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ABSTRACT

Microwave/millimeter-wave imaging technology, distinguished by its ability to detect

and visualize objects obscured by non-transparent materials, finds diverse applications

in fields such as security, medical diagnostics, and industrial nondestructive testing.

These applications often require rapid, accurate imaging capabilities that can op-

erate effectively even in non-ideal conditions. This work’s principal contribution is

the advanced applications of Fourier-space scattered power mapping (F-SPM), which

facilitates significant improvements in image reconstruction quality. Firstly, we intro-

duce a novel integration of F-SPM with dual simultaneous utilization of the Born and

Rytov approximations. This synergy enhances both the structural and quantitative

accuracy of the imaging results by leveraging the unique strengths of each approxi-

mation. Secondly, we adapted Fourier-space scattered power mapping (F-SPM) for

time-domain data, achieving the same performance as the original frequency-domain

method. Simulation and experimental validations are conducted along with the con-

cept of linear frequency-modulated radar (LFM), with performance compared to the

rapid microwave holography method. Additionally, we present a broader application

of the F-SPM method, which processes data from randomly placed spatial positions.

This approach allows for real-time image updates concurrent with ongoing measure-

ments, progressively refining and converging in quality as additional data is acquired.

The innovative applications of F-SPM demonstrated in this study enable the achieve-

ment of high-quality images with fewer samples than typically required by the Nyquist

criterion.
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CHAPTER 1

INTRODUCTION

1.1 Background

Microwave and millimeter-wave (mmW) imaging technologies have significantly evolved

over the past few decades, driven by substantial advancements in both theoretical

frameworks and practical applications. These technologies, which operate in the elec-

tromagnetic spectrum from 300 MHz to 300 GHz, have become pivotal in a range

of fields such as security, healthcare, and industrial processes due to their ability to

perform non-invasive and high-resolution imaging. Unlike optical imaging, microwave

imaging has the penetrating ability allowing to image through various materials, in-

cluding non-metallic objects, fog, smoke, and clothing. This capability makes it highly

valuable in diverse fields, such as medical diagnostics, industrial non-destructive test-

ing, and security.

Electromagnetic (EM) imaging involves both forward scattering problems and

inverse scattering problems [1, 2]. In the forward model, such as thos in computa-

tional electromagnetics, the properties of the object (e.g. dielectric properties) are

known and we aim to obtain the scattered-field responses. The calculation of the

measured S−parameters in an imaging setup is an example of a forward scattering

problem. Commercial EM full-wave simulators solve forward scattering problems us-

ing numerical techniques, such as the method of moments (MOM) [3], finite difference

methods [4] and finite element methods [5]. In the EM inverse problems, the output
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responses of the system are known, provided by measurements or simulations. In this

case, we wish to infer the unknown properties or the object. Examples of inverse

scattering problem include remote sensing and microwave/mmW imaging where the

obtained reflectivity or permittivity profile can provide valuable diagnostic informa-

tion. Solving the inverse scattering problem is a difficult task as the scattered field

is nonlinearly related to the scatterer due to multiple scattering and mutual cou-

pling effects. Additionally, the inverse scattering problem is generally non-unique

and ill-posed.

The objective of microwave/mmW imaging is to localize, shape, and reconstruct

an unknown target located in the imaged domain by means of interrogating elec-

tromagnetic waves. It is classified into two categories: qualitative and quantitative.

Although qualitative imaging methods retrieve the shape and location of unknown

objects within the imaged domain, they are incapable of providing the quantita-

tive estimates of the material properties of unknown targets. Quantitative imaging

methods, in contrast, reconstruct the values of electromagnetic parameters (e.g., per-

mittivity and conductivity) of unknown scatterers but require higher computational

resources (CPU time, memory, etc.).

There are two major approaches in solving the inverse scattering problem: direct

inversion algorithms and iterative algorithms. On one hand, direct inversion algo-

rithms use the linearized model of scattering that approximates the total internal

field with the incident field using the 0th-order Born approximation. These algo-

rithms have relatively low computational burden. However, they may exhibit struc-

tural inaccuracies, especially in near-field imaging of heterogeneous targets. Common
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qualitative imaging algorithms are back-projection [6,7], delay and sum (DAS), time-

reversal (TR) [8,9] and holography methods. On the other hand, iterative algorithms

account for non-linear scattering effects and can provide accurate quantitative imag-

ing at the cost of heavy computational burden due to the use of electromagnetic

simulations. Examples of such methods include the Born iterative and distorted

Born iterative methods [10,11], Newton-type inversion methods [12], contrast source

inversion (CSI) [13,14], and the model-based optimization methods [15,16].

Another recent advancement in solving the inverse problems is utilizing deep

learning methods [17–20]. Deep learning, particularly convolutional neural networks

(CNNs) and multilayer perceptrons (MLPs), offers an efficient alternative by learning

the mapping from the scattered-field measurements to scatterer properties [21]. These

methods can be broadly categorized into direct learning approaches, learning-assisted

objective-function approaches, and physics-assisted learning approaches [22]. Despite

their potential, deep learning methods for inverse scattering problems face challenges

such as the need for large and diverse training datasets, and generalization to unseen

data [22,23].

Another research development in this area focuses on signal processing algorithms

rather than distinct image-reconstruction algorithms. These methods include com-

pressed sensing (CS) and regularization approaches [24–27]. The CS methods are

particularly useful for processing random and sparsely sampled data. However, they

do have limitations, i.e. they cannot compensate for the lack of data. They operate

under the assumption that the information content of the data in some domain is

much lower than that found in the actual measurement space. These methods utilize

mathematical representations of signals that can be expressed with only a few basis
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functions in a specific space [28].

In the past, linear (direct inversion) methods have been able to produce only

qualitative images. However, recent developments have shown that these methods

are in fact capable of generating quantitative images. A notable advancement is the

development of a calibration method that enables the extraction of the resolvent ker-

nel (i.e., the transfer function of the linearized scattering model) from the measured

system point spread function (PSF). In the context of inverse scattering, the PSF

describes the system’s response to a point scatterer. In qualitative imaging, usually

an analytical representation of the PSF is utilized, whereas in quantitative image

reconstruction a small scattering probe (SP) is utilized to acquire the PSF through

measurements. The measured PSF describes the hardware performance well as it

encompasses the antenna field distribution (or pattern) and other factors that affect

the measurement of the actual object under test (OUT). Using measured PSFs, quan-

titative imaging of dielectric objects has been demonstrated by algorithms such as

quantitative microwave holography (QMH) [29–33].

1.2 Research Objective

Recently, a novel method has been proposed that combines the advantages of quanti-

tative reconstruction with fast performance, avoiding the complexities of nonlinearity

and iteration. This research is distinguished by two main features. First, it focuses on

real-time imaging techniques, which enable rapid image reconstruction with minimal

delay following the acquisition of measurements. Second, the research explores the

application of the PSF in real-time image reconstruction, enhancing the precision and

efficiency of the imaging process.
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The primary objective of this research is to enhance the capabilities of the previ-

ously proposed scattered power mapping (SPM) method in [34,35]. The ultimate goal

is to achieve rapid, high-fidelity reconstructions that can effectively support imaging

technologies.

This study specifically introduces and evaluates an innovative imaging technique

known as Fourier-space scattered power mapping (F-SPM). F-SPM is a versatile

method capable of processing various signal types, including stepped-frequency con-

tinuous waves (SFCW), linear frequency modulated (LFM) signals, and ultra-wideband

(UWB) radar pulses. It employs a direct inversion algorithm that leverages the Born

approximation of the total internal field. This approach linearizes the forward scatter-

ing model, thereby facilitating real-time image reconstruction. Additionally, it allows

for the quantitative estimation of an object’s permittivity.

To validate the effectiveness of the F-SPM technique, extensive testing has been

conducted in both simulated and experimental environments. These rigorous tests

have led to significant enhancements in the method’s performance. The improvements

derived from these tests have been meticulously documented and are published in

peer-reviewed journal papers. These findings are also elaborated upon extensively in

this thesis, highlighting the method’s efficacy and potential applications.

1.3 Contributions

The author has contributed to the development of microwave/millimeter-wave imag-

ing in the following ways:
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1. Implemented a novel hybrid Born/Rytov reconstruction technique that simul-

taneously employs both Born’s and Rytov’s approximations to significantly

improve image quality [36]. Each approximation inherently possesses distinct

limitations; however, their concurrent use effectively mitigates approximation-

specific artifacts, therefore, enhancing the overall fidelity of the reconstructed

images.

2. Addressed the need to expand the F-SPM algorithm application to time-domain

LFM radar signals utilizing affordable off-the-shelf 77-81 GHz LFM radar sen-

sors, reducing operational expenses and broadening radar technology utiliza-

tion [37].

3. An in-house time-domain radar simulator is developed, which generates syn-

thetic linear frequency-modulated data much faster than full-wave simulators

at high-frequencies, reducing simulation time dramatically [37].

4. Developed and validated a novel image reconstruction method using SPM, de-

signed for mobile platforms, that effectively processes data acquired at random

spatial positions. The method demonstrates that it can achieve image quality

comparable to that obtained with uniformly sampled data, meeting the Nyquist

limit, but without the necessity for such regular sampling [38].

1.4 Outline of the Thesis

This thesis presents the results of an ongoing development of an EM imaging method.

The thesis particularly considers the novel image reconstruction algorithms and data

processing. Special attention is paid to such aspects of the EM inverse scattering
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theory as the forward model formulation, the resolvent kernel (i.e. the PSF) in

the integral equation of scattering as well as the Born and Rytov scalar models of

scattering.

Chapter 2 derives the combined Born/Rytov implementation of F-SPM algorithm,

highlighting the benefits of using both approximations in tandem. It presents both

simulated and experimental results which demonstrate its ability. This chapter is

duplicated from a published journal paper in the IEEE Transactions on Microwave

Theory and Techniques [36].

Chapter 3 introduces a novel image reconstruction method for real-time millimeter-

wave imaging utilizing linear frequency modulation (LFM) radar and its time-domain

responses, called Fourier-space scattered power mapping in the time domain (FSPM-

TD). Employing synthetic data from an in-house developed radar simulator and real-

world data acquired with a commercial LFM radar system, our method demonstrates

significant improvements in image reconstruction speed and accuracy compared to ex-

isting techniques like microwave holography. This chapter is also duplicated directly

from a first-authored manuscript [37].

Chapter 4 demonstrates a novel random sampling F-SPM method on non-uniform

3D trajectories, a common scenario in mobile and handheld devices, e.g. drones. The

images are reconstructed and updated in real time concurrently with the measure-

ments to produce an evolving image, the quality of which is continuously improving

and converging as the number of data points increases with the stream of additional

measurements This chapter is duplicated from a manuscript published in the MDPI

Sensors journal [38].

Chapter 5 concludes the discussion on the advancements in the real-time SPM
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imaging method. It also provides suggestions for future work to further enhance the

F-SPM method.
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CHAPTER 2

SIMULTANEOUS USE OF THE BORN AND RYTOV

APPROXIMATIONS IN REAL-TIME IMAGING WITH

FOURIER-SPACE SCATTERED POWER MAPPING

AND RYTOV APPROXIMATIONS IN QUANTITATIVE

MICROWAVE HOLOGRAPHY

Preface

This chapter is a reproduction of the following published article:

R. Kazemivala, D. Tajik and N. K. Nikolova, “Simultaneous Use of the Born and

Rytov Approximations in Real-Time Imaging With Fourier-Space Scattered Power

Mapping,” in IEEE Transactions on Microwave Theory and Techniques, vol. 70, no.

5, pp. 2904-2920, May 2022, doi: 10.1109/TMTT.2022.3157728.

This article is open access under the Creative Commons 4.0 licensing agreement.

I designed and performed the measurements with the simulated data, implemented

the quantitative Fourier-space scattered power mapping (F-SPM) algorithm using

the Born and Rytov combination in code, performed the image reconstruction, and

wrote/edited the manuscript. Daniel Tajik designed and performed the breast phan-

tom experiment and assisted in the development and testing of the combined Born/Rytov
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technique and reviewed the manuscript. Natalia K. Nikolova assisted in the develop-

ment of the combined Born/Rytov technique and edited the manuscript.

2.1 Introduction

Microwave and millimeter-wave imaging methods offer powerful means to detect de-

fects and abnormalities in optically opaque objects. They are widely used in remote

sensing, security screening, through-the-wall imaging, ground-penetrating radar, and

non-destructive testing [1–9].

Major research efforts also focus on medical diagnostics, e.g., for breast and skin

cancer early detection, bone-disease diagnostics and monitoring, and brain-stroke

detection [10–16]. The advantages of the microwave modality in medical imaging

stem from the relatively low cost and small size of the equipment along with the

non-ionizing nature of the radiation [17, 18]. In these applications, high signal loss,

near-field effects and strong dielectric heterogeneity present significant challenges for

both measurement hardware and reconstruction methods. Nonetheless, especially in

the case of breast imaging, clinical evaluations are underway [19–21], and are expected

to demonstrate a beneficial alternative to the already well-established medical imaging

modalities.

Nonlinear iterative methods for image reconstruction [22–35] constitute a large

class in microwave imaging. Their main advantage is that they can account for multi-

ple scattering and mutual coupling in highly heterogeneous media, where faster direct

(or linear) inversion methods often fail. Another important advantage is the quan-

titative reconstruction of the object’s permittivity. In contrast, conventional direct
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inversion methods offer only qualitative images. Quantitative imaging is beneficial

when prior property information is available for inclusions of interest (e.g., identifying

breast cancer based on its higher permittivity). The trade-off is computational effort,

which may be many orders of magnitude larger than that in direct inversion [36].

However, the use of two-dimensional (2D) forward solvers along with tomographic

measurement systems, which are designed to observe the limitations of the 2D model,

provide a successful strategy to reduce the computational cost of nonlinear inversion

and to minimize the modeling errors [37,38].

The significant computational effort of nonlinear reconstruction has motivated

alternative research on direct reconstruction methods for near-field imaging. The

advantage of these method is the low computational complexity, leading to very fast

(real-time) image reconstruction. Examples include the well-known time-domain algo-

rithms of synthetic aperture radar (SAR) such as delay-and-sum (DAS) and matched

filtering [36,39,40] as well as the frequency-domain algorithms exploiting inversion in

Fourier space (also known as k-space or wavenumber space) [41]. Microwave holog-

raphy is arguably the most common k-space algorithm [42–46] due its simplicity and

computational efficiency.

Importantly, the above direct reconstruction methods are incapable of quanti-

tative imaging. However, methods for direct inversion with quantitative property

reconstruction have been proposed recently, namely, quantitative microwave hologra-

phy (QMH) [47–50] and scattered power mapping (SPM) [50–52]. This breakthrough

has become possible due to a measured system point-spread function (PSF), which

captures the response of the measurement system to a point scatterer of known con-

trast [50]. The kernel of the system-specific linearized scattering model is derived
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from the measured PSF.

The inversion strategies of QMH and SPM are fundamentally different. QMH is a

highly efficient computationally. It performs model-to-data matching at each point in

(kx, ky, z) space, where kx and ky span the data k-space. In contrast, SPM minimizes

the l2 norm of the data error over the real (x, y, z) space [36]. The original SPM [51]

performs the inversion in the (x, y, z) space, which makes it time-consuming for large

objects.

In [52], an improvement to the original SPM is proposed, where the inversion is

still carried out in (x, y, z) but the system matrix in the quantitative step is cast

in the form of a block circulant with circulant blocks (BCCB) matrix. The BCCB

solution leads to significant reduction in the solution time compared to the general

approach in [51]. Yet the computational complexity remains higher than that of

QMH. In [50], it is suggested that the BCCB quantitative-inversion stage be replaced

by a faster solution in k-space. Here, we show that further significant acceleration can

be achieved if the SPM qualitative-inversion stage, too, is performed in k-space using

the Fourier-transformed data sets. Hereafter, this SPM approach, where both the

qualitative and quantitative inversion stages are carried out in Fourier (or k) space, is

referred to as Fourier-space SPM (F-SPM). The advantage of F-SPM over the previous

SPM methods [50–52] is the reduced running time. As illustrated later, orders of

magnitude reduction is achieved compared to the BCCB-SPM algorithm [52]. The

larger the object is, the greater the time savings.

The second new development is the strategy to combine the Born and Rytov data

approximations within a common F-SPM inversion procedure. As previously shown,

the SPMmethod can be formulated with either Born’s approximation (BA) or Rytov’s
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approximation (RA) of the scattered-field data when extracted from the total-field

and incident-field measurements [52, 53]. Each of these approximations has distinct

limitations. The accuracy of the BA is limited by the product of the size and the

permittivity contrast of the scattering object [36,54–58]. On the other hand, the RA is

limited to low-contrast objects but it is insensitive to their size as long as the contrast

is very low [36, 55, 56, 59]. In a number of applications, such as tissue imaging and

non-destructive testing, the background permittivity is often high and this expands

the region of applicability of the RA [60]. Also, it has been shown that the BA

leads to better reconstruction of the object boundaries but not their interior, whereas

the RA is more successful in reconstructing the interior [56, 60]. This observation is

particularly reinforced with transmission measurements (as opposed to reflection or

back-scattering measurements) when the RA exhibits improved accuracy compared

to BA [60].

A well-known practical drawback of the RA-based image reconstruction is that it

requires spatial phase unwrapping of the data, which is problematic with strongly het-

erogeneous high-contrast targets [50]. The problem has been successfully navigated

by imposing continuity constraints from one frequency to the next for each transmit-

receive antenna pair [37, 61]. Various approaches have also been proposed in the

context of magnetic resonance imaging (MRI) [62]. Nonetheless, phase wrapping re-

mains a challenge especially in the case of very wide frequency bandwidths and a large

number sampling positions or transmit-receive pairs [63–66]. In the method proposed

here, the phase unwrapping step is eliminated altogether in a modified RA-based

model, which is then combined with the BA-based model in the new reconstruction

algorithm. We demonstrate that this approach improves the image accuracy in the
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case of heterogeneous objects with electrically large structural components.

In summary, the proposed F-SPM algorithm is a fast quantitative image-reconstruction

method, which can applied with far- and near-field measurements. It reduces the run-

ning time by orders of magnitude in comparison with the most recent BCCB SPM

implementation. Moreover, it combines the Born and Rytov data-extraction strategies

in a single inversion procedure, which improves the image quality in comparison with

the SPM algorithms employing these strategies separately. Notably, the Rytov-based

data extraction employed by F-SPM eliminates the need for spatial phase unwrapping

of the data.

The idea of combining the Born and Rytov data approximations in a common

reconstruction has been recently explored with QMH [49], [60]. However, up until

now it remained unclear how this can be implemented with the SPM method.

The proposed F-SPM method is validated through a challenging near-field imag-

ing experiment with a flattened breast phantom. It is also tested in a close-range

millimeter-wave experiment for concealed object detection.

Next, we briefly introduce the SPM reconstruction method. The new F-SPM

is presented in Section 2.3 and a comparison between F-SPM, BCCB-SPM and the

original SPM is carried out in terms of computational time. In Section 2.4, the

combined Born-Rytov F-SPM inversion method is presented, followed by an algorithm

summary in Section 2.5. The simulation-based and measurement-based examples are

presented and discussed in Sections 2.6 and 2.7, respectively.
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2.2 Background

2.2.1 Forward Model of Scattering

The exact forward model of scattering in terms of the S-parameters (the data equa-

tion) has been derived in [67]. For real-time reconstruction, this exact model is

linearized using the zero-order Born approximation of the total internal field [36],

leading to the approximate model:

Ssc
jk(rRx, rTx;ω) ≈

−iωϵ0
2ajak

·
∫∫∫

V ′
∆ϵr(r

′)Einc
j (rRx, r

′;ω) · Einc
k (r′, rTx;ω)dv

′ . (2.1)

Here, Ssc
jk(rRx, rTx;ω) is the scattered-field portion of the S-parameter measured with

the transmitting (Tx) antenna at position rTx and the receiving (Rx) antenna at

rRx, and ω is the angular frequency. The subscripts j and k denote the Rx and Tx

antenna ports, respectively. Also, ak is the root-power wave [68] at the Tx antenna

port whereas aj is the root-power wave at the Rx antenna port if this antenna were to

transmit, generating the incident field Einc
j (rRx, r

′;ω) at position r′ ∈ V ′. This field

distribution is the vector Green’s function of the system [67]. Einc
k (r′, rTx;ω) is the

incident field of the Tx antenna, which replaces the total internal field through Born’s

zero-order approximation. Further, ϵ0 is the free-space permittivity, and ∆ϵr(r
′) is

the object’s complex relative permittivity contrast,

∆ϵr(r
′) = ϵr(r

′)− ϵr,b(r
′), r′ ∈ V ′ , (2.2)
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with ϵr and ϵr,b being the complex relative permittivity values of the object and the

background, respectively.

The linearized scattering model (2.1) can be expressed in terms of the system PSF

as [50,52,53]:

Ssc
jk(rRx, rTx;ω) ≈

1

∆ϵr,spΩsp

·
∫∫∫

V ′
∆ϵr(r

′) ·Hsc
jk(rRx, rTx; r

′;ω)dv′ , (2.3)

where the PSF Hsc
jk(rRx, rTx; r

′;ω) is the system response to an electrically small

(point-like) scatterer at r′ of contrast ∆ϵr,sp = ϵr,sp− ϵr,b and volume Ωsp. The PSF is

proportional to the field product Einc
j · Einc

k , i.e., the kernel of the model in (2.1), as

well as the contrast and volume of the small scatterer. In a uniform background, the

far-zone PSF can be approximated with analytical expressions [36], whereas near-zone

PSFs can be approximated using simulated incident-field distributions [43,44,69]. In

either of these cases, the images are only qualitative since the PSF does not capture

the system’s quantitative aspects such as the actual transmitted power, the impact of

the various components of the imaging setup and its contrast sensitivity. To enable

quantitative imaging, the system-specific PSF must be measured with a scattering

probe (SP) of known volume Ωsp and contrast ∆ϵr,sp.

To illustrate the meaning of the PSF as the measured response to a point scatterer,

Fig. 1 shows the extracted scattered portion of the S11 parameter in a planar scan in

a simulated scattering from a small probe with ϵr,sp = 1.1 and Ωsp = 1 cm3, where

the background is air (ϵr,b = 1). The lateral position of the SP is at the center of

the scanned plane (x′ = y′ = 0) whereas its distance from the plane (along z) is 3

cm. The PSF shows a near-circular pattern altered slightly by the radiation pattern

of the dipole antenna measuring it.
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(a) (b)

Figure 2.1: System PSF for Ssc
11 at 8 GHz for a cubical scattering probe (1 cm3,

ϵr,sp = 1.1) in air: (a) magnitude and (b) phase. The Tx/Rx antenna is a half-
wavelength dipole scanning along x and y. The SP is at a distance z = 3 cm from the
scanned plane. Data is obtained from simulations using the full-wave electromagnetic
solver FEKO [70].

In the case of a uniform or layered background, the PSF is translationally invariant

in the two lateral directions, which allows for casting (2.3) in the form of convolution

integrals [36, 71]. In particular, in planar scanning along x and y (in the plane z̄ =

const.), with the background being uniform or with layers extending along x and y,

(2.3) is written as:

Ssc
ζ (x, y, z̄;ω) =

1

∆ϵr,spΩsp

∫∫∫
z′y′x′

∆ϵr(x
′, y′, z′)·

Hsc
ζ (x− x′, y − y′, z̄; z′;ω)dx′dy′dz′, ζ = 1, ..., NT . (2.4)
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Here, the subscript ζ ≡ (j, k) has been introduced for brevity, indicating the re-

sponse type, i.e., reflection or transmission coefficient, co-polarized or cross-polarized

response, etc. The number of response types is denoted with NT. H
sc
ζ (x, y, z̄; z′;ω) is

the ζ-type PSF obtained with the SP positioned at x′ = y′ = 0 in the plane z′ = const.

It is evident that (2.4) is a 2D convolution in of the object’s contrast function and

the system PSF Hsc
ζ along x and y. Note that Hsc

ζ requires only one measurement

with the SP at the center of the plane z′ = const. In near-zone measurements, for

best accuracy, it is desirable to measure multiple PSFs with the SP located at each

plane where an image slice is needed.

2.2.2 Extraction of Scattered Data

The measured S-parameters, in both the PSF and the object under test (OUT)

measurements are total-field responses, which combine the incident and scattered

field contributions. In order to extract the scattered-field contribution, a background

calibration measurement is necessary where no scattering objects are present in the

setup. This is referred to as the reference object (RO).

The first and most common approach to extracting scattered-field responses em-

ploys the first-order Born external-field (or data) approximation [36, 55]. The total-

field response Stot
ζ is viewed as the superposition of the incident-field (or RO) response

Sinc
ζ and the scattered-field response Ssc

ζ , which is represented by the linearized scat-

tering model in (2.1). It then follows that the scattered portions of the S-parameter

can be extracted as [36,55]:

Ssc
ζ,B(·) ≈ Stot

ζ (·)− Sinc
ζ (·) . (2.5)
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Here, the subscript B indicates Born’s approximation.

Another extraction formula employs the first-order Rytov data approximation

[36,55]:

Ssc
ζ,R(·) ≈ Sinc

ζ (·) · ln

[
Stot
ζ (·)

Sinc
ζ (·)

]
. (2.6)

In (2.6), Ssc
ζ,R, too, must be represented by the linearized scattering model (2.1). It is

worth noting that the logarithmic Rytov-based formula (2.6) can be also interpreted

in the framework of the fundamental work of Box and Cox [72] on data transformation

into optimal sets for regression analysis.

2.2.3 SPM Image Reconstruction in Real Space

SPM is a two-stage reconstruction procedure. The first stage computes the qualitative

image of the OUT as [36,51,52]:

M(r′) =
Nω∑
m=1

NT∑
ζ=1

NRx∑
p=1

NTx∑
q=1

[
Ssc
ζ (rp, rq;ωm)

]
·
[
Hsc

ζ (rp, rq; r
′;ωm)

]∗
. (2.7)

Here, rp, p = 1, ..., NRx, and rq, q = 1, ..., NTx, denote the observation and excitation

points, respectively, Nω is the number of frequency samples, and r′ is the imaged

point. Note that r′ also corresponds to the location of the point scatterer in Hsc
ζ .

M(r′) is termed scattered-power map (or simply power map) since it scales with

the scattered power emanating from r′. The power map is complex-valued but its

absolute value |M(r′)| is a qualitative image of the OUT reflectivity.

In order to carry out the second stage of quantitative reconstruction, the power

maps of the point scatterer (the SP) at all locations r′ ∈ V ′ are required. These SP
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power maps are computed in a manner analogous to (2.7):

M(r′; r′′) =
Nω∑
m=1

NT∑
ζ=1

NRx∑
p=1

NTx∑
q=1

[
Hsc

ζ (rp, rq; r
′′;ωm)

]
·
[
Hsc

ζ (rp, rq; r
′;ωm)

]∗
. (2.8)

Here, r′ is again the imaged point whereas r′′ is the location of the SP. Note that M

is rarely a 3D δ-function, i.e., it contains nonzero values at r′ ̸= r′′. This is because

it is the qualitative image point-spread function (IPSF) of the system.

The second (quantitative) stage of the SPM reconstruction is based on a proof

that the OUT power map M(r′) in (2.7) relates to the SP power maps M(r′; r′′)

through [36,51]:

M(r′) =
1

∆ϵr,spΩsp

∫∫∫
V ′

∆ϵr(r
′′)M(r′; r′′)dr′′ . (2.9)

The discretization of (2.9) over the imaged volume results in a square linear system

of equations [36,51]:

Mx = m , (2.10)

where the q-th column of the system matrix M is the vectorized SP power map

M(r′p; r
′′
q), p = 1, . . . , Nv (the SP is at r′′q). The vector m is the vectorized MOUT

power map, and x contains the unknown values of the voxel complex reflectivity

function ∆ϵr(r
′′
q)·Ωv/(∆ϵr,spΩsp), q = 1, . . . , Nv, where Ωv = ∆x′′∆y′′∆z′′ is the voxel’s

volume. By far, the most time consuming task in real-space SPM is solving (2.10)

since the size of the system matrix is Nv × Nv, where Nv = NxNyNz is the number

of image voxels in V ′.

In [52], the translational invariance of the PSF in a uniform or layered background

is exploited to accelerate SPM in the case when Nv is large. Specifically, the PSF
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for an SP, which is laterally shifted off-center by (∆x′,∆y′), is approximated by the

PSF for an SP at the center x′ = y′ = 0 through a coordinate shift (x − ∆x′, y −

∆y′). Here, (x, y) is the position where the PSF is measured. This shift is then

efficiently implemented in k-space using the shifting property of the Fourier transform

(FT). As a result, the system matrix M in (2.10) becomes block circulant with

circulant blocks (BCCB). The circulant matrices become diagonalized using a discrete

Fourier transform. Hence, the respective BCCB method leads to significant reduction

in the quantitative solution time compared to the more general approach in [51].

Its computational complexity Nv log(Nv) as opposed to that of N3
v in [51]. Orders

of magnitude reduction in the reconstruction time is reported in [52] compared to

the least-squares method in [51] when Nv exceeds 104. Although the computational

complexity has not been explicitly reported for the BCCB-SPM method in [52], it

has a slightly higher cost compared to the SPM that has been discussed in [50]. Here,

we show that further acceleration is achievable if both stages of the SPM inversion

(qualitative and quantitative) are performed in Fourier space.

2.3 Fast SPM Inversion in Fourier Space

In [50], it is shown that the BCCB solution of (2.10) can be performed directly in

2D Fourier space. This is computationally advantageous since the need to cast the

Fourier-transformed system PSFs back into real space is eliminated. Thus, the speed

of the SPM algorithm so far has been limited mainly by its first stage that builds the

OUT and SP scattered-power maps; see (2.7) and (2.8).

Here, we propose a method to compute the OUT and SP scattered-power maps

directly in 2D Fourier space, where the quantitative inversion is done. This leads
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to orders of magnitude reduction of the computational time. The acceleration is

particularly beneficial in view of the proposed simultaneous use of the Born and

Rytov approximations, which doubles the amount of scattered-power maps.

The real-space computation of the power maps with (2.7) and (2.8) has the im-

portant advantage of accommodating arbitrary Tx and Rx positions (rj and rk).

However, if rj and rk describe a monostatic or a bi-static scenario with scanning on a

uniform grid, these maps can be cast in the form of 2D cross-correlations, which are

most efficiently computed in Fourier space. In these scenarios, the Tx and Rx anten-

nas are in a fixed configuration, moving together relative to the imaged object. Thus,

the Tx antenna position can be expressed in terms of the Rx one, i.e., rk = rj + r̄,

where r̄ is a constant vector. The sum over the Tx positions
∑NTx

k=1 in (2.7) and (2.8)

now has only one term per Rx position and is omitted. Further, the summation over

the Rx locations rj ≡ (xj, yj, z̄) can be represented as an integral over the acquisition

plane z̄ = const. (assuming sufficiently dense sampling). Thus, (2.7) is cast as:

M(x′, y′, z′) =
Nω∑
m=1

NT∑
ζ=1

∫∫
yx

[
Ssc
ζ (x, y;ωm)

]
·
[
Hsc

ζ (x, y;x′, y′, z′;ωm)
]∗
dxdy . (2.11)

Here, we have omitted z̄ from the arguments of Ssc
ζ and Hsc

ζ for brevity. If the

background is uniform or layered (layers extending along x and y), (2.11) can be

expressed as:

M(x′, y′, z′) =
Nω∑
m=1

NT∑
ζ=1

∫∫
yx

[
Ssc
ζ (x, y;ωm)

]
·
[
Hsc

ζ (x− x′, y − y′, z′;ωm)
]∗
dxdy , (2.12)

where Hsc
ζ (x, y; z′;ωm) is the PSF of a scattering probe at (0, 0, z′), z′ = const. Since
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the OUT power map (2.12) is a 2D cross-correlation of the OUT data and the re-

spective PSFs, it can be efficiently computed at each point (kx, ky) in the 2D Fourier

space as:

M̃(kx, ky, z
′) =

Nω∑
m=1

NT∑
ζ=1

[
S̃sc
ζ (kx, ky;ωm)

]
·
[
H̃sc

ζ (kx, ky; z
′;ωm)

]∗
, (2.13)

where tilde indicates the 2D FTs of the respective distributions.

The second SPM inversion stage, when performed in Fourier space [50], also re-

quires the 2D FTs of the SP power maps. These can be obtained directly in k-space

analogously to (C.29):

M̃(kx, ky, z
′; z′′) =

Nω∑
m=1

NT∑
ζ=1

[
H̃sc

ζ (kx, ky; z
′′;ωm)

]
·
[
H̃sc

ζ (kx, ky; z
′;ωm)

]∗
. (2.14)

Here, z′ indicates the image slice in the SP power map whereas z′′ indicates the slice

in which the SP actually resides; z′, z′′ ∈ [z1, z2, . . . , zNz ]. Finally, the 2D FT of the

complex permittivity contrast ∆ϵ̃r is extracted using the relation [50]:

M̃(kx, ky, zp) =
Ωv

∆ϵr,spΩsp

·
Nz∑
q=1

∆ϵ̃r(kx, ky, zq) · M̃(kx, ky, zp; zq), p = 1, ..., Nz .

(2.15)

Note that (C.31) defines a square linear system of Nz equations for the Nz unknowns

∆ϵ̃r(kx, ky, zq), q = 1, . . . , Nz, solved at each point in Fourier space (kx, ky). The

permittivity contrast in real space ∆ϵr(x
′′, y′′, zq), q = 1, . . . , Nz, is recovered with

the 2D inverse fast Fourier transform (IFFT) of ∆ϵ̃r(kx, ky, zq) at each image slice zq,

q = 1, . . . , Nz.

The time savings realized by performing the first SPM stage in the Fourier space
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stems from the 2D cross-correlation in (2.11) being transformed into k-space multipli-

cations. The overall cost of computing M(x′, y′, z′) and M(x′, y′, z′; z′′) in real space

in terms of floating-point operations (FLOPs) is

FLOPxyz =NωNTNz(NxNy)
2︸ ︷︷ ︸

cross-correlation

+NωNTNz︸ ︷︷ ︸
summation

+

(Nz +N2
z )(NxNy log2(NxNy))︸ ︷︷ ︸

slice by slice 2D FFT on OUT & SP power maps

.

(2.16)

On the other hand, the computational cost of obtaining the OUT and SP power maps,

M̃(kx, ky, z
′) and M̃(kx, ky, z

′; z′′), directly in Fourier space is

FLOPkxkyz =NωNT(Nz + 1)(NxNy log2(NxNy))︸ ︷︷ ︸
2D FFT on OUT and PSF data

+

NωNTNxNyNz︸ ︷︷ ︸
multiplications in k-space

+NωNTNz︸ ︷︷ ︸
summation

.

(2.17)

The time reduction realized with (2.17) versus (2.16) is illustrated in Fig. 2.2. Here,

the number of frequency samples and range samples are equal and set to Nω = Nz =

12. The number of response types is NT = 4, and the number of spatial samples in

the lateral directions Nx = Ny = N varies from 1 to 128. It is observed that the

FLOP count for the first SPM stage in Fourier space is always lower than the FLOP

count in the real-space approach, with significant gains when N > 4. For practical

cases where N > 40, the time reduction is more than three orders of magnitude.
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Figure 2.2: Comparison of the computational complexity in terms of FLOPs between
the real-space computation of the OUT and SP power maps versus their computation
in Fourier space. Here, Nω = Nz = 12, NT = 4, and Nx = Ny = N varies between 1
and 128.

2.4 Simultaneous Use of Born’s and Rytov’s Ap-

proximations in the F-SPM Algorithm

2.4.1 Motivation

The Born and Rytov approximations of the data equation of scattering, (2.5) and

(2.6), apply to the external field. Their limitations have been extensively studied and

compared; see, e.g., [36,55,56,73] and the references therein. Here, we only state their

mathematical formulations and discuss the advantages of using both approximations

simultaneously.

Born’s approximation is limited to scatterers satisfying [56]:

amax{|k(r′)− kb|} < π/2 , (2.18)
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where k and kb are the wavenumbers of the scatterer and the background, respec-

tively, and a is the radius of the sphere circumscribing the scatterer. Notably, both

the size and the contrast affect the approximation’s accuracy. In contrast, Rytov’s

approximation is limited mostly by the object’s contrast as dictated by the limit [36]:

|k2(r′)− k2
b|/k2

b << 1 . (2.19)

Thus, it is expected that Born’s approximation would yield better imaging results for

small high-contrast objects, whereas Rytov’s approximation is better for large low-

contrast objects. Slaney et al. [56] have compared the two approximations through 2D

diffraction-tomography imaging of cylinders of various contrasts and diameters. It has

been observed that indeed Rytov’s approximation outperforms Born’s approximation

in the case of diameters larger than a wavelength, particularly in the reconstruction

of the cylinders’ interiors.

Another complementarity of the two approximations is rooted in their mathemati-

cal models of the total-field response in terms of its incident and scattered components.

It is shown in [73] that Rytov’s approximation, unlike Born’s approximation, captures

multiple scattering effects as long as (2.19) holds. While Born’s approximation may

perform better with far-zone measurements, where the mutual coupling and multiple

scattering between the OUT and the antennas are negligible, Rytov’s approximation

is likely to be advantageous in near-field measurements, where such interactions are

not negligible.

Yet another complementarity arises from the fact that Rytov’s model relies on

incident-field responses sufficiently strong to rise above the measurement noise and

uncertainty – see the division by Sinc
ζ in (2.6). In contrast, Born’s approximation (2.6)
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can, in principle, handle well both strong and weak incident-field responses.

Finally, there are scenarios where the two approximations yield very similar ex-

tracted scattered-field responses and reconstructed images. Consider Rytov’s approx-

imation of the total-field response:

Stot
ζ,R(·) = Sinc

ζ (·) exp
{[

Sinc
ζ (·)

]−1
Ssc
ζ (·)

}
, (2.20)

and its Taylor’s expansion:

Stot
ζ,R(·) = Sinc

ζ (·)

[
1 +

Ssc
ζ (·)

Sinc
ζ (·)

+

(
Ssc
ζ (·)

Sinc
ζ (·)

)2
1

2!
+ · · ·

]
. (2.21)

When the scattered response is much weaker that the incident one, the third and

subsequent terms in the expansion can be neglected, and the Rytov approximation

converges to Born’s superposition of incident and scattered response components.

In summary, the complementarity of Born’s and Rytov’s data approximations

suggests benefits in their simultaneous use in a new inversion strategy. The goal is

image reconstruction quality, which is equivalent or better compared to that obtained

with either of these approximations when used alone.

2.4.2 Rytov Approximation without Data Phase Unwrap-

ping

In frequency-sweep measurements, the phase of the S-parameters (denoted here as

∠S) is wrapped between −π and π. Rytov’s data approximation (2.6) requires phase

unwrapping with respect to the scan position x and y because the discontinuities are

detrimental to the processing in Fourier space. To understand the impact of the phase
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discontinuities, the logarithm in (2.6) is written out explicitly in real and imaginary

parts (see the Appendix, section A):

Ssc
ζ,R(·) ≈ Sinc

ζ (·)

{
ln

|Stot
ζ (·)|

|Sinc
ζ (·)|

+ i
[
∠Stot

ζ (·)− ∠Sinc
ζ (·)

]}
. (2.22)

It is evident that abrupt changes in the phases ∠Sinc
ζ and ∠Stot

ζ as functions of r =

(x, y, z̄) lead to a discontinuous imaginary part of Ssc
ζ,R. The 2D FT then leads to

strong rippling artifacts (Gibb’s effect) in k-space. Therefore, 2D phase unwrapping

in the (x, y) domain is necessary when using Rytov’s approximation.

In [47,49], Rytov’s approximation was studied in image reconstruction with quan-

titative microwave holography, which, too, employs 2D FTs of the data. It is found

that unwrapping the response phases with respect to ω does not help with the phase

unwrapping in (x, y) and it is recommended that the unwrapping is performed di-

rectly in (x, y). Unfortunately, the 2D phase unwrapping is prone to errors with

measured signals due to [74–79]: (i) noise, (ii) under-sampling (relative to the phase

gradient in (x, y), and (iii) abrupt phase changes from one sample point to the next

in excess of π that are not a result of wrapping but are due to actual high-contrast

interfaces in the OUT. Yet, in [49], an important observation is made: while 2D

phase unwrapping may fail with the measured total-field phase ∠Stot
ζ , it is always

successful when applied to the incident-field phase ∠Sinc
ζ and the PSF phase ∠Htot

ζ .

This is expected since the incident-field data are acquired in a homogeneous medium

whereas the PSF data are acquired with a weakly scattering probe immersed in the

homogeneous medium. The 2D phase unwrapping therein is performed with Itoh’s

method [80]. It unwraps the phase along x first and then the result is unwrapped

along y.
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In summary, while the Rytov-based PSF Hsc
ζ,R can be reliably extracted as a

smooth function of x and y (by successfully unwrapping ∠Sinc
ζ and ∠Htot

ζ ), the OUT

data Ssc
ζ,R may suffer from unwrapping errors in ∠Stot

ζ . As suggested in [49], this

problem can be avoided by using only the real part of (2.22). To this end, the forward

model (2.4) is modified by multiplying both sides by |Sinc
ζ (·)|/Sinc

ζ (·) and taking the

real part of the equation. With (2.22) in mind, this leads to

ReSsc
ζ,R(x, y;ω) =

∫∫∫
z′′y′′x′′

Re
[
ρ(x′′, y′′, z′′) ·Hsc

ζ,R(x− x′′, y − y′′, z′′;ω)
]
dx′′dy′′dz′′ , (2.23)

where

ReSsc
ζ,R(·) = |Sinc

ζ (·)| · ln

(
|Stot

ζ (·)|
|Sinc

ζ (·)|

)
, (2.24)

is the modified real-valued Rytov data;

ρ(x′′, y′′, z′′) =
∆ϵr(x

′′, y′′, z′′)

∆ϵr,spΩsp

, (2.25)

is the complex (relative) reflectivity function to be found, and

Hsc
ζ,R(·) =

∣∣Sinc
ζ (·)

∣∣ · ln(Htot
ζ (·)

Sinc
ζ (·)

)
, (2.26)

is the modified complex Rytov PSF. Note that (2.23) provides a relation to the

complex unknown reflectivity despite the fact that the data (2.24) is only real-valued.

This is due to the availability of the complex-valued PSF (2.26).

According to the SPM theory, the scattered-power map of an OUT must be con-

structed using a PSF response, which is formulated in exactly the same manner as
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the OUT response [36]. Therefore, the Rytov-based OUT map is computed as

MR(x
′, y′, z′) =

Nω∑
m=1

NT∑
ζ=1

∫∫
yx

ReSsc
ζR(x, y;ωm) ·

[
ReHsc

ζ,R(x− x′, y − y′; z′;ωm)
]∗
dxdy ,

(2.27)

where the conjugation of the second term is superfluous but added for consistency

with the general complex-response formulation (2.12).

The substitution of (2.23) into (2.27) leads to the quantitative equation for the

reflectivity function ρ in terms of its real and imaginary parts:

MR(x
′, y′, z′) =

∫∫∫
z′′y′′x′′

[
Reρ(x′′, y′′, z′′) · MRe

R (x′ − x′′, y′ − y′′, z′; z′′)−

Imρ(x′′, y′′, z′′) · MIm
R (x′ − x′′, y′ − y′′, z′; z′′)

]
dx′′dy′′dz′′,

(2.28)

where

MRe
R (x′, y′,z′; z′′) =

Nω∑
m=1

NT∑
ζ=1

∫
y

∫
x

ReHsc
ζ,R(x, y; z

′′;ωm)

·
[
ReHsc

ζ,R(x− x′, y − y′; z′;ωm)
]∗
dxdy ,

(2.29)

MIm
R (x′, y′,z′; z′′) =

Nω∑
m=1

NT∑
ζ=1

∫
y

∫
x

ImHsc
ζ,R(x, y; z

′′;ωm)

·
[
ReHsc

ζ,R(x− x′, y − y′; z′;ωm)
]∗
dxdy .

(2.30)

The double integrals in (2.29) and (2.30) are in the form of cross-correlations, allowing

for efficient computation of these PSF power maps in Fourier space as:

M̃Re
R (κ, z′; z′′) =

Nω∑
m=1

NT∑
ζ=1

[
H̃Re

ζ,R(κ; z
′′;ωm)

][
H̃Re

ζ,R(κ; z
′;ωm)

]∗
, (2.31)
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M̃Im
R (κ, z′; z′′) =

Nω∑
m=1

NT∑
ζ=1

[
H̃ Im

ζ,R(κ; z
′′;ωm)

][
H̃Re

ζ,R(κ; z
′;ωm)

]∗
, (2.32)

where

H̃Re
ζ,R(κ; z

′′;ωm) = FT2D

{
ReHsc

ζ,R(x, y; z
′′;ωm)

}
, (2.33)

H̃ Im
ζ,R(κ; z

′′;ωm) = FT2D

{
ImHsc

ζ,R(x, y; z
′′;ωm)

}
. (2.34)

Note that the 2D FTs in (2.33) and (2.34) are calculated separately for the real and

imaginary parts of the PSF. They are complex and their conjugation in (2.31) and

(2.32) is not superfluous.

Similarly, the OUT power map in (2.27) is cast in Fourier space as

M̃R(κ, z
′) =

Nω∑
m=1

NT∑
ζ=1

[
S̃Re
ζ,R(κ;ωm)

] [
H̃Re

ζ,R(κ; z
′;ωm)

]∗
, (2.35)

where

S̃Re
ζ,R(κ; z

′′;ωm) = FT2D

{
ReSsc

ζ,R(x, y; z
′′;ωm)

}
. (2.36)

With the power maps in (2.31), (2.32) and (2.35) available, the quantitative equa-

tion (2.28) can be efficiently solved in Fourier space since the integration over x′′ and

y′′ is a 2D convolution:

M̃R(κ, z
′) =

∫
z′′

[
ρ̃Re(κ, z′′) · M̃Re

R (κ, z′; z′′)− ρ̃Im(κ, z′′) · M̃Im
R (κ, z′; z′′)

]
dz′′ . (2.37)

Here,

ρ̃Re(κ, z′′) = FT2D {Reρ(x′′, y′′, z′′)}(κ) , (2.38)
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ρ̃Im(κ, z′′) = FT2D {Imρ(x′′, y′′, z′′)}(κ) . (2.39)

Let us consider the slices of M̃R(κ, z
′) at a discrete set of z positions z′ = zp, p =

1, . . . , Nz. At each zp, an equation can be written by discretizing the integral in (2.37)

over z′′. With a uniform step of ∆z, this equations is:

M̃R(κ, zp) = ∆z
Nz∑
q=1

[
ρ̃Re(κ, zq) · M̃Re

R (κ, zp; zq)

−−ρ̃Im(κ, zq) · M̃Im
R (κ, zp; zq)

]
, p = 1, . . . , Nz . (2.40)

The quantitative relations in (2.40) provide Nz equations at each point κ in k-space

for the 2Nz unknown values of ρ̃Re(κ, zq) and ρ̃Im(κ, zq), zq = 1, . . . , Nz. This system

must be combined with the system obtained with Born’s approximation (2.5).

When Born’s or Rytov’s data are used separately, the quantitative system of

equations (C.31) is solved using the respective OUT and SP power maps as shown

in [50]. However, there, the unknown quantity is in the form of the 2D FT of the

complex contrast function. In contrast, in (2.40), the unknown quantity is broken

into two 2D FTs, that of the real part of the contrast and that of its imaginary part.

This necessitates the re-formulation of (C.31) to match the unknown quantities in

(2.40). This re-formulation is detailed in section B of the Appendix along with the

composition of the system of equations, which combines (2.40) with the Born-based

quantitative equations.

The combined system of equations resulting from the Born-based and Rytov-based

quantitative equations at each point in k-space is obtained as:

MC(κ)ρC(κ) = mC(κ) , (2.41)
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where

ρC(κ) =
[
ρ̃Re(κ, z1), . . . , ρ̃

Re(κ, zNz),

ρ̃Im(κ, z1), . . . , ρ̃
Im(κ, zNz)

]T
,

(2.42)

mC(κ) =
[
M̃Re

B (κ, z1), . . . , M̃
Re
B (κ, zNz),

M̃ Im
B (κ, z1), . . . , M̃

Im
B (κ, zNz),

M̃R(κ, z1), . . . , M̃R(κ, zNz)
]T

,

(2.43)

MC(κ) =


M̃Re

B (κ) −M̃Im
B (κ)

M̃Im
B (κ) M̃Re

B (κ)

M̃Re
R (κ) −M̃Im

R (κ)


3Nz×2Nz

. (2.44)

The OUT k-space power map M̃R(κ, zp), p = 1, . . . , Nz, is defined in (2.35) whereas

the composition of the sub-matrices in the system matrix (2.44) can be found in the

Appendix.

The system (C.32) is solved at each point in k-space. Here, a pseudoinverse

solver is used. The real and imaginary parts of the k-space contrast, ρ̃Re(κ, zq) and

ρ̃Im(κ, zq), are cast back into real space using 2D IFFT to obtain ρRe(x′, y′, zq) and

ρIm(x′, y′, zq), zq = 1, . . . , Nz. Then the complex relative permittivity of the OUT is

obtained as:

ϵr(x
′, y′, zq) = ϵb + Ωv · ρ(x′, y′, zq), q = 1, . . . , Nz . (2.45)

Since (C.34) and (2.44) use the FTs of the real and imaginary parts of the Born and

the Rytov power maps, the computational complexity of the combined approach is

expected to be approximately two times that of the SPM approach when only one of
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the approximations is used.

2.5 Summary of the F-SPM Algorithms

tot totPhase unwrap , S H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compose system of equations (15)
at each point  in -spacekκ

tot tot incInput   S , H , S

sc scExtract ,  using 

Born approximation (5)

S H

sc sc2D FT of  and  at all range locationsS H

Compute OUT  power maps  (13)
and SP power maps (14)

M

Solve for complex contrast function ( ) at each ,z'κ κ

Born or Rytov
approximation

sc scExtract ,  using 

Rytov approximation (6)

S H

Born Rytov

Obtain complex contrast ( , , ) with 2D IFFTx y z' 

Figure 2.3: Flowchart of the F-SPM algorithm when using either Born’s or Rytov’s
approximation.

The proposed F-SPM algorithm is summarized by the flowchart in Fig. 2.3 for

the cases where it employs either the Born or the Rytov approximation. The two

cases differ only in the data-extraction formula and the phase unwrapping required

by Rytov’s approximation.

The newly proposed approach that exploits both approximations in a common

inversion process is summarized by the flowchart in Fig. 2.4. The left branch of the

flowchart describes the Rytov-based processing whereas the Born-based processing is
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totPhase unwrap H sc sc
B BExtract ,  (5)S H
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R2D FT of Re,Im  at all

range locations (33), (34)

H

sc
B2D FT of Re,Im  at

  all range locations

H

sc
B2D FT of Re,Im  at

  all range locations

S

Re,Im
Solve (41) for real and imaginary parts 

     of contrast function ( ,z' )κ

2D IFFT of real and imaginary parts
           of contrast function

Figure 2.4: Flowchart of the F-SPM algorithm with the combined Born-Rytov ap-
proximation.

shown in the right-hand branch. Note the differences in the Rytov-based processing in

Fig. 2.3 and the Rytov-based processing in the combined Born-Rytov approximation

in Fig. 2.4. First, in the combined approach (Fig. 2.4) there is no need for phase

unwrapping of the OUT data sets Stot
ζ ; only the total-field responses of the scattering

probe Htot
ζ are phase-unwrapped. Second, the solution for the unknown contrast

function in k-space is found for the FTs of its real and imaginary parts (separately)

as opposed to the Rytov-based algorithm in Fig. 2.3, where the k-space contrast

solution is the FT of the complex contrast function.
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Finally, it is important to point out that the presented algorithms are directly

applicable to far-zone qualitative imaging scenarios where the data PSFs are approx-

imated by analytical expressions, e.g., Hsc ∼ exp[−ik(rRx+ rTx)]/(rRxrTx), where rRx

and rTx are the distances from the Rx and Tx antennas to the scattering point, re-

spectively. In such cases, the system calibration step that involves the measurements

of a scattering probe is omitted but the image has no quantitative value and it is best

represented by a plot of the normalized magnitude of the retrieved contrast function.

2.6 Imaging Based on Simulated Near-field Data

The F-SPM algorithms are first demonstrated through an example where S-parameter

near-field measurements of the OUT, the scattering probe (SP) and the reference

object (RO) are simulated using the full-wave simulator FEKO [70]. The example

compares the F-SPM performance in the three implementations discussed here: (i)

with Born’s data approximation, (ii) with Rytov’s data approximation, and (iii) the

new combined Born-Rytov method. The example is designed to represent the imaging

of a heterogeneous object consisting of high-permittivity lossy targets, some of which

are embedded within larger ones. This is a scenario which challenges the structural

and quantitative accuracy of the F-SPM algorithm since it solves the linearized model

of scattering without any attempt to update the total internal field.

Six dipole antennas are employed in a raster scan on both sides of the imaged

object as shown in Fig. 2.5. The dipole at z = 45mm and the central dipole at

z = −5mm transmit and receive whereas the other four antennas only receive. This

results in the following types of responses at each scan position (x, y): S11, S22, S31,

S41, S51, S61, S32, S42, S52, and S62, i.e., Nζ = 10. The distance between the two
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(a)

 

z =10 mm 

z =30 mm 

z =20 mm 

10 mm 

10 mm 
50 mm 

20 mm 

24 mm 

(b)

Figure 2.5: The setup of the simulation example in FEKO when measuring the OUT.
The background medium has a relative permittivity of ϵr,b = 16. The X-shape object
(ϵr = 32− i16) is aligned along the z = 20 mm. The length of the arm of the X-shape
is 20mm whereas the height and width of each arm are 2mm. The small cube of
side 2mm (ϵr = 50 − i5) is at z = 30mm. The position of the encompassing prism
(ϵr = 24− i3) is indicated in (b). The prism has a thickness of 20mm, and its width
and length along x and y is 24mm.

acquisition planes is 50mm. The offset between the center dipole in the five-antenna

arrangement and its neighbors is 20mm. The bandwidth is from 3 GHz to 13GHz

with a frequency step of 500MHz. The scanned area is 80mm×80mm with a sampling

step of 2mm along both x and y. This sampling step is approximately λmin/3 where

λmin is the shortest wavelength in the background medium with ϵr,b = 16. The lateral

voxel size is set equal to the sampling step, i.e., ∆x = ∆y = 2mm.

The best achievable range resolution is estimated to be approximately 4mm using

the well-known fundamental limit of δz = vb/(2B) (for the far-zone monostatic case)

[36], where vb is the speed of light in the background and B is the bandwidth. In
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view of the limited aperture extent, it is expected that the actual achievable range

resolution in this experiment is approximately twice larger than the fundamental

limit. Thus, the distance between the imaged planes along z is set to ∆z = 10mm,

which is the image-voxel size along range. Note that ∆x, ∆y, and ∆z determine the

volume over which the OUT contrast is averaged in the quantitative reconstruction.

Fig. 2.5 shows the OUT simulation setup when the antennas are at the centers

of the top and bottom apertures, (x, y) = (0, 0). The positions of the three imaged

slices, relative to antennas and objects are indicated in Fig. 2.5b. A lossy X-shaped

object with relative permittivity of ϵr = 32 − i16 and a small cube of ϵr = 50 − i5

are embedded inside a lossy rectangular prism of ϵr = 24 − i3. The X-shape’s arm

length is 20mm whereas the height and width of each arm are 2mm. The side of the

small cube is 2mm. The thickness of the prism (along z) is 20mm and its lateral

sides along x and y are both 24mm.

The PSFs are acquired with the scattering-probe (SP) simulation setup, where the

antenna arrangement, the scan aperture and sampling, and the background medium

are identical to those in the OUT simulation. The SP is a cubicle with relative

permittivity of ϵr = 30 and a size of 2× 2× 2mm3. With three separate simulations,

the PSFs are obtained for three SP range positions: z′ = 10, 20, and 30mm, where

the SP is at the center x′ = y′ = 0.

The incident-field (RO) S-parameters are obtained through a single frequency-

sweep simulation with the antenna setup and the background medium being the

same as in the OUT and SP simulations. Scanning along x and y is unnecessary since

the background is uniform and infinite.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: 3D reconstructions of the permittivity in the simulation example, where
an X-shaped object and a cubicle are embedded in a larger lossy prism: (a), (b) using
Born’s approximation, (c), (d) using Rytov’s approximation, and (e), (f) using the
combined Born-Rytov method.
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Fig. 2.6 presents the quantitative images of the OUT of Fig. 2.5 in terms of the

three range slices where the PSFs are available. The images are obtained with the

three F-SPM algorithms summarized in the previous section. All three image sets

(for the real and imaginary OUT permittivity functions) can locate the lossy X-shape

embedded inside the middle layer of the larger prism as well as the small cube in the

top layer. However, the best structural accuracy is achieved in the combined Born-

Rytov reconstruction shown in Fig. 2.6e (real permittivity) and Fig. 2.6f (imaginary

permittivity). First, this reconstruction shows the best lateral spatial resolution,

judging from the size of the reconstructed small cube in the top slice (z′ = 30mm).

Second, it also captures best the square shape of the large prism in this slice with very

little ripple artifacts or range artifacts from the X-shape. In contrast, the Born-based

(Fig. 2.6a and Fig. 2.6b) and the Rytov-based (Fig. 2.6c and Fig. 2.6d) reconstructions

show faint artifacts of the X-shape in the real-permittivity image in the top slice

(z′ = 30mm). Additionally, the Rytov-based reconstruction in Fig. 2.6c also shows

an artifact of the X-shape in the real-permittivity image in the bottom slice (z′ =

10mm). The likely reason for the more significant range artifacts in the Rytov-

based reconstruction is that the phase unwrapping of the OUT data fails at several

frequencies. Phase unwrapping failures lead to “ripple” artifacts in both range and

cross-range.

The combined Born-Rytov reconstruction also proves to be superior in terms of the

quantitative permittivity estimates, especially for the imaginary part of permittivity

shown in Fig. 2.6f. We emphasize that the estimated contrast is averaged over a range

distance of ∆z = 10mm. It also correctly identifies in the real-permittivity image in

Fig. 2.6f that the slice at z′ = 30mm has a higher averaged permittivity compared to
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the slice at z′ = 10mm, which lies in the background medium. In contrast, the Born-

based reconstruction in Fig. 2.6a incorrectly indicates that the slice at z′ = 30mm

has a lower averaged permittivity than the slice at z′ = 10mm.

We also observe that in all images the estimated real permittivity values of the

X-shape and the cube embedded in the large prism are incorrect, i.e., lower than that

of the prism whereas in reality they are higher. This is attributed to the linearizing

approximation of the nonlinear model of scattering in all three reconstructions. In

this example, a large portion of the background is replaced by the high-loss high-

contrast prism, which violates the limits of both approximations; see (2.18) and (2.19).

This leads to large differences between the total internal field and the incident field

which replaces it in the linear model of scattering. Thus, the example elucidates

the limitations of real-time quantitative reconstruction. These limitations cannot be

overcome by the combined use of Born’s and Rytov’s approximations.

To evaluate the precision of the reconstructed permittivities of objects, the root

mean square error (RMSE) is used [36]:

RMSE =

√√√√ 1

Nv

Nv∑
n=1

|ϵr(r′n)− ϵr(r′n)|2 , (2.46)

where ϵr(r
′
n) is the true distribution of the complex permittivity. The corresponding

errors of the reconstructed complex relative permittivity with Born’s, Rytov’s, and

the combined Born-Rytov approaches are obtained as 0.0995, 0.1008, and 0.0869,

respectively. Although the errors are not that different, they verify that the combined

Born-Rytov reconstruction provides better quantitative estimates compared to the

other two methods.
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Further analysis of the quantitative accuracy is carried out in terms of the root

mean square (RMS) residual errors. Here, the residual error [37,81] refers to the dif-

ference between the measured OUT scattered-field data and the data obtained from

the model (2.3) when the reconstructed permittivity is substituted. The RMS resid-

uals of the Born-based, Rytov-based, and Born-Rytov solutions are 0.081, 0.0891,

and 0.0568, respectively, indicating best quantitative accuracy for the combined ap-

proach. All three residuals are relatively low, which shows that the unwanted errors

introduced by the inversion in Fourier space are small.

The computational costs of the Born-based, Rytov-based and combined Born-

Rytov F-SPM reconstructions are approximately 1.82 s, 1.88 s, and 2.84 s, respec-

tively. These execution times are obtained on an Intel Core i7-8750H @ 2.20 GHz

system, using MATLAB [82], without parallel computing or code optimization. On

the other hand, the BCCB-SPM reconstruction is approximately 11 times slower than

the proposed method (about 31 s).

2.7 Image Reconstruction with Measured Data

In this experiment, near-field measurements are performed with a heterogeneous com-

pressed breast phantom, which includes four tumor simulants immersed in various

healthy-tissue simulants. The imaging setup and the phantom are identical to those

presented in [49]. Note that this is not a clinical prototype. The scanning setup is

used here to verify the imaging algorithm.
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(a) (b) (c)

Figure 2.7: Photos of the breast phantom: (a) Layer 2 which contains two tumor
simulants surrounded by the matching material; (b) Layer 4 which contains two tumor
simulants surrounded by the fibroglandular simulant and matching material; and (c)
the assembled phantom. The phantom is enclosed in plastic wrap to hold it together
and protect it from the embedding medium. Photos taken from [49].

Figure 2.8: Photo of the measurement setup used to scan the breast phantom and its
respective RO and CO. Photo taken from [48].
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Figure 2.9: Dielectric properties of phantom materials from 3 GHz to 9 GHz [49].

The breast phantom (the OUT) comprises a number of dispersive materials as

shown in Fig. 2.9. Note that there is no skin-like material in this experiment. A

compressed breast phantom of thickness 55 mm is constructed from five carbon-

rubber sheets (each 11 mm thick) with an averaged complex permittivity selected

to mimic a BIRADS Type II density of the breast (scattered fibroglandular tissue).

Each sheet defines a layer where additional tissue simulants can be inserted. Layers

1, 3, and 5 are left intact; they are homogeneous. In Layers 2 and 4, circular sections

(80mm diameter) are removed. In Layer 2 (second from the bottom), two 1-cm

diameter spherical tumor simulants are inserted in the embedding medium touching

each other as indicated in Fig. 2.7a by the black circles. This placement of the tumor

simulants is used to evaluate the image resolution of the system in the case of a high

contrast between malignant and healthy tissue. In Layer 4 (fourth from the bottom),

a material mimicking healthy fibroglandular tissue is used to make an irregularly

shaped inclusion; see white-colored inclusion in Fig. 2.7b. Two more tumor simulants

are inserted within this fibroglandular object. Again, the two tumor simulants are
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placed so that they touch each other in order to evaluate the spatial image resolution

in the case of low contrast between malignant and healthy tissue. All inserts are

carefully surrounded by the matching medium to remove the air pockets; see the

brown substance in Fig. 2.7a and Fig. 2.7b. Layers 2 and 4 are wrapped with plastic

wrap to contain all inclusions. After stacking all five layers, the whole phantom is

also wrapped by plastic wrap to hold it together.

To measure the data PSF of the system, the calibration object (CO) is made of

five sheets of the same carbon-rubber material. A cylindrical microwave-ceramics

probe (ϵr = 50 − i0.05) with a height of 10 mm and a radius of 5 mm is inserted at

the center of the middle sheet (Layer 3). The axis of the cylindrical probe is aligned

with the vertical z axis. Only one SP measurement is performed with the probe in

Layer 3. As a result, the OUT images are only 2D with the permittivity contrasts

being averaged along range (the z axis).

The phantom is placed in a Plexiglas tray filled with a matching medium identical

to the embedding medium within the tissue phantom. The tray’s bottom is 4.5 mm

thick. A Plexiglas lid of thickness 1.5 mm is placed on top of the phantom to protect

the antennas. The matching medium surrounds the side walls of the phantom to

reduce the reflections from these walls. The top and bottom surfaces of the phantom

are exposed to the antennas through the tray’s bottom and lid. The antennas scan

at a distance of about 1 mm.

To extract the scattered portion of the responses within the breast phantom (the

OUT), an RO is first measured to obtain the incident-field responses. The RO com-

prises the tray filled with embedding medium, the thickness of which matches that of

the phantom (about 55 mm).
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The acquisition setup as shown in Fig. 2.8 comprises one transverse electromag-

netic (TEM) horn antenna [83] as a transmitter at the top and an array of five Rx

bow-tie antennas at the bottom [44]. The five Rx antennas receive one at a time and

they are switched using an RF switching network (R3970 16-port adapter/switch)

connected to a vector network analyzer (Advantest R3770). All antennas are de-

signed for optimal impedance match when being in direct contact with the breast

tissue. The antennas are fixed whereas the Plexiglas platform moves the measured

object along a raster-scanning path. A frequency sweep from 3 GHz to 8 GHz in 100

MHz intervals is performed.

The VNA dynamic range is from about 118 dB at 3 GHz to about 112 dB at 8

GHz. However, the dynamic range of the actual measurement is much lower. The RO

measurement indicates that the maximum transmission coefficient value through the

nearly 60-mm thick lossy object, which includes the tissue phantom and the Plexiglas

plates, is about −60 dB at 3 GHz and −90 dB at 8 GHz. Thus the measurement

dynamic range is about 58 dB at 3 GHz and about 22 dB at 8 GHz. Further, the

dynamic range of the scattered-field data supplied to the reconstruction algorithms

is even lower. The maximum scattered-field transmission value as measured with the

SP is about −84 dB at 3 GHz and −107 dB at 8 GHz. This yields very limited data

dynamic range of about 35 dB at 3 GHz and 5 dB at 8 GHz. In order to improve the

data dynamic range, we use a power amplifier at the transmitting antenna, the gain

of which is approximately 50 dB across the frequency band. The estimated power

transmitted by the TEM horn, after taking its efficiency into account [83], is about

2.6 W (averaged over the frequency band). The experimental setup with the power
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amplifier has been evaluated for data quality control [48] to ensure sufficient signal-

to-noise ratio of the measured PSFs. It is important to note that this experiment has

not been evaluated in terms of the specific absorption rate (SAR) in the tissue since

this is not a clinical prototype. However, with careful design of the antenna arrays

and the acquisition setup, the transmitted-power requirements can be significantly

reduced in order to operate within the SAR limits for the medical imaging systems;

see, e.g., [84]. Examples of such clinically viable systems can be found in [85,86].

The system scans across a 141 mm by 141 mm aperture in 3-mm sampling steps

along x and y. The system allows for the measurement of the five transmission coef-

ficients. Since reflection coefficients are not available and the offset distance between

the antennas in the bow-tie receiving array is small (20 mm), the imaging system

lacks range resolution. This is why only one PSF is measured with the SP at the

center of the background medium and the reconstruction is 2D.

In experiments, especially with near-field measurements, filtering is important

for successful reconstruction. Fourier-space methods, F-SPM included, are prone

to ringing artifacts if the data are not continuous across the aperture edges [47].

Data apodization in (x, y) space mitigates such artifacts. Further, post-inversion

low-pass filtering of the reconstructed contrast in k-space ensures the suppression

of high spatial-frequency noise and errors. These are due to the very weak signal

components of spatial frequencies at or beyond the limit of kmax ≈ 2π/λmin, where λmin

is the shortest wavelength in the background medium [47]. Such k-space components

correspond to evanescent waves or waves propagating at near-grazing angles at the

acquisition plane. Since the background medium in this example is very lossy, such

modes are below the noise and uncertainty of the measurement.
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(a)

(b)

(c)

(d)

Figure 2.10: 2D reconstructions of the real and imaginary parts of the permittivity of
the breast phantom with the F-SPM method using: (a) Born’s data approximation,
(b) Rytov’s data approximation, and (c) the combined Born-Rytov approach. (d) The
averaged 2D permttivity map of the breast phantom [60]. The averaging is performed
over all frequencies and along depth.
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(a)

(b)

(c)

Figure 2.11: Histograms of the residuals for the F-SPM inverse solution in the breast-
phantom example in the case of: (a) Born-based method, (b) Rytov-based method,
and (c) combined Born-Rytov method.
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The F-SPM 2D reconstructions for the heterogeneous breast phantom are shown

in Fig. 2.10a (Born-based), Fig. 2.10b (Rytov-based), and Fig. 2.10c (combined Born-

Rytov). The ringing artifacts in the Born-based reconstruction are strong. They are

due to the abrupt permittivity change at the edges of the phantom where the plastic

wrap introduces a gap of very low permittvity compared to the phantom and the

embedding medium. Although very thin, this gap runs throughout the depth of

the measured object and its impact on the measured responses is significant. These

artifacts are considerably reduced in the Rytov-based reconstruction; see Fig. 2.10b.

It is observed that, unlike in the simulation-based example, here, Born’s and Ry-

tov’s data approximations lead to significantly different images. This is due to the

significant difference between the scattered data extracted with the two approxima-

tions. This situation arises when the scattered responses are strong relative to the

incident ones. It is expected that the combined Born-Rytov reconstruction is the

most beneficial in such cases. Fig. 2.10c shows the images resulting from this re-

construction. Similarly to the simulation-based example, these images exhibit the

best structural and quantitative accuracy. Specifically, the ringing artifacts are sup-

pressed, the shape of the healthy fibroglandular inclusion in Layer 4 is well captured,

especially in the real-permittivity image, and the spatial resolution is marginally suf-

ficient to distinguish the two tumor simulants in Layer 2 (high contrast with the

embedding medium). Both the real and imaginary permittivity images display re-

markable contrast at the location of the tumor simulants. We also observe that the

spatial resolution is insufficient to differentiate the two spherical tumor simulants in

Layer 4 where they are embedded in the high-permittivity healthy fibroglandular tis-

sue. Overall, the proposed combined Born-Rytov F-SPM algorithm is beneficial in
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the near-field imaging of strongly heterogeneous objects when compared to the Born

or the Rytov approximations alone.

In order to obtain the RMSE of the breast phantom reconstructions, the permit-

tivity distribution displayed in Fig. 2.10d is used as a reference. The RMSE values

for the Born-based, Rytov-based, and Born-Rytov reconstruction approaches are 2.75,

2.109, and 2.405, respectively. It is interesting to observe that the Rytov-based re-

construction appears to provide the best quantitative accuracy. Note that in this

example the OUT data phase unwrapping is successful, which is a prerequisite for

artifact-free reconstruction.

Fig. 2.11 shows the histograms of the the residual errors for the breast phantom ex-

periment. The residual errors represent the differences between the scattered-field re-

sponses extracted from the measurements and the respective responses computed with

the forward model where the reconstructed complex permittivity is substituted. The

number of residual errors in the Born-only and Rytov-only reconstructions (1 175 040)

corresponds to 5 scattered responses (real and imaginary parts), 48×48 spatial sam-

ples, and 51 frequency samples. Since the combined Born-Rytov method utilizes both

approximations to form the forward model, the samples are twice that number. A

normal distribution is fitted to the histograms using histfit command of MATLAB;

see Fig. 2.11. All three residual error distributions demonstrate that there is no

significant bias introduced into the problem [37, 81]. The standard deviation of the

residual errors for the Born, Rytov, and Born-Rytov are found to be 0.333, 0.171, and

0.168, respectively, indicating the best accuracy in the proposed combined approach.

Finally, the RMS residual errors for the Born, Rytov, and Born-Rytov reconstruc-

tions, are 0.5096, 0.1363, and 0.1405, respectively. These values are in agreement
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with the image RMSE results. Note that although the RMSE and RMS-residual

values are somewhat higher for the combined Born-Rytov approach compared to the

Rytov-based one, they still provide better quantitative estimates compared to the

Born-based F-SPM.

The execution times in this example are approximately 1.5 s, 2.4 s, and 1.99 s for

the Born, Rytov, and the combined Born-Rytov methods, respectively. Since there is

no need for phase unwrapping of the OUT data, the combined Born-Rytov algorithm

tends to have lower computation cost compared to Rytov alone. In comparison, the

computational cost of the BCCB-SPM algorithm is about 20.2 seconds.

To further validate the benefits of the proposed combined Born-Rytov F-SPM

algorithm, a far-field experiment is conducted at millimeter-wave frequencies. The

data acquisition involves only the transmission-coefficient (S21) measurements with

planar scanning using two WR-28 horn antennas aligned along each other’s boresight

at a distance of 20 cm. The measurements are from 26 GHz to 40 GHz with 200 MHz

intervals. This frequency sampling sets the maximum range to about 37 cm, using

the standard expression that can be found in [36]. Since the imaged volume has a

range extent of 20 cm, the frequency interval is sufficiently small to satisfy the Nyquist

criterion and prevent range aliasing. The antennas operate in air. The scanned area

is 20 cm× 20 cm and the sampling step along x and y is 2mm.

The inspected object is a plush teddy bear toy. As shown in Fig. 2.12a, it is laid

flat on the positioning platform, where it occupies an area of approximately 23 cm

in width (across the arms) and 25 cm in length. The size of the toy in the vertical

direction (along range), as measured from the back of the head to the tip of the nose,

is approximately 13 cm. A cross-shape inclusion (shown in Fig. 2.12b) is embedded
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in the teddy bear’s tummy. Its overall arm length is 3 cm and its height is 1 cm. Its

relative permittivity is ϵr = 18− i0.006.

A cylindrical SP of radius 5mm and height 10mm is used to acquire the S21 PSF.

It is made of microwave ceramics with relative permittivity ϵr,sp = 12. The probe is

placed directly on the tray at the center of the scanned area.

(a) (b)

Figure 2.12: Photos of the setup of the millimeter-wave imaging experiment: (a) a
teddy bear toy as an inspected object lying flat on the Plexiglas platform; (b) the
cross-shape inclusion which is inside the teddy bear’s tummy.

The 2D projection images produced by the F-SPM reconstructions are shown in

Fig. 2.13. The shape of the teddy bear and the item inside are well identified in

the Born-based results in Fig. 2.13a. The high-permittivity regions at the teddy

bear’s underarms are likely a result of its T-shirt sleeves rolled up and clumped in the

underarms. In fact, the T-shirt, which partially covers the torso of the teddy bear,

is also visible. The cross-shape item is very apparent in the imaginary-permittivity

image and less so in the real-permittivity image.

The Rytov-based reconstruction in Fig. 2.13b is distorted by strong artifacts.
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(a) (b) (c)

Figure 2.13: 2D reconstructions of the real and imaginary parts of the permittivity of
the teddy bear object with the F-SPM algorithms using: (a) Born’s approximation,
(b) Rytov’s approximation, and (c) the combined Born-Rytov approach.

These are due to the failure of the phase unwrapping at most frequencies. The high-

permittivity cross-shape inclusion leads to sharp discontinuities in the phase of Stot
21

as a function of x and y, including jumps by ±π, which are due to the inclusion

and not phase wrapping. Such discontinuities cannot be handled by the 2D phase

unwrapping algorithm [80].

The combined Born-Rytov approach does not suffer from artifacts (see Fig. 2.13c)

since the phase unwrapping is avoided altogether. The image reconstruction is struc-

turally very similar to that in the Born-based reconstruction. On the other hand, the

real-permittivity image provides a better quantitative estimate compared to the Born-

based result, with the inclusion being of higher contrast relative to the teddy bear
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itself. Overall, the combined Born-Rytov approach provides an improvement over

the Born-based and the Rytov-based approaches, which agrees with the results in the

previous simulation-based and experimental examples. In this real-life experiment,

calculating the RMSE of the reconstructions is not possible since the permittivity

of all the materials in the teddy bear toy are not known. These materials include

the filling, the torso fabric, the T-shirt fabric, the plastics used for the eyes and

the nose. The images also suggest that the increased fabric density at the stitches

and the clumps of material affect significantly the millimeter-wave scattering and the

quantitative reconstruction.

Finally, we note that both the Born-based and the combined Born-Rytov ap-

proaches overestimate significantly the imaginary part of the inclusion’s permittivity.

This is likely due to the large electrical size of the SP. In order the SP to properly

emulate a point scatterer, it has to be of size not exceeding λmin/8 (≈ 1mm at 40

GHz) whereas the SP size here is 1 cm in the lateral and depth directions. This

choice of SP is dictated by the need to obtain good signal-to-noise ratio (SNR) in the

measurements used to extract the system PSF. While the so extracted PSF ensures

high-fidelity structural reconstruction, it leads to significant errors in the quantitative

reconstruction. Thus, this example illustrates the limitations of real-time quantitative

reconstruction with the linearized model of scattering, even if it employs a measured

system-specific PSF. While in near-field imaging, high SNR PSFs can be measured

with electrically small SPs, in far-field experiments this may be difficult to achieve.

The execution times for the Born, Rytov, and the combined Born-Rytov methods

are approximately 1.24 s, 3.07 s, and 2.48 s, respectively. An acceleration factor of

36 is observed compared to the BCCB-SPM algorithm which has an execution time
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of 97 seconds.

2.8 Conclusion

We have proposed an efficient real-time image-reconstruction algorithm which dra-

matically improves the speed of the scattered-power mapping (SPM) imaging method

by performing the computation of the scattered power maps in Fourier space. It is

shown that significant time savings are realized compared to the previously proposed

BCCB-SPM algorithm. The execution times reported here are achieved on a per-

sonal laptop with implementation in MATLAB. These execution times can be further

reduced significantly with code optimization and parallel computing since large por-

tions of the computations are independent, e.g., the 2D FTs of the OUT and PSF

data sets of the various response types and at the various frequencies as well as the

solutions of the quantitative systems of equations at each point in k-space.

Furthermore, we have proposed a combined Born-Rytov F-SPM image-reconstruction

method that benefits from using Rytov’s approximation in addition to the Born ap-

proximation while avoiding altogether the need to perform phase unwrapping on the

OUT data. It has been shown through simulation-based and experimental exam-

ples that this combined approach consistently enhances the image quality in terms of

structural and quantitative accuracy.

Future work aims at improving the quantitative accuracy in the reconstructed

images. The quantitative inaccuracy in real-time imaging, the F-SPM method in-

cluded, is rooted in the linearization of the inherently nonlinear model of scattering.

Therefore, this problem needs to be addressed through the use of higher-order Born
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or Rytov approximations of the total internal field that can account for multiple-

scattering and mutual-coupling effects.
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CHAPTER 3

REAL-TIME MILLIMETER-WAVE IMAGING WITH

LINEAR FREQUENCY MODULATION RADAR AND

SCATTERED POWER MAPPING
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3.1 Introduction

The emerging applications of radar imaging are manifold [1–6], including search and

rescue, through-wall imaging [7–10], nondestructive testing (NDT) [11–16], concealed

object detection [17–20], and medical diagnostics [21–26]. Most radars currently used

for imaging and sensing operate in the microwave regime. However, the pursuit of

better image quality drives the interest in the emerging millimeter-wave (mm-wave)

and terahertz (THz) radars. Although the mm-wave/THz radiation suffers from

significant attenuation compared to the microwave signals, it offers advantages such

as improvement in the image spatial resolution (due to wider bandwidths and shorter

wavelengths) and smaller size of the antennas. Therefore, mm-wave/THz radars offer

a promising technology for short-range imaging and sensing.

Imaging radars produce a two-dimensional (2D) or a three-dimensional (3D) im-

age of a target (or scene). Qualitative images depict the target’s reflectivity, i.e.,

the intensity of the scattering within its volume, whereas quantitative images de-

pict the target’s permittivity composition. The image-reconstruction algorithms de-

pend on the type of data the radars provide. The frequency-modulated continuous-

wave [27–29] and the ultrawide-band (UWB) pulsed radars [30] provide time-domain

data, and both are common in the microwave (low-GHz) frequency ranges. Their

advantage is faster measurement compared to the wide-band frequency-sweep (or

stepped-frequency) systems. However, at mm-wave frequencies, pulsed radar is cur-

rently impractical due to the limitations of the direct time-sampling technology and

its excessive cost. On the other hand, the linear frequency modulated (LFM) radar

down-converts the received signal to the beat-frequency (kHz to MHz) range [31],
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where real-time sampling is performed by low-cost analog-to-digital converters. For

this reason, LFM radars are currently the most common low-cost option in the mm-

wave frequency range.

Most of the image-reconstruction algorithms developed for microwave imaging

rely on coherent stepped-frequency continuous wave (SFCW) measurements, which

can be time-consuming when taking many frequency samples across a wide frequency

range. Also, at mm-wave frequencies, the equipment is costly. Since LFM radars

offer faster and more cost-effective option [32], there is great interest in developing

fast image-reconstruction methods to process the LFM data.

Back-projection is a classic synthetic aperture radar image-reconstruction ap-

proach, and back-projection algorithms (BPAs) have been developed for LFM mm-

wave imaging [33–37], where they operate directly on the time-domain data. They

compute the round-trip delays in the background medium between each imaged pixel

and the receiving/transmitting antenna pairs in order to obtain a coherent sum of

all measured signals specific to a pixel. The image depicts the energy of these pixel-

specific sums, indicating the scattering intensity (or reflectivity) within the imaged

scene.

Fourier-based imaging is a computationally efficient alternative to back-projection.

The approach is often referred to as microwave holography [19, 38].1 The hallmark

of the microwave holography algorithms (MHAs) is the image reconstruction in the

spatial-frequency domain (k-space). This requires the 2D Fourier transform (FT)

of the data. The MHAs, originally developed for frequency-domain data, are also

1In instrumentation, holography is defined as an interferometric technique for recording the am-
plitude and the phase of monochromatic waves [39]. In imaging, holography refers to a class of
image-reconstruction methods, which process amplitude and phase data using 2D and/or 3D direct
and inverse Fourier transforms to produce 3D images, i.e., images with depth [40].
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applicable with LFM data. However, the latter application requires an approximation

of the down-converted (de-chirped) signal that neglects the second-order time-delay

term [41].

To achieve 3D image reconstruction in k-space, most MHAs (see, e.g., [20,41,42])

rely on an analytical range-migration model, which provides the link between the

frequency (ω) dependence of the data and the range (or depth) dependence of the

image, along with Stolt’s interpolation. The k-space result is then cast back to 3D

real space via the 3D inverse Fourier transform (IFT). This approach is known as the

range-migration algorithm (RMA). Stolt’s interpolation is by far the most computa-

tionally intensive task but this drawback has been overcome by recent MHAs, which

avoid this interpolation, e.g., the range-stacking algorithms [43,44] and the near-field

MHAs [21,40,45,46]. They perform the inversion in the mixed (kx, ky, z) space, where

kx and ky are the Fourier variables corresponding to the lateral coordinates x and y,

whereas z is range.

Stolt’s interpolation and the FTs introduce numerical errors, which may lead to

image artifacts in MHA reconstructions, unless filtering is applied [46]. BPAs do not

suffer from such artifacts. It is shown in [47] that the RMA yields 2D images with

better cross-range resolution compared to the BPA, but offset errors due to Stolt’s

interpolation may occur. In 3D imaging, however, the BPA seems to offer better

resolution. Overall, the BPAs are significantly slower than the MHAs [44, 47] but

they are less prone to image artifacts [48–51].

To improve the image accuracy and to enable quantitative reconstruction in near-

field imaging, the measured system (or data) point-spread function (PSF) is used [40,

45,52–54] in place of the analytical PSFs used in far-field imaging. The measured PSF
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provides the system-specific quantitatively accurate resolvent kernel of the linearized

scattering model. Using measured PSFs, quantitative imaging of dielectric objects

has been demonstrated by algorithms such as quantitative microwave holography

(QMH) [21,55,56] and Fourier-space scattered power mapping (F-SPM) [57,58].

Here, we propose a novel image-reconstruction method for processing LFM sig-

nals, which we refer to as FSPM-TD (Fourier-space scattered power mapping with

time-domain responses). It is based on the F-SPM method, originally developed for

SFCW data [57, 58], and it operates directly on time-domain data. The data spatial

dependence is treated in k-space, leading to superior computational speed, shown

to be better than that of the existing k-space algorithms. At the same time, unlike

these algorithms, the FSPM-TD algorithm does not neglect the second-order time-

delay term in the LFM signal. The algorithm is validated through simulated data

(generated by an in-house radar simulator) as well as measured data obtained with

an off-the-shelf LFM platform [59]. Its speed and accuracy are compared with the

fast QMH algorithm [21,55], which does not employ Stolt’s interpolation.

Next, Section II introduces the FSPM-TD method and its implementation with

LFM data. Sections 3.3 and 3.4 present validation examples with synthetic and

measured data, respectively. Conclusions are drawn in Section 3.5.
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3.2 Theory

3.2.1 Fourier-space Scattered Power Mapping with Time-

Domain Responses (FSPM-TD)

Scattered power mapping (SPM) is a well established method for fast (real-time)

microwave imaging [57,58,60]. It is a direct reconstruction method since it relies on a

linearized model of scattering. With quantitatively accurate (measured) system PSFs,

it can also reconstruct images of the real and imaginary parts of the object’s com-

plex permittivity (quantitative images). The method operates on frequency-domain

signals. The most computationally efficient SPM algorithm is F-SPM [58], which

performs the inversion in k-space. Since this algorithm serves as the basis for the

current development, it is summarized in Appendix C.

The SPM is a two-stage inversion procedure. To understand its new implementa-

tion with time-domain signals, we start with its formulation in real (x, y, z) space.

With frequency-domain responses, the first SPM stage constructs a complex-

valued qualitative image Mω(r
′) (scattered-power map, or simply, map) of an object

as [52, 57]

Mω(r
′) =

NT∑
ζ=1

∫
ω

∫∫
Sa

Ssc
ζ (r, ω)

[
Hsc

ζ (r, ω, r′)
]∗
dr dω (3.1)

where ω is frequency, ζ indicates an antenna pair associated with a response, NT

is the number of responses acquired at each observation (receiver) position r on the

aperture Sa, r
′ is a position in the imaged domain, Ssc

ζ (r, ω) is the scattered portion of

the response measured with the object in place, Hsc
ζ (r, ω, r′) is the scattering response
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measured with a point scatterer at r′ in the background medium (the system PSF),

and ∗ indicates conjugation. It is clear from (3.1) that the object’s map Mω(r
′) is

an inner product of the measured responses and the system PSFs in the data space

spanned by r, ω and ζ.

In the time domain, (3.1) can be written as

Mω(r
′) =

NT∑
ζ=1

∫
ω

∫∫
Sa

Fτ

{
Ssc
ζ (r, t)⊗Hsc

ζ (r, t, r′)
}︸ ︷︷ ︸

cross-correlation Xζ(r,τ,r′)

drdω (3.2)

where Xζ(r, τ, r
′) is the temporal cross-correlation of Ssc

ζ (r, t) and Hsc
ζ (r, t, r′) with the

time shift τ , and Fτ is the FT with respect to time. We next consider the integral over

ω in conjunction with the FT of Xζ(r, τ, r
′). Assuming infinite frequency bandwidth,

at any r and r′, we obtain

∞∫
−∞

∫
τ

Xζ(τ)e
−iωτdτdω =

∫
τ

X(τ)

 ∞∫
−∞

e−iωτdω

 dτ (3.3)

where i =
√
−1. The improper integral in the brackets equals 2πδ(τ), where δ denotes

Dirac’s delta function. Therefore,

∞∫
−∞

∫
τ

Xζ(τ)e
−iωτdτdω = 2πX(0) . (3.4)

The substitution of (3.4) into (3.2) results in the map of the object expressed in terms

of time-domain responses:

M(r′) =

NT∑
ζ=1

∫∫
Sa

∫
t

Ssc
ζ (r, t) [H

sc
ζ (r, t, r′)]∗dtdr . (3.5)
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Here, the scaling factor 2π has been omitted since it has no impact on the final

image. In conclusion, the first stage of the SPM image reconstruction can employ

time-domain instead of frequency-domain data to obtain the object under test (OUT)

map. The comparison of (3.5) and (3.1) shows that the integration over ω is replaced

by that over time t. Note that with UWB radar, the temporal sequences are real,

but with LFM radar systems, they are complex, i.e., at each r, Ssc
ζ (t) = I(t) + iQ(t),

where I and Q denote the in-phase and quadrature receiver outputs. With complex

time-domain signals, the conjugation in (3.5) matters.

Figure 3.1: Illustration of the single-sided multi-static measurement setup with a
planar aperture denoted as Sa. The red triangles and the blue points represent Tx
and Rx positions, respectively. The response acquired with the j-th Tx antenna
(j = 1, 2, 3) and the i-th Rx antenna (i = 1, . . . , 4) is denoted by ζ ≡ (i, j). The
array of 3 Tx and 4 Rx antennas moves along a raster-scan path indicated by the
grey dash line. Thus, the positions of the Tx antennas, rTx,j, and the Rx antennas,
ri, are all incremented with a common sampling step along x and y during the scan.
The imaged position is denoted as r′.

The direct computation of the OUT map M(r′) with (3.5) is slow. It can be

carried out much faster in the 2D k-space under the assumption of a homogeneous

background, where the dependence of the PSF on r and r′ reduces to a subtraction,
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Hsc
ζ (r − r′, t). Note that the time variable t is also a function of (r − r′) through

its dependence on the distance RRx = |r − r′| between the imaged point r′ and the

measurement (receiver) point r. Thus, the integration over r ∈ Sa in (3.5) becomes a

2D cross-correlation of the OUT response and the system PSF in the lateral (cross-

range) coordinates. In 2D k-space, this cross-correlation is a point-wise multiplication

of the respective 2D FTs. The computation is most efficient in the case of uniform

sampling on canonical surfaces (planar, cylindrical) since this allows for the use of

the 2D fast Fourier transform (FFT).

Fig. 3.1 illustrates a single-sided multistatic measurement setup, where the scan

is over a planar surface. This setup reflects all examples presented later. The mea-

surement LFM-radar platform features 3 transmitting (Tx) and four receiving (Rx)

antennas, all moving together over the acquisition plane Sa at regular intervals along

x and y.

Appendix C describes the process of casting the OUT scattered-power map (3.1)

for frequency-dependent data into 2D k-space in the case of planar scanning, where

the cross-range variables are x and y. The same process can be applied to the time-

domain formulation of the OUT scattered-power map in (3.5), leading to its 2D FT

form:

M̃(κκκ, z′) =

NT∑
ζ=1

Nt∑
k=0

S̃sc
ζ (κκκ, tk)

[
H̃sc

ζ (κκκ, tk, z
′)
]∗

(3.6)

where κκκ = (kx, ky) is a point in k-space with kx and ky being the Fourier variables

corresponding to x and y, respectively, z′ is the range position of an imaged slice,

tk = k∆t is the k-th time sample as determined by the time-sampling step ∆t, and Nt

is the number of time samples. S̃sc
ζ (κκκ, t) and H̃sc

ζ (κκκ, t, z′) are the 2D FTs of Ssc
ζ (x, y, t)

and Hsc
ζ (x, y, t, z′), respectively, where Hsc

ζ is the system response acquired with a
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scattering probe (point scatterer) at position (x′, y′, z′) = (0, 0, z′). It should also

be pointed out that the range variable z′ belongs to a discrete set of range slices,

z′n = n∆z, n = 1, 2, . . . , Nz, where ∆z is the range step size. The implementation of

(3.6) in the case of LFM radar is detailed later in Section 3.2.2.

Once the 2D FT of the OUT map is computed with (3.6), it can be cast back in

real space using 2D inverse FT:

M(x′, y′, z′) = F−1
2D

{
M̃(κκκ, z′)

}
. (3.7)

The absolute value of the so obtained OUT map |M(x′, y′, z′)| (usually normalized)

provides a qualitative image of the object’s reflectivity. However, a significant image

improvement is achieved with the second SPM stage. As explained next, this stage

operates directly on the k-space OUT map M̃(κκκ, z′), thus bypassing the inverse FT

operation in (3.7).

It is shown in [57, 58, 60] (for the case of frequency-domain responses) that the

second SPM step provides an image with significantly improved spatial resolution

compared to the OUT qualitative image (the map) obtained with (3.1) (real-space

processing) or with the IFT of (C.29) (Fourier-space processing; see Appendix C).

It also enables the quantitative estimate of the complex permittivity of dielectric

objects, provided the system PSFs are quantitatively accurate.2 Similarly to the

first stage, for best computational efficiency, the second SPM stage is performed in

2A quantitatively accurate PSF predicts accurately the measured response to a scattering probe
of known volume and contrast. Such PSFs are usually acquired through calibration measurements
[45,46,52] since they depend on specific system parameters such as transmitted power, antenna gain
or near-field patterns, the background medium, etc.
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k-space. Since the processing is essentially the same as in the second stage of the F-

SPM algorithm for frequency-domain data (see Appendix C), only the computations

relevant to time-domain responses are presented below, followed by a summary of the

algorithm.

The second SPM stage operates on the OUT k-space map M̃(κκκ, z′n), n = 1, . . . , Nz,

computed with (3.6). It also requires the computation ofNz k-space maps, M̃(κκκ, z′n; z
′′
m),

n,m = 1, . . . , Nz, of the scattering probe, when this probe resides at r′′m = (0, 0, z′′m),

m = 1, . . . , Nz. This computation mirrors that of the OUT map; see (3.6). Specifi-

cally,

M̃(κκκ, z′n; z
′′
m) =

NT∑
ζ=1

Nt∑
k=0

H̃sc
ζ (κκκ, tk, z

′′
m)
[
H̃sc

ζ (κκκ, tk, z
′
n)
]∗

, n,m = 1, . . . , Nz . (3.8)

Note that the real-space maps of the point scatterers, M(x′, y′, z′n; z
′′
m), correspond-

ing to the k-space maps computed with (3.8), are the image PSFs (IPSFs) resulting

from the first SPM stage.3 The scattering-probe maps in (3.8) are independent of the

imaged object and can be pre-computed for faster execution of the image reconstruc-

tion.

As shown in Appendix C, with the OUT and scattering-probe maps available in

k-space, the second SPM stage solves a small Nz × Nz system of equations at each

point κκκ to obtain the 2D FT of the reflectivity function ρ̃(κκκ, z′n), n = 1, . . . , Nz. The

real-space reflectivity function ρ(x′, y′, z′n) is then recovered via 2D IFT of ρ̃(κ, zn);

see (C.36). The plot of |ρ(x′, y′, z′n)| provides a qualitative image of the object’s

3The image PSF (IPSF) is the image a reconstruction algorithm produces from the data acquired
with a point scatterer. The IPSF is not to be confused with the system PSF, which is the data set
acquired with a point scatterer. The IPSF characterizes the image-reconstruction algorithm whereas
the system PSF characterizes the measurement system.
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reflectivity. A quantitative estimate of the OUT complex permittivity is possible,

provided the system PSFs, Hsc
ζ (x, y, t; z′n), scale properly with the probe’s volume

Ωsp and relative-permittivity contrast ∆εr,sp. Then, the object’s relative-permittivity

contrast is computed with (C.37).

The proposed FSPM-TD algorithm is summarized in Fig. 4.2. It takes as in-

puts the measured OUT responses Ssc
ζ (x, y, t), ζ = 1, . . . , NT, and the system PSFs,

Hsc
ζ (x, y, t, z′n), n = 1, . . . , Nz, the latter being obtained either through measurements,

or simulations, or analytical models. Note that, in a multi-static system, each Tx/Rx

antenna pair, indicated by ζ ≡ (i, j), has a dedicated system PSF Hsc
ζ .

Figure 3.2: Flowchart of the FSPM-TD algorithm.

3.2.2 Forward Model of Scattering with LFM Signals

The LFM radar signal is a “chirp” waveform – a sine wave of frequency which increases

or decreases linearly with time. A transmitted LFM chirp is expressed as [61,62]

sTx(t) = ATxP (t/Tp) cos
[
2π(fct+ 0.5γt2)

]
(3.9)
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where ATx is amplitude, fc is the center frequency, t is the fast time (the time within

a single chirp), Tp is the chirp duration (pulse width), γ = B
Tp

is the frequency-

modulation slope (chirp rate), B is the chirp’s frequency bandwidth, and

P (x) =


1, |x| ≤ 0.5

0, otherwise.

(3.10)

The spatial impulse response hsc(r, t, r′) of the LFM radar describes the scattered

signal from a differential scatterer (scattering probe), dhsc(r, t, r′) = ρdΩhsc(r, t, r′),

where ρ and dΩ are the reflectivity and volume of the probe, respectively. For static

objects in a homogeneous unbounded background, the LFM-radar impulse response

(i.e., its analytical PSF) is modeled as a scaled and time-delayed version of sTx(t):

hsc(r, t, r′) = ATx(RTxRRx)
−1P

(
(t− τd)/Tp

)
cos
[
2π(fc(t− τd) + 0.5γ(t− τd)

2)
]

(3.11)

where r is the Rx position, r′ is the probe’s position, and

τd = (RTx +RRx)/c (3.12)

is the time delay corresponding to the distance travelled by the signal. Here, c is the

speed of light whereas RTx = |r− rTx| and RRx = |r− r′| are the distances from the

Tx antenna at rTx to the probe and from the probe to the Rx antenna, respectively.

The model in (3.11) accounts for the signal decay due to the spherical spread of the

transmitted and scattered waves through the factor (RTxRRx)
−1. On the other hand,
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it is a greatly simplified approximation of reality since it ignores the vector nature

of the electromagnetic waves, the depolarization that may occur upon scattering, the

gain and dispersion of the employed antennas, etc. Note that, at each scan position,

RRx and RTx differ, depending on which antenna pair ζ ≡ (i.j) in the multi-static

system the PSF describes.

Upon reception, the scattered signal is dechirped by quadrature down-conversion

to produce the beat or baseband signal, which is used for the image reconstruction.

The baseband output corresponding to hsc(r, t, r′) in (3.11) is the analytical system

PSF [41,61]:

Hsc(r, t, r′) =
ATx

RTxRRx

P

(
t− τd
Tp

)
exp

[
−i2π

(
fcτd + γtτd − 0.5γτ 2d

)]
. (3.13)

Note that the signal in (3.13) is complex, where its real and imaginary parts represent

the I and Q Rx outputs, respectively.

The investigation of the LFM forward model in [41] points out that the spatial

resolution of the images obtained with MHAs is negatively affected if the third term

of the exponent in (3.13) is not negligible. This is due to the MHAs treating the LFM

time-domain signals as frequency-domain signals of equivalent frequency f ′ = fc + γt

and wavenumber k′ = 2πf ′/c [41]. The proposed FSPM-TD algorithm does not suffer

from this limitation since it takes the system PSFs in any form and it does not need

an equivalent frequency. Nonetheless, if the phase contribution of the term πγτ 2d is

kept below 2.5◦, as suggested in [41], then the LFM system PSF can be approximated

as:

Hsc(r, t, r′) ≈ Hsc
a (r, t, r′) =

ATx

RTxRRx

P

(
t− τd
Tp

)
exp [−i2π(fc + γt)τd] . (3.14)
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Note that the phase of Hsc
a is now proportional to τd, leading to an exponential term

of the form e−ik′(RTx+RRx), which matches that in a frequency-domain response. The

PSF Hsc
a is employed by the QMH algorithm in the examples presented later, where

the FSPM-TD algorithm is compared with QMH.

The linearized forward model of scattering views the signal from an object as a

superposition of the scattering emanating from all differential scatterers that make

up this object. Thus, using (3.13), the cumulative OUT signal is modelled as:

S(r, t) = ATx

∫∫∫
V ′

ρ(r′)Hsc(r, t, r′)dr′ (3.15)

where ρ(r′) is reflectivity, and

−0.5Tp + τd ≤ t ≤ 0.5Tp + τd . (3.16)

The forward model in (3.15) is the basis of the LFM radar simulator used in the

synthetic experiments presented next. The FSPM-TD image reconstruction employs

the analytical system PSF (3.13) with both synthetic and measured data.

3.3 Validation with Synthetic Data

An LFM simulator is implemented in MATLAB [63] using the scalar scattering model

(3.15) for the case of planar scanning with multi-static measurements. The PSF

employs (3.13). Note that this PSF, along with (3.15), inherently assume scattering

in an unbounded medium. The multi-static scenario allows for using any number of

Rx and Tx antennas, which remain in a fixed configuration during the scan. Thus,
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Table 3.1: System Parameters in the Imaging Experiments with Synthetic mm-Wave
LFM Data

Parameters Values

Center frequency fc 79 GHz
Bandwidth B 4 GHz
Frequency sweep time Tp 51.1 µs
Frequency sampling rate Fs 10000 kS/s
Frequency-modulation slope γ 72.42 MHz/µs
Sample points in time/frequency 512
Sampling step along x, y 2 mm
Aperture width 15 cm×15 cm
Number of spatial samples 76×76
Number of transmitters 3
Number of receivers 4

at each scan position r, the number of acquired responses is NT = NTxNRx, where

NTx and NRx are the number of Tx and Rx antennas, respectively. To match our

experimental setup employing a single LFM board [59], the scans are single-sided.

In each synthetic experiment, the LFM imaging-system parameters are first set.

For a list of these parameters, refer to Table 3.1. Then the system-calibration simula-

tions are performed using (3.13). These emulate the PSF measurements with a scat-

tering probe (SP) located at the center of each imaged slice (0, 0, z′n), n = 1, . . . , Nz.

The SP volume Ωsp = dΩ is set equal to that of the imaged voxel. This process

provides the system PSFs, Hsc
ζ (x, y, t; z′n), ζ = 1, . . . , NT. This is followed by the

computation of the OUT data Ssc
ζ (x, y, t) using (3.15).

Table 3.1 summarizes the system parameters employed in all presented examples,

except for the sampling step along x and y, which is 1 mm for the IPSF study in

section 3.3.1. The first six system parameters describe the radar itself. These have

been chosen to match the settings of the LFM radar [59] used in the experiments.

The spatial sampling step ∆x = ∆y = ∆⊥ (2 mm in Table 3.1) is always chosen to
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be somewhat smaller than the expected cross-range resolution limit δ⊥. This limit is

given by δ⊥ = λc

4 sinα
[52, 64] where λc = c/fc and α is the maximum viewing angle of

the scan, α = min
[
θa, avg(0.5θh, 0.5θe)

]
. Here, θa = arctan(0.5A/R) is the viewing

angle provided by the aperture, with A and R being the aperture width and the

range distance to the object’s center, respectively. θh,e denote the antenna half-power

beamwidths in two principal planes. For example, in the simulations, the antennas

are isotropic, thus α is determined by the aperture. Provided that A = 15 cm and

the target is 22.5 cm away, α ≈ 18.4◦, leading to δ⊥ ≈ 3 mm.

(a) (b)

Figure 3.3: FSPM-TD reconstructed image of a cubical probe 1 mm on a side, at
the range distance 22.5 cm: (a) 2D IPSF at the z = 22.5 cm in terms of normalized
reflectivity ρ̄, (b) range and cross-range profiles of the IPSF.

It is worth commenting that obtaining synthetic LFM-radar data with full-wave

simulators is prohibitive slow due to: (i) the extremely long chirp signals, and (ii)

the need to simulate a large amount of of illumination (Tx) positions associated with

scanning a multi-static radar system over a large aperture.4

4Consider the F-shape/bar-shape example, which requires about 102 million mesh cells to comply
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3.3.1 Image Point Spread Function and Spatial Resolution

In the first experiment, we image a single-voxel scatterer at 22.5 cm from the acqui-

sition plane, and obtain the IPSF of the FSPM-TD algorithm. From the IPSF, the

cross-range and range resolution values are estimated and compared to the theoretical

limits. Here, the scanning step is ∆⊥ = 1 mm, and Ωsp = dΩ = 1 mm3. The IPSF

contains 29 range slices separated by ∆z = 5 mm and centered on the z = 22.5 cm

plane. Fig. 3.3a shows the IPSF slice at z = 22.5 cm. The IPSF width at −4 dB

indicates the spatial resolution in the respective direction [52]. Fig. 3.3b shows the

line cuts of the IPSF along x and y at z = 22.5 cm, and along the line cut along z

at x = y = 0. The results indicate cross-range resolution of 3 mm, which agrees with

the theoretical limit δ⊥ ≈ 3 mm. The range resolution is obtained as 22 mm whereas

the theoretical limit is [64] δz =
c
2B

≈ 37 mm.

3.3.2 3D Imaging with Synthetic Data

A 3D object is implemented in the LFM radar simulator as shown in Fig. 4.7. All

structural components are built of cubical scatterers 1 mm on a side. Fig. 3.4a shows

the tilted bar shape of length 50 mm and width 3 mm in the plane z = −120 mm.

Its relative permittivity is set to εr = 3. An F-shape of εr = 1.8 is located at z = 0

mm (see Fig. 3.4b). The background is vacuum (εr,b = 1). The F-shape has vertical

and horizontal arms of length 50 mm whereas the middle arm measures 25 mm. All

arms are 3 mm wide. The third slice at z = 120 mm has no inclusions. The sampling

with a cell size equal to one-tenth of the shortest wavelength. With a time step satisfying the
Courant–Friedrichs–Lewy (CFL) condition, it is estimated that the transmitted LFM chirp requires
Nt,pulse = 68 133 333 time samples, and at least double this number of time steps to complete the
simulation for a single Tx position. The multi-static scanning imaging experiment requires a total
of 3× 76× 76 = 17 328 simulations.
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(a) z = −120 mm (b) z = 0 mm (c) z = 120 mm

Figure 3.4: The 3D structure imaged in a synthetic example: (a) bar shape of relative
permittivity εr = 3 at z = −120 mm, (b) F-shape of εr = 1.8 at z = 0, and (c) a slice
without any targets at z = 120 mm. Background is vacuum, εr,b = 1. All dimensions
are in mm.

step is ∆⊥ = 2 mm.

The PSFs are acquired with a cubical SP of size 0.5 mm3 and εr,sp = 1.5, placed

at z = −120, 0, 120 mm. This results in 3D image reconstruction at these three slices.

Once the OUT responses are computed with (3.15), the FSPM-TD algorithm recon-

structs the images of the real and imaginary parts of the object’s relative permittivity

shown in Fig. 3.5. The results indicate that the algorithm retrieves well the permit-

tivity values of the bar and F shapes (see Fig. 3.5a and Fig. 3.5b). This quantitatively

accurate result is expected since both the PSFs and the OUT data are generated by

the same “measurement system” emulated by the LFM radar simulator. Also, the

radar simulator employs the simple superposition scattering model in (3.15), i.e., it

does not model the mutual coupling and multiple scattering, which occurs in reality,

and which is the main reason for image degradation in quantitative imaging. This

example highlights the advantage of measuring the PSFs with the same system used

to measure the OUT. Unfortunately, measuring the PSFs is not always possible, es-

pecially in far-zone measurements, where the SP signal may be too weak to detect
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(a) (b) (c)

Figure 3.5: Reconstructed images of the real and imaginary parts of the relative
permittivity of the object in Fig. 4.7 using synthetic data: (a) the bar shape in the
z = −120 mm slice (true permittivity εr = 3); (b) the F-shape in the z = 0 slice (true
permittivity εr = 1.8), and (c) the slice at z = 120 mm where there are no embedded
targets.

with sufficient signal-to-noise ratio.

To quantify the image quality in Fig. 3.5, the structural similarity (SSIM) index

is computed [65]. The SSIM index ranges from 0 to 1, where 1 indicates perfect

similarity and 0 indicates no similarity. Here, the SSIM is 0.9515 in the F-shape

slice and 0.9104 in the bar-shape slice. Additionally, to evaluate the precision of the

reconstructed permittivities, the root-mean-square error (RMSE) is calculated as [52]:

RMSE =

√√√√ 1

Nv

Nv∑
n=1

|εr(r′n)− εr(r′n)|2 , (3.17)
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where εr(r
′
n) is the true distribution, εr(r

′
n) is the reconstructed distribution, and Nv

is the number of voxels. Here, the image RMSE is 0.0219.

The accuracy of the FSPM-TD reconstruction is compared with that of the quan-

titative microwave holography (QMH) method. The QMH method is a fast MHA,

which does not employ Stolt’s interpolation. The QMH images are not shown here

since there is no visible difference with those in Fig. 3.5. To compare better the two

reconstructions, an RMSE is computed where the FSPM-TD result provides the re-

constructed distribution εr(r
′
n) whereas the QMH result is the true distribution εr(r

′
n).

The resulting RMSE is very small: 3.12× 10−16.

The two algorithms are also compared in terms of running time. The FSPM-TD

algorithm takes about 2.9 s whereas the QMH algorithms takes about 5 s. Note that

both algorithms are implemented in MATLAB without any code optimization and

using the same direct and inverse fast FT (FFT) function calls. To understand the

reason for the faster performance of FSPM-TD, we first point out that both methods

share common initial steps, which involve the 2D FFT of the PSFs and the OUT data.

Also, both of them employ 2D inverse FFT (slice by slice) on the reconstructed k-space

reflectivity function. However, they differ in solving their respective linear systems of

equations in k-space. FSPM-TD solves square Nz×Nz systems (C.32) whereas QMH

solves tall (NωNT) × Nz systems [46, 55]. The number of slices Nz rarely exceed 10,

and the number of response types NT is also on the order of 1 to 10. However, in the

image reconstruction with QMH, the number of equivalent frequencies Nω equals that

of the time samples Nt, and that is on the order of ∼ 102 to ∼ 103, depending on the

length of the employed chirp sequence. In this example, which spans a single chirp,

Nt = 512. To solve the tall system of equations, QMH uses MATLAB’s pseudo-inverse
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(pinv) function, which employs a singular value decomposition approach [66], the

computational complexity of which is O((NtNT)
2Nz +N3

z ). FSPM-TD, on the other

hand, can employ either LU decomposition or pseudo-inverse solvers. In either case,

its computational complexity is about O(N3
z ). It is now clear that the computational

advantage of the FSPM-TD algorithm arises when Nz < NtNT.

(a)

(b)

Figure 3.6: Photos of: (a) acquisition chamber, and (b) on-board antenna array of
the IWR1443 sensor (from [59]).
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3.4 Verification with Measurements

The experiments are carried out in a planar raster-scanning chamber shown in Fig. 4.13a.

With the advent of system-on-chip mm-wave sensing technology, the market now of-

fers various off-the-shelf radar modules. Here, we use the IWR1443Boost evaluation

module [59] along with the real-time data-capture adapter board DCA1000EVM [67].

The mm-wave sensor is equipped with three Tx and four Rx antennas as shown in

Fig. 3.6b (from [59]). The LFM transceivers can accommodate up to 4 GHz band-

width from 77 GHz to 81 GHz. The configuration of the radar system is done via the

TI mmWave Studio software suite. This includes activating/deactivating Tx and Rx

channels, the choice of the chirp sequence, and the chirp settings. The chosen system

parameters match those in Table 3.1. All twelve radar channels, formed by the three

Tx and four Rx on-board antennas, are used in the experiments. The OUT data

S(r, t) are captured through measurements employing all available radar channels.

The radar module is mounted at the top of the chamber (see Fig. 4.13a) and it

is stationary while the platform carrying the imaged object moves laterally along a

raster-scan path with increments ∆x = ∆y = 2 mm. At each grid point, the radar

takes measurements for about 2 s, during which time the platform does not move.

The relative positions of the Tx and Rx antennas are needed to calculate the

time delay τd associated with an imaged point and each Tx/Rx antenna pair. The

center-to-center spacing between the Rx elements is 1.9 mm whereas between the Tx

elements it is 3.8 mm. The center-to-center spacing from rx4 to tx1 is 4.75 mm (see

Fig. 3.6b). The coordinate system is aligned so that Rx antenna #4 (rx4 in Fig. 3.6b)

is at (0, 0, z̄) at the start of the scan, where z̄ is the distance from the radar printed
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circuit board (PCB) to the center of the imaged object.

In all experiments presented next, background subtraction is not used to extract

the scattered portion of a response from the total measured response. This sub-

traction is mandatory in near-field imaging and especially when forward-scattering

signals are employed because the incident-field portion of the total object response is

strong. Here, background de-embedding is unnecessary since the background signals

are negligible compared to the back-scattering from the objects.

3.4.1 System Calibration

The measurements are susceptible to various types of uncertainties, of which the

internal system delay tsys is the most detrimental to the ranging information carried

by the scattered signal. Aside from ignoring signal dispersion due to the antennas,

the PSF models in (3.13) or (4.16) assume that: (i) the signals at the Rx antenna

terminals arrive at the input of the down-converting mixer without delays, and (ii) the

signals transmitted by the Tx antennas are the same as those submitted to the mixer.

The first assumption is not true due to the coplanar-waveguide (CPW) transmission

lines connecting the Rx antennas to the radar chip (see Fig. 3.6b) along with signal

pathways inside the chip. Similarly, the second assumption is not true due to the

CPW and on-chip interconnects to the Tx antennas. The cumulative effect of the

delays along interconnects is represented by a constant tsys, which must be added to

the signal-delay time variable τd in the PSF model. The calibration method aims at

extracting tsys.

The calibration measurement setup is illustrated in Fig. 3.7. It employs a 5 × 5

cm2 copper plate serving as an ideal reflector, which lies parallel to the radar PCB
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Figure 3.7: Schematic of system calibration setup.

and centered on the boresight of the Tx/Rx antenna set. The system delay does not

depend on the distance between the radar and the plate but measurements at various

distances should be carried out to verify the extracted τsys. Here, distances anywhere

between 20 cm and 40 cm have been employed, which are within the possible ranges

in the chamber.

The echo signal Sm
ζ (t) is captured by every (ζ) Tx/Rx antenna pair. The goal is

to align the measured signals Sm
ζ (t) with an analytical model Sa

ζ (t) based on (3.13),

namely,

Sa
ζ (t) = −Hsc

ζ (t) . (3.18)

The response in (3.18) accounts for the phase reversal (the minus sign) upon reflection

from the copper plate. The integration over the plate’s surface is ignored since the

plate’s lateral size is much smaller than the range distance. The time delay τd,ζ ,

needed to computeHsc
ζ (t), is obtained from RTxζ and RRxζ using (3.12), where RTxζ =

|rTxζ − r0| and RRxζ = |rζ − r0| are the distances from the plate’s center (at r0) to

the Tx and Rx antennas, respectively.
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The alignment is done in the frequency (f) domain. The FT of Sa
ζ (t), S̃

a
ζ (f), has

a magnitude spectrum which peaks at the frequency fp = −γτd,ζ since [61,68]:

S̃a
ζ (f) = −Tpsinc [Tp(γτd,ζ + f)] e−i2πfcτd,ζ+iπγτ2d,ζ e−i2π(f+γτd,ζ)τd,ζ . (3.19)

Here, sinc(x) ≡ sin(x)
x

. The peak frequency fp is a crucial marker for the target’s

range. If the target motion is negligible (zero Doppler shift), fp is proportional to

τd,ζ [61, 68], and, therefore, to the distance to the target; see (3.12). We exploit this

LFM signal feature to find tsys.

First, we generate the time sequence of Sa
ζ (t) with the same sampling step and

length as that of Sm
ζ (t). FFT is then applied to both Sa

ζ (t) and Sm
ζ (t). An example

plot (for the rx4/tx1 antenna pair) of the magnitude spectra of the copper-plate

measured and analytical responses is shown in Fig. 3.8, when the plate is 355 mm

away from the radar. It is clear that the peak frequencies of |S̃a
ζ (f)| and |S̃m

ζ (f)| are

not aligned, which necessitates a correction of the analytical model through tsys. The

delay tsys is calculated from the peak frequency of the measured signal fm
p and that

of the analytical signal f a
p as

tsys = (fm
p − f a

p)/γ . (3.20)

The internal system delays for the LFM radar employed here have been determined

for all Tx/Rx channels first with the copper plate placed 355 mm away from the

radar. The values are the same across all radar channels: τsys = 0.26969 ns. The

calibration has been repeated for various range positions of the copper plate and tsys

has been confirmed to be the same.

104



Ph.D. Thesis - Romina Kazemivala McMaster - Electrical Engineering

Figure 3.8: Comparison between the magnitude spectra of a measured calibration
response S̃m

ζ (f) and the respective analytical response S̃a
ζ (f) for a copper plate placed

355 mm away from the radar. S̃a
ζ (f) is the analytical result before calibration whereas

S̃cal
ζ (f) is the result after calibration.

To verify the calibration, the so obtained tsys is applied to the analytical response

Sa
ζ (t) in (3.18) by replacing τd with τd + tsys. The magnitude spectrum of the cal-

ibrated analytical response |S̃cal
ζ (f)| is plotted in Fig. 3.8 for comparison with the

measurement |S̃m
ζ (f)|, showing the peak-frequency alignment. It is worth noting

that although the peak-frequency misalignment between the uncalibrated analyti-

cal response and the measured response may appear small, it actually corresponds

to about 4 cm difference in distance. Without calibration, this difference results in

extremely unfocused images with the measured data.

Similarly, tsys is used to calibrate the analytical system PSFs in (3.13) and obtain

Hsc
cal,ζ(r, t, r

′) by replacing τd,ζ with τd,ζ + tsys for each Tx/Rx antenna pair. These

calibrated PSFs are used in the image reconstruction with the measured data.
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3.4.2 Imaging Experiments

(a) (b)

Figure 3.9: Imaging setup for the 3D reconstruction of two copper-tape objects de-
picted in (a). Both shapes consist of four layers of copper tape carefully applied to
a paper surface. The F-shape is positioned at the uppermost layer, while the tilted
bar shape resides at the bottom layer, as illustrated in (b). The F-shape plane is
situated 22.5 cm away from the radar, whereas the plane of the bar shape extends an
additional 12 cm. All dimensions are in cm

The initial validation is conducted using the same 3D F-shape/bar-shape object

described in Section 3.3.2. However, in this experiment, copper tapes of thickness

1 oz (34.8 µm) and width 4 mm are used in crafting the shapes, as shown in Fig.

3.9a. Each arm of the F and bar shapes comprises 4 stacked layers of copper tape

to ensure large reflectivity. The F-shape contains arms of lengths 5 cm and 2.5 cm.

The bar shape is 5 cm long. The shapes are affixed to paper sheets (see Fig. 3.9a).

The imaging setup is shown in Fig. 3.9b. The F-shape is placed at the reference

plane z = 0, which is 22.5 cm away from the radar. The bar shape is at z = −12

cm (34.5 cm away from the radar). The paper sheets holding the shapes are placed
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on Styrofoam (εr ≈ 1.175) slabs of thickness 12.7 mm. The system and sampling

parameters are listed in Table 3.1.

In the image reconstruction, we employ the calibrated analytical PSFs computed

for a cubical scattering probe of volume dΩ = 1 mm3 positioned at the three slices

of interest: z = −120, 0, 120 mm. Therefore, in this and all subsequent experiments,

the images are qualitative.

We briefly mention that we have attempted the measurement of the PSFs using

probes of size λc

4
≈ 1 mm. Unfortunately, at the employed ranges, the scattering from

such probes is too weak to rise above the uncertainty of our measurement system.

(a) FSPM-TD (b) QMH

Figure 3.10: Reconstructed 3D images in terms of normalized reflectivity ρ̄ enabling:
(a) FSPM-TD method, and (b) QMH method using measured data with the F-
shape/bar-shape object. The bar-shape and the F-shape are correctly located at
z = −120 mm and z = 0 mm, respectively. The top layer at z = 120 mm correctly
shows a slice without any targets.

The FSPM-TD reconstructed image of the normalized reflectivity is presented in

Fig. 3.10a. The F and bar shapes are reconstructed with good structural accuracy.
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Even a small air-gap in the top horizontal arm of the F-shape (see Fig. 3.9a) is

reconstructed well in the middle layer (z = 0) of Fig. 3.10a. The top layer at z = 120

mm (air in the setup shown in Fig. 3.9b) accurately shows the absence of objects.

Regarding the image quality, the image slices are well resolved along range, i.e.,

there is no “range bleeding”. This is expected since the slice separation is well beyond

the range resolution limit of δz ≈ 37 mm. However, artifacts are present in the bottom

layer where the bar shape is. These are due to reflections coming from the plastic

rods as well as the scanning platform itself. Note that, as shown in Fig. 3.9b, the

F-shape at the top is far from any structural components of the scanner and its image

in the slice z = 0 shows practically no artifacts.

To compare the accuracy of FSPM-TD images with an MHA algorithm, the QMH

image is provided in Fig. 3.10b. The two images are almost identical, validating the

accuracy of the FSPM-TD algorithm. We note that the QMH algorithm, although

using the approximate PSF in (4.16), provides focused images since (4.16) is accurate

in this example. With a frequency-modulation slope of γ = 72.42 × 1012 Hz/s and

distance to target of about 35 cm, the phase contribution of the πγτ 2d term does not

exceed 0.09◦, which is well below the limit of 2.5◦ recommended in [41]. As in the

example with the synthetic data, since all sampling rates are similar, the FSPM-TD

algorithm is faster than QMH (2.9 s versus 5.0 s).

The second imaging experiment addresses a scenario featuring realistic items. The

object includes a metallic key, a penny, and a liquid lipstick, see Fig. 3.11a. In an

initial experiment, all three objects are lying on a Styrofoam sheet, which is 22.5 cm

away from the radar. In a second experiment, the same objects are enclosed within a

toy bag shown in Fig. 3.11b and the bag is placed on the same Styrofoam sheet. The
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radar and sampling parameters remain the same as those in Table 3.1.

(a) (b)

Figure 3.11: Photos of: (a) key, penny, and liquid lipstick lying on a Styrofoam sheet,
(b) small toy bag used to “conceal” the key, the penny, and the lipstick. Dimensions
are in mm.

Fig. 3.12a shows a 2D image of the unobstructed key, penny, and lipstick exper-

iment. The image is obtained by a maximum value projection of 6 slices within a

volume of 2.5 cm range thickness, i.e., confined between the planes z = 19 cm and

z = 21.5 cm. The reason for presenting the 2D projection images is that the objects

have different thicknesses and their reflectivity is best represented in a projection.

The image in Fig. 3.12a shows all items with excellent resolution and no visible ar-

tifacts. The 2D projection image of the same objects concealed in the bag is shown

in Fig. 4.13c, following the same procedure. It is clear that the bag has a negative

impact on the structural accuracy of the reconstructed objects, likely due to the fact

that the materials from which the bag is made are not entirely transparent to the

mm-wave radiation. In fact, the outline of the bag is visible in Fig. 4.13c. More-

over, the hello-kitty plush toy attached to the bag is relatively large and thick (see

Fig. 3.11b).
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(a) (b)

Figure 3.12: FSPM-TD image of the normalized 2D projection of the reflectivity ρ̄
of: (a) key, penny, and lipstick on the scanning platform, (b) the same objects inside
the bag.

The last experiment reported here addresses the realized cross-range resolution

of the experimental setup. To this end, two benchmark targets are fabricated in

PCB technology, each consisting of five copper strips of thickness 2 oz (69.6 µm) and

length 2.5 cm; see Fig. 3.13. The PCBs employ FR-4 substrates (εr ≈ 4.3) of size

8 × 8 cm2. The strip width in Benchmark #1 is 3 mm whereas in Benchmark #2

it is 2 mm. In both benchmark targets, the strip edge-to-edge spacing varies from

2 mm to 5 mm at 1 mm increment. The reconstructed 2D image of Benchmark #1

is shown in Fig. 3.14a. All strips are resolved well, even the two strips with a 2

mm spacing. On the other hand, the image of Benchmark #2, shown in Fig. 3.14b,

fails in resolving the 2 mm-width strips which are separated by a 2 mm gap. The

results suggest a cross-range resolution of about 3 mm. This agrees well with the

theoretical cross-range resolution δ⊥ = λc

4 sinα
≈ 2.95 mm. Here, λc ≈ 3.8 mm, and

the viewing angle is limited by the half-power beamwidths of the on-board antennas,

α = avg(0.5θh, 0.5θe), where θh ≈ 56◦ and θe ≈ 28◦ [59]. Thus α ≈ 21◦.
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(a) (b)

Figure 3.13: Photos of benchmark PCB targets composed of copper strips of 2 oz
(69.6 µm) thickness and length of 2.5 cm: (a) Benchmark #1 with strip width of 3
mm, (b) Benchmark #2 with strip width of 2 mm. In both benchmark targets, the
strip edge-to-edge spacing varies from 2 mm to 5 mm at 1 mm increment. The PCBs
employ FR-4 (εr ≈ 4.3) substrates of size 8× 8 cm2.

3.5 Discussion and Conclusions

We have introduced the new Fourier-space scattered power mapping in the time do-

main (FSPM-TD) method for the fast processing of time-domain signals in microwave

and mm-wave image reconstruction. The method’s application with mm-wave LFM

radar signals is presented and validated with synthetic and measured data.

The proposed inversion algorithm employs a linearized integral scattering model

whose kernel (the radar’s spatial impulse response) is the PSF. For fast k-space in-

version, the assumption of a uniform unbounded background medium is made, which

renders the scattering model a 2D convolution in the lateral coordinates. Unlike

conventional direct-inversion methods, which rely on analytical PSFs, the FSPM-

TD algorithm can operate with analytical, simulated, or measured PSFs without any

modifications and with no impact on its speed. Since measured PSFs enable near-field

and quantitative imaging, this capability is an important advantage.
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(a) (b)

Figure 3.14: Reconstructed images of benchmark targets with strips of width (a) 3
mm and (b) 2 mm, in terms of normalized permittivity ρ̄

.

In its first inversion stage, the FSPM-TD algorithm is a projection algorithm,

since it employs the inner product of the measured responses with the system PSFs

to produce a reflectivity image. In its second inversion stage, it performs image

enhancement (and quantitative imaging, if the PSFs are measured) by deconvolving

the object’s reflectivity image with that of the scattering probe. This approach of

projection forming an inner product, followed by image deconvolution, is the hallmark

of the proposed algorithm.

The computational efficiency of the FSPM-TD algorithm stems from performing

both inversion stages in the mixed (kx, ky, z) space. In contrast, prior k-space algo-

rithms, perform deconvolution in the (kx, ky, kz) space or the (kx, ky, k) space, where

the number of samples along kz or k equals the equivalent-frequency samples. LFM

signals feature a large number of time samples, or, equivalent-frequency samples. This

number is usually much larger than the number of image slices along z. This is why

the FSPM-TD algorithm is computationally more efficient than the QMH k-space
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algorithm, which does not employ Stolt’s interpolation. At the same time, the image

quality is the same. The comparison with the fast QMH algorithm shows an accel-

eration factor of ∼ (NtNT)
2/N2

z , where Nt is the number of time samples, NT is the

number of Tx/Rx pairs, and Nz is the number of image slices. The typical running

time of the FSPM-TD reconstruction is 1 s to 2 s with an unoptimized MATLAB

code on a conventional laptop in examples where the imaged volume consists of ∼ 104

voxels.

Also, a radar simulator based on a linearized model of scattering has been de-

veloped for the rapid generation of synthetic LFM data. The extremely long time

scale of the LFM signal renders the full-wave time-domain simulations prohibitively

slow, especially for multi-static imaging experiments involving tens of thousands of

scanned positions. The radar simulator provides the synthetic data within several

minutes for objects consisting of thousands of sub-wavelength voxels as opposed to

weeks of simulation time with full-wave simulations. The synthetic data has allowed

for the assessment of the FSPM-TD reconstruction in terms of its IPSF and its spatial

resolution. It is shown that the algorithm achieves the theoretical spatial-resolution

limits of far-zone imaging.

Validation using experiments is also carried out with an off-the-shelf mm-wave

radar (77 GHz to 81 GHz), where the FSPM-TD algorithm achieves spatial reso-

lution consistent with the theoretical estimates. It is shown that calibration of the

employed analytical PSF is critically important since there is temporal misalignment

with the measured responses. Here, a simple calibration approach is used based on

a measurement of a copper plate. It extracts the system internal delay tsys, which is

used to correct the time-delay variable in the PSF.
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Finally, we note that, unlike the synthetic data that are noise-free, the measured

data contain significant noise and radar clutter. The noise figure of the mm-wave

LFM receiver used in the experiments is 15 dB. But it is the radar clutter (reflections

from the structural components of the imaging setup) that is more detrimental to the

signal-to-noise/clutter (SNCR) ratio of the data. The calibration IF signal depicted

in Fig. 3.8 indicates an SNCR of about 9.3 dB, when measuring the 5×5 cm2 metallic

plate at a distance of 355 mm from the radar. However, the SNCR is much poorer

when we measure a scattering probe. For example, with a 2-mm probe at a distance

of 274 mm from the radar, the SNCR is about 3 dB, whereas at 355 mm the probe’s

signal cannot be detected. Despite the low SNCR values in the experiments, the

proposed FSPM-TD algorithm yields images, which are structurally correct and with

spatial resolution close to the theoretical limits.

Future work will focus on enhanced calibration methods to enable the quantitative

imaging of targets with far-zone measurements as well as the development of an

FSPM-TD algorithm for the real-time processing of randomly and sparsely sampled

data. The latter development will target applications in imaging with mobile and

handheld platforms.
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4.1 Introduction

In recent years, many microwave and millimeter-wave (mm-wave) imaging technolo-

gies have emerged to cater to a multitude of applications based on the principles

of synthetic aperture radar (SAR). These innovative applications span various do-

mains such as nondestructive testing and evaluation (NDT&E) [1–7], security inspec-

tion [8–13], and medical imaging [14–20]. Revolutionizing aerial surveillance, small

unmanned aerial vehicles (UAVs) emerge as pivotal players in SAR imaging [21–26].

Their potential as platforms for SAR imaging is due to the remarkable progress of

the positioning technology, which now provides accurate platform coordinates. The

convergence of UAVs with ground-penetrating radars (GPRs) [27–34], operating at

wavelengths as short as 73 mm, necessitates positional accuracy at the centimeter or

millimeter scale for effective imaging. This accuracy, akin to trajectory accuracy in re-

mote sensing, is of paramount importance since errors as small as a fraction of a wave-

length lead to pronounced image distortions. Positional accuracy remains a challenge

in handheld mm-wave imagers, where state-of-the-art systems rely on fast electroni-

cally switched antenna arrays forming the acquisition aperture [35–37]. Nonetheless,

handheld imagers stand to benefit greatly from the addition of positioning technology

since this can dramatically expand the realized synthetic aperture beyond the size of

the switched antenna array. A common requirement for the image-reconstruction al-

gorithms of such UAV-borne or handheld imaging systems is that they must be able

to process randomly sampled datasets acquired in three-dimensional (3D) space with

coordinates which do not conform to uniform grids.

In conventional close-range imaging, mechanical scanning is typically realized with
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1D or 2D automated scanners (also known as translation stages), equipped with

high-precision positioning mechanisms. The sampling is usually uniform, i.e., at reg-

ular spatial intervals, although advanced scanners also allow for random sampling.

The scanning, however, is inherently constrained to canonical (planar, cylindrical,

and spherical) surfaces. Most of the real-time image-reconstruction algorithms (e.g.,

microwave holography and the range migration) take advantage of such uniformly

sampled data in order to employ fast Fourier transform (FFT) algorithms and to

achieve remarkable reconstruction speeds [38–40]. However, this also renders them

incapable of processing randomly sampled data. Nonuniform sampling on canonical

acquisition surfaces can be handled by interpolation, but this entails significant com-

putational overhead and may result in unfocused images [41–43]. On the other hand,

nonuniform sampling on such surfaces has been shown to allow for sampling densities

below the Nyquist limit [44–46].

In summary, innovative solutions are needed to address nonuniform and random

sampling since they would benefit both the imaging systems sampling along unpre-

dictable 3D trajectories (e.g., handheld and UAV-borne) and those scanning over

canonical 2D surfaces.

To this end, a few image-reconstruction algorithms based on the back-projection

(or back-propagation) algorithm (BPA) have been proposed [24, 27, 29, 47, 48]. The

BPAs, when applied in real (x, y, z) space, can inherently handle any sampling po-

sition; thus, they are preferred in the case of nonuniform and random sampling.

However, the computational resources required by the BPAs are significant as they

rely on aggregating phase-conjugated scattered field data [49,50]. This may preclude

real-time image reconstruction. The accuracy of the sampling positions is critical
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in imaging reconstruction, and it is a major problem with moving SAR platforms.

Various approaches to mitigate positional inaccuracies through hardware adjustments

are employed [51–53] to make the data suitable for BPA processing. These methods

employ an integrated navigation system to monitor the real-time motion velocity of

the radar platform. Among the BPAs, some incorporate interpolation of the nonuni-

formly sampled signals [52, 54]. Other BPAs incorporate image fusion to increase

the quality of the images by splitting the large synthetic aperture into multiple sub-

apertures [24, 52]. Further, in order to accurately extract the velocity to obtain

high-quality BPA images, the adaptive notch filtering (ANF) technique has been

employed [47].

The ω-k algorithms, such as the range-migration algorithms (RMAs) and the

microwave holography algorithms (MHAs), provide a compelling alternative to the

BPAs [42,49,55–58]. These methods first transform the data sampled over the aper-

ture into the Fourier spatial-frequency domain (the k-space) through FFT. These

algorithms harness an analytical range-migration model, which links the frequency

(ω) dependence of the data to the range (or depth) position of a scattering center

within the imaged object. This is facilitated by Stolt’s interpolation. The object’s

reflectivity is reconstructed in k-space, after which it is translated back into real space

via the inverse Fourier transform (IFT). By operating mostly in k-space, the ω-k al-

gorithms gain a significant speed advantage over the BPAs. However, they are limited

to uniform sampling on canonical surfaces. This limitation is overcome with various

methods referred to as spectral estimation [56]. The spectral estimation aims at re-

covering the spectrum of the data on a uniform grid in k-space while the data are
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acquired with nonuniform sampling on the synthetic aperture (in real space). Meth-

ods include natural neighbor interpolation, nonuniform FFT (NUFFT), nonuniform

discrete Fourier transform (NDFT), and multilevel conjugate-gradient residual error

minimization. The spectral estimation comes at a significant computational cost.

Moreover, it remains limited by the requirement for a synthetic aperture of canonical

shape.

Various recent studies focus on data preprocessing for randomly and nonuni-

formly sampled data rather than new image-reconstruction algorithms. The respec-

tive approaches can be categorized into regularization-based algorithms [59–64] and

compressive-sensing (CS) algorithms [65–72]. The latter can address not only the

random sampling but can also potentially deal with data sparsity, thus reducing the

required amount of measurements [67]. As an example of a regularization-based algo-

rithm, Zhang et al. [59] formulate a linear system of equations, where the system ma-

trix comprises Fourier coefficients. Tikhonov regularization is employed to solve the

system of equations, providing the 1D k-spectrum of the nonuniform spatially sampled

data along the azimuth. The application is geared toward linear frequency-modulated

(LFM) radar signals. In effect, the preprocessing performs spectral estimation before

providing the k-space result to an image-reconstruction algorithm. Uniformly sam-

pled k-space data can be processed with various k-space image-reconstruction algo-

rithms such as the RMAs, the MHAs, or the range Doppler algorithm (RDA) [59,60].

On the other hand, the CS techniques are primarily focused on achieving high im-

age resolution with sparse data, where the sampling rate is well below the Nyquist

limit [65, 66]. The sparse data may be uniformly or randomly sampled, but there

seems to be benefits in the latter case [67, 73]. The main limitation of CS is that
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the outcome strongly depends on the adequate choice of the representation basis [67],

where the information content of the data is anticipated to be much lower than in

the actual measurement space [73]. In imaging, the existence of such basis and the

data sparsity in it are dictated by the complexity of the imaged object and some

distinct shape or material features. Therefore, CS algorithms do not compensate for

the lack of data; they leverage mathematical representations of signals known to be

presentable in terms of only a few basis functions in some space [74].

Scattered power mapping (SPM) is a well-established method for rapid (real-

time) SAR imaging, which has been applied with both frequency-domain (stepped

frequency continuous wave, SFCW) and LFM data [38, 75–78]. This paper proposes

a new SPM algorithm adapted to perform image reconstruction with nonuniformly

sampled data acquired on random 3D trajectories—a scenario arising when imag-

ing radars are mounted on mobile or handheld platforms. We emphasize that the

proposed method is not a compressed sensing approach. The hallmark of SPM is

a two-stage inversion, where the first stage is a projection that maps the data onto

a 3D image of the target reflectivity, and the second stage is an image deconvolu-

tion which enhances the output of the first stage. The first (projection) stage of the

algorithm can work either in real (x, y, z) space [75, 76] or in k-space [77, 78]. The

k-space implementation is computationally very efficient, but this efficiency relies on

the FFT of the data, which in turn requires uniform sampling on canonical synthetic

apertures. In contrast, the real-space implementation can handle any sampling po-

sition while still producing a reflectivity image on a uniform 3D grid. Therefore, it

is capable of utilizing data that are randomly sampled in 3D space. On the other

hand, the second (image-deconvolution) stage is always performed in k-space since
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it operates on the reflectivity output of the first stage, which is already cast onto

a uniform 3D grid. Thus, the second stage does not depend on whether the sampling

is random or uniform, and it is very fast.

In summary, the proposed image reconstruction has the flexibility of BPAs to

handle randomly sampled data, but it yields images of higher quality due to the image-

deconvolution stage. In comparison with the ω-k algorithms, the proposed algorithm

does not require synthetic apertures on canonical surfaces. The randomly sampled

aperture is in fact a 3D volume. Neither NUFFT nor other spectral estimation

methods are needed, which renders the reconstruction faster than that with the ω-k

algorithms.

Finally, the algorithm processes the data on-the-run, i.e., the image reconstruction

does not need to wait for the completion of a scan. In fact, utilizing a convergence

criterion, it is the algorithm which decides when the amount of data is sufficient and

its collection can be terminated.

4.2 Methodology

4.2.1 3D Scanning

Figure 4.1 illustrates a scan along a random 3D trajectory as opposed to a scan

on a planar 2D synthetic aperture. The positions of the imaging platform along

the trajectory, where measurements are taken, are assumed known and are denoted

as r. These positions are illustrated by the dots comprising the trajectory. Each

measurement instance is associated with NTx transmitting (Tx) antennas and NRx
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receiving (Rx) antenna positions to allow for the possibility of utilizing a multiple-

input multiple-output (MIMO) radar. The Tx and Rx antennas are rigidly mounted

on the platform; therefore, it is assumed that the Rx antenna positions ri (i =

1, . . . , NRx) and the Tx antenna positions rj (j = 1, . . . , NTx) can be determined from

the platform’s position r. An imaged position is denoted by r′. The measurement

may be carried out using SFCW or LFM radars, examples of which are presented

here. The SPM algorithm can also be applied with pulsed radar data. Using multiple

antennas on a moving platform has several advantages. Firstly, multiple Tx and Rx

antennas offer diversity in illumination and observation angles, respectively, which is

beneficial in close-range measurements. Secondly, having more data from multiple

antennas significantly reduces image noise and clutter [79]. Lastly, these benefits

drive the development of MIMO radars, where the array element spacing is about half

a wavelength or more, enhancing phase diversity in collected responses. Note that in

our investigation, the tilt angle of the antenna relative to the range is constant. Thus,

the platform’s orientation does not vary. Furthermore, the antenna far-field patterns

are not considered in the presented examples. The use of antenna patterns in SAR

imaging is well-known, and its benefits have been investigated in [80,81]. While it can

enhance accuracy, its use is often impractical due to the unavailability of 3D patterns

or near-zone measurement conditions [3, 6, 40,44,63,77,82–85].
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Figure 4.1: Illustration of a measurement on a random 3D trajectory (black dots) as
opposed to a measurement on a planar aperture denoted as Sa. The trajectory may
also be 2D, lying entirely within Sa. The red triangle and the blue point represent
Tx and Rx positions, respectively. The response acquired with the i-th Rx antenna
(i = 1, . . . , NRx) and the j-th Tx antenna (j = 1, . . . , NTx) is identified by a subscript
ζ ≡ (i, j). The platform’s position r is assumed known at each measurement instance,
and the positions of the Rx and Tx antennas, ri and rj, respectively, are determined
from r. An imaged position is denoted as r′. Note that the bore–sight axis of the
antennas is fixed along the range direction.

4.2.2 Image Reconstruction with Randomly Sampled Data

Employing Scattered Power Mapping

The SPM is a two-stage inversion method for real-time SAR imaging [75–78, 86]. It

has been originally applied with frequency-domain data, for which an exact forward

model of scattering exists in terms of the S-parameters [87]. For real-time image

reconstruction, this exact model is linearized using the zero-order Born approximation

of the total internal field [38], leading to the approximate data equation for the
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scattered portion of the measured S-parameters:

Ssc
ζ (r, ω) ≈ cζ

∫∫∫
V ′

∆εr(r
′)Einc

ζ,Rx(r
′, r, ω) · Einc

ζ,Tx(r
′, r, ω)dr′ . (4.1)

Here, ω is frequency, r is the measurement position, r′ ∈ V ′ is a position within

the imaged volume V ′, and ζ ≡ (i, j) denotes the antenna pair determined by the

Rx (i-th) and Tx (j-th) antennas. For instance, ζ = 1, 2, 3, . . . , NTxNRx refers to

S11, S22, S21, etc. Here, E
inc
ζ,Tx is the incident field due to the Tx antenna at rj(r), which

replaces the total internal field through Born’s zero-order approximation, and Einc
ζ,Rx

is the incident field due to the Rx antenna at ri(r), if this antenna were to transmit.

Mathematically, Einc
ζ,Rx represents the background vector Green function. Additionally,

∆εr(r
′) is the object’s relative-permittivity contrast, which is assumed independent of

the frequency and the field polarization. The object’s contrast is in general complex,

i.e., it can represent lossy materials. It is defined as ∆εr = εr − εr,b, where εr is

the object’s complex relative permittivity and εr,b is that of the background. The

constant cζ =
−iωε0

2aRxaTx
is determined by the root-power waves aRx and aTx (root-power

waves, or power waves, are phasors that describe traveling electromagnetic waves

in waveguides [38, 88]. The magnitude is the square root of the power carried by

the wave, and the phase corresponds to the phase of the wave’s electric field) and

the incident on the ports of the antennas generating the respective fields. Here, ε0

denotes the permittivity of the vacuum.

Here we assume that the objects are nonmagnetic and that the scattering is

polarization-independent. Additionally, we assume that the permittivity is constant

in the frequency band of interest (the object is nondispersive) [89–91] since dispersion

effects are weak at microwave and millimeter-wave frequencies. However, the E-fields

135



Ph.D. Thesis - Romina Kazemivala McMaster - Electrical Engineering

and the S-parameters (the data) in (C.22) are frequency-dependent, as dictated by

the wavenumbers of the background and the object as well as the signal phase delays

to/from the object. This frequency dependence provides response diversity and is

critical in achieving high image quality.

For the purposes of the discussion that follows, the forward model of scattering

must be cast in terms of the system PSF, which plays a central role in the proposed

SPM method. The system PSF represents the response (the measured signal) due to

a point scatterer in the background medium [38]. It is clear that the PSF of the data

Equation (C.22) is

Hsc
ζ (r, ω; rsp) = cζΩsp∆εr,spE

inc
ζ,Rx(rsp, r, ω) · Einc

ζ,Tx(rsp, rTx, ω) , (4.2)

describing the scattering from an electrically small (point-like) scatterer of volume Ωsp

and contrast distribution represented by Dirac’s δ-function, ∆εr,spδ(r
′ − rsp). Here,

rsp is the position of the point scatterer (also referred to as the scattering probe). The

system-specific kernel in (C.23) can be determined through a calibration measurement

independently of the OUT. By measuring an electrically small scatterer of known

Ωsp and ∆εr,sp embedded in the background medium, one can obtain the measured

PSFs Hsc
ζ (r, ω; rsp). In close-range radar imaging applications, measuring the PSF

with a high SNR is feasible as long as the scattering probe can be embedded in the

background medium. In long-range radar imaging, measuring the PSF is challenging

since the scattering signal from a distant small probe is very weak, thus the preference

for using analytical PSFs.

As suggested by (C.22), acquiring the incident fields distribution as represented

by the dot product is complex. If the PSF is acquired as shown in (C.23), there is
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a simple linear relation between (C.22) and (C.23). The linearized scattering model

(C.22) is then expressed as

Ssc
ζ (r, ω) ≈

∫∫∫
V ′

ρ(r′)Hsc
ζ (r, ω; r′)dr′ , (4.3)

where ρ(r′) = ∆εr(r
′)/(∆εr,spΩsp) is termed the object’s reflectivity function. Clearly,

the model in (C.24) views the imaged object as a collection of point (or differential)

scatterers and represents the measured signal as the superposition of the scattering

emanating from all point scatterers making up the object. Note that the relation

between the measured PSF and the incident fields due to the Tx and Rx antennas

are determined by comparing (C.22) and (C.24). Further, (C.23) is crucial in com-

puting quantitative estimations of permittivity. The advantage of the representation

in (C.24) is that it allows for using a PSF, which is derived either analytically, or from

simulations, or from measurements. The analytical PSFs typically employ far-field

approximations of the incident fields in (C.23) (possibly enhanced by the antenna’s

far-field patterns [81]) whereas simulation-based PSFs utilize incident field distri-

butions obtained by simulating the radiation from the Rx and Tx antennas in the

background medium [92]. Measured PSFs are obtained by measuring an electrically

small scattering probe of known volume Ωsp and contrast ∆εr,sp placed at the center

of the imaged volume [75,93].

With the data Ssc
ζ (r, ω) and the PSFs Hsc

ζ (r, ω; r′) available, the SPM reconstructs

ρ(r′) through a computationally efficient two-stage procedure. The first SPM stage is

a projection that builds the 3D scattered power map M(r′) of the object under test
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(OUT) as the discrete inner product of the data and the system PSFs:

M(r′) =

NR∑
ζ=1

Nω∑
n=1

Nm∑
m=1

Ssc
ζ (rm, ωn)

[
Hsc

ζ (rm, ωn; r
′)
]∗

. (4.4)

Here, Nm is the number of measurement positions, Nω is the number of frequency

points, and NR is the total number of used antenna pairs (the number of responses)

at each measurement position r and each frequency ω as determined by the available

Tx/Rx antenna pairs in ζ = (i, j). The measurement positions rm, m = 1, . . . , Nm

may belong to a synthetic 2D aperture, a 3D acquisition volume, or a random trajec-

tory. We emphasize that we do not consider the variation in the platform orientation

and it is fixed along the antennas’ bore–sight axis. Note that the OUT power map

M(r′) has complex values. With a large number of responses, this map converges to

a distribution, which is proportional to the OUT complex permittivity ∆εr(r
′) [38].

Therefore, |M(r′)| is a representation of the OUT reflectivity |ρ(r′)|, and its normal-

ized plot provides a qualitative OUT image.

Recently, it has been shown that the projection reconstruction stage described by

(4.4) can also be applied with time-domain signals Ssc
ζ (r, t) [78], where the summation

over ω is simply replaced by a summation over time t:

M(r′) =

NR∑
ζ=1

Nn∑
n=1

Nm∑
m=1

Ssc
ζ (rm, tn)

[
Hsc

ζ (rm, tn; r
′)
]∗

. (4.5)

Note that the conjugation of Hsc
ζ (r, t; r′) matters in the case of LFM radar signals,

which are complex, i.e., at each r, the receiver output contains an in-phase (I) and

a quadrature (Q) signal component so that the time-dependent signal is expressed as

S(t) = I(t) + iQ(t).
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The first SPM stage carried out with (4.4) for frequency-domain signals or with

(4.5) for time-domain signals allows for mapping the random spatial samples (r) onto

a uniform 3D image grid (r’). Moreover, since the OUT map M(r′) is computed as

the sum of contributions Cm(r
′) from the measurement positions rm (m = 1, . . . , Nm),

M(r′) =
Nm∑
m=1

Cm(r
′) , Cm(r

′) =

NR∑
ζ=1

Nn∑
n=1

Ssc
ζ (rm, νn)

[
Hsc

ζ (rm, νn; r
′)
]∗

, ν = ω or t ,

(4.6)

it can be updated concurrently with the measurements by adding a measurement

contribution when it becomes available, assuming that the PSF Hsc
ζ (rm, νn; r

′) has

been determined on a uniform grid r′ in the OUT power map for random measurement

positions rm. In (4.6), Nn is the number of frequency or temporal samples. We

emphasize that the method is versatile and not limited to specific frequency bands, as

the contribution of each frequency/time sample νn is being summed as shown in (4.6).

As the number of data points increases with the stream of additional measurements,

this map converges to a first-stage OUT image, which is further processed by the

second SPM stage. We reiterate that the imaged positions r′ belong to a uniformly

sampled spatial grid whereas the measurement (or observation) positions rm, m =

1, . . . , Nm are random.

The second SPM stage performs image deconvolution, which greatly enhances the

image quality. This deconvolution is performed efficiently in Fourier (k) space, tak-

ing advantage of the fact that the first-stage OUT map M(r′) in (4.6) is already cast

on a uniformly sampled grid. Assuming a homogeneous unbounded (an unbounded

medium is a standard term in numerical electromagnetics indicating that the domain

of interest is “open”, i.e., without exterior reflecting boundaries. In EM simulations,
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this is achieved using open-space Green’s functions or nonreflecting boundary con-

ditions, e.g., perfectly matched layers) background, M(r′), r′ ≡ (x′, y′, z′) can be

expressed through the 2D convolution of the reflectivity function ρ(x′, y′, z′) and the

point-scatterer maps M(x′, y′, z′; z′′) [38, 75,77]:

M(x′, y′, z′) =

∫∫∫
z′′y′′x′′

ρ(x′′, y′′, z′′) M(x′ − x′′, y′ − y′′, z′, z′′)dx′′dy′′dz′′ . (4.7)

The second SPM stage aims at recovering the unknown reflectivity function ρ(r′).

The point-scatterer map M(x′, y′, z′; z′′) is the first-stage map of a point scatterer

residing at the center (x′′ = y′′ = 0) of the image slice at z′′ in the homogeneous

background. Hereafter, we refer to this map as a PSF map. Note that for each image

slice z′′, there is a corresponding 3D PSF map. The PSF map M(x′, y′, z′; z′′) is

defined analogously to the first-stage OUT projection (4.6), where the OUT response

Ssc
ζ (rm, νn), rm = (xm, ym, zm), is replaced by the PSF Hsc

ζ (rm, νn; z
′′) representing the

response from a scattering probe at r′′ = (0, 0, z′′):

M(x′, y′, z′; z′′) =
Nm∑
m=1

NR∑
ζ=1

Nn∑
n=1

Hsc
ζ (xm, ym, zm, νn; z

′′)

[
Hsc

ζ (xm, ym, zm, νn;x
′, y′, z′)

]∗
, ν = ω or t . (4.8)

In contrast to the OUT map, however, the PSF maps do not need to be computed

from spatially random samples. The PSFs Hsc
ζ are independent of the OUT and

they can be obtained analytically, or via simulations, or via measurements, on any

convenient grid of observation points r. From a computational efficiency point of

view, a PSF evaluation on a uniform grid is advantageous since it allows for the
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deconvolution of (4.7) to be performed in k-space, as explained next.

We assume that the PSFs are evaluated on a planar synthetic aperture Sa (see

Figure 4.1), whose range position z̄ relative to the OUT is chosen to be within the

span of the range positions zm, m = 1, . . . , Nm during the OUT random scan. The

lateral rectangular extent of Sa is also determined by the minimum and maximum

lateral (x and y) coordinates of the random samples. The sampling along x and

y on this plane is coincident with the grid points along x′ and y′ of the OUT map.

This sampling must be sufficiently dense so that it conforms to the Nyquist limit. For

example, with monostatic radar measurements, the spatial sampling steps ∆x and ∆y

should not exceed λmin

4 sinα
[38], where α is the maximum viewing angle determined by

the aperture size and the antenna beamwidths. The assumptions of a homogeneous

background and uniform sampling along (x, y) allow for casting (4.8) in terms of

a discrete 2D convolution:

M(x′, y′, z′; z′′) =
Nx∑
χ=1

Ny∑
η=1

NR∑
ζ=1

Nn∑
n=1

Hsc
ζ (xχ, yη, z̄, νn; z

′′)

[
Hsc

ζ (xχ − x′, yη − y′, z̄, νn; z
′)
]∗

, ν = ω or t . (4.9)

In k-space, the 2D convolution in (4.9) is a multiplication of the 2D FTs of the PSF

responses:

M̃(kx, ky, z
′; z′′) =

NR∑
ζ=1

Nn∑
n=1

H̃sc
ζ (kx, ky, z̄, νn; z

′′)
[
H̃sc

ζ (kx, ky, z̄, νn; z
′)
]∗

, ν = ω or t .

(4.10)

Here, M̃(kx, ky, z
′; z′′) is the 2D FT of the PSF mapM(x′, y′, z′; z′′); H̃sc

ζ (kx, ky, z̄, νn; zsp)

is the 2D FT of the PSF response Hsc
ζ (x, y, z̄, ν; zsp) when the scattering probe is at

the center of the range slice zsp = z′, z′′; and kx and ky are the Fourier variables
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corresponding to x′ and y′, respectively. Although the computation in (4.10) requires

the 2D FT of the PSFs, it is orders of magnitude faster than its real-space coun-

terpart in (4.9) [77]. Moreover, it is the k-space PSF maps that are needed for the

efficient deconvolution of (4.7) and the recovery of the reflectivity function ρ(r′), as

explained next.

Applying 2D FT to both sides of (4.7) and discretizing the integration over z′′ into

a sum leads to

M̃(kx, ky, z
′
p) = ∆Ωv

Nz∑
k=1

ρ̃(kx, ky, z
′′
k)M̃(kx, ky, z

′
p; z

′′
k) , p = 1, . . . , Nz , (4.11)

where Nz is the number of image slices, ∆Ωv = ∆x∆y∆z is the image voxel vol-

ume, M̃(kx, ky, z
′
p) is the 2D FT of M(x′, y′, z′p), and ρ̃(kx, ky, z

′′
k) is the 2D FT

of ρ(x′′, y′′, z′′k). The relation in (C.31) defines a square linear system of Nz equa-

tions for the Nz unknowns ρ̃(kx, ky, z
′
k), k = 1, . . . , Nz solved at each point in Fourier

space (kx, ky). With the k-space reflectivity function found, the real-space reflectivity

ρ(x′, y′, z′k) is recovered slice by slice via the inverse 2D FT:

ρ(x′, y′, z′n) = F−1
2D {ρ̃(kx, ky, z′k)} , k = 1, . . . , Nz . (4.12)

The plot of |ρ(x′, y′, z′n)|, usually normalized, provides a qualitative image of the

object’s reflectivity. A quantitative image is also possible, provided the system PSFs

scale properly with the probe’s volume Ωsp and relative-permittivity contrast ∆εr,sp.

The quantitative estimate of the object’s relative-permittivity contrast is obtained as

∆εr(x
′, y′, z′n) = Ωsp∆εr,spρ(x

′, y′, z′n) . (4.13)
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4.2.3 Image-Convergence Check

The computation of the OUT power map M(x′, y′, z′) (the first-stage SPM image)

involves a summation over the contributions from all available measured positions

rm, m = 1, . . . , Nm; see (4.6). However, unlike measurements with mechanical or

electronically switched scanners, the number of spatial samples Nm is not known

a priori. Vehicle-borne or handheld imaging platforms usually cannot follow exactly

a predetermined trajectory. In this case, the data collection must continue until

a convergent image emerges such that the addition of more data points no longer

contributes to its quality. Therefore, a criterion for image convergence is needed.

To assess the convergence of the evolving image, we utilize the structural similarity

index measure (SSIM) between two consecutive OUT power maps after an incremental

addition of random acquisition points. The SSIM varies between 0 (no similarity) and

1 (perfect match). Thus, an SSIM value above a certain threshold (0.97 or higher)

indicates that adding more data points would no longer contribute to the image

improvement and the scan can be terminated.

While the above concept is straightforward, it does not guarantee sufficient sam-

pling by itself. The sampling must be distributed over a broad synthetic aperture

to provide the widest possible range of viewing angles of the imaged object. This

is critical for achieving the best possible image spatial resolution [38]. To this end,

we first determine the lateral extent of the observation domain based on the size of

the imaged object, the average stand-off distance, and the beamwidth of the used

antennas. For example, the x axis extent of a planar synthetic aperture Xa for an

object of size Xo is

Xa = Xo + 2z̄ tan(0.5θxzHPBW) , (4.14)
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where z̄ is the range distance between the aperture and the object’s center and θxzHPBW

is the antenna’s half-power beamwidth in the xz plane. This lateral aperture is then

divided into equal sub-areas of extent on the order of one to ten λc, where λc is the

wavelength at the central frequency of the band of operation.

The random sampling strategy must provide coverage of the entire lateral domain.

This is why we impose the requirement to collect at least one sample with lateral

coordinates within each sub-area before performing the first image-convergence check.

This ensures that each sub-area is adequately represented in the dataset, preventing

regional bias. Similarly, each subsequent convergence check is performed only after

at least one additional sample is acquired within each sub-area.

We emphasize that the convergence check is applied only to the OUT power map

M(x′, y′, z′) in (4.6), which serves as an input to the second SPM reconstruction

step. The second reconstruction step is not performed until a convergent OUT map

emerges. The convergence check is implemented with an SSIM threshold of 0.97 as

SSIM
(
|M̄p(r

′)|, |M̄p−1(r
′)|
)
≥ 0.97 , p = Np, Np − 1, Np − 2, Np − 3 , (4.15)

where |M̄p(r
′)| is the normalized absolute value OUT power map in the p-th conver-

gence check and Np is the total number of convergence checks reached. It is clear

from (4.15) that we employ four consecutive SSIM image comparisons, all of which

must exceed the threshold. This is necessary because, with random sampling, the im-

age convergence is not smooth or monotonic. Once the SSIM check satisfies (4.15),

the data acquisition is terminated and the algorithm proceeds to the second stage of

the SPM method to perform image enhancement and quantitative image reconstruc-

tion (with measured PSFs).
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We briefly note that with large sub-areas (a size of 3λc or more), it may be

computationally prudent to impose a minimum number of collected samples to start

the image-convergence checks. It is unlikely that image convergence will start unless

there is at least one sample within an area of λc × λc on average.

The proposed random sampling algorithm is summarized in Figure 4.2. The green

and blue blocks represent the implementation of the first stage of SPM, while the

orange blocks correspond to the second stage. The flowchart is divided into two main

sections: the blue arm and the green arm. Before initiating the random sampling

procedure, the formation of the SP power maps is necessary, which is shown in the

blue blocks of Figure 4.2. After both SP and OUT power maps are obtained in

the Fourier domain, the algorithm proceeds to the second stage of SPM to acquire

quantitative estimates of permittivity.
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Figure 4.2: Flowchart of the SPM algorithm for random sampling.

4.3 Validation Examples with Simulated Data

To validate the efficacy of the SPM algorithm in reconstructing the permittivity of

objects from random spatial samples, we carry out experiments with data obtained

from simulations with Altair FEKO full-wave simulator [94] and an in-house LFM

radar simulator [78] developed in MATLAB [95].

In general, the image reconstruction needs to de-embed the background radar
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responses from the total-field responses. The background responses are those ac-

quired in the absence of an object under test (OUT) whereas the total-field responses

are acquired in the presence of the OUT. The FEKO simulations employ realistic

dipole antennas in both monostatic and bi-static measurement setups. Thus, the

background responses (reflection and transmission S-parameters) are significant and

need to be acquired and de-embedded. Since the background medium is assumed

homogeneous, only one simulation is needed, where the antennas transmit/receive

in the employed antenna-array configuration without an OUT. The de-embedding

employs a simple subtraction of the background responses from their OUT counter-

parts to obtain the needed scattered-field responses. On the other hand, the LFM

radar simulator generates the scattered-field responses directly employing an ana-

lytical scattering model [78]. Therefore, the LFM radar examples do not require a

background response acquisition.

Further, the system PSFs Hsc
ζ (r, ν; r′), ν = ω, t, are needed in the first SPM

reconstruction stage to compute the OUT power map (4.6) using the randomly sam-

pled OUT data. The LFM simulator computes those analytically using the distances

RTx(r, r
′) and RRx(r, r

′) between the scattering probe at r′ and the Tx and Rx anten-

nas, respectively [78]. In our notations, the Rx antenna position is r whereas the Tx

antenna position is determined from r since the antennas are in a fixed array config-

uration. On the other hand, the PSF acquisition with FEKO simulations involves a

simulated measurement scan of an electrically small scattering probe (SP) positioned

at the center of an imaged slice (0, 0, z′). Each imaged slice (z′p, p = 1, 2, . . . , Nz)

requires a simulated scan to acquire Hsc
ζ (x, y, z̄, ω; 0, 0, z′p). Here, z̄ is the range posi-

tion of the synthetic aperture where the respective Rx antenna scans. The PSFs for

147



Ph.D. Thesis - Romina Kazemivala McMaster - Electrical Engineering

any other lateral position of the SP (x′, y′, z′p) are obtained by a coordinate shift, i.e.,

Hsc
ζ (x, y, z̄, ω;x′, y′, z′p) = Hsc

ζ (x− x′, y − y′, z̄, ω; 0, 0, z′p).

Additionally, as explained in Section 4.2, the k-space PSFs H̃sc
ζ (kx, ky, z̄, ν; z

′
p),

p = 1, 2, . . . , Nz, are needed to compute the k-space PSF power maps M̃(kx, ky, z
′; z′′)

using (4.10). We reiterate that this computation employs the 2D FTs of the real-space

PSFs Hsc
ζ (x, y, z̄, ν; z′p), p = 1, 2, . . . , Nz, acquired on a uniformly sampled ”dense” 2D

grid on a planar synthetic aperture Sa, where the spatial sampling steps ∆x and ∆y

conform to the Nyquist limit of λmin

4 sinα
. These steps dictate the pixel size of the image.

The PSF power maps are independent of the OUT and are pre-computed.

To emulate an OUT measurement with random spatial sampling, we first define

a uniform dense-grid observation domain, where ∆x = ∆y ≈ λc

4
. We perform sim-

ulations with the OUT and acquire the OUT responses at all observation points in

this grid. Subsequently, an algorithm randomly selects the points whose responses

are utilized to compute the OUT power map using (4.6). As detailed in Section 4.2.3,

we divide the observation domain into equal sub-regions. In all examples, we employ

16 sub-regions, the lateral extent of which does not exceed 10λc.

After collecting the minimum required number of points (at least 1 point in each

designated sub-region), the generation of the first OUT power map M1(r
′) is complete

and this map is stored to be compared with the subsequent updated power map

M2(r
′). The process continues until image convergence is observed as per (4.15).

As an illustration, Figure 4.3 shows a plot of the SSIM value versus the amount of

used spatial samples (in percentage) relative to the number of samples in the dense

(Nyquist compliant) grid on the planar synthetic aperture Sa. It is observed that

in both simulation examples, the OUT power maps converge with about 50% of the
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sample point, which would be required by a uniform sampling scan.

Figure 4.3: Image convergence in the F-shape and the C-shape simulated examples
in terms of the SSIM between two subsequent OUT power maps versus the amount
of used spatial samples (in percentage) relative to the number of samples in the dense
(Nyquist compliant) grid on the planar synthetic aperture Sa.

4.3.1 C-shape Image Reconstruction with Simulated Data

In the FEKO simulation, a scenario similar to that in previous studies is replicated

[96]. The OUT consists of a C-shaped dielectric object in the z′ = 0 plane with a

relative permittivity of ϵr = 1.5. Adjacent to it, three small cubes with a permittivity

of ϵr = 1.1 reside at distances of 3 cm, 4 cm, and 5 cm along the z axis and with a

slight offset (center-to-center distance of 2 cm) along the y axis. The background is

vacuum (ϵr = 1). The setup is depicted in Figure 4.4.

The PSFs are acquired by simulating the scans of a scattering probe (SP) at the

center (x′ = y′ = 0) of three imaged planes: z′ = 3, 4, 5 cm. The SP is a small cube,

1 cm on a side, with a relative permittivity εr = 1.1.

The measurement setup involves two half-wavelength (at the central frequency of

5 GHz) dipole antennas spaced 8 cm apart, with the OUT centrally located between
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(a) (b)

Figure 4.4: The full-wave FEKO simulation example of a 3D structure: (a) top view,
and (b) isometric view. The C-shape and the three small cubes reside in three range
slices (z′ = 3 cm, z′ = 4 cm, and z′ = 5 cm). Two dipoles are positioned 8 cm apart
so that the C-shape is centered between them. The C-shape is 7× 9× 1 cm3, and the
cubes are all 1 cm3. The C-shape and the cubes have relative permittivity of εr = 1.5,
and εr = 1.1, respectively. Background is vacuum, εr,b = 1. All dimensions are in cm.

them. The imaged domain contains slices that are as close as 3 cm from the antennas.

Although we are at the object’s close-range, this is still a borderline far-field scenario

with respect to the antenna’s lateral extent. The two antennas collect reflection, S11

and S22, as well as transmission, S21, data across a frequency range from 3 GHz to 8

GHz and over a 30 cm by 30 cm acquisition plane. We divide this aperture into 16

equal sub-regions, the lateral extent of which is about 1.4λc. On the other hand, the

sampling interval employed in acquiring the dense uniform-grid PSFs is 0.18λc = 1 cm.

Note that with monostatic measurements such as S11 and S22, the Nyquist criterion

dictates sampling interval from a quarter-wavelength to half-wavelength, depending

on the maximum viewing angle of the antenna beam and the aperture size [38]. The

dense uniform-grid sampling is also utilized in the OUT simulations, which provides

a high-quality image, serving as a benchmark to assess the images reconstructed from

the randomly sampled data.

150



Ph.D. Thesis - Romina Kazemivala McMaster - Electrical Engineering

(a) (b) (c)

Figure 4.5: The slice at z′ = 0 of the normalized magnitude OUT map M̄(r′) of the
C-shape generated by the first SPM stage, for percentage of utilized spatial samples
selected randomly: (a) 40%, (b) 70%, and (c) 100%. The total number of spatial
samples in the dense uniform sampling grid is 961.

Figure 4.5 shows the slice at z′ = 0 of the normalized magnitude OUT map M̄(r′)

of the C-shape generated by the first SPM stage as the map evolves while the spatial

samples are collected randomly. The reported percentages reflect the proportion

of samples used relative to the total available samples (961) acquired on the dense

uniform grid.

Figure 4.5a shows the image obtained with 40% of the entire data set, correspond-

ing to only 385 randomly selected spatial samples. It captures only the vertical arm

of the C-shape and the small cube in this slice is not visible due to the fact that

the horizontal arms are not covered as well as the vertical arm at the early stages

of the random acquisition. Consequently, their contribution to the formed image is

less pronounced. As the scanning progresses, with additional samples collected in

each sub-region, the complete C-shape starts to emerge. By the time 70% of the area

sample points are utilized and the convergence is met according to Figure 4.3, the

C-shape is clearly formed, although the small cube is still not visible as depicted in

Figure 4.5b. The scattering from this low-contrast small cube is weak, and even with

100% of the dense-grid samples, the OUT power map does not depict well this detail;
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see Figure 4.5c.

(a)

(b)

Figure 4.6: Quantitative SPM reconstructed images in terms of real and imaginary
parts of the C-shape relative permittivity utilizing randomly sampled data of the
object shown in Figure 4.4 with: (a) 40%, and (b) 70% of the dense-grid samples.
The images in each column correspond to a range slice.

The small cubes in all three image slices become visible only after the second

SPM stage. At 70% utilization of the dense-grid points, the SSIM value is 0.988,
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and the C-shape power map is already convergent; see also Figure 4.3. At this stage,

the scan is terminated. The three slices of the OUT power map are subjected to 2D

FT and the OUT reflectivity is recovered by the second SPM stage; see (C.31). The

recovered quantitative complex-permittivity images are of much better structural and

resolution quality than the OUT power map. Figure 4.6a illustrates the quantitative

C-shape image slices formed using 40% of the dense data set for the OUT power

map, resulting in an SSIM value of 0.86, indicating incomplete recovery of the C-

shape. The converged result, shown in Figure 4.6b, utilizes 70% of the dense data

set, demonstrating a marginal improvement post-convergence and a 30% reduction

in required measurements compared to the Nyquist-compliant dense-grid scan (100%

data). The SSIM value between the 100% and 70% reconstructed images is 0.999.

4.3.2 F-shape Image Reconstruction with LFM Radar Syn-

thetic Data

The in-house LFM radar simulator employs a far-zone scalar scattering model, which

assumes point-like sources (the term point source refers to a scalar-field source whose

radiated field is represented by e−jkr/r (a spherical wave). The spherical wave repre-

sents adequately the distance dependence of antennas’ far-zone fields [97]). It accounts

for the signal decay due to the spherical spread of the transmitted and scattered waves.

However, it ignores the depolarization that may occur upon scattering. With these

assumptions, the LFM system PSF is analytically expressed as [78]:

Hsc(rm, t; r
′) =

ATx

RTx,mRRx,m

P

(
t− τd,m

Tp

)
exp [−i2π(fc + γt)τd,m] , (4.16)
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where ATx is amplitude, fc is the center frequency, t is the fast time (the time within

a single chirp), Tp is the chirp duration (pulse width), γ = B
Tp

is the frequency-

modulation slope (chirp rate), and B is the chirp’s frequency bandwidth. RTx,m =

|rTx,m− r′| and RRx,m = |rm− r′| are the distances from the Tx antenna at rTx,m and

the Rx antenna at rm to the scattering point at r′, respectively. Note that the range

compression in LFM radar signals is already taken into account in the derivation of

the analytical PSF in (4.16), where the correlation of the received signal with the

reference (transmitted) signal, produces the down-converted (baseband) signal. We

reiterate that the Tx and Rx antenna pairs are in a fixed configuration; therefore,

rTx,m is determined from rm. Further, τd,m is the time delay corresponding to the

distance traveled by the signal, i.e., τd,m = (RTx,m+RRx,m)/c, where c is the speed of

light. Note that here we employ point sources and point sampling and the scenario is

a far-field one. As shown in (C.24) the linearized forward model of scattering views

the signal from an object as a superposition of the scattering emanating from all

differential scatterers that make up this object. Thus, using (4.16), the cumulative

OUT signal is synthesized using the time-domain counterpart of the superposition

integral in (C.24).

In the synthetic experiment, the LFM imaging-system parameters are first set.

Here, we present a monostatic case, i.e., the Tx and Rx positions are coincident. The

central frequency fc is 29.9 GHz, while covering frequencies from 27.0 GHz to 32.8

GHz. The chirp duration Tp is 20 µs and the chirp rate is γ = 2.9 × 1014 Hz/s.

Overall, there are 201 time samples in a single chirp. The lateral spatial resolution is

estimated from the wavelength at fc as δ⊥ ≈ λc/4 ≈ 2.5 mm and the range resolution

is δz ≈ c/2B ≈ 26 mm.
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(a) (b)

Figure 4.7: Illustration of a monostatic LFM radar simulation example: (a) the F-
shape object of relative permittivity εr = 1.5 at z′ = 0, and (b) 3D sampling trajectory
in four planes at z̄ = 100, 110, 120, 130 mm. Background is vacuum, εr,b = 1. All
dimensions are in mm.

The reference SPM image is obtained from an OUT and PSF scans on a uniform

grid over a planar aperture of size 200 × 200 mm2, with spatial increments of 4 mm

along x and y. The aperture is at z̄ = 100 mm. This results in a dense grid of 51×51

(2601) sampling points. The PSF is acquired with a cubical SP of size 1 mm3 and

εr = 1.5. We reiterate that this PSF is needed not only to obtain the reference OUT

power map but also to carry out the second SPM stage, regardless of whether the

OUT data are acquired on a random trajectory or on the dense uniform-grid planar

aperture.

The random scanning of an F-shape object is implemented in the LFM radar

simulator as shown in Figure 4.7. The F-shape, of relative permittivity εr = 1.5,

is built of cubical scatterers 1 mm on a side, in the z′ = 0 plane; see Figure 4.7a.

The background is vacuum (εr,b = 1). The F-shape has vertical and horizontal
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arms of length 60 mm whereas the middle arm measures 30 mm. To emulate 3D

random sampling, four planes along z are set so that they are 10 mm apart (z̄ =

100, 110, 120, 130 mm). The sampling trajectory for the OUT measurement follows a

random selection along x, y, and z as shown in Figure 4.7b.

(a)

(b)

Figure 4.8: Quantitative reconstructed images in terms of real and imaginary parts
of the relative permittivity of the F-shape object utilizing randomly sampled data:
(a) using the convergent OUT map obtained from random samples, the number of
which is only 40% of the number of samples on the dense uniformly sampled planar
grid, (b) using all the samples on the dense uniformly sampled planar grid

.

The methodology is the same as in the C-shape example. The 3D (4-slice) sam-

pling domain of overall lateral extent 200 × 200 mm2 is divided into 16 equal 3D

sub-regions of lateral extent 50 × 50 mm2. As before, the convergence check on the

OUT image is performed only if each additional data set provides at least one sample

within each sub-region. Remarkably, the OUT map converges with a number of 3D

random samples which constitutes only 40% of the total sample number on the dense
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planar grid (2601); see the SSIM plot in Figure 4.3.

For brevity, we only present the final quantitative (second-stage) image in Figure

4.8a obtained with a number of random samples amounting to 40% of the sample

number of the dense planar synthetic aperture. As a reference, the quantitative im-

age obtained with the full dataset acquired on the dense uniformly sampled planar

aperture is shown in Figure 4.8b. We again observe only marginal improvement

in comparison with the image obtained from the under-sampled random data while

reducing the required measurements by 60%. This illustrates the importance of em-

ploying the image convergence of the OUT map to terminate the measurements with

random sampling in a timely manner. In conjunction with the previous C-shape

example, it also shows that the number of required random samples can vary signif-

icantly, depending on the employed radar system (continuous wave versus LFM) as

well as the complexity of the imaged scene.

4.4 Validation Examples with Measured Data

The experiments discussed here are first carried out using a uniform grid in a planar

raster-scanning chamber shown in Figure 4.13a. These measurements provide a full

OUT data set, from which samples can be selected randomly.

The PSFs are acquired experimentally in the near-field imaging experiment (breast-

phantom scan), presented in Section 4.4.1. Near-field measurements allow for captur-

ing the scattered responses from an electrically small SP in the background medium.

This is due to the short distance between the synthetic aperture and the SP. Since

the SP is small, its scattering is weak; however, the antennas are very close and the

captured signals provide sufficient signal-to-noise ratio (SNR). With measured PSFs,
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the SPM algorithm reconstructs quantitative images.

On the other hand, in the far-field experiments with mm-wave LFM radar, pre-

sented in Section 4.4.2, measuring the system PSF is not possible. The scattering from

an electrically small SP is so weak that it does not provide sufficient SNR when the SP

resides in the antenna’s far zone. Thus, in the far-zone experiments, we employ the

same analytical PSFs as in the simulation-based example presented in Section 4.3.2.

In such far-field measurement scenarios, there is no significant difference between the

OUT power map (SPM first-stage image) and the second-stage image. Importantly,

since the analytical PSF is incapable of accounting for setup specifics such as antenna

patterns, cable losses, and illumination strength, the second-stage SPM images are

only qualitative. Consequently, the OUT permittivity distribution is simply presented

in terms of the normalized reflectivity.

Figure 4.9: Convergence curves for the experimental examples in terms of SSIM be-
tween two subsequent OUT power maps versus number of randomly selected samples
(in percentage) relative to the total number of samples on the dense uniform grid on
the synthetic aperture.

Figure 4.9 illustrates the SSIM curves for each conducted experiment. As in the

examples with simulated data, the scan-termination threshold is at SSIM = 0.97.
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As demonstrated next, this rigorous convergence criterion ensures that satisfactory

image quality is achieved before terminating the scan.

4.4.1 Compressed Breast Phantom Imaging

A near-field imaging experiment identical to the one presented in [98] is carried out

to evaluate the effectiveness of SPM method with randomly sampled data. The

scanned aperture measures 18× 18 cm2. The dense aperture scan utilizes an interval

of 3 mm (approximately 0.05λc) axis, creating a a grid of 61 × 61 spatial samples.

Consistent with other examples, the domain is divided into 16 sub-regions, each

measuring 4.5× 4.5 cm2 (approximately 1.3λc). The measurements are performed on

a heterogeneous compressed breast phantom, which includes three tumor simulants

immersed in various healthy-tissue simulants. The breast phantom (the OUT) is made

of three layers of 11 mm-thick carbon-rubber slabs mimicking the electrical properties

of healthy scattered-fibroglandular breast tissue and two 2 mm-thick silicone rubber

sheets mimicking skin tissue (see Figure 4.10a). The 2 mm-thick silicone rubber

sheets are placed on the top and the bottom of the three stacked 11 mm-thick carbon-

rubber slabs. The average relative permittivity of the slabs (listed in Table 4.1) is

chosen to match the averaged complex permittivity of BIRADS Type II density of

the breast (scattered fibroglandular tissue). The breast phantom also comprises a

number of dispersed materials, as shown in Figure 4.10b. Each slab defines a layer

where additional tissue simulants can be inserted. In this phantom, Layers 1 and

3 are homogeneous. In Layer 2, a circular section (94 mm diameter) is removed

to insert various tissue simulants. A kidney-shaped material mimicking the healthy

fibroglandular tissue (see Figure 4.10a) is put inside the circular section. One tumor
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(a) (b) (c)

Figure 4.10: Photos of compressed breast phantom: (a) side-view showing the three
carbon-rubber slabs with permittivity close to that healthy breast tissue and the two
thin silicone-rubber sheets as skin simulant, (b) middle layer including two tumor
simulants surrounded by the matching material and one surrounded by the fibrog-
landular simulant, and (c) assembled phantom surrounded by microwave absorbing
foam. All dimensions are in mm.

simulant is inserted within this fibroglandular object and two tumor simulants are

embedded in the circular section carefully surrounded by a matching medium with

a relative permittivity reported in Table 4.1. The phantom is placed in a Plexiglass

tray and surrounded by black foam microwave absorbers as shown in Figure 4.10c to

minimize reflections and to reduce the image artifacts.

The setup for measuring the system PSF is the same as the OUT measurement

setup except for the second layer where a small scattering probe (a cylinder of height

1 cm and diameter 4 mm) with the relative permittivity value given in Table 4.1 is

positioned at the center of an otherwise homogeneous carbon–rubber slab. Finally,

in order to extract the scattered field responses for both the OUT and the PSF

measurements, a background measurement is necessary. The background object is

composed of three homogeneous carbon–rubber slabs with the two silicone–rubber

sheets at the top and the bottom, surrounded by microwave-absorbing foam. All

these measurements inherently incorporate the properties of the actual antennas.
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Table 4.1: Averaged Dielectric Properties of the Compressed Breast Phantom Mate-
rials Over the Frequency Band from 3 GHz to 8 GHz [98]

Material (Structure) ε′ ε′′

Carbon-rubber Sheet (Averaged Breast Tissue) 9.6 3.82
Silicon-rubber Sheet (Averaged Skin Tissue) 19.36 14
Embedding/Matching Medium 11.3 2.59
Tumour Simulant 64.1122.32
Fibroglandular Tissue Simulant 17.61 7.89
Scattering Probe (PSF) 43.7 0

Figure 4.11 shows the normalized OUT power maps of the compressed breast

phantom obtained from randomly sampled data at three percentage values of utiliza-

tion of the available densely sampled data. The reconstructed relative permittivity

distribution is represented as 2D projections since the imaging setup uses transmis-

sion coefficients only. Note that the Rx array elements are at the bore-sight (or only

slightly off) of the Tx antenna, which results in the lack of range resolution. Figure

4.11a shows the result when processing only 50% of the points on the dense (Nyquist

compliant) grid. At this stage, the SSIM is well below the threshold indicating insuf-

ficient image quality; see Figure 4.9. Indeed, the comparison of the image in Figure

4.11a with those in Figure 4.11b (70% utilization of the points on the dense grid) and

Figure 4.11c (100% utilization) confirms incomplete OUT map reconstruction. The

OUT maps in Figure 4.11b and Figure 4.11c are visually similar, but the third tumor

simulant in the right side of the fibroglandular region is not discernible. Note that the

SSIM value at the 70% stage reaches 0.97; see Figure 4.9. However, as discussed in

(4.15), the convergence criterion requires the SSIM to be greater than the threshold

in four consecutive iterations. For this reason, the scan continues for another three

batches of sampled data. The data eventually converges when 80% of the reference
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(a) (b) (c)

Figure 4.11: Normalized OUT power maps of the compressed breast phantom, when
the number of randomly selected samples (in percentage) relative to the total number
of samples on the planar synthetic aperture is: (a) 50%, (b) 70%, and (c) 100%. The
total number of spatial samples is 3721.

data is utilized and it is then terminated to proceed to the second stage of SPM

algorithm.

We briefly mention the importance of using an apodization filter [99] in this chal-

lenging experimental example. The challenges in the image reconstruction here arise

from the significant reflections arising at the interface between the breast phantom

and the microwave foam. The apodization filter is aligned with the boundary of the

circular section in Layer 2; see black dash line in Figure 4.10b). Here, a 2D Butter-

worth apodization filter is used, which is applied radially over a circular region. The

cut-off −3 dB level corresponds to a radial distance of about 4 cm from the center.

The apodization filter suppresses the contribution of the samples outside the circular

boundary, thus mitigating reflections due to imperfect absorption by the microwave

foam.

The quantitative reconstruction of the breast-phantom relative permittivity by

the SPM second stage is shown in Figure 4.12. Figure 4.12a shows the reconstruc-

tion result with the OUT power map based on 70% of all available samples, selected

randomly, whereas Figure 4.12b shows the quantitative image when using the OUT
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(a)

(b)

Figure 4.12: Quantitative SPM reconstructed images in terms of real and imaginary
parts of the breast-phantom permittivity utilizing randomly sampled data in percent-
age proportion of all available samples: (a) 70%, (b) 80%.

power map which employs 80% of all available samples with the SSIM of 0.99 com-

pared to the reference image (100% densely sampled), also selected randomly. In both

image sets, the tumor simulants and the healthy fibroglandular tissue regions are re-

constructed well, with the tumor simulants correctly identified by large permittivity

values (both real and imaginary). As expected, the converged image utilizing the 80%

set of available data features slightly better spatial resolution, which results in better

structural outline of the phantom inclusions. The permittivity value distributions of

2D images in Figure 4.12 are effectively averaged over the thickness (3.7 cm) of the

phantom. Thus, the values are lower than those provided in Table 4.1.

We briefly comment on the benefit from employing filtering at the second SPM
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stage. Low-pass filtering is applied to the reconstructed complex permittivity in k-

space [99] before applying the inverse 2D FT. This is important in suppressing image

artifacts when experimental data are used. High spatial (k-space) frequency compo-

nents correspond to near-grazing angles of signal arrival and, in near-field imaging,

evanescent-field scattering. These components suffer from very poor SNR, which may

corrupt the final reconstruction.

Finally, it is noteworthy that the reconstruction algorithm operates with remark-

able speed during the relative permittivity retrieval, typically completing in a few

seconds on conventional laptops using MATLAB codes without code optimization,

acceleration, or parallel computing. The enhanced imaging results after applying the

second SPM stage, as evidenced by the comparison of the images in Figure 4.12 with

those in Figure 4.11, underline the importance of this stage.

4.4.2 Imaging of Various Small Items with mm-Wave LFM

Radar

The off-the-shelf radar module used for LFM radar measurement is the IWR1443Boost

evaluation module [100] along with the real-time data-capture adapter board DCA1000EVM

[101]. The mm-wave sensor is equipped with three Tx and four Rx antennas, however,

in this experiment, only one Tx is activated while all four Rx elements receive. Here,

too, we are at the far-field of the antennas. The LFM transceivers can accommodate

up to 4 GHz bandwidth from 77 GHz to 81 GHz. The chirp duration is Tp = 51.1 µs

with 512 temporal samples. The frequency-modulation slope is γ = 72.42 MHz/µs.

The off-the-shelf mm-wave radar performs the range compression on hardware (with

mixing) and provides as an output only the baseband in-phase (I) and quadrature
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(a) (b) (c)

Figure 4.13: Photos of: (a) the acquisition chamber, (b) a key, a penny, and a liquid
lipstick laid on a Styrofoam sheet, and (c) a toy bag where the key, penny and lipstick
are inserted in the first imaging experiment.

(Q) outputs as a function of time.

The imaging setup and the measured objects repeat an experiment reported in [78]

(see Figure 4.13a). The scanned aperture has a size of 15×15 cm2. The dense aperture

scan employs an interval of 2 mm (approximately 0.53λc) along x and y, resulting in

a grid of 76× 76 spatial samples. As per other examples, the domain is divided into

16 sub-regions, each with a size of 3.75× 3.75 cm2 (approximately 10λc).

It is important to note that the LFM radar module suffers from internal system

delays; therefore, the analytical PSF needs to be calibrated. Here, we use the cali-

bration approach described in [78]. Further, in the LFM radar experiments presented

here, background de-embedding is not necessary since the background signals are

negligible compared to the back-scattering from the objects. Also, the system PSF is

computed analytically using (4.16). Therefore, background and PSF measurements

are unnecessary.

In the first imaging experiment, the OUT consists of a metallic key, a penny, and
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(a) 40% (b) 70% (c) 80%

(d) 40% (e) 70% (f) 90%

Figure 4.14: Qualitative results in terms of normalized magnitude of reflectivity ρ̄
distribution for: (a)-(c) the embedded objects in the bag, and (d)-(f) naked objects.
The percentage of random samples compared to the total available uniformly sampled
data is 40%, 70%, 80% and 90% as denoted in the figure.

a liquid lipstick (see Figure 4.13b), enclosed within a toy bag, shown in Figure 4.13c.

All three objects are laid on a Styrofoam sheet and then inserted in the bag. The

OUT is 22.5 cm away from the radar. In the second experiment, the same objects

are imaged without the bag and at the same range distance.

Figures 4.14a-4.14c show 2D images of the key, penny, and lipstick experiment,

concealed in the bag, at various stages of completion of the random sampling and

when the convergence is at SSIM of 0.98 when 80% of the referenced samples are

utilized. The images are obtained at a single slice at z = 21.5 cm from the radar

antenna array. The 2D images of the same objects, this time out of the bag, are

depicted in Figures 4.14d-4.14f. Here, the convergence is when 90% of the densely
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sampled reference data is used and the scan is terminated at the SSIM 0.99. It is

clear that the bag obscures the objects to some extent, which is expected since the

materials from which the bag is made are not entirely transparent to the mm-wave

radiation. Note that the images in 4.14a-4.14c indicate the presence of the bag by a

low-reflectivity region surrounding the objects.

The adequacy of the selected points is demonstrated through the experiments

depicted in Figures 4.14c and 4.14f, corresponding to the bagged and unobscured

conditions, respectively, which indicates where the scan can be terminated. In both

scenarios, the visual representation of the key and the penny closely matches those

observed with 100% random sampling. Therefore, the 100% data is not presented for

brevity. The impact of insufficient data (40%) is particularly evident in Figure 4.14d,

where the lipstick is not detectable at all and the key’s leg is also not recovered well.

The SSIM value of 0.92 also indicates that more acquisition points are required to

reach convergence.

In the bag experiment, utilizing 40% of the data results in an SSIM value of

0.88, which falls below the established threshold, as shown in Figure 4.9. When

data coverage reaches approximately 70%, the SSIM value meets the 0.97 threshold.

Subsequently, as the SSIM value remains above this threshold for the next three

measurements, the scanning process is discontinued thereafter at 80% of coverage.

Conversely, in the experiment with unbagged items, convergence is achieved only

after nearly 90% of the data is utilized. Nonetheless, the image resolution at 70%

coverage is deemed adequate, as illustrated in Figure 4.14e.
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4.5 Discussion

To demonstrate the advantages of our SPM method in the context of nonuniform

random sampling, we should consider multiple factors when comparing it with the

conventional BPA and ω-k methods.

First, we analyze the overall computational complexity, which includes all Nm

spatial samples acquired during the scan. According to (4.6), the first SPM stage

involves NmNRNnNv multiplications and the same number of summations, where

Nv = NxNyNz is the number of image voxels. Thus, its computational complexity

can be expressed as O(NmNRNnNv), which is the same as that of the BPA. The second

SPM stage computes the 2D FFT of the OUT power maps (slice by slice) as well as the

2D IFFT of the k-space reconstructed permittivity (also slice by slice), both of which

have a complexity of O(NzNxNy log2(NxNy)) ≡ O(Nv log2(NxNy)). It also solves the

system of equations in k-space, which has a complexity of O(NxNyN
2
z ) ≡ O(NzNv).

It is clear that the computational complexity of the second SPM stage is much lower

than its first stage. Since the number of range image slices Nz is much smaller than

Nx and Ny, the computational complexity of the SPM algorithm is governed by the

dominant term O(NmNRNnNv), which is the same as that of the BPA.

In comparison, the ω-k methods, which use NUFFT along with interpolation,

have a computational complexity of O(NRNzNxNy log2(NxNy) +NnNRNm) [83,102].

Therefore, if all data are processed after the completion of a scan, the computational

complexity of the BPA and the proposed SPM method is higher than that of the ω-k

algorithms.

Note, however, that the overall computational complexity is not the only factor
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determining the method’s efficiency in the context of random sampling. The proposed

random sampling SPM method ultimately offers significant acceleration over the BPA

due to the incremental update of the object’s power map (the first-stage image),

performed concurrently with the measurements. It is this incremental image update

(with a computational complexity of O(NRNnNv)) that also allows for employing the

proposed image-convergence criterion, which results in a substantial reduction in the

number of measurements compared to a Nyquist-compliant uniform densely sampled

grid, as demonstrated in the examples. Thus, the proposed method not only leverages

computations that run alongside the measurements but also reduces the measurement

time. Note that the ω−k methods, just like the BPA, start the image reconstruction

only after the scan is completed.

An important advantage of both the SPM and the BPA is their ability to process

samples on arbitrary 3D trajectories, noncanonical surfaces, and 3D observation do-

mains. In contrast, the ω-k approach for nonuniform sampling is limited to sampling

on canonical surfaces (planar and cylindrical).

Regarding quantitative analysis, neither the BPA nor the ω-k methods can pro-

vide quantitative permittivity estimates as they are incapable of utilizing a measured

PSF. To the best of our knowledge, the SPM algorithm is the only linear-inversion

method that can reconstruct the permittivity distribution of the scanned object. The

quantitative imaging is enabled by the second inversion stage of the SPM. Even with

analytical PSFs, the second stage of SPM dramatically improves the image quality.

Since this stage is absent in the BPA, the BPA image quality is always inferior to that

of SPM, even if the SPM method employs analytical PSFs the way the BPA does.

The image improvement in the second SPM stage is evidenced by the comparison of
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the images in Figures 4.5 and 4.6 or Figures 4.11 and 4.12.

Further, the SPM, just like the BPA, is very effective at suppressing measurement

noise, errors, and radar clutter by using a large number of measurements (larger

than the number that would be needed in noise-free clutter-free measurements). It is

shown in [38] that the SPM first stage minimizes the ℓ2 norm of the data error, i.e., the

difference between the measured responses and the responses that are predicted by the

linearized model of scattering with the extracted target permittivity (or reflectivity).

ℓ2 norm solutions are effective in reducing the impact of noise and measurement errors.

This is not the case in the ω-k algorithms, where the Fourier transforms are sensitive

to measurement noise and errors. Note that filtering strategies are also a powerful

tool in suppressing radar clutter and rejecting poor SNR data. These have been

applied in the example with the compressed breast phantom measurements.

The proposed random sampling SPM method does have limitations, which we

address here. One limitation stems from the power map computation in real space,

which is significantly slower than the k-space computation as shown in [77,78]. How-

ever, the k-space computation employs 2D FFT, which needs uniformly sampled data

and can start only after the scan is completed. The computational complexity of the

power map updates with (4.6) scales with the number of image voxels Nv. When

Nv∼106 or more, the time required by a sequential computing algorithm may exceed

a second, which is slower than the rate at which most imaging radars perform a mea-

surement. For example, off-the-shelf ultra-wideband (UWB) radars can be as fast as

50 waveforms per second [103], but advanced research prototypes may reach rates of

∼1000 measurements per second [104]. To simplify the data-offload management and

to reduce the data-storage demands, it is important to achieve a power map update,
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the speed of which is equal to or better than the speed at which the measurement

system provides a spatial sample.

Another limitation in the current investigation is the assumption that the bore–

sight axis of the antennas is fixed along the range direction (the z axis) and it does

not consider a possible tilt of the imaging platform. The platform tilt has two im-

plications: (i) the signal strength depends on the orientation of the antenna beams,

and (ii) the signal paths from the Tx antenna to the target and then onto the Rx

antenna will change. Both of these implications can be accounted for by the PSFs

provided that the antenna-gain patterns and the tilt angle of the platform are known.

However, the current implementation does not take these factors into account.

Finally, we emphasize that the proposed method does not employ compressive

sensing (CS) strategies; therefore, it is not a solution to the problem of sparse sam-

pling. The reported reduction in the number of spatial samples needed to reconstruct

high-quality images is only due to the rigorous convergence criterion, which is auto-

matically determined when the data are sufficient.

4.6 Conclusions and Future Work

This study introduces a novel SPM algorithm optimized for real-time SAR imag-

ing with randomly sampled data on 3D trajectories, a common scenario in mobile

and handheld radar platforms. Our approach differs from traditional methods by

eliminating the need for uniform sampling across canonical surfaces and spectral es-

timation techniques, thereby simplifying the computational process and reducing the

time requirements. The first stage of the SPM algorithm works concurrently with

the measurements on the arbitrary trajectory. With each additional measurement,
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it updates an evolving scattered power map of the object (a projection image) cast

on a uniform 3D grid. The advantage of this updating strategy is three-fold. First,

the projection-image update is fast as it amounts to computing and adding NR ×Nn

terms to the already-existing power map voxel value; see (4.6). As a reminder, NR is

the number of responses measured at each observation position r, and Nn is the num-

ber of frequency or temporal samples in each response. Second, once the contribution

of a spatial sample is added, it is no longer needed, thus eliminating the need to store

the entire measurement dataset. This is important in realizing compact mobile or

handheld imaging platforms where the image processing is performed on-board and

the amount of measurements is extensive. Third, each power map voxel is updated

independently, thus allowing for parallel computations with significant acceleration.

The second SPM stage, which is fundamentally an image deconvolution performed

in Fourier space, significantly enhances the image quality of the output from the first

stage. This stage is computationally very efficient and is independent of the sampling

strategy. It, too, is amenable to parallel computations since a small Nz ×Nz system

of Equation (4.7) is solved independently at each (kx, ky) point in Fourier space.

Importantly, the second SPM stage allows for quantitative imaging. We reiterate that

quantitative imaging is enabled by measured PSFs, i.e., data obtained by measuring

the domain of interest in the presence of a point-like scatterer (not the OUT). When

measuring the PSF is not feasible, it is obtained with (C.23), wherein the incident

field distributions of the Tx and Rx antennas are expressed either through analytical

formulas or simulated distributions.

A pivotal element of our methodology is the convergence check of the OUT power
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map update, eliminating the need for a predetermined scan completion. The con-

vergence criterion employs the SSIM between two successive power map updates and

an SSIM threshold of 0.97, which must be met by four consecutive SSIM evaluations.

It has been observed that the OUT power map converges to a high-resolution im-

age with a number of spatial samples, which is appreciably lower than the number of

samples dictated by the Nyquist criterion for a uniformly sampled synthetic aperture.

In the imaging of a simple F shape object with simulated data on a 3D trajectory,

convergence is achieved with only 40% of the number of samples in the dense uni-

formly sampled grid on a planar aperture. In addition to the simplicity of the imaged

object, the reduction in the spatial samples is likely due to the 3D nature of the

observation trajectory, which provides responses at various range distances from the

object. On the other hand, in the imaging of a more complex object (key, coin, and

lipstick in a bag), measured with an LFM mm-wave radar module, the number of

random samples reaches 90% of those on the dense uniform planar grid.

Validation through simulated and measured data confirms the robustness of the

proposed approach when applied to both stepped-frequency continuous wave and

LFM radar data. The ability to automatically determine the sufficiency of data

and to terminate the data acquisition in a timely manner is beneficial in reducing

operational costs and time in practical applications.

In order to overcome the limitations discussed in Section 4.5, upcoming work will

focus on implementing the algorithm with parallel programming on multicore, mul-

tiprocessor platforms in order to accelerate the computation of the power maps and

to achieve real-time processing that matches the speed of the measurements. The

second task in the future algorithm enhancement is the ability to take into account
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the platform tilt by incorporating in the system PSFs the tilt angles and the antenna

gain patterns. Third, we aim to enhance the SPM algorithm by integrating it with

a compressed sensing (CS) preprocessing step. This integration will enable an OUT

power map update directly in k-space, achieving convergence with fewer spatial sam-

ples, thus accelerating not only the computations but also the measurement process.

Finally, we underscore the importance of having accurate measurement coordinates

relative to the imaged object. This accuracy is critical for achieving focused images

since the spatial resolution is limited to within the accuracy range of the coordinates.

Much research and technical solutions are needed in this respect for applications with

handheld and mobile platforms. Improving the tolerance of our image-reconstruction

method to positioning errors is another focus of future research.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE WORK

5.1 Summary

In this work, new microwave and mmW imaging algorithms are developed and en-

hanced via: (a) simultaneous use of the Born and Rytov approximations in the data

extraction stage to enhance the detection of embedded targets, (b) introducing a

method for the fast processing of time-domain signals in microwave and mmW image

reconstruction using an SPM approach, and (d) introducing a method for real-time

SAR imaging with randomly sampled data on 3D trajectories. All developments are

supported by simulated and experimental studies, which is critical for any technology

attempting to reach industrial trials. The following discussion highlights future work

for each chapter.

5.2 Future Work

(i) Optimization of Data Acquisition

Despite the image reconstruction algorithm being nearly instantaneous, the scan

time with the current planar acquisition setup remains several hours long. This

issue is especially pronounced in Chapter 3, where experiments conducted in

the mmW range with smaller scanning steps result in even longer scan times.
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Future efforts should focus on improving the acquisition setup by integrating

electronic scanning with antenna arrays that can cover the entire imaging aper-

ture, potentially reducing scan time to just a few minutes.

Moreover, as discussed in Chapter 4, we simulated random acquisition by ran-

domly selecting sampled points from a previously uniformly dense set of mea-

surements. Significant research is still needed to ensure accurate measurement

coordinates relative to the imaged object, particularly for handheld and mo-

bile platforms. Enhancing the tolerance of our image reconstruction method to

positioning errors is another critical area for future research.

Additionally, reflections from the acquisition setup cause image artifacts, which

is another challenge. While filtering techniques reported in several studies can

mitigate image clutter to some extent, further improvements in the design of

shielding absorbers and non-reflective platforms are necessary.

(ii) Enhanced Image Reconstruction by Use of Iterative Imaging Techniques

Although results in Chapter 2 demonstrate that combining the Born and Rytov

approximations can enhance image quality, further research is necessary. The

SPM method is a direct inversion algorithm that employs the Born approxima-

tion of the total internal field, resulting in a linearized forward model of scat-

tering. This linearization is often problematic in inverse scattering problems,

which are inherently nonlinear. While direct inversion algorithms such as SPM

and QMH have the advantage of low computational burden, they struggle with

strongly heterogeneous targets since they cannot account for multiple-scattering

and mutual-coupling effects.
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Conversely, iterative algorithms like the Born iterative method [2], the distorted

Born iterative method [3], and electromagnetic model-based nonlinear optimiza-

tion methods [4] can accommodate nonlinear scattering effects. However, these

iterative methods are often time-consuming, they are prone to modelling errors

and suffer from slow convergence or convergence to a wrong solution.

The algorithm discussed in this thesis, SPM, along with other direct inversion

algorithms, can be incorporated in iterative algorithms. By updating the to-

tal internal field iteratively rather than relying on linear approximations, the

accuracy of the permittivity estimates can be improved. Such an iterative ap-

proach could be devised by incorporating a Rytov correction factor for fast,

simulation-free updates of the total internal field. Essentially, the iterative pro-

cess would solve a nonlinear equation, where the initial permittivity distribution

obtained from the non-iterative SPM algorithm provides the starting point for

the object’s permittivity distribution.

Such an iterative approach would leverage the speed of the SPM method, would

mitigate the modeling errors associated with electromagnetic solvers, and would

address the complex scattering effects in problems where strongly heterogeneous

high-contrast objects are imaged.

(iii) Imposing Constraints on Permittivity Values

In the current approach to quantifying the distribution of complex relative per-

mittivity, some non-physical values arise, particularly when using Fourier-based

algorithms such as F-SPM. These non-physical values manifest as positive val-

ues in the imaginary part of the permittivity and values below 1 in the real

part. Physically, this is incorrect, as the media that we image do not exhibit
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positive imaginary part or real part of permittivity less than one.

To address this issue, an essential modification is to impose constraints within

the inversion algorithm that prohibit these non-physical values. By enforcing

these constraints, we can eliminate non-physical results and ensure that the

estimated permittivity values remain within a physically realistic range. While

this adjustment alone does not fully resolve all the complexities introduced by

the linearized model of forward scattering, it represents a crucial step toward

achieving more accurate and physically meaningful estimations of complex rel-

ative permittivity.

(iv) Acquisition of Point Spread Functions

As discussed in Chapters 2, 3, and 4, the SPM direct inversion algorithm can

operate with analytical, simulated, or measured PSFs. However, accurate quan-

titative permittivity values are obtained when using measured PSFs, especially

in near-field imaging scenarios. This is because the measured PSF from a point-

like scatterer is derived from the same measurement setup as the Object Under

Test (OUT), thereby avoiding most of the modeling errors, unlike simulated

or analytical PSFs. These modeling errors arise from the inability to predict

all influencing factors in the measurement setup, such as fabrication tolerances

of the antennas and positioning components, uncertainties in the constitutive

parameters of materials (particularly absorbers), aging of materials and con-

nectors, and deformations due to temperature or humidity. Additionally, sim-

ulation models often overlook complexities in the cables, connectors, and fine

structural components like screws, brackets, and thin supporting plates.

Conversely, as mentioned in Chapter 3, the low signal-to-noise/clutter ratio
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(SNCR) of measured data using off-the-shelf LFM radar chips in the mmW

frequency range precludes the availability of measured PSFs. Consequently, all

experimental reconstructed results provide qualitative estimates of permittivity

distribution in terms of normalized reflectivity. To enable far-field quantitative

imaging with SPM, future research should focus on improving calibration meth-

ods for the PSF to enhance the measurement accuracy. Alternatively, designing

a Multiple-Input Multiple-Output (MIMO) radar system would offer a higher

SNCR compared to available commercial radars.

Moreover, as mentioned in Chapter 4, the current investigation with mobile

platforms assumes that the bore-sight axis of the antennas is fixed along the

range direction, i.e., its orientation does not vary even if the platform tilts.

While this assumption does not affect analytical PSFs, measured PSFs may

differ if the platform tilts. Therefore, a critical future task is to develop system

PSFs that account for platform tilt along with the corresponding antenna pat-

terns. This will ensure more accurate and reliable permittivity or reflectivity

estimates, especially in mobile and handheld imaging scenarios.

(v) Optimal Choice of Scattering Probe

As discussed in the thesis, the calibration measurement process requires care-

ful consideration of the physical embodiment of a point scatterer (or SP) and

the choice of a background medium, which is typically homogeneous within

the imaged volume. The precision of the system’s PSF, as derived from these

measurements, is critically dependent on the characteristics of the selected scat-

tering probe.
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Ideally, the size of the SP should be significantly smaller than the shortest wave-

length of the employed radiation, adhering to the assumption that the electro-

magnetic field remains constant within the SP’s volume. However, achieving

such small sizes can be challenging in practical applications. Metallic SPs, while

useful in generating qualitative images, are not suitable when quantitative re-

construction is required. In such cases, dielectric SPs are preferable due to their

ability to produce more accurate quantitative data.

For the most precise quantitative estimates, the permittivity of the scattering

probe should closely match that of the object intended for detection, especially

in regions where the lossy dielectric object’s permittivity is similar to that of

the SP. This alignment ensures that the measured PSF accurately reflects the

object’s characteristics. Consequently, the complex relative permittivity of the

SP should be chosen to closely resemble that of the target object.

Despite these guidelines, there remains substantial scope for optimizing the

choice of SP, particularly in terms of its size and complex permittivity, to achieve

the most accurate PSF measurements. The optimal characteristics of the SP

may vary significantly depending on the specific application. For example, in

the detection of breast malignancies, an SP with permittivity and conductivity

properties closely matching those of cancerous breast tissue would be ideal,

enhancing the accuracy and reliability of the diagnostic imaging.

(vi) Investigation of Calibration Objects

Calibration objects are essential for accurately characterizing the measurement

system in mmWave radar. These objects are specifically designed to produce

known and consistent responses to radar signals, enabling precise calibration of
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the system’s parameters. Commonly used calibration objects include flat metal

plates, metallic spheres, and corner reflectors, each providing distinct and re-

liable reference points for evaluating the radar’s performance. By employing

these calibration objects, engineers can verify that the radar system is accu-

rately measuring critical factors such as distance, angle, velocity, and material

properties.

For example, in Chapter 3, we discussed a calibration procedure for the mmWave

LFM radar system, where a highly reflective copper plate was used to ensure

the reliability of the collected data. It is important to note that these calibra-

tion targets differ from the SPs discussed earlier, which are used specifically

for enabling quantitative imaging. Investigating the use of various calibration

targets, rather than SPs, to characterize each measurement system presents a

valuable area for future research. This exploration could lead to more tailored

calibration strategies, enhancing the accuracy and reliability of radar systems

across different applications.

(vii) Speed Enhancement

As stated in Chapter 4, the proposed SPM imaging technique for random spatial

samples can be further improved. Currently, the PSFs for calculating the OUT

power map are computed in real space for every imaged pixel and observation

point, which is time-consuming. Note that acquiring the measured PSF for

every random trajectory of the OUT measurement is in effect not possible.

Forming the power maps in Fourier space instead, as discussed in Chapters 2

and 3 with the F-SPM method, could save significant computational time.

One method that could be used with sparse and randomly sampled data is
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compressed sensing (CS). We could apply the CS pre-processing method on the

data, and therefore, compute the OUT power maps in k-space. By integrating

CS methods with the proposed SPM method, we would aim to make the process

faster.

(viii) Employing Weighting Coefficients

As detailed in Chapter 2, Born’s and Rytov’s approximations represent two

distinct methodologies for extracting scattered data responses in wave propaga-

tion. Born’s approximation is constrained by both the size and contrast of the

scatterers, making it more suitable for scenarios involving smaller scatterers or

those with low contrast. In contrast, Rytov’s approximation is less restrictive,

being primarily limited by the contrast, and is thus more effective in recovering

data from larger scatterers. Further, Rytov’s approximation is particularly ad-

vantageous in cases where transmission coefficients are available, or when the

objective is to detect a small scatterer that is encapsulated within a larger ob-

ject. In the proposed combined Born-Rytov approach, we opted not to apply

weighting factors to either of these approximations. This decision was made to

maintain simplicity in the initial formulation. However, to further enhance the

method’s performance, future research could explore the application of different

weighting factors tailored to the specific characteristics of the imaged object.

Such an approach would allow for a more refined balance between Born’s and

Rytov’s approximations, potentially leading to improved accuracy in scattered

data recovery.

Additionally, the principle of applying weighting extends to frequency normal-

ization. At lower frequencies, the increased penetration depth results in slower
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signal attenuation, thereby yielding a higher SNR. Conversely, higher frequen-

cies, while more prone to attenuation, offer superior image resolution due to

their ability to capture finer spatial fluctuations. Typically, a wide-band signal

is preferred as it provides a balanced trade-off between penetration depth (and

thus SNR) and image quality. However, by employing frequency-specific weight-

ing coefficients, it is possible to further optimize the imaging process. This

would ensure that data from frequencies of particular interest are adequately

emphasized, thereby enhancing the overall image quality and the reliability of

the reconstructed data.

(ix) Synergy of Microwave/mmW Imaging with Deep Learning and Machine Learn-

ing Algorithms

Significant advancements in image quality and algorithm speed can be achieved

by integrating artificial intelligence (AI) and machine learning (ML) in the

development of microwave and mmW imaging systems. Utilizing advanced

deep learning (DL) techniques, we can enhance image clarity and detail, which

is crucial for medical diagnostics and security screening.

(x) Investigation of Calcification as Indicators of Malignancy

In the current tissue imaging prototype at microwave frequencies, the primary

focus has been on detecting variations in water content, as malignant tissues

tend to have higher water content compared to benign tissues. This difference

in water content has been a key factor in distinguishing between healthy and

cancerous tissues using microwave imaging. However, recent studies suggest

that the presence and quantity of calcium deposits, or calcifications, surrounding
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tissues can also serve as important indicators of malignancy.

Given this, an area for future research could involve exploring the feasibility

of identifying these calcifications within breast tissue using microwave imag-

ing. Since calcifications are often associated with malignant tumors, detecting

them could significantly enhance the accuracy of early breast cancer diagnoses.

The first step in this research would be to thoroughly investigate the dielec-

tric properties of calcium across the frequency band of interest in microwave

imaging.

Focusing on this aspect could lead to advancements in the accuracy of microwave

imaging as a non-invasive, early detection tool, ultimately aiding in the timely

diagnosis and treatment of breast cancer.

(xi) Recommendation to Use CT and MRI Images as a Reference

To evaluate the quality of microwave and mmWave images, particularly in terms

of their structural accuracy, it is highly recommended to use CT (Computed To-

mography) and MRI (Magnetic Resonance Imaging) images as reference stan-

dards in biomedical applications. CT and MRI are well-established imaging

modalities that provide high-resolution and detailed images of internal struc-

tures. These images can serve as benchmarks for assessing the performance of

microwave and millimeter-wave imaging systems.

One effective method for this evaluation is the Structural Similarity Index

(SSIM), which is a widely used metric for comparing the structural similar-

ity between two images. SSIM considers changes in structural information, and

contrast, making it a robust tool for assessing how closely the microwave or
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millimeter-wave images match the reference images obtained from CT or MRI.

Since CT and MRI images are typically qualitative, the microwave/mmWave

images obtained from F-SPM method would need to be normalized before

comparison. While microwave and millimeter-wave imaging systems may not

achieve the same level of detail as CT or MRI, SSIM can still provide valuable

insights into the structural accuracy of these images, indicating how well the

underlying anatomy or tissue structures are being represented.
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APPENDIX A

COMPLEX LOGARITHM

To clarify the derivation of (2.22), consider the polar form of the complex quantity

z, z = |z| exp (iθ), where θ = ∠z. Its complex logarithm can be expressed as

ln(z) = ln(|z|) + iθ . (A.1)

Accordingly, the logarithm in (2.6) can be reformulated as

ln

[
Stot
ζ (·)

Sinc
ζ (·)

]
= ln

|Stot
ζ (·)|

|Sinc
ζ (·)|

+ i
[
∠Stot

ζ (·)− ∠Sinc
ζ (·)

]
. (A.2)

The substitution of (A.2) into (2.6) leads to (2.22).
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APPENDIX B

ACQUISITION OF BORN-BASED POWER MAPS

Here, the quantitative Fourier-space SPM equation (C.31) is re-formulated in terms

of the FTs of the real and imaginary parts of the contrast as defined in (2.38) and

(2.39). To this end, the quantitative real-space SPM equation (2.9) is first expanded

into its real part,

ReMB(x
′, y′, z′) =

∫∫∫
z′′y′′x′′

[Reρ(x′′, y′′, z′′) ·

ReMB(x
′ − x′′, y′ − y′′, z′, z′′)− Imρ(x′′, y′′, z′′)·

ImMB(x
′ − x′′, y′ − y′′, z′, z′′)] dx′′dy′′dz′′ ,

(B.3)

and its imaginary part,

ImMB(x
′, y′, z′) =

∫∫∫
z′′y′′x′′

[Reρ(x′′, y′′, z′′) ·

ImMB(x
′ − x′′, y′ − y′′, z′; z′′) + Imρ(x′′, y′′, z′′)·

ReMB(x
′ − x′′, y′ − y′′, z′; z′′)] dx′′dy′′dz′′ .

(B.4)

Here, the subscript “B” indicates that the scattered-power maps MB and MB are

derived from the Born-approximated scattered-field OUT and PSF responses; see

(2.12). The integrals over x′′ and y′′ in (B.3)–(B.4) are in the form of 2D convolutions,
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which reduce to multiplications in 2D k-space, leading to:

M̃Re
B (κ, z′) =

∫
z′′

[
ρ̃Re(κ, z′′) · M̃Re

B (κ, z′; z′′)−

ρ̃Im(κ, z′′) · M̃Im
B (κ, z′; z′′)

]
dz′′ ,

(B.5)

M̃ Im
B (κ, z′) =

∫
z′′

[
ρ̃Re(κ, z′′) · M̃Im

B (κ, z′; z′′)+

ρ̃Im(κ, z′′) · M̃Re
B (κ, z′; z′′)

]
dz′′ ,

(B.6)

where κ ≡ (kx, ky) and

M̃Re
B (κ, z′) = FT2D {ReMB(x

′, y′, z′)}(κ) , (B.7)

M̃ Im
B (κ, z′) = FT2D {ImMB(x

′, y′, z′)}(κ) , (B.8)

M̃Re
B (κ, z′; z′′) = FT2D {ReMB(x

′, y′, z′; z′′)}(κ) , (B.9)

M̃Im
B (κ, z′; z′′) = FT2D {ImMB(x

′, y′, z′; z′′)}(κ) . (B.10)

The scattered-power maps defined in (B.7)–(B.10) are all computed directly in

k-space for the best computational efficiency. For clarity, let us first consider the

OUT map, which, in real space, is computed in accordance with (2.12). Its expansion

into real and imaginary parts yields:

ReMB(x
′, y′, z′) =

Nω∑
m=1

NT∑
ζ=1

∫∫
yx

[
ReSsc

ζ,B(x, y;ωm)·

ReHsc
ζ,B(x− x′, y − y′; z′;ωm) + ImSsc

ζ,B(x, y;ωm)·

ImHsc
ζ,B(x− x′, y − y′; z′;ωm)

]
dxdy ,

(B.11)
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and

ImMB(x
′, y′, z′) =

Nω∑
m=1

NT∑
ζ=1

∫∫
yx

[
ImSsc

ζ,B(x, y;ωm)·

ReHsc
ζ,B(x− x′, y − y′; z′;ωm)− ReSsc

ζ,B(x, y;ωm)·

ImHsc
ζ,B(x− x′, y − y′; z′;ωm)

]
dxdy .

(B.12)

The double integrals in (B.11)–(B.12) are 2D cross-correlations. Hence, the OUT

maps in k-space, M̃Re
B (κ, z′) and M̃ Im

B (κ, z′) can be directly computed as:

M̃Re
B (κ, z′) =

Nω∑
m=1

NT∑
ζ=1

[
S̃Re
ζ,B(κ;ωm)

] [
H̃Re

ζ,B(κ; z
′;ωm)

]∗
+
[
S̃Im
ζ,B(κ;ωm)

] [
H̃ Im

ζ,B(κ; z
′;ωm)

]∗
,

(B.13)

M̃ Im
B (κ, z′) =

Nω∑
m=1

NT∑
ζ=1

[
S̃Im
ζ,B(κ;ωm)

] [
H̃Re

ζ,B(κ; z
′;ωm)

]∗
−
[
S̃Re
ζ,B(κ;ωm)

] [
H̃ Im

ζ,B(κ; z
′;ωm)

]∗
,

(B.14)

where

S̃Re
ζ,B(κ;ωm) = FT2D{ReSsc

ζ,B(x, y;ωm)}(κ) , (B.15)

S̃Im
ζ,B(κ;ωm) = FT2D{ImSsc

ζ,B(x, y;ωm)}(κ) , (B.16)

H̃Re
ζ,B(κ; z

′;ωm) = FT2D{ReHsc
ζ,B(x, y; z

′;ωm)}(κ) , (B.17)

H̃ Im
ζ,B(κ; z

′;ωm) = FT2D{ImHsc
ζ,B(x, y; z

′;ωm)}(κ) . (B.18)

Analogously to the OUT scattered-power maps, the SP power maps in k-space are
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computed as:

M̃Re
B (κ, z′; z′′) =

Nω∑
m=1

NT∑
ζ=1

[
H̃Re

ζ,B(κ; z
′′;ωm)

] [
H̃Re

ζ,B(κ; z
′;ωm)

]∗
+
[
H̃ Im

ζ,B(κ; z
′′;ωm)

] [
H̃ Im

ζ,B(κ; z
′;ωm)

]∗
,

(B.19)

M̃Im
B (κ, z′; z′′) =

Nω∑
m=1

NT∑
ζ=1

[
H̃ Im

ζ,B(κ; z
′′;ωm)

] [
H̃Re

ζ,B(κ; z
′;ωm)

]∗
−
[
H̃Re

ζ,B(κ; z
′′;ωm)

] [
H̃ Im

ζ,B(κ; z
′;ωm)

]∗
.

(B.20)

The integrals in the quantitative Born-based equations (B.5)–(B.6) are discretized

along z′′ into Nz image slices, similarly to the Rytov-based equation (2.40). The three

discretized equations are then put together in the common system (C.32), where the

sub-matrices in the system matrix (2.44) are in the form:

M̃Re,Im
B,R (κ) =
M̃Re,Im

B,R (κ, z1; z1) · · · M̃Re,Im
B,R (κ, z1; zNz)

...
. . .

...

M̃Re,Im
B,R (κ, zNz ; z1) · · · M̃Re,Im

B,R (κ, zNz ; zNz)

 .
(B.21)
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APPENDIX C

FOURIER-SPACE SCATTERED POWER MAPPING

The F-SPM image-reconstruction method [6,7] has been applied with the well-known

forward model of scattering in terms of S-parameters [8]. Its application with the

electric-field model follows the same procedure.

Let the data set be composed of the scattered portion of the measured S-parameters,

Ssc
ζ (r, ω), where r is the receiver (Rx) position, ω is the frequency, and ζ ≡ (i, j) de-

notes the type of response as determined by the receiving (i-th) and transmitting

(j-th) antennas. Then, the forward model is stated as:

Ssc
ζ (r, ω) = cζ

∫∫∫
V ′

∆εr(r
′)Einc

ζ,Rx(r
′, r, ω) · Etot

ζ,Tx(r
′, rTx, ω)dr

′ (C.22)

where r′ ∈ V ′ is a position in the imaged volume V ′, ∆εr(r
′) is the object’s relative-

permittivity contrast, Etot
ζ,Tx is the total internal field due to the transmitting (Tx)

antenna at position rTx, and Einc
ζ,Rx is the background Green function, which is equiva-

lent to the incident field due to the Rx antenna if it were to transmit in the background

medium. The relative-permittivity contrast (assumed independent of the frequency

and the field polarization) is defined as ∆εr = εr − εr,b, where εr is the object’s rel-

ative permittivity whereas εr,b is that of the background. The constant cζ =
−iωε0

2aRxaTx

is determined by the root-power waves aξ, ξ = Rx,Tx, incident on the ports of the

antennas generating the respective fields. Here, ε0 is the free-space permittivity.

From (C.22), the system PSF is readily derived as the scattering response due

to an electrically small (point-like) scatterer of volume Ωsp and contrast distribution
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represented by Dirac’s δ-function, ∆εr,spδ(r
′ − rsp):

Hsc
ζ (r, ω; rsp) = cζΩsp∆εr,spE

inc
ζ,Rx(rsp, r, ω) · Einc

ζ,Tx(rsp, rTx, ω) . (C.23)

Note that (C.23) employs Born’s approximation of the total internal field, Etot
ζ,Tx(r

′, rTx, ω) ≈

Einc
ζ,Tx(r

′, rTx, ω), since a point-like scatterer satisfies the assumption of weak scatter-

ing. The PSF is the spatial impulse response of the measurement system. Its expres-

sion (C.23) provides insight on how to model it analytically or through simulations

with account for the field distributions generated by the antennas in the background

medium. In close-range imaging, where the scattering from an electrically small probe

is sufficiently strong to rise above the measurement noise and uncertainty, the PSF

can also be acquired by calibration measurements [6, 9, 10].

In a homogeneous background and with the assumption of weak scattering, the

linearized forward model is obtained from (C.22) and (C.23) as [6]:

Ssc
ζ (r, ω) ≈

∫∫∫
V ′

ρ(r′)Hsc
ζ (r− r′, ω)dr′ (C.24)

where

ρ(r′) = ∆εr(r
′)/(∆εr,spΩsp) (C.25)

is termed the object’s reflectivity function. Hsc
ζ (r, ω) is the response to a probe at

the center of the imaged volume, r′ = 0.

With the data, Ssc
ζ (r, ω), and the PSFs, Hsc

ζ (r, ω), available, the F-SPM method

solves (C.24) for ρ(r′) through a computationally efficient two-stage procedure. The

first SPM stage constructs the 3D scattered-power map M(r′) of the OUT as the

inner product of the data and the system PSFs. In the case of a planar scan at z = z̄,
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the measurement position is given by r = (x, y, z̄), and the explicit map expression is

M(x′, y′, z′) =

NT∑
ζ=1

∫
ω

∫∫
yx

Ssc
ζ (x, y, ω)

[
Hsc

ζ (x− x′, y − y′, ω, z′)
]∗
dxdydω . (C.26)

M(r′) in (C.26) is a 2D cross-correlation in x and y. The most efficient way of

computing it is in 2D Fourier space (kx, ky), where kx and ky are the Fourier variables

corresponding to x and y, respectively. For brevity, a point in Fourier (or k) space is

denoted as κκκ = (kx, ky). The k-space processing requires the FTs of the data at all

frequencies,

S̃sc
ζ (κκκ, ωk) = F2D

{
Ssc
ζ (x, y, ωk)

}
ζ = 1, . . . , NT , k = 1, . . . , Nω (C.27)

along with the FTs of the system PSFs at all frequencies and all imaged range slices:

H̃sc
ζ (κκκ, ωk, z

′
n) = F2D

{
Hsc

ζ (x, y, ωk, z
′
n)
}
, ζ = 1, . . . , NT , k = 1, . . . , Nω , n = 1, . . . , Nz .

(C.28)

Note that the PSFs Hsc
ζ (x, y, ωk, z

′
n) represent the responses acquired with the scat-

tering probe at position (0, 0, z′n), i.e., at the center (x′ = y′ = 0) of the imaged slice

z′n = const. The k-space OUT map is then computed as:

M̃(κκκ, z′n) =

NT∑
ζ=1

Nω∑
k=1

S̃sc
ζ (κκκ, ωk)

[
H̃sc

ζ (κκκ, ωk, z
′
n)
]∗

, n = 1, . . . , Nz . (C.29)

The second SPM stage is also performed in k-space [6, 7]. In addition to the

OUT map in (C.29), it requires the 2D FTs of the scattering-probe maps. These are
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obtained analogously to (C.29):

M̃(κκκ, z′n; z
′′
m) =

NT∑
ζ=1

Nω∑
k=1

H̃sc
ζ (κκκ, ωk, z

′′
m)
[
H̃sc

ζ (κκκ, ωk, z
′
n)
]∗

n,m = 1, . . . , Nz . (C.30)

Here, z′n indicates an image slice in the scattering-probe map whereas z′′m indicates

the slice in which the scattering probe actually resides.

With the OUT and scattering-probe maps available, the 2D FT of the reflectivity

function, ρ̃(κκκ, z′n) = F2D {ρ(x′, y′, z′n)}, is extracted using the linear map relation [6]:

M̃(κκκ, z′n) =
Nz∑
m=1

ρ̃(κκκ, z′′m)M̃(κκκ, z′n; z
′′
m) , n = 1, ..., Nz . (C.31)

The Nz equations in (C.31) form a small Nz×Nz system of equations at each k-space

point written as:

M̃(κκκ)ρ̃(κκκ) = m̃(κκκ) (C.32)

where

ρ̃(κκκ) =
[
ρ̃(κκκ, z′1), . . . , ρ̃(κκκ, z

′
Nz
)
]T

, (C.33)

m̃(κκκ) =
[
M̃(κκκ, z′1), . . . , M̃(κκκ, z′Nz

)
]T

, (C.34)

M̃(κκκ) =


M̃(κκκ, z′1; z

′′
1) · · · M̃(κκκ, z′1; z

′′
Nz
)

...
. . .

...

M̃(κκκ, z′Nz
; z′′1) · · · M̃(κκκ, z′Nz

; z′′Nz
)

 . (C.35)

Since M̃(κκκ) is a small square matrix, (C.32) can be efficiently solved using LU de-

composition.

The real-space reflectivity function ρ(x′, y′, z′n) is recovered via the inverse 2D FT
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of ρ̃(κ, zn):

ρ(x′, y′, z′n) = F−1
2D {ρ̃(κκκ, z′n)} , n = 1, . . . , Nz . (C.36)

The plot of |ρ(x′, y′, z′n)| provides a qualitative image of the object’s reflectivity.

Quantitative image is also possible, provided the system PSFs scale properly with

the probe’s volume Ωsp and relative-permittivity contrast ∆εr,sp. As per (C.25), the

quantitative estimate of the object’s relative-permittivity contrast is obtained as:

∆εr(x
′, y′, z′n) = Ωsp∆εr,spρ(x

′, y′, z′n) . (C.37)
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