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Lay Abstract

Federated Learning is a machine learning framework that allows remote clients to

collaboratively train a model without raw data exchange, which ensures local data

privacy. It differs from traditional machine learning scenarios where data needs to

be stored centrally. This decentralized framework is advantageous in several respects

including: data security, data diversity, real-time continual learning and hardware

efficiency. However, the demand for frequent communication between clients and the

server imposes tremendous communication challenges in applying Federated Learning

to real-world scenarios. This thesis aims to tackle the problems in FL by theoretically

characterizing the problem and developing practical methodologies. The theoretical

results allow for systematic analysis of the communication cost and convergence rate.

The experimental results validate the effectiveness of the proposed methods in im-

proving communication efficiency and convergence in Federated Learning.
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Abstract

Federated learning is an emerging field that has received tremendous attention as it

enables training Deep Neural Networks in a distributed fashion. By keeping the data

decentralized, Federated Learning enhances data privacy and security while main-

taining the ability to train robust machine learning models. Unfortunately, despite

these advantages, the communication overhead resulting from the demand for fre-

quent communication between the central server and remote clients poses a serious

challenge to the present-day communication infrastructure. As the size of the deep

learning models and the number of devices participating in the training are ever in-

creasing, the model gradient transmission between the remote clients and the central

server orchestrating the training process becomes the critical performance bottleneck.

In this thesis, we investigate and address the problems related to improving the com-

munication efficiency while maintaining convergence speed and accuracy in Federated

Learning.

To characterize the trade-off between communication cost and convergence in

Federated Learning, an innovative formulation utilizing the clients’ correlation is

proposed, which considers gradient transmission and reconstruction problems as a

multi-terminal source coding problem. Leveraging this formulation, the model up-

date problem in Federated Learning is converted to a convex optimization problem
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from a rate-distortion perspective. Technical results, including an iterative algorithm

to solve for the upper bound and lower bound of the sum-rate, as well as the rate

allocation schemes, are provided. Additionally, a correlation-aware client selection

strategy is proposed and evaluated against the state-of-the-art methods. Extensive

simulations are conducted to validate our theoretical analysis and the effectiveness of

the proposed approaches.

Furthermore, based on the statistical insights about the model gradient, we pro-

pose a gradient compression algorithm also inspired by rate-distortion theory. More

specifically, the proposed algorithm adopts model-wise sparsification for preliminary

gradient dimension reduction and then performs layer-wise gradient quantization for

further compression. The experimental results show that our approach achieves com-

pression as aggressive as 1-bit while maintaining proper model convergence speed and

final accuracy.
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Chapter 1

Introduction

1.1 Federated Learning

Federated Learning, as a decentralized machine learning method, has attracted con-

siderable attention in recent years. Under this framework, multiple remote clients

collaboratively train machine learning models without exchanging their raw data.

This approach offers several advantages, including reduced data collection costs, low-

ered risks associated with data breaches, and ensured compliance with data protection

regulations. However, FL faces several challenges, such as data heterogeneity, system

heterogeneity, and privacy-preserving techniques, which complicate the training pro-

cess. Among these challenges, communication efficiency receives significant attention

because the FL framework inevitably demands frequent data exchanges between the

clients and the central server. Therefore, a primary focus of investigation is reducing

communication costs while maintaining satisfactory convergence.

Following is a brief description of the FL framework. Given a system with K

clients, each having kn data samples, the federated learning framework aims to solve:

1
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min
w∈Rm

Ek∼P [Fk(w)], (1.1.1)

, where w denotes the weight of the model of dimensionality, m. Specifically, Fk(w) =

Edkn∼Dk [fk(w; dkn)] denotes the loss function of client k and P is the distribution over

the remote clients. At the start of each iteration t = 1, 2, ..., the server will broadcast

the current global model wt to all the clients. After receiving the model, each remote

client trains the model using their local data based on wt, a process referred to as

a local update. Each client will generate a unique update because of the uniqueness

of their local data. When the local update is finished, clients send back the unique

update, also known as the local gradients, g(t) to the server. The server aggregates

all the local gradients, to form a new global model wt+1 and then broadcasts it to all

the clients in the next iteration. This broadcast and aggregation process is repeated

continuously until the model converges.

One of the key obstacles in this approach is the communication channel capac-

ity between remote clients and the server. Whether due to a noisy communication

channel or corrupted source, the server is unable to receive the true local gradient

g(t), thus cannot directly compute the optimal global model wt+1. Therefore, it is

of fundamental interest to investigate methods that estimate based on noisy local

gradients g̃(t) and form a global model ŵt+1 as close as possible to the optimal global

model wt+1.

Significant efforts have been made in two key areas: theoretically characteriz-

ing the relationship between communication efficiency and model convergence, and

proposing practical methodologies to reduce communication overhead in real-world

FL scenarios. Reducing the total communication cost in FL can be divided into two

2
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parts [86]: (i) reducing the number of communication iterations between the server

and clients, and (ii) lowering the communication cost at each iteration. Most theoret-

ical analyses couple these two aspects together to study the convergence rate of FL

versus the total communication cost [51, 66, 50]. Consequently, the convergence rate

is parameterized by various indices and hyperparameters in FL settings. Although

these results provide valuable insights for researchers to develop new FL algorithms,

such as client selection strategies [23, 68] and aggregation methods [29, 66], they usu-

ally fail to address the reduction of communication costs per iteration due to their

problem formulations. To account for ii), [86, 82] propose modeling the single itera-

tion communication problem using source coding techniques from information theory,

formulating the FL problem with rate-distortion functions. However, their results are

limited to scenarios where the local data of all clients is uniformly distributed, which

does not accurately reflect real-world conditions. In this paper, we aim to study

the rate-distortion function and derive the corresponding rate allocation schemes for

heterogeneous data settings.

Rather than being driven by theoretical analysis, some works leverage statistical

insights from the transmitted data to develop methodologies. Data compression tech-

niques, such as sparsification and quantization, are effective in reducing the dimen-

sionality of client local gradients, making them widely adopted in designing practical

FL compression solutions. However, the absence of a well-defined problem formula-

tion often makes it difficult to theoretically justify these methods.

Additionally, most existing works neglect to account for the correlation between

clients. For example, in the compression literature, the same compressor [19, 76, 4] is

applied across different clients, resulting in suboptimal rate allocation. Although some

3
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works address this issue by proposing to exploit correlation in terms of clients’ local

losses [51, 50], none have addressed modeling the clients’ local gradients as random

variables and considering the correlation in terms of clients’ local gradient layer-wise.

In light of this, we adopt the direct multi-terminal source coding formulation [73, 72]

and aim to propose a correlation-aware solution that strategically selects participating

clients and achieves optimal rate allocation.

1.2 Rate-Distortion Theory

To study the compression and reconstruction of gradients being transmitted in FL,

lossy compression algorithms are typically investigated within the framework of rate-

distortion theory, which is a key area of information theory. In the case of lossy

compression, in contrast to its lossless counterpart, the reconstruction is not exactly

the same as the original source, but only an approximation of it. Therefore, some

distortion measurements need to be defined to evaluate the difference between the

original source and the reconstruction. When evaluating the lossy compression per-

formance, rate, often characterized by the number of bits per symbol, is the other

key factor. It is acknowledged and proven that there exists a trade-off between the

rate and distortion, meaning more rate is required for less distortion and vice versa.

Rate-distortion theory [15] theoretically characterizes this trade-off by formulating it

as the minimal rate that should be communicated over a channel so that the source

can be reconstructed at the receiver without exceeding an expected distortion. A

typical rate-distortion trade-off curve is shown in Figure 1.1.

The basic model is depicted in Figure 1.2, where X is the original source and

X̂ represents the reconstruction the receiver approximates. And R(d) represents the

4
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Figure 1.1: Typical rate-distortion trade-off curve.

rate that achieves a certain distortion level, d. Defining the distortion measurement

using Mean Square Error, the rate-distortion function (trade-off) is as follows:

R(d) = inf
PX̂|X

I(X; X̂)

s.t. E[(X − X̂)2] ≤ d

(1.2.1)

Incorporating this rate-distortion function into FL helps us perform theoretical

analysis but requires some modification of the original formulation. The source is no

longer a single random variable. Instead, in FL, Xn
1 , X

n
2 ..., X

n
K represent the local

gradients (or weights) sequence obtained by K remote clients. Generally speaking,

given a predefined aggregation function f(·), which takes the local gradients as in-

put and outputs the global gradients to update the global model, some works aim

to reconstruct the sources,with the reconstructions denoted as X̂n
1 , X̂

n
2 ..., X̂

n
K , such

that the distortion between f(Xn
1 , X

n
2 ..., X

n
K) and f(X̂n

1 , X̂
n
2 ..., X̂

n
K) is minimized. In

5
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Figure 1.2: Lossy compression basic model.

contrast, most works in FL do not reconstruct each individual source. Instead, they

directly target reconstructing f(Xn
1 , X

n
2 ..., X

n
K) at the server side of FL. By incorpo-

rating some rate constraints into this reconstruction process, it becomes natural to

treat FL within the framework of rate-distortion theory.

In this thesis, rate distortion theory is applied in both theoretical problem for-

mulation and implementation. We formulate the FL model update problem using a

sum-rate distortion function, and derive the upper bound and lower bound to the

minimum sum-rate by adopting certain assumptions. In implementation, we employ

quantizer designs following the rule that minimizes a chosen distortion under a certain

rate constraint. In both theoretical analysis and practical application, rate-distortion

theory serves the role of a solid foundation.

1.3 Multi-terminal Source Coding in FL

The work of Slepian and Wolf [62] builds the foundations for studying the multi-

terminal source coding problem, where in [62] they consider two correlated sources

and determine the minimum number of bits needed to accomplish lossless encoding

and decoding. Wyner and Ziv [77, 78] extend this work by establishing information-

theoretic bounds for lossy compression when side information is available at the de-

coder side. Later, Berger and Tung [8, 70] introduce the multi-terminal source coding

6
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problem and investigate an inner bound and an outer bound of the region of all

possible encoder rate tuples such that the sources are reconstructed under distortion

constraints. Considering the multi-terminal source coding problem in the quadratic

Gaussian case, Oohama [47] derives the rate-distortion region by relaxing the dis-

tortion constraint to be imposed on only one of the two sources. Together with the

Berger-Tung inner bound obtained in [8, 70], the results provide a partial character-

ization of the boundary of the rate region of the quadratic Gaussian source coding

problem in the two terminal case. Extending from L = 2 to more terminals, Wang,

Chen and et al. [75, 72, 73] derive the upper and lower bounds on the minimum sum

rate of the scalar and vector Gaussian multi-terminal source coding problem, which

provides theoretical foundations of analyzing distributed learning from an information

theory rate-distortion perspective.

Generally speaking, direct multi-terminal source coding, which will be referred to

simply as multi-terminal source coding, considers the problem of separate compression

and joint decompression of multiple correlated sources. The scheme with K separate

encoders is depicted in Figure 1.3.

[85] and [1] are the pioneering works that link the multi-terminal source coding

problem with Federated Learning. They propose that FL can be viewed as a variant

of the multi-terminal source coding problem, where the goal is to reconstruct an

aggregation of the sources rather than reconstructing each source individually in

the traditional formulation. They adopt relatively strong assumptions on the local

gradients to be a noisy version of the true optimal gradients corrupted by independent

additive white Gaussian random noise (AWGN). They propose to reconstruct the

true optimal gradients. Such assumptions categorize their problem formulations as

7
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Figure 1.3: The direct multi-terminal source coding problem with K terminals.

another branch of multi-terminal source coding, referred to as indirect multi-terminal

source coding, also known as the CEO problem [9]. Within this framework, [85]

conducts convergence analysis and characterizes the rate region, but their results

are only applicable for the i.i.d. local data case (the local datasets of each client

follow the same Gaussian distribution). In contrast, we formulate the source coding

problem in FL as the direct multi-terminal source coding problem. We present the

basic scheme in Figure 1.4. We assume that each client obtains a random Gaussian

sequence, which is their local gradients. Furthermore, we assume that within each

sequence, the gradients are generated through an i.i.d. process. The correlation is

assumed to exist across different sequences at the same position. The goal of the

server is to reconstruct a sequence of the same length as the local gradients, such

that the aggregation distortion is minimized.

In the later sections, we will detailedly introduce our problem formulation with the

more relaxed assumption that we only require the local gradients to be jointly Gaus-

sian distributed. Therefore, all our theoretical analysis is applicable to the real-world
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Figure 1.4: Multi-terminal source coding problem with K agents in FL.

FL scenario, where the local data is heterogeneously distributed. The experimental

results validate our theory.

1.4 Generalization Error in FL

In this thesis, our primary focus is improving the communication efficiency and the

convergence in the training part of FL. However, to complete the deployment of an

FL algorithm, the trained model needs to be evaluated on unforeseen test data. The

difference between i) the average loss (or error) of the model on the training data (also

known as the model’s empirical risk) and ii) the expected loss of the model across

the entire distribution of possible data points, not just the training set (also known

as the model’s population risks) is referred to as the generalized error. Although our

9
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problem formulations and technical solutions target on reducing the empirical risk,

we provide experiment results of applying the proposed methods on test data, which

demonstrates the model’s population risks. Thus, we present a brief literature review

on the generalization error in FL, which is one of our future work directions.

The study of the generalization error is essentially a difficult topic. The problem

in the data-centralized learning settings is still poorly understood, let along in the

distributed and multi-round cases like FL. Targeting on the multi-round property

of FL, [63, 24] show that in general, smaller empirical risk is obtained with multi-

round communication. For one-round communication, [7] establish a bound on the

generalized error, for linear and location models and losses. Building upon this work,

[55, 81, 14] apply information-theoretic and rate-distortion theoretic approaches, and

provide tighter bound to a broader broader class of loss functions. However, these

work neglect the study of how the generalization error of FL-type algorithms evolves

with the number of rounds R. [56] and [21] are two outstanding recent works studying

this relationship. [56] study the upper bound on the generalized error in FL, and

propose that the population risk decays less rapidly with R than the empirical risk.

They suggest that in practice, one may find the trade off between R and the risks,

meaning larger R values help reduce the empirical risk, while smaller R values make

the population risk smaller. A concurrent work by [21] support this advocacy that

less communication leads to better generalization performance for FL. The authors

of [21] demonstrate that less frequent aggregations, hence more local updates, for

the representation extractor (often corresponds to initial layers) leads to the creation

of models with better generalization capability, particularly for heterogeneous FL

settings.

10
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Since the generalization error study is so important to quantitatively assess the

generalization characteristics of trained models, one of our future work is to integrate

it with our proposed methodologies. In this way, we may provide reliable assurances

regarding their expected performance quality and to develop new models and systems.

1.5 Contributions and Thesis Organization

The thesis consists of three published/unpublished articles that address the communi-

cation efficiency and convergence problems in Federated Learning. The contributions

are listed in the abstract sections of Chapter 2 and Chapter 3. Here is the summarized

reference information:

• Y. Liu, S. Rini, and J. Chen. 2023. ”Exploiting clients correlation benefits

communication efficiency and convergence in FL”, to be submitted to AAAI

2025.

• Y. Liu, S. Rini, S. Salehkalaibar and J. Chen, ”M22: A Communication-Efficient

Algorithm for Federated Learning Inspired by Rate-Distortion,” in IEEE Trans-

actions on Communications, vol. 72, no. 2, pp. 845-860, Feb. 2024, doi:

10.1109/TCOMM.2023.3327778.

• Y. Liu, S. Salehkalaibar, S. Rini and J. Chen, ”M22: Rate-Distortion Inspired

Gradient Compression,” ICASSP 2023 - 2023 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece,

2023, pp. 1-5, doi: 10.1109/ICASSP49357.2023.10097231.

The rest of the thesis is organized as follows:
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• Chapter 2 introduces GCFed: Exploiting Clients Correlation in Federated

Learning to Improve Communication Efficiency and Convergence.

• Chapter 3 introduces M22: A Communication-Efficient Algorithm for Feder-

ated Learning Inspired by Rate-Distortion Theory.

• Chapter 4 provides the conclusion of this thesis and the discussion of future

works.

12
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Chapter 2

GCFed: Exploiting Clients

Correlation in Federated Learning

to Improve Communication

Efficiency and Convergence

2.1 Abstract

Federated Learning has gained considerable attention as it allows for the utilization of

diverse data from various sources, enhancing model robustness and generalizability.

Extensive research has focused on reducing communication costs and improving con-

vergence. However, existing works fail to comprehensively leverage client correlation,

which we fully exploit in this work. By adopting a multi-terminal source coding for-

mulation, we propose GCFed (Gradient Correlation- aware Federated Learning) – an

13
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FL framework that exploits gradient correlation to achieve optimal rate allocation and

client selection. Specifically, we formulate the model update in Federated Learning as

a multi-terminal source coding problem in a rate-distortion perspective. Leveraging

the gradient correlation, the formulations are further converted to convex optimiza-

tion problems that calculate the upper and lower bounds of the sum-rate-distortion

function, which intrinsically determine the optimal rate for each client. Furthermore,

we propose a layer-wise client selection strategy that is seamlessly guided by the es-

timated correlation. We conduct extensive experiments to demonstrate the effective-

ness of the proposed approaches, both independently and jointly. The results validate

the superior performance of our framework compared to state-of-the-art methods.

2.2 Introduction

Among many distributed deep learning paradigms, Federated Learning (FL) has

gained considerable attention in the research community due to its ability to train

models collaboratively without sharing raw data, thereby enhancing data privacy

and security. This framework allows for the utilization of diverse data from various

sources, improving model robustness and generalizability. However, FL faces several

challenges, including data heterogeneity, system heterogeneity, and the implementa-

tion of privacy-preserving techniques, all of which complicate the training process.

Among these challenges, communication efficiency receives significant attention be-

cause the FL framework requires frequent data exchange between remote clients and

the central server. Therefore, a primary focus of investigation is reducing communi-

cation costs while maintaining satisfactory convergence.
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Significant efforts have been made in two key areas: theoretically characteriz-

ing the relationship between communication efficiency and model convergence, and

proposing practical methodologies to reduce communication overhead in real-world

FL scenarios. Reducing the total communication cost in FL can be divided into two

parts [86]: (i) reducing the number of communication iterations between the server

and clients, and (ii) lowering the communication cost at each iteration. Most the-

oretical analyses couple these two aspects together to study the convergence rate

of FL versus the total communication cost [51, 66, 50]. Consequently, the conver-

gence rate is parameterized by various indices and hyperparameters in FL settings.

Although these results provide valuable insights for researchers to develop new FL al-

gorithms, such as client selection strategies [23, 68] and aggregation methods [29, 66],

they often fail to address the reduction of communication costs per iteration due to

their problem formulations. To account for (ii), [86, 82] propose modeling the single

iteration communication problem using source coding techniques from information

theory, formulating the FL problem with rate-distortion functions. However, their

results are limited to scenarios where the local data of all clients are uniformly dis-

tributed, which does not accurately reflect real-world conditions. In this paper, we

aim to study the rate-distortion function and derive the corresponding rate allocation

schemes for heterogeneous data settings.

Rather than being driven by theoretical analysis, some works leverage statistical

insights from the transmitted data to develop methodologies. Data compression tech-

niques, such as sparsification and quantization, are effective in reducing the dimen-

sionality of client local gradients, making them widely adopted in designing practical
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FL compression solutions. However, the absence of a well-defined problem formula-

tion often makes it difficult to theoretically justify these methods.

Additionally, most existing works neglect to account for the correlation between

clients. For example, in the compression literature, the same compressor [19, 76, 4] is

applied across different clients, resulting in suboptimal rate allocation. Although some

works scratch this issue by proposing to exploit correlation in terms of clients’ local

losses [51, 50], none have addressed modeling the clients’ local gradient as random

variables and considering the correlation in terms of clients’ local gradient layer-wise.

In light of this, we adopt the direct multi-terminal source coding formulation [73, 72]

and aim to propose a correlation-aware solution that strategically selects participating

clients and achieves optimal rate allocation.

In this paper, we present a rigorous study aimed at improving communication effi-

ciency and convergence in FL from both theoretical and implementation perspectives.

We begin by formulating the model update problem in a single FL iteration as a direct

multi-terminal source coding problem. We introduce a method to estimate the clients’

gradient correlation which facilitates converting the problem into a convex optimiza-

tion problem. Based on this formulation, we characterize the upper and lower bounds

to the sum-rate-distortion function, derive optimal rate allocation, and simulate the

corresponding quantization process. Leveraging the correlation analysis, we also de-

velop a client selection strategy that allows for more flexible, layer-wise application.

Furthermore, we unify these two approaches into a comprehensive methodology, the

effectiveness of which is verified through extensive experimental results. Our contri-

butions can be outlined as follows:

• We formulate the single iteration source coding problem in FL using the direct
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Gaussian multi-terminal source coding problem, and derive a convex optimiza-

tion problem to calculate the upper and lower bounds of the sum-rate-distortion

function by estimating clients’ gradient correlation.

• Based on the sum-rate-distortion function results, we calculate and employ rate

allocation in the quantization simulations under various FL schemes. The re-

sults demonstrate that our rate allocation method produces lower distortion

under the same rate constraint. Conversely, it requires a lower rate to achieve

the same level of distortion compared to the scenario that does not account for

client correlation.

• Leveraging the correlation estimation, we develop a flexible correlation-aware

layer-wise client selection strategy that outperforms state-of-the-art (SOTA)

methods in terms of convergence speed and final accuracy. Furthermore, we

combine the client selection with rate allocation and conduct extensive experi-

ments to demonstrate the promising performance of the integrated approach.

2.3 Related Work

In this section, we briefly review the theoretical advancements and practical applica-

tions related to communication efficiency and convergence in FL.

2.3.1 Theoretical Analysis

Considerable efforts have been devoted to conducting theoretical analyses of the trade-

off between communication cost and convergence in FL. Many studies focus on char-

acterizing the global model convergence rate in relation to FL parameters, such as the
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number of clients, the degree of local data heterogeneity, the number of local updates,

and the frequency of communication between clients and the server. [88, 63, 74] lay

the foundation for FL convergence analysis by adopting basic assumptions, including

uniformly distributed local data and full client participation. [37] first examines the

convergence of FedAvg on heterogeneous local data, deriving a convergence rate under

the assumption of a strongly convex and smooth problem. Recent works have built on

similar problem formulations to further investigate convergence rates in more realistic

FL settings. For instance, [66, 29] analyze the convergence of FedAvg under partial

client participation. [51] considers the temporal and spatial correlation in clients’

availability dynamics, proposing a trade-off between maximizing convergence speed

and minimizing model bias. [50] assesses intermittent client availability and suggests

that by learning clients’ long-term participation rates, improvements could be made

in FL convergence by reducing model bias and minimizing sampling variance.

While these studies provide an intuitive understanding of factors affecting con-

vergence in FL, they do not guide the design of encoding and decoding schemes for

data transmission and aggregation in each iteration. Therefore, some researchers have

shifted their focus from the entire convergence process to analyzing the communica-

tion cost in a single FL iteration.

The essence of the single iteration FL problem lies in the server’s estimation of the

local gradient (more precisely, a function of the local gradient) obtained by the clients

based on corrupted observations. This inspires [86, 82] to formulate the problem as

a distributed source coding problem. Based on rate-distortion theory, [82] puts forth

a framework for model aggregation performance analysis, deriving the inner bound
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of the rate region that can be achieved under a uniform data setting. [86] first con-

nects the model update problem in FL with multi-terminal source coding. Their

assumption that local gradient sequences are noisy versions of the global gradient,

corrupted by additive Gaussian white noise (AWGN), places their problem formula-

tion in the category of indirect Gaussian multi-terminal source coding, also known

as the CEO problem [9, 48]. They depict the rate-region and characterize a trade-off

between communication cost and convergence guarantees. However, their analysis

is constrained to uniform data settings due to their assumptions. In contrast, by

relaxing the assumptions about the local gradient, we adopt a direct multi-terminal

source coding formulation. We aim to derive theoretical results that are applicable

to both uniform and heterogeneous local data distributions.

2.3.2 Practical Implementation

Among practical implementations aimed at reducing FL communication costs, those

involving gradient compression and client selection show the most promising potential.

Common techniques employed in gradient compression include sparsification and

quantization. Gradient sparsification [3, 28] reduces the communication load by trans-

mitting only a subset of gradient entries, exploiting the resulting vector’s sparsity.

Recent efforts focus on optimizing thresholding strategies to select the most impact-

ful gradients. Gradient quantization [4, 76, 19, 40] involves mapping gradients to a

restricted support representation using handcrafted scalar or vector quantizers. Both

sparsification and quantization, whether applied separately or jointly, significantly

enhance communication efficiency.

Within the literature on client selection methods, [66, 51] propose dynamically
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assigning weights to participating clients to mitigate aggregation bias in partial client

schemes, each grounded in different theoretical bases ([51] considers temporal and

spatial client correlation, while [66] does not). In contrast, [29, 23] develop a bi-

ased client selection strategy favoring clients with higher local losses. [50] proposes

algorithms tailored for positively correlated and uncorrelated clients based on client

availability. [68] employs Gaussian Process modeling to collectively analyze and lever-

age changes in local losses for client selection based on correlation. [80] introduces a

heterogeneity-aware approach promoting diversity through topK sparsification gra-

dient compression and client selection strategies.

Instead of relying solely on empirical observations, our methodologies are rigor-

ously derived from client gradient correlation estimation within our problem formula-

tion. Our approach integrates gradient quantization simulation and client selection,

validated through experimental results to demonstrate its effectiveness.

2.4 Problem Formulation and Technical Results

In this section, we first present the FL problem formulation with the communication

constraints. Then we introduce our problem formulation that considers the multi-

terminal source coding problem in each iteration of FL as the multi-terminal source

coding problem. Finally, the problem is converted into a convex optimization problem,

and we derive the solutions.
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2.4.1 Notations

Lowercase boldface letters (e.g., z) are used for vectors, uppercase letters for random

variables (e.g., X), and calligraphic uppercase symbols for sets (e.g., A). Given

the set A, |A| indicates the cardinality of the set. We also adopt the short-hands

[m : n] , {m, . . . , n} and [n] , {1, . . . , n}. Let M1 and M2 be two square matrices of

size Rm×m. The notation diag(M1,M2) represents the diagonal operator that places

M1 and M2 on the diagonal of a matrix of size 2m× 2m , with the remaining entries

zero-padded. We use “�” to denote positive semidefinite (PSD) partial ordering.

2.4.2 Preliminary

Consider the FL setting with K clients, each possessing a local dataset Dk ∈ D for

k = 1, ..., K wishing to minimize the loss function L as evaluated across all the clients

and over the model weights w ∈ Rm, where m denotes the dimensionality of the model

parameter. This minimization is coordinated by a parameter server (PS) as follows:

at discrete points in round t ∈ [T ], (i) the clients transmit a model update to the PS,

the PS, (ii) the PS aggregates the model updates and produces a model update, and

(iii) the updated model is transmitted to the clients. The above steps are repeated

for T times: the model obtained at time T is declared as the optimal model.

Mathematically, the loss function L is defined as:

L(w) =
1

|D|
∑
k∈[K]

Lk(Dk,w), (2.4.1)

where Lk(Dk,w) is the local loss function quantifying the prediction error of the k-th

client’s model. A common approach for numerically finding the optimal value of w is
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through the iterative application of (synchronous) stochastic gradient descent (SGD).

We define the local gradients calculated at communication round t as:

E[gkt] = E[∇Lk(Dk,wt)], (2.4.2)

where ∇Lk(Dk,wr) denotes the local gradients of the model examined at the local

dataset of the k-th client by minimizing the local loss function. Note that the ex-

pectation in (2.4.2) is taken over the randomness in evaluating the gradients – e.g.,

mini-batch effects.

In many scenarios of practical relevance, the communication between the PS is

limited in some manner, while the communication from the PS to the client is un-

constrained. One common constraint considered in the literature on communication

between clients and the PS is the rate constraint– in which the communication is

restricted to dRk bits from each client to the PS. To meet this constraint, before com-

munication, each client k compresses the d-dimensional gradient vector gkt to a dRk

binary vector through a compressor compRk
: Rd → [2dRk ], where the sum over all

Rk is constrained, and the client is dropped (unselected) if assigned a rate of Rk = 0.

The PS aggregates all the compressed gradients and forms the new global weights

wt+1 = wt − ηtĝt, (2.4.3)

for t ∈ [T ] and where

ĝt =
1

K

∑
k∈[K]

comp−1
Rk

(compRk
(gkt)), (2.4.4)
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and where w0 is randomly drawn according to some distribution. The ultimate goal in

a single FL iteration is to minimize the distortion in gradient reconstruction, i.e., the

distortion between gt and ĝt. We assume that minimizing the gradient reconstruction

distortion leads to minimum perturbation of the accuracy.

2.4.3 Data Heterogeneity

In many practical scenarios, the local dataset present at the client is intrinsically

heterogeneous. A possible way to describe this data heterogeneity is by assuming

that the data entries are i.i.d. draws from certain distribution present at a client k.

Mathematically, let a dataset i-the dateset entry at user k – including features and

labels – be denoted as the vector mik. The distribution of mik is obtained as:

mik ∼ P k
m =

∑
j∈[J ]

λjkP
(j)
m . (2.4.5)

In other words, we assume that there exists a kernel of J distributions

{
P (j)
m

}
j∈[J ]

, (2.4.6)

and each client observes a data distribution which is obtained as mixture of these

kernel distributions according the coefficients

λk = {λkj}j∈[J ] . (2.4.7)
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2.4.4 Deep Neural Networks (DNNs)

While the problem formulation in Sec. 2.4.2 is rather general, in the remainder of

the paper, we shall only consider the scenario in which the model weight models a

DNN N. In the context of DNN training, it is often convenient to re-parameterize the

vector of parameters w int the matrix W . For simplicity, let us consider a classic

Multi-Layer Perceptron (MLP) with L layers, each of j neurons, with activation σ

and without bias. For this setting, there are j2 weights connecting the neurons at

layer l to those of layers l+ 1. Accordingly, let us re-define the matrix W as a matrix

of size L× j2 in which each row contains the weights between two given layers.

2.4.5 Relevant Assumptions

In general, the iterations in (2.4.3) for the learning problem in (2.4.1) give rise to a

random process when accounting for the (i) randomness in the model initialization

and (ii) in the evaluation of the stochastic gradient. The characterization of the

properties of this process is generally considered a hard problem. In the following, we

adopt a set of assumptions on the distribution of the gradients that make it possible to

develop a rigorous theoretical and numerical approach. Although we do not validate

these assumptions, we argue that the numerical results show the effectiveness of the

approach developed from them. These gradient assumptions are as follows:

A1 well-defined random process: Consider a given learning problem as in

(2.4.3) and a given DNN N: then (i) the heterogeneity in the data distribu-

tion, (ii) the randomness in the network initialization and (iii) the randomness
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in the gradient evaluation give rise to the well-defined random process

G = {gkt}k∈[K],t∈[T ]. (2.4.8)

A2 gradient independence over time: We assume that the process G is such

that gkt ⊥ gkt′ for t 6= t′.

A3 gradient iid-ness in a layer: For each client, the gradient is an i.i.d. sequence

within each layer.

A4 joint Gaussianity across clients: For the same entry in the same layer,

the distribution of gradients at client k and client k′ follows a joint Gaussian

distribution with mean zero and covariance Σk,k′ . Σk,k′ is the (k, k′)-entry of a

covariance matrix Σ.

A5 independence inter-layer: For simplicity, the gradients across different layers

are assumed to be independent in our problem formulation. One may view this

as equivalent to considering a single-layer network theoretically. In Sec.2.4.7,

Sec.2.5 and Sec.2.6, technical analyses and implementations are done layer-wise

for multi-layer DNNs. A multi-layer generalization is discussed in App.A.3.

Remark 1 [Change of Notation] Based on the above assumptions, we model each

layer of the gradient at client k as a single random variable with each element in

the sequence being a different realization. We change the notation of the gradient

sequence of length n at client k at round t to be {Gkt}ni=1, abbreviated as Gn
k (omitting

round t). In App.A.3, a random vector generalization is included.
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Figure 2.1: The Gaussian multi-terminal source coding problem in FL as introduced
in Sec. 2.4.6. See Remark 1 for notations.

2.4.6 Multi-terminal Source Coding Problem in FL

With the above preliminaries, we shall introduce our problem formulation that con-

siders the model update problem in single FL iteration as the direct Gaussian multi-

terminal source coding problem.

As depicted in Fig.2.1, at communication round t, client1 through clientK each

obtains a local gradient sequence of length n, denoted as Gn
1 , G

n
2 , ..., G

n
K . Let the

source be a Gaussian source with mean zero and positive definite covariance matrix

ΣG. Following assumptions A3 and A4 that assume i.i.d.-ness within each local

gradients sequence and correlation across different clients at the same-position-entry

of local gradients, we let Gk(i), i = 1, ..., n denote the entries of local gradient sequence

of the k-th client, for k = 1, ..., K. Each client encodes the local gradients using
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encoding functions fk: Rn → {1, 2, ...,Mk}, k = 1, ..., K and sends the encoded

gradients to PS at respective rates Rk, k = 1, ..., K.

Differing from traditional distributed learning problems that focus on reconstruct-

ing each individual source, the decoder Φ in FL aims to reconstruct an aggregation

function of the sources. Denote the FL reconstruction as Ḡn with the same length as

each source. Let d denote the desired distortion level. The distortion constraint in

FL is defined as

1

n

n∑
i

( 1

K

K∑
k=1

Gk(i)− Ḡ(i)
)2

≤ d. (2.4.9)

Here, we take FedAvg aggregation with an equal amount of local data as an example

for simplicity. Note that our results could be generalized to any linear aggregation

function with slight adjustments, as described in App.A.3.

Now we define the model update problem in a single FL iteration as the infimum

of all achievable sum-rates for all possible encoders and decoder choices satisfying

(2.4.9). The ultimate formulation of the problem we aim to solve is as

R∗(d) , lim
n→∞

inf
f1,f2,...,fK ,Φ

1

n

∑
k∈[K]

logMk

s.t.
1

n

n∑
i

( 1

K

K∑
k=1

Gk(i)− Ḡ(i)
)2

≤ d.

(2.4.10)

2.4.7 Technical Results

Following the work of [72, 73], we derive the upper and lower bounds to the mini-

mum sum-rate R∗(d). To achieve this, we shall introduce several auxiliary variables:

ΣZ , D,Σk,Γk, k = 1, 2, ..., K (more details in Appendix A.1).

First we define a positive definite covariance matrix as ΣZ based on the source
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covariance matrix ΣG, such that Σ−1
G +Σ−1

Z is a diagonal matrix. We define a diagonal

matrix such that Σ = diag(Σ1,Σ2...,ΣK) = (Σ−1
G + Σ−1

Z )−1. Note that Σ and ΣZ

uniquely determines each other. In the following, we keep both in the formulation

but they should not be considered as two independent variables.

In addition, we define D to be the distortion covariance matrix of the MMSE

estimation for G , ((Gn
1 )T , (Gn

2 )T , ..., (Gn
K)T )T given the encoder outputs WK ,

(W1,W2...,WK) with Wk = fk(G
n
k), k = 1, 2, ..., K, i.e., D = ΣG|WK .

Moreover, we define another diagonal matrix Γ = diag(Γ1,Γ2...,ΓK), where each

diagonal element Γk, k = 1, 2, ..., K is defined as the distortion of the MMSE esti-

mation for each source given corresponding encoder’s output and a remote source,

i.e., Γk = ΣGnk |Y,Wk
, k = 1, 2, ..., K. Here Y is determined by ΣG and ΣZ , and

Gn
1 , G

n
2 , ..., G

n
K are independent conditioned on Y.

And the relationship between D,ΣZ and Γk can be verified by following the deriva-

tion of (10) in [72] that:

diag(Γ1, ...,ΓK) � (D−1 + Σ−1
Z )−1. (2.4.11)

Additionally, we define 1 ∈ RK to be an all ones vector. With auxiliary variables

introduced, we obtain the expressions for the upper bound R̄∗(d) and lower bound

R∗(d) to the minimum sum-rate.
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Upper bound, also referred to as the Berger-Tung upper bound [8, 70], is as:

R̄∗(d) ,

max
Σ1,...,ΣK

min
D,Γ1,...,ΓK

1

2
log
|ΣG + ΣZ | |diag(Σ1, ...,ΣK)|
|D + ΣZ | |diag(Γ1, ...,ΓK)|

s.t. ΣZ = (diag(Σ1, ...,ΣK)−1 − Σ−1
G )−1,

0 � diag(Σ1, ...,ΣK) � ΣG,

0 � D � ΣG,

1 ·D · 1T ≤ d,

0 � diag(Γ1, ...,ΓK) � diag(Σ1, ...,ΣK),

diag(Γ1, ...,ΓK) = (D−1 + Σ−1
Z )−1.

(2.4.12)

Lower bound has the same form except for the last constraint, where “�” re-

places “=”, as:

R∗(d) ,

max
Σ1,...,ΣK

min
D,Γ1,...,ΓK

1

2
log
|ΣG + ΣZ | |diag(Σ1, ...,ΣK)|
|D + ΣZ | |diag(Γ1, ...,ΓK)|

s.t. ΣZ = (diag(Σ1, ...,ΣK)−1 − Σ−1
G )−1,

0 � diag(Σ1, ...,ΣK) � ΣG,

0 � D � ΣG,

1 ·D · 1T ≤ d,

0 � diag(Γ1, ...,ΓK) � diag(Σ1, ...,ΣK),

diag(Γ1, ...,ΓK) � (D−1 + Σ−1
Z )−1.

(2.4.13)

It should be emphasized that after this relaxation, R∗(d) in (2.4.13) is not on a lower
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bound for the Berger-Tung upper bound but also a lower bound for R∗(d). Inspired

by [87], we develop an iterative algorithm that solves the max-min problem presented

in (2.4.12) and (2.4.13) and the same time. Specifically, we first calculate the lower

bound for R∗(d); substituting the optimal Γ1, . . . ,Γk back into (7) gives rise to the

upper bound R̄∗(d). Detailed algorithm is presented in Appendix (A.2).

Rate Allocation: in the following, we consider the upper bound of the minimum

sum-rate R̄∗(d) for rate allocation, as it is sufficiently achievable, while the lower

bound may not. To derive the optimal rate allocation scheme following the sum-rate

calculated in (2.4.12), we shall apply binning 1. We use the results from the max-min

problem, Σk and Γk to define Mk, for k = 1, ..., K to be a diagonal matrix with the

same dimension as Σ as

Mk = diag(Σ1, ...,Σk,Γk+1, ...ΓK). (2.4.14)

Now we can derive the expression individual rate for each client as:

Rk =
1

2
log
|ΣZ(ΣZ −Mk)

−1ΣZ |
|ΣZ(ΣZ −Mk−1)−1ΣZ |

+
1

2
log
|Σk|
|Γk|

, for k = 1, ..., K,

(2.4.15)

which satisfies that
∑K

k=1Rk = R̄∗(d). Note that the result calculated from (2.4.15)

is not the unique optimal rate allocation scheme. By changing the estimation order,

one may find K! optimal rate allocation schemes, and they, as corner points, define

a optimal dominant face. More details are found in Appendix A.5.

1also referred to as Cover’s random binning [18] or Gel’fand-Pinsker coding [20].
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Figure 2.2: Example dominant faces (colored) that describe the optimal rate
allocation schemes for K = 2.

Contrary to considering binning, one can ignore the correlation and derive a dif-

ferent rate allocation scheme under the same sum-rate constraint, which we refer to

as the “no binning” case. Details are included in Appendix A.5.

Another noteworthy feature of our proposed approach is that there indeed exist an

infinite number of optimal rate allocation schemes attaining the same optimal sum-

rate. The region formed by the equivalent rate allocations is depicted in Fig.2.2 for

K = 2 (left) and Fig.2.3 for K = 3 (right). This region corresponds to the dominant

face of a polymatroid arising from the inequalities in (2.4.12), and the corner points

are associated with a specific decoding order of the client, giving rise to K! corner

points, which can be calculated using variants of (2.4.15). More detailed insights are

included in App.A.5.
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Figure 2.3: Example dominant faces (colored) that describe the optimal rate
allocation schemes for K = 3.

2.5 Proposed Methods

In this section, we present a detailed exposition of our method, which stems from

the technical results. First, we elaborate on the steps for performing correlation

estimation, which is not part of the original FL framework, but is essential to the

success of our methods. Then we present a novel client selection strategy, which is a

natural extension leveraging the correlation estimation.

2.5.1 Correlation Estimation in FL

As presented in the problem formulation and technical results, our formulations pro-

foundly rely on the correlation, which is represented by the covariance matrix of

clients gradients, ΣG. We employ a simple yet effective random sampling procedure

to achieve correlation estimation, described as follows. Note, we only consider the
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correlation for the same layer across different clients as stated in the assumption sec-

tion. We leave the investigation on cross-layer correlation to our future work. The

specific steps include:

1. Server randomly generates sets of indexes layer-wise and broadcast them along

with the global model to the clients at the beginning of each communication

iteration.

2. After finishing local updates, clients sample their resulting gradients according

to the indexes layer-wise and send them back to the server.

3. As all the clients sample from corresponding indexes in gradients tensors, the

server calculates one covariance matrix for each layer.

2.5.2 Correlation-aware Layer-wise Client Selection Strategy

Besides implementing rate allocation based on the estimated correlation, it is so

informative that seamlessly allows us to undertake the calculation of the expected

distortion, which naturally facilitates our client selection strategy. Given the number

of clients needs to be selected, n, and the covariance matrix, ΣG ∈ RK×K , we perform

client selection as follows:

1. First we construct a “combination matrix”, C. Each row in C is a boolean

vector, representing one combination of choosing n out of k, e.g., [1, 0, 1] repre-

senting choosing the first and the third client out of all three clients.

2. Then we stack an all-ones vector at the bottom of C , and multiplying the co-

variance matrix ΣG by C on its left and CT on its right. We compute a square
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matrix, denoted as Q ∈ R(m+1)×(m+1), where m =
(
n
x

)
, and Q , CΣGC

T . We

note that the first m diagonal terms of Q represent the variances of correspond-

ing selection, while the last diagonal terms represent the variance of considering

all clients, in other words, the variance of the true gradients.

3. Finally, take the difference between the first m diagonal terms with the last

diagonal term of Q, we calculate a list of distortion values, where the smallest

one indicates the optimal client selection combination.

Note, the resulting client selection strategy yields the smallest expected distor-

tion with respect to the “true” FedAvg result comparing to all other choices from

the covariance matrix ΣG perspectives. Please refer to Appendix (A.4) for more

details. We point out that all computation are conducted on the server, which is

universally assumed to have substantial computational capability, thereby avoiding

any computational burden in FL. Furthermore, we highlight the flexibility of our

strategy as it allow us to perform different client selection layer-wise because the cor-

relation estimation is done layer-wise. More importantly, this scheme introduce no

extra communication overhead as the amount of total communication cost is the same

comparing to traditional client selection strategies. This innovation in unprecedented

in the FL literature, and its effectiveness is verified and explained in the Experiment

Section.

2.5.3 Overall Framework

We present our method in Algorithm (1), where Sample, CorrelationEstimation,

ClientSelection and RateAllocation functions have been described above, and

ClientUpdate is chosen from deep learning optimization method like SGD. Note
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that we refer to [84, 83] to approximate the dithered quantization process including

ClientEncode and ServerDecode by passing the source through an additive noise

channel. The approximation includes adding a uniformly distributed noise to the

source before quantization and subtracting from the quantizer output is proven to be

accurate in all levels in dithered quantization. The detailed calculation is included

in Appendix (A.5). With acknowledging that incorporating correlation estimation

into the FL framework inevitably introduces additional communication and compu-

tation costs, we point out that the costs generated by our method are minimal and

insignificant when weighed against the benefits.
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Algorithm 1 Training procedure of GCFed

1: Initialize Global Model w0

2: for communication iteration t = 1 to T do
3: Server randomly sample index vectors ~idx for each layer of the model
4: Server broadcast current global model wt and ~idx
5: for client k = 1 to K in parallel do
6: Gn

kt ← ClientUpdate(Dk, wt)
7: for layer l = 1 to L in parallel do
8: G

(s)
ktl ← Sample(Gn

ktl , ~idx)
9: end for
10: G

(s)
kt = [G

(s)
kt1, G

(s)
kt2, ..., G

(s)
ktL]

11: Client sends G
(s)
kt back to Server

12: end for

13: Server performs layerwise:
14: ΣG ← CorrelationEstimation(G

(s)
kt )

15: Kt ← ClientSelection(ΣG) , Kt ∈ K
16: Rkt ← RateAllocation(ΣG, Kt)
17: Server broadcast Kt and Rkt

18: for client k̃ = 1 to Kt in parallel do
19: for layer l = 1 to L in parallel do
20: Ĝn

k̃tl
← ClientEncode(Gn

k̃tl
,Rktl)

21: end for
22: Ĝn

k̃t
= [Ĝn

k̃t1
, Ĝn

k̃t2
, ..., Ĝn

k̃tL
]

23: Client sends Ĝn
k̃t

back to Server
24: end for
25: wt+1 ← FedAvg(Kt, ServerDecode(Ĝn

k̃t
, Rkt))

26: end for
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2.6 Experiments

In this section, we provide details about our numerical experiment. We first illustrate

the experiment setting. Then we present simulation results that validate our technical

results in Section III. Following that, we compare our client selection strategy with

three baselines and conduct ablation study regarding to its two variants. Finally, we

show that the integration our client selection strategy with compression demonstrate

promising performance.

2.6.1 Experiment Settings

We conduct experiments on CIFAR-10 [32] and Fashion-MNIST datasets [79] with

a VGG16 network [61] and a CNN network, respectively. Note that the application

of our approach is not limited to our chosen dataset or network architecture. For

the purpose of efficiently analyzing the effectiveness of our methods, we initialize the

network using a pre-trained VGG16 weight obtained from ImageNet-1K [16], while

initializing the last output layer in order to match the output dimension. During the

training process, we freeze the features part of the network except for the last three

CONV layers and the subsequent ReLU and pooling layers. Also, we unfreeze the

entire classifier part, which consists of 3 Fully-Connected(FC) layers and ReLU and

Dropout layers. All the correlation estimation and related applications are deployed

on the 3 FC layers because we focus on the spatial correlation between the same

position in FC layers. For each layer, the server randomly samples 100 indexes re-

gardless of the size of the layer. More experiment details are included in App.A.7 We

experiment six different heterogeneous data partitions on K = 10 clients as follows.
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(i) Partition by Shards (PS): in this setting, the entire training dataset is di-

vided into K ·S = 10 ·S shards, where S is a parameter controlling the hetero-

geneity level. Within each shard, all the data have the same label. Each client

will randomly take S shards to consist the local dataset. Thus, a smaller S

value indicates a more heterogeneous setting, while a larger S value represents

a more uniform case. For example, the extreme case is when S = 1, meaning

that all the local data of each client is of the same one label. In comparison,

when S = 5, the local data of each client has at most 5 different labels (we

don’t exclude the case where client draw two or more shards of the same label).

We refer to [68] for this implementation. We experiment with S = 1, 2 and 5.

(ii) Partition by Bias Level (PB): ε ∈ [0, 1] indicates the local dataset dis-

tribution: each client is assigned with a bias (favorite) label n ∈ [1, ..., 10].

Among the local dataset of each client, ε multiplying the total number of local

data points are drawn according to the bias label. The rest 1 − ε multiplying

the total number of local data points are drawn uniformly from the remaining

dataset. A greater ε value indicates more heterogeneity. We experiment with

ε = 0.25, 0.5 and 0.75.

Clients performs 3 rounds of local updates before they communicate with the

server. We use SGD as the optimizer with learning rate 0.03 for i) Partition by

shards and 0.01 for ii) Partition by bias level, respectively, with momentum equals

to 0.5 and learning rate decay equals to 0.995. We apply FedAvg to aggregate the

clients updates. We choose the distortion to be d = 0.1 · (1 · ΣG · 1) (0.1 times the

maximum distortion), which uniquely determines the sum rate. All experiments are

repeated with 3 random seeds.
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2.6.2 Binning vs. No Binning

Shown in Figure 2.4, on the left, we present the rate gain comparing “binning” with

“no binning” under the same distortion level through out the training process. Each

curve indicates one heterogeneous data partition. At the top, we show the distortion

gain comparing “binning” with “no binning” under the same rate constraints. At the

bottom, we show in a reversed way that under the same rate constraint, consider-

ing the correlation (“binning”) yields much less distortion comparing to ignoring the

correlation (“no binning”) under all heterogeneity settings. The results validates our

technical results, where we see consistent gains through the entire training process

under all heterogeneity settings. Especially, the gains are more obvious when the

convergence is approaching to later iterations, where we assume the local gradients

become more correlated to each other comparing to the initial stage. Furthermore,

the results indicate that there is potentially more gain when local data is more het-

erogeneous comparing to when local data is more uniformly distributed.

As our problem formulation and proposed approach follows the rate-distortion

theory, the rate distortion curves yielded by our correlation estimation follow the

traditional non-increasing convex shape, which is illustrated in Appendix A.6. Here,

we focus on showing the gains attained through our approaches.
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Figure 2.4: Top: under the same distortion constraint, the rate gain in terms of
number of bits through the converging process; Bottom: under the same rate
constraint, the distortion gain in terms of percentage through the converging

process.

2.6.3 Convergence Comparison to SOTA methods

We compare the convergence rate of our method with three baselines: FedCor [68],

AFL [23] and Pow-d [29] following the experiment settings described in Sec. 2.6.1.

As shown in Figure 2.5, our method demonstrates the fastest convergence speed

and achieves the highest test accuracy in all settings. Although in some cases, the

performance gap is less significant between ours and the baselines, our methods obvi-

ously outperforms the others under the more heterogeneous settings, especially when
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CIFAR-10
Partition by Shards, S

S = 1 S = 2 S = 5
FedCor 27.68 ± 1.52 44.14 ± 5.23 59.68 ± 0.67

AFL 38.23 ± 0.87 51.92 ± 0.58 59.65 ± 1.13
POWER-OF-CHOICE 38.83 ± 1.99 52.53 ± 0.71 60.77 ±0.46

Ours 40.19 ± 0.84 54.06 ± 0.44 60.64 ± 1.53

CIFAR-10
Partition by Bias level, ε

ε = 0.25 ε = 0.5 ε = 0.75
FedCor 67.55 ± 0.37 66.46 ± 0.52 62.39 ± 0.69

AFL 67.55 ± 0.10 66.14 ± 0.36 62.18 ± 0.31
POWER-OF-CHOICE 67.52 ± 0.21 65.99 ± 0.36 62.06 ± 1.42

Ours 67.52 ± 0.08 66.3 ± 0.71 62.84 ± 0.56

Table 2.1: Test accuracy comparison to SOTA methods in six heterogeneous
settings on CIFAR-10.

S = 1 and S = 2.

In Table 2.1 and Table 2.2, we numerically display the test accuracy (mean±std)

of the converged models. Our method achieves the best test accuracy among 8 out

of 12 settings. In 3 out of the losing cases, our method lags behind the best by small

margins, no more than 0.16%. While in the winning cases, our method leads the

second-best by up to 1.83% on CIFAR-10 and 7.02% on Fashion-MNIST.
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Fashion-MNIST
Partition by Shards, S

S = 1 S = 2 S = 5
FedCor 20.15 ± 2.82 31.18 ± 4.81 42.11 ± 8.16

AFL 20.27 ± 8.27 37.33 ± 3.22 48.93 ± 4.77
POWER-OF-CHOICE 24.13 ± 11.49 44.29± 3.26 52.78 ± 5.33

Ours 20.08 ± 2.08 44.60 ± 6.17 59.80 ± 4.25

Fashion-MNIST
Partition by Bias level, ε

ε = 0.25 ε = 0.5 ε = 0.75
FedCor 71.70 ± 0.21 68.92 ± 2.92 64.76 ± 2.37

AFL 71.23 ± 0.40 69.92 ± 0.29 65.27 ± 3.53
POWER-OF-CHOICE 71.85 ± 0.46 70.33 ± 0.46 64.47 ± 2.34

Ours 71.85 ± 0.15 70.64 ± 0.69 66.98 ± 2.56

Table 2.2: Test accuracy comparison to SOTA methods in six heterogeneous
settings on Fashion-MNIST.

2.6.4 Client Selection Ablation Study

To demonstrate the effectiveness of our client selection strategy, we conduct ablation

study against two implementations. We refer to “Random” as to randomly selecting

three out of total ten clients. And “Top” refers to selecting the clients with the

largest three variance values in the covariance matrix, ΣG. In order to maintain a fair

comparison, layer-wise selection is enabled for all three implementations.

As shown in Figure 2.6, Table 2.3 and Table 2.4, our method demonstrates superior

performance comparing to the other two implementations in terms of both converging

speed and converged test accuracy. We also observe greater performance gains of our

method under more heterogeneous settings.
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Figure 2.5: Convergence comparison between our client selection strategy and the
SOTA. Each figure represents one heterogeneous setting. All experiments in one
figure share the same hyperparameters except for the client selection strategy.

43

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – Y. Liu; McMaster University – Electrical and Computer Engineering

CIFAR-10 S = 1 S = 2 S = 5 ε = 0.25 ε = 0.5 ε = 0.75
Random 37.25 52.02 59.95 67.68 65.91 62.17

Top 32.48 50.86 59.16 67.40 65.52 61.54
Ours 40.19 54.06 60.64 67.52 66.30 62.84

Table 2.3: Ablation study of layer-wise client selection on CIFAR-10.

Fashion-MNIST S = 1 S = 2 S = 5 ε = 0.25 ε = 0.5 ε = 0.75
Random 19.20 36.98 51.26 71.71 70.29 65.60

Top 17.59 40.07 53.43 71.34 68.98 62.85
Ours 20.08 44.60 59.80 71.85 70.64 66.98

Table 2.4: Ablation study of layer-wise client selection on Fashion-MNIST.

2.6.5 Unify Client Selection & Compression

Given the demonstrated effectiveness of our rate allocation and client selection meth-

ods when being applied independently, it is natural to inquire about their performance

when used jointly. In this experiment, we apply our client selection strategy first to

select 3 clients out of 10 in each round. Then we simulate three compression schemes:

i) “binning”, ii) “no binning” and iii) “centralizing”, where binning reflects to our

optimal rate allocation, no-binning represents ignoring the correlation, and centraliz-

ing simulates the ideal but impractically case where one has the access to all clients

original gradients. The details of the simulations are included in Appendix A.5.

In this experiment, all three schemes are under the same total rate constraint in

each communication round, and we compare the model convergence speed and final

accuracy. The results in Table 2.5 show that rate allocation with “binning” outper-

forms the “no binning” counterpart in terms of convergence accuracy. Comparing to

the ideal but unrealistic “centralizing” case, considering the correlation significantly

narrows the convergence gap, and further validate our conjectures that exploiting

clients correlation benefits FL under heterogeneous settings.
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Figure 2.6: Ablation study on layer-wise client selection implementations.
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Method
PS, S value PB, ε value

1 2 5 0.25 0.5 0.75
centralizing 39.63 52.71 61.06 67.43 65.67 64.11
no-binning 24.55 42.93 56.05 67.63 65.17 63.03

binning 26.77 49.95 60.84 67.77 65.97 63.46

Table 2.5: Test accuracy resulting from integrating our client selection and
quantization approaches.

2.6.6 The number of subsamples VS. The Achievable Mini-

mum Sum-rate

Here, we present the experiment results demonstrating the effect of the number of

subsamples (taken to estimate the correlation ΣG) on the resulting achievable mini-

mum sum-rate (the upper bound R̄∗(d) in (2.4.12)). Two layers with different sizes

are taken as examples, each respectively has 16000 and 500 elements. For the layer

having 16000 elements, we randomly take 8 groups of subsamples, each has the num-

ber of 8000, 3200, 1600, 800, 320, 160, 80 and 32. Similarly, for the layer having

500 elements, we randomly take 4 groups of subsamples, each has the number of 250,

100, 50 and 25. For each group of subsamples, we execute the iterative algorithm to

compute the the upper bound R̄∗(d) in (2.4.12) and plot the results in Figure 2.7 and

Figure 2.8.

We observe that for the layer with larger size, a more aggressive subsampling

number can be chosen without sacrificing too much accuracy in terms of the resulting

achievable min sum-rate. In Figure 2.7, the subsampling number can be set as 1
200

of

the total number. However, for the layer with fewer elements, the resulting achievable

min sum-rate may suffer from a lot accuracy loss even when the subsampling number is

set as 1
5

of the total number, and the accuracy loss keeps increasing as the subsampling
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Figure 2.7: The achievable min sum-rate VS. the number of subsamples on the
gradient layer with 16000 elements.

elements get fewer. Intuitively, we conjecture this effect as the statistic information of

the gradients in large size layers follow closer to our assumptions, while for the small

size layers, the assumptions are violated due to too few elements. A more detailed

study about the relationship between the number of subsamples and the achievable

min sum-rate is one of our future work.
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Figure 2.8: The achievable min sum-rate VS. the number of subsamples on the
gradient layer with 500 elements.
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2.7 Conclusion

This work studies the communication efficiency and convergence problem in FL by

exploiting the clients’ gradient correlation. From a rate-distortion perspective, we

formulate the model update in single FL iteration as a multi-terminal source coding

problem, and convert it to a convex optimization problem. With the derived convex

optimization problem and upper and lower bounds expressions for the minimum sum-

rate-distortion functions, we propose GCFed, an FL framework that achieves optimal

rate allocation and client selection. Experimental results on different levels of het-

erogeneity verify that considering the gradient correlation improves communication

efficiency and convergence in FL.
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Chapter 3

M22: A Communication-Efficient

Algorithm for Federated Learning

Inspired by Rate-Distortion

3.1 Abstract

In federated learning (FL), the communication constraint between the remote clients

and the Parameter Server (PS) is a crucial bottleneck. For this reason, model updates

must be compressed so as to minimize the loss in accuracy resulting from the commu-

nication constraint. This paper proposes ”M-magnitude weighted L2 distortion + 2

degrees of freedom” (M22) algorithm, a rate-distortion inspired approach to gradient

compression for federated training of deep neural networks (DNNs). In particular,

we propose a family of distortion measures between the original gradient and the

reconstruction we refer to as “M -magnitude weighted L2” distortion, and we assume

that gradient updates follow an i.i.d. distribution – generalized normal or Weibull,
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which have two degrees of freedom. In both the distortion measure and the gradient

distribution, there is one free parameter for each that can be fitted as a function of the

iteration number. Given a choice of gradient distribution and distortion measure, we

design the quantizer to minimize the expected distortion in gradient reconstruction.

To measure the gradient compression performance under a communication constraint,

we define the per-bit accuracy as the optimal improvement in accuracy that one bit

of communication brings to the centralized model over the training period. Using

this performance measure, we systematically benchmark the choice of gradient distri-

bution and distortion measure. We provide substantial insights on the role of these

choices and argue that significant performance improvements can be attained using

such a rate-distortion inspired compressor.

3.2 Introduction

Federated learning (FL) holds the promise of enabling the distributed training of large

models over massive datasets while preserving data locality, guarantying scalability,

and also preserving data privacy. Despite the great advantages promised by FL, the

communication overhead of distributed training poses a challenge to contemporary

networks. As the size of the trained models and the number of devices participating

to the training is ever increasing, the transmission from remote clients to the param-

eter server (PS) orchestrating the training process becomes the critical performance

bottleneck [31, 36]. In order to address this issue, the design of an effective gradi-

ent compression algorithm is of paramount importance. In this paper, we propose

”M-magnitude weighted L2 distortion + 2 degrees of freedom” (M22) – a gradient

compression algorithm inspired by rate-distortion principles. More specifically, M22
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adopts model-wise sparsification for preliminary gradients dimension reduction and

then performs gradient quantization for further compression using (i) a family of

distortion metrics which provides higher precision for gradients of larger magnitudes

and (ii) under the assumption that the gradients as i.i.d. samples from a distribution.

We show that, by leveraging these two modelling choices, one can design an efficient

gradient compressor in FL scenarios. More specifically, we measure the compression

performance in terms of the per-bit accuracy, that is the largest improvement in accu-

racy that can be attained, on average, by one-bit communication between the remote

clients and the PS. Through this performance measure, we are able to show that the

superiority of M22 over other approaches in the literature.

3.2.1 Literature Review

In recent years, distributed learning has received considerable attention in the liter-

ature [11]. In the following, we shall briefly review the contributions dealing with

communication aspects of FL, which are most relevant to the development of the

paper. From a general perspective, FL consists of a central model which is trained

locally at the remote clients by applying Stochastic Gradient Descent (SGD) over

a dataset present at the clients. The local gradients are then communicated to the

central PS for aggregation into a global model. Since this aggregation model does not

require data centralization, it provides substantial advantages in terms of scalability,

robustness, and security [36]. For these reasons, there has been a significant interest

in developing effective and efficient FL algorithms [59, 71, 5].

When considering a concrete deployment of FL algorithms, the performance bot-

tleneck is often found in the communication rates between the remote clients and the
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PS. This scenario is often referred to as the rate-limited FL scenario [60]. In this

case, some researchers put efforts on finding compression solutions in both commu-

nication directions [54, 12, 58], while most of the researchers dedicate to determine

the relationship between the accuracy and the uplink communication rate [60, 53].

In order to limit the communication overhead in the rate-limited FL settings, com-

pressing the local gradient at the remote clients has been proven to be effective [64].

Generally speaking, gradient compression algorithms can be divided in two classes:

gradient sparsification [59, 71, 5, 69, 3, 38, 31, 25] and (ii) gradient quantization

[54, 12, 58, 57, 31, 19, 10, 2, 35, 28, 64, 52, 4, 76].

Let us discuss these two approaches next.

Gradient sparsification: Gradient sparsification consists in selecting only a subset of

the gradient entries for transmission. The sparsity of the resulting vector can be

leveraged to reduce the communication load. Generally, sparsification is based on the

magnitude of the gradients – topK -and various strategies in selecting the sparsifica-

tion threshold have been investigated in the literature [69, 3, 38]. In [31], the authors

proposed an algorithm that applies a sparsification mask which is learned locally,

using the dataset available at the remote clients. Another approach in obtaining a

sparse gradient is by updating a subset of the network weights at each iterations: this

approach was investigated in [25]. Gradient sparsity might be identified in some lin-

ear subset of the original space. For this reason, dimensionality reduction techniques

followed by sparsification offer an effective approach. The authors of [28] considered

a scheme in which each client performs local compression to the local stochastic gra-

dient by count sketch via a common sketching operator. Random rotations were also

considered in [25].
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Gradient quantization: Gradient compression generally refers to the procedure of

quantizing the gradient vector, that is mapping to a restricted support representation.

Scalar quantization was considered in [4]. The authors of [76] proposed TernGrad:

this algorithm uses ternary gradients to reduce communication cost. In other works in

literature, the gradient compression is performed on the whole gradient vector, rather

than entry-wise. For instance, the authors of [19] introduced vector quantization for

SGD. Generally speaking, when gradient compression is employed, the training per-

formance can be improved through error feedback [64, 52]. Partial model updates,

together with sampling and quantization, were considered in [12]. To investigate the

loss accumulation issue being introduced by the quantization-based approaches, the

authors in [58] considered the interplay of model compression at both the remote

clients and the central server. Sparse ternary compression for non-i.i.d. data was

studied in [54] for the compression both uplink and downlink communications.

More naively, constraints in the communication capabilities between the remote

clients and the PS can also be addressed by restricting the number of communication

iterations between gradient updates [43, 26]. From an implementation-oriented per-

spective, [65] studied the effect of gradient quantization when constrained to a sign-

exponent-mantissa representation. The design of good gradient quantizers sometimes

relies on the assumption on the gradient distribution. Assuming that DNN gradient

entries are i.i.d. distributed according to some distributions is a powerful approx-

imation which is adopted in various contexts, from network pruning to inference

modelling. Some authors assumed that gradients have i.i.d Gaussian [30] or Laplace

[27] entries. Other authors considered distributions with two degrees of freedom, such

as generalized Normal [13] or two-sided Weibull [17].
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3.2.2 Contributions

In this paper, we consider the FL scenario where the communication constraint is

applied on the transmission from the remote clients to the PS, while the transmission

from the PS to the remote clients is unconstrained. In this scenario, we propose M22,

a novel gradient compression algorithm inspired by rate-distortion principles. More

specifically,M22 relies on two rate-distortion principles to design a scalar quantizer

that meets the communication constraint:

•M2: M-magnitude weighted L2 distortion measure– a choice of a distortion measure

between the original and the compressed gradient: the “M -magnitude weighted L2”

distortion. This distortion promotes higher fidelity for higher gradient entries and

reflects the practitioner’s intuition that larger gradients have greater impact on the

model updates.

• 2: 2 degrees of freedom distribution fitting – the fitting of the gradient distribution

uses a distribution having two degrees of freedom: the generalized normal distribution

(GenNorm) distribution [13], or the two-sided Weibull distribution [17]. Such choice

of distributions allows one to match the variance of the gradient sample distribution,

as well as the tail decay as it evolves through the iteration number.

To measure the compression performance in the rate-limited FL setting, we in-

troduce the concept of per-bit accuracy as the relevant performance measure for dis-

tributed training under communication constraints. The per-bit accuracy corresponds

to the improvement in accuracy that a gradient compressed within R bits can pro-

vide to a given model. For the proposed algorithm – M22 – we provide a convergence

proof under the assumption that the gradient entries are i.i.d. draws from the same

distribution.
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Also, we provide extensive numerical simulation results to show that M22 outper-

forms other approaches in the literature.

Notation: In the following, lowercase boldface letters (eg. z) are used for column

vectors and uppercase boldface letters (e.g., M) designate matrices. The all-zero

vector of dimension d is indicated as 0d. We also adopt the shorthands [m : n] ,

{m, ..., n} and [n] , {1, ..., n}. The p-norm of the vector x is indicated as ‖x‖p.

Calligraphic scripts are used to denote sets (e.g., A) and |A| is used to denote its

cardinality.

The code for the numerical evaluations of this paper is provided online at https:

//github.com/yangyiliu21/FL_RD.

3.3 System Model

In the following, we consider the distributed training of a machine learning (ML)

model across N devices where the communication between the remote device and

the PS is limited to R bits per learner. We introduce the per-bit accuracy as the

performance measure that allows for the comparison across gradient compression

algorithms. Finally, the problem is specialized to the federated DNN training scenario.

3.3.1 Distributed Optimization Setting

Consider the setting with N clients, each possessing a local dataset Dn = {dnk}k∈[|Dn|]

for n ∈ [N ] and wishing to minimize the loss function L as evaluated across all the
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local datasets and over the choice of model w ∈ Rd, that is

L(w) =
1∑

n∈[N ] |Dn|
∑
n∈[N ]

∑
dnk∈[Dn]

L(dnk,w), (3.3.1)

with D(w) positive defined. For the loss function in (3.3.1), we assume that there

exists a unique minimizer w∗ of (3.3.1), that is

w∗ = argmin
w∈Rd

L(w). (3.3.2)

A common approach for numerically determining the optimal value in (3.3.2) in the

centralized scenario is through the iterative application of (synchronous) stochastic

gradient descent (SGD). In the (centralized) SGD algorithm, the learner maintains

an estimate of the minimizer in (3.3.2), wt, for each time t ∈ [T ]. The final estimate

of (3.3.2) is wT . At each time t ∈ [T ], the estimate wt is updated as

wt+1 = wt − ηtgt, (3.3.3)

for w0 = 0d, where ηt is an iteration-dependent step size ηt called learning rate, and

where gt is the stochastic gradient of L evaluated at wt, that is

E [gt] =
∑
dk∈D

E [∇L(dk,wt)] . (3.3.4)

In (3.3.4), ∇L(dk,wt) denotes the gradient of L(dk,wt) at wt as evaluated over the

dataset D =
⋃
n∈[N ]Dn; the expectation is over the randomness in the evaluation of

the gradient – e.g., minibatch effects.
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In the FL setting, given that the datasets Dn are distributed at multiple remote

clients, the SGD algorithm as in (3.3.3) has to be adapted as follows. First (i) the

PS transmits the current model estimate, wt, to each client n ∈ [N ], then (ii) each

client n ∈ [N ] accesses its local dataset Dn = {(dn(k), vn(k))}k∈[[|Dn|] and computes

the stochastic gradient, gnt, as in (3.3.4) and communicates it to the PS. Finally (iii)

the PS updates the model estimate as in (3.3.3) but where gt is obtained as

gt =
1

N

∑
n∈[N ]

gnt. (3.3.5)

The distributed version of SGD for the FL setting is referred to as federated averaging

(FedAvg) [42].

3.3.2 Federated Learning with Communication Constraints

Customarily, in the FL setting, the communication is assumed to take place over

some noiseless, infinity capacity link connecting the PS and the remote clients and

vice-versa. In a practical scenario, the clients model wireless mobiles, IoT devices, or

sensors which have significant limitations in the available power and computational

capabilities. In these scenarios, we can still assume that clients rely on some physical

and MAC layers’ protocols that are capable of reliably delivering a certain payload

from the clients to the PS.

For this reason, in the following, we assume that the communication between each

of the remote clients and the PS takes place over a rate-limited channel of capacity

dR, where d is the dimension of the model in Section 3.3.1. In other words, each client

can communicate up to dR bits for each iteration t ∈ [T ].
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In the following, we refer to the operation of converting the d-dimensional gradient

vector gnt to a dR binary vector as compression. Mathematically, compression is

indicated though the operator

compR : Rd → [2dR]. (3.3.6)

Similarly, the reconstruction of the gradient is denoted by comp−1
R . Note that in

(3.3.6), R indicates the number of bits per model dimension.

Assumption 1 Homogeneous remote clients. We assume that (i) all clients are

subject to the same communication constraint and (ii) all clients employ the same

compressor during the whole iteration process.

Generalizing the results in the paper to the more general scenario in which re-

mote clients have different communications constraints and use different compressors

is rather straightforward. More specifically, each user would use a compressor matched

to its communication constraint and the PS would reconstruct the gradient accord-

ingly. After all gradients have been reconstructed, they can be accumulated as in

(3.3.5). We adopt Assumption 1 for clarity of analysis. From an implementation

perspective, the results could be generalized to more complicated scenarios.

Under the assumptions in Assumption 1, the model update in (3.3.3) can be

reformulated as

ŵt+1 = ŵt − ηtĝt

ĝt =
1

n

∑
n∈[N ]

comp−1
R (compR(gtn)),
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with ŵ0 = 0. For the model update rule in (3.3.2), it is possible to derive similar

convergence guarantees to that for the unconstrained problem in (3.3.3) – see [64].

3.3.3 Compression Performance Evaluation

In the following, we are interested in characterizing the compression performance in

terms of the loss of accuracy as a function of the communication rate. More formally,

given the model estimate ŵt and the gradient estimate ĝt, we wish to determine

GR(ŵt+1) = min
compR,comp−1

R

L(ŵt+1), (3.3.7)

where ŵt+1 is obtained as in (3.3.2).

In general, we are interested in determining the effect of compression through the

SGD iterations: to this we define

∆(T,R) =
1

dR

E[L(w0)− GR(ŵT )]

T
, (3.3.8)

as the per-bit accuracy. In (3.3.8), the expectation is over all sources of randomness

in the compression scheme, as well as the model initialization, denoted as w0. This

definition (3.3.8) corresponds to the overall loss of accuracy due to compression of the

gradient to R-bits per dimension at the training horizon, T . By comparing ∆(T,R)

for different values of T and R on the same optimization problem and a number of

remote clients, one can gauge the impact of the communication constraint over the

training process at hand.

Generally speaking, the minimization in (3.3.7) is too complex, as the loss func-

tion L is generally non-convex in the model w. Additionally, lacking a statistical
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description of the SGD process, it is impossible to resort to classical compression

techniques from information theory. To address these difficulties, later in Section

3.4, we consider a rate-distortion approach in which we simplify the minimization

in (3.3.7) for the case of DNN training by considering a family of distortion mea-

sures which captures the loss of accuracy as a function of the gradient magnitude,

and assume that the DNN gradients are i.i.d. draws from the GenNorm distribution

or Weibull distribution. These two simplifications yield a compressor design which

shows improved performance over other compressors considered in the literature.

3.3.4 DNN Training

While the problem formulation in Section 3.3.3 is rather general, in the remainder

of the paper, we shall only consider the scenario of DNN training. More specifically,

we consider a simple convolutional neural network (CNN) and two widely-used ar-

chitectures – ResNet18 and VGG16. The three networks above are trained for image

classification and other computer vision tasks over the CIFAR-10 dataset. In Table

3.1, we list the parameter information of our three models: CNN, ResNet18, and

VGG16. Detailed layer-wise parameter information could be found in Appendix B.

During our training, the CNN model in is trained using SGD with learning rate 0.0001

and cross-entropy loss. The ResNet18 and VGG16 models are trained using Adam

with learning rate 0.001 and 0.00005, respectively. Other training hyper-parameters,

including mini-batch size and etc. could be found in Table 3.2.

In our FL setting, we randomly split the CIFAR-10 dataset, which has 50, 000

samples in the training set and 10, 000 samples in the test set, and allocate to two or

five remote clients with equal quantity, thus the data distributions of the local datasets
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are approximately the same. Additionally, since we focus on validating the algorithm

effectiveness, we do not consider clients drop-out, meaning the server requires all

the remote clients to report their local updates once they finish three local training

epoches. This combination of hyper-parameters ensures that the training framework

fits into the FL scheme, and facilitates the convergence of the global model.

Remark 1 There are numerous FL training settings of practical relevance in which

the choice of hyper-parameters is drastically different from the one we consider here.

We believe that the three networks above represent a simple and yet meaningful bench-

mark for the proposed approach, M22. We leave the testing on more sophisticated ones

for future work.

Architectures Layers Total Params conv layer dense layer
CNN 44 552,874 549,280 0

ResNet18 98 11,184,068 11,171,008 0
VGG16 32 33,638,218 14,714,688 18,882,560

Table 3.1: A summary of the parameter information of the models in Section 3.3.4.

Model CNN ResNet18 VGG16
Dataset CIFAR-10

Optimizer SGD Adam Adam
Learning Rate 0.01 0.001 0.0005

Momentum 0 0 0
Loss Categorical Cross Entropy

Mini-Batch Sizes 64 64 32

Table 3.2: Parameters and hyperparameters used for the training of the DNN
models.
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3.3.5 Further Comments

Before delving further in the paper, let us clarify what aspects of the problem setting

of Section 3.3.2 will not be considered in the remainder of the paper.

• Lossless universal compression. In the following, we assume that gradients

are transmitted after compression. Note that one could further apply some lossless

universal compression algorithm to further reduce the communication load. Such

algorithm are readily available and very efficiently exploit the redundancy in the data

to further reduce the transmission payload [45]. For simplicity, we do not consider this

further compression opportunity as it will complicate the evaluation of the effective

dimension of the compressed gradient.

• Varying the number of remote client. In the remainder of the paper, we

consider the case of two or five remote clients and do not consider the effect of client

scheduling (having a varying number of remote clients). As the number of remote

clients varies, the overall compression error increases and thus the choice of learning

rate, mini-batch size and other hyper-parameters need to be adjusted accordingly.

Although providing insight on this aspect of the hyper-parameter choice is valuable,

this is outside the scope of the paper.

• Layer-wise dependency. In the following, we compress the gradients by assuming

that they are independent across iterations, although dependencies of the gradients

across layers exists. For instance, in [6], it is shown that the per-layer distribution

is conditionally dependent only on the weights in the previous layer. For simplicity,

in the following, we do not consider this dependency. The design of a version of the

proposed approach taking advantage of this correlation is left for future research.

The following aspects are briefly touched upon in Section 3.6.3, although we do
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not provide a full treatment of these matters.

• Heterogeneous communication constraints – Figure 3.5: In our theoretical

analysis as well as in our numerical experiments, we consider the case in which remote

users are subject to the same communication constraint – R. In Figure 3.5 we discuss

the effect of different communication constraints for different users.

• Heterogeneous local datasets – Figure 3.6: In our analysis and simulations,

we assume that all remote clients have the same data distribution. In practical

scenarios, the heterogeneity of the local dataset is a problem of concern. In Figure

3.6 we consider the scenario in which users have heterogeneous data: each client has

a favorite label which is disproportionately represented in the local dataset.

3.4 A Rate-distortion Approach to DNN Gradient

Compression

In this section, we introduce the main ingredients of the proposed approach M22.

These ingredients further clarify the rate-distortion principles employed in the design

of the optimal compressor for DNN gradients.

Since (3.3.7) maximizing the per-bit accuracy in (3.3.8) as in Section 3.3.3 is

generally intractable, we instead simplify the problem as follows. We choose (i) a

distribution to approximate the gradient entries, and (ii) a distortion that correlates

with the loss in accuracy in (3.3.7) when compressing the original weights. Once these

two elements have been selected – that a gradient distribution and a gradient distor-

tion measure – the compressor in (3.3.6) is chosen as the quantizer which minimizes

the chosen distortion for the given gradient distribution, as in the classic [39].
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More details about the choice of gradient distribution, distortion measure, and

quantizer design are discussed in this section.

3.4.1 Gradient Distribution

Let us assume that gradient entries are well-approximated as i.i.d. random variables

from a certain distribution PG,t, which varies with t ∈ [T ]. We notice that mean field

theory has provided a partial validation of this assumption. In series of papers [44, 6,

46], it has been shown that DNN weights in a given layer become indistinguishable

as the number of SGD steps grow large in various regimes. In practice, meaningful

statistics can be obtained from the gradient realization, which justifies the adoption

of this assumption from a practical perspective.

Some efforts have been made to characterize the gradient distribution such as

Laplace distribution [27] and Gaussian distribution[33, 41]. We refer to these distri-

butions as one-parameter distribution due to the fact the mean of the gradients are

universally assumed to be zero, leaving the only degree of freedom to be the scale of

the distribution. Consequently, we believe that they do not provide sufficient mod-

eling capability to approximate the gradient distribution as it evolves through the

iteration process. For this reason, we follow two approaches that approximate the

gradients using either the generalized normal distribution (GenNorm) distribution in

[13], or using a two-sided Weibull (double-Weibull or d-Weibull) distribution in [17].

Compared with the conventional one-parameter distributions, in addition to sat-

isfying the symmetric property, both GenNorm and d-Weibull distributions have an

extra degree of freedom: the shape parameter, which substantially strengthens the

layer-wise approximation capability of gradients in different models throughout the
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training iterations. Note that the generalized normal distribution encompasses the

Laplace distribution when the shape parameter β = 1 and normal distribution when

the shape parameter β = 2 as special cases. The power density function (PDF) of

the GenNorm distribution is described as

f(x, µ, s, β) =
β

2sΓ(1/β)
e−(|x−µ|/s)β , (3.4.1)

where µ and s denote the mean and scale respectively, β > 0, and Γ represents the

gamma function: one commonly used extension of the factorial function to complex

numbers. When the shape parameter 1 < β < 2, the distribution is leptokurtic and

has fatter tail than the normal distribution. Besides the tails, the shape parameter

also controls the peakedness, as it converges point-wise to a uniform distribution on

(µ − α, µ + α) when β −→ ∞. Despite the fact that the unimodal and symmetric

properties of the GenNorm distribution coincide with the nature of DNN gradient

values [10], Fu et al. [17] proposed to approximate the gradients with a d-Weibull

distribution because of its central tendency and long-tails characteristics. The PDF

of the d-Weibull distribution is described as

f(x, µ, s, k) =
k

2s

(
|x− µ|
s

)(k−1)

e−(|x−µ|/s)k , (3.4.2)

where k is the shape parameter, and the restriction k ∈ (0, 1] guarantees the monotony

of Weibull family distributions. Comparing with the Gaussian distribution and

Laplace distribution, d-Weibull distribution allows the approximated distributions

to be more centralized and longer-tailed, same as the GenNorm distribution. This

effect corresponds to the empirical evaluation on tested models by introducing the
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shape parameter. An example of the fitting the distributions to the gradients em-

pirical histogram is provided in Table 3.3, where the right columns represents the

simulation when more aggressive topK sparsification is applied comparing to the top

panel. From an empirical validation perspective, the GenNorm distribution fits the

gradient histogram better than the one-parameter distributions when most of the

gradients are preserved, while the d-Weibull is more suitable as the approximation

distribution when more aggressive sparsification is applied.

sparsity level 90% sparsity level 40%
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Table 3.3: Examples of the sample gradient distribution and its fitting as discussed
in Section 3.4.1 for CNN in Appendix B.

To better illustrate the fitting performance, let us consider Table 3.3: in each row
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correspond to one layer of the CNN model in Appendix B – 42,32, and 18– and in

each column a different sparsification level – 90% and 40%. In each table entry, we

plot the sample histogram of the sparsified gradient, the fitting using the normal,

Laplace, GenNorm, and d-Weibull fitting. The legend of the figures is provided at

the bottom of Table 3.3. From this table, two observations emerge: (i) the gradient

distribution in higher layers have higher tails than Gaussian which are well fitted

through a generalized normal, and (ii) high sparsification levels result in a gap in

the sample distribution of the sparsified gradient which is well modeled through a

d-Weibull distribution.

Benefiting from the extra shape parameter, GenNorm distribution fits these gra-

dients’ histograms better with a flatter peak and heavier tails, compared to Laplace

and normal distributions. When the sparsification level is 90%, only a small number

of small-magnitude gradients are set to zero while 90% of the gradients are preserved

– this is shown in the left column of Table 3.3. The tail fitting advantage of GenNorm

distribution is even more obvious as shown in the right column of Table 3.3, where the

sparsification level is at 40%. The d-Weibull distribution also fits the tails perfectly,

while its bi-modal characteristic makes it potentially a better candidate in these low

sparsification level cases. Overall, we believe that the choice of these two distributions

covers all sparsification levels in different layers of all the models we have tested.

3.4.2 Distortion Measure

The second ingredient of M22 is a judiciously chosen distortion measure between the

original gradient and its reconstruction. We believe that this ingredient is indeed the

most innovative contribution of the paper. Note that the existing works mostly adopt
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L2 loss when measuring the distortion between the original gradients and perturbed

gradients. Some exceptions [27] consider an L1 distortion measure in the context of

network pruning.

In devising a distortion metric for our quantizer design, two aspects are taken

into consideration: (i) the practitioner perspective on effective sparsification and (ii)

existing bounds on the accuracy loss from gradients perturbation. In the literature,

topK sparsification consists in setting all but the K largest weights of the gradient

entries to zero at each iteration. It is well known among the ML practitioners that

topK sparsification can be effectively used to reduce the dimensionality of the gradient

updates while resulting in only a small loss in accuracy [64, 5]. Another approach for

gradient compression is uniform quantization with non-subtractive dithering [4, 76,

67, 19]. This approach finds its theoretical foundations in works such as [34, eq. (8)]

which provides a bound on the loss in accuracy as a function of the L2 perturbation

of the DNN weights.

Under extreme communication constraint circumstances, using L2 loss performs

exceptionally well. However, we found that the model convergence speed slows down

when the constraint is relaxed using the same L2 loss. Some intuitions behind this

phenomenon could be gained as when the constraint is relaxed, we should penalize the

loss harder in order to speed up the converging process. Therefore, in addition to the

conventional L2 term, we equip the loss with another term with a hyper-parameter

that could adjust the penalizing intensity of perturbed gradients. Details and the

function of this term revealed by the simulation results are discussed in Section 3.6.2.

Given the intuition of magnitude and two compression approaches in which ei-

ther only the magnitude of the gradients is considered or the L2 distortion of the
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gradients is used for quantizer design, we propose a new class of distortion measures

combining these approaches. That is, the “M -magnitude weighted L2” distortion,

mathematically defined as

dM−L2(g, ĝ) =
1

d

∑
j∈[d]

|gj|M‖gj − ĝj‖2, (3.4.3)

where gj and ĝj denote the j-th elements of g and ĝ (gradient and quantized

vectors), respectively. Note that the parameter M is again a hyper-parameter that

can be used to tune the distortion to the particular iteration and instance of train-

ing. Similarly to the choice of gradient distribution, the choice of distortion measure

provides us with a degree of freedom that can be adaptively adjusted to improve the

training performance.

The distortion in (3.4.3) can be re-interpreted as an assumption on the sensitivity

of the loss function in (3.3.1) in the neighborhood of the gradient

Assumption 2 [M − L2 sensitivity] Consider a differentiable loss function L(w),

then the M − L2 sensitivity of L(w) is defined as

L (m)− L (w) ≥ dM−L2 (∇L (w) ,m−w) (3.4.4)

In plain words, Assumption 2 can be seen as a variation of the definition of con-

vexity where the RHS considers a specific form of divergence to measure the distance

between the gradient direction and the difference vector.
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3.4.3 Quantizer design

Given our choice of gradient distribution and the gradient distortion measure, as in

Section 3.4.2 and Section 3.4.1, one can then construct a quantizer using the classic

LGB algorithm [39]. In M22, we actually apply sparsification before quantization as it

is more computationally efficient to code the zero values using a run-length encoding.

The K-means/LGB algorithm for the proposed class of distortions in (3.4.3) takes a

surprisingly simple form.

ck+1(i+ 1) =

∫ tk(i+1)

tk(i)
gM+1 pdf (g)dg∫ t(i+1)

t(i)
gM pdf (g)dg

, (3.4.5)

tk+1(i+ 1) =
ck(i+ 1) + ck(i)

2
, (3.4.6)

for i ∈ [1, 2R] where 2R is the number of quantization levels, pdf(g) denotes the

distribution fitted to the gradient vector, c(.) and t(.) represent the quantization

centers and thresholds, respectively.

A plot of the change of quantization centers and thresholds regions versus the

change of M values modeled by GenNorm distribution is presented in Figure 3.1.

Due to the symmetry in the quantizer design, only the positive regions are shown.

Note that the first quantization region to the left corresponds to the positive half of

the sparsification region. Note that larger choices of M result in more sparsified quan-

tization regions, i.e., diverging from the center quantization bin. This corresponds

to the objectives of M22: as M increases, the quantization preserves larger gradient

magnitudes better.
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Figure 3.1: The positive region of the scalar quantizer described in Section 3.4.3 for
the GenNorm distribution. Each row corresponds to a different value of M with M
increasing with the row index. Note that the quantizer is symmetric around zero.

Also, the first quantization region corresponds to the positive half of the
sparsification region.
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3.5 M22: the Proposed Approach

With the demonstration of our guiding rate-distortion principles in Section 3.4, we

are finally ready to introduce M22 – our approach inspired by rate-distortion for the

design of the optimal compressor for DNN gradients.

3.5.1 M22 Pseudo-code

We start by reminding the reader that the model update in M22 follows that of

Federated Averaging (FedAVG) [42] as in (3.3.2). The novelty of M22 is in the design

of the compressors in (3.3.6). See Algorithm 2.

3.5.2 Further Comments

In the workflow pipeline of M22, various elements could affect the performance. The

hyper-parameters of FL setting, including the number of remote clients, the mini-

batch size, the number of local training epoch and the model optimizer choice. As

described in Section 3.3.4, we chose a naive setting for the major part of our simula-

tions, merely to show the effectiveness of M22. It has been tested that M22 could be

adapted in more complicated FL settings, including where partial clients are selected

in each round, multiple training epochs are performed locally and the local datasets

are heterogeneous. The choice of M is also considered as a hyper-parameter of the

compression setting.

Inspired by the [64], where memory is equipped with SGD under compression,

we implemented memory with M22. Each local client keeps a copy of the difference

between its trained local model and the compressed version. This client-wise distinct
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Algorithm 2 M22 algorithm

1: Input: weight initialization: w0, Compression rate R, sparsification level K = κ,
set of learning rates {ηt}t∈T

2: Output: optimal weight estimate: wT

3: for t ∈ [T ] do
4: PS broadcasts wt to N remote clients // T iterations, t iteration index
5: for n ∈ [N ] do
6: client n evaluates local gradient gnt over the local dataset Dn as in (3.3.5)
7: // N clients, n client index

gnt = ∇L(Dn,gt) (3.5.1)

8: client n applies topK sparsification for K = κ to gnt

g′nt ← topK(κ,gnt) (3.5.2)

9: for l ∈ [L] do
10: client n selects the gradient entries in g′nt from layer l, call it g′nt(l)
11: // L layers, l layer index
12:

13: client n fits distribution: GenNorm as in (3.4.1) or d-Weibull as in
(3.4.2)

14: client n compresses using the scalar quantizer of rate R in Sec. 3.4.3

g′′tn(l) = compR(g′tn(l)) (3.5.3)

15: end for
16: client n transmits g′′tn to the server

g′′tn = [g′′tn(1) . . .g′′tn(L)] (3.5.4)

together with the position of sparse entries and fitting parameters in each layer l
17: end for
18: PS reconstructs the gradient vector of all N clients as in (3.3.2), accumulates

and produces a model update

ĝt =
1

n

∑
n∈[N ]

comp−1
R (g′′tn) (3.5.5)

ŵt+1 = ŵt − ηtĝt
19: end for
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difference is added back to downloaded global model by each client before the local

training. The problems with this mechanism in the FL setting are memory accumu-

lation and local optima. The memory stored by the clients would be accumulated

throughout the training process, which could cause memory explosion. Addition-

ally, the clients could converge to local optima in different directions. The server

aggregation serves helps rectify the progressing directions to a global one, while an

uncalibrated memory implementation would cause each client heading to different di-

rections again. In our simulations, a fine-tuned memory weights could help the model

convergence but much less significantly comparing with tuning the M value.

3.5.3 Algorithm Convergence Analysis

In this section we study the convergence of the M22 under some rather standard

assumptions on the optimization problem. The proof relies in showing that the specific

choice of the scalar quantizer in Section 3.4.3 provides an unbiased estimate of the

true gradient. The proof is not particularly novel but it leads to a precise formulation

of the assumption that the gradient entries have an i.i.d. distribution.

Assumption 3 (Regularity of L(v)) The function L(v) in (3.3.1) is assumed:

• convex, that is, for all λ ∈ [0, 1], it holds that

L(λw(1− λ)v) ≤ λL(w) + (1− λ)L(v). (3.5.6)

• L-Lipschitz, that is

‖∇L(w)−∇L(v)‖2 ≤ L‖w − v‖2. (3.5.7)

75

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – Y. Liu; McMaster University – Electrical and Computer Engineering

With respect to the local stochastic gradients, we assume that all d gradient have

the same distribution with zero mean and fixed variance.

Assumption 4 (i.i.d. gradient entry assumptions) At iteration t and for all re-

mote clients n ∈ [N ] observes a local gradient gtn is comprised of i.i.d. entries with

zero mean and variance σ2
t , that is

E[gtn(i)] = 0 (3.5.8)

E[gtn(i)2] = σ2
t (3.5.9)

Additionally, we assume that the gradient distribution is symmetric.

Note that the Assumption 4 should be read as follows: conditioned on the network

initialization, it still holds that gtn = ∇L(D,wt), but averaged over all initializations,

the distribution of each gradient entry is i.i.d..

Theorem 1 Consider the optimization problem in (3.3.2) under Assumption 3 and

Assumption 4. Further, assume that the variance of each gradient entry is σ2. For

this setting, consider applying the algorithm M22 as detailed in Section 3.5.1 with

ν ≤ 1

L
. (3.5.10)

Then it holds that

E[L(w̄T )]− L(w∗) ≤ ‖w0 −w∗‖2
2

2νT
+
ν(d− 1)M/2

T22R
(
∑
t∈[T ]

γt + ε), (3.5.11)
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where w̄T = 1/T
∑

t∈[T ] wt, ε ∈ R+, and for γt = 7.404(d− 1)M/2σ3
t . In particular, if

we take the

γt = (d− 1)M/2
Γ(3+βt

βt
)3

3 s Γ(1/βt)
σ2
t (3.5.12)

γt = (d− 1)M/2 9

3 s4
t

σ2
t (3.5.13)

Further, let the fitting parameter for at GenNorm and the d-Weibull be βt and st,

while variance is σ2
t .

for the GenNorm distribution in (3.4.1) and the d-Weibull distribution in (3.4.2),

respectively.

Proof : By construction of the scalar quantizer Section 3.4.3– which is a centroid

quantizer – and the symmetry of the gradient distribution, we have that the sparsified

and quantized gradient and the quantization error are uncorrelated. This means that

the approximate gradient gt in line 15 of Algorithm 2 is an unbiased version of the

true gradient, that is

E[ĝt] = ∇L(D,wt). (3.5.14)

Next, we wish to upper bound the error variance after sparsification and quantization.

We begin by noting that in (3.4.3) we have

dM−L2(g, ĝ) ≤ (max
i

gi)
M‖g − ĝ‖2, (3.5.15)

so that the M −L2 distortion in (3.4.3) can be upper bounded by the MSE distortion

multiplied by the largest element in the vector. From this it follows that the mini-

mum expected M −L2 distortion is upper bounded by the minimum MSE distortion
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multiplied by the expected value of the largest gradient entry to the power of M .

Since the expected value of the largest gradient entry only depends on the gradient

distribution, we have that this outer bound is minimized by the scaler quantizer that

minimized the MSE distortion. For this setting, we can use the Shannon lower bound

to obtain an approximation of the quantization error performance as

E[‖g − ĝ‖2
2] ≤ 7.404σ2

t 2
−2R + ε (3.5.16)

for some ε that decreases as R increases [22].

For the result in (3.5.13) we use the approximation in [49] for the high rate regime

E[‖g − ĝ‖2
2] ≈ 1

12 · 22R
(

∫
R

3

√
Fg(g)g)3. (3.5.17)

The remainder of the derivation is focus on the GenNorm and d-Weibull distribu-

tion.

For the GenNorm we have use the fact that

∫ ∞
0

e−x
n

dx =
1

n

∫ ∞
0

u1/n−1e−u du =
1

n
Γ(1/n) = Γ(1 + 1/n). (3.5.18)

and for the double-Weibull we use

∫ ∞
0

3
√
kx

k−1
3 e−

13

xk dx ≤
∫ ∞

0

kxk−1e−
13

xk dx = 3 (3.5.19)

The last step of the proof is concerned with bounding the largest element of the
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gradient vector. To this end, we consider the classic bound

E(max
i
Xi) ≤ µ+ σ

√
n− 1, (3.5.20)

which, combined with Jensens’ inequality, yields

E[(max
i

gi)
M ] ≤ σt(d− 1)M/2. (3.5.21)

From the expression in (3.5.11), we see that the sub-optimality gap decreases as

1/T and 1/22R as one would expect from quantized SGD. The dependency on M does

not appear in the analysis in Theorem 1 as this dependency is not captured in the

modeling of the loss function. This remains a topic for future research.

3.6 Numerical Evaluations

In this section, we compare the performance of our proposed M22 algorithm with

other ML compression techniques including conventional floating point conversion,

topK sparsification, sketching, and non-uniform quantization using the L2 norm.

To ensure the fairness of the comparison, the algorithms are implemented under

the same FL setting and communication overhead constraint. The training parame-

ters are kept consistently across numerical experiments.

3.6.1 Compression Strategies Benchmark

In our simulations, we consider the following gradient compression techniques for

benchmarking.
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• topK sparsification + floating point (fp) representation: In the context of (3.3.6),

topK can be applied to meet the rate constraint only once a certain format for

representing the gradient entries has been established. Therefore, we consider a fp

representation of the entries with 8 and 4 bits. Accordingly, the relationship between

the sparsification parameter K, the digit precision p (in bits), and the rate constraint

R in (3.3.7) is

dR = log

(
d

Kfp

)
+Kfpp. (3.6.1)

• topK sparsification + scalar uniform quantization: For the uniform quantizer with

a given quantizer rate Ru, the 2Ru quantization centers are uniformly distributed

between the minimum and maximum values of the samples in each layer and each

iteration. The sparsification level Ku is accordingly chosen such that

dR = log

(
d

Ku

)
+KuRu. (3.6.2)

• Count Sketch – [28]: Inspired by [28], where the count sketch method is associated

with SGD in the distributed learning scenario, we integrate it into our gradient com-

pression workflow to make another comparison to our M22 algorithm. Following a

topK sparsification of level Ksk, each client performs local compression to its local

stochastic gradient by count sketch via a common sketching operator; and the server

recovers the indices and the values of large entries of the aggregated stochastic gradi-

ent from the gradient sketches. By choosing sketching ratio rsk ∈ (0, 1] of the common

count sketch operator, the communication overhead is calculated as the following

dR = log

(
d

Ksk

)
+ rskKsk. (3.6.3)
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• TINYSCRIPT – [17]: In [17], the authors introduced a non-uniform quantization

algorithm, TINYSCRIPT to compress the activations and gradients of a DNN. In

gradient compression, this scheme does not consider sparsification and applies K-

means clustering to each layer before scalar quantization. Finally, the scalar quantizer

hat minimizes the L2 loss is employed. We note that the layer-wise clustering is

rather computationally expensive and the execution time suffers dramatically. For

this reason, in our benchmark, we removed the clustering step so that the execution

time of all scheme is comparable. After removing the step to cluster the gradients

and applying the same sparsification strategy as our proposed M22, the workflow of

TINYSCRIPT is adapted to be comparable to our approach. The difference between

our M22 and TINYSCRIPT lies in the quantizer design shown in (3.4.5), where for

TINYSCRIPT, the M value is always 0. Thus its communication overhead calculation

could be categorized into the M22 and its variants. We wish to point out that we

have tried to adapt the schemes in [28] and [17] to the setting of Section 3.3 so as to

yield a fair comparison. To comprehend the mechanism of TINTSCRIPT, we refer

the readers to the original schemes [17].

• M22 variants : M22 has various incarnation, depending on the choice of M values

in (3.4.3) and the choice of fitting distribution – GenNorm or Weibull. The workflow

of our proposed M22 algorithm includes topK sparsification and fitting each layer

of the gradients with a pre-defined distribution. Fitting with GenNorm or Weibull

distribution, the quantization centers will be distributed in a non-uniform manner.

Changing from one distribution to another produces variants of the M22 algorithm,

as well as adapting different choices of M value when computing gradient distortion.

Because all the variants share a similar compression strategy, the calculation of dR
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for them is the same, which means, for our proposed quantizer with a given rate Rmw,

a number of 2Rmw quantization centers at each layer and iteration are found by the

K-means algorithm described in Section 3.4.3. We use a topK sparsification before

our compressor where the sparsification level Kmw satisfies the following

dR = log

(
d

Kmw

)
+KmwRmw, (3.6.4)

where Rmw is the quantizer rate and Kmw is the sparsification level.

3.6.2 Simulation Results

The results we provide in this section will show the superiority of our M22 in vari-

ous aspects including: (i) improving the global model convergence comprehensively

comparing to scalar quantization methods, uniform quantization methods and other

adaptive quantization algorithms; (ii) expediting the convergence by flexibly tune the

M value and (iii) exhibiting universal effectiveness for different DNN model architec-

tures. In all simulations, we consider the case in which three rounds of local SGD

are performed for each communication between the remote user and the PS. Other

experiment settings could be reviewed in Section 3.3.4.

• M22 vs. all : In Figure 3.2, we plot the accuracy vs. iteration number under

communication constraints of dR = 332k bits and dR = 996k bits for the CNN

network introduced in Table 3.1. Such communication constraints are equivalent to

allowing each non-zero gradient to be represented using 1 bit and 3 bits, respectively.

In the following figures, each curve represents one of the compression strategies as

detailed in Section 3.6.1. We consider the setting with (i) different number of remote

users - two or five, and (ii) different total communication rate dR = 332k bits or
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Methods dR = 332k bits dR = 996k bits
Uniform Ru = 1, Ku = 331724 Ru = 3, Ku = 331724

8fp p = 8, Kfp = 41466 p = 8, Kfp = 124396
4fp p = 4, Kfp = 82931 p = 4, Kfp = 248793

M22+GenNorm M = 3, Rmw = 1 M = 9, Rmw = 3
TINYSCRIPT M = 0, Rmw = 1 M = 0, Rmw = 3
M22+dWeibull M = 4, Rmw = 1 M = 7, Rmw = 3

count sketch rsk = 1, Ksk = 331724 rsk = 3, Ksk = 331724

Table 3.4: Experiment parameters information of methods in Section 3.6.1 with two
remote clients.

dR = 996k. All accuracy result is the average of five different initializations. To

match the rate constraint dR = 332k bits or dR = 996k bits, we choose the parameters

following Table 3.4 in the experiments of two remote clients. Note, for M22-related

and TINTSCRIPT methods, Kmw is chosen to be 33172 to satisfy the rate constraints.

For the experiments of five remote clients, the parameters are the same except for the

choice of M value, which is considered as a hyper-parameter related to the distortion

function (3.4.3).

Each approach described above is represented by one curve of a particular color as

shown in the figure legend. Note that we use the letter ”G” or ”W” to indicate either

GenNorm or d-Weibull distribution is applied in gradients distribution approximation.

We point out that non-uniform quantization algorithms generally have better per-

formance. In the top left panel of Figure 3.2, when the communication overhead

constraint is set to dR = 332k bits for CNN training, the averaging bit per non-zero

parameter is 1 bit, and the actual bit rate for the quantizer follows the calculations

from (3.6.1) to (3.6.4). Under such a restricted condition, where most of the tradi-

tional approaches converge reluctantly, our M22 algorithm with a fine-tuned M value

not only outperforms other approaches but also maintains a similar converging speed
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Figure 3.2: Comparison across different gradient compression approaches under four
different settings: (i) row-wise: 2 or 5 remote users, atd (ii) column-wise: dR = 332k

bits or dR = 996k bits of total communication rate.

compared with a loose-constraint regime. In the top right panel of Figure 3.2, when

the communication overhead constraint is relaxed to dR = 996k bits, the performance

of traditional and scalar approaches start to be competitive with count sketch and

TINYSCRIPT. However, the M22 curves stay on top by an obvious margin compared

to all others. Note that the quantizer for M22 and TINYSCRIPT is chosen adaptively

according to Section 3.4.3, as a function of the empirical gradient distribution at each
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iteration. For the case of M22 GenNorm, this is attained by pre-calculating the quan-

tization centers for different values of shape parameter β of GenNorm distribution

(3.4.1). At each iteration, the gradient vector is normalized to obtain a zero-mean

unit-variance vector which is then quantized using the pre-calculated quantizer. The

bottom two panels of Figure 3.2 demonstrate the results of five clients’ settings. Al-

though introducing more remote clients results in reduced local data quantity for each

client, thus affecting the global model convergence, the M22 curves with fine-tuned

M values (both GenNorm and d-Weibull) still outperform the others by a significant

margin. These advantages are observed under both dR = 332k bits and dR = 996k

bits communication constraints, which further validates the superiority of the pro-

posed algorithm.

• M’s effect : By conducting numerous ablation studies, the M value (3.4.3) has

been verified to play a vital role in model convergence speed and final accuracy.

Recall that we enable the flexibility of choosing the M value when designing the

gradient distortion measurement in Section 3.4.2. In Figure 3.3, we employ a list of M

choices to demonstrate how the value impacts the convergence substantially when the

communication overhead is fixed. If zooming in to the first couple of iterations (two

panels on the right), we can observe that increasing the M value would result in more

sparse quantization centers and thresholds, consistent with the fact that gradients

are long-tailed, and therefore achieve better performance. The same effect could

be found when comparing TINYSCRIPT with M22 using d-Weibull distribution.

TINYSCRIPT approach can be regarded as a degenerate version of our M22 with

M = 0 when calculating the distortion, while a fined-tuned positive M value is

applied in our M22, which always yields a better result.
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Figure 3.3: Ablation study of the effect of M value. 10-round accuracy comparison
in 2 remote clients setting (top left); first 4-round accuracy comparison in 2 remote
clients setting (top right); 10-round accuracy comparison in 5 remote clients setting
(bottom left); first 5-round accuracy comparison in 5 remote clients setting (bottom

right).

The top two panels of Figure 3.3 illustrate the results obtained from 2 remote

client setting. Fitting the gradients with GenNorm distribution and limiting the

communication overhead to dR = 664k bits, the performance of M = 6 is the best in

terms of final accuracy. However, in terms of the first four rounds, M = 8 achieves

the highest accuracy. According to our extensive simulation results, large values of

M could boost the model convergence in the initial training phase. In the five remote
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client setting shown in the bottom two panels, similar results are found. An M value

of five yields the best accuracy after 10 iterations (bottom left), but for the first four

or five rounds, M = 6 or M = 7 outperform M = 5 in terms of accuracy (bottom

right). Therefore, we conclude that large values of M can boost model convergence

in the initial training phase, but excessively large values can hinder convergence after

a certain stage. By adapting our M22 algorithm, a fine-tuned M value would not

only result in fast improvement at the early training process but also ensure the final

accuracy. The same effect of M value could be found in the cases where the Weibull

distribution is adapted to approximate the gradient distribution and other model

structures are used.

• ResNet18 & VGG16 : Besides the CNN network, our M22 algorithm guarantees

fast and reliable global model convergence when applied to other conventional net-

work architectures, including ResNet and VGG networks. In the left panel of Figure

3.4, under the same communication constraints, we compare the 3 non-uniform com-

pression algorithms: count sketch, TINYSCRIPT and M22 using ResNet18 model.

Speaking of the converging speed and accuracy, our M22 algorithm adapting with

GenNorm distribution fitting performs very close to TINYSCRIPT, which estimates

the gradient updates with a Weibull distribution, while count sketch approach falls

behind by an obvious margin. In the right panel of Figure 3.4, we compare the scheme

where no quantization is applied with our M22 approach under 4 different communi-

cation overhead constraints, including dR = 332k bits, dR = 664k bits, dR = 996k bits

and dR = 1.33m bits. On one hand, when the communication constraint is loose, M22

algorithm performs almost as good as the case, where there is no quantization ap-

plied. On the other hand, with one-eighth of the communication overhead, although
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Figure 3.4: Compare the 3 non-uniform compression algorithms on ResNet18 (left);
Compare the scheme where no quantization is applied with our M22 algorithm

under different communication overhead constraints on VGG16 (right).

the convergence process inevitably becomes less smooth, our M22 is still competitive

in terms of progressing speed, and it does not take too long until it achieves similar

final accuracy comparing to more relaxed-constraint cases.

3.6.3 Further Research Direction

In this paper, we were focus on the setting in which the remote users are homogeneous

in their communication and computation capabilities, as in Assumption 1. In Section

3.3.5 we hint at some relevant variations of the homogeneous setting that, although

interesting, are not considered in the further paper. These and other issues – such

as client dropout and scheduling, straggling, privacy, and anonymity – are concrete

obstacles to the deployment of FL algorithms in real-world networks. Although the

M22 is developed upon straightforward assumptions and validated in relatively ideal

settings, we recognize the importance of examining its capability in more complex

settings. As more flexibility is allowed in the M22 benefiting from more choices of the

distortions and distributions, we believe that our algorithm would be competitive in

such scenarios. We briefly argue for such a belief by considering two heterogeneous
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settings originally mentioned in Section 3.3.5.

• Heterogeneous communication constraints: In Figure 3.5, we deploy the M22 in

an experiment setting where we accommodate varying communication constraints for

different clients and employ distinct compressors for different clients. The baseline

setting is equivalent to that of 10 individual clients each using 1 bit to represent one

gradient, which we name as the “uniform case” as each client equally divides up the

total overhead. The second setting is that one client uses 2 bits to represent one

gradient while the rest eight clients use 1 bit. By this design, the total overhead in

this case is kept the same to the uniform case while the client who uses 2 bits will use a

different compressor than the clients who use 1 bit. The third setting and the fourth

setting represent one client using 3 bits while the rest seven clients use 1 bit, and

one client using 4 bits while the rest six clients use 1 bit, respectively. In this fashion,

the communication overhead is fixed for all four settings. The experiment results

indicate that the uniform case has the best performance. As the total communication

overhead is divided up more non-uniformly, the converging speed generally slows

down. In conclusion, the M22 well adapts in the setting of varying communication

constraints and employing distinct compressors for different clients. However, if the

total communication overhead is fixed, each client uniformly dividing up the overhead

and employing the same compressor will yield the best results.

• Heterogeneous local datasets : In Figure 3.6, we test the M22 in the heterogeneous

local data setting. We consider the scenario in which 10 remote clients jointly train

a classification network for the Fashion MNIST dataset [79]. This setting considers

the problem of classifying images in 10 categories of clothing. The DNN used for this

task is a rather simple CNN network with two convolutional layers followed by two
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Figure 3.5: Test the M22 algorithm in the case where the total communication
overhead is fixed, while individual users are under different communication

constraints with distinct compressors employed.

fully connected layers. In these experiments, we consider the following heterogeneity

model in the local dataset distribution: a dataset entry in the dataset of client n ∈ [10]

(i) belongs to the class n with probability ε, and (ii) it belongs to the class m 6= n,

m ∈ [10] with probability (1− ε)/9. In other words, client n has as its favorite class

the class n and this class represents a portion ε of the dataset. The other classes are

uniformly distributed in the remaining 1− ε portion of the dataset. In the following,

we refer to ε has the heterogeneity level : (i) ε = 1 represent the extreme scenario in

which client n only has images from the class n while (ii) ε = 1/10 represents the

homogeneous case. In our simulations, we consider (i) three heterogeneity values:

ε ∈ {0.8, 0.5, 0.2}, and, for each bias value, we test our M22 in (ii) 1 bit, 2 bits, 3 bits

and 4 bits compression regime. We also consider the full precision regime serving as

the baseline.
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In line with our expectation, the results indicate that as the local dataset becomes

more heterogeneous, the converging speed slows down, while if more bits are used,

the results are better. In conclusion, the ability of M22 to adapt in the heterogeneous

local dataset setting is verified.

We acknowledge that there are many aspects of deploying FL in practice that

we have not taken into consideration. However, the above simulation results could

demonstrate the effectiveness of M22 when settings become more complicated. Inte-

grating it in more practical FL scheme is the focus of our future work.
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3.7 Conclusion

In this paper, the problem of efficient gradient compression for federated learning has

been considered. For this problem, we propose M22 as an efficient gradient compres-

sion algorithm developed from a rate-distortion perspective. More specifically, M22

tackles gradient compression by designing a quantizer under (i) an assumption on the

distribution of the model gradient updates and (ii) a choice of the distortion mea-

sure which minimizes the loss in accuracy. Regarding the gradients distribution, we

assume that the gradient updates in each model layer and at each iteration follow a 2-

degree of freedom distribution, either generalized normal distribution or double-sided

Weibull distribution. This assumption is verified by numerous simulation results we

produced, and therefore makes us confident to conclude that the extra degree of free-

dom is essential for approximating the model gradients, especially under the federated

learning setting. In terms of the distortion measure, we assume that the distortion

capturing the relationship between gradient perturbation and loss in accuracy is the

M -magnitude weighted L2 distortion, that is the L2 loss between the compressed and

original gradient updates multiplied by the magnitude of the original gradient to the

power of M . We argue that this choice of distortion naturally bridges between two

classical gradient sparsification approaches: M = 0 recovers uniform quantization,

while M → ∞ recovers topK sparsification. Our simulations show that the choice

of M plays an important role in the federated learning scheme, where small values

are preferred when we need to compress the models aggressively, while larger values

are more appropriate under loose communication overhead constraints. In this work,

both of these assumptions are validated through numerical evaluations under different

federated learning settings and different model structures. The performance of M22
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Figure 3.6: In a heterogeneous local data setting using FMNIST dataset for various
compression rates. Each line corresponds to a heterogeneity level: ε = {0.8, 0.5, 0.2}.
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is competitive comparing with other state-of-the-art methods in most cases and sur-

passes them in a few. Simulations under more complicated federated learning settings

definitely require more computation power. Finally, more theoretical justification for

these two assumptions will be investigated in our future research.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this thesis, we comprehensively study the communication efficiency and conver-

gence problem occurring in Federated Learning. From problem reformulation to prac-

tical compression approach designs including client selection strategies and quantiz-

ers, we provide theoretical analysis and experimental simulations showing that our

methodologies are dedicated to effectively reduce the communication cost while main-

taining satisfactory convergence speed and final test accuracy.

In Chapter 2, we begin by formulating the model update problem in a single FL

iteration as a multi-terminal source coding problem from an information theory per-

spective. We characterize the problem with sum-rate-distortion functions and derive

convex optimization formulations that solve for the upper bound and lower bound

to the minimum sum-rate. Under the derived sum-rate constraints, we provide the

expressions for realizing optimal rate allocation. With all the technical results, we

propose GCFed, an FL framework that consists of optimal rate allocation and client
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selection. We conduct extensive experiments under different heterogeneity settings

to demonstrate the effectiveness of the proposed approaches when applied indepen-

dently or jointly, and the results validate the superior performance of our framework

compared to the state-of-the-art methods.

In Chapter 3, from empirical analysis of the gradients being communicated through-

out the FL training process, we propose a family of distortion measures between the

original gradient and the reconstruction we refer to as “M -magnitude weighted L2”

distortion, and we assume that gradient updates follow one of the two distributions

that have two degrees of freedom: “generalized normal distribution” or “double-side

Weibull distribution”. We design the quantizer to minimize the expected distortion

in gradient reconstruction, and define the per-bit accuracy as the optimal improve-

ment in accuracy that one bit of communication brings to the centralized model over

the training period, in order to measure the gradient compression performance under

a communication constraint. Our experimental results validate the effectiveness of

our compressor designs. Additionally, we provide a thorough study regarding the

effectiveness of the proposed hyperparameter M . We found that the choice of M

plays an important role in the federated learning scheme, where small values are pre-

ferred when we need to compress the models aggressively, while larger values are more

appropriate under loose communication overhead constraints.

4.2 Future Work

There are abundant opportunities to explore in the context of FL communication ef-

ficiency and convergence. In this thesis, we propose to study and leverage the clients’

gradient correlations, but we must acknowledge that the clients gradient correlations
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have not been fully exploited yet. We adopt the assumption that the gradients are

i.i.d. Gaussian distributed within one local gradient sequence for each layer and that

the correlations only exist at the same indices across different clients’ gradient se-

quences. This assumption facilitates numerical derivations but could be violated as

we empirically find the local gradients do not follow a strict Gaussian distribution in

some cases. In addition, this assumption neglects the potential correlation existing

within one local gradient sequence or across different clients at different indices. We

also adopt the assumption that ignores the cross-layer correlation within each client

or across different clients. In some literature, the cross-layer correlation plays an

important role in model compression. Our work is a starting point for incorporat-

ing gradient correlations analysis in FL, while there are numerous opportunities to

improve the problem formulation.

Our problem formulation poses demands for source correlation estimation. In

our proposed method, we tackle this by asking each client to randomly sample a

small subset of local gradients and send it to the server. Although this mechanism is

simple and proved effective, it inevitably introduces some extra communication over-

head into the FL process. A future direction is to study a more low-cost and precise

way to calculate the source covariance matrix. In our implementation, we treat each

layer using a scalar variable for simplicity. However, our problem formulation could

be generalized to the vector Gaussian sources case, as well as the implementations.

Furthermore, we only experiment and demonstrate the effectiveness of our proposed

layer-wise rate allocation and client selection on fully connected (FC) layers. Inter-

esting avenues for future research also include exploiting the gradients correlations in

other types of DNN layers.
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Regarding the practical compressor designs, we adopt a model-wise sparsifica-

tion and layer-wise quantization combination in M22. In fact, with more compre-

hensive knowledge about cross-layer correlations, one may achieve improvements by

performing both sparsification and quantization layer-wise. In GCFed, we simulate

the dithered quantization process by passing the sources through an additive quan-

tization noise channel. An implementation of the corresponding quantizers is among

the future work.
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Appendix A

Supplement of GCFed: Exploiting

Clients Correlation in Federated

Learning to Improve

Communication Efficiency and

Convergence

A.1 Detailed Introduction About the Variables in

Upper and Lower Bounds

In this section, we present detailed descriptions of the variables introduced in upper

bound (2.4.12) and lower bound (2.4.13).

Given the source sequences Gn
1 , G

n
2 , ..., G

n
K and the unique encoder at each clientk,
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fk : Rn → {1, 2, ...,Mk}, k = 1, 2, ..., K, we denote the output of the encoders as

WK = (W1,W2...,WK) with Wk = fk(G
n
k), k = 1, 2, ..., K. The assumptions stated

in 2.4.5 indicate that for each source sequence Gn
k , there are n i.i.d. copies, i.e.,

Gk(i), i = 1, 2, ..., n and Gk(i) ⊥ Gk(i
′) for i 6= i′. We assume that the correlations

exist between the same indices across different local gradient sequences, meaning

Gk(i) and Gk′(i) for k 6= k′ and i = 1, 2, ..., n are correlated.

Based on the covariance matrix of the source ΣG, we define a positive definite

covariance matrix as ΣZ such that Σ−1
G + Σ−1

Z is a diagonal matrix. The existence

of ΣZ is obvious as any positive definite diagonal matrix ∆ with sufficiently large

diagonal entries makes (∆−Σ−1
G )−1 a feasible solution to ΣZ . And we denote N(ΣG)

to be the set of feasible ΣZ given ΣG.

Following the definition of ΣZ , we let Zn
1 , Z

n
2 , ..., Z

n
K be a Gaussian random vector

with zero-mean and covariance matrix ΣZ ∈ N(ΣG). We assume (Zn
1 , Z

n
2 , ..., Z

n
K)

is independent of (Gn
1 , G

n
2 , ..., G

n
K) and define (Y n

1 , Y
n

2 , ..., Y
n
K) = (Gn

1 + Zn
1 , G

n
2 +

Zn
2 , ..., G

n
K + Zn

K). One may view as (Y n
1 , Y

n
2 , ..., Y

n
K) a remote source. Because of

the Gaussianity of (Zn
1 , Z

n
2 , ..., Z

n
K) and the independence with (Gn

1 , G
n
2 , ..., G

n
K), we

know that (Y n
1 , Y

n
2 , ..., Y

n
K) is jointly Gaussian distributed with (Gn

1 , G
n
2 , ..., G

n
K). And

as we define Σ−1
G +Σ−1

Z , which is the distortion covariance matrix of the linear MMSE

estimation for (Gn
1 , G

n
2 , ..., G

n
K) given (Y n

1 , Y
n

2 , ..., Y
n
K), to be a diagonal matrix, we say

that Gn
1 , G

n
2 , ..., G

n
K are independent conditioned on (Y n

1 , Y
n

2 , ..., Y
n
K).

To facilitate representations, we shall define ((Gn
1 )T , (Gn

2 )T , ..., (Gn
K)T )T , ((Y n

1 )T ,

(Y n
2 )T , ..., (Y n

K)T )T , ((Zn
1 )T , (Zn

2 )T , ..., (Zn
K)T )T as G,Y,Z, respectively.

With the above “source”-related variables being define, we define couple of more

in terms of MMSE estimation.
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First, we define a diagonal matrix Σ = diag(Σ1,Σ2...,ΣK), with Σk, k = 1, 2..., K

being the diagonal entries of (Σ−1
G +Σ−1

Z )−1. And we assume that 0 � diag(Σ1, ...,ΣK)

� ΣG. In fact, Σk represents the distortion of the MMSE estimation for Gn
k given Y,

which is denoted as Σk = ΣGnk |Y.

Then we define D to be the the distortion covariance matrix of the MMSE esti-

mation for G given WK, i.e., D = ΣG|WK .

Moreover, we define another diagonal matrix Γ = diag(Γ1,Γ2...,ΓK), with diagonal

elements Γk representing the distortion of the MMSE estimation for Gn
k given Y and

Wk, i.e., Γk = ΣGnk |Y,Wk
.

With the meaning behind all the variables introduced, one can follow the deriva-

tion of (10) in [72] to prove that between D and Γk, the following holds:

diag(Γ1, ...,ΓK) � (D−1 + Σ−1
Z )−1. (A.1.1)

Following the Theorem 1 and Theorem 2 in [72], one can derive the lower bound

R∗(d) and upper bound R̄∗(d) and prove the two sharing the same form except for

one constraint, which is (A.1.1). The upper bound requires diag(Γ1, ...,ΓK) = (D−1 +

Σ−1
Z )−1, while the lower bound only requires the inequality diag(Γ1, ...,ΓK) � (D−1 +

Σ−1
Z )−1.

A.2 Algorithm to Solve the Optimization Problem

In order to solve (2.4.13) using convex optimization solvers in MATLAB or Python,

we need all constraints to be linear matrix constraints. Therefore, we need to re-write

101

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – Y. Liu; McMaster University – Electrical and Computer Engineering

the last constraint of it. By applying matrix inversion lemma, we get:

(D−1 + Σ−1
Z )−1 = D −D(ΣZ +D)−1D (A.2.1)

And the last constraint becomes:

0 � D − diag(Γ1, ...,ΓK)−D(ΣZ +D)−1D (A.2.2)

By Schur complement, this is equivalent to:

0 �

ΣZ +D D

D D − diag(Γ1, ...,ΓK)

 (A.2.3)

The convex optimization problem is converted to:

max
Σ1,...,ΣK

min
D,Γ1,...,ΓK

1

2
log
|ΣG + ΣZ | |diag(Σ1, ...,ΣK)|
|D + ΣZ | |diag(Γ1, ...,ΓK)|

s.t. ΣZ = (diag(Σ1, ...,ΣK)−1 − Σ−1
G )−1,

0 � diag(Σ1, ...,ΣK) � ΣG,

0 � D � ΣG,

1 ·D · 1 ≤ d,

0 � diag(Γ1, ...,ΓK),

0 �

ΣZ +D D

D D − diag(Γ1, ...,ΓK)



(A.2.4)

Note, as stated in [73, 87], if denote Σ∗ = diag(Σ∗−1
1 , ...,Σ∗−1

K ) as the optimal
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solution to the max part of (A.2.4), it can be verified that (diag(Σ∗−1
1 , ...,Σ∗−1

K )−Σ−1
G )

must be rank-deficient, which numerically prevents us doing the inversion of it to

calculate ΣZ . Therefore, we need to handle it by projection. Let α1, ...αp denote

the positive eigenvalues of (diag(Σ∗−1
1 , ...,Σ∗−1

K ) − Σ−1
G ), and let π1, ..., πp denote the

corresponding eigenvectors. We define:

Λ , diag(
1

α1

, ...,
1

αp
) and Π , (π1, ..., πp), (A.2.5)

which satisfies that:

Σ−1
Z = ΠTΛ−1Π and ΣZ = ΠΛΠT . (A.2.6)

Perform projection on the objective function follows:

1

2
log
|ΣG + ΣZ | |diag(Σ1, ...,ΣK)|
|D + ΣZ | |diag(Γ1, ...,ΓK)|

=
1

2
log
|ΠTΣGΠ + Λ| |diag(Σ1, ...,ΣK)|
|ΠTDΠ + Λ| |diag(Γ1, ...,ΓK)|

. (A.2.7)

And projection on the last constraint is as:

0 �

ΠTDΠ + Λ ΠTD

DΠ D − diag(Γ1, ...,ΓK).

 (A.2.8)

The final convex optimization problem that is solvable for the convex optimization
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solvers in MATLAB or Python is as:

max
Σ1,...,ΣK

min
D,Γ1,...,ΓK

1

2
log
|ΠTΣGΠ + Λ| |diag(Σ1, ...,ΣK)|
|ΠTDΠ + Λ| |diag(Γ1, ...,ΓK)|

s.t. 0 � diag(Σ1, ...,ΣK) � ΣG,

0 � D � ΣG,

1 ·D · 1 ≤ d,

0 � diag(Γ1, ...,ΓK),

0 �

ΠTDΠ + Λ ΠTD

DΠ D − diag(Γ1, ...,ΓK)

 .

(A.2.9)

Now, we introduce our algorithm in detail. As we realize that there is a saddle

point in the optimization problem in (A.2.9), we develop an iterative algorithm to

solve the minimization and maximization part individually, and gradually reach to

the saddle point, which is also referred to as the optimal solution.

Solving the minimization part requires an initial guess of Σ1, ...,ΣK . In numerical

simulations, we found that their values are of vital importance for the algorithm to

converge. Thus, instead of randomly initializing their values, we connect to Wyner’s

common information [77] to obtain the initial values for Σ1, ...,ΣK . First, we introduce

a new variable Θ as:

(Σ−1
G + Θ−1)−1 = D (A.2.10)
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Then the max part of the problem becomes:

max
Σ1,...,ΣK

1

2
log

|ΣG + Θ| |diag(Σ1, ...,ΣK)|
|diag(Σ1, ...,ΣK) + Θ| |diag(Γ1, ...,ΓK)|

s.t. 0 � diag(Σ1, ...,ΣK) � ΣG,

(diag(Γ−1
1 , ...,Γ−1

K )−Θ−1)−1 � diag(Σ1, ...,ΣK) � ΣG.

(A.2.11)

If we consider when d ≈ 1 · ΣG · 1, the diagonal entries of Θ will go to infinity

because of the definition Θ = (D−1 +Σ−1
G )−1, causing the result of |diag(Σ1, ...,ΣK)+

Θ| not depending on (Σ1, ...,ΣK). Furthermore, if we neglect the second constraint

for now, we arrive at a simple formulation:

max
Σ1,...,ΣK

1

2
log |diag(Σ1, ...,ΣK)|

s.t. 0 � diag(Σ1, ...,ΣK) � ΣG,

(A.2.12)

which we find to be exactly the optimization problem to determine the Wyner’s

common information if K = 2, i.e., if there are only two random variables (K = 2).

This is equivalent to:

min
PW |G1,G2

I(G1, G2;W )

s.t. G1 ←→ W ←→ G2 form a Markov Chain.

(A.2.13)

With the initialization process, we are ready to introduce the full algorithm that

solves the optimization problem.

Step 1: We start with the optimization in (A.2.12) to generate intial guesses for

Σ1, ...,ΣK . We denote the obtained values as Σint
1 , ...,Σint

K .

Step 2: We will fix the value for Σint
1 , ...,Σint

K and solve the minimization part of
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(A.2.9):

min
D,Γ1,...,ΓK

1

2
log
|ΠTΣGΠ + Λ| |diag(Σint

1 , ...,Σint
K )|

|ΠTDΠ + Λ| |diag(Γ1, ...,ΓK)|

s.t. 0 � D � ΣG,

1 ·D · 1 ≤ d,

0 � diag(Γ1, ...,ΓK),

0 �

ΠTDΠ + Λ ΠTD

DΠ D − diag(Γ1, ...,ΓK)

 ,

(A.2.14)

of which we will obtain the values for Dt,Γt1, ...,Γ
t
K , where t denotes the number of

iterations this algorithm has been applied for. Before solving the maximization, we

calculate Θt = (Dt−1
+ Σ−1

G )−1.

Step 3: We fix the values for Dt,Γt1, ...,Γ
t
K and try to solve the maximization part

of (A.2.9):

max
Σ1,...,ΣK

1

2
log

|ΣG + Θt| |diag(Σ1, ...,ΣK)|
|diag(Σ1, ...,ΣK) + Θt| |diag(Γ1, ...,ΓK)|

s.t. 0 � diag(Σ1, ...,ΣK) � ΣG,

(diag(Γ−1
1 , ...,Γ−1

K )−Θt−1
)−1 � diag(Σ1, ...,ΣK) � ΣG.

(A.2.15)

As the solvers in MATLAB and Python require all the formulations to be lin-

ear, which is against by the objective function in (A.2.15), we use Gradient Descent

to perform the linearization. By taking the derivative to the objective function in
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(A.2.15) with respect to Σ1, ...,ΣK , the problem becomes:

max
Σ1,...,ΣK

1

2
log |diag(Σ1, ...,ΣK)| − 1

2
trace((diag(Σ1, ...,ΣK) + Θt)−1 · diag(Σ1, ...,ΣK))

s.t. 0 � diag(Σ1, ...,ΣK) � ΣG,

(diag(Γ−1
1 , ...,Γ−1

K )−Θt−1
)−1 � diag(Σ1, ...,ΣK) � ΣG.

(A.2.16)

By solving this problem, we can have a new set of Σnew
1 , ...,Σnew

K . We define the

gradients to be g1, ..., gK = (Σnew
1 − Σ1), ..., (Σnew

K − ΣK). Multiplying the gradients

with a pre-determined step-size and subtracting from the original Σ1, ...,ΣK , we per-

form one step of gradient descent. Keep updating Σ1, ...,ΣK by this method will

reach the final values of Σ1, ...,ΣK that maximize the problem (A.2.15) with current

Dt,Γt1, ...,Γ
t
K ,Θ

t values. Therefore, by adopting “Successive Convex Optimization”

and “Gradient Descent”, Step 3 could be implemented as follows:

Step 3.1: Start with a feasible point, which is Σint
1 , ...,Σint

K .

Step 3.2: Take derivative of the objective function of (A.2.15) around the

current Σ1, ...,ΣK values, resulting in the objective function of (A.2.16).

Step 3.3: Solve the linearized optimization problem, and calculate the gradients

g1, ..., gK .

Step 3.4: Update Σ1, ...,ΣK with gradients multiplying the step-size to form

the new Σ1, ...,ΣK .

Step 3.5: Repeat until convergence. Since we find that there is a saddle point

effect in our min-max problem. The convergence condition is either i) the objective

function values of minimization and maximization being very close or ii) the gap

between them held at a constant. Until one of this condition is met, we conclude that
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we finish the maximization part (Step 3).

Step 4: t = t+1, and repeat Step 2 and Step 3 until convergence. The convergence

condition for Step 4 is defined as either i) the upper bound and the lower bound of

the sum-rate coincided or ii) the gap between them held at a constant.

The upper bound of the sum-rate is calculated as:

R̄∗(d) =
1

2
log
|ΣG + ΣZ | |diag(Σ1, ...,ΣK)|
|D∗ + Σz| |diag(Γ1, ...,ΓK)|

, where D∗ = ((diag(Γ1, ...,ΓK)−1)−Σ−1
Z )−1.

(A.2.17)

The lower bound of the sum-rate is:

R∗(d) =
1

2
log
|ΣG + ΣZ | |diag(Σ1, ...,ΣK)|
|D + Σz| |diag(Γ1, ...,ΓK)|

, where D is the solution to (A.2.14).

(A.2.18)

And the gap between them is simply:

R̄∗(d)−R∗(d) =
1

2
log
|ΣG + ΣZ | |diag(Σ1, ...,ΣK)|
|D∗ + Σz| |diag(Γ1, ...,ΓK)|

−1

2
log
|ΣG + ΣZ | |diag(Σ1, ...,ΣK)|
|D + Σz| |diag(Γ1, ...,ΓK)|

.

(A.2.19)

A.3 Generalizations of the Problem Formulation

and Results

In the main context, we employ layer-wise rate-distortion analysis, which means we

use our iterative algorithm to solve for corresponding (2.4.13) under a specific d

distortion level for each layer.

Generalization 1: our problem formulation could be seamlessly generalized to

multi-layer rate-distortion analysis. Without the loss of generality, let us consider
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a two-layer regime. Assuming two covariance matrices Σ
(1)
G and Σ

(2)
G correspond to

the correlation estimation on two layers and each layer has N (1) and N (2) number

of weights, respectively. Define the total distortion constraint dtotal. Our problem

formulation is generalized to a joint of two optimization problems as:

max
Σ

(1)
1 ,...,Σ

(1)
K

Σ
(2)
1 ,...,Σ

(2)
K

min
D(1),Γ

(1)
1 ,...,Γ

(1)
K

D(2),Γ
(2)
1 ,...,Γ

(2)
K

1

2
log
|Σ(1)

G + Σ
(1)
Z | |diag(Σ

(1)
1 , ...,Σ

(1)
K )|

|D(1) + Σ
(1)
Z | |diag(Γ

(1)
1 , ...,Γ

(1)
K )|

+
1

2
log
|Σ(2)

G + Σ
(2)
Z | |diag(Σ

(2)
1 , ...,Σ

(2)
K )|

|D(2) + Σ
(2)
Z | |diag(Γ

(2)
1 , ...,Γ

(2)
K )|

s.t. Σ
(1)
Z = (diag(Σ

(1)
1 , ...,Σ

(1)
K )−1 − Σ

(1)
G

−1
)−1,Σ

(2)
Z = (diag(Σ

(2)
1 , ...,Σ

(2)
K )−1 − Σ

(2)
G

−1
)−1,

0 � diag(Σ
(1)
1 , ...,Σ

(1)
K ) � Σ

(1)
G , 0 � diag(Σ

(2)
1 , ...,Σ

(2)
K ) � Σ

(2)
G ,

0 � D(1) � Σ
(1)
G , 0 � D(2) � Σ

(2)
G ,

N (1)

N (1) +N (2)
1 ·D(1) · 1 +

N (2)

N (1) +N (2)
1 ·D(2) · 1T ≤ dtotal,

0 � diag(Γ
(1)
1 , ...,Γ

(1)
K ) � diag(Σ

(1)
1 , ...,Σ

(1)
K ),

0 � diag(Γ
(2)
1 , ...,Γ

(2)
K ) � diag(Σ

(2)
1 , ...,Σ

(2)
K ),

diag(Γ
(1)
1 , ...,Γ

(1)
K ) � (D(1)−1

+ Σ
(1)
Z

−1
)−1,

diag(Γ
(2)
1 , ...,Γ

(2)
K ) � (D(2)−1

+ Σ
(2)
Z

−1
)−1

.

(A.3.1)

Note that our iterative algorithm is applicable to solve this joint optimization problem.

Generalization 2: another generalization is about the aggregation function. In the

main context and in (A.3.1), we taking FedAvg with equal amount of local data as an

example. Under this setting, we need to left and right multiply the defined distortion
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matrix D by all-ones vector 1 and 1T . We highlight that our formulations could be

generalized to all linear aggregation functions. The adjustments lie in the all-ones

vector.

Here, we take FedAvg with different amount of local data for instance. Since each

client’s contribution to the total distortion is proportional to the size of the local

datasets, we define d = (
√

d1/
∑

dk,
√

d2/
∑

dk, ...,
√

dK/
∑

dk) ∈ RK , where dk

represents the size of clientk’s local dataset and
∑

dk represents the total size of all

clients local data. Replacing 1 with d, i.e., d ·D ·dT , yields the distortion constraint

for FedAvg with different amount of local data.

Generalization 3: As stated in Sec. 2.4.5, we model each layer of the gradient at

each client as a random variable, and each element/position of the gradient sequence

is i.i.d. distributed. Our methodologies can indeed be generalized to random vector

cases. This section briefly describes the changes in the rate allocation formulations.

When modeling each layer of the gradient with random vectors, the notation of

diag(·) no longer represents a diagonal matrix. Instead, it represents a symmet-

ric matrix in block-diagonal form. In addition, the newly introduced variables Σk

and Γk, for k = 1, ..., K each represents a PSD matrix. Thus, diag(Σ1, ...,ΣK) and

diag(Γ1, ...,ΓK) are block-diagonal matrices with Σk and Γk aligning along the diag-

onal from k = 1 to k = K. Note that the same algorithm we proposed could be used

to numerically solve this generalized formulation.

We highlight that the above generalizations can be easily combined.
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A.4 Client Selection Strategy Details

We describe our client selection strategy in matrix formulation.

Without the loss of generality, we take “choosing two out three” as an example.

In this case, we begin with a covariance matrix ΣG ∈ R3×3 as:

ΣG =


var(G1) cov(G1, G2) cov(G1, G3)

cov(G2, G1) var(G2) cov(G2, G3)

cov(G3, G1) cov(G3, G2) var(G3)

 (A.4.1)

As described in SEC. 2.5.2, first we construct a “combination matrix”, C, of which

each row in C is a boolean vector, representing one combination of choosing 2 out of

3. Then stack an all-ones vector at the bottom of it as:

C =



1 1 0

1 0 1

0 1 1

1 1 1


(A.4.2)

Left and right multiplying ΣG with C and CT , we define a matrix Q ∈ R4×4 as:

Q , CΣGC
T =



1 1 0

1 0 1

0 1 1

1 1 1




var(G1) cov(G1, G2) cov(G1, G3)

cov(G2, G1) var(G2) cov(G2, G3)

cov(G3, G1) cov(G3, G2) var(G3)




1 1 0 1

1 0 1 1

0 1 1 1
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We specify that the diagonal elements of Q represent the variance of sums as:

diag(Q) = (var(G1 +G2), var(G1 +G3), var(G2 +G3), var(G1 +G2 +G3)) (A.4.3)

Then we construct another “subtracting matrix” S ∈ R3×4 as:

S =


1 0 0 −1

0 1 0 −1

0 0 1 −1

 (A.4.4)

Left and right multiplying Q with S and ST , we result in a matrix P ∈ R3×3 with

diagonal elements being the expected distortion between “choosing two out of three”

and having all three clients gradients as:

P = SQST (A.4.5)

diag(P ) = (var(G1 +G2)− var(G1 +G2 +G3),

var(G1 +G3)− var(G1 +G2 +G3),

var(G2 +G3)− var(G1 +G2 +G3))

(A.4.6)

Finally, the diagonal element with the smallest absolute value indicates the optimal

client selection.
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A.5 Rate Allocation and Quantization Approxi-

mation

In (2.4.15), we show the general expression for “binning” case. In this section, we

show more details. First, we present the two extreme cases of Mk, k = 1, ..., K as:

M0 = diag(Γ1, ...ΓK), and (A.5.1)

MK = diag(Σ1, ...,ΣK). (A.5.2)

Note, above expressions are two extreme cases for (2.4.14). In later expressions, we

use the definitions of Wk, k = 1, ..., K and Y in Appendix A.1. Then with defining

that diag(Σ1, ...,ΣK) = (Σ−1
G + Σ−1

Z )−1 and diag(Γ1, ...,ΓK) = (D−1 + Σ−1
Z )−1, which
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is satisfied by the upper bound R̄∗(d), the optimal rate allocation is as:

RK = I(GK ;WK)

= H(Y)−H(Y|WK) + I(GK ;WK |Y)

=
1

2
log
|ΣZ(ΣZ −MK)−1ΣZ |
|ΣZ(ΣZ −MK−1)−1ΣZ |

+
1

2
log
|ΣK |
|ΓK |

, and Rk = I(Gk;Wk|Wk+1, ...,WK)

= H(Y|Wk+1, ...,WK)−H(Y|W1, ...,WK) + I(Gk;Wk|Y)

=
1

2
log
|ΣZ(ΣZ −Mk)

−1ΣZ |
|ΣZ(ΣZ −Mk−1)−1ΣZ |

+
1

2
log
|Σk|
|Γk|

, and R1 = I(G1;W1|W2, ...,WK)

= H(Y|W2, ...,WK)−H(Y|W1, ...,WK) + I(G1;W1|Y)

=
1

2
log
|ΣZ(ΣZ −M1)−1ΣZ |
|ΣZ(ΣZ −M0)−1ΣZ |

+
1

2
log
|Σ1|
|Γ1|

(A.5.3)

As mentioned in Section 2.4.7, (A.5.3) and (2.4.15) represents one of the K! orders,

which represents that we determine clientK ’s rate by itself first. Then using clientK ’s

information to determine clientK−1’s rate, and so on until client1. One can easily

show that there are K! permutations regarding to the determining order. We note

that these K! orders, as corner points, define a dominant face. Any point lying in

this dominant face describes an optimal rate allocation scheme.

When projection is applied because of the rank deficiency of ΣZ , we can re-write

as follows to calculate the rate allocation:

1

2
log
|ΣZ(ΣZ −MK)−1ΣZ |
|ΣZ(ΣZ −MK−1)−1ΣZ |

=
1

2
log
|Λ(Λ− ΠTMKΠ)−1Λ|
|Λ(Λ− ΠTMK−1Π)−1Λ|

(A.5.4)

Following the expressions of rate allocation in “binning” case in (2.4.15), we present,
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under the same sum-rate constraint, what is the individual rate for each client for the

“no binning” case, meaning that we don’t take correlations into consideration when

designing the quantizers (each client quantizes based on itself only).

Rk = I(Gk;Uk) = H(Gk)−H(Gk|Wk)

=
1

2
log(|ΣGk||ΣG

−1
k + Γ−1

k − Σ−1
k |) , for k = 1, ..., K,

(A.5.5)

where ΣGk is the k-th diagonal element of ΣG. Note that this “no binning” rate

allocation still satisfies that
∑K

k=1 I(Gk;Wk) = R̄∗(d).

With the rate allocation for both binning and no-binning cases introduced, we are

ready to introduce how do we simulate the quantization under those rates according

to [84]. As proved in the reference, the simulation process for dithered quantization

includes 1) adding a uniformly distributed noise to the source; 2) reconstructing the

sources by linear MMSE estimation.

Step 1): for both binning and no-binning cases, once the rate Rk is determined,

because we model each layer of gradients as a single variable, the variance of the noise

need to be added onto the source can be calculated as (degenerated to a scalar case):

Rk =
1

2
log

σ2
gk

+ σ2
Nk

σ2
Nk

, k = 1, ..., K. (A.5.6)

After obtaining the noise variance σ2
Nk, k = 1, ..., K , we uniformly sample a tensor of

noise following N(0, σ2
N) and add onto the corresponding layer of gradients, resulting

in Ĝ1, ..., ĜK , which denotes the noisy version of the sources with additive Gaussian

noise.

Step 2): for reconstructing the source with linear MMSE estimation, we need to
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first define:

Ψ , (D−1 − Σ−1
g )−1 (A.5.7)

And then define:

A , ΣG · (Σg + Ψ)−1 (A.5.8)

To get the reconstructions G̃1, ..., G̃K , we do the follows:.

[g̃1, ..., g̃K ]T = A · [Ĝ1, ..., ĜK ]T (A.5.9)

Note, this process [84]: from the original source (G1, ..., GK) to noisy version

(Ĝ1, ..., ĜK) and finally to the denoised version G̃1, ..., G̃K well-approximates the

encode-decode process using a dithered lattice quantizer following the rate alloca-

tion Rk, for k = 1..., K.

For the “centralizing case” mentioned in Section 2.6.5, we hypothesis that there

is one external client with access to all local clients gradients, meaning that external

client has direct access to the true FedAvg result. Considering a communication rate

constraint between this external client and the server, we still must use the above-

mentioned steps to simulate the compression and decompression process. The only

difference is that all the sum-rate is assigned to the external client without the need

for rate allocation under this centralizing setting.
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Figure A.1: Example Rate Distortion curve. Upper bound is described in (2.4.12)
and lower bound is described in (2.4.13) .

A.6 An Example of the Rate-Distortion Curve from

Our Correlation Estimation

By applying the iterative algorithm to solve (2.4.13), we get two R-D curves respec-

tively representing the upper bound and lower bound to sum-rate versus different

distortion level, d. An example is presented in Figure A.1.

A.7 Experiment Setting Details

When conducting experiments on CIFAR-10 with VGG16 network, we initialize the

network using a pre-trained weights obtained from ImageNet-1K [16] except for the
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last output layer for the purpose of efficiently analyzing the effectiveness of our meth-

ods. During the training process, we freeze the feature part of the network except

for the last three CONV layers and the subsequent ReLU and pooling layers. Also,

we unfreeze the entire classifier part, which consists of 3 Fully-Connected(FC) layers,

as well as and Dropout layers. When experimenting on Fashion-MNIST, we adopt

a simple CNN network with 2 CONV layers and 2 FC layers. All the correlation

estimation and related applications are deployed on the 3 FC layers because we focus

on the spatial correlation between the same positions in FC layers. For each layer,

the server randomly samples 100 indices regardless of the size of the layer. Note

that the application of our approach is not limited to our chosen dataset or network

architecture.

In terms of FL settings, each client performs 3 rounds of local updates before they

communicate with the server, and the total number of communication iterations is

set to 20. We use SGD as the optimizer with learning rate 0.03 for i) Partition by

shards and 0.01 for ii) Partition by bias level, respectively, with momentum equal

to 0.5 and a learning rate decay equal to 0.995. We apply FedAvg to aggregate the

clients’ updates. We choose the distortion to be d = 0.1 · (1 · ΣG · 1) (0.1 times the

maximum distortion), which uniquely determines the sum rate.

The Table A.1 demonstrates the detailed parameter information of the DNN we

use to experiment with Fashion-MNIST dataset.
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Layer Output Shape Param No.
conv2d 1 (10, 24, 24) 260

conv2d 2 (20, 8, 8) 5020

dropout 2d (20, 20, 8) 0
FC 1 (50) 16050
FC 2 (10) 510

Table A.1: CNN model information for Fashion-MNIST dataset.
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Appendix B

Supplement of M22: A

Communication-Efficient

Algorithm for Federated Learning

Inspired by Rate-Distortion

The Table B.1, Table B.2, Table B.3 demonstrate the detailed parameter information

of the three models we have tested.
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Layer Output Shape Param No.
conv2d (32, 32, 32) 896

BN (32, 32, 32) 128
conv2d 1 (32, 32, 32) 9248

BN 1 (32, 32, 32) 128
max pooling2d (16, 16, 32) 0

dropout (16, 16, 32) 0
conv2d 2 (16, 16, 64) 18496

BN 2 (16, 16, 64) 256
conv2d 3 (16, 16, 64) 36928

BN 3 (16, 16, 64) 256
max pool2d 1 (8, 8, 64) 0

dropout 1 (8, 8, 64) 0
conv2d 4 (8, 8, 128) 73856

BN 4 (8, 8, 128) 512
conv2d 5 (8, 8, 128) 147584

BN 5 (8, 8, 128) 512
max pool2d 2 (4, 4, 128) 0

dropout 2 (4, 4, 128) 0
flatten (2048) 0
dense (128) 262272
BN 6 (128) 512

dropout 3 (128) 0
dense 1 (10) 1290

Table B.1: CNN model information.
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Layer Output Shape Param No.
conv2d 1 (16, 16, 64) 9408

BN 1 (16, 16, 64) 128
relu 1 (16, 16, 64) 0

max pooling2d 1 (8, 8, 64) 0
conv2d 2
BN 2
relu 2
con2d 3
BN 3
relu 3

(8, 8, 64)
(8, 8, 64)
(8, 8, 64)
(8, 8, 64)
(8, 8, 64)
(8, 8, 64)

36864
128
0
36864
128
0

basic block 2 (8, 8, 64) 73984
basic block 3 (4, 4, 128) 230144
basic block 4 (4, 4, 128) 295424
basic block 5 (2, 2, 256) 919040
basic block 6 (2, 2, 256) 1180672
basic block 7 (1, 1, 512) 3673088
basic block 8 (1, 1, 512) 4720640

adaptive avg pool2d (1, 1, 512) 0
dense 1 (10) 5130

Table B.2: ResNet18 model information.
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Layer Output Shape Param No.
conv2d 1 (32, 32, 64) 1792
conv2d 2 (32, 32, 64) 36928

max pooling2d 1 (16, 16, 64) 0
conv2d 3 (16, 16, 128) 73856
conv2d 4 (16, 16, 128) 147584

max pool2d 2 (8, 8, 128) 0
conv2d 5 (8, 8, 256) 295168
conv2d 6 (8, 8, 256) 590080
conv2d 7 (8, 8, 256) 590080

max pool2d 3 (4, 4, 256) 0
conv2d 8 (4, 4, 512) 1180160
conv2d 9 (4, 4, 512) 2359808
conv2d 10 (4, 4, 512) 2359808

max pool2d 4 (2, 2, 512) 0
conv2d 11 (2, 2, 512) 2359808
conv2d 12 (2, 2, 512) 2359808
conv2d 13 (2, 2, 512) 2359808

max pool2d 5 (1, 1, 512) 0
flatten (512) 0
dense 1 (4096) 2101248
dense 2 (4096) 16781312
dense 3 (10) 40970

Table B.3: VGG16 model information.
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