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Abstract

Advances in additive manufacturing and synthesis of complex “responsive” materials

whose properties can be altered through external stimuli are opening the door to a

new generation of integrated devices and materials. While manufacturing such struc-

tures or materials has received a considerable attention (see for instance [71, 85]), their

actual design remains challenging. Starting from the pioneering works of [73, 56, 52],

topology optimization has established itself as a powerful tool for systematic design of

micro-devices, Micro Electro Mechanical Systems (MEMS), or materials microstruc-

tures. Topology optimization aims to answer the question, what is the optimal distri-

bution of materials in a ground domain in order to optimize a given objective function

subject to some constraints? Mathematically, topology optimization is formulated as

a PDE-constrained optimization, conventionally employing Finite Elements Methods

(FEM) to solve the underlying PDE constraints. In this thesis, we study optimal

design of responsive structures made of several materials, with at least one of the

materials is responsive material, though topology optimization. The objective of the

present work is to algorithmically find the distribution of materials in a ground domain

that optimizes an objective function [25]. It is well-known that such problems are

generally ill-posed (see [5] for instance) resulting in optimal designs consisting of an

infinitely fine mixture of multiple materials. Homogenization approaches [35, 8, 5, 7]
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tackle this problem directly by extending admissible designs to such mixtures. This

type of approach is mathematically well grounded and leads to well posed problems

that can be implemented efficiently. However, it is often criticized for leading to

designs that cannot be manufactured. Several other classes of techniques aim at

restricting the class of admissible designs in such a way that avoids fine mixtures.

The combination of material interpolation (SIMP) and filters [21, 27] is a commonly

employed approach. Shape parameterization by level set functions [10, 12] also limits

the complexity of designs. Finally, by penalizing the length (or surface) of interfaces

between materials, perimeter penalization [16, 50, 66] also produces designs with lim-

ited complexity. Additionally, perimeter penalization can be efficiently implemented

using a phase-field approach [28, 29, 82].

In this work, we propose a phase-field algorithm for the systematic design of

responsive structures achieving prescribed deformations under some unknown distri-

butions of a stimulus. Our focus is on linear elastic materials in which an external

stimulus can generate an isotropic inelastic strain, similar to linear thermo-elastic

materials. We begin by providing mathematical analysis of the problem and review

classical optimal design methods and finally we detail the phase-field approach to op-

timal design. We introduce the responsive minimimum compliance problem of linear

elastic structures. After giving the intricacies of this seemingly simple problem, we

introduce the phase-field model to prove the existence of a solution and provide a

numerical implementation. We then turn to the design of compliant morphing linear

elastic structures. Here we begin by considering design of responsive structure that

can move in a prescribed direction upon activation by a stimulus. We demonstrate

the stregth of our approach by studying the optimal design of 2D structures consisting
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of void, one non-responsive material and one responsive material. Next, we explore

the design of time-dependent compliant morphing linear elastic structures. Here we

consider the stimulus to be a state variable controlled by the transient heat equations.

We conclude by summarizing the presented work and discuss the its contribution

towards the overarching goal of optimal design for responsive structure.
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Chapter 1

Introduction

In the last two decades, the advances in modern manufacturing processes, such as

additive manufacturing and synthesis of complex “responsive” materials whose prop-

erties can be altered through external stimuli, have resulted in a high interest in

optimal design as a means of designing high performance structures with high de-

grees of geometrical complexity. These structures are built by integrating responsive

materials such as shape-memory alloys, piezoelectrics, dielectric elastomers and liquid

crystal elastomers with non-responsive materials. However the design of such inte-

grated structures remains challenging, it is important to develop a systematic design

methodology. This thesis explores this through optimal design methods.

1.1 Optimal design

The main objective of optimal design problem is to solve the inverse problem of finding

the distribution of several materials and void or holes that optimizes the performance

of a structure. The subject of optimal design was originally introduced in late 19th
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century by James Clark Maxwell [60] and much of the recent developments have oc-

curred in the past few decades [59] where the subject has been extensively formulated

for optimizing simple objective functions using basic mechanics models. Today, there

is a rich literature on the subject of optimal design and this thesis will base on the

pioneering work of [73, 56, 52]. The important terminologies used in optimal design

problems are outlined as follows:

An objective function measures the performance of the structure. The perfor-

mance of the structure is improved through optimizing (maximizing or minimizing) a

given objective function [9, 25]. The objective function that one seeks to optimize to

achieve an optimal solution, may involve state variables and can be directly or indi-

rectly dependent on the design variables and subject. Examples of objective functions

include maximizing stiffness, minimizing cost and minimizing weight or volume.

Design variables consist of a group of parameters that define the structure. The

design variables can either be discrete or continuous. There are design constraints

that are usually imposed on design variables. These constraints can typically be im-

posed in two ways: equality and inequality constraints. The equality constraint is

when the design variables must meet a specific criteria, such as equilibrium equations

in a structural problem. The inequality constraint is when the design variables must

remain in a specific criteria region, such as lower and upper bounds. Examples of

design variables include length, thickness and material density.

A state variable defines the mechanical behavior of the structure. The state variable

is usually computed by solving an underlying Partial Differential Equation (PDE) con-

straint. Examples of state variables include displacement field and temperature field.

In these cases the underlying PDE constraints could be the equations of linearized

2

https://www.math.mcmaster.ca/


Ph.D. Thesis – Jamal Shabani; McMaster University – Mathematics and Statistics

elasticity PDE (resp. transient heat PDE) for displacement field (resp. temperature

field).

1.1.1 Optimal design categories

Optimal design problems can roughly be classified into the following three categories

from [6, 45]:

Sizing optimization

In sizing optimization, designs structure is parametrized by a few design variables

implying that the set of admissible designs is considerably simplified. Size optimiza-

tion involves finding the optimal dimensions in a design structure while its shape is

fixed throughout the optimization process. Examples of sizing optimization includes

finding the optimal cross sectional area, thickness, length and width of the design [22].

Shape optimization

In shape optimization, the optimal designs are obtained from an initial guess by

moving its boundary without changing its topology, i.e., its number of holes in 2D.

Here, the structure is assumed to have a set number of holes, with the shape of them

considered as the optimized quantity. In this approach the design variables are often

a set of points on the geometry being optimized, and their cartesian coordinates are

iteratively updated until an optimum is reached [11].

3
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Topology optimization

In topology optimization, both the shape and the topology of the admissible designs

can vary without any explicit or implicit restrictions. Topology optimization extends

size and shape optimization further and gives no restrictions to the structure that

is to be optimized. Topology optimization is the most computational expensive and

powerful of the three categories as it does not involve any predefined configurations

[25, 76]. For this reason, topology optimization is very useful tool in many areas

of design and goal of topology optimization is to create an optimal design that is

strong and lightweight, and that can withstand the applied loads without failing. The

concept was initiated for mechanical design problems but has spread to a wide range of

other physical disciplines, including fluids, electromagnetics, optics and combinations

thereof [76].

Topology optimization can be solved through density-based methods where the

density of material at each point in the domain is unknown and the design problem is

posed as an optimization problem over these unknown densities. Then, gradient-based

optimization methods are used to iteratively update the design, where sensitivities

are usually computed through the adjoint method [67].

4
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Figure 1.1: The ground domain (left) and converged design (right) for sizing
optimization (a), shape optimization (b), and topology optimization (c). Source

[25]

Definition 1.1.1. The ground domain, Ω is a 2-dimensional area or 3-dimensional

volume in which the optimal design can be contained.

The typical topology optimization problem is concerned of finding the partition

of the ground domain

Ω = (D1, D2, . . . , Dm) such that
m⋃
i=1

Di = Ω (1.1.1)

where each Di is occupied by material i, maximizing or minimizing some general

objective function I(u1, u2, . . . , un) depending on state variable uj satisfying a state

PDE. Unconstrained topology optimization problems often lead to trivial solutions

(for example, in a case of classical minimum compliance, a trivial solution would be a

5
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structure consists 100% of the stiffest material), so we consider a topology optimiza-

tion problems with constraints on both the state and design variables. Constraints

on design variables include prescribing the material occupying specific regions of the

domain, bounds on the volume fraction of each material and box constraints (lower

and upper bounds). Constraints on the state variables include prescribing maximum

displacement on some part of the boundary and maximum bounds on the maximum

point-wise stress in the minimum compliance problem [9, 24, 57].

Mathematically, a general constrained topology optimization problem is of the

form:

minimize I(u1, u2, . . . , un)

subject to Ci(Φ, ui) = 0, i = 1, 2, . . . , n

Hj(Φ) ≤ 0, j = 1, 2, . . . , k

(1.1.2)

where I denotes the objective function. Here, Ci and Hj represent equality and

inequality constraints, that can be interpreted as restrictions on the state variables ui

and the design variable Φ. The typical equality constraints in constrained topology

optimization problems are the state PDEs modelling ui, i.e controlling the mechanical

behaviour of the structure and the inequality constraints are the bound on allowed

volume of materials inside Ω and box constraints on design variable Φ.

A classical example of topology optimization is the minimum compliance problem

where the objective function represents

I(u) =
∫
∂Ω

f · u ds (1.1.3)

the compliance measuring the work done by an applied load f . Hence minimizing

this quantity minimizes the deflection of the structure due to an applied load and

6
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thus maximizes the overall stiffness of the structure.

Figure (1.2) below shows an example of the classical minimum compliance in 2D

where the ground domain Ω is fixed at the left end. The white region in the design

represents void and grey region is the optimal allocation of the material to maximize

the stiffness of the design.

Figure 1.2: Illustration of classical minimum compliance problem.

The main focus of the present work will be restricted to optimal design of respon-

sive structures using topology optimization. In optimal design of responsive structure,

one or more of the materials used in design is an active or responsive material. Re-

sponsive materials are those materials whose properties such as shape and/or stiffness

can be changed by external stimulus. External stimulus includes electrical or mag-

netic fields, temperature, light and heat. It is now becoming possible to 3D print

responsive materials like shape-memory alloys (SMA), shape of SMA can be affected

by change in temperature and liquid crystal elastomers (LCEs), shape of LCEs can

be affected by change in heat. This paves the way for responsive structures whose

shape can be controlled by external stimulus. Further, combining them with other

non-responsive materials can endow them with functions that are of use for many

7
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applications including soft robotics, wearable and prosthetic devices. Figure (1.3) be-

low shows a responsive wrist like structure designed using SMA and its action upon

actuation.

Figure 1.3: Wrist actuation using SMA. Source [69].

However, actual design of such responsive structures remains challenging, this project

will develop a methodology for the systematic design of responsive structures and

meta-materials which are assemblies of distinct materials and voids, especially optimal

design where one seeks the best function at the least cost. We seek the optimal

distribution of the responsive material, non-responsive materials and void and optimal

stimulus that minimize some objective function.

1.2 Outline of the Thesis

In this thesis, we propose a phase-field algorithm for the systematic design of respon-

sive structures achieving prescribed deformations under some unknown distributions

of a stimulus. Our focus is on linear elastic materials in which an external stimulus

can generate an isotropic inelastic strain, similar to linear thermo-elastic materials.

The thesis is structured as follows:

• In Chapter 2, the theoretical background necessary for the understanding and

8
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reproduction of the thesis is provided. We set the Hilbert and Sobolev spaces

on the ground domain Ω [1, 49]. We introduce the responsive optimal design

problem and discuss the classical attempts to solve the problem and present

the phase-field approach to optimal design and discuss the well-known adjoint

method for sensitity.

The content of Chapter 2 is based on [68, 30, 32–34, 36, 38, 46, 53]

• In Chapter 3, we introduce the responsive minimum compliance problem for

an isotropic linear elastic structure. As the naive formulation results in an ill-

posed optimization problem, we discuss regularization through the phase-field

approach to optimal design. Finally, we detail the numerical implementation

and give some numerical results.

• In Chapter 4, we focus on systematic design of compliant morphing structures

where the stimulus is a design variable. We provide the proof of existence of

solutions to the responsive optimal design through the classical Γ−convergence

for phase transition problem [62, 61, 77, 3]. We present two numerical im-

plementation schemes and finally we explore integrated structures composed of

void, responsive and non-responsive materials for use in actuation.

The content ofChapter 4 is verbatim from a submitted paper [72] and therefore

contains some reduntant material.

• In Chapter 5, we extend Chapter 4 by considering the stimulus as a state

variable. This leads to systematic design of time-dependent compliant morphing

structures where the stimulus changes with respect to both time and space.

Here, the stimulus is controlled through the equations of transient heat PDEs.

9
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Chapter 2

Notation and Preliminaries

2.1 Lp Spaces and Sobolev Spaces

Let us start introducing some important notations and preliminaries. Throughout

this thesis Ω is an open bounded subset of Rd, where d = 2, 3.

Definition 2.1.1. If u : Ω → R is a measurable function and 1 ≤ p <∞, we define

∥u∥p =
(∫

Ω

|u|p dx
) 1

p

.

If p = ∞, we define

∥u∥∞ = inf{M ≥ 0 : |u| ≤M a.e}.

The space Lp(Ω) is defined as

Lp(Ω) = {u : Ω → R : ∥u∥p <∞, u is measurable},

10
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for 1 ≤ p <∞. For a sequence (un), we say un → u in Lp(Ω), if

∥un − u∥p → 0.

The functions in the space for solutions of differential equations might not have

a smooth derivative or are not even differentiable. The space we use to find solution

for differential equations is the Sobolev space.

For now suppose u ∈ Ck(Ω), where k ∈ N, and ϕ ∈ C∞
0 (Ω). The spaces Ck(Ω)

consists of function with k continuous derivatives and C∞
0 (Ω) consists of smooth

functions that have compact support and continuous derivatives of all orders. Let

α = (α1, α2, . . . , αn) ∈ Nn be a multi-index such that |α| = α1 + α2 + · · · + αn ≤ k.

Repeated integration by parts gives

∫
Ω

uDαϕ dx = (−1)|α|
∫
Ω

ϕDαu dx (2.1.1)

where

Dαu =
∂|α|u

∂α1
x1 · · · ∂αn

xn

.

Note that the boundary terms are equal to zero because ϕ = 0 on the boundary of Ω.

If u /∈ Ck(Ω), the derivative of u in (2.1.1) does not make sense in the classical way.

We need to define what the derivative means for functions that are not continuously

differentiable.

Definition 2.1.2. Suppose u ∈ L1(Ω) and α is a multi-index. If v ∈ L1(Ω) satisfies,

∫
Ω

uDαϕ dx = (−1)|α|
∫
Ω

ϕv dx,

11
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then v is the αth weak partial derivative of u. We denote the weak derivative by

Dαu = v.

Note that if u ∈ Ck(Ω), then the weak derivative coincides with the classical

definition of derivative.

Definition 2.1.3. The Sobolev space W k,p(Ω) consists of functions in Lp(Ω) such

that the weak derivatives up to order k are in Lp(Ω) as well

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) ∀|α| ≤ k}.

The associated norm for 1 ≤ p <∞ is defined by

∥u∥k,p =

∑
|α|≤k

∫
Ω

|Dαu|p dx

 1
p

.

If p = ∞, the norm is defined by

∥u∥k,∞ =
∑
|α|≤k

∥Dαu∥∞.

If p = 2, the Sobolev spaces W k,2(Ω) are Hilbert spaces, and we denote them by

Hk(Ω). The inner product of Hk(Ω) is defined by

⟨u, v⟩Hk =
k∑

i=0

⟨Diu,Div⟩L2 .

12
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2.2 Lower semicontinuity and Coercivity

The concepts of lower semicontinuity and coercity are very important in minimization

problems. Given a real valued functional F on a set X, one of the main problem of

the calculus of variations is to find the minimum value

min(F ) = inf
y∈X

F (y)

and the corresponding minimum point x such that

F (x) = inf
y∈X

F (y).

Definition 2.2.1. A sequence (yn) is called minimizing sequence if

lim
n→∞

F (yn) = F (x) = inf
y∈X

F (y).

Definition 2.2.2. A function F : X → R is said to be lower semicontinuous (l.s.c.

for short) if for every sequence xn → x in X we have

F (x) ≤ lim inf F (xn).

Informally, a function is lower semicontinuous if it is continuous or, if not, it only

jumps down as shown in Figure (2.1) [55].

13
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Figure 2.1: A function that is lower semicontinuous at x0 but not lower
semicontinuous at x1.

In this figure above, we see that

lim inf
x→x0

f(x) = f(x0) and lim sup
x→x1

f(x) = f(x1)

and therefore f is lower semicontinuous at x0 and not at x1 as it “jumps down” at

x0 and “jumps up” at x1.

Definition 2.2.3. A function F : X → R is said to be coercive, if for every t ∈ R

the set

{x ∈ X : F (x) ≤ t}

is precompact.

Equivalently, coercivity can be defined in terms of convergence of subsequences.

Definition 2.2.4. A function F : X → R is coercive if every sequence (xn) such that

lim supF (xn) <∞ has a convergent subsequence.

14
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Theorem 2.2.1. If function F : X → R is lower semicontinuous and coercive. Then

F has a minimum point in X.

Proof. Suppose now that F is not identically +∞. Let (yn) be a minimizing sequence

for F in X. Since F is coercive yn → x ∈ X up to subsequence. We have

limF (yn) = inf
y∈X

F (y) ≤ F (x) ≤ lim inf F (yn)

which proves x minimum point of F.

Definition 2.2.5. We say that the sequence Fn : X → R is equi-coercive if for every

t ∈ R there exists a closed countably compact subset Kt of X such that

{x ∈ X : Fn ≤ t} ⊆ Kt ∀n ∈ N.

Proposition 2.2.2. The sequence (Fn) is equi-coercive if there exists a lower semi-

continuous coercive function Ψ : X → R such that Fn ≥ Ψ for every n ∈ N.

Proof. If such a function Ψ exists, then (Fn) is equi-coercive, since

{Fn ≤ t} ⊆ {Ψ ≤ t}

for every n ∈ N and for every t ∈ R, and the sets Kt = {Ψ ≤ t} are closed and

countably compact.
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2.3 Γ−Convergence

We introduce the notion of Γ−convergence which is very useful in minimization prob-

lems. The notion of Γ−convergence was introduced by Ennio De Giorgi in a sequence

of papers (cf. [40–42]). An excellent account of this concept is the book of Dal Maso

[39] and Andrea Braides [32].

Definition 2.3.1. Let F : X → R and Fn : X → R, where X is a topological space.

We say, Fn Γ−converges to F if the following two conditions hold for any x ∈ X.

1. (liminf inequality): for every sequence (xn) ∈ X such that xn → x

F (x) ≤ lim inf
n→∞

Fn(xn).

2. (limsup inequality): there exists a recovering sequence (xn) ∈ X with xn → x

such that

F (x) ≥ lim sup
n→∞

Fn(xn).

Suppose we are interested in finding the minimizer of a functional F . We can

approximate F by a sequence of functionals Fn such that Fn Γ−converges to F. Using

the Fundamental Theorem of Γ−convergence below, we see that the minimizers of

Fn can be used to approximate the minimizer of F with additional assumption of

equi-coerciveness on Fn i.e

Γ− convergence + equi-coerciveness =⇒ convergence of minimizers.

Theorem 2.3.1. (Fundamental Theorem of Γ−Convergence) Let X be a topological
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space. Let (Fn) be an equi-coercive sequence of functions and let Fn Γ−converges to

F in X, then the minimizers of Fn converge to a minimizer of F.

Proof. Let y ∈ X, and (yn) be a recovery sequence for y i.e, yn → y. Then by

(limsup inequality) condition above, we have

lim sup
n→∞

Fn(yn) ≤ F (y). (2.3.1)

Let xn be minimizer of Fn, since Fn are equi-coercive, xn belongs to some compact

set of X and therefore we can find x ∈ X such that xn → x up to subsequence. We

want to show that x is the minimizer of F. By using (liminf inequality) condition

above, we have

F (x) ≤ lim inf
n→∞

Fn(xn). (2.3.2)

It follows that

F (x) ≤ lim inf
n→∞

Fn(xn) ≤ lim sup
n→∞

Fn(xn) ≤ lim sup
n→∞

Fn(yn) ≤ F (y) ∀y ∈ X.

We have shown that F (x) ≤ F (y) ∀y ∈ X and this means x is the minimizer of F.

With the notion of Γ−convergence, we can now introduce the most important

property of Γ−convergence.

Lemma 2.3.2. ( Γ−convergence is stable under continuous perturbations): If Fn
Γ−→ F

and G is continuous, then

Fn +G
Γ−→ F +G

Proof. It is clear that sinceG is continuous, thenG satistifies both (liminf inequality)

and (limsup inequality) conditions in Γ−convergence definition. Now if we take any
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sequence xn → x, then the desired results follows directly from the properties of

lim inf and lim sup for sum of two sequences.

We recall examples of Γ−convergence in the framework of the calculus of vari-

ations, i.e we consider integral functionals defined on functional spaces where the

integral functionals in question depend on a small parameter ε. One of the most clas-

sical example of Γ−convergence is given in the paper by Modica and Mortola [62, 63]

where this result is also proven. This result is concerned with the approximation of

the perimeter functional via some functionals which are more typical for the calculus

of variations, i.e integral functionals involving the squared norm of the gradient. This

Γ−convergence result is particularly interesting for numerical reasons; indeed, from

a computational point of view, it is very difficult to handle perimeters, because we

are more accustomed to handling functions instead of sets [70, 15], thus replacing the

perimeter with a more standard functional involving derivatives of functions allows

us to use more robust and more classical numerical methods. We can extend the

definition of Γ−convergence above to families depending on a small real parameter ε.

For example, we can treat Γ−limits of families (Fε) as ε→ 0+ [31].

Definition 2.3.2. We say that a sequence Fε : X → R Γ−converges to F : X → R

as ε→ 0+ if the following two conditions hold for any u ∈ X.

1. (liminf inequality): for every sequence (uε) ∈ X such that uε → u ∈ X

F (u) ≤ lim inf
ε→0+

Fε(uε).

2. (limsup inequality): Given u ∈ X, there exists a recovering sequence (uε) ∈ X

18

https://www.math.mcmaster.ca/


Ph.D. Thesis – Jamal Shabani; McMaster University – Mathematics and Statistics

with uε → u such that

F (u) ≥ lim sup
ε→0+

Fε(uε).

Definition 2.3.3. (The Modica-Mortola functional) For any ε > 0, we consider the

following sequence of functionals defined on L1(Ω),

Fε(u) =


∫
Ω

1
ε
W (u) + ε|∇u|2dx if u ∈ H1(Ω),

+∞ otherwise in L1

(2.3.3)

where W : R → R is a double-well potential such that W (0) = W (1) = 0 and

W (x) > 0 if x /∈ {0, 1}. We denote by c0 the constant given by c0 =
∫ 1

0

√
W (s)ds.

We also define

F (u) =


c0Per(A) if u = χA ∈ BV (Ω),

+∞ otherwise in L1

(2.3.4)

Theorem 2.3.3. (Modica-Mortola Theorem) Assume that Ω is a bounded convex set.

Then Fε Γ−converges F in L1(Ω) as ε→ 0.

The theorem above (2.3.3) has been proved independently by Sternberg [78] (as-

suming quadratic growth at ∞).

2.4 Linearized Elasticity

This section contains the analysis of the equations of linearized elasticity that are used

to compute the mechanical response of a structure subject to an applied load. Analysis

of solid elastic structures using PDEs modeling is one of the major application of

modern engineering, which likely makes the PDEs modeling the deformation of elastic
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bodies the most popular PDEs in the world. In order to describe the PDEs modeling

the deformation of an elastic structure, we first denote the elastic structure as our

ground domain Ω with smooth boundary ∂Ω. The domain Ω is subjected to a known

traction force f on a part ΓN ∈ ∂Ω of its boundary and clamped on ΓD ∈ ∂Ω.

If u denotes the displacement of the domain Ω due to traction force f acting on

ΓN , then u is governed by the system of equations of linearized elasticity given in

strong form below: 

−div (σ(u)) = 0 in Ω,

u = 0 on ΓD,

σ · n = f on ΓN ,

(2.4.1)

where σ(u) is the stress tensor. Let e(u) be the linearized strain tensor given by

e(u) =
1

2

(
∇u+ (∇u)T

)
(2.4.2)

which can be equivalently written as

eij(u) =
1

2
(uij + uji)

and

σ(u) = Ce(u) (2.4.3)

is the Hooke’s law governing the solid elastic structure and C is a symmetric stiffness

tensor of fourth-order i.e a linear map between second-order tensors. For an isotropic

homogeneous material, the constitutive equation describing the relationship between
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the stress tensor σ(u) and linearized strain tensor e(u) is given as

σ(u) = Ce(u) = λtr(e(u))I + 2µe(u) (2.4.4)

where λ ≥ 0, µ > 0 are two positive constants, known as Lamé constants given by

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

and E is the Young’s modulus and ν is the Poisson ratio.

2.4.1 Variational Formulation

The linearized elasticity PDE (2.4.1) above can be expressed in variational or weak

formulation. We define the Sobolev space

V = {u ∈ H1(Ω) : u = 0 on ΓD}. (2.4.5)

where we will be looking for the weak solution of the PDE (2.4.1). The variational

formulation of (2.4.1) consists of forming the inner product of

−div (σ) = 0

and a test function v ∈ V and integrating by parts using Green’s formula over the

domain Ω ∫
Ω

−div (σ) · v dx =

∫
Ω

σ : ∇v −
∫
∂Ω

(σ · n) · v ds = 0
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where the column operator is the inner product between tensors defined as

A : B =
∑
i,j

AijBij

and n is the outward unit normal at the boundary ∂Ω. Using the boundary conditions

of (2.4.1), we obtain the variational formulation of (2.4.1) as

∫
Ω

σ : ∇v dx =

∫
Ω

Ce(u) : ∇v dx =

∫
ΓN

f · v ds for any v ∈ V. (2.4.6)

Note that

e(u) : ∇v =
1

2

∑
i,j

(uij + uji)vij (2.4.7)

and since the double summation is over all i and j, the result is unchanged if i and j

are interchanged in the summation

e(u) : ∇v =
1

2

∑
i,j

(uij + uji)vji. (2.4.8)

Adding (2.4.7) and (2.4.8), we have

2e(u) : ∇v =
1

2

∑
i,j

(uij + uji)vij +
1

2

∑
i,j

(uij + uji)vji

=
1

2

∑
i,j

(uij + uji)(vij + vji)
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and therefore

e(u) : ∇v =
∑
i,j

1

2
(uij + uji)

∑
i,j

1

2
(vij + vji)

= e(u) : e(v)

Replacing ∇v in equation (2.4.6) with the symmetric strain e(v) gives rise to the

slightly different variational formulation

∫
Ω

σ : e(v) dx =

∫
Ω

Ce(u) : e(v) =
∫
ΓN

f · v ds. (2.4.9)

We can now summarize the variational formulation as: find u ∈ V such that

a(u, v) = L(v), ∀v ∈ V, (2.4.10)

where a : V × V → R is a bilinear form

a(u, v) =

∫
Ω

Ce(u) : e(v) dx (2.4.11)

and L : V → R is a linear form

L(v) =

∫
ΓN

f · v ds. (2.4.12)

2.5 Existence of solution

In this section, we show that the linearized elasticity PDE (2.4.1) is well-posed in

H1(Ω), in the sense that it has a unique solution in H1(Ω). The well-possedness of
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(2.4.1) is an immediate consequence of classical Lax-Milgram theorem. Before we

start the Lax-Milgram theorem, we need some preliminary concepts.

Theorem 2.5.1. (Korn’s inequality) Let Ω be a domain in R2 and let ΓN ⊂ ∂Ω

be such that length ΓN > 0. Then there exists a constant CK > 0 such that

∥e(u)∥L2(Ω) ≥ CK∥u∥H1(Ω) for all u ∈ H1(Ω).

Definition 2.5.1. Let H denote a real Hilbert space endowed with a inner product

⟨·, ·⟩ and a norm ∥ · ∥. Let a : H × H → R be a bilinear form and L : H → R be a

linear form. We say that the bilinear form a(u, v) is

(1) continuous if there exists a constant M > 0 such that

|a(u, v)| ≤M∥u∥∥v∥ for all u, v ∈ H,

(2) coercive if there exists a constant C > 0 such that

a(u, u) ≥ C∥u∥2 for all u ∈ H.

Likewise, a linear form L(v) is continuous if there exists a constant m > 0 such that

|L(v)| ≤ m∥v∥ for all v ∈ H.

Theorem 2.5.2. (Cauchy-Schwarz inequality) If u, v ∈ H, then

|⟨u, v⟩| ≤ ∥u∥∥v∥.
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Theorem 2.5.3. (Lax-Milgram theorem) Let H be a Hilbert space, a(u, v) be a

bilinear form on H that is continuous and coercive. Let L(v) be a continuous linear

form on H. Then the problem

Find u ∈ H such that a(u, v) = L(v) for all v ∈ H

has a unique solution in H.

Since the linearized elasticity PDE (2.4.1) is equivalent to a variational formula-

tion (2.4.10). It suffices to apply the Lax-Milgram theorem to the variational equation

(2.4.10) to show the existence of unique solution. It is easy to see that all the con-

ditions of the Lax-Milgram theorem are satisfied and in particular using the Hilbert

space V defined in (2.4.5), the coerciveness of the bilinear form a(u, v) is a direct

consequence of Korn’s inequality stated in Theorem (2.5.1) combined with the posi-

tiveness of the Lamé constants, which together imply that, for all u ∈ V,

a(u, u) =

∫
Ω

σ(u) : e(u) dx

=

∫
Ω

(λ[tr(e(u))]2 + 2µ∥e(u)∥2) dx

≥
∫
Ω

2µ∥e(u)∥2 dx

= C∥e(u)∥2L2 ≥ CK∥u∥2V .
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The continuity of the linear form L(v) is also clear

|L(v)| =
∣∣∣∣∫

ΓN

f · v ds
∣∣∣∣

≤
∫
ΓN

|f · v| ds

≤ ∥f∥L2(ΓN )∥v∥L2(ΓN )

≤ m∥v∥V

2.6 Responsive optimal design

Consider m responsive linear elastic materials characterized by (C1, β1), . . . , (Cm, βm)

where Ci denotes the Hooke’s law of material i and βi is a parameter such that βi =

1 if material i is responsive and βi = 0 otherwise and Id the d × d identity matrix.

The constitutive laws of these materials depend on an external real valued stimulii

set of functions sj ∈ [−1, 1] thus, inducing total inelastic strain in dimension d, i.e

σ =
m∑
i

Ci (e(uj)− βisjId) (2.6.1)

where e(uj) is the linearized strain associated to a displacement field uj.

Given a ground domain Ω, let ΓD ⊂ ∂Ω be a regular-enough part of the boundary

of our domain with non-zero length and ΓN = ∂Ω \ ΓD. A design D is a partition

of Ω into m subdomains (D1, . . . , Dm) occupied by m responsive materials. The

problem we are interested in is to design the structure D together with optimal

distribution of the stimulii s = (s1, s2, . . . , sn) that minimizes a general objective

function I(u1, u2, . . . , un) where each uj ∈ H1(Ω;R) is the state variable satisfying
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the weak form of the linearized elasticity system

m∑
i=1

∫
Ω

Ci (e(uj)− βisjId) : e(v) dx = 0,∀v ∈ V, (2.6.2)

where

V :=
{
v ∈ H1(Ω); v = 0 on ΓD

}
. (2.6.3)

Let χDi
(x) be a characteristic function such that

χDi
(x) =


1 x ∈ Di, i = 1, 2, . . . ,m

0 x /∈ Di

(2.6.4)

and define the design variable as

Φ := (χD1 , χD2 , . . . , χDm) (2.6.5)

such that
m∑
i=1

χDi
= 1, ∀x ∈ Ω. (2.6.6)

Mathematically, the responsive optimal design problem reads as


inf

(Φ,s)∈DΦ×S
I(u1, u2, . . . , un)

uj satisfies the weak form (2.6.2)

(2.6.7)

where Φ ∈ [L∞(Ω; {0, 1})]m is the design variable and S is the space of admissible
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stimuli s taking values in [−1, 1]n, i.e

S = L1(Ω : [−1, 1]n). (2.6.8)

The space of admissible designs DΦ is given by

DΦ =

{
Φ(x) ∈ [L∞(Ω; {0, 1})]m,

∫
Ω

χDi
dx = θi|Ω| with 0 ≤ θi ≤ 1

}
(2.6.9)

where θi denotes the volume fraction occupied by material i in Ω and

m∑
i=1

θi = 1. (2.6.10)

It is well known that problem (2.6.7) is ill-posed, i.e, it admits no optimal solution

in the proposed class of admissible designs [5, 16, 29]. This is because the set of

feasible designs lacks closure and compactness and in general the infimum can not be

attained at any feasible point [29]. This results to so-called checkerboard and mesh-

dependency problems. The former refers to the formation of regions of alternating

void or holes and solid material ordered in a checkerboard like fashion and is related

to the discretization of the original continuous problem. Mesh-dependence concerns

the effect that qualitatively different optimal solutions are reached for different mesh-

sizes [25]. There are several workaround methods that have been proposed to make

problem (2.6.7) well-posed. In the homogenization method [5, 7, 47, 79], the set

of admissible designs is expanded to included generalized designs for which one can

prove existence of an optimum and derive necessary conditions of optimality. A

generalized design is often equivalently called a relaxed, or composite design. This
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process of enlarging the space of admissible designs in order to make the problem well-

posed is called relaxation [5, 8, 54]. Another workaround is so called Solid Isotropic

Microstructure with Penalization (SIMP) introduced by Bendsøe [23]. The idea was

to assume continuous densities for the structure as opposed to the discrete form of the

homogenization method. Implementing this assumption into topology optimization,

the resulting solution can be represented not only with solid and void regions, but

with intermediate densities. However, as these are not generally manufacturable, a

power-law approach is used to move the intermediate densities towards a 0/1 solution

by penalizing the intermediate these densities. The perimeter penalization [16, 50, 66]

is another approach to obtain well-posed problem. In this approach, the workaround

is to add one extra term to the objective function in order to gain compactness

[16, 29]. It has been long understood that adding a surface term proportional to

the perimeter of the designs prevents sequences of solutions with rapid oscillations,

and makes the problems well posed. In this thesis, we will focus on the perimeter

penalization approach. Let

P(D) :=
1

2

m∑
i,j=1

Hd−1 (∂∗Di ∩ ∂∗Dj ∩ Ω) , (2.6.11)

where Hd−1 denotes the d− 1–dimensional Hausdorff measure and ∂∗D the essential

boundary of a set D. Let α > 0 be a small regularization parameter and consider the

problem

inf
(Φ,s)∈DΦ×S

I(u1, u2, . . . , un) + αP(D). (2.6.12)
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2.7 The phase-field approach to optimal design

Numerical implementation of (2.6.12) is very challenging especially the approximation

of the perimeter term. The phase-field approach to optimal design, introduced in [28,

29] (see also [83, 86, 82, 81, 84]) is based on the idea of variational approximation of

the perimeter penalty term P for generalized designs. We define a set of generalized

designs, that is vector-valued functions ρ ∈ Dρ, where

Dρ :=
{
(ρ1, ρ2, . . . , ρm) ∈

[
H1(Ω; [0, 1])

]m
,

∫
Ω

ρi dx = θi|Ω|
}
. (2.7.1)

Loosely speaking, the components ρi of the vector-valued phase-field ρ can be thought

of as a density of material i at each point of the domain Ω, and classical designs would

correspond to the situations where ρi = χDi
. Indeed, if D ∈ D is a classical design,

then (χD1 , . . . , χDm) is a generalized design. We then extend P to generalized designs

by defining

Pε(ρ) :=

∫
Ω

W (ρ)

ε
+ ε|Dρ|2 dx, (2.7.2)

where ε > 0 is a regularization parameter andW is a non-negative function vanishing

only at the vertices p1, . . . , pm of the m-dimensional unit simplex and satisfying

inf

{∫ 1

0

W 1/2(γ(t))|γ′(t)| dt; γ ∈ C1((0, 1);Rm), γ(0) = ρi, γ(1) = ρj

}
= 1.

Next, we introduce a convex continuous function a such that a(0) = 0 and a(1) =

1, so that the equilibrium equation (2.6.2) can then be extended to generalized designs

by
m∑
i=1

∫
Ω

a(ρi)Ci (e(uj)− βisjId) · e(v) dx = 0 ∀v ∈ V. (2.7.3)

30

https://www.math.mcmaster.ca/


Ph.D. Thesis – Jamal Shabani; McMaster University – Mathematics and Statistics

For a given ε > 0, the phase field regularization of (2.6.12) is then

inf
(ρ,s)∈Dρ×S

I(u1, . . . , un) + αPε(ρ). (2.7.4)

We show in Chapter 4 in section (4.3) that both problems (2.6.12) and (2.7.4)

admit solutions and that the solutions of (2.7.4) converge to that of (2.6.12).

2.8 Adjoint method for sensitivity

In this section, we detail the general procedure for adjoint method. To solve (2.6.12),

gradient based optimization is typically employed so one needs to compute the sen-

sitivities of objective function with respect to design changes. These sensitivities

are used to update the design with a gradient based optimization method such as

conjugate gradient descent, and the process is iterated until convergence tolerance is

achieved. To compute these sensitivities by chain’s rule, it involves computing the

derivative of a state variable with respect to a design variable. Formally, if we con-

sider an objective F (u(ρ), ρ) such that the state variable u(ρ) satisfies the constraint

G(u(ρ), ρ) = 0, then

dF (u(ρ), ρ)

dρ
=
∂F

∂u

∂u(ρ)

∂ρ
+
∂F

∂ρ
. (2.8.1)

To circumvent the computation of the derivative of a state variable with respect

to a design variable, we introduce the adjoint method [67, 48]. Starting with an

initial design, the linearized elasticity PDE is solved, followed by the adjoint method

to obtain the sensitivities. The adjoint method is an efficient way for calculating

gradients for constrained optimization problems even for very large dimensional design

space [4, 80, 26].
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We define the Lagrangian L,

L(u1, . . . , un, ρ, s, λ1, . . . , λn) = I(u1, . . . , un) + αPε(ρ)+

+
m∑
i=1

∫
Ω

a(ρi)Ci (e(uj)− βisI2) · e(λj)︸ ︷︷ ︸
=0

, (2.8.2)

where each λj ∈ V is the Langrange multiplier. Assuming uj satisfies the equilibrium

equation (2.7.3) then the Lagrangian is equivalent to objective function (2.7.4) for

any λj ∈ V as we have only added zero through the satisfied weak form of equilibrium.

Observe that the solution uj of the weak formulation (2.7.3) depends on ρ and s

so we define a reduced objective function as

J(ρ, s) = I (u1(ρ, s1), . . . , un(ρ, sn)) + αPε(ρ)

and the Lagrangian (2.8.2) becomes

L((u1(ρ, s1), . . . , un(ρ, sn), ρ, s, λ1, . . . , λn) = J(ρ, s).

The directional derivative of J on a direction ṽ ∈ H1(Ω) is given as:

〈
∇J(ρ, s), ṽ

〉
=

〈
∂L
∂u1

,
∂u1
∂ρ

ṽ

〉
+ . . .+

〈
∂L
∂un

,
∂un
∂ρ

ṽ

〉
+

〈
∂L
∂ρ
, ṽ

〉
+

〈
∂L
∂λ1

,
∂λ1
∂ρ

ṽ

〉
+ . . .+

〈
∂L
∂λn

,
∂λn
∂ρ

ṽ

〉
.︸ ︷︷ ︸

=0

(2.8.3)

We choose Lagrange multipliers λj such that the last term in equation (2.8.3) disap-

pears since the directional derivative of the Lagrangian function with respect to λj
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recovers the weak form equillibrium (2.7.3).

Computing ∂uj/∂ρ is difficult, so we can choose Lagrange multiplier, λj such that

for any v ∈ V

〈
∂L
∂uj

,v

〉
=

〈
∂I
∂uj

, v

〉
−

m∑
i=1

∫
Ω

a(ρi)Cie(v) · e(λj) dx = 0. (2.8.4)

Equation (2.8.4) is the weak form of the adjoint equations. After solving (2.8.4) for

Lagrange multipliers λj, one can find the sensitivity of objective J from

〈
∇J(ρ, s), ṽ

〉
=

〈
∂L
∂ρ
, ṽ

〉
. (2.8.5)
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Chapter 3

Responsive minimum compliance

with stimulus as design variable

3.1 Problem statement

We briefly recall the classical minimum compliance problem [25] and consider the

ground domain Ω in Figure (3.1) to be occupied by three materials i.e void, non-

responsive and responsive materials.

Figure 3.1: Minimum compliace cantiveler beam clamped at ΓD
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We are looking for optimal arrangement of the regions D1, D2 and D3 occupied

by void, non-responsive and responsive materials respectively and the distribution of

the stimulus s, within the responsive material that minimize the compliance,

I(u) =
∫
ΓN

f · u dS. (3.1.1)

We consider the regularized minimum compliance problem below,


min

(ρ,s)∈Dρ×S
I(u) + αPε(ρ)

u satisfies weak form (4.2.4) with m = 3

(3.1.2)

then we are now ready to prove existence of solutions for the regularized problem. The

existence of solutions for the regularized problem (3.1.2) and their convergence to that

of the perimeter-controlled topology optimization problem is a relatively straight-

forward consequence of the now-classical Γ–convergence result for phase transition

problems [62, 61, 77, 3]. In [72] section (4.3), we have detailed the proof of existence

of solution to a different class of objective function that is continuous function of u.

And as in this case, the compliace is continuous function of u, so proof of existence

of problem (3.1.2) follows from section (4.3).

3.2 Numerical results

Our implementation uses Firedrake [51, 58], an open source automated system for the

solution of partial differential equations in Unified Form Language (UFL) variational
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forms [13, 14] using the FEM. The displacement, density, and stimulus fields are dis-

cretized using linear Lagrange simplicial finite elements over structured meshes. The

minimization algorithm we used is a BNCG (Bounded Nonlinear Conjugate Gradi-

ent) solver implemented in the TAO (Toolkit for Advanced Optimization) optimiza-

tion package, which is a part of PETSc (the Portable, Extensible Toolkit for Scientific

Computation) library [18–20]. The numerical implementation of responsive minimum

compliance problem follows the staggered algorithm (2). In a staggered scheme, we

use TAO to minimize the objective function with respect to design only. Whenever

computing sensitivity of the objective function with respect to design changes, we

perform a full minimization of the objective function with respect to stimulus as

outlined in [72] section (4.4).

We present optimal designs for the responsive minimum compliance problem with

stimulus in 2D with rectangular domain Ω (see 3.1) with width Lx = 1.0 and height

Ly = 1/3. The domain is clamped on left side and uniform boundary force f =

(0,−1) is applied on boundary ΓN . The regularization parameter is ε = 1.0 × 10−4

the perimeter penalization parameter is α = 4.0 × 10−3. The relative and absolute

tolerance on the gradient and objective function in TAO were set to 1 × 10−7. The

initial design fields are chosen as ρ2 = ρ3 = 0.3 in Ω.We investigate these final designs

for different elastic moduli ratio E3/E2 of the responsive to non-responsive material.
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Figure 3.2: Responsive material density (top), non-responsive density (middle)
and and composite plot of both material density and the stimulus in the

deformed configuration (bottom) for stiffness ratio E3/E2 = 100. The converged
design consists of 30% responsive and 25% non-responsive material.
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Figure 3.3: Responsive material density (top), non-responsive density (middle)
and and composite plot of both material density and the stimulus in the

deformed configuration (bottom) for stiffness ratio E3/E2 = 10. The converged
design consists of 25% responsive and 20% non-responsive material.
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Figure 3.4: Responsive material density (top), non-responsive density (middle)
and and composite plot of both material density and the stimulus in the

deformed configuration (bottom) for stiffness ratio E3/E2 = 10. The converged
design consists of 16% responsive and 18% non-responsive material.
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Figure 3.5: Responsive material density (top), non-responsive density (middle)
and and composite plot of both material density and the stimulus in the

deformed configuration (bottom) for stiffness ratio E3/E2 = 10. The converged
design consists of 12% responsive and 18% non-responsive material

In our first result, Figure (3.2), we consider the responsive material to be 100 stiffer

than the non-responsive material. The penalty terms are set to ν3 = 6.0 and ν2 =

−0.02 for responsive and non-responsive material respectively. Our algorithm con-

verged after 1078 iterations leading to the objective function to decrease from 9.5183

to 0.5481. As expected, final design uses the stiffer material to build the outer frame

of the beam. The distribution of the stimulus makes the converged design to act as

“bimetallic“ strip in sense that, when stimulated the responsive material at the top

contracts horizontally while the responsive material at the bottom expands horizon-

tally, causing the beam to do work against the applied load as shown in the last figure

in Figure (3.2) above.
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In the next Figure (3.3), we consider the responsive material to be 10 stiffer than

the non-responsive material. The penalty terms are set to ν3 = 5.0 and ν2 = 0.38.

As expected, the converged design did not change very much from the that in Figure

(3.2) above in a sense that the stronger material is used to build the frame. In this

computation, our algorithm converged after 671 iterations leading to the objective

function to decrease from 7.1962 to 0.3762.

In our next result, Figure (3.4), we consider the case where responsive and non-

responsive materials have the same stiffness. The penalty terms are set to ν3 =

2.0 and ν2 = 1.0. The converged design behaves like “bi-metal“ strip where the outer

layers deform and the shear stiffness of the central area is maximized. Upon stimula-

tion, responsive material at the top contracts while responsive at the bottom expands

causing the beam to bend upward as shown in Figure (3.4) below. In this computa-

tion, our algorithm converged after 403 iterations leading to the objective function to

decrease from 0.57163 to 0.00462.

In the last Figures (3.5) we consider the case where the non-responsive materials

is 10 times stiffer than the responsive material. The penalty terms are set to ν3 =

2.0 and ν2 = 1.0. As one would expect from the previous results above, we see the

converged design uses the stiffer materials to build the frame of the beam and place

large chunks of responsive at the bottom. Upon stimulation the converged design

behaves similar to (3.4) above. For this computation our algorithm converged after

613 iterations leading to the objective function to decrease from 0.39421 to 0.04932.
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3.3 Effect of the perimeter term

The phase-field approach to optimal design uses penalization method to ensure well-

posedness of the problem by adding the perimeter term αPε(ρ) to the objective func-

tion where α is an arbitrary penalization parameter or weight of the perimeter. So

it is natural to expect that the penalty term or the weight of the perimeter α has

significant effect on the final designs. Figure (3.6) shows the effect of decreasing and

increasing the weight of the perimeter α while all other parameters are kept as in the

previous example. As expected, a larger weight on the perimeter leads to very simple

final design whose complexity increases as the weight decreases.

Figure 3.6: Converged design with weight of the perimeter α = 5.0× 10−2(left)
and α = 5.0× 10−4(right).

3.4 Influence of initial design

We observe that different initial design guesses may lead to different converged designs

but the actual converged values of the objective function remain very close. This is
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due to non-convexity nature of our minimization problem. Figure (3.7) shows a

connverged design for initial design as given as

ρ2 = 0.5 + 0.5 sin(4πx) sin(8πy),

ρ3 = 0.3 + 0.3 cos(4πx) cos(8πy).

Figure 3.7: Converged design with different initial design guess.

3.5 Conclusion

Through the responsive minimum compliance example, we introduced the staggered

scheme which produced expected results in classical compliance problem. Due to
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ill-posedness of the minimum compliance problem, we discussed the methods to reg-

ularize the design problem to gain well-posedness. In particular, we detailed the

perimeter penalization, where a perimeter term is added to the objective function and

the proof of existence of minimizers follows from classical Γ−ocnvergence. Our stag-

gered scheme exhibits good robustness properties upon mesh refnement or changes of

initial design. Even though, it can produce slightly diferent designs for diferent initial

designs, which is common in due to non-convex nature of optimization problem, but

the objective value of the computed designs are very close. We also demonstrated the

effect of a perimeter term on complexity of the design which is common in phase-field

models.
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Chapter 4

Systematic design of compliant

morphing structures with stimulus

as design variable

Advances in additive manufacturing and synthesis of complex “responsive” materials

whose properties can be altered through external stimuli are opening the door to a

new generation of integrated devices and materials. While manufacturing such struc-

tures or materials has received a considerable attention (see for instance [71, 85]),

their actual design is equally challenging. Starting from the pioneering work of [73,

56, 52, 44, 74, 75], topology optimization has established itself as a powerful tool

for systematic design of micro-devices, MEMS, or materials microstructures. In such

problem, the distribution of one or several materials in a ground domain that opti-

mizes an objective function is sought algorithmically [25]. It is well-known that such

problems are generally ill-posed (see [5] for instance) with optimal designs consisting

of a fine mixture of multiple materials. Homogenization approaches [35, 8, 5] tackle
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this problem directly by extending admissible designs to such mixtures. This type

of approach is mathematically well grounded and leads to well posed problems that

can be implemented efficiently. However, it is often criticized for leading to designs

that cannot be manufactured. Several other classes of techniques aim at restricting

the class of admissible designs in such a way that avoids fine mixtures. The combi-

nation of material interpolation (SIMP) and filters [21, 27] is a commonly employed

approach. Shape parameterization by level set functions [10, 12] also limits the com-

plexity of designs. Finally, by penalizing the length (or surface) of interfaces between

materials, perimeter penalization [16, 50, 66] also produces designs with limited com-

plexity. Additionally, perimeter penalization can be efficiently implemented using a

phase-field approach [28, 29, 82].

In this article, we propose a phase-field algorithm for the systematic design of

responsive structures achieving prescribed deformations under some unknown distri-

butions of a stimulus. Our focus is on linear elastic materials in which an external

stimulus can generate an isotropic inelastic strain, similar to linear thermo-elastic

materials.

Section(4.1) is devoted to the mathematical analysis of the problem and its phase-

field approximation. A numerical scheme is proposed in Section(4.4) and illustrated

by a series of numerical simulations in Section(4.5).
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4.1 Problem statement

Consider linear elastic materials whose constitutive laws depend on an external real-

valued stimulus s ∈ [−1, 1] inducing an inelastic strain in dimension d, i.e.

σ = C (e(u)− βsId) (4.1.1)

where C denotes the Hooke’s law, e(u) = (∇u + ∇uT )/2 is the linearized strain

associated to a displacement field u, β ≥ 0 is a given parameter and Id the d × d

identity matrix. Throughout this article, we call such a material a responsive material

characterized by C and β.

Consider a bounded open domain Ω ⊂ Rd, d = 2, 3, and an open subset Ω0 of Ω. A

design D is a partition of Ω intom subdomains (D1, . . . , Dm) occupied bym responsive

materials characterized by (C1, β1), . . . , (Cm, βm). Let ΓD ⊂ ∂Ω be a regular-enough

part of the boundary of our domain with non-zero length and ΓN = ∂Ω\ΓD. Consider

n prescribed displacement fields (ū1, . . . , ūn) ∈
[
H1(Ω0;Rd)

]n
defined over Ω0. Our

goal is to design a structure D and a family of stimulus functions s := (s1, . . . , sn) such

that in the equilibrium configuration associated with each stimuli stimulus sj, Ω0 is

mapped to a region as close as possible to ūj(Ω0), j = 1, . . . , n. More precisely, let

(θ1, . . . , θm) such that
∑m

i=1 θi = 1 be a set of prescribed volume fractions in [0, 1], and

let Ω0 be an open subset of Ω. The space of admissible designs consists of partition
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of Ω in subsets with prescribed volume fraction, i.e.

D :=
{
(D1, . . . , Dm);

⋃
1≤j≤m

D̄i = Ω, Di ∩Dj = ∅ 1 ≤ i < j ≤ m,

|Di| = θi|Ω|, i = 1, . . . ,m
}
. (4.1.2)

We consider the space of admissible stimuli s taking values in [−1, 1]n, i.e.

S := L1 (Ω, [−1, 1]n) . (4.1.3)

Given a design D and a set of stimuli s, we define

I(u1, . . . , un) :=
n∑

j=1

1

2

∫
Ω0

|uj(x)− ūj(x)|2 dx, (4.1.4)

where the uj ∈ V , 1 ≤ j ≤ n, satisfy the weak form of the linearized elasticity system

m∑
i=1

∫
Ω

Ci (e(uj)− βisjId) · e(ϕ) dx = 0,∀ϕ ∈ V, (4.1.5)

where

V :=
{
ϕ ∈ H1(Ω); ϕ = 0 on ΓD

}
. (4.1.6)

It is well-know that minimizing I with respect to designs is an ill-posed problem,

which leads to significant numerical issues such as mesh-dependent solutions and

“checkerboards”. Typical workaround consist in considering generalized domains as

in homogenization approaches [8, 5], or the use of material interpolation laws [25]

and “filters” [73, 27]. Level set-based approaches [10, 12], which de facto impose

restrictions on the topology of the admissible designs are also known to address these
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issues. Perimeter penalization [16, 50, 66] is another approach to obtain well-posed

problem. Let

P(D) :=
1

2

m∑
i,j=1

Hd−1 (∂∗Di ∩ ∂∗Dj ∩ Ω) , (4.1.7)

where Hd−1 denotes the d− 1–dimensional Hausdorff measure and ∂∗D the essential

boundary of a set D (see [17] Definition 3.60). Let α > 0 be a small regularization

parameter and consider the problem

inf
(D,s)∈D×S

I(u1, . . . , un) + αP(D). (4.1.8)

4.2 Phase-field regularization

The phase-field approach to optimal design, introduced in [28, 29] (see also [83, 86, 82,

65]) is based on the idea of variational approximation of the perimeter penalty term

P for generalized designs. We define a set of generalized designs, that is vector-valued

functions ρ ∈ Dρ, where

Dρ :=
{
(ρ1, ρ2, . . . , ρm) ∈

[
H1(Ω; [0, 1])

]m
,

m∑
i=1

ρi = 1,

∫
Ω

ρi dx = θi|Ω|, 1 ≤ i ≤ m
}
. (4.2.1)

Loosely speaking, the components ρi of the vector-valued phase-field ρ can be thought

of as a density of material i at each point of the domain Ω, and classical designs would

correspond to the situations where ρi = χDi
. Indeed, if D ∈ D is a classical design,

then (χD1 , . . . , χDm) is a generalized design. We then extend P to generalized designs
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by defining

Pε(ρ) :=

∫
Ω

W (ρ)

ε
+ ε|Dρ|2 dx, (4.2.2)

where ε > 0 is a regularization parameter andW is a non-negative function vanishing

only at the vertices p1, . . . , pm of the m-dimensional unit simplex and satisfying

dij := inf

{∫ 1

0

W 1/2(γ(t))|γ′(t)| dt; γ ∈ C1((0, 1);Rm), γ(0) = ρi, γ(1) = ρj

}
= 1

(4.2.3)

for all 1 ≤ i < j ≤ m.

Next, we introduce a convex continuous function a such that a(0) = 0 and a(1) =

1, so that the equilibrium equation (4.1.5) can then be extended to generalized designs

by
m∑
i=1

∫
Ω

a(ρi)Ci (e(uj)− βisjId) · e(ϕ) dx = 0 ∀ϕ ∈ V, 1 ≤ j ≤ n. (4.2.4)

For a given ε > 0, the phase field regularization of (4.1.8) is then

inf
(ρ,s)∈Dρ×S

I(u1, . . . , un) + αPε(ρ). (4.2.5)

We show in the next Section that both problems admit solutions and that the

solutions of (4.1.8) converge in some sense to that of (4.2.5). This result justifies

numerical approach presented below and which consists in minimizing (4.2.5) for

“small” values of the regularization parameter ε.
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4.3 Existence of solutions

The existence of minimizers for the regularized problem (4.2.5) and their convergence

to that of the perimeter-controlled topology optimization problem (4.1.8) is a rela-

tively straightforward consequence of the now-classical Γ–convergence result for phase

transition problems [62, 61, 77, 3].

Prior to stating our main result, we need to introduce a few notations. Let

P̃ε(ρ, s) :=


Pε(ρ) if (p, s) ∈ Dρ × S

+∞ otherwise,

(4.3.1)

and

P̃(ρ, s) :=


P(ρ) if (p, s) ∈ D̃ × S

+∞ otherwise,

(4.3.2)

where

D̃ = {ρ;∃(D1, . . . , Dm) ∈ D, ρi = χDi
, 1 ≤ i ≤ n} , (4.3.3)

and

Ĩ(ρ, s) = I (u1(ρ, s1), . . . , un(ρ, sn)) , (4.3.4)

where uj(ρ), 1 ≤ j ≤ n satisfy (4.2.4). We are now able to state the main existence

and approximation result:

Theorem 4.3.1. For any given ε > 0, the problem

inf
(ρ,s)∈Dρ×S

Ĩ(ρ, s) + αP̃ε(ρ, s), (4.3.5)
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admits a solution (ρε, sε). Furthermore, there exists (ρ, s) ∈ D̃ × S such that ρε′ → ρ

in [L1(Ω)]
m

and sε′ ⇀ s in [Lp(Ω)]n for any 1 < p ≤ ∞ and ρ is a solution of

inf
(ρ,s)∈Dρ×S

Ĩ(ρ, s) + αP̃(ρ, s). (4.3.6)

Before proving Theorem 4.3.1, we state and prove several preliminary lemmas.

Lemma 4.3.2 (Equi-coercivity of the displacements). Let (ρ, s) ∈ D×S and k1, k2, k3 >

0 be such that for any 1 ≤ i ≤ m and for any Ψ ∈ Md×d
sym

k1Ψ ·Ψ ≤ CiΨ ·Ψ ≤ k2Ψ ·Ψ, (4.3.7)

and for any 1 ≤ j ≤ n ,

|βi| ≤ k3. (4.3.8)

There exists C > 0 such that if (u1, . . . un) ∈ V n satisfies (4.2.4), then

∥uj∥H1(Ω) ≤ C, 1 ≤ j ≤ n.

Proof. Using uj as the test function in (4.2.4), we obtain

∫
Ω

m∑
i=1

a(ρi)Cie(u) · e(u) dx =

∫
Ω

m∑
i=1

a(ρi)βisCie(u) · Id dx.

Using then (4.3.7), and Cauchy-Schwarz inequality, we get

k1

m∑
i=1

a(ρi)∥e(u)∥2L2(Ω) ≤ ∥e(u)∥L2(Ω)

∥∥∥∥∥
m∑
i=1

a(ρi)βiCiId

∥∥∥∥∥
L2(Ω)

.
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Since a is convex on [0, 1], 0 ≤ ρi ≤ 1, and
∑

i ρi = 1 we have

m∑
i=1

a(ρi) ≥ a

(
m∑
i=1

ρi

)
= a(1) = 1.

Furthermore, since a(ρi) < 1 for all i, we conclude that

k1∥e(u)∥2L2(Ω) ≤ k3∥e(u)∥L2(Ω)

∥∥∥∥∥
m∑
i=1

CiId

∥∥∥∥∥
L2(Ω)

,

hence that

k1∥e(u)∥L2(Ω) ≤ C,

for some C > 0. We then conclude using Korn’s inequality with boundary condi-

tions [37, Theorem 6.15-4].

Lemma 4.3.3 (Continuity of displacements). Let Ci, βi be as in Lemma 4.3.2. Con-

sider a sequence (ρε, sε)ε ∈ Dρ × S of designs and stimuli and (ρ, s) ∈ D̃ × S be

such that ρε → ρ, in [L1(Ω)]
m

and sε ⇀ s in [L2(Ω)]
n
. Let uε = (u1,ε, . . . , un,ε)

(resp. u = (u1, . . . , un)) be the equilibrium displacements associated with (ρε, sε) (resp.

(ρ, s)), given by (4.2.4) (resp. (4.1.5)). Then if the Ci and βi satisfy the hypotheses

of Lemma 4.3.2, uε → u in [L2(Ω)]
n
.

Proof. Note first that using Lemma 4.3.2, we have that the sequence (uε)ε is uniformly

bounded in [H1(Ω)]
n
so that there exists u∗ ∈ V n such that uε ⇀ u∗ in [H1(Ω)]

n
. We

need to show that u∗ satisfies (4.1.5) from which we will deduce that u∗ = u.

Given any 1 ≤ j ≤ n, let ψ ∈ C0
c (Ω,M

d×d
sym) be a test function. Denoting ρi,ε,
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1 ≤ i ≤ m, the components of ρε, we have that

∣∣∣∣∣
∫
Ω

m∑
i=1

[a(ρi,ε)Ci (e(uj,ε)− βisj,εId)− a(ρi)Ci (e(u
∗)− βisId)] · ψ dx

∣∣∣∣∣ ≤∣∣∣∣∣
∫
Ω

m∑
i=1

[(a(ρi,ε)− a(ρi))Ci (e(uj,ε)− βisj,εId)] · ψ dx

∣∣∣∣∣
+

∣∣∣∣∣
∫
Ω

m∑
i=1

[a(ρi)Ci (e(uj,ε)− e(u∗)− βisj,εId + βisId)] · ψ dx

∣∣∣∣∣ . (4.3.9)

Since |βi| ≤ k3, uj,ε ⇀ u∗j in H1(Ω), and sj,ε ⇀ sj in L2(Ω), the second term in the

right-hand side of (4.3.9) converges to 0. We then write

∣∣∣∣∣
∫
Ω

m∑
i=1

[(a(ρi,ε)− a(ρi))Ci (e(uj,ε)− βisj,εId)] · ψ dx

∣∣∣∣∣
≤

m∑
i=1

∥(a(ρi,ε)− a(ρi))ψ∥L2(Ω) ∥Ci (e(uj,ε)− βisj,εId)∥L2(Ω)

≤ k2

m∑
i=1

∥(a(ρi,ε)− a(ρi))ψ∥L2(Ω) ∥e(uj,ε)− βisj,εId∥L2(Ω) ,

and since ρε → ρ in L1 and is uniformly bounded in L∞(Ω), we get that ∥(a(ρi,ε)− a(ρi))ψ∥L2(Ω) →

0 for any 1 ≤ i ≤ m. Using then Lemma 4.3.2, we get that e(uj,ε) is uniformly bounded

in L2(Ω). Since sε is uniformly bounded in L∞(Ω) hence in L2(Ω), the first term in

the right-hand side of (4.3.9) also converges to 0. Finally, by density of C0
c in L2 we

get that for any ϕ ∈ V ,
∣∣∫

Ω
(a(ρi,ε)− a(ρi))Ci (e(uj,ε)− βisj,εId) · e(ϕ) dx

∣∣ → 0 and

leveraging (4.1.5) that for any ∈ V and 1 ≤ i ≤ m:

∫
Ω

m∑
i=1

a(ρi)Ci

(
e(u∗j)− βisjId

)
· e(ϕ) dx = 0,
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i.e. that u∗ = u solves (4.1.5).

Lemma 4.3.4 (Compactness). Let (ρε, sε) ∈ Dρ × S and the associated equilibrium

displacements uj,ε, 1 ≤ j ≤ n be such that I(u1,ε, . . . , un,ε) + αP̃ε(ρε, sε) is uniformly

bounded. Then there exists a subsequence (ρε, sε)ε′ ⊂ (ρε, sε)ε and (ρ, s) ∈ D̃ ×S such

that ρε′ → ρ in [L1(Ω)]
m

and sε′ ⇀ s in [Lp(Ω)]n for any 1 < p ≤ ∞.

Proof. The compactness of the designs ρε derives directly from the compactness the-

orem for Pε [77, Proposition 4.1], whereas that of the stimuli sε derives from the

uniform L∞ bound on stimuli in the definition of S.

Remark 1. Note that Dρ is a convex closed subset of H1 and hence it is closed under

weak convergence, so that when we extract a subsequence of designs, it remains in Dρ

and its limit is also in Dρ.

Proof of Theorem 4.3.1. Having proved the lemma, the proof of Theorem 4.3.1 is

straightforward. Note first that from [77, Theorem 2.5], we have that P̃ε
Γ(L1)−−−⇀ P̃ .

From Lemma 4.3.3, we get that Ĩ is a continuous function of ρ, s, so that by stability

of Γ–convergence by continuous perturbations, we get that for any α > 0 Ĩ + αP̃ε

Γ–converges to Ĩ +αP̃ for the [L1(Ω)]
m
strong times [Lp(Ω)]n weak topology for any

1 < p ≤ ∞. Secondly, from the compactness and continuity lemmas 4.3.2 and 4.3.3,

and the equi-coercivity and lower semiconinuity of Pε ([77, Proposition 4.1]), we get

that Ĩ + αP̃ admits minimizers for any ε > 0 and that the minimizing sequence is

compact. We can then conclude the proof of Theorem 4.3.1 by a direct application

of the fundamental theorem of Γ–convergence.

Remark 2. Note that the hypotheses of Lemma 4.3.2 rule out a degenerate Hooke’s

law C = 0 for any of the materials ( i.e. optimizing the distribution of m−1 materials
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with the mth materials playing the role of “void”). As is common practice, in this

situation we we introduce an artificial stiffness parameter η and replace the “void”

phase with a weak material with Hooke’s law ηI. Taking the limit as η → 0 is technical

(see for instance [28, Section 4]), and we did not attempt to study this limit here.

4.4 Numerical implementation

In all that follows, we focus on the spacial case of three materials, “void”, a non-

responsive material, and a responsive material with density ρ1, ρ2 and ρ3 respectively.

For the “void” and non-responsive materials, we set β1 = β2 = 0 in (4.2.4) whereas

up to a change of scale, we can choose β3 = 1 without loss of generality.

We handle the constraint ρ1+ρ2+ρ3 = 1 explicitly by substituting ρ1 = 1−ρ2−ρ3

and optimizing with respect to ρ̃ = (ρ2, ρ3) under the constraint 0 ≤ ρ2, ρ3 ≤ 1. Of

course, this means that ρ1 only satisfies −1 ≤ ρ1 ≤ 1. However, it is easy to see that

the proof of Theorem 4.3.1 still holds in this case, provided that a be extended to

[−1, 1] as an even function. With an abuse of notation, we write I(ρ̃, s) and Pε(ρ̃, s)

to denote I((1− ρ2 − ρ3, ρ2, ρ3), s) and Pε((1− ρ2 − ρ3, ρ2, ρ3), s) respectively.

It is then natural to enforce null-stimulus in materials 1 and 2, which is easily

achieved by adding a penalty term of the form

Q(ρ̃, s) =

∫
Ω

((1− ρ2 − ρ3)
2 + ρ22)

n∑
j=1

s2j dx (4.4.1)

to the objective function.

Similarly, instead of enforcing the volume fraction constraints
∫
Ω
ρi dx = θi|Ω|,
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i = 2, 3 strongly, we introduce a penalty term

VC(ρ̃) = ν2

∫
Ω

ρ2 dx+ ν3

∫
Ω

ρ3 dx, (4.4.2)

where ν2 and ν3 are two penalty factors set by trial and error.

With these changes, our problem becomes

inf
(ρ̃,s)∈[H1(Ω;[0,1])]2×S

O(ρ̃, s) := Ĩ(ρ̃, s) + αPε(ρ̃) + VC(ρ̃) + Q(ρ̃, s). (4.4.3)

4.4.1 Sensitivity analysis

Given an admissible pair of design variables (ρ, s) ∈ Dρ × S and (u1, . . . , un) ∈ V n

admissible displacement fields, we define the Lagrangian L

L(u1, . . . , un, ρ̃, s, λ1, . . . , λn) = O(ρ̃, s)+
n∑

j=1

3∑
i=1

∫
Ω

a(ρi)Ci (e(uj)− βisjId) · e(λj) dx,

(4.4.4)

where (λ1, . . . λn) ∈ V n are Lagrange multipliers.

Let (u1(ρ̃, s1), . . . , un(ρ̃, sn)) be the equilibrium displacements associated to (ρ̃, s)

satisfying (4.2.4) and define

J(ρ̃, s) = O (u1(ρ̃, s1), . . . , un(ρ̃, sn)) .

so that

L(u1(ρ̃, s1), . . . , un(ρ̃, sn), ρ̃, s, λ1, . . . , λn) = J(ρ̃, s).
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Formally, the directional derivative of J in a direction ϕ ∈ [H1(Ω)]
2
is given by:

〈
∂J

∂ρ̃
, ϕ

〉
=

〈
∂L
∂u1

,
∂u1
∂ρ̃

ϕ

〉
+ · · · +

〈
∂L
∂un

,
∂un
∂ρ̃

ϕ

〉
+

〈
∂L
∂ρ̃
, ϕ

〉
. (4.4.5)

As is customary, instead of computing ∂uj/∂ρ̃, we choose Lagrange multipliers,

λ∗1, . . . λ
∗
n satisfying the adjoint equations:

〈
∂L
∂uj

, v

〉
=

∫
Ω0

(uj − ūj)v dx−
3∑

i=1

∫
Ω

a(ρi)Cie(λ
∗
j) · e(v) dx = 0, 1 ≤ j ≤ n. (4.4.6)

for any v ∈ V . With this choice of Lagrange multipliers, we get

〈
∂J

∂ρ̃
(ρ̃, s), ϕ

〉
=

〈
∂L
∂ρ̃

(u1(ρ̃, s1), . . . , un(ρ̃, sn), ρ̃, s, λ
∗
1, . . . λ

∗
n), ϕ

〉
,

i.e.,

〈
∂J

∂ρ̃
(ρ̃, s), ϕ

〉
=

∫
Ω

α∇Pε(ρ̃) · ϕ+ ν1ϕ1 + ν2ϕ2 dx

+
n∑

j=1

3∑
i=1

∫
Ω

a′(ρi)(Ci (e(uj)− βisjId) · e(λ∗j)ϕi dx+

∫
Ω

∇ρ̃Q(ρ̃, s) · ϕ dx, (4.4.7)

with the convention ϕ1 = 1− ϕ2 − ϕ3.

Similarly, for ψ ∈ [H1(Ω)]
2
, the directional derivative of J with respect to s in

the direction ψ is given by:

〈
∂J

∂s
(ρ, s), ψ

〉
=

〈
∂L
∂u1

,
∂u1
∂s

ψ

〉
+ · · · +

〈
∂L
∂un

,
∂un
∂s

ψ

〉
+

〈
∂L
∂s
, ψ

〉
(4.4.8)

and with the same choice of Lagrange multipliers λ∗1, . . . , λ
∗
n satisfying the adjoint
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equations (4.4.6), we get

〈
∂J

∂s
(ρ, s),Ψ

〉
= −

3∑
i=1

∫
Ω

[
Cia(ρi) (βiI2) · e(λ∗j)

]
· ψi dx+∇sQ(q, s) · ψ dx. (4.4.9)

At each iteration of TAO’s BNCG solver, given (ρ̃, s), the computation of the sensi-

tivity of our objective function with respect to a design change (resp. with respect to a

stimulus change) involves computing the equilibrium displacements u1(ρ̃, s), . . . un(ρ̃, s)

by solving n linearized elasticity problems (4.2.4), then computing the associated ad-

joint variables λ∗1, . . . , λ
∗
n using (4.4.6) before evaluating (4.4.7) (resp. (4.4.9).)

4.4.2 Minimization with respect to s

Observe that, minimizing the objective function (4.4.3) is equivalent to minimizing

the Lagrangian (4.4.4) associated with the objective function. For simplicity, we only

consider one prescribed displacement ū and its corresponding stimulus s. For a fixed

design ρ, the minimization with respect to s is equivalent to


min
s∈S

L(u(ρ), ρ, s, λ) defined in (4.4.4)

subject to − 1 ≤ s ≤ 1.

(4.4.10)
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By expanding the Lagrangian (4.4.4) and collect all the terms explicitly depending

on s, we have

min
s∈S

L(u(ρ), ρ, s, λ) ⇐⇒ min
s∈S

−
∫
Ω

sρ23C3I2 · e(λ) dx+
∫
Ω

((1− ρ2 − ρ3)
2 + ρ22)s

2 dx,

⇐⇒ min
s∈S

−sρ23C3I2 · e(λ) + ((1− ρ2 − ρ3)
2 + ρ22)s

2

⇐⇒ min
s∈S

−sρ23C3e(λ) · I2 + ((1− ρ2 − ρ3)
2 + ρ22)s

2

⇐⇒ min
s∈S

−sρ23dκ3tr(e(λ)) + ((1− ρ2 − ρ3)
2 + ρ22)s

2,

where κ3 =
dλ∗∗

3 +2µ∗∗
3

d
is the bulk modulus of the responsive material. The expression

above is quadratic in s in the form of As + Bs2 and its minimizer s∗ is given as: if

A = 0, then s∗ = 0, and if 2B < |A| then s∗ = 1 (resp. -1) if tr(e(λ)) > 0 (resp.

tr(e(λ)) < 0). Otherwise s∗ = A/2B.

Remark 3. As ε → 0, one can see, if ρ3 = 0 at any point x ∈ Ω i.e we have no

responsive material at point x, then the optimal stimulus at point x becomes 0. And

if ρ3 = 1 any point x ∈ Ω i.e we have responsive material at point x, then the optimal

stimulus becomes either 1 or −1 depending on the sign of tr(e(λ)). and the closed

form of an optimal stimulus is given as:


1 if tr(e(λ)) > 0 and ρ3 = 1

0 if ρ3 = 0,

−1 if tr(e(λ)) < 0 and ρ3 = 1.

(4.4.11)
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4.4.3 Minimization algorithm

Our implementation uses Firedrake [51], an open source automated system for the

solution of partial differential equations using the finite element method. The dis-

placement, density, and stimulus fields are discretized using linear Lagrange simplicial

finite elements over unstructured meshes. The minimization algorithm we used is a

BNCG (Bounded Nonlinear Conjugate Gradient) solver implemented in the TAO

(Toolkit for Advanced Optimization) optimization package, which is a part of PETSc

(the Portable, Extensible Toolkit for Scientific Computation) library [18–20]. BNCG

only requires first order derivatives of the objective function, which we compute in

close form (i.e. optimize then discretize) using the standard adjoint technique [43].

We tested two different numerical approaches: In a monolithic scheme, we jointly

minimize O with respect to ρ and s simultaneously using (4.4.7) and (4.4.9). In a

staggered scheme, we use TAO to minimize O with respect to ρ only. Whenever

computing ∂J
∂ρ

using (4.4.7), we perform a full minimization of O with respect to s

using (4.4.11) after computing the state and adjoint variables uj and λj (1 ≤ j ≤ n).

In each case, we leverage TAO’s line search [64] and convergence criteria.
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Algorithm 1 Monolithic scheme

Require: Initial guess of ρ and s.

1: Discretize using P1 elements.

2: Define the weak form of state and adjoint PDEs.

3: Define the Objective function O and define the Lagrangian L (4.4.4).

4: while ∥gradient∥ > tolerance do

5: Compute sensitivities with respect to ρ and s.

6: Set TAO solver to BNCG

7: One step minimization gradient with respect to ρ and s.

8: end while

Algorithm 2 Staggered scheme

Require: Initial guess of ρ and s.

1: Discretize using P1 elements.

2: Define the weak form of state and adjoint PDEs.

3: Define the Objective function O and define the Lagrangian L (4.4.4).

4: while ∥gradient∥ > tolerance do

5: Compute sensitivity with respect to ρ.

6: Set TAO solver to BNCG

7: Minimization with respect to s.

8: One step minimization gradient with respect to ρ

9: end while
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4.5 Numerical results

We present a series of numerical simulations illustrating the strengths of our approach.

In all that follows, we use

W (ρ) := ρ21(1− ρ1)
2 + ρ22(1− ρ2)

2 + ρ23(1− ρ3)
2 (4.5.1)

as the multi-well potential in Pε (4.2.2). Note that although this function admits

8 roots in R3, once restricted to the hyperplane ρ1 + ρ2 + ρ3 = 1, it admits only

three roots and is therefore admissible in (4.2.2). Technically, W would need to be

renormalized in order to satisfy (4.2.3). Since the parameter α in (4.1.8) does not

have a physical meaning, it is not necessary to do so. We use a simple quadratic

material interpolation function a(s) := s2.

In the “void” material, we set the stiffness parameter to η = 10−6 and the Poisson

ratio to ν = 0.3 for all materials and we consider varying elastic moduli ratios E3/E2

where E3 and E2 are elastic modulus for responsive and non-responsive material

respectively.

Cantilever beam

We start with the simplest case of least square problem with only one prescribed

displacement ū, i.e n = 1 in (5.2.3). The design domain Ω = (0, Lx) × (0, Ly) with

Lx = 1 and Ly = 1/3. We prescribe null displacement on the left side ΓD of Ω and

set Ω0 = (Lx − a, Lx)× (Ly/2− a/2, Ly/2 + a/2) with a = 1/15.

The prescribed displacement on Ω0 is taken as ū = [0, 1]T i.e. we want the region

Ω0 to move upward. The domain Ω is discretized with a structured mesh with cell
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size h = 2 × 10−3. The regularization parameter is ε = 2 × 10−3 and the perimeter

penalization parameter is α = 6 × 10−4. The relative and absolute tolerance on the

gradient and objective function in TAO were set to 1× 10−6 as it was observed that

tighter tolerances do not lead to significant differences in the designs produced.

We first compare the numerical approaches described above. Figure 4.1 shows

the density of non-responsive (ρ2) and responsive (ρ3) materials, as well as a com-

posite plot showing the non-responsive material in black and the responsive material

coloured according to the value of the stimulus s1 with s1 = −1 in red, s1 = 0 in

white, and s1 = 1 in blue. In both case, ρ2 and ρ3 are initialized with a constant

value 0.3. The penalty terms are set to ν2 = 0.1 and ν3 = 0.3, and both materials are

isotropic homogeneous with non-dimensional Young’s modulus 5 and Poisson ratio 1.

We observe that both methods lead to different but well-defined designs, exempt of

checkerboards, were the material densities are well focussed near 0 and 1, as expected

in the phase-field approach. The monolithic approach converged in 380 iterations of

TAO’s BNCG solver. The final value of the objective function is O = 4.49 × 10−1.

The staggered solver converged in just 173 iteration leading to an objective function

O = 4.17× 10−3.

Based on this result, all results presented further in this article were computed

using the staggered scheme.
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Figure 4.1: Monolithic (left) vs. staggered (right) scheme. Responsive material
density (top), non-responsive material density (middle), and composite plot of

both material density and the stimulus in the deformed configuration.

Changing the ratio of the Young’s modulus of the two materials leads to very

different designs. In Figure 4.2, the Young’s modulus of the non-responsive material

has been increased to 10. The penalty terms are respectively ν2 = 0.24 and ν3 = 0.12

(left) and ν2 = 0.18 and ν3 = 0.12 (right). When the penalty term on the stiffer,

non-responsive material is high enough, the structure consists entirely of the weaker

responsive material, whereas decreasing this parameter leads back to rigid truss-like

structures activated by small regions of responsive material.
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Figure 4.2: Optimized structure with a ratio E2/E3 = 2 in the reference (top)
and deformed configuration (bottom) with ν3 = 0.12 and ν2 = 0.24 (left) and

ν2 = 0.18 (right).

4.5.1 Cantilever beam with two target displacements

In a second numerical example, we consider two target displacements (n = 2 in (5.2.3)).

The young’s modulus of both materials is set to 5. In Figure 4.3, the target displace-

ments are (0, 1) and (0, 2). The penalty terms are ν2 = 0.5 and ν3 = 0.7, leading to

volume fraction of the responsive and non-responsive material of respectively 15% and

21%. As the materials are linear elastic, approaching the target displacement (0, 1)

could have been obtained by rescaling the stimulus in of target displacement (0, 2).

Instead, our scheme generates a more complex geometry and activation scheme.
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Figure 4.3: Optimal design of a beam with two target displacements. (left)
Material distribution and stimulus for a target displacement of (0, 1) in the

reference (top) and deformed (bottom) configuration. (right) Material
distribution and stimulus for a target displacement of (0, 2) in the reference

(top) and deformed (bottom) configuration.

In Figure 4.4, the target displacements are (1, 0) and (0, 1). All other parame-

ters remain the same as in Figure 4.3. The volume fraction of responsive and non-

responsive material are respectively 12% and 9%. The responsive material is laid out

in simple regions while the non-responsive material layout forms a stiff truss structure.
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Figure 4.4: Optimal design of a beam with two target displacements. (left)
Material distribution and stimulus for a target displacement of (1, 0) in the

reference (top) and deformed (bottom) configuration. (right) Material
distribution and stimulus for a target displacement of (0, 1) in the reference

(top) and deformed (bottom) configuration.

4.5.2 Hexagonal domain with three target displacements

Our third example is inspired by the Stewart platform parallel manipulator. We

consider a regular hexagonal domain with edge length 0.35 clamped on three non-

consecutive edges (see Figure 4.5). The target displacements of a centered regular

hexagon with edge length 0.035 are ū1 = (cos (0), sin (0)), ū2 = (− cos (π/3), sin (π/3))

and ū3 = (− cos (π/3),− sin (π/3)).
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Figure 4.5: Hexagonal domain clamped at three sides ΓD

In Figure 4.6, the Young’s modulus of the responsive and non-responsive materials

are set to 5×10−3 and 5×10−2 respectively. The penalty factor on the stiffer material

is set to a much higher value than that of the responsive materials (ν2 = 0.7 and

ν3 = 0.03). The perimeter penalty factor is set to 3.5 × 10−4 and the regularization

length to 2 × 10−3, as above. This leads to slender structures activated by large

“pads”. We note that although that designs and stimuli are invariant by a 2π/3

rotational symmetry, which was not enforces in the computations.
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Figure 4.6: Optimal design with three prescribed displacement with E2/E3 = 10
and a strong penalty on the stiff material.

When reducing the elastic contrast between materials (E2 = 5 × 10−2 and E3 =

1×10−2) and slightly decreasing the cost of the stiff material (ν2 = 0.3 and ν3 = 0.03),

we obtain a simpler geometry with larger areas occupied by responsive material.

Again, deformation towards the target displacement is achieved by flexing elongated

stiff structures (see Figure 4.7).
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Figure 4.7: Optimal design with three prescribed displacement with E2/E3 = 5
and a strong penalty on the stiff material.

Finally, when using a stiff responsive material and weaker non-responsive materials

(E2 = 1 × 10−2 and E3 = 5 × 10−2), all other parameters remaining the same, we

obtain designs consisting solely of the responsive materials. This is expected since in

this situation, the non-responsive material is both expensive, less stiff, and incapable

of activation.
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Figure 4.8: Optimal design with three prescribed displacement with
E2/E3 = 0.2 and a strong penalty on the stiff material.

4.6 Conclusion

We have investigated the systematic design of responsive structures with a prescribed

target displacement and perimeter constraint. We proved existence of solutions to

a phase-field regularization phase-field problem and their convergence to that of the

“sharp interface” problem. We proposed a numerical scheme based on an iterative

gradient-based solver with respect to one set of design variable (the materials’ density)

where at each step a full minimization of the objective function with respect to the

second set of design variables (the stimuli) is performed. Our approach is illustrated
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by series of numerical examples demonstrating its ability to identify complex geome-

tries and produced well-delineated “black and white” design, owing to the well-pose

natures of the phase-field regularization.

While this work focused on a simple actuation mechanism in the form of an

isotropic inelastic strain, accounting for to more complex stimuli and responsive ma-

terials including piezo-electrics, dielectric elastomers and liquid crystal elastomers or

shape memory alloys should be a relatively simple extension of this work. Whereas the

objective function used here focus solely on kinematics of a structure, the framework

could be extended to optimization of mechanical advantage as in [2, 73].

A natural extension of the work presented in this article is to consider a stimulus

derived from a physical process. In this setting, the stimulus itself would become

a state variable, derived from solving a PDE governed by some additional design

variable. For instance, one could consider body or boundary heat flux as design

variables, and the temperature field as a state variable.
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Chapter 5

Systematic design of compliant

morphing structures with stimulus

as state variable

5.1 Introduction

We extend the responsive optimal design problem by considering the stimulus as

a state variable computed by solving a PDE governed by some additional design

variable. For instance, one could consider body or boundary heat flux as design

variables, and the temperature field as a state variable.

In all that follows, we focus on the spacial case of three isotropic linear elastic

materials, “void”, a non-responsive material, and a responsive material with density

ρ1, ρ2 and ρ3 respectively.
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5.2 Stimulus governed by poisson PDE

We start with by extending problem (4.2.5) by considering a stimulus s computed

by solving the Poisson PDE characterized by a design variable, the stimulus control

function g. Consider an inelastic strain

σ =
3∑

i=1

Ci (e(u)− βisId) (5.2.1)

where where Ci denotes the Hooke’s law for material i, e(u) is the linearized strain

associated to a displacement field u, Id the d× d identity matrix and β ≥ 0 is a given

parameter such β1 = β2 = 0 in (5.2.1). In the responsive material, we set β3 = 1.

Here we consider stimulus of the form sId such that when the responsive material is

heated, i.e s > 0 (resp. cooled i.e s < 0) and the responsive material expands (resp.

contracts) horizontally. The stimulus s ∈ V is governed by Poisson’s equation

−∇ · (k(D)∇s) = g in Ω, ∇s · n⃗ = 0 on ΓN , s = 0 on ΓD (5.2.2)

where k(D) is simple material interpolation. We then seek to minimize

I(u) := 1

2

∫
Ω0

|u− ū|2 dx, (5.2.3)

amongst a set D of admissible designs and a space of stimulus control functions G i.e.

G := {g ∈ L∞(Ω); ||g||∞ ≤ 1} . (5.2.4)

75

https://www.math.mcmaster.ca/


Ph.D. Thesis – Jamal Shabani; McMaster University – Mathematics and Statistics

5.3 Numerical implementation

Due to the ill-posedness of (5.2.3), we once again employ the phase-field approach to

optimal design [28, 29] discussed in section (4.2). We introduce generalized designs

of the form

ρ = (ρ1, ρ2, ρ3) ∈
[
H1(Ω; [0, 1])

]3
, (5.3.1)

where the ρi, i = 1, 2, 3 are smooth continuous material densities with values in [0, 1]

such that ρ1 + ρ2 + ρ3 = 1 for all x ∈ Ω. We handle the constraint ρ1 + ρ2 + ρ3 = 1

explicitly by substituting ρ1 = 1− ρ2− ρ3 and optimizing with respect to ρ̃ = (ρ2, ρ3)

under the constraint 0 ≤ ρ2, ρ3 ≤ 1. To this end, we define the regularization of

(5.2.3) as: 
min
(ρ,g)

1

2

∫
Ω0

|u− ū|2dx+ αPε(ρ̃)

subject to (4.2.4) and (5.2.2)

(5.3.2)

where α is an arbitrary regularization parameter.

Since we have two PDE constraints, we need two adjoint variables and we define

the Lagrangian accordingily,

L(u, ρ, λ, g, s, q) = 1

2

∫
Ω0

|u− u|2 dx + αPε(ρ̃) +Q(ρ̃, g)

+
3∑

i=1

∫
Ω

a(ρi)Ci (e(u)− βisId) · e(λ) dx

+
3∑

i=1

∫
Ω

k(ρi)∇s · ∇q dx−
∫
Ω

g q dx

(5.3.3)

where λ and q are the adjoint variables associated with displacement field u and the
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stimulus s respectively. The penalty Q(ρ̃, g) is defined as

Q(ρ̃, g) =

∫
Ω

((1− ρ2 − ρ3)
2 + ρ22)g

2 dx (5.3.4)

to enforce null-heat source i.e g = 0 in “void” and non-responsive materials. Applying

the adjoint method, one obtains the following adjoint weak formulations to be solved

before computing the sensitivities with respect to ρ and g

3∑
i=1

∫
Ω

a(ρi)Cie(v) · e(λ) dx =

∫
Ω0

(u− u)v dx, for any v ∈ V (5.3.5)

3∑
i=1

∫
Ω

k(ρi)∇w · ∇q dx =
3∑

i=1

∫
Ω

a(ρi)CiβiwId · e(λ) dx, for any w ∈ V. (5.3.6)

5.3.1 Minimization with respect to g

Observe that, by expanding the Lagrangian (5.3.3) and collect all the terms explicitly

depending on g, we have

min
g∈G

L(u, ρ, g, λ, s, q) ⇐⇒ min
g∈G

−
∫
Ω

gq dx+

∫
Ω

((1− ρ2 − ρ3)
2 + ρ22)g

2 dx,

⇐⇒ min
g∈G

−gq + ((1− ρ2 − ρ3)
2 + ρ22)g

2.

The expression above is quadratic in g in the form of Ag +Bg2 and its minimizer g∗

is given as: if A = 0, then g∗ = 0, and if 2B < |A| then g∗ = 1 (resp. −1) if q > 0

(resp. q < 0). Otherwise g∗ = A/2B.
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5.4 Numerical results

In this section, we present a series of numerical simulations and in all of our results,

consider the design domain Ω = (0, Lx) × (0, Ly) with Lx = 1 and Ly = 1/3. We

prescribe null displacement on the left side ΓD of Ω and set Ω0 = (Lx − a, Lx) ×

(Ly/2 − a/2, Ly/2 + a/2) with a = 1/15. We use the same multi-well potential W

defined in (4.5.1). The responsive and non-responsive materials are isotropic with

varying stiffness ratios E3/E2 and Young’s modulus for void is fixed E1 = 10−6 and

Poison ratio ν = 0.3. The domain Ω is discretized with a structured mesh with cell size

h = 0.002. The regularization parameter is ε = 2.0× 10−3 the perimeter penalization

parameter is α = 6.0× 10−3. The initial design fields are chosen as ρ3 = 0.3, ρ2 = 0.3

and ρ2 = 1 in Ω0.
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Figure 5.1: Composite plot of both material density and the heat source in the
reference (top) and deformed configuration (bottom) for stiffness ratio

E3/E2 = 100. The red and blue represent the area of the responsive material
with heat source values 1 and −1 respectively. The converged design consists of

33% responsive and 34% non-responsive material.
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Figure 5.2: Composite plot of both material density and the heat source in the
reference (top) and deformed configuration (bottom) for stiffness ratio

E3/E2 = 10. The red and blue represent the area of the responsive material with
heat source values 1 and −1 respectively. The converged design consists of 30%

responsive and 50% non-responsive material.
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Figure 5.3: Composite plot of both material density and the heat source in the
reference (top) and deformed configuration (bottom) for stiffness ratio

E3/E2 = 1. The red and blue represent the area of the responsive material with
heat source values 1 and −1 respectively. The converged design consists of 12%

responsive and 18% non-responsive material

In our first results, Figure (5.1) and (5.2), we consider the responsive material

to be 100 and 10 stiffer than the non-responsive material. As expected, final design

uses the stiffer material to build the outer frame of the beam. The distribution of

the stimulus makes the converged design to act as “bimetallic“ strip in sense that,

when stimulated the responsive material at the top contracts horizontally while the

responsive material at the bottom expands horizontally, causing the beam to do work

against the applied load as shown in the last figure in Figure (5.2) above.

In the next Figure (5.3), we consider the responsive material to have the same

stiffness as the non-responsive material. As expected, the converged design did not

change very much from the that in Figure (5.2) above in a sense that the stronger

81

https://www.math.mcmaster.ca/


Ph.D. Thesis – Jamal Shabani; McMaster University – Mathematics and Statistics

material is used to build the frame. In this computation, our algorithm converged

after 843 iterations leading to the objective function to decrease from 8.4521 to 0.1938.

Our next example, we consider a case where the stimulus control function g can

only takes values in [0, 1]. Figure (5.4) shows the density of non-responsive (ρ2) and

responsive (ρ3) materials, as well as a composite plot showing the non-responsive

material in black and the responsive material coloured according to the value of the

heat source g with g = 1 in red, g = 0 in gray, and the white region represents the

“void”. As one would expect, the converged design did not change much, only the

heat source is turned on at the bottom and off at the top so that the design expands

at the bottom and pushing Ω0 upward as shown in Figure (5.4).

82

https://www.math.mcmaster.ca/


Ph.D. Thesis – Jamal Shabani; McMaster University – Mathematics and Statistics

Figure 5.4: Composite plot of both material density and the heat source in the
reference (top) and deformed configuration (bottom) for stiffness ratio

E3/E2 = 100. The red and gray represent the area of the responsive material
with heat source values 1 and 0 respectively. The converged design consists of

34% responsive and 29% non-responsive material.

5.5 Stimulus governed by transient heat PDE

We extend problem (4.2.5) further by introducing time-dependent objective function

of the form

min
(ρ, g)

1

2

∫ T

0

∫
Ω0

|u(t, x)− u(t, x)|2 dx (5.5.1)

where u(t, x) is the solution of the linearized PDE (4.2.4) dependent on time-dependent

stimulus s(t, x) at each time step and u(t, x) is a given path we want the region Ω0 to
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follow. The time-dependent stimulus s(t, x) is controlled by a transient heat equations



st = ∇ · (k(D)∇s) + g in Ω× (0, T ),

s(0, x) = 0 in Ω× (0, T ),

s(t, x) = 0 on ΓD × (0, T ),

∇s · n = 0 on ΓN × (0, T ),

(5.5.2)

where g is the heat source which depends on both time and space.

The sensitivity analysis with respect to ρ is similar to previous problems. For

sensitivity analysis with respect to g, we define the Lagrangian as

L(u, ρ, λ, g, s, q) =

1

2

∫ T

0

∫
Ω0

|u(t, x)− u(t, x)|2 dxdt + αPε(ρ)

+
3∑

i=1

∫
Ω

a(ρi)Ci (e(u)− βisId) · e(λ) dx

+

∫ T

0

∫
Ω

stq dxdt−
∫ T

0

3∑
i=1

∫
Ω

k(ρi)∇s · ∇q dxdt

−
∫ T

0

∫
Ω

g · q dxdt.

(5.5.3)

where λ and q are time-dependent adjoint variables. Following the steps of the adjoint

method, we get the weak form of adjoint PDE for s

∫ T

0

3∑
i=1

∫
Ω

a(ρi)CiβiwId·e(λ) dxdt−
∫ T

0

∫
Ω

wtq dxdt+

∫ T

0

3∑
i=1

∫
Ω

k(ρi)∇w·∇q dxdt = 0

84

https://www.math.mcmaster.ca/


Ph.D. Thesis – Jamal Shabani; McMaster University – Mathematics and Statistics

for some test function w. Performing integration by parts in time and space

∫ T

0

3∑
i=1

∫
Ω

a(ρi)CiβiwId · e(λ) dxdt+
∫ T

0

∫
Ω

wqt dxdt

−
∫
Ω

q(T, x)w(T, x)dx−
∫ T

0

3∑
i=1

∫
Ω

k(ρi)∇ · ∇qwdxdt

+

∫ T

0

3∑
i=1

∫
Ω

k(ρi)(∇q · n)wdxdt = 0.

(5.5.4)

Equation (5.5.4) can be written in strong form as


qt = ∇ · (k(D)∇q)− a(D)CβId · e(λ) in Ω× (0, T )

q(T, x) = 0 in Ω× (0, T ),

∇q · n = 0 on ΓN × (0, T ).

5.6 Numerical implementation

A straightforward approach to solving time-dependent PDEs by the finite element

method is to first discretize the time derivative by a finite difference approximation,

which yields a sequence of stationary problems, and then turn each stationary problem

into a variational formulation.

Let superscript n denote a quantity at time tn, where n is an integer counting

time steps. For example, sn means s at time step n. A finite difference discretization

in time first consists of sampling the PDE at some time step, say tn+1:

(
∂s

∂t

)n+1

= ∇ · (k(D)∇sn+1) + gn+1 (5.6.1)
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The time-derivative can be approximated by a difference quotient. For simplicity and

stability reasons, we choose a simple backward difference:

(
∂s

∂t

)n+1

≈ sn+1 − sn

∆t
(5.6.2)

where ∆t is the time discretization parameter. Combining (5.6.1) and (5.6.2) yields

sn+1 − sn

∆t
= ∇ · (k(D)∇sn+1) + gn+1. (5.6.3)

This is our time-discrete version of the transient heat equations (5.5.2), a so-called

backward Euler or implicit Euler discretization.

We may reorder (5.6.3) so that the left-hand side contains the terms with the

unknown sn+1 and the right-hand side contains computed terms only. The result is

a sequence of spatial (stationary) problems for sn+1, assuming sn is known from the

previous time step:

sn+1 −∆t∇ · (k(D)∇sn+1) = sn +∆tgn+1, n = 0, 1, 2, . . . , (5.6.4)

s0 = s0 (5.6.5)

Given s0, we can solve for s0, s1, s2 and so on.

We use a finite element method to solve (5.6.4), this requires turning the equations

into weak forms. As usual, we multiply by a test function w ∈ V and integrate

second-derivatives by parts. Introducing the symbol s for the unknown sn+1, the

resulting weak form arising from formulation (5.6.4) can be conveniently written in
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the standard notation:

a(s, w) = L(w) for any w ∈ V

where

a(s, w) =

∫
Ω

(sw +∆tk(D)∇s · ∇w)dx (5.6.6)

L(w) =

∫
Ω

(sn +∆tgn+1)w dx. (5.6.7)

5.7 Numerical results

Using the same ground domain Ω, we consider the target displacement u(t, x) defined

as:

u(t, x) =


(0, 4t) 0 ≤ t < 0.25,

(0, 2− 4t) 0.25 ≤ t < 0.75,

(0, 4t− 4) 0.75 ≤ t ≤ 1.
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Figure 5.5: Responsive material density (top), non-responsive density (bottom)
for stiffness ratio E3/E2 = 100.
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t = 0.1 t = 0.25

t = 0.35 t = 0.60

t = 0.75 t = 0.95

Figure 5.6: Composite plot of both material density and the heat source in the
deformed configuration (top row) and computed stimulus (bottom row) for

stiffness ratio E3/E2 = 100 at different time steps. The red and blue (top row)
represent the area of the responsive material with heat source values 1 and −1
respectively while the red and blue (bottom row) represent the areas where

stimulus is positive and negative respectively.
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Figure 5.7: Responsive material density (top), non-responsive density (bottom)
for stiffness ratio E3/E2 = 10.
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t = 0.1 t = 0.25

t = 0.35 t = 0.60

t = 0.75 t = 0.95

Figure 5.8: Composite plot of both material density and the heat source in the
deformed configuration (top row) and computed stimulus (bottom row) for

stiffness ratio E3/E2 = 10 at different time steps. The red and blue (top row)
represent the area of the responsive material with heat source values 1 and −1

respectively.

In our first result, Figures (5.7) and (5.6) we consider the responsive material

to be 100 and 10 stiffer than the non-responsive material. Our algorithm converged

after 655 (resp. 977) iterations leading to the objective function to decrease from
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13.8131(resp. 10.8172) to 0.8193(resp. 0.4512) for ratio 100(resp.10). As expected,

final design uses the stiffer material to build the outer frame of the beam. The

distribution of the stimulus makes the converged design to act as “bimetallic“ strip in

sense that, when stimulated the responsive material at the top contracts horizontally

while the responsive material at the bottom expands horizontally, causing the beam

to do work against the applied load as shown in the last figure in Figures (5.7) and

(5.5) above.

Figure 5.9: Responsive material density (top), non-responsive density (bottom)
for stiffness ratio E3/E2 = 1.

In the next Figure (5.9), we consider the responsive material to be 1 stiffer than

the non-responsive material. As expected, the converged design did not change very

much from the that in Figure (5.9) above in a sense that the stronger material is used

to build the frame. In this computation, our algorithm converged after 932 iterations
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leading to the objective function to decrease from 8.7142 to 0.2509.

t = 0.1 t = 0.25

t = 0.35 t = 0.60

t = 0.75 t = 0.95

Figure 5.10: Composite plot of both material density and the heat source in the
deformed configuration (bottom) for stiffness ratio E3/E2 = 1. The red and blue
represent the area of the responsive material with heat source values 1 and −1

respectively.
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Chapter 6

Conclusion

To conclude, in this thesis we explored optimal design of responsive structures which

exploit recent advances in materials and manufacturing. After a brief discussion on

the ill-posedness of the optimal design problem, we considered a phase-field regular-

ization as a means to gain well-posedness. After proving existences of solutions to

our responsive design problem, we considered two concrete examples.

We started with the optimal design of compliant morphing structures where the

stimulus is a design variable. We considered linear elastic materials whose consti-

tutive laws depend on an external real-valued stimulus inducing an inelastic strain.

Through this, we applied the well-known theorems of Γ−convergence to prove well-

posedness of a class of carefully chosen objective functions. Then we applied direct

methods of calculus of variations to find closed-form minimizers for our stimulus. We

showed a variety of integrated responsive designs in 2D with varying ratios of stiffness

between the responsive and non-responsive material while the stiffness for “void” is

kept constant.

We then turned to optimal design of compliant morphing structures where the
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stimulus itself is a state variable governed by a PDE. In this extension of our first

example, we chose the poisson PDE and the transient heat PDE to control the stim-

ulus. The later case gives rise to time-dependent responsive structures whose shape

changes by the stimulus and time. This is the most computationally expensive prob-

lem as we first had to discretize the time into n time steps, and then in each iteration

solve 4n PDEs before updating the design.
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