The dissipative dynamics is
obtained by imposing outgoing boundary conditions on the bulk fields which singles out
the solutions of the form ξi(t, z) = ξ̄i(t−z). This implies ∂zξi = −∂tξi and combining the
first and third equations in (3.10) we obtain the forces (3.2) with Γij = βk

i β
k
j . Note that

coupling qi to ξ̇i, rather than the fields themselves, is essential for getting the response
local in time.

2Up to possible Wess–Zumino–Witten terms Wess and Zumino 1971; Witten 1983; Goon et al. 2012.
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The above construction fails for general coordinate dependent dissipation. As long
as we want to preserve the harmonic nature of the bath, the only option is to gener-
alize its coupling to the central system, βj

i q
iξ̇j 7→ βj(q)ξ̇j with some arbitrary func-

tions βi(q). Repeating the above derivation we then obtain the dissipative coefficients
Γij = (∂βk/∂qi)(∂βk/∂qj) which, however, do not have the form needed for coset or
nonholonomic systems due to the non-integrability properties (3.8), (3.23).

This failure can be also understood from the symmetry perspective. The system-
reservoir coupling in (3.9) changes by a total time-derivative under the shifts of the
coordinates qi(t) 7→ qi(t)+ai. This property ensures that the dissipative force is invariant
under the coordinate shifts, as it should be for the case of constant Γij . In the case of
a general non-Abelian coset, however, we do not have at our disposal any functions
βi(q) invariant or changing by a constant under the group transformations and hence
we cannot construct any system-reservoir coupling that would preserve the symmetry of
the problem.3

To resolve the issue, we apply a duality transformation to the action (3.9). Performing
a change of variables ξ̃i = βj

i ξj and integrating in a set of vectors χµ i, it can be rewritten
as

S=
∫

z=0

dt
(
L(q, q̇) − qi ˙̃ξi

)
+
∫

z>0

dtdz

(
χµ i∂µξ̃i − Γij

2 χµ iχj
µ

)
. (3.11)

Variation with respect to ξ̃i gives two equations,

∂µχ
µ i = 0 , χz i

∣∣ = q̇i . (3.12)

The first one implies that χµ i are expressed through gradients of scalar functions,

χµ i = −ϵµν∂νχ
i , (3.13)

where ϵµν is the two-dimensional Levi–Civita symbol, ϵtz = 1. The second equation then
reduces to χ̇i

∣∣ = q̇i. Using that the fields χi are defined up to a constant, we can remove
any offset between them and qi on the boundary, and obtain

χi
∣∣ = qi . (3.14)

Substituting (3.13) back into (3.11) we arrive at the action

S =
∫
dtL(q, q̇) +

∫
z>0

dtdz
1
2Γij∂µχ

i∂µχj (3.15)

with the boundary conditions (3.14). For a single degree of freedom q this action first
appeared in [Lamb 1900] and was used in [Ford et al. 1988] for the derivation of the

3Integrating by parts the interaction term in (3.9) and replacing q̇i with the covariant derivative Dtq
i

does not help. We then have ξi, instead of ξ̇i in the coupling, which leads to forces Fi with non-local
memory of the past motion of the system.
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quantum Langevin equation. More recently, it was extended to describe linear response
in dissipative media [Figotin and Schenker 2007].

So far, we have assumed the dissipative coefficients Γij to be constant. However, the
action (3.15) admits a natural generalization. Relation (3.14) suggests to think of the
fields χi as extensions of the original system coordinates into the bulk. Then, to describe
coordinate dependent dissipation, we simply need to promote the coefficients in (3.15)
to the functions of χ,

Γij 7→ Γij(χ) . (3.16)

Note that this makes the effective reservoir fields self-interacting. It is necessary price
to pay for modeling coordinate dependent friction.

This is not yet the whole story. We can add to the reservoir action a time-reversal
breaking term ∫

z>0
dtdz

1
2Υij(χ)ϵµν∂µχ

i∂νχ
j (3.17)

with antisymmetric coefficients Υij(χ). If Υij are constant, this term is a total deriva-
tive and reduces to the boundary term

∫
dtΥijq

iq̇j of the Wess–Zumino–Witten type
[Wess and Zumino 1971; Witten 1983; Goon et al. 2012]. However, for the general field
dependent coefficients such reduction is impossible.

Combining all above ingredients, we write down the action of our reservoir model:

S =
∫
dtL(q, q̇) +

∫
z>0
dtdz

1
2
(
Γij(χ)∂µχ

i∂µχj

+ Υij(χ)ϵµν∂µχ
i∂νχ

j
)
. (3.18)

Let us verify that it reproduces the desired equations. Taking its variation and account-
ing for the relation (3.14) we obtain in the bulk and on the boundary:

∂µ

(
Γij∂

µχj + Υijϵ
µν∂νχ

j
)

− 1
2
∂Γjk

∂χi
∂µχ

j∂µχk − 1
2
∂Υjk

∂χi
ϵµν∂µχ

j∂νχ
k = 0 , (3.19)

Fi =
(
Γij∂zχ

j + Υijχ̇
j)∣∣ . (3.20)

Though the bulk equation (3.19) looks complicated, it still admits purely outgoing so-
lutions χi(t, z) = χ̄i(t − z) with arbitrary functions χ̄i. The conditions (3.14) then fix
χ̄i(t) = qi(t) and Eq. (3.20) reduces to

Fi = −Γij(q) q̇j + Υij(q) q̇j . (3.21)

The first term gives the sought-after dissipative forces (3.2), whereas the second term
describes arbitrary gyroscopic forces that arise if the environment breaks time-reversal
symmetry, e.g. by magnetization or rotation. The effective reservoir action (3.18) rep-
resents the main result of this chapter. It covers a much broader class of systems than
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the original harmonic bath (3.9).

3.4 A Note On Nonholonomic Systems
The bulk model can result in constraint dynamics if we take the limit of dissipation
in certain directions to infinity. consider a system with constraints on coordinates and
velocities,4

cα
i (q) q̇i = 0 , α = 1, . . . n < I , (3.22)

such that they cannot be integrated into constraints only on coordinates. In other words,
Eq. (3.22) is not equivalent to a set of constraints of the form φ̇α(q) = 0. Clearly, this
requires

∂cα
i

∂qj
−
∂cα

j

∂qi
̸= 0 . (3.23)

These systems are called nonholonomic and typical examples include rolling of a disk or
a ball on a hard surface. Their classical dynamics is well developed and is summarized in
excellent textbooks, e.g. [Neimark and Fufaev 2004; Arnold et al. 2006]. Quantization,
however, remains an open problem. It was addressed in [Bloch and Rojo 2008; Fernan-
dez and Radhakrishnan 2018; Fernandez 2022] and presents a growing interest due to
development of molecular machines [Shirai et al. 2005; Grill et al. 2007; Erbas-Cakmak
et al. 2015].

Typically, the equations of motion for nonholonomic systems are derived from a mod-
ified variational principle restricted to admissible variations δqi satisfying the constraints
cα

i δq
i = 0. This leads to the appearance of reaction forces on the r.h.s. of the Euler–

Lagrange equations (3.1),
Fi = λαc

α
i (q) , (3.24)

where λα(t) are Lagrange multipliers.5 Due to the constraints (3.22), the reaction forces
do not produce any work, Fiq̇

i = 0, so nonholonomic systems are not truly dissipative.
However, they are closely related through the following construction [Neimark and Fu-
faev 2004; Arnold et al. 2006]. Consider a dissipative system with the Rayleigh function

F = 1
2γ c

α
i (q)cα

j (q) q̇iq̇j (3.25)

and take the limit γ → +∞. The friction associated with the linear combinations of
velocities cα

j q̇
j becomes very strong and the corresponding combinations quickly die out

rendering the constraints (3.22). On the other hand, the products γcα
i q̇

i remain finite
and become independent variables — the Lagrange multipliers of Eq. (3.24). Thus, the
nonholonomic dynamics can be viewed as the limit of infinitely strong viscous friction
along the constrained directions.

4We only consider constraints linear in velocities.
5Note that adding the constraints (3.22) with Lagrange multipliers into the Lagrangian, instead of

the equations of motion, would not reproduce the correct nonholonomic dynamics. Instead, one would
obtain a so-called vakonomic system [Arnold et al. 2006].
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To describe a nonholonomic system, we replace Γij 7→ Γij + γcα
i c

α
j and send γ to

infinity in (3.18). The resulting action can be obtained in a closed form by integrating
in a set of auxiliary vectors λµ

α(t, z). Omitting for simplicity the time-reversal breaking
term, we write:

Snh =
∫
dtL(q, q̇) +

∫
z>0

dtdz

(1
2Γij(χ)∂µχ

i∂µχj

− λµ
αc

α
i (χ)∂µχ

i − 1
2γλ

µ
αλµ β

)
. (3.26)

In the limit γ → ∞ the last term disappears and the fields λµ
α become Lagrange multipli-

ers enforcing the constraints cα
i (χ)∂µχ

i = 0. Since χi coincide with qi on the boundary,
this implies the nonholonomic constraints (3.22). The remaining equations also come
out right. Varying (3.26) with respect to χi and substituting the outgoing solution into
the boundary equation, we obtain the force,

Fi = −Γij(q) q̇j + cα
i (q)λz

α

∣∣ . (3.27)

The last term gives precisely the reaction forces along the constrained directions (3.24),
with λz

α

∣∣ playing the role of the Lagrange multipliers from the standard approach. The
first term describes friction along the unconstrained directions. Note that in our ap-
proach it cannot be set to zero without making the bulk action degenerate. The model
takes particularly simple form for motion on cosets:

Scoset =
∫
dtL(Dtq)

+
∫

z>0
dtdz

1
2

(
γijη

µν + υijϵ
µν
)
Dµχ

iDνχ
j , (3.28)

where Dµχ
i ≡ Ωi

j(χ)∂µχ
j are covariant derivatives of the fields χi, and γij , υij are

constants. One recognizes in the bulk term the action of a two-dimensional nonlinear
sigma-model [Zinn-Justin 2021]. It is the most general local action that can be written
using the first derivatives of the fields χi and invariant under the group G.

Let us illustrate this construction in the case of an oblong particle moving on a two-
dimensional plane in a viscous medium [Li and Tang 2004; Duggal and Pasquali 2006;
Han et al. 2006]. Its position is described by the center-of-mass coordinates X, Y and the
orientation angle ϕ, see Fig. 3.1. The friction coefficients are different in the directions
along and perpendicular to the particle’s main axis. The configuration space coincides
with the group of isometries of the Euclidean plane ISO(2) which has two generators of
translations PX , PY and a rotation generator J . The commutation relations are:

[PX , PY ] = 0 , [PX , J ] = −PY , [PY , J ] = PX . (3.29)
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φ

Y

X

Figure 3.1: An oblong particle on a plane.

All generators are broken. We parameterize the group elements as6

g(X,Y, ϕ) = eXPX+Y PY eϕJ . (3.30)

From the Cartan form we get the covariant derivatives:

DtX = Ẋ cosϕ+ Ẏ sinϕ , (3.31)
DtY = −Ẋ sinϕ+ Ẏ cosϕ , Dtϕ = ϕ̇ . (3.32)

Lagrangian coincides with the kinetic energy of the particle and is ISO(2) invariant,

L=m

2 (Ẋ2 + Ẏ 2) + I
2 ϕ̇

2=m

2
[
(DtX)2 + (DtY )2]+ I

2 (Dtϕ)2, (3.33)

where m, I are the particle mass and moment of inertia.

If the viscous medium is homogeneous and isotropic, the effective reservoir action
must also enjoy ISO(2) symmetry. To implement it, we introduce the fields ξ(t, z),
Ψ(t, z), Φ(t, z), such that at z = 0 they coincide with X(t), Y (t) and ϕ(t), respectively.
We recall that the coordinate z is not a physical dimension. Rather, it parameterizes
the internal degrees of freedom of the particle and medium responsible for dissipation.
The effective bath action then reads,

Sbath =
∫

z>0
dtdz

1
2
(
γ∥DµξD

µξ + γ⊥DµΨDµΨ

+ γϕDµΦDµΦ
)
, (3.34)

where

Dµξ = cos Φ ∂µξ + sin Φ ∂µΨ , (3.35)
DµΨ = − sin Φ ∂µξ + cos Φ ∂µΨ , DµΦ = ∂µΦ . (3.36)

We observe that even in this relatively simple case the bath action is nonlinear if γ⊥ ̸= γ∥.
In the limit γ⊥ → +∞ we obtain a particle that is constrained to move along its major
axis. This is the simplest nonholonomic system known as Chaplygin sleigh.

6This parameterization slightly differs from Eq. (3.3) and makes the calculations simpler.
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Figure 3.2: a one dimensional harmonic oscillator at z=0, connected to
a gapless field at z>0. The field at the boundary z=0 oscillates with the
harmonic oscillator because of the boundary condition χz=0,t = q(t)

3.4.1 Quantization of The Bulk Model?

There are challenges in the quantization of the theory which need to be addressed. For
instance, all Green’s functions must be considered and the purely outgoing solution for
the bulk field (or considering only the retarded Green’s function) is no more plausible. In
addition, the bulk model is no more free and due to the self-interaction, the dissipative
coupling γ does run with changing of the energy scale. This may bring about new effects
and it is interesting to see how the running of the coupling is interpreted. Postponing
the question about the Green’s function to the final chapter and leaving the discussion
about the running of the couplings for the future work, let’s see that the bulk model
produces meaningful results in the case of position independent coupling. Let’s apply
the construction to the case of damped harmonic oscillator as an example (see figure
3.2). One can show that the observable quantities of the damped harmonic oscillator,
such as the spectral density, can alternatively been obtained from the bulk model. We
do not cover the related calculation of the spectral density using the bulk model in this
section as it is pretty similar to the one which was presented in the previous chapter.
Instead, as an example, we show that the two-point functions ⟨0| q(t)q(t′) |0⟩ of the
damped harmonic oscillator can be calculated alternatively using the bulk model.

Using the system plus reservoir model of the previous chapter, the two-point function
the damped harmonic oscillator reads

⟨0| q(t)q(t′) |0⟩ =
∫ ∞

0

dω

2π
dω′

2π CωCω′ exp
(
i(ω′t′ − ωt)

)
⟨0| aωa

†
ω′ |0⟩

=
∫ ∞

0

dω

2π C2
ω exp

(
iω(t′ − t)

)
=
∫ ∞

0

dω

2π
α2ω

(Ω2 − ω2)2 + α4ω2 exp
(
iω(t′ − t)

)
. (3.37)
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To calculate the same quantity using the bulk model, we need to write the action func-
tional (3.18) for the case of one dimensional damped harmonic oscillator with Γij ≡ γδij

and Υij ≡ 0,

S = 1
2

∫
dt

((
∂tq(t)

)2 − Ω2q2(t)
)

+ γ

2

∫
z>0

dtdz

((
∂tχ(z, t)

)2 −
(
∂zχ(z, t)

)2)
. (3.38)

Then the (classical) equation of motion for this Lagrangian becomes

(δ(z) + γ)χ̈(z, t) + Ω2 δ(z)χ(z, t) − γ ∂2
zχ(z, t) = 0. (3.39)

Going to the Fourier space χ(z, t) =
∫∞

0
dω
2π χω(z) exp(−iωt), the equation of motion

becomes
(∂2

z + ω2)χ(z) = δ(z) (−ω2 + Ω2)
γ

χω(z). (3.40)

The solution in the bulk (z > 0) is

χω(z) = A′
ω exp(iωz) +B′

ω exp(−iωz) (3.41)

with A′
ω and B′

ω to be determined through the boundary condition. Using the equation
of motion (3.40), the boundary condition reads∫ 0+

0−
dz (∂2

zχω(z)) = −ω2 + Ω2

γ
χω(0) (3.42)

→ ∂zχω(0) − 0 = −ω2 + Ω2

γ
χω(0). (3.43)

This, alongside the other boundary condition χω(0) = A′
ω +B′

ω results in

A′
ω = 1

2γ

(
iωγ + (−ω2 + Ω2)

iωγ

)
χω(0), B′

ω = (A′
ω)⋆ . (3.44)

Quantization for the alternative action means to write the field operator χ(z, t) in terms
of the creation and annihilation operators

χ(z, t) =
∫ ∞

0

dω

2π C
′
ω

((
Ã′

ω exp(iωz) + (Ã′
ω)⋆ exp(−iωz)

)
aω exp(−iωt) + H.C

)
. (3.45)

where Ã′
ω = A′

ω
χω(0) and B̃′

ω = B′
ω

χω(0) . The conjugate momentum to the field χ(z, t) is
Π(z, t) = γχ̇(z, t). Imposing the canonical quantization

[χ(z, t),Π(z′, t)] = iδ(z − z′) ,

one we obtain
C ′

ω = 1
2ω1/2|Ã′

ω|γ
= 1

2ω1/2|Ãω|
= Cω .
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Regarding the boundary condition χ(z = 0, t) = q(t), the two point correlation function
⟨0| q(t)q(t′) |0⟩ using the bulk model is

⟨0|χ(0, t)χ(0, t′) |0⟩

=
∫ ∞

0

dω

2π
dω′

2π C ′
ωC

′
ω′
(
Ã′

ω + (Ã′
ω)⋆)(Ã′

ω′ + (Ã′
ω′)⋆) exp

(
i(ω′t′ − ωt)

)
⟨0| aωa

†
ω′ |0⟩

=
∫ ∞

0

dω

2π C ′
ω

2 ∣∣Ã′
ω + (Ã′

ω)⋆
∣∣2 exp

(
iω(t′ − t)

)
=
∫ ∞

0

dω

2π
γω

(Ω2 − ω2)2 + γ2ω2 exp
(
iω(t′ − t)

)
(3.46)

which is the same as the correlation function (3.37) with γ = α2. This and other similar
calculations, however, are valid only for an example of damped harmonic oscillator. We
will address the applicability of the bulk model at the quantum level to the more general
case of position dependent dissipative couplings in chapter (6).
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Chapter 4

Open Quantum Dynamics On Lie
Group: The Linear Response
Regime

In this chapter, we first determine the most general interaction between a system which
nonlinearly realizes a symmetry and thermal bath. Then, we build the most general
influence functional of the dissipative dynamics which at the linear response level. We
define the S-K classical and quantum fields in a nonlinear way and we show that at
the high temperature, the influence functional allows for an expansion in terms of the
quantum field and time derivatives of the classical field.

4.1 Geometrical setup
We follow the conventions of the previous chapter which we briefly summarize here. We
consider a mechanical system moving on a group G with generators Gi, i = 1, . . . , n
obeying commutation relations1

[Gi, Gj ] = Ck
ijGk . (4.1)

The element of the group and the Cartan form are given by

g(q) = eqiGi , Ω = g−1dg = Ωi
j(q)dqjGi . (4.2)

The coefficients of the latter obey the structure relations,

∂Ωk
i

∂qj
−
∂Ωk

j

∂qi
= Ck

lmΩl
iΩm

j , (4.3)

where Ck
lm are the structure constants. More properties of the Cartan coefficients are

given in Appendix A1. We want the dynamics of the system to be left-invariant under
1We assume that the group is fully broken, so we are not going to distinguish broken/unbroken

generators.
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the action of the group:
g(q) 7→ g(q̃) = gL g(q) , (4.4)

so the Lagrangian must be built using the covariant velocities defined as

Dtq
i = Ωi

j(q)q̇j . (4.5)

we refer to the mechanical system as “body”.

The body interacts with a thermal bath described by some coordinates χ, the total
Hamiltonian of body+bath reads

Htot = Hsys +Hbath + V , (4.6)

where Hsys depends only on q, Hbath only on χ, and the interaction V on both. Fol-
lowing [Caldeira and Leggett 1981] we will assume that the effect of the system on the
bath degrees of freedom is weak and can be accounted for within the linear response
approximation. In practice, this means that we will keep only terms of order V 2 in the
perturbative expansion. The thermal bath is also assumed to possess the symmetry G,
which is realized linearly. As an example, one may imagine the motion of a rigid body
which nonlinearly realizes the group SO(3) of rotations and is rotating in a rotationally
symmetric viscous medium like a fluid or gas. The symmetry of the bath is implemented
by a unitary representation of G on the Hilbert space of the bath:

|Ψχ⟩ 7→ U(g) |Ψχ⟩ , U †(g)HbathU(g) = Hbath . (4.7)

Thus, without V , the system has two copies of the symmetry G × G. The interaction
breaks this symmetry to the diagonal subgroup, G× G → Gdiag. This requirement fixes
the form of the interaction:

V = U(q)Vχ U
†(q) , (4.8)

where we have introduced a shorthand notation U(q) ≡ U
(
g(q)

)
and Vχ depends only

on the bath coordinates degrees of freedom χ. It is easy to check explicitly that this
form is invariant under the action of Gdiag:

V 7→ U †(gL)U(q̃)Vχ U
†(q̃)U(gL) = U †(gL)U

(
gL g(q)

)
Vχ U

†(gL g(q)
)
U(gL)

= U †(gL)U
(
gL)U(q)Vχ U

†(q)U †(gL)U(gL) = V .

(4.9)

4.2 Linear response and time reversibility
We assume that the interaction depends only on the body coordinates, but not its
momenta, which appears to be satisfied in all realistic situations. Then the interaction
V (q, χ) at fixed bath variables χ, is a function on the group manifold. By Peter–Weyl
theorem any such function can be decomposed into matrix elements belonging to various

25

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy– Afshin Besharat; McMaster University– Department of
Physics & Astronomy

representations of the group, which gives the desired result,

V (q, χ) =
∑
raa′

U r
aa′(q)O†r

a′a(χ) . (4.10)

where U r
aa′(q) belongs to the irreducible representations of the group G, r labeling the

representation, and index a labels states inside the representation. For the interaction to
be Hermitian, the operators in the conjugate representations r and r̄ must be Hermitian
conjugate to each other,

O†r̄
a′a = (O†r

a′a)† ≡ Or
aa′ . (4.11)

For instance, consider a particle which is restricted to move on a circle. The phase space
of the particle is parameterized with its angular position on the circle, ϕ. The most
general interaction between the particle and the environment can be Fourier transformed
as

V = −
∞∑

m=−∞
eimϕ(t) Om

(
χ(t)

)
(4.12)

where Om(χ) is an operator defined on the phase space of the circle χ. In this example,
because the system realizes the U(1) symmetry, the interaction is parameterized by the
elements of the unitary representation of the U(1) group,

V (ϕ, χ) =
∑
m

Um(ϕ)Om(χ). (4.13)

where Um(ϕ) = eimϕ and matches with the Peter-Weyl’s theorem (4.10). In this ex-
ample, the friction and noise is induced through the exchange of angular momentum
between the particle and the environment. Let’s generalize (4.13) to the more compli-
cated case of SO(3), and then, guess the most general interaction between a body which
is parameterized by an arbitrary group and a bath which is invariant under the same
symmetry group. Rewriting (4.13) in terms of the Wigner rotation, then we have

VI(ϕ, χ) =
∑

m,m′,m′′

⟨m′|eiϕĴz |m⟩⟨m|Ô(χ)|m′′⟩ (4.14)

where eiϕĴz is the Wigner rotation around the z axis and we have used the fact that
⟨m′|eiϕĴz |m⟩ ∝ δm′m for U(1). For the case of SO(3), the Wigner’s rotation can be
parameterized by the Euler angles. Therefore, we need the following replacements to
adjust (4.14) to the case of SO(3),

⟨m′|eiϕĴz |m⟩ → ⟨jm′|eiγĴz eiβĴy eiαĴz |jm⟩ ≡ U j
m′m(α, β, γ), (4.15a)

⟨m|Ô(χ)|m′′⟩ → ⟨jm|Ô(χ)|jm′⟩ ≡ Oj
mm′′(χ), (4.15b)

where (α, β, γ) are the Euler angles parameterizing the phase space of the body (collec-
tively, we will show it by q). Therefore, the general interaction between the body which
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realizes SO(3) symmetry and a bath which is invariant under the group SO(3) reads

V (q, χ) =
∑

U j
mm′(q)Oj

m′m′′(χ) , (4.16)

where U j
mm′(q) are the Wigner’s matrices. This interaction shows that dissipation hap-

pens because of the exchange of the total angular momentum between the body and
the bath. Strictly, the Peter–Weyl theorem applies to compact groups. In the case of
noncompact groups, we still use the spectral decomposition which formally looks like
(4.11). For instance, in the case of a point particle moving in a plane, the interaction
between the particle and the bath is parameterized through the Fourier decomposition

V (q,x) =
∫
dk

2πe
ik.(q−x)Ok(x) , (4.17)

where x refers to a typical point on the plane.

To get a handle on the real-time dynamics we should consider the Schwinger–Keldysh
(SK) path integral. We now work with two copies of fields defined on the upper and lower
parts of the closed time-contour and denoted with subscripts “+” and “−”, respectively.
We want to integrate out the bath to obtain the dynamics purely in terms of the body
variables. This modifies the free body’s action functional, which is quantified by the
influence functional I[q+, q−]. At the linear response level, the effect of the bath will be
fully parameterized by the two-point functions of these operators, the type of the Green’s
function being determined by the precise question we are interested in.2 Introducing the
shorthands q± 1,2 ≡ q±(t1,2), then the influence functional at the linear response reads

I[q+, q−] = i

2

∫
dt1dt2

{
U †r

a′a(q+1)U s
bb′(q+2)Grs

aa′b′b(t1, t2)

+ U †r
a′a(q−1)U s

bb′(q−2)G̃rs
aa′b′b(t1, t2) − U †r

a′a(q−1)U s
bb′(q+2)Krs

aa′b′b(t1, t2)

− U †r
a′a(q+1)U s

bb′(q−2)K̃rs
aa′b′b(t1, t2)

}
, (4.18)

where sum over all indices is implied. Here, G and G̃ are the time ordered and anti-time
ordered Green’s functions

Grs
aa′b′b(t1, t2) = ⟨T

(
Or

aa′(t1)O†s
b′b(t2)

)
⟩ρχ ,

G̃rs
aa′b′b(t1, t2) = ⟨T̃

(
Or

aa′(t1)O†s
b′b(t2)

)
⟩ρχ , (4.19)

2This will hold even beyond the linear response, if the connected higher point function of Or
aa′ are

suppressed with respect to the disconnected ones, which is expected whenever the body interacts with
large number of bath degrees of freedom.
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and K, K̃ are the unordered ones

Krs
aa′b′b(t1, t2) = ⟨Or

aa′(t1)O†s
b′b(t2)⟩ρχ , (4.20a)

K̃rs
aa′b′b(t1, t2) = ⟨O†s

b′b(t2)Or
aa′(t1)⟩ρχ . (4.20b)

The invariance of the interaction (4.10) under the group action implies that Or
aa′

transforms in the linear representation r acting on the index a. Thus all the Green’s
functions must be diagonal3. Using this, and the time translation invariance we have,

Grs
aa′b′b(t1, t2) = δrsδab Gr

a′b′(t1 − t2) , G̃rs
aa′b′b(t1, t2) = δrsδab G̃r

a′b′(t1 − t2) (4.21a)

Krs
aa′b′b(t1, t2) = δrsδab Kr

a′b′(t1 − t2) , Krs
aa′b′b(t1, t2) = δrsδab Kr

a′b′(t1 − t2) (4.21b)

with G,K and their tilded counterparts being the reduced forms of the correlators. This
leads to a significant simplification of the influence functional,

I[q+, q−] = i

2

∫
dt1dt2

{
U r

a′b′(q+2 ⊖ q+1)Gr
a′b′(t1 − t2) + U r

a′b′(q−2 ⊖ q−1)G̃r
a′b′(t1 − t2)

− U r
a′b′(q+2 ⊖ q−1)Kr

a′b′(t1 − t2) − U r
a′b′(q−2 ⊖ q+1)K̃r

a′b′(t1 − t2)
}
,

(4.22)

where the “covariant difference” q2 ⊖ q1 is defined as follows:

g(q2 ⊖ q1) = g−1(q1) g(q2) , (4.23)

and we have used the identity

U r
a′b′(q2 ⊖ q1) =

∑
a

U †r
a′a(q1)U r

ab′(q2) . (4.24)

The next step is to introduce the spectral density, which we define it using the correla-
tors K,

Kr
a′b′(t) =

∫
dω e−iωt ϱr

a′b′(ω) . (4.25)

In a thermal bath with temperature T = 1/β the spectral density of the correlator K̃
with the opposite ordering of operators is related to that of K,

ϱ̃r
a′b′(ω) = e−βωϱr

a′b′(ω) . (4.26)

While this formula is standard, we include its derivation in Appendix A2 for complete-
ness. In addition, the densities are Hermitian and positive definite and are related with
the densities for complex conjugate representations through

ϱr̄
a′b′(ω) =

(
ϱ̃r

a′b′(−ω)
)∗
. (4.27)

3Here we are using the invariance of the bath density matrix under the action of G and time trans-
lations.
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We will additionally impose that the bath satisfies time reversal symmetry. The re-
quirement that the interaction Hamiltonian (4.10) is T-invariant leads to the following
conditions

TO†r
a′aT−1 = O†r̄

a′a , TOr
aa′T−1 = Or̄

aa′ . (4.28)

Further assuming that the bath density matrix is also T-invariant, we obtain for the
correlation functions,

⟨Or
aa′(t1)O†s

b′b(t2)⟩ρχ = ⟨TOr
aa′(t1)O†s

b′b(t2)T−1⟩∗
ρχ

= ⟨Or̄
aa′(−t1)O†s̄

b′b(−t2)⟩∗
ρχ
, (4.29)

where in the first equality we have used the fact that T is anti-unitary. This provides
an extra relation:

ϱr
a′b′(ω) =

(
ϱr̄

a′b′(ω)
)∗ = ϱ̃r

a′b′(−ω) , (4.30)

This concludes the implications of the symmetries. One more thing we need for an EFT
is a separation of scales. We can find it if we go to high temperatures.

4.3 High temperature limit
At high temperatures things simplify. In this regime one expects the correlation func-
tions to decay exponentially over some relaxation time scale set by the interplay of the
temperature and the interactions in the bath, which we call τ ∼ Λ−1. In general, Λ
will be lower than the temperature, coinciding with it in strongly interacting baths.
The scale Λ can, in principle, depend on the representation r. This does not seem to
change anything in the case of a compact group G whose unitary representations are
finite-dimensional and discrete — in this case we can simply choose Λ to be the minimal
scale among all representations (it is natural to expect Λ to grow with the rank of the
representation). The situation is, however, less clear for non-compact groups, such as
e.g. the group of translations. Their unitary representations are labeled by continuous
parameters which may bring additional scales to the problem (e.g. momentum of a par-
ticle moving in a medium). If Λ depends on this scale, it may become arbitrarily low
for some representations. Finite relaxation time implies that the spectral densities are
infinitely differentiable in the neighborhood of ω = 0 [Endlich et al. 2013]. Let us recall
the argument. It is sufficient to require the exponential decay of the retarded Green’s
functions, which describe the classical response of the system,

(Gret)rs
aa′b′b(t) = iθ(t)⟨[Or

aa′(t),O†s
b′b(0)]⟩ρχ = iδrsδab(Gret)r

a′b′(t) . (4.31)

Consider its Fourier transform,

Gret(ω) =
∫
dt eiωt Gret(t) , (4.32)
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where we have suppressed the group indices to avoid cluttered notations. It is related
to the spectral density introduced above as

Gret(ω) =
∫ +∞

−∞

−dω0
ω − ω0 + iϵ

(
1 − e−βω0

)
ϱ(ω0) , (4.33)

and is analytic in the upper half-plane of ω. If the retarded Green’s function decays
exponentially, |Gret(t)| < e−Λt, the domain of analyticity of Gret(ω) extends downwards
and includes a strip in the lower half-plane, Imω > −Λ, implying that its imaginary part
is infinitely differentiable on the real axis. On the other hand, it follows from (4.33) that

Im Gret(ω) = π
(
1 − e−βω)ϱ(ω) , (4.34)

and thus ϱ(ω) must be infinitely differentiable. This completes the argument. Due to
Eqs. (4.26), (4.30), (4.34) the Imaginary part of its Fourier transform is odd in frequency.
Thus, it is expanded as

(Im Gret)r
ab(ω) = πω

(
ϱr

0,ab + ω2

Λ2 ϱ
r
2,ab +O

(
(ω/Λ)4)) . (4.35)

Here Λ determines the domain of analyticity of the function (1 − e−βω)ϱ(ω) and hence
Λ−1 sets the response time of the bath. From this expression we infer the basic correlator
spectral density,

ϱr
ab(ω) = 1

β
ϱr

0,ab − ω

2 ϱ
r
0,ab + ω2

βΛ2

(
ϱr

2,ab + (βΛ)2

12 ϱr
0,ab

)
− ω3

2Λ2 ϱ
r
2,ab + . . . , (4.36)

ϱ̃(ω) = 1
β
ϱr

0,ab + ω

2 ϱ
r
0,ab + ω2

βΛ2

(
ϱr

2,ab + (βΛ)2

12 ϱr
0,ab

)
+ ω3

2Λ2 ϱ
r
2,ab + . . . . (4.37)

We see that the quadratic and cubic terms are controlled by a single set of coefficients
ϱr

2,ab. On general grounds, we expect the latter to be of order ϱr
0,ab.4

In what follows, we first consider the effect of the first two terms in the expansion
(4.3). After setting the Gaussian power-counting, we consider the correction to the
influence functional due to the higher order terms in (4.3).

4Though there may be special cases when ϱr
2,ab vanish, like e.g. in the ohmic harmonic bath.
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4.3.1 Leading order in local expansion

The expressions (4.3) restricted to the first two terms lead to ultralocal correlators,

Kr
ab(t) = 2π

β
ϱr

0,ab δ(t) + πiϱr
0,ab δ

′(t) , (4.38a)

K̃r
ab(t) = 2π

β
ϱr

0,ab δ(t) − πiϱr
0,ab δ

′(t) , (4.38b)

Gr
ab(t) = 2π

β
ϱr

0,ab δ(t) + πiϱr
0,ab δ

′(t) − 2πiϱr
0,ab θ(−t)δ′(t) , (4.38c)

G̃r
ab(t) = 2π

β
ϱr

0,ab δ(t) + πiϱr
0,ab δ

′(t) − 2πiϱr
0,ab θ(t)δ′(t) . (4.38d)

Substituting this into the influence functional (4.22) we obtain

I =iπ
β

∫
dt
[
2σ0(0) − σ0(q+ ⊖ q−) − σ0(q− ⊖ q+)

]
− π

2

∫
dt
[
∂iσ0(q− ⊖ q+)ui

j(q+ ⊖ q−)Dtq
j
+ − ∂iσ0(q+ ⊖ q−)ui

j(q− ⊖ q+)Dtq
j
−
]
.

(4.39)

where ui
j(q̄) matrix is the inverse of the Cartan’s matrix Ωi

j(q̄) defined by

ui
j(q)Ωj

k(q) = δi
k (4.40)

and σ0(q) a real even function on the group manifold

σ0(q) =
∑
rab

U r
ab(q)ϱ̂r

0,ab . (4.41)

Note that the effect of the bath is totally encoded in the function σ0(q) which no more
carries the group indices. Look at the appendix (A3) for the details of the calculation.

To understand the physical content of the expression (4.39), let us expand it under
the assumption that the difference between q+ and q− is small. The applicability of
this assumption will be discussed later. We introduce the split of the SK fields in the
“classical” (denoted with bar) and “quantum” (denoted with hat) parts as follows,

eq±G = eq̄Ge±q̂G . (4.42)

Note that q̂ is invariant under the left action of the symmetry group, while q̄ transforms
in the standard way. (4.39).

Gaussian order There are no contributions of order O(q̂) or O(Dt). Thus, the leading
contributions are of quadratic order O(q̂2), O(q̂Dt). Observing that q+ ⊖ q− = 2q̂, a
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straightforward calculation yields,

I[q̄, q̂]
∣∣∣
Gauss

=
∫
dt

(4i
β
γij q̂

iq̂j − 2γij q̂
iDtq̄

j
)
, (4.43)

where the couplings γij are defined through

γij = −π ∂i∂jσ0(0) . (4.44)

Using the Hubbard-Stratonovich, we can integrate out the quantum field q̂, leaving
us with an effective action which gives the state dependent Langevin equation for the
classical field q̄ with multiplicative Gaussian noise. The obtained Langevin equation is
a group covariant equation and the constants γij are the couplings of a state dependent
Ohmic dissipative force. A quick argument shows that these couplings are positive
definite, as a consequence of the positivity of the spectral densities. Indeed, within each
representation we can write,5

U r
ab(q) = δab + qi(Gi)r

ab + 1
2q

iqj(Gi)r
ac(Gj)r

cb +O(q3) , (4.45)

where (Gi)r
ab are anti-Hermitian matrices of the generators in the induced representation

of the algebra. Then we obtain,

qiqj ∂
2σR

∂qi∂qj

∣∣∣∣
q=0

=
∑

qiqj(Gi)r
ac(Gj)r

cbϱ
r
ab = −

∑
(ψr

c )∗
aϱ

r
ab(ψr

c )b < 0 , (4.46)

where in the second equality we introduced the vectors (ψr
c )b = qj(Gj)r

cb and used that
their complex conjugate are (ψr

c )∗
a = qj(Gj)∗r

ca = −qj(Gj)r
ac. The expression (4.43) has

the expected form covariantizing the high-temperature limit of the influence functional
of a harmonic bath [Feynman and Vernon Jr 2000].

The Gaussian part (4.43) sets the power-counting rules by the requirement that for
typical fluctuations of the fields it is of order 1. The first term determines the amplitude
of the quantum fields:

T

h̄2
γq̂2

ω
∼ 1 =⇒ q̂ ∼ h̄

√
ω

γT
, (4.47)

where we have restored the Planck constant and used β = h̄/T . From here we see that
expansion in q̂ is justified provided we work at the frequencies smaller than temperature
and/or the dissipation is strong enough, The second term then gives the amplitude of q̄
fluctuations in the overdampted regime,

γq̂q̄

h̄
∼ 1 =⇒ q̄ ∼

√
T

γω
. (4.48)

5Note that the quadratic term is fixed by the identity Ur
ab(−q)Ur

bc(q) = δac following from our defini-
tion of the group element in (4.2).
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It corresponds to the classical brownian motion with the distance from the initial point
growing as the square-root of time, q̄ ∼

√
(T/γ)t. In general, the classical fluctuations

will be reduced compared to this value at short time scales when the inertial term in the
SK action is non-negligible.

First quantum correction The cubic contribution vanishes as a result of the time-
reversal invariance, so we go directly to quartic contributions. A somewhat lengthy but
straightforward calculation yields,

I[q̄, q̂]
∣∣∣
NNLO

=
∫
dt

[
i

4
3βµijklq̂

iq̂j q̂kq̂l+
(
−4

3µijkl+
1
3γimC

m
jnC

n
kl

)
q̂iq̂j q̂kDtq̄

l−γimC
m
jkq̂

iq̂j ˙̂qk
]
,

(4.49)
with new couplings

µijkl = −π ∂i∂j∂k∂lσ0(0) (4.50)

forming a symmetric 4-index tensor in the configuration space of the body. Despite
this freedom, the structure of the correction (4.49) is quite constrained. The noise and
dissipative terms are linked to the same couplings with fixed coefficients, there is non-
trivial dependence on γim and the structure constants, etc. The frequency scaling of
different terms here is

1
h̄

∫
dt
µ

β
q̂4 ∼ 1

h̄

∫
dt µq̂3Dtq̄ ∼ µ

γ
· h̄

2ω

γT
,

1
h̄

∫
dt γq̂2 ˙̂q ∼ h̄2ω3/2

γ1/2T 3/2 , (4.51)

where we have restored h̄. Thus, the last term can be neglected at ω ≪ T/γ if µ ∼ γ.
Note that the noise generated by the quantum correction (4.49) is no more Gaussian.

4.3.2 Higher-derivative corrections

The influence functional receives further corrections from higher powers of ω in the
expansion of the spectral densities. These corrections are suppressed by the frequency
cutoff Λ which may be present even at the classical level. Thus, typically they are more
important than the non-Gaussian terms studied above. The purpose of this section is
to derive the leading higher-derivative corrections to the noise and friction terms. The
correlators receive additional contributions from the expansion of the spectral density
including the O(ω3) terms:

∆Kr
ab(t) = − 2π

βΛ2 ϱ̌
r
2,ab δ

′′(t) − iπ

Λ2 ϱ̂
r
2,ab δ

′′′(t) , (4.52a)

∆K̃r
ab(t) = − 2π

βΛ2 ϱ̌
r
2,ab δ

′′(t) + iπ

Λ2 ϱ̂
r
2,ab δ

′′′(t) , (4.52b)

∆Gr
ab(t) = − 2π

βΛ2 ϱ̌
r
2,ab δ

′′(t) − iπ

Λ2 ϱ̂
r
2,ab sign(t)δ′′′(t) , (4.52c)

∆G̃r
ab(t) = − 2π

βΛ2 ϱ̌
r
2,ab δ

′′(t) + iπ

Λ2 ϱ̂
r
2,ab sign(t)δ′′′(t) , (4.52d)
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where we have introduced

ϱ̌r
2,ab = ϱr

2,ab + (βΛ)2

12 ϱ̂r
0,ab . (4.53)

This generates additional terms in the influence functional. We separately consider
corrections to the noise and friction parts. For the noise part we obtain,

∆Inoise = − iπ

βΛ2

∫
dt
d2

dt′2
(
σ̌2(q+ ⊖ q′

+) + σ̌2(q− ⊖ q′
−) − σ̌2(q+ ⊖ q′

−) − σ̌2(q− ⊖ q′
+)
)∣∣∣

t′=t

= − iπ

βΛ2

∫
dt
{[
∂j∂lσ̌2(0)−∂i∂kσ̌2(−2q̂)ui

j(2q̂)uk
l (2q̂) + ∂iσ̌2(−2q̂)∂ku

i
j(2q̂)uk

l (2q̂)
]
Dtq

j
+Dtq

l
+

+
[
∂j∂lσ̌2(0)−∂i∂kσ̌2(2q̂)ui

j(−2q̂)uk
l (−2q̂) + ∂iσ̌2(2q̂)∂ku

i
j(−2q̂)uk

l (−2q̂)
]
Dtq

j
−Dtq

l
−

+ ∂iσ̌2(−2q̂)ui
j(2q̂)∂tDtq

j
+ + ∂iσ̌2(2q̂)ui

j(−2q̂)∂tDtq
j
−

}
,

(4.54)

where we have a new real even function on the group:

σ̌2(q) = σ2(q) + (βΛ)2

12 σ0(q) , σ2(q) =
∑
rab

U r
ab(q) ϱ̂r

2,ab . (4.55)

In deriving the expression (4.54) we have used Eqs. (A.3). This expression appears quite
lengthy, but its structure is transparent. It is symmetric under the exchange q̂ 7→ −q̂,
so it contains only even powers of the quantum fields, as appropriate for a noise term.

Next, we expand (4.54) to quadratic order in q̂. A lengthy but straightforward cal-
culation yields,

∆Inoise = i
4
βΛ2

∫
dt

{[
−µ̌2,ijkl+

1
3 γ̌2,imC

m
knC

n
jl+

2
3 γ̌2,kmC

m
inC

n
jl+

1
2 γ̌2,mnC

m
ikC

n
jl

]
q̂iq̂jDtq̄

kDtq̄
l

+
[
γ̌2,imC

m
jk − γ̌2,jmC

m
ik − γ̌2,kmC

m
ij

]
q̂i ˙̂qjDtq̄

k + γ̌2,ij
˙̂qi ˙̂qj

}
,

(4.56)

where

γ̌2,ij = γ2,ij + (βΛ)2

12 γij , γ2,ij = −π∂i∂jσ2(0) , (4.57a)

µ̌2,ijkl = µ2,ijkl + (βΛ)2

12 µijkl , µ2,ijkl = −π∂i∂j∂k∂lσ2(0) . (4.57b)
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In the overdamped regime the estimate of various terms here reads (restoring h̄):

1
h̄βΛ2

∫
dt µ̌2q̂

2(Dtq̄)2 ∼ µ̌2
γ

· ωT
γΛ2 ∋ µ2

γ
· ωT
γΛ2 ,

µ

γ
· h̄

2ω

γT
, (4.58a)

1
h̄βΛ2

∫
dt γ̌2q̂ ˙̂qDtq̄ ∼ γ̌2

γ
· ω

3/2T 1/2

γ1/2Λ2 ∋ γ2
γ

· ω
3/2T 1/2

γ1/2Λ2 ,
h̄2ω3/2

γ1/2T 3/2 , (4.58b)

1
h̄βΛ2

∫
dt γ̌2 ˙̂q2 ∼ γ̌2

γ
· ω

2

Λ2 ∋ γ2
γ

· ω
2

Λ2 ,
h̄2ω2

T 2 . (4.58c)

Comparing to Eqs. (4.51) we see that the new corrections are as important as the non-
Gaussian contributions whenever βΛ >> 1, and typically larger whenever βΛ << 1. We
again observe the characteristic frequency ω ∼ T/γ which divides the frequency regions
where different terms in (4.56) dominate.

We now turn to the friction part of the influence functional. A direct substitution of
the correlators (4.52) into the general expression (4.22) gives,

∆Ifric = π

2Λ2

∫
dt1dt2

[
σ2(q+2 ⊖ q+1) sign(t1 − t2) − σ2(q−2 ⊖ q−1) sign(t1 − t2)

− σ2(q+2 ⊖ q−1) + σ2(q−2 ⊖ q+1)
]
δ′′′(t1 − t2)

= − π

Λ2

∫
dt1dt2 θ(t2 − t1)

[
σ2(q+2 ⊖ q+1) − σ2(q−2 ⊖ q+1)

+ σ2(q+2 ⊖ q−1) − σ2(q−2 ⊖ q−1)
]
δ′′′(t1 − t2) ,

(4.59)

where in deriving the last expression we used the symmetry of the function σ2(q). Inte-
grating by parts we obtain schematically,

∆Ifric = π

Λ2

∫
dt

[
−δ′′(0)f(t, t)+3δ′(0)∂f(t, t′)

∂t′

∣∣∣
t′=t

−3δ(0)∂
2f(t, t′)
∂t′2

∣∣∣
t′=t

+θ(0)∂
3f(t, t′)
∂t′3

∣∣∣
t′=t

]
,

(4.60)
where by f(t2, t1) we denoted the combination in the square brackets in (4.59). The first
two terms vanish because f(t, t) = 0 and δ′(0) = 06. The third divergent term, however,
survives. Let us show that it can be absorbed by renormalization of the inertial term in

6This can be demonstrated more rigorously by introducing the regularization

δ(x) = lim
ϵ→+0

1
2πi

[
1

x − iϵ
− 1

x + iϵ

]
. (4.61)
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the body action. We have

∆Idiv
fric = −3π

Λ2 δ(0)
∫
dt
d2

dt′2
[
σ2(q+ ⊖ q′

+) − σ2(q− ⊖ q′
+) + σ2(q+ ⊖ q′

−) − σ2(q− ⊖ q′
−)
]∣∣∣

t′=t

=−3π
Λ2 δ(0)

∫
dt
{[
∂l∂jσ2(0)−∂k∂iσ2(−2q̂)uk

l (2q̂)ui
j(2q̂)+∂iσ2(−2q̂)∂ku

i
j(2q̂)uk

l (2q̂)
]
Dtq

l
+Dtq

j
+

+ ∂iσ2(−2q̂)ui
j(2q̂)∂tDtq

j
+ − (q+ ↔ q−)

}
.

(4.62)

Expansion to linear order in q̂ yields,

∆Idiv
fric = − 12

Λ2 δ(0)
∫
dt q̂i(γ2,ij∂tDtq̄

j + γ2,jlC
l
ikDtq̄

jDtq̄
k) . (4.63)

On the other hand, the proper action of the body reads

Sbody =
∫
dt

1
2JijDtq

iDtq
j , (4.64)

with Jij being its inertia tensor. This leads to the following contribution into the SK
functional:∫

dt
1
2Jij(Dtq

i
+Dtq

j
+ −Dtq

i
−Dtq

j
−) ≃ −2

∫
dt q̂i(Jij∂tDtq̄

j + JjlC
l
ikDtq̄

jDtq̄
k) , (4.65)

where we have used Eqs. (A.13) and integration by parts. Comparing this expression to
(4.63) we see that the divergence is absorbed by redefinition of the inertia tensor,

J renorm
ij = Jij + 6

Λ2 δ(0)γ2,ij . (4.66)

The last term in (4.60) produces a finite correction,

∆Ireg
fric = π

2Λ2

∫
dt
d3

dt′3
[
σ2(q+⊖q′

+)−σ2(q−⊖q′
+)+σ2(q+⊖q′

−)−σ2(q−⊖q′
−)
]∣∣∣

t′=t
, (4.67)

where we have used θ(0) = 1/2. Evaluating the third derivative and expanding to linear
order in q̂ we obtain

∆Ireg
fric = 1

Λ2

∫
dt
{[

2µ2,ijkl − γ2,jmC
m
knC

n
il

]
q̂iDtq̄

jDtq̄
kDtq̄

l

+
[
3γ2,kmC

m
ij + 3γ2,jmC

m
ik + γ2,imC

m
jk

]
q̂iDtq̄

j∂tDtq̄
k + 2γ2,ij q̂

i∂2
tDtq̄

j
}
.

(4.68)

Note that unlike the noise part, this contribution is suppressed by only Λ. Note that
this contribution is linear in q̂ and hence leads to modification of the classical equations
of motion. It gives rise to terms of cubic order in velocities and terms with velocity
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derivatives in the friction force. Such terms are indeed known to arise in explicit models
of Brownian particle interacting with heat bath [Van Kampen and Oppenheim 1986;
Plyukhin and Schofield 2003] and can lead to interesting signatures [Plyukhin and Froese
2007]. Note also that they cannot be reproduced by the bulk model of chapter (6), since
the latter has been devised to describe an exactly Ohmic friction force at the classical
level.
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Chapter 5

General Influence Functional At
High Temperature From DKMS
Condition

In the previous chapter, we saw that the fluctuation dissipation theorem related different
Green’s function to each other and as a result, reduced the freedom in the dissipative
coefficients. In addition, we integrated out the bath degrees of freedom in obtaining the
influence functional at the linear response level. While the formalism developed in the
previous chapter enlightens the mechanism of emergence of a universal description of
the dissipative dynamics, it is desired to use the symmetries of the microscopic degrees
of freedom, without directly referring to them. This chapter is devoted to this purpose.
The microscopic symmetries imply the Dynamical KMS (DKMS) condition. We use the
DKMS condition to obtain the most general influence functional of dissipative dynamics
defined on Lie group in the high temperature regime. While we derive the influence
functional at high temperature limit, we do not use the linear response approximation.
As a result, the influence functional of the dissipative dynamics from DKMS condition
has more freedom with respect to the one from the previous chapter.

5.1 Influence functional from DKMS symmetry
In this section we derive the most general high-temperature expansion of the influence
functional compatible with DKMS condition [Liu and Glorioso 2018; Akyuz et al. 2024;
Sieberer et al. 2015]. When the bath preserves time reversal, the latter is invariant under
the transformation of the fields on the two parts of the SK contour:

q′j
+(t) = qj

+(−t+ iβ/2) , q′j
−(t) = qj

−(−t− iβ/2) . (5.1)

In general this transformation is nonlocal, defining the new body coordinates in terms
of an analytic continuation of the original coordinates into the complex time plane. The
situation simplifies in the high-temperature limit corresponding to small β. In this case,
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the DKMS transformations can be written as infinite series in powers of β,

q′j
±(t) = qj

±(t′) ± iβ

2 q̇
j
±(t′) − β2

8 q̈j
±(t′) ∓ iβ3

48
...
q j

±(t′) + . . .
∣∣∣
t′=−t

. (5.2)

Note that in these expressions we first take the derivatives of the coordinates with respect
to time, and only afterwards flip its sign. For example, we have q̇±(t′)

∣∣
t′=−t

= −∂tq±(−t).
This should be kept in mind when taking further derivatives of the transformed fields.
Note also that the DKMS transformation introduces imaginary contributions and thus
requires complexification of the coordinates.

We need to rewrite the DKMS transformations (5.2) in terms of the “classical” and
“quantum” fields and apply them order-by-order in the high-temperature expansion of
the influence functional. We first discuss this procedure for the case of Abelian group G
realized as simple shifts of the coordinates. Then we will turn to the technically more
complicated, but conceptually equivalent, case of general non-Abelian G.

5.2 DKMS in the Abelian case
Since in this case the classical and quantum variables are linearly related to q±, we
readily find their DKMS transformations,

q̄′j(t) = q̄j(t′) + iβ

2
˙̂qj(t′) − β2

8
¨̄qj(t′) − iβ3

48
...
q̂

j(t′) + . . .
∣∣∣
t′=−t

, (5.3a)

q̂′j(t) = q̂j(t′) + iβ

2
˙̄qj(t′) − β2

8
¨̂qj(t′) − iβ3

48
...
q̄ j(t′) + . . .

∣∣∣
t′=−t

. (5.3b)

The symmetry G acts as constant shifts on the classical variables q̄, while leaving q̂
intact. Our task is to write down the most general influence functional compatible with
this symmetry and impose further invariance under (5.3). Since we work in the high-
temperature limit, the influence functional represents an expansion in powers of q̂, ˙̄q and
their derivatives. We observe that application of (5.3) does not change the overall power
of q̂, q̄ in an expression, so the sectors with different powers of these variables can be
analyzed separately.

5.2.1 Quadratic sector

We write the most general local quadratic expression containing the invariant fields q̂i

and ˙̄qi, retaining term with up to two additional time derivatives acting on these fields.
Taking into account that the influence functional must vanish if q̂ = 0 and inserting
appropriate powers of β to keep the coefficients dimensionless we obtain,

I(2) =
∫
dt
(
β−1aij q̂

iq̂j +bij q̂
i ˙̄qj +cij q̂

i ˙̂qj +βdij q̂
i ¨̄qj +βeij

˙̂qi ˙̂qj +β2fij q̂
i ...
q̄ j + . . .

)
. (5.4)

The influence functional must change sign under the reflection q̂ 7→ −q̂ accompanied by
complex conjugation [Liu and Glorioso 2018; Akyuz et al. 2024]. Hence the coefficients
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aij , cij , eij are purely imaginary, whereas bij , dij , fij are real. Note that aij and eij

are symmetric by definition, whereas there are no a priori symmetry constraints on the
rest of the coefficients. Now, we substitute here the transformations (5.3) and require
that the influence functional remain the same at each order in β. We don’t get any
constraints at the order β−1, whereas at other orders we have:

β0 :
∫
dt
(
(iaij − bij)q̂i ˙̄qj − cij q̂

i ˙̂qj) =
∫
dt(bij q̂

i ˙̄qj + cij q̂
i ˙̂qj) , (5.5a)

β1 :
∫
dt

[(
− aij

4 − ibij

2

)
( ˙̄qi ˙̄qj − ˙̂qi ˙̂qj) + i

2(cji − cij)q̂i ¨̄qj + dij q̂
i ¨̄qj + eij

˙̂qi ˙̂qj
]

=
∫
dt(dij q̂

i ¨̄qj + eij
˙̂qi ˙̂qj) , (5.5b)

β2 :
∫
dt

[(
− iaij

6 + bij + bji

4 − ieij − fij

)
q̂i ...
q̄ j +

(
cij

4 + idij

2

)
˙̄qi ¨̄qj

]
=
∫
dtfij q̂

i ...
q̄ j ,

(5.5c)

β3 :
∫
dt

(
− aij

48 − ibij

12 − eij

4 + ifij

2

)
¨̄qi ¨̄qj = 0 . (5.5d)

In deriving these equations we used integration by parts and in Eqs. (5.5c), (5.5d)
neglected terms with three or more derivatives of q̂, ˙̄q. It is worth noting that in this
derivation we needed the expansion of q̄ only through order O(β2), whereas the full
expansion of q̂ through order O(β3) was used.

Equation (5.5a) implies
bij = i

2aij . (5.6)

This is nothing but the classical fluctuation dissipation theorem, which in particular
implies that bij is symmetric. It is of course satisfied by the influence functional (4.43)
obtained within the linear response theory, with the identification

aij = 4iγij , bij = −2γij . (5.7)

For cij we get that the integral
∫
dt cij q̂

i ˙̂qj must be zero. This is possible if cij is sym-
metric, so that the integrand is a total derivative. However, this is the same integral as
in (5.4), implying that this term can be safely dropped. Thus, without loss of generality,
we set cij = 0. This, together with the relation (5.6) implies that Eq. (5.5b) is identically
satisfied for any choice of dij and eij .

Equation (5.5c) gives further non-trivial relations. We read from it

fij = − i

2eij + i

24aij , (5.8)

where we have used the relation (5.6). We see that fij is symmetric. Lastly, dij must also
be symmetric, in order for the last term on the l.h.s. of (5.5c) to integrate to zero. Then
this term has the same structure as the one coming from the proper kinetic Lagrangian
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of the body (cf. Eq. (4.64)) and can be absorbed into renormalization of its parameters.
Thus, we can set dij = 0. Finally, the last Eq. (5.5d) is identically satisfied, provided
the relations (5.6) and (5.8) hold.

Identifying
fij = 2

(βΛ)2γ2,ij , (5.9)

according to Eq. (4.68) and using (5.7) we find

eij = 4i
(βΛ)2

(
γ2,ij + (βΛ)2

12 γij

)
, (5.10)

which matches with the last term in Eq. (4.56). We conclude that at the quadratic level
the linear response theory provides the most general SK functional, up to the next to
the leading order noise terms.

5.2.2 Quartic sector

We now turn to the quartic terms, postponing the discussion of cubic order for later.
Here we are interested in terms containing just q̂ and ˙̄q, without any additional time
derivatives. The most general influence functional of this form reads:1

I(4) =
∫
dt
(
β−1Aijklq̂

iq̂j q̂kq̂l +Bijklq̂
iq̂j q̂k ˙̄ql +βDijklq̂

iq̂j ˙̄qk ˙̄ql +β2Eijklq̂
i ˙̄qj ˙̄qk ˙̄ql) , (5.11)

where the coefficients Aijkl, Dijkl are imaginary, and Bijkl, Eijkl are real. They have the
obvious symmetry properties with respect to permutation of indices

Aijkl = A(ijkl) , Bijkl = B(ijk)l , Dijkl = D(ij)(kl) , Eijkl = Ei(jkl) , (5.12)

where round brackets mean symmetrization. Application of the DKMS transformations
to (5.11) is simplified by the observation that with our restriction on the number of
derivatives it is sufficient to keep only the leading term in (5.3a) and the first two terms
in (5.3b). Working again order by order in β we get the conditions

β0 :
∫
dt(2iAijkl −Bijkl)q̂iq̂j q̂k ˙̄ql =

∫
dtBijklq̂

iq̂j q̂k ˙̄ql , (5.13a)

β1 :
∫
dt

(
− 3

2Aijkl − 3i
2 Bijkl +Dijkl

)
q̂iq̂j ˙̄qk ˙̄ql =

∫
dtDijklq̂

iq̂j ˙̄qk ˙̄ql , (5.13b)

β2 :
∫
dt

(
− i

2Aijkl + 3
4Bijkl + iDijkl − Eijkl

)
q̂i ˙̄qj ˙̄qk ˙̄ql =

∫
dtEijklq̂

i ˙̄qj ˙̄qk ˙̄ql , (5.13c)

β3 :
∫
dt

( 1
16Aijkl + i

8Bijkl − 1
4Dijkl − i

2Eijkl

)
˙̄qi ˙̄qj ˙̄qk ˙̄ql = 0 . (5.13d)

1We do not use Cijkl for the coefficients to avoid confusion with the structure constants.
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The first equation implies,
Bijkl = iAijkl , (5.14)

so that Bijkl is totally symmetric. This replicates the structure of the next to the leading
order noise contributions (4.49) in the linear response case with the identification,2

Aijkl = 4i
3 µijkl , Bijkl = −4

3µijkl . (5.15)

Next Eq. (5.13b) does not bring new conditions, whereas Eq. (5.13c) implies

Eijkl = i

2Di(jkl) + i

8Aijkl . (5.16)

Note symmetrization over last three indices on the r.h.s. The last Eq. (5.13d) is then
satisfied identically.

It is straightforward to verify that the coefficients of the quartic terms in the linear-
response functional (4.56), (4.68) obey the condition (5.16), but do not present the
most general solution to it. Indeed, the tensors µ2,ijkl, µ̌2,ijkl are totally symmetric,
whereas (5.16) contains an arbitrary tensor Dijkl possessing smaller symmetry (5.12).
We conclude that the linear response case provides a restricted solution to the general
DKMS conditions.

5.2.3 Cubic sector

Let us come back to the cubic terms. We don’t have any such terms in the linear response
theory for Abelian G, so one may wonder if they are allowed by the DKMS symmetry
at all. We are going to see that the answer is affirmative.

Proceeding as before, we start by writing the most general local functional of cubic
order in q̂ and ˙̄q. We restrict to terms having at most one more additional derivative.
We have:

I(3) =
∫
dt
(
β−1gijkq̂

iq̂j q̂k + hijklq̂
iq̂j ˙̄qk + lijkq̂

iq̂j ˙̂qk

+ βmijkq̂
i ˙̄qj ˙̄qk + βnijkq̂

i ˙̂qj ˙̄qk + β2oijkq̂
i ˙̄qj ¨̄qk). (5.17)

Any other cubic term can be reduced to one of this set using integration by parts. The
coefficients hijk and nijk are imaginary and the rest are real. The first four tensors
possess permutation symmetries,

gijk = g(ijk) , hijk = h(ij)k , lijk = l(ij)k , mijk = mi(jk) , (5.18)

whereas all components of nijk, oijk are a priori independent.

The restriction to one-derivative level allows us to keep only the first term in the
DKMS transformation (5.3a) and two first terms in (5.3b). We obtain the following

2Recall that we are working here with Abelian symmetry, so the structure constants vanish.
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conditions:

β0 :
∫
dt

[(3i
2 gijk − hijk

)
q̂iq̂j ˙̄qk − lijkq̂

iq̂j ˙̂qk
]

=
∫
dt(hijkq̂

iq̂j ˙̄qk + lijkq̂
iq̂j ˙̂qk) ,

(5.19a)

β1 :
∫
dt

[(
− 3

4gijk − ihijk +mijk

)
q̂i ˙̄qj ˙̄qk + (−ilikj + ilijk + nijk)q̂i ˙̂qj ˙̄qk

]
=
∫
dt
(
mijkq̂

i ˙̄qj ˙̄qk + nijkq̂
i ˙̂qj ˙̄qk) , (5.19b)

β2 :
∫
dt

[(
− i

8gijk+ 1
4hijk+ i

2mijk

)
˙̄qi ˙̄qj ˙̄qk+

(1
2(lijk−ljki)+ i

2(nikj −njik−nkij)−oijk

)
q̂i ˙̄qj ¨̄qk

=
∫
dt oijkq̂

i ˙̄qj ¨̄qk , (5.19c)

β3 :
∫
dt

(
i

8 lijk − 1
4nikj − i

2oijk

)
˙̄qi ˙̄qj ¨̄qk = 0 . (5.19d)

The first equation implies

hijk = 3i
4 gijk , lijk = 0 . (5.20)

Then Eq. (5.19b) is automatically satisfied. Next, Eq. (5.19c) leads to conditions:

gijk = −8m(ijk) , oijk = i

4(nikj − njik − nkij) . (5.21)

Substituting the last relation into Eq. (5.19d) we obtain a further restriction

n(ijk) = 0 . (5.22)

We see that the cubic terms are parameterized by two three-index tensors: an arbitrary
tensor mijk and a tensor nijk whose symmetrized part vanishes. Both these tensors
contribute into the classical response of the system: mijk directly, whereas nijk through
the tensor oijk which multiplies a term linear in q̂.

Due to the condition (5.22), the n-part of the influence functional also vanishes for
a general (non necessarily ohmic) system with less than 3 degrees of freedom. On the
other hand, the m-part can be present already for a system with a single coordinate x
and corresponds to a contribution in the friction force quadratic in velocity v ≡ ẋ,

∆F = (β/2)mv2 . (5.23)

This contribution has the same sign for forward and backward motion and thus violates
parity x ↔ −x. Alternatively, it can be viewed as a velocity-dependent friction coeffi-
cient, γ 7→ γ− (β/2)mv. As already noted, such force contribution does not arise within
the linear response approximation. In the language of chapter (4) it should come from
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the three- and higher-point correlators of the bath operators O(χ). An example of a
system that can give rise to such force is shown in Fig. 5.1. It represents an asymmetric
particle moving along a wall in a viscous fluid or gas. The particle is confined to the wall
by an external potential. Assuming that the fluid obeys the sticky boundary conditions,
the friction is stronger when the particle is closer to the wall. When the particle moves
left (Fig. 5.1, left panel) the fluid exerts, along with the friction force in the x direction,
also a force Fy in the upward direction. This pushes the particle’s away from the wall
thereby reducing the friction. Conversely, when the particle moves right (Fig. 5.1, right
panel), fluid pushes it closer to the wall and the friction coefficient increases.

x

x

y

v

Fy

F x

x

y

v

Fy

F

Figure 5.1: Asymmetric particle moving close to a wall in a viscous
fluid. Left: When particle moves to the left, it is pushed by the fluid away
from the wall, reducing friction. Right: When the particle moves to the
right, it is pushed towards the wall, increasing friction.

5.3 DKMS for non-Abelian groups
In the non-Abelian case the DKMS transformations of q± are still given by Eqs. (5.2).
However, the non-linear relations between q± and q̄, q̂ lead to technical complications.
In general, these relations cannot be found in closed form. The best one can do is to
write them in the form of expansions in the quantum variable q̂. These are derived in
Appendix (A4). Here it is convenient to write the result in terms of the symmetric and
anti-symmetric combinations,

qi
+ + qi

− = 2q̄i + ul
m∂lu

i
j q̂

mq̂j +O(q̂4) , (5.24a)

qi
+ − qi

− = 2ui
j q̂

j + 1
3
(
um

s u
l
n ∂m∂lu

i
j + um

s ∂mu
l
n ∂lu

i
j

)
q̂sq̂nq̂j +O(q̂5) , (5.24b)

where all inverse Cartan coefficients ui
j and their derivatives are evaluated at the classical

field q̄. We have to substitute these equations into (5.2) and re-expand the resulting
expressions. In this process we treat βDtq̄ as being of the same order as q̂; an extra time
derivative adds one more order.
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The leading-order DKMS transformations represent a simple covariantization of the
Abelian case:

q̄′i(t) = q̄i(−t) +O(q̂2) ⇔ Dtq̄
′i(t) = −Dtq̄

i(t′) +O(q̂ ˙̂q)
∣∣∣
t′=−t

, (5.25a)

q̂′i(t) = q̂i + iβ

2 Dtq̄
i +O(q̂3)

∣∣∣
t′=−t

. (5.25b)

Next, we combine (5.2) with (5.24a) and using the identity

ul
m∂lu

i
j − ul

j∂lu
i
m = ui

nC
n
mj . (5.26)

obtain through order O(q̂2):

q̄′i(t) = q̄i + iβ

2 u
i
j

˙̂qj − iβ

4 u
i
lC

l
jmq̂

jDtq̄
m − β2

8 ui
j∂tDtq̄

j +O(q̂4)
∣∣∣
t′=−t

. (5.27)

The first two and the last terms here are analogous to the Abelian transformation (5.3a),
whereas the third term represents a non-Abelian correction. For later use we also give
the transformation of the covariant derivative:

Dtq̄
′k(t) = −Dtq̄

k − iβ

2
¨̂qk + 3iβ

4 Ck
ij

˙̂qiDtq̄
j + iβ

4 C
k
ij q̂

i∂tDtq̄
j + iβ

4 C
k
jnC

n
il q̂

iDtq̄
jDtq̄

l

+ β2

8 ∂2
tDtq̄

k + β2

8 Ck
ijDtq̄

i∂tDtq̄
j +O(q̂3 ˙̂q)

∣∣
t′=−t

.

(5.28)

In the last iteration we combine (5.2) with (5.24b) and use (5.27) to obtain the trans-
formation of q̂ through cubic order. The computation is rather tedious and is described
in Appendix A4. Here we present the result:

q̂′k(t) =q̂k + iβ

2 Dtq̄
k + iβ

4 C
k
ij q̂

i ˙̂qj − iβ

12C
k
inC

n
jl q̂

iq̂jDtq̄
l − β2

8
¨̂qk + β2

4 Ck
ij

˙̂qiDtq̄
j

+ β2

12C
k
jnC

n
il q̂

iDtq̄
jDtq̄

l − iβ3

48 ∂
2
tDtq̄

k − iβ3

24 C
k
ijDtq̄

i∂tDtq̄
j +O(q̂5)

∣∣∣
t′=−t

.

(5.29)

We now have all required ingredients for imposing the DKMS symmetry on the influence
functional. Unlike the Abelian case, the DKMS transformations now mix terms of
different orders in the number of fields. However, they still preserve the separation into
even and odd terms (even or odd powers of q̂ ≡ β∂tq̄), so it is convenient to split the
analysis accordingly.
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Even orders

We write the general expression:

Ieven =
∫
dt
(
β−14iγij q̂

iq̂j − 2γij q̂
iDtq̄

j + βeij
˙̂qi ˙̂qj + β2fij q̂

i∂2
tDtq̄

j

+ lijkq̂
iq̂j ˙̂qk + βnijkq̂

i ˙̂qjDtq̄
k + β2oijkq̂

iDtq̄
j∂tDtq̄

k

+ β−1Aijklq̂
iq̂j q̂kq̂l +Bijklq̂

iq̂j q̂kDtq̄
l + βDijklq̂

iq̂jDtq̄
kDtq̄

l

+ β2Eijklq̂
iDtq̄

jDtq̄
kDtq̄

l),
(5.30)

where we have already used the leading-order fluctuation-dissipation theorem in express-
ing the first two coefficients through the dissipative tensor. In going to the next order,
we need to use the full DKMS transformations (5.28), (5.29) only in the first two terms:
the rest of the terms are already subleading, and thus it is sufficient to transform them
using the leading-order version (5.25). As in the Abelian case, we derive the constraints
order by order in β. Omitting the details of the calculation we obtain:

Order β0:
lijk = −γ(imC

m
j)k , Bijkl = iAijkl + 1

3γ(imC
m
jnC

n
k)l . (5.31)

We observe that these relations coincide with the linear-response result (4.49) once we
identify Aijkl = (4i/3)µijkl.

Order β1 does not lead to any constraints.

Order β2:

fij = − i

2eij − 1
6γij , (5.32a)

oijk = − 1
12γinC

n
jk − 1

4γjnC
n
ik − 1

4γknC
n
ij + i

4(nikj − njik − nkij) , (5.32b)

Eijkl = i

2Di(jkl) + i

8Aijkl − 1
12γn(jC

n
kmC

m
l)i (5.32c)

Order β3 produces the condition (5.22).

One can verify that the coefficients in the linear-response expressions (4.56), (4.68)
satisfy all above constraints. They do not, however, provide the general solution. The
latter is parameterized by the symmetric tensors γij and Aijkl, the tensor Dijkl with
the symmetry Dijkl = D(ij)(kl), and the tensor nijk without any symmetry, but which
vanishes upon complete symmetrization. Yet more free parameters appear in the odd
sector.
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Odd orders

Here the general expression has the form,

Iodd =
∫
dt
(
cij q̂

i ˙̂qj + βdij q̂
i∂tDtq̄

j + β−1gijkq̂
iq̂j q̂k + hijkq̂

iq̂jDtq̄
k + βmijkq̂

iDtq̄
jDtq̄

k) .
(5.33)

Since we neglect terms O(q̂5), it is sufficient to consider only the leading-order DKMS
transformations (5.25). Then at different orders in β we obtain the conditions:

Order β0:
cij = 0 , hijk = 3i

4 gijk , (5.34)

Order β1 yields no conditions.

Order β2:
dij = d(ij) , gijk = −8m(ijk) . (5.35)

We observe that these are the same relations as in the Abelian case, see the first equations
in (5.20), (5.21). As in that case, dij can be absorbed into redefinition of the kinetic
Lagrangian of the body. Since the euations of motion contain a contribution quadratic
in the covariant velocities (cf. Eq. (4.65)), we need to simultaneously redefine the tensor
mijk:

mijk 7→ m̃ijk = mijk + dn(jC
n
k)i . (5.36)

Note that such redefinition is compatible with the DKMS conditions and does no affect
gijk or hijk.

5.4 Reduction for ohmic friction
The freedom present in the general influence functional is significantly reduced when
the classical response of the heat bath is strictly ohmic. This corresponds to setting all
subleading terms linear in q̂ to zero:

fij = oijk = Eijkl = dij = mijk = 0 . (5.37)

Due to Eqs. (5.34), (5.35) the odd part of the SK functional then vanishes identically.
Whereas in the even sector all coefficients get expressed in terms of γij and a four-tensor
νijkl with the symmetries

νijkl = ν(ij)(kl) = ν(kl)(ij) . (5.38)

.
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Let us work out these expressions. First, Eq. (5.32a) implies for vanishing fij the
relation

eij = i

3γij . (5.39)

Second, Eq. (5.32b) for zero oijk can be written as

nikj + i

3γinC
n
jk = (njik − iγjnC

n
ik) + (nkij − iγknC

n
ij) . (5.40)

The r.h.s. is symmetric in (j ↔ k), so the same holds for the tensor

ñijk = nijk + i

3γinC
n
kj . (5.41)

Substituting this into the previous equation we have

ñijk = ñjik + ñkij − 2i
3 γjnC

n
ik − 2i

3 γknC
n
ij (5.42)

On the other hand, due to Eq. (5.22), ñijk obeys the cyclic property, so

ñijk = −ñjki − ñkij . (5.43)

Combining these relations we obtain

ñijk = − i

3γjnC
n
ik − i

3γknC
n
ij , (5.44)

and finally
nijk = i

3(γinC
n
jk − γjnC

n
ik − γknC

n
ij) . (5.45)

This is precisely the form derived in the linear response theory, cf. Eq. (4.56). This term
is a firm prediction of the theory determined only by γij and the structure constants.

For quartic terms, Eq. (5.32c) with vanishing l.h.s. implies,

Di(jkl) + i

6γn(jC
n
kmC

m
l)i = −1

4Aijkl . (5.46)

Let us introduce

νijkl = 3iDijkl − 1
4
(
γnjC

n
kmC

m
li + γniC

n
kmC

m
lj + γnjC

n
lmC

m
ki + γniC

n
lmC

m
kj

)
. (5.47)

Clearly, this satisfies the first symmetry property in (5.38). At the same time we have

νi(jkl) = −3i
4 Aijkl . (5.48)

Then using the derivation from the end of Sec. 5.2.2 we find that it also possesses the
second symmetry in (5.38). Clearly, Dijkl, Aijkl and hence Bijkl are expressed through
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it, so it completely determines the quartic sector of the SK functional.

In the next chapter, we show that the generalization of the bulk model of chapter 3
provides the influence functional with a general νijkl with the properties (5.38). This
proves that there are no further restrictions imposed by Ohmic friction.
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Chapter 6

The Bulk Model: The
Shwinger-Keldysh Approach

In this chapter, we come back to bulk model. This time, we relax the assumption of the
purely outgoing solution to address the corrections and noise and quantum correction via
the bulk model. Using the Schwinger-Keldtsh technique, we integrate out the bath and
show that the obtained influence functional matches with the prediction of the dynamical
KMS symmetry of the previous chapter for the strictly Ohmic dissipation.

Let’s recall the classical bulk model which is restricted to the motion on coset with
time-reversal symmetry; it is the action functional of a nonlinear sigma model without
the gyroscopic term term.

S[χ(z, t)] = 1
2

∫
z,t

(
γijDµχ

i(z, t)Dµχj(z, t)

+ 2ν̃ijkl

M2 Dµχ
i(z, t)Dµχj(z, t)Dµχ

k(z, t)Dµχl(z, t)
)
,

(6.1)

where a higher order term has been added as based on the symmetry argument, we
can have it in the Lagrangian. The energy scale M has been introduced to make the
coupling constant ν̃ijkl dimensionless. Adding this term at the classical level does not
change the form of the Ohmic dissipative force as it vanishes onsell. The higher order
term, however, can be important in addressing the noise and quantum corrections.

We consider the bulk at temperature T = 1
β with fixed values of the fields at the

boundary χ±|z=0 = q±. With this, the influence functional of the system at z = 0 reads

eiI[q+,q−] =
∫

χ±
i (z=0)=q±

ρ(χ+
i (z), χ−

i (z))
∫ χ+(z,tf )=χ−(z,tf )

χ±(z,ti)=χ±
i (z)

eiS[χ+]−iS[χ−]. (6.2)

Note the boundary conditions on χ’s at z = 0: this is where the dependence on the
system’s coordinates q comes in. Since the density matrix for non-linear sigma model
can also be recast in the form of the (Euclidean) path integral, the computation of I
reduces to evaluating two path integrals. Having obtained experience with dynamical
KMS symmetry we will organize the computation as a perturbation series in derivatives
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and (suitably defined) quantum variables. We will not be able to integrate anything
exactly, but we can make progress with saddle point approximation.

6.1 geometric formulation
Let’s start with the leading order operators and ignore the ν̃ijkl at the leading order.
We will come back to this higher order term at the final section. In this case, we can get
help from the geometrical structure of the nonlinear sigma model to obtain the influence
functional. Let’s start start with a few definitions. Firstly, we introduce the metric in
the target space

gij(χ) = γi′j′Ωi′
i(χ)Ωj′

j(χ) . (6.3)

Secondly, we define a new field χi(z, t; s) ≡ χi
(s) that interpolates between χ− and χ+

along the geodesic

d2χi(z, t; s)
ds2 + Γi

jk[χ] χj(z, t; s)χk(z, t; s) = 0 ,

χi(z, t; ±1) = χi
±(z, t) (6.4)

with Γ being Christoffel symbols compatible with the metric g. The classical and quan-
tum fields are defined via

Φi(z, t) = χi(z, t; s = 0) ≡ classical field , (6.5a)

ξi(z, t) = dχi(z, t; s)
ds

∣∣∣∣∣
s=0

≡ quantum field . (6.5b)

For convenience we denote the classical and quantum fields at the boundary by

ξi(z = 0, t) = ζi(t), Φi(z = 0, t) = φi(t). (6.6)

Note that the definition of the classical and quantum fields in (6.6) is different from the
one in (4.42). The two definitions can be related perturbatively as it is shown in the
appendix A6,

φi(t) = q̄i(t) + ui
i′(q̄)
4 Si′

l1l2 q̂
l1(t)q̂l2(t) +O

(
q̂3
)
, (6.7a)

Ωi
i′(φ)ζi′ = q̂i +

(
− 1

12S
i
(l1jS

j
l2l3) + 1

6C
i
(l1jS

j
l2l3)

)
q̂l1 q̂l2 q̂l3 +O(q̂4) . (6.7b)

In this equation the tensor S defined through

Si′
l1l2 = γi′n′ (

Cs
n′l1γsl2 + Cs

n′l2γsl1

)
. (6.8)

Note that, to the leading order in quantum field, the two definitions of classical field coin-
cide while the two definitions of quantum field are related to each other by q̂i = Ωi

i′(φ)ζi′ .
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Finally the condition on χ± to coincide at t = tf translates into the requirement

ξ
∣∣∣
t=tf

= 0 . (6.9)

Fields alone are not enough, we also need their derivatives. Geometrically, one should
think of Φi’s as new coordinates on the target space manifold, and ξi’s as (components
of) vector fields. Then the usual definition for covariant derivative gives:

∇iξ
j = ∂

∂Φi
ξj + Γj

ik(Φ)ξk (6.10)

In this equation, the Christoffel symbol Γi
jk(Φ) defined through

Γi
jk(Φ) = gil(Φ)

2
(
∂jgkl(Φ) + ∂kgjl(Φ) + ∂lgkj(Φ)

)
(6.11)

where ∂a stands for ∂
∂Φa . Finally, we will need the Riemann tensor, and we define it in

the usual way:
Ri

jkl(Φ) = ∂kΓi
jl(Φ) + Γi

kn(Φ)Γn
jl(Φ) − (k → l) (6.12)

In the limit ξi ≪ Φi, the action functionals S [χ±] can be written as the functionals of
Φa(z, t) and ξa(z, t) perturbatively. Taylor expanding the S[χ±] around the background
functional S[χ(z, t; s = 0)], we have

S[χ±] = S[χ(z, t; s = 0)]

± d

ds
(S[χ(z, t; s)])|s=0 + 1

2!
d2

ds2 (S[χ(z, t; s)])|s=0 ± 1
3!
d3

ds3 (S[χ(z, t; s)])|s=0 + ... .

(6.13)

This results in series expansion of the Schwinger-Keldysh action functional of the form

S [χ+] − S [χ−] = S(1)[Φ, ξ] + S(3)[Φ, ξ] + · · · , (6.14)

with

S(1)[Φ, ξ] = 2 d
ds

(S[χ(z, t; s)])|s=0 =
∫

t,z
2gij(Φ)∇µξ

i(z, t)∂µΦj , (6.15a)

S(3)[Φ, ξ] = 1
3
d3

ds3 (S[χ(z, t; s)])|s=0

= 1
3

∫
t,z

∇mRijkl(Φ) ξj(z, t) ξk(z, t)ξm(z, t)∂µΦi(z, t)∂µΦl(z, t)

+ 4
3

∫
t,z
Rijkl(Φ) ξj(z, t) ξk(z, t)∂µΦi(z, t)∇µξl(z, t)) ,

(6.15b)
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where we have used the definition (6.5), the geodesic equation in the target space (6.4),
and the definition of the Riemann tensor (6.12). To perform the computation of the path
integral (6.39), we first need to calculate the thermal density matrix ρ. This is done in
the next section where we calculate the high temperature thermal density matrix. The
thermal density matrix mixes the forward in time and backward in time waves through
imposing boundary conditions at t = ti. The contribution from the thermal density
matrix would add another perturbative series (6.14), resulting in an effective action
Seff . Let’s obtain this effective action.

6.2 The Density Matrix At High Temperature
The thermal density matrix of the bulk model bath at temperature T = 1

β can be
obtained through the following Euclidean path integral

ρβ[χ1(z), χ2(z)] =
∫ χ(z,τ=β/2)=χ2(z)

χ(z,τ=−β/2)=χ1(z)
[Dχ] e−SE [χ(z,τ)], (6.16)

where SE [χ(z, τ)] is the Euclidean action of the bath and τ is the imaginary time. The
Euclidean action of the bulk model reads

SE = 1
2

∫ β/2

−β/2
dτ

∫ ∞

0
dz gij

(
χ(z, τ)

)
∂(E)

µ χi(z, τ)∂µ
(E)χ

j(z, τ) (6.17)

where gij
(
χ(z, τ)

)
is a metric defined over the field manifold and ∂

(E)
µ is the Euclidean

partial derivative

∂(E)
µ = ∂µ

(E) ≡ (∂τ , ∂z) .

Using the covariant field method, one can expand the field χi(z, τ) around a background
χi

c(z, τ). We choose the background to be χi
c(z, τ) = Φi(z, ti) where ti stands for the

initial time, and Φi(z, t) the same classical field which is defined in (6.5a). Thus the
chosen background is independent of τ . To avoid clutter, we show Φi(z, ti) simply by
Φi(z) in this section. We note the path integral (6.16) has a single variable and we
use the freedom in choosing it to be the deviation from the classical field Φ(z). To
implement the covariant background method, the field χi(z, τ) is promoted into a new
field χi(z, τ ; s) with χi(z, τ ; s = 0) = Φi(z) and χi(z, τ ; s = 1) = χi(z, τ). In addition,
the promoted field χi(z, τ ; s) is demanded to satisfy the geodesic equation along the
parameter s,

d2χi(z, τ ; s)
ds2 + Γi

jk

dχj(z, τ ; s)
ds

dχk(z, τ ; s)
ds

= 0 (6.18)
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with the Christoffel symbol is defined with respect to the metric gij
(
χ(z, τ ; s)

)
. Expand-

ing the field χj(z, τ ; s) around the background field Φi(z) gives the Euclidean action
functional in terms of series of functionals of the background field Φi(z) and the tan-
gential to the geodesics dχj(z,τ ;s)

ds

∣∣∣
s=0

≡ ξi(z, τ). The series can be written formally
as

SE [χ(z, τ)] = SE [χc(z)] +
(
d

ds
SE [χj(z, τ ; s)]

)
s=0

+ 1
2!

(
d2

ds2SE [χj(z, τ ; s)]
)

s=0
+ · · ·

(6.19)

≡ S
(0)
E + S

(1)
E + S

(2)
E + · · · . (6.20)

The first functional in the series reads

S
(0)
E = SE [Φ(z)] = 1

2

∫ +β/2

−β/2
dτ

∫ ∞

0
dz gij

(
Φ(z)

)
∂(E)

µ Φi(z)∂µ
(E)Φ

j(z)

= β

2

∫ ∞

0
dz gij

(
Φ(z)

)
∂zΦi(z)∂zΦj(z) (6.21)

which is independent of ξi(z, τ). Using the definition of the covariant derivatives and
the geodesic equation along the s direction, the next to the leading order functional in
the series expansion reads

S(1) =
∫
dτdzgij

(
Φ(z)

)
∂zΦi(z)∇zξ

j(z, τ). (6.22)

Similarly the functional S(2)
E can be calculated as follows

S
(2)
E = 1

2

∫
dτdz

[
∇(E)

µ ξi(z, τ)∇(E)
µ ξi(z, τ) +Rijklξ

j(z, τ)ξk(z, τ)∂zΦi(z, τ)∂zΦl(z, τ)
]

(6.23)

where Rijkl is the Riemann curvature tensor defined with respect to the metric gij (Φ(z)).
If we change the integration variable in the path integral definition of the thermal density
matrix (6.17) from χi(z, τ) to ξi(z, τ), then the thermal density matrix of the nonlinear
sigma model up to quadratic order in ξi(z, τ) reads

ρβ (χ1(z), χ2(z)) = exp
(

−β

2

∫ ∞

0
dzgij

(
Φ(z)

)
∂zΦi(z)∂zΦj(z)

)
(6.24)

×
∫ ξ(z,β/2)=ξ2(z)

ξ(z,−β/2)=ξ1(z)
e(−S

(1)
E −S

(2)
E ). (6.25)
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We need to write χ1(z) and χ2(z) in terms of ξ1(z), ξ2(z) and Φi(z). To do so, we need
to write the covariant expansion of χ1(z) and χ2(z) around the background field Φ(z) :

χi
1(z) = Φi(z) + ξi

1(z) − 1
2!Γ

i
jk(Φ)ξj

1(z)ξk
1 (z) + · · · (6.26)

χi
2(z) = Φi(z) + ξi

2(z) − 1
2!Γ

i
jk(Φ)ξj

2(z)ξk
2 (z) + · · · (6.27)

One can use the saddle point approximation to calculate the thermal density matrix
of the nonlinear sigma model. Variation of the (6.24) with respect to ξ(z, τ) (see the
appendix A5 for the details) results in

∂2
τ ξ̄

j(z, τ) = −∇z∂zΦj(z) − ∇2
z ξ̄

j(z, τ) + gjb(Φ(z)
)
Ribkl

(
Φ(z)

)
ξ̄k(z, τ)∂zΦi(z)∂zΦl(z)

(6.28a)
ξ̄i(z, τ = −β/2) = ξi

1(z) (6.28b)

ξ̄i(z, τ = +β/2) = ξi
2(z) (6.28c)

We can solve this nonlinear differential equation perturbatively. The perturbative factor
is the gradient expansion along the z direction. With this criteria, the leading order
solution satisfies a linear differential equation

∂2
τ ξ̄

j
(0)(z, τ) = 0 (6.29)

ξ̄i
(0)(z, τ = −β/2) = ξi

1(z) (6.30)
ξ̄i

(0)(z, τ = +β/2) = ξi
2(z) (6.31)

with the following solution

ξ̄i
(0)(z, τ) =

(
ξi

2(z) − ξi
1(z)

) τ
β

+
(
ξi

1(z) + ξi
2(z)

2

)
(6.32)

We are interested in the case where ξi
1(z) = −ξi

2(z) = −ξ(z, ti) (in this section, we use
ξ(z, ti) and ξ(z) interchangeably) which results in

ξ̄i
(0)(z, τ) = −2τ

β
ξi(z) (6.33)

The correction to this solution, ξ̄i
(1)(z, τ), satisfies the following differential equation

∂2
τ ξ̄

j
(1)(z, τ) = −∇z∂zΦj(z) − ∇2

z ξ̄
j
(0)(z, τ) + gjb(Φ)Ribkl

(
Φ(z)

)
ξ̄k

(0)(z, τ)∂zΦi(z)∂zΦl(z)
(6.34)

ξ̄i
(1)(z,±β/2) = 0. (6.35)
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The solution to the correction reads

ξ̄j
(1)(z, τ) = − 1

2

(
τ2 − β2

4

)
∇z∂zΦj(z) + 1

3β

(
τ3 − τβ2

4

)
∇2

zξ
j(z)

− 1
3β

(
τ3 − τβ2

4

)
gjbRibklξ

k(z)∂zΦi(z)∂zΦl(z) (6.36)

Inserting this into the equation for the path integral definition of the density matrix
(6.24), we obtain the following expression for the high temperature thermal density
matrix,

ρ = eiSρ[Φ(z,ti),ξ(z,ti)], (6.37)

where the exponent reads

iSρ[Φ, ξ] = −
∫ ∞

0
dz

(
β

2
(
∂zΦj(z)

)2 + 2
β

(ξj)2 − β3

24
(
∇z∂zΦj(z)

)2
+ β

6
(
∇zξ

j(z)
)2 + β

6Rijklξ
j(z)ξk(z)∂zΦi(z)∂zΦl(z)

)
(6.38)

Note that ρ and correspondingly Sρ are local in time and are evaluated at t = ti. With
this, the influence functional (6.2) reads,

exp (iI [φ, ζ]) =
∫ [

dξi (z, ti)
] [
dΦi (z, ti)

] [
dΦi(z, t)

] [
dξi(z, t)

]
exp (iSeff ) , (6.39)

where the effective action is

Seff = Sρ[Φ(z, ti), ξ(z, ti)] + S(1)[Φ(z, t), ξ(z, t)] + S(3)[Φ(z, t), ξ(z, t)] + ... . (6.40)

Note that the perturbation series in terms of ξ mixes the expansion in terms of βDtq̄ ∼ q̂.
Therefore, we need to be cautious in including the right order of expansion in terms of ξ to
be consistent with the power counting fixed by (4.43). For instance, in the next section,
we will see that the functional (6.21) and the first term in (6.23) generate corrections to
the influence functional which are of the same order. In the expansion (6.40), we have
ignored those terms which produce corrections of order (βDtq̄)5 ∼ q̂5.

In the next section, we calculate the leading order (or Gaussian) influence functional
by including (6.21), the first term in (6.23), and (6.15a) in the expansion of the effective
action (6.40).

6.3 The Leading Order Influence Functional
The leading order influence functional I0 in (6.39) corresponds with the following leading
order effective action

S
(leading)
eff = S(leading)

ρ + S(leading)
χ (6.41)
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where

S(leading)
ρ = +i

∫ ∞

z=0
gij (Φ (z, ti))

(
β

2 ∂zΦi (z, ti) ∂zΦj (z, ti) + 2
β
ξi (z, ti) ξj (z, ti)

)
,

S(leading)
χ = +2

∫
t,z

∇µξi(z, t)∂µΦi(z, t) .

(6.42)

In calculating I0, we will use the saddle point approximation. At the saddle point
approximation we have,

I0[φ(t), ζ(t)] = S
(leading)
eff [Φ̄(z, t), ξ̄(z, t)], (6.43)

where Φ̄(z, t) and ξ̄(z, t) are the saddle point solutions of the path integral (6.39), with
the leading order approximation Seff ≈ S

(leading)
eff . It is not trivial that the left hand

side of equation (6.43) is localized in time as the right hand side of the equation has
functionality of both t and z. We will see that it is indeed the case because of the high
temperature approximation which is used to obtain the influence functional.

The saddle point of the path integral can be obtained by variation with respect to the
classical field Φ and the quantum field ξ. This leads to two coupled differential equations,
and two initial conditions at t = ti which will be solved alongside the boundary conditions
(6.6) at z = 0. Variation of S(leading)

eff with respect to the quantum field ξi results in the
following constraint of the saddle point solution at the initial time t = ti

− 2
β
ξl (z, ti) − i∂tΦl (z, ti) = 0 ⇒ 2i

β
ξl (z, ti) = ∂tΦl (z, ti) , (6.44)

and the following saddle point equation of motion for the classical field

∇µ∂
µΦl(z, t) = −∂zΦl(z, t)δ(z) = ∂zΦl(z, t)δ(z) . (6.45)

Variation of S(leading)
eff with respect to the classical field Φl and using (6.44),(6.45) results

in another boundary condition of the saddle point solution at t = ti,

2i
β

∇tξ
l (z, ti) = glk

(
Γk

ij∂zΦi (z, ti) ∂zΦj (z, ti) + ∂2
z Φk (z, ti)

)
≡ ∇z∂zΦl (z, ti) , (6.46)

and the saddle point equation of motion for the quantum field ξi(z, t) of the form

−∇µ∇µξl +Rjikl(Φ)ξj∂µΦi∂µΦk = −δ(z)∇zξl . (6.47)

As an illustrative example, we obtain the leading order influence functional of the har-
monic bath perturbatively. Although the case of the harmonic bath is exactly solvable
[Kamenev 2023], we develop a perurbative method which is applicable to the case of
nonlinear bath. Then, we will obtain the saddle point solution for the nonlinear bath
using the developed techniques.
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6.3.1 Harmonic bath

For gij = γδij the equations of motion are just wave equations

∂2ξi = 0, ∂2Φi = 0 , (6.48)

with initial conditions
ξi
∣∣∣
ti

= − iβ

2 ∂tΦi
∣∣∣
ti

, (6.49a)

∂tξ
i
∣∣∣
ti

= − iβ

2 ∂
2
z Φi

∣∣∣
ti

, (6.49b)

where we have dropped the delta functions since the boundary values of the fields at
z = 0 are already fixed by (6.6). Note that the initial conditions (6.49) are asymmetrical
in classical and quantum fields. Most naturally they are interpreted as Cauchy data for
ξ in terms of Φ, which is left unspecified. Due to this freedom the solution will contain
an arbitrary outgoing Φ wave - classical response of the system.

The situation calls for light-cone coordinates

u = z − t, v = z + t , (6.50)

in terms of which the equations (6.48) are simply

∂u∂vξ = ∂u∂vΦ = 0 (6.51)

The general solution is a superposition of incoming and outgoing waves

Φ = Φi
in(v) + Φi

out(u) , ξ = ξi
in(v) + ξi

out(u) . (6.52)

The boundary condition (6.9) implies that ξi(u) = 0. In other words, quantum field
satisfies the equation

∂uξ
i = 0, (6.53)

which means that the quantum field a is purely outgoing field. With this, (6.49b) reads

∂zξ
i
∣∣∣
ti

= − iβ

2 ∂
2
z Φi

∣∣∣
ti

. (6.54)

Integrating both sides of this equation along the z directions, and using the fact that
the fields at z → ∞ vanishes, we have,

ξi
∣∣∣
ti

= − iβ

2 ∂zΦi
∣∣∣
ti

. (6.55)

Combining this with (6.49a), results in

∂vΦi|ti = 2i
β
ξi|ti , (6.56a)
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∂uΦi|ti = 0 . (6.56b)

Equation (6.56a) implies that the classical field satisfies the following equation

∂vΦi(v) = 2i
β
ξi(v). (6.57)

Let us plug these solutions back into the action. It’s easy to see that S(leading)
ρ gives

zero on-shell. For the S(leading)
χ , integrating by parts and using equations of motion, we

get

2i
∫

z>0,t
∂µΦi∂µξi = 2iγ

∫
t,z>0

∂µ(∂µΦiξi) = −2iγ
∫

z>0
∂tΦiξi

∣∣∣
t=ti

+ 2iγ
∫

t
∂zΦiξi

∣∣∣
z=0
(6.58)

Using (6.49a), for the first term we have

−2iγ
∫

z>0
∂tΦiξi

∣∣∣
t=ti

= 4γ
β

∫
z>0

ξiξi
∣∣∣
t=ti

(6.59)

By definition ξ
∣∣∣
z=0

= ζ and then on-shell

ξ(z, ti) = ξ(z + ti) = ζ(z + ti) . (6.60)

Going back to (6.59) we get

4γ
β

∫
z>0

ξiξi
∣∣∣
t=ti

= 4γ
β

∫ ∞

v=ti

ζi(v)ζi(v) ti→−∞−−−−−→ 4γ
β

∫ ∞

t=−∞
ζi(t)ζi(t) (6.61)

For the second term we need the expression for the ∂zΦ on the boundary

∂zΦ
∣∣∣
z=0

= (2∂v − ∂t)Φ
∣∣∣
z=0

= 4i
β
ξ
∣∣∣
z=0

− ∂tφ = 4i
β
ζ − φ̇ , (6.62)

where in the second step we have used (6.57). Plugging everything in we obtain the
influence functional

iI0[φ, ζ] = − 4
β
γ

∫
t
ζi(t)ζi(t) − 2iγ

∫
t
φ̇i(t)ζi(t) . (6.63)

Since at leading order in quantum variables ζ = q̂ and φ = q̄, the equation (6.63) is
precisely the influence functional predicted by linear response theory and the DKMS for
Abelian groups. In the next subsection, we will see that the Gaussian influence functional
of a general non-Abelian group is the covarintized version of (6.63) for a general metric.
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6.3.2 Non-harmonic bath

In u− v coordinates the equations of motion for a general metric are1

∇u∂vΦi(z, t) = ∇v∂uΦi(z, t) = 0 , (6.64a)

(∇v∇u + ∇u∇v)ξl(z, t) +Rijkl

(
∂uΦi(z, t)∂vΦk(z, t) + ∂vΦi(z, t)∂uΦk(z, t)

)
ξj(z, t) = 0 ,

(6.64b)
with initial conditions

ξi(z, ti) = − iβ

2 ∂tΦi(z, ti) , (6.65a)

∇tξ
i
∣∣∣
ti

= − iβ

2 ∇z∂zΦi
∣∣∣
ti

. (6.65b)

Note that the first condition is the same as in the harmonic bath. To find the solution, we
rewrite (6.64b) in an equivalent form. Using the commutator of the covariant derivatives(

∇u∇v − ∇v∇u
)
ξl = Rlmab ξ

m∂uΦa∂vΦb (6.66)

and the symmetries of the Riemann tensor, equation (6.64b) is rephrased as

∇v∇uξl −Rlabmξ
m∂uΦa∂vΦb = 0 . (6.67)

The suggested ansatz is the covariantized version of the flat metric solutions,

∇uξ
i = 0, (6.68a)

∂vΦi = 2i
β
ξi. (6.68b)

It’s pretty straightforward to show that the suggested ansatz indeed solves the equations
of motion (6.64), if we use the (6.67) instead of (6.64b), and the antisymmetricity of the
Riemann tensor with respect to its last two indices. Using (6.68a), the equation (6.65b)
is rewritten as

∇zξ
i
∣∣∣
ti

= − iβ

2 ∇z∂zΦi
∣∣∣
ti

, (6.69)

which results in the fact that the following is a constant with respect to z

(ξi
∣∣∣
ti

+ iβ

2 ∂zΦi
∣∣∣
ti

)2 = const(z), (6.70)

where the constant turns out to be zero because of the fields vanish at z → ∞. This
implies that following identity which we had in the case of the harmonic bath with flat
metric

ξi
∣∣∣
ti

+ iβ

2 ∂zΦi
∣∣∣
ti

= 0. (6.71)

1We are using the (anti)symmetries of the Riemann tensor in some of the upcoming equations.
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Combining this with (6.65a) results in the following condition at t = ti

∂vΦi|ti = 2i
β
ξi
∣∣∣
ti

, ∂uΦi|ti = 0 , (6.72)

which shows the compatiblity of the suggested ansatz (6.68) with the boundary condi-
tions (6.65).

Having obtained the solutions let us compute the influence functional. As for the flat
case the density matrix part does not contribute and we still have

I
∣∣∣
on-shell

= −2i
∫

z
(gij∂tΦiξj

)
|t=ti + 2i

∫
t
(gij∂zΦiξj)

∣∣∣
z=0

(6.73)

The second term here is dealt with the same way as in flat case. The first term here is
a bit trickier. Using (6.65a) we get

4
β

∫
z
gij(Φ)ξiξj . (6.74)

According to (6.68a) the field ξ is parallel transported along u. This implies

gij(Φ)ξiξj
∣∣∣
z= u+v

2 , t= v−u
2

= gij(Φ)ξiξj
∣∣∣
z= u′+v

2 , t= v−u′
2

(6.75)

We apply this formula for u = z − ti, v = z + ti and u′ = −v. Then we have

gij
(
Φ(z, ti)

)
ξi(z, ti)ξj(z, ti) = gij

(
Φ(0, z + ti)

)
ξi(0, z + ti)ξj(0, z + ti)

= gij
(
φ(z + ti)

)
ζi(z + ti)ζj(z + ti) (6.76)

where we used the boundary conditions at z = 0 in the second line. Plugging this into
(6.73) we finally obtain

iI0[φ, ζ] = − 4
β

∫
t
gij
(
φ(t)

)
ζi(t)ζj(t) − 2i

∫
t
gij
(
φ(t)

)
φ̇(t)ζ(t) . (6.77)

The result is the covariantized version of the harmonic bath influence functional (6.63)
for a general metric gij(φ). The equation (6.77) is the most general influence functional
at the classical limit. Note that this result is valid even in the case that the dynamics is
not parameterized by a group manifold. In addressing the quantum corrections, however,
the group structure is important to classify the quantum corrections which we compute
in the next section.

6.4 The Quantum Correction To The Influence Functional
The quantum correction to the influence functional can be obtained by inserting the
leading order saddle point solution to the effective action Seff which includes the next
to the leading order terms. Note that there is no need to obtain the saddle point solution
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from the full action Seff as the error is of the higher order. With this, let’s calculate
the additional contribution in Seff [Φ̄(z, t), ξ̄(z, t)] in terms of the classical and quantum
fields, φ(t) and ζ(t). The correction is due to two kinds of terms, one from the expansion
of the density matrix and the other one from the expansion of the bulk action (6.15b).

Term I: The first correction comes from the next to the leading order terms in (6.38),

δSρ = i

∫ ∞

0
dz

[
− β3

24
(
∇z∂zΦj(z, ti)

)2 + β

6
(
∇zξ

j(z, ti)
)2

+ β

6Rijklξ
j(z, ti)ξk(z, ti)∂zΦi(z, ti)∂zΦl(z, ti)

]
.

(6.78)

Using the leading order saddle point solution (6.68), we see that the last term in (6.78)
vanishes. The other terms combine to

δSρ = i
β

3

∫ ∞

0
dz (∇zξ

j(z, ti)
)2 ≡ i

β

3

∫ ∞

0
dz (∇vξ

j(z, ti)
)2
, (6.79)

where we have used (6.68a) in the last step. Combined with the other term, (6.79) maps
to a term on the boundary.

Term II: The next correction to the influence functional comes from S(3) in (6.15b).
Writing it in the u-v coordinate, using the equations (6.68), and then implementing the
symmetries of the Riemann curvature tensor, it results in the following expression

δSχ = 4
3

∫
u,v
Rijkl(Φ)ξj(z, t)ξk(z, t)

(
∂uΦi(z, t)∇vξ

l(z, t)
)
. (6.80)

To simplify this equation, we need to use an identity which is obtained by combining
(6.64b), the commutator (6.66), and (6.68b). This identity reads

∇u∇vξl = 2i
β
Rjiklξ

j∂uΦiξk , (6.81)

and using it, the equation (6.80) is rewritten as

δSχ = 2iβ
3

∫
v

∫
u

(
∇u∇vξl

)
∇vξ

l ≡ iβ

3

∫
v

∫
u
∂u
(
∇vξl

)2
, (6.82)

where in the last step we have used the fact that the covariant derivative of a scalar is
the normal derivative. The integral over u can be done easily as follows

δSχ = iβ

3

∫ ∞

v=ti

∫ v

u=2ti−v
∂u
(
∇vξl

)2
= + iβ

3

∫ ∞

v=ti

dv
[(

∇vξl

)2∣∣
z=0 −

(
∇vξl

)2∣∣
t=ti

]
. (6.83)
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Combining this with (6.79), and using (6.68a) and the boundary condition at z = 0, we
obtain the next to leading order correction to the influence functional of the nonlinear
bath model,

iINLO[φ(t), ζ(t)] = −β

3

∫ t=tf

t=ti

dt gij(φ)∇tζ
i(t)∇tζ

j(t) . (6.84)

This expression, alongside (6.77) must be compared with the form (5.30) predicted by
the DKMS method. We see the difference arising from the different definitions of the
classical and quantum fields in this chapter and in chapter 5. In the next section, we
prove that upon the field redefinition the influence functional of the bulk model takes
the form which is predicted by the DKMS symmetry in the strictly Ohmic regime.

6.5 Matching With DKMS Method
As we showed, the influence functional of the bulk model up to the next to the leading
correction reads

iI[φ(t), ζ(t)]

= − 4
β

∫
t
gij
(
φ(t)

)
ζi(t)ζj(t) − 2i

∫
t
gij
(
φ(t)

)
φ̇(t)ζ(t) − β

3

∫ t=tf

t=ti

dtgij(φ)∇tζ
i(t)∇tζ

j(t).

(6.85)

To map this form of the influence functional to the one in (5.30), we need to relate
the two definitions of classical and quantum using the equations in (6.7). The technical
details are derived in the appendix A6. In what follows, we use a notation

ζ̃i = Ωi
j(φ)ζj (6.86)

for convenience.

Using the relations (6.7b), the first term in (6.85) reads

− 4
β

∫ tf

ti

gij(φ)ζiζj

= − 4
β

∫ tf

ti

γij q̂
i(t)q̂j(t) − 2

3β

∫ tf

ti

γj(l4C
j
l1kS

k
l2l3)q̂

l1 q̂l2 q̂l3 q̂l4 +
∫ tf

ti

O(q̂5) , (6.87)
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where the tensor Si
jk is defined in (6.8). Using (6.7b) and (A.53a), the next term in the

influence functional (6.85) is rearranged as follows

− 2i
∫ tf

ti

gij(φ)∂tφ
i(t)ζj(t)

= −2i
∫ tf

ti

γijDtq̄
iq̂j − i

∫ tf

ti

γi(l2C
i
l3)l1∂tq̂

l1 q̂l2 q̂l3 (6.88)

+ i

3

∫ tf

ti

[
− γi(l1S

j
l2l3)C

i
kj + γikC

i
j(l1S

j
l2l3) + γi(l1C

i
l2jC

j
l3)k

]
Dtq̄

kq̂l1 q̂l2 q̂l3 +O
(
q̂5
)
.

(6.89)

Finally, using (A.53b), the last term in the influence functional (6.85) can be rewritten
as

− β

3

∫ tf

ti

(gij(φ)∇tζ
i(t)∇tζ

j(t) (6.90)

= −β

3

∫ tf

ti

[
γij∂tq̂

i∂tq̂
j +

(
γijC

i
km + γimC

i
jk + γikC

i
jm

)
q̂mDtq̄

k∂tq̂
j (6.91)

+ γij

4
(
Ci

l1l2 + Si
l1l2

)(
Cj

l′1l′2
+ Sj

l′1l′2

)
q̂l2Dtq̄

l1 q̂l′2Dtq̄
l′1

]
. (6.92)

Comparing with the DKMS method, we read the couplings in (5.30) for the bulk model
as follows

Al1l2l3l4 = 2i
3 γj(l1C

j
l2kS

k
l3l4) (6.93a)

ll2l3l1 = −γ(l2jC
j
l3)l1 (6.93b)

Bl1l2l3k = 1
3

[
γi(l1S

j
l2l3)C

i
jk + γikC

i
j(l1S

j
l2l3) + γi(l1C

i
l2jC

j
l3)k

]
(6.93c)

eij = i

3γij (6.93d)

nmjk = i

3
(
γijC

i
km + γimC

i
jk + γikC

i
jm

)
(6.93e)

Dl2l′2l1l′1
= i

24γij

[(
Ci

l1l2 + Si
l1l2

)(
Cj

l′1l′2
+ Sj

l′1l′2

)
+
(
Ci

l1l′2
+ Si

l1l′2

)(
Cj

l′1l2
+ Sj

l′1l2

)]
(6.93f)

fij = oijk = Eijkl = dij = mijk = 0. (6.93g)

It is straightforward to show that (6.93) satisfies the DKMS constraints (5.31), (5.37),
(5.39), (5.45). As a result, the bulk model is categorized in the strictly Ohmic regime.
However, the Ohmic couplings are not the most general ones allowed by DKMS, since
all couplings are expressed in terms of the structure constant and dissipative coefficients
γij . To go beyond this limitation, we need to include the higher order terms in the bulk
model.
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6.6 The Higher Order Operators
Let’s restore the higher order operator in the action functional of the (6.1) and find its
correction to the influence functional. Adding it to the S-K action functional modifies it
by

S(M)[χ+, χ−] = ν̃ijkl

M2

∫
t,z
Dµχ

i
+D

µχj
+Dνχ

k
+D

νχl
+ −Dµχ

i
−D

µχj
−Dνχ

k
−D

νχl
− . (6.94)

Note that the coupling has the following symmetry by construction

ν̃ijkl = ν̃(ij)(kl) = ν̃klij (6.95)

Using the covariant background method, the leading order contribution of this term to
the effective action (6.40) takes the following form:

δS
(M)
eff = δS(M)

ρ + δS(M)
χ (6.96)

where we have

δS(M)
ρ [Φ(z, ti), ξ(z, τ)]

= ν̃ijkℓ

M2

∫
τ,z
DzΦiDzΦjDzΦkDzΦl

+ ν̃ijkℓ

M2

∫
τ,z

4Dzξ
iDzΦjDzΦkDzΦl

+ ν̃ijkℓ

M2

∫
τ,z

(
2Dzξ

iDzΦjDzΦkDzξl + 2D(E)
µ ξiDµ

(E)ξ
jDzΦkDzΦl)

+ ν̃ijkℓ

M2

∫
τ,z

(
D(E)

µ ξiDµ
(E)ξ

jDzΦkDzξl +D(E)
µ ξiDµ

(E)ξ
jD(E)

ν ξkDν
(E)ξ

l) .

(6.97a)

δS(M)
χ [Φ(z, t), ξ(z, t)] = 4ν̃ijkℓ

M2

∫
t,z

(
ξm∂mΩi

i′(Φ)∂µΦi′ + Ωi
i′(Φ)∂µξ

i′)
DµΦjDνΦkDνΦl ,

(6.97b)
Inserting the saddle point solution in (6.97a), we can show that it vanishes up to O(q̂5).
Therefore, only (6.97b) corrects the influence functional. For the general non-Abelian
group, it is rather involved to show that (6.97b) can correct the influence functional with
a local in time functional. We present the calculation for the case of Abelian group here,
referring interested readers to the case of general non-Abelian group to the appendix A7.
For the abelian case, the functional (6.97b) combined using the saddle point solution
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(6.53) and (6.57) in the u− v coordinate reads

δS(M)
χ [Φ(z, t), ξ(z, t)] = iν̃ijkℓ

βM2

∫
u,v
∂vξ

i∂uΦj(∂uΦkξl + ∂uΦlξk)
= iν̃ijkℓ

βM2

∫
u,v
∂v
(
ξiξl)∂uΦj∂uΦk

= iν̃ijkℓ

βM2

∫
u,v
∂v
(
ξiξl∂uΦj∂uΦk) (6.98)

where in the second line, we have used the symmetries of the coupling, and then in
the last line, the equation of motion (6.48) is implemented in integration by parts.
Performing the integration along the v axis, we are left with

δS(M)
χ [Φ(z, t), ξ(z, t)] = − iν̃ijkℓ

βM2

∫ tf

ti

(
ξiξl∂uΦj∂uΦk)∣∣

(z=0,t) (6.99)

Using ∂u = ∂v −∂t, and the boundary conditions at z = 0, and (6.57), then this equation
can be written in terms of the classical (φ) and quantum (ζ) fields at the boundary. Using
the fact that in the abelian case, the two definitions of the classical and quantum fields
coincide with each other to all orders,

ζ(t) = q̂(t), q̄(t) = φ(t) ,

then equation (6.99) corrects the influence functional as follows

iIM [q̄(t), q̂(t)] = ν̃ijkℓ

M2

∫ tf

ti

( 4i
β3 q̂

i(t)q̂j(t)q̂k(t)q̂l(t) + 4
β2 q̂

i(t)q̂l(t)q̂j(t)∂tq̄
k(t) (6.100)

− i

β
q̂i(t)q̂l(t)∂tq̄

j(t)∂tq̄
k(t)

)
. (6.101)

This implies that the higher order operator in the bulk model modifies the couplings
(6.93). Comparing (6.100) with (5.11), this modification reads

iδAijkl = 4i
M2β2 ν̃(ijkl) (6.102)

iδBijkl = 4
M2β2 ν̃(ijk)l ≡ 4

M2β2 ν̃(ijkl) (6.103)

iδDijkl = − i

M2β2 ν̃lijk (6.104)

where in the second equation we have used the symmetries of the ν̃ijkl as was determined
in (6.95). Obviously the mentioned DKMS constraints in the previous section still holds
(the structure constants are zero for the Abelian case). Note that the sequence of the
indices in (6.104) are different in the sides of the equation. With this, one can read the
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tensor νijkl from (5.47) as follows

νijkl = − 3i
M2β2 ν̃lijk . (6.105)

Without the detailed calculation, as it is presented in the A7, one can guess the
correction to the influence functional by covariantizing (6.100) by substituting ∂tq̄

i →
Dtq̄

i. This completes our argument that the bulk model can generate the most general
high temperature influence functional in the Ohmic regime.
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Chapter 7

Summary and Outlook

In this thesis, we derived the effective action for dissipative dynamics in specific cases
and limits. After introducing some foundational concepts, we focused on the effective
action of classical Ohmic dissipative dynamics using a model termed as the bulk model.
This model generalizes the system-plus-reservoir models [Caldeira and Leggett 1983a;
Unruh and Zurek 1989; Lamb 1900], where the environment is represented by a string
or a set of harmonic oscillators. The bulk model extends these ideas to cases of state-
dependent dissipation, where the dissipative coefficients depend on position. Beyond
the classical limit, we considered dissipative dynamics on a Lie group, assuming that
the dissipation is induced by a bath invariant under the same Lie group. Initially, we
derived the effective action for dissipative dynamics within the linear response regime.
Here, using the high-temperature expansion of the bath two-point functions, we con-
structed the local influence functional for dissipative dynamics with nonlinearly realized
symmetries. We then employed the dynamical KMS symmetry to obtain the most gen-
eral high-temperature local influence functional for dissipative dynamics on a Lie group.
The influence functional within the DKMS method generalizes the one obtained in the
linear response, containing a larger set of couplings which parameterize nonlinear dissi-
pation and non-Gaussian noise. Finally, we revisited the bulk model by going beyond
its classical limit. By applying the Schwinger-Keldysh formalism, we integrated out the
bath of the bulk model, resulting in a local influence functional at high temperatures.
We demonstrated that the result produces the most general high temperature influence
functional allowed by the DKMS symmetry for Ohmic dissipation.

One possible application of the developed formalism is the study of Brownian motion
with position dependent couplings of dissipation. In the case that the Brownian particle
has size [Ulbrich et al. 2023; Lau and Lubensky 2007; Han et al. 2006; Zhang et al.
2023], the Langevin equation needs to be modified to accommodate for state dependent
diffusion. In such situations, the noise and higher order dissipation can be quantified
through measuring different correlators [Han et al. 2006].

In many interesting physical application, in contrast to this work, the symmetry is
not completely broken. In such cases, we need to enhance the theory to include the coset
construction [Akyuz et al. 2024]. The immediate realization of such a construction is
the stochastic dynamics on a sphere or De Sitter space.
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One technical challenge in studying the low temperature dissipative processes is that
their influence functional is nonlocal in time, making it notoriously difficult to work with.
On the other hand, in obtaining the correlators from the bulk model, there is no need
to integrate out the bath, which means that its effective action remains local in time.
It would be interesting to see the advantages of using the bulk model in studying some
concrete examples at low temperature limit.

Another interesting direction can be generalization of the formalism to field theory
and (nonrelativistic) hydrodynamics and working out the connection with similar works
[Liu and Glorioso 2018; Michailidis et al. 2024; Akyuz et al. 2024; Cohen and Green 2020;
Cohen et al. 2021; Salcedo et al. 2024; Burgess et al. 2023; Lang et al. 2024; Zelle et al.
2024; Sieberer et al. 2023; Dalla Torre et al. 2010; Dalla Torre et al. 2012a; Dalla Torre
et al. 2012b].
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Appendix A

Supplements

A1 Elements of the group geometry
Here we summarize some auxiliary formulas following from the definition of the Cartan
form. First, we have the relations between linear variations of the group elements:

eqGeδq G = e(q+δq′)G , δq′i = ui
j(q)δqj +O(δq2) , (A.1a)

eδq GeqG = e(q+δq′′)G , δq′′i = ui
j(−q)δqj +O(δq2) , (A.1b)

where ui
j is the inverse of the Cartan coefficients,

ui
j(q)Ωj

k(q) = δi
k . (A.2)

From these relations we derive the identities:

∂(q ⊖ q′)i

∂q′k = −ui
j(q′ ⊖ q) Ωj

k(q′) , (A.3a)

∂(q′ ⊖ q)i

∂q′k = ui
j(q′ ⊖ q) Ωj

k(q′) . (A.3b)

Second, at the origin the Cartan form and its inverse reduce to unity,

Ωi
j(0) = ui

j(0) = δi
j . (A.4)

Besides, for our parameterization of the group element (4.2), their derivatives at the
origin are antisymmetric in the lower indices:

∂Ωi
j

∂qk

∣∣∣∣
q=0

= −
∂ui

j

∂qk

∣∣∣∣
q=0

= 1
2C

i
jk . (A.5)

To prove this last statement, we consider a one-parameter family of the group elements
g(s) = es qG. Taking a small increment of the parameter and using e(s+ds)qG = es qGeds qG

70



Doctor of Philosophy– Afshin Besharat; McMaster University– Department of
Physics & Astronomy

in combination with (A.1), we obtain

qi = ui
j(sq)qj . (A.6)

Differentiating this identity once again with respect to s yields,

∂ui
j

∂qk
(sq) qkqj = 0 , (A.7)

which is true for any s. In particular, setting s = 0, we obtain that the contraction of
the matrix of derivatives of ui

j at the origin with any vector vanishes, implying that it
is antisymmetric. Then, the structure relation (4.3) implies the form (A.5).

To find higher derivatives of the Cartan form at the origin, we expand the group
element and its differential:

g = 1 + qiGi + 1
2q

iqjGiGj + 1
6q

iqjqkGiGjGk + . . . , (A.8a)

g−1 = 1 − qiGi + 1
2q

iqjGiGj − 1
6q

iqjqkGiGjGk + . . . , (A.8b)

dg = dqiGi + 1
2dq

iqj(GiGj +GjGi) + 1
6dq

iqjqk(GiGjGk +GjGiGk +GjGkGi) + . . . .

(A.8c)

Multiplying these Taylor series and commuting the generators we obtain for the invariant
differential:

g−1dg = dqiGi + 1
2dq

jqkCi
jkGi + 1

6dq
jqkqlCi

knC
n
ljGi + . . . , (A.9)

whence we read out the expansion of the Cartan coefficients,

Ωi
j(q) = δi

j + 1
2q

kCi
jk + 1

6q
kqlCi

knC
n
lj + . . . . (A.10)

The first two terms give the value of the coefficients and their first derivatives at the
origin which we already found above, Eqs. (A.4), (A.5), while the last term gives the
second derivatives,

∂2Ωi
j

∂qk∂ql

∣∣∣∣
q=0

= 1
6(Ci

knC
n
lj + Ci

lnC
n
kj) . (A.11)

To obtain the second derivatives of the inverse matrix, we twice differentiate the identity
(A.2) and use (A.4), (A.5), (A.11). This yields,

∂2ui
j

∂qk∂ql

∣∣∣∣
q=0

= 1
12(Ci

knC
n
lj + Ci

lnC
n
kj) . (A.12)
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Next, we derive the expansions of the covariant derivatives,

Dtq
i
+ = Dtq̄

i − Ci
jkq̂

jDtq̄
k + ˙̂qi + 1

2C
i
jnC

n
kl q̂

j q̂kDtq̄
l − 1

2C
i
jkq̂

j ˙̂qk +O(q̂3Dt) ,
(A.13a)

Dtq
i
− = Dtq̄

i + Ci
jkq̂

jDtq̄
k − ˙̂qi + 1

2C
i
jnC

n
kl q̂

j q̂kDtq̄
l − 1

2C
i
jkq̂

j ˙̂qk +O(q̂3Dt) .
(A.13b)

To this end we write,

(Dtq
i
+)Gi = e−q+G d

dt
eq+G = e−q̂Ge−q̄G d

dt
(eq̄Geq̂G) = e−q̂G(Dtq̄)jGjeq̂G + Ωi

j(q̂) ˙̂qj Gi .

(A.14)
Further, we use the results

e−q̂GGjeq̂G = Gj + q̂k[Gj , Gk] + 1
2 q̂

kq̂l[[Gj , Gk], Gl] + . . .

= Gj + q̂kCi
jkGi + 1

2 q̂
kq̂lCn

jkC
i
nlGi + . . . , (A.15a)

Ωi
j(q̂) = δi

j + 1
2C

i
jkq̂

k + . . . . (A.15b)

Collecting them together we obtain the first Eq. (A.13). The second one is obtained by
changing the sign of q̂.

In Sec. 5.3 we need the representation of q± as Taylor series in q̂. To derive it, we
introduce a one-parameter curve qs on the group manifold defined as

eqsG = eq̄Geq̂Gs . (A.16)

Clearly qs

∣∣
s=±1 = q±. By definition of the Cartan form, we have

e−qsG d

ds
eqsG = Ωj

i (qs)dq
i
s

ds
Gj (A.17)

On the other hand, Eq. (A.16) implies

e−qsG d

ds
eqsG = q̂jGj (A.18)

Comparison of these two expressions yields a differential equation

dqi
s

ds
= ui

j(qs)q̂j , (A.19)

which must be solved with the initial condition qs

∣∣
s=0 = q̄. The solution can be written

in the integral form,
qi

s = q̄i +
∫ s

0
ds′ ui

j(qs′)q̂j . (A.20)
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One Taylor expands the integrand on the r.h.s. in (qs′ − q̄) and evaluates it to a desired
order in s. Through order s3 one obtains,

qi
s = q̄i+s ui

j q̂
j+s2

2 ul
k∂lu

i
j q̂

kq̂j+s3

6
(
∂lu

i
j∂ku

l
n u

k
m+∂l∂ku

i
j u

l
nu

k
m

)
q̂j q̂nq̂m+O(s4) , (A.21)

where the coefficient functions ui
j and their derivatives are taken at q̄. Substituting

s = ±1 yields q±. Clearly, the sum (difference) of q± contains only even (odd) powers
of q̂. In this way we arrive at Eqs. (5.24) from the main text.

A2 Relation between thermal spectral densities
Suppressing the group indices to simplify notations, we have,

⟨O(t1)O†(t2)⟩ =
∑

n

e−βEn

Z
⟨n| O(t1)O†(t2) |n⟩ =

∑
nm

e−βEn

Z
⟨n| O(t1) |m⟩ ⟨m| O†(t2) |n⟩

=
∑
nm

e−βEn

Z
e−i(Em−En)(t1−t2) ⟨n| O(0) |m⟩ ⟨m| O†(0) |n⟩ =

∫
dω e−iω(t1−t2)ϱ(ω)

(A.22)

with
ϱ(ω) = Z−1∑

nm

δ(ω − Em + En) e−βEn | ⟨n| O(0) |m⟩ |2 , (A.23)

where Z is the partition function. On the other hand,

⟨O†(t2)O(t1)⟩ =
∑
nm

e−βEn

Z
e−i(En−Em)(t1−t2) ⟨n| O†(0) |m⟩ ⟨m| O(0) |n⟩ =

∫
dω e−iω(t1−t2)ϱ̃(ω)

(A.24)
with

ϱ̃(ω) = Z−1∑
nm

δ(ω − En + Em) e−βEn | ⟨m| O(0) |n⟩ |2 . (A.25)

We now interchange the labels n and m in the last expression and obtain

ϱ̃(ω) = Z−1∑
nm

δ(ω − Em + En) e−βEm | ⟨n| O(0) |m⟩ |2

= Z−1∑
nm

δ(ω − Em + En) e−β(En+ω) | ⟨n| O(0) |m⟩ |2 = e−βωϱ(ω) .
(A.26)

A3 Leading Order Expansion
Substituting (4.38) into the influence functional (4.22) we obtain a sum of three terms,

I = I(1) + I(2) + I(3) . (A.27)
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The first two are computed in a straightforward manner,

I(1) = i
π

β

∫
dt1dt2

[
σ0(q+2⊖q+1) + σ0(q−2⊖q−1) − σ0(q+2⊖q−1) − σ0(q−2⊖q+1)

]
δ(t1−t2)

= i
π

β

∫
dt
[
2σ0(0) − σ0(q+ ⊖ q−) − σ0(q− ⊖ q+)

]
, (A.28)

I(2) = −π

2

∫
dt1dt2

[
σ0(q+2⊖q+1) + σ0(q−2⊖q−1) − σ0(q+2⊖q−1) − σ0(q−2⊖q+1)

]
δ′(t1−t2)

= π

2

∫
dt

d

dt′
[
σ0(q+ ⊖ q+′) + σ0(q− ⊖ q−′) − σ0(q+ ⊖ q−′) − σ0(q− ⊖ q+′)

]∣∣∣
t′=t

= π

2

∫
dt

[(
∂σ0
∂qi

(q−⊖q+)ui
j(q+⊖q−)

)
Dtq

j
+ +

(
∂σ0
∂qi

(q+⊖q−)ui
j(q−⊖q+)

)
Dtq

j
−

]
+ π

2

∫
dt

d

dt′
[
σ0(q+ ⊖ q+′) + σ0(q− ⊖ q−′)

]∣∣∣
t′=t

, (A.29)

where we have defined
σ0(q) =

∑
rab

U r
ab(q)ϱ̂r

0,ab (A.30)

and in obtaining the last expression we used Eq. (A.3a). We see that the interaction
with the bath has been encapsulated by a function function σ0(g) on the group manifold.
Using the time reversal invariance together with hermiticity of the spectral densities, one
can show that the function σ0(q) is real and even with respect to the reflection q → −q.
The third term in (A.27) requires a bit more work. We write

I(3) = π

∫
dt1dt2

[
θ(t2 − t1)

(
σ0(q+2 ⊖ q+1) − σ0(q−2 ⊖ q+1)

)
+ θ(t1 − t2)

(
σ0(q−2 ⊖ q−1) − σ0(q−2 ⊖ q+1)

)]
δ′(t1 − t2)

=π

∫
dt1dt2 θ(t2−t1)

[
σ0(q+2⊖q+1)−σ0(q−2⊖q+1)−σ0(q−1⊖q−2)+σ0(q−1⊖q+2)

]
δ′(t1−t2)

= −π

2

∫
dt

d

dt′
[
σ0(q+⊖q+′) − σ0(q−⊖q+′) − σ0(q−′ ⊖q−) + σ0(q−′ ⊖q+)

]∣∣∣
t′=t

,

(A.31)

where in the first equality we interchanged the variables t1 ↔ t2 in one of the terms, and
in the second equality used that for function f(x) vanishing at x = 0 the integral∫

dx θ(x)f(x)δ′(x) = −1
2f

′(0) (A.32)

is well defined. Evaluating the time derivatives with the help of Eqs. (A.3) we finally
obtain,

I(3) = − π

2

∫
dt

[
∂σ0
∂qi

(q−⊖q+)ui
j(q+⊖q−)Dtq

j
+ + ∂σ0

∂qi
(q−⊖q+)ui

j(q−⊖q+)Dtq
j
−

]
− π

2

∫
dt

d

dt′
[
σ0(q+⊖q+′) − σ0(q−′ ⊖q−)

]∣∣∣
t′=t

. (A.33)
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As a result, we have

I = I(1) + I(2) + I(3) =iπ
β

∫
dt
[
2σ0(0) − σ0(q+ ⊖ q−) − σ0(q− ⊖ q+)

]
− π

2

∫
dt
[
∂iσ0(q− ⊖ q+)ui

j(q+ ⊖ q−)Dtq
j
+ − ∂iσ0(q+ ⊖ q−)ui

j(q− ⊖ q+)Dtq
j
−
]

+ π

2

∫
dt

d

dt′
[
σ0(q−⊖q−′) + σ0(q−′ ⊖q−)

]∣∣∣
t′=t

. (A.34)

Using the following identity,

π

2

∫
dt

d

dt′
[
σ0(q−⊖q−′) + σ0(q−′ ⊖q−)

]∣∣∣
t′=t

= π

2

∫
dt

d

dt′
[
σ0(q−⊖q−′) − σ0(q−⊖q−′)

]∣∣∣
t′=t

= 0, (A.35)

the influence functional reads

I =iπ
β

∫
dt
[
2σ0(0) − σ0(q+ ⊖ q−) − σ0(q− ⊖ q+)

]
− π

2

∫
dt
[
∂iσ0(q− ⊖ q+)ui

j(q+ ⊖ q−)Dtq
j
+ − ∂iσ0(q+ ⊖ q−)ui

j(q− ⊖ q+)Dtq
j
−
]

(A.36)

A4 KMS transformation of q̂

In this Appendix we outline the derivation of Eq. (5.29). We work keeping terms up to
cubic power in q̂ ∼ βDtq̄. Each extra time derivative multiplied by β is considered as
adding one more order in this power counting. It is convenient to introduce a shorthand
notation,

Y i
jns = ∂l∂mu

i
j u

l
nu

m
s + ∂lu

i
j ∂mu

l
n u

m
s (A.37)

From Eqs. (5.2), (5.24) we have

2ui
j(q̄′) q̂′j + 1

3Y
i

jns(q̄′) q̂′j q̂′nq̂′s
∣∣∣
t

= 2ui
j(q̄) q̂j + 1

3Y
i

jns(q̄) q̂j q̂nq̂s

+ iβ

2 ∂t′
(
2q̄i + ul

m∂lu
i
j q̂

mq̂j)− β2

8 ∂2
t′
(
2ui

j q̂
j)− iβ3

48 ∂
3
t′(2q̄i) +O(q̂5)

∣∣∣
t′=−t

,

(A.38)

where on the r.h.s. all the coefficient functions are evaluated at q̄. On the l.h.s. we can
set the argument of Y i

jns to coincide with q̄ since the corresponding term is already of
cubic order. On the other hand, the coefficient ui

j(q̄′) must be Taylor expanded using
Eq. (5.27). Substituting

q̂′j
∣∣∣
t

= q̂j + iβ

2 Dtq̄
j + p̂j

∣∣∣
t′=−t

, (A.39)
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into (A.38) and simplifying the result with the identity (5.26), we arrive at

p̂k
∣∣∣
t

= iβ

4 C
k
jmq̂

j ˙̂qm + iβ

4 Z
k
jnsq̂

j q̂nDt′ q̄s − β2

8
¨̂qk + β2

4 Ck
jm

˙̂qjDt′ q̄m − β2

8 Zk
jnsq̂

jDt′ q̄nDt′ q̄s

− iβ3

48 ∂
2
t′Dt′ q̄k − iβ3

24 C
k
jmDt′ q̄j∂t′Dt′ q̄m

∣∣∣
t′=−t

,

(A.40)

where
Zk

jns = Ωk
i

(2
3Y

i
jns − 1

3Y
i

nsj − 1
3Y

i
sjn + C l

jsu
m
l ∂mu

i
n

)
. (A.41)

It remains to find the tensor Zk
jns, or rather its two symmetrized combinations Zk

(jn)s,
Zk

j(ns) entering into (A.40). Their direct calculation is possible, but lengthy. It is conve-
nient to take a shortcut by observing that they must be constant on the group manifold
since they enter as coefficients of invariant quantities in the expansion of the invariant
variable p̂k. Thus, we can evaluate them at q̄ = 0. Using Eqs. (A.5), (A.12) we readily
obtain,

Zk
(jn)s = −1

3C
k
(jmC

m
n)s , Zk

j(ns) = 2
3C

k
(nmC

m
s)j . (A.42)

Substitution into (A.40) yields Eq. (5.29).

A5 variation of the density matrix
Saddle point solution of the path integral (6.25) is obtained by variation of

S
(1)
E [ξ(z, τ),Φ(z)] + S

(2)
E [ξ(z, τ),Φ(z)]

with respect to ξ(z, τ). Variation of S(1) with respect to ξ(z, τ) results in

δS(1)[Φ(z), ξ(z, τ ]) =
∫

τ,z
gij
(
Φ(z)

)
∂zΦi(z)∇zδξ

j(z, τ) (A.43a)

=
∫

τ,z
∇z
(
gij∂zΦi(z)δξj(z, τ)

)
− gij∇z(∂zΦi(z))δξj(z, τ) (A.43b)

= −
∫

τ,z
gij∇z(∂zΦi(z))δξj(z, τ) (A.43c)

where in (A.43b) we have used metric compatibility of the covariant derivative. In the
first term of (A.43b), ∇z can be swapped with ∂z. Therefore, the first term of (A.43b)
can be written as a boundary term (in the z direction) and vanishes. Variation of S(2)

with respect to ξ field results in
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δS(2) = 1
2

∫
τ,z

[
2∇(E)

µ δξi(z, τ)∇(E)
µ ξi(z, τ) +

(
Rijkl +Rikjl

)
δξj(z, τ)ξk(z, τ)∂zΦi(z, τ)∂zΦl(z, τ)

]
.

(A.44)

The first term in (A.44) can be rearranged as follows

1
2

∫
τ,z

2∇(E)
µ δξi(z, τ)∇(E)

µ ξi(z, τ) (A.45a)

=
∫

τ,z
∂τδξ

i(z, τ)∂τξi(z, τ) + ∇zδξ
i(z, τ)∇zξi(z, τ) (A.45b)

= −
∫

τ,z
δξi(z, τ)∂2

τ ξi(z, τ) + δξi(z, τ)∇2
zξi(z, τ) (A.45c)

where in (A.45b) we have used the fact that the background is τ independent and as
result ∇τ = ∂τ . In transition to (A.45c) we have used integration by part and the fact
that the variation of ξ vanishes at the boundaries (along both τ and z axis). The second
term in (A.44) can be rewritten as follows

1
2

∫
τ,z

(
Rijkl +Rikjl +Rijkl +Riljk +Riklj

)
δξj(z, τ)ξk(z, τ)∂zΦi(z, τ)∂zΦl(z, τ) (A.46a)

= 1
2

∫
τ,z

(
2Rijkl +Riljk

)
δξj(z, τ)ξk(z, τ)∂zΦi(z, τ)∂zΦl(z, τ) (A.46b)

=
∫

τ,z
Rijklδξ

j(z, τ)ξk(z, τ)∂zΦi(z, τ)∂zΦl(z, τ) (A.46c)

where in (A.46a) we have simply added a zero using the cyclic property of the Riemann
tensor. In (A.46b) we have used the antisymmetric properties of the Riemann tensor
and in (A.46c), we have used the fact that contraction of an anti symmetric tensor with
a symmetric tensor gives zero,

Riljk∂zΦi(z, τ)∂zΦl(z, τ) = 0.

Adding up all the contributions, the saddle point differential equation for the path
integral (6.25) reads

∂2
τ ξ̄

j(z, τ) = −∇z∂zΦj(z) − ∇2
z ξ̄

j(z, τ) + gjb(Φ(z)
)
Ribkl

(
Φ(z)

)
ξ̄k(z, τ)∂zΦi(z)∂zΦl(z)

(A.47a)
ξ̄i(z, τ = −β/2) = ξi

1(z) (A.47b)

ξ̄i(z, τ = +β/2) = ξi
2(z) (A.47c)
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A6 The relation between the two definitions of the classical
and quantum fields

The influence functional is obtained in terms of geometrical quantities. We need to
rewrite the influence functional in terms of objects which are covariant with respect to
the symmetry group of the theory to match the results of DKMS. To do so, we need
to remember that q±(t) are the fundamental fields and one can define the classical and
quantum fields in different ways. As a result, the classical and quantum fields in one
definition can be obtained in terms of the classical and quantum fields in another defini-
tion perturbatively. The S-K classical and quantum fields in the covariant background
expansion method are defined through the following equations

qi
+(t) + qi

−(t)
2 = φi(t) − 1

2Γi
j1j2(φ)ζj1(t)ζj2(t) +O

(
ζ4
)

(A.48a)

qi
+(t) − qi

−(t)
2 = ζi(t) + 1

3

(
Γi

j3j4(φ)Γj4
j1j2

(φ) − 1
2∂j3Γi

j1j2(φ)
)
ζj1(t)ζj2(t)ζj3(t) +O

(
ζ5
)
.

(A.48b)
On the other hand, the S-K classical and quantum fields in the group covariant approach
in the previous chapter is defined through (look at the appendix)

qi
+(t) + qi

−(t)
2 = q̄i(t) + 1

2u
i1

j1(q̄)∂i1u
i
j2(q̄)q̂j1(t)q̂j2(t) +O

(
q̂4
)

(A.49a)

qi
+(t) − qi

−(t)
2 = ui

j(q̄)q̂j(t) + 1
3!

(
ui2

j2(q̄)∂i2u
i1

j1(q̄)∂i1u
i
j1(q̄)

+ ui1
j1(q̄)ui2

j2(q̄)∂i1∂i2u
i
j3(q̄)

)
q̂j1(t)q̂j2(t)q̂j3(t) +O(q̂5).

(A.49b)

These two sets of equations gives φi and ζi in terms of q̄i and q̂i perturbatively. The
zeroth order solution can be obtained by equating (A.48a) and (A.49a),

φi(t) = q̄i(t) +O
(
q̂2
)
. (A.50)

By equating (A.48b) with (A.49b) and inserting the zeroth order, we have the first order
solution as

ζi(t) = ui
j(q̄)q̂j(t). (A.51)

By equating (A.48a) with (A.49a) and using the zeroth and first order solutions we have
the second order solution as

φi(t) = q̄i(t) + 1
2
[
Γi

j1j2(q̄)uj1
l1

(q̄)uj2
l2

(q̄) + ui1
l1

(q̄)∂i1u
i
l2(q̄)

]
q̂l1(t)q̂l2(t) +O

(
q̂3
)

(A.52)
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The expression in the bracket can be rewritten in terms of the structure constants and
the γ matrices which results in (6.7a). In the next order of this expansion, we can obtain
(6.7b). Other useful identities which we need to use to match the covariant background
influence functional with the DKMS method are

Ωi
a(φ)∂tφ

a = Dtq̄
i + 1

2S
i
l1l2∂tq̂

l1
1 q̂

l2 + 1
4C

i
jkS

k
l1l2 q̂

l1 q̂l2Dtq̄
j +O(q̂4) (A.53a)

Ωi
a(φ)∇tζ̃

a = ∂tζ̃
i + 1

2
(
Ci

l1l2 + Si
l1l2

)
ζ̃ l2Dtφ

l1 +O(q̂3) (A.53b)

which can be proved with a similar procedure.

A7 higher order calculation
In what follows, we use the following notations for abbreviation:

ξ̃i′ = Ωi′
i(Φ)ξi.

and
D̃µξ̃

i′ = ∂µξ̃
i′ + Ci′

lm′ ξ̃m′
DµΦl

With this, the higher order term (??) is rewritten rewrite as follows

δS(M)
χ = 4ν̃ijkℓ

M2

∫
t,z
D̃µξ̃

iDµΦjDνΦkDνΦl (A.54)

The leading order correction due to this term can be obtained by inserting the saddle
point solution in the previous approximation into this action functional. To do so, we
need to go to the u− v coordinates. Showing the Jacobian of transformation by J = 1

2 ,
then in the u− v coordinates the action functional reads

δS(M)
χ = 4ν̃ijkl

M2 · J ·
∫

u
du

∫
v
dv
(
D̃uξ̃

iDvΦj + D̃v ξ̃
iDuΦj

)
· 2 ·DuΦkDvΦl

The saddle point solution ∂vΦi = 2i
β ξ

i can be rewritten in terms of the new quantum
field:

DvΦi = 2i
β
ξ̃i

which results in
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δS(M)
χ =8ν̃ijkl

M2 · J ·
∫

u,v

(
D̃uξ̃

i
(2i
β
ξ̃j
)

+ D̃v ξ̃
iDuΦj

)
DuΦk ·

(2i
β

)
· ξ̃l

= 8ν̃ijkl

M2 · J ·
(2i
β

)2 ∫
u,v
D̃uξ̃

i · ξ̃j ·DuΦk · ξ̃l

+ 8ν̃ijkl

M2 · J ·
(2i
β

)∫
u,v
∂v ξ̃

i · ξ̃l ·DuΦj ·DuΦk (A.55)

in which we have used the definition of D̃v ξ̃
i and the equation of motion:

D̃v ξ̃
i = ∂v ξ̃

i + Ci
mnDvΦmξ̃n = ∂v ξ̃

i + 2i
β
Ci

mnξ̃
mξ̃n = ∂v ξ̃

i

The term Ci
mnξ̃

mξ̃n is zero because Ci
mn is anti-symmetric with respect to (m,n). Let’s

rearrange the second term in (A.55) as a boundary term and a bulk term. It turns out
that only the boundary term contributes in the influence functional:

ν̃ijkℓ

∫
u,v

∂v ξ̃
i · ξ̃ℓ ·DuΦjDuΦk

= ν̃ijkl

2

∫
u,v
∂v

(
ξ̃iξ̃ℓ

)
DuΦjDuΦk

= ν̃ijkl

2

∫
u,v
∂v

(
ξ̃iξ̃lDuΦjDuΦk

)
− ν̃ijkl

∫
u,v
ξ̃iξ̃lDuΦj∂vDuΦk

= −
∫ ti

tf

du
ν̃ijkℓ

2
(
ξ̃iξ̃lDuΦjDuΦk)∣∣

(z=0,t) − ν̃ijkℓ

∫
u,v
ξ̃iξ̃ℓDuΦj∂vDuΦk

= −
∫ tf

ti

dt
ν̃ijkℓ

2
(
ξ̃iξ̃lDuΦjDuΦk)∣∣

(z=0,t) − ν̃ijkℓ

∫
u,v
ξ̃iξ̃ℓDuΦj∂vDuΦk (A.56)
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Now, we need to use the equation of motion to rewrite the second term in (A.56):

∂vDuΦk = ∂v

(
Ωk

m∂uΦm
)

= ∂vΦn∂nΩk
m∂uΦm + Ωk

m∂u∂vΦm

=
(2i
β

)
un

pξ̃
p∂nΩk

m∂uΦm +
(2i
β

)
Ωk

m∂u

(
um

nξ̃
n
)

(A.57)

=
(2i
β

)
un

pξ̃
p∂nΩk

mu
m

qDuΦq

+
(2i
β

)
Ωk

mu
m

n∂uξ̃
n +

(2i
β

)
Ωk

m∂pu
m

n∂uΦpξ̃n

=
(2i
β

) [
un

p∂nΩk
mu

m
q ξ̃

pDuΦq + ∂uξ̃
k + Ωk

m∂pΩm
nu

p
qDuΦq ξ̃n

]
=
(2i
β

) [
un

p∂nΩk
mu

m
q ξ̃

pDuΦq + D̃uξ̃
k − Ck

mnDuΦmξ̃n + Ωk
m∂nu

m
pu

n
qDuΦq ξ̃p

]
=
(2i
β

) [
D̃uξ̃

k − Ck
mnDuΦmξ̃n + Ωk

m (−un
p∂nu

m
q + un

q∂nu
m

p)DuΦq ξ̃p
]

=
(2i
β

) [
D̃uξ̃

k − Ck
mnDuΦmξ̃n + Ck

qpDuΦq ξ̃p
]

(A.58)

where we have used the identity Ωm
q∂nΩk

m = −Ωk
m∂nΩm

q and the definition of the
structure constant. Therefore, we have

δS(M)
χ = = 8ν̃ijkl

M2 · J ·
(2i
β

)2 ∫
dudvD̃uξ̃

i · ξ̃j ·DuΦk · ξ̃ℓ

− 4ν̃ijkℓ

M2 · J ·
(2i
β

)∫
duξ̃iξ̃ℓDuΦjDuΦk

− 8ν̃ijkℓ

M2 · J ·
(2i
β

)2 ∫
dudvξ̃iξ̃lDuΦjDuξ̃

k

+ 8ν̃ijkℓ

M2 · J ·
(2i
β

)2 ∫
dudvξ̃iξ̃ℓDuΦjCk

mnDuΦmξ̃n

− 8ν̃ijkl

M2 · J ·
(2i
β

)2 ∫
dudvξ̃iξ̃lDuΦjCk

qpDuΦq ξ̃p (A.59)

= −2ν̃ijkl

M2 ·
(2i
β

)∫ tf

ti

dt
(
ξ̃iξ̃lDuΦjDuΦk)|(z=0,t). (A.60)
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using the identity Du = Dt +Dv and the equation of motion DvΦi(z, t) = 2i
β ξ̃

(z, t), this
expression reads

δS(M)
χ = −2ν̃ijkl

M2 ·
(2i
β

)∫ tf

ti

dt
(
ξ̃iξ̃lDuΦjDuΦk)|(z=0,t)

= −2ν̃ijkl

M2 ·
(2i
β

)∫ tf

ti

dt

(
ξ̃iξ̃l(DtΦj + 2i

β
ξ̃j)(DtΦk + 2i

β
ξ̃k))∣∣∣∣

(z=0,t)

= −2ν̃ijkl

M2 ·
(2i
β

)∫ tf

ti

dt[
Ωi

i′(φ)ζi′(t)Ωl
l′(φ)ζ l′(t)

(
Dtφ

j(t) + 2i
β

Ωj
j′(φ)ζj′(t)

)(
Dtφ

k(t) + 2i
β

Ωk
k′(φ)ζk′(t)

)]
(A.61)

where in the last line the boundary conditions at z = 0 are used. Therefore, this term
corrects the influence functional with

iIM = ν̃ijkl

M2

∫ tf

ti

dt

[
− i

β
Ωi

i′(φ)ζi′(t)Ωl
l′(φ)ζ l′(t)Dtφ

j(t)Dtφ
k(t)

+ 2
β2

(
Ωi

i′(φ)ζi′(t)Ωl
l′(φ)ζ l′(t)Dtφ

j(t)Ωk
k′(φ)ζk′(t)

+ Ωi
i′(φ)ζi′(t)Ωl

l′(φ)ζ l′(t)Dtφ
k(t)Ωj

j′(φ)ζj′(t)
)

+ 4i
β3 Ωi

i′(φ)ζi′(t)Ωl
l′(φ)ζ l′(t)Ωj

j′(φ)ζj′(t)Ωk
k′(φ)ζk′

.(t)
]

(A.62)

Inserting the leading order term from (6.7), we obtain the covariantized version of
(6.100).
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