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ABSTRACT 

An information filter is one that propagates the inverse of the state error covariance, which is used in the state and 

parameter estimation process. The term ‘information’ is based on the Cramer-Rao lower bound (CRLB), which states 

that the mean square error of an estimator cannot be smaller than an amount based on its corresponding likelihood 

function. The most common information filter (IF) is derived based on the inverse of the Kalman filter (KF) 

covariance. This paper introduces preliminary work completed on developing the information form of the sliding 

innovation filter. The SIF is a relatively new type of predictor-corrector estimator based on sliding mode concepts. In 

this brief paper, the recursive equations used in the sliding innovation information filter (SIIF) are derived and 

summarized. Preliminary results of application to a target tracking problem are also studied. 
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1. BRIEF INTRODUCTION 

The primary goal of estimation theory is to derive valuable information about the state of a system in the presence of 

system and measurement noise. The Kalman filter (KF) is one of the most well-studied methods and provides an 

optimal estimate for linear systems when dealing with known systems and white noise [1, 2, 3]. The KF has been 

applied to many areas and fields, including applications such as target tracking, signal processing, and fault detection 

[4, 5, 6]. When dealing with nonlinear systems, the KF can be modified to approximate the nonlinearities of the system, 

resulting in the extended Kalman filter (EKF). If the system is highly nonlinear, however, the EKF may diverge from 

the true state trajectory and result in numerical instabilities and poor estimation performance [7, 8, 9, 10, 11, 12]. In 

such cases, the unscented Kalman filter (UKF) is better equipped to deal with the nonlinearities by utilizing sigma 

points which formulate a weighted statistical linear regression approach to approximating the nonlinearities [13, 14, 

15, 16]. While the UKF has demonstrated effectiveness in a number of signal processing applications, it can be 

resource-intensive and sensitive to modeling uncertainties and disturbances [17, 18, 19]. 

 In target tracking applications where one may be concerned with the surveillance, guidance, obstacle 

avoidance or simply tracking of a target, sensors are responsible for providing a noise-corrupted signal or 

measurements [20, 21]. Typically, the signal from these sensors is processed by estimation techniques to result in and 

output uncorrupted measurements of the system’s state, such as kinematic information regarding its position, velocity, 

and acceleration. These measurements are processed in a fashion which maintains tracks, which are a sequence of 

target state estimates that vary with time. Gating and data association techniques are often employed to help classify 

the source of measurements, as well as to associate the measurements to the appropriate track. These gating techniques 

help to avoid or minimize extraneous measurements which may result in the estimation process’ instability or failure. 

Tracking filters are often used in recursive a fashion to carry out the estimation of the target states. 

An information filter (IF) is a type of filter that propagates the inverse of the state error covariance instead of 

using the normal covariance in the gain calculation like with the KF [22]. The Cramer-Rao lower bound (CRLB) is 

the motivation behind the ‘information ‘term, whereby the Fisher information matrix (FIM) is computed as the inverse 

of the covariance matrix [23]. The CRLB dictates a theoretical limit on the squared error of an estimator, whereby it 

cannot be smaller than an amount based on its corresponding likelihood function [23]. If a filter’s variance is equal to 

the CRLB, then it is considered to be an effective filter. The IF has certain advantages, such as the ability to initialize 

the information matrix to zero if no prior information is available, thus eliminating any bias in the a priori estimate 

[24]. In addition, the update of the information matrix after the observations is considered to be more robust than the 

covariance filter form, which is an especially attractive feature when round-off errors may pose an issue [24]. 
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Regardless, it is a well known fact that information filtering often presents with the problem of a lack of understanding 

or interpretability of the ‘information states’ [24]. However, the lack of interpretability may be remedied by inverting 

the information matrix. 

Other types of estimation methods exist beyond the KF and IF, some of which are based on sliding mode 

theory. Sliding mode observers are examples of such methods, and are also based on variable structure theory [25, 

26]. The gain of the observer is computed using the innovation and is implemented in a manner which forces the 

surface of the error to zero [27]. Sliding mode observer methods employ a hyperplane or sliding surface, and apply a 

discontinuous switching force upon the estimate to ensure it is bounded within the region of the hyperplane [25, 28]. 

As a result, these strategies result in estimates which offer more robustness to modeling uncertainties and external 

disturbances. 

Based on the concepts of sliding mode observers, the smooth variable structure filter (SVSF) was proposed 

[4, 25, 29]. The SVSF demonstrates further improvements in robustness to modeling uncertainties, and provides a sub-

optimal solution in terms of estimation accuracy [4, 30, 31]. The sliding innovation filter (SIF) was proposed more 

recently, and utilizes a simpler gain whilst also yielding improved estimate accuracy compared to the SVSF [32]. 

Similar to the EKF, the extended SIF (ESIF) was proposed to deal with nonlinear systems. Both the SIF and ESIF 

from [32] make use of a fixed-width siding boundary layer with the assumption of a constant upper limit on the 

modeling and measurement uncertainty [33]. An adaptive formulation of the SIF was presented in [34], which 

presented a time-varying sliding boundary layer that yielded optimal linear estimation results while maintaining 

robustness to uncertainties and disturbances. 

In this paper, we introduce the derivation of the sliding innovation information filter (SIIF), which is 

effectively the SIF in an information form. We apply the SIIF to a target tracking problem, and compare the results 

with the IF method. The paper is organized as follows. The main estimation strategies used in the paper are summarized 

in Section 2. The SIIF is derived in Section 3, and the simulation setup and results are provided in Section 4. The paper 

is then concluded. 

 

2. REVIEW OF ESTIMATION STRATEGIES 

In this section, we provide a review of the main estimation strategies used in this paper. In particular, the Kalman 

filter, information filter, and sliding innovation filter are summarized. 

2.1 Kalman Filter 

Although it is the most popular method, the KF will be summarized here for completeness. The KF provides the 

optimal solution to the linear estimation problem which is described by (2.1.1) and (2.1.2). The goal of any estimator 

is to obtain the true state value 𝑥𝑘+1 using noisy measurements 𝑧𝑘+1. 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 (2.1.1) 

𝑧𝑘+1 = 𝐶𝑥𝑘+1 + 𝑣𝑘+1 (2.1.2) 

where 𝑥 represents the system state vector, 𝐴 is the discretized linear system model matrix of differential equations, 𝐵 

is the input gain matrix, 𝑢 is the input vector, 𝑤 is the system noise, 𝑧 is the measurement vector, 𝐻 is the linear 

measurement matrix, 𝑣 represents the measurement noise, and 𝑘 represents the current timestep. 

 The Kalman filter (KF) works under the assumptions that the system model is relatively well-known, and the 

initial states are also known, and finally, that the system and measurement noise is normal and Gaussian meaning that 

it is white with zero mean and known respective covariance matrices [3].  The KF works as a predictor-corrector; the 

system model is used to obtain an a priori or predicted estimate of the states, whereupon measurements combined 

with the Kalman gain matrix are used to apply a correction term to create an a posteriori or updated state estimate [4], 

[5]. 

The prediction stage involves calculating the state estimates based on the previous state values and knowledge 

of the system, as per (2.1.3). The corresponding state error covariance matrix is calculated in (2.1.4) and is used in the 

update stage to calculate the KF gain in (2.1.5) and update the state error covariance as per (2.1.7). 

𝑥̂𝑘+1|𝑘 = 𝐴𝑥̂𝑘|𝑘 + 𝐵𝑢𝑘 (2.1.3) 

𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘|𝑘𝐴
𝑇 + 𝑄𝑘  (2.1.4) 
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The update stage is summarized by (2.1.5) through (2.1.7). The gain calculated in (2.1.5) is used to update 

the state estimates in (2.1.6) based on the measurement error (or innovation). The gain is also used along with the 

predicted state error covariance to update the state error covariance in (2.1.7). 

𝐾𝑘+1 = 𝑃𝑘+1|𝑘𝐶
𝑇(𝐶𝑃𝑘+1|𝑘𝐶

𝑇 + 𝑅𝑘+1)
−1

(2.1.5) 

𝑥̂𝑘+1|𝑘+1 = 𝑥̂𝑘+1|𝑘 + 𝐾𝑘+1(𝑧𝑘+1 − 𝐶𝑥̂𝑘+1|𝑘) (2.1.6) 

𝑃𝑘+1|𝑘+1 = (𝐼 − 𝐾𝑘+1𝐶)𝑃𝑘+1|𝑘(𝐼 − 𝐾𝑘+1𝐶)𝑇 …

… + 𝐾𝑘+1𝑅𝑘+1𝐾𝑘+1
𝑇 (2.1.7)

 

Note that 𝑘 refers to the time step, 𝑘|𝑘 refers to the updated values at the previous iteration, and 𝑘 + 1|𝑘 

refers to the predicted values at time 𝑘 + 1 based on information at time 𝑘. Equations (2.1.3) through (2.1.7) represent 

the KF estimation process for linear systems and measurements defined by (2.1.1) and (2.1.2), respectively. The 

process is iterative and repeats every time step 𝑘. Note that (2.1.7) is known as the Joseph covariance form, and is 

considered to be numerically stable. The basic nonlinear form of the KF, known as the extended Kalman filter (EKF), 

is based on linearizing the nonlinear system and/or measurement equations by first-order Taylor series expansions. 

This is described later at the end of Section 2.3. 

2.2 Information Filter 

The most common form of the information filter (IF) found in the literature is based on the KF derivations (Section 

2.1), where the inverse of the state error covariance matrices is utilized. The ‘information states’ are functions of the 

covariance inverses and the true state vectors. The predicted and updated information states are defined by (2.2.1) and 

(2.2.1), respectively [35]. 

𝑎̂𝑘+1|𝑘 = 𝑃𝑘+1|𝑘
−1 𝑥̂𝑘+1|𝑘 (2.2.1) 

𝑎̂𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘+1
−1 𝑥̂𝑘+1|𝑘+1 (2.2.2) 

Applying the matrix inversion lemma to (2.2.4) and (2.2.7) yields the corresponding information matrices, as 

presented in [35]: 

𝑃𝑘+1|𝑘
−1 = [𝐼 − 𝐴𝑝](𝐴

−1)𝑇𝑃𝑘|𝑘
−1𝐴−1 (2.2.3) 

𝑃𝑘+1|𝑘+1
−1 = 𝑃𝑘+1|𝑘

−1 + 𝐶𝑅𝑘+1
−1 𝐶𝑇 (2.2.4) 

where 𝐴𝑝 is defined by: 

𝐴𝑝 = (𝐴−1)𝑇𝑃𝑘|𝑘
−1𝐴−1[(𝐴−1)𝑇𝑃𝑘|𝑘

−1𝐴−1 + 𝑄𝑘+1
−1 ]

−1
(2.2.5) 

The gain associated with the IF (simplified) is defined in literature as follows [35, 22]: 

𝐾𝐼𝐹𝑘+1
= 𝐴𝑃𝑘+1|𝑘+1

−1 𝐶𝑅𝑘+1
−1 (2.2.6) 

 Using the gain (2.2.6) and information matrices (2.2.3) and (2.2.4), the predicted and updated information 

vectors used by the information filter may be found respectively by [35, 22]: 

𝑎̂𝑘+1|𝑘 = [𝐼 − 𝐴𝑝]𝐴
−𝑇𝑎̂𝑘|𝑘 (2.2.7) 

𝑎̂𝑘+1|𝑘+1 = 𝑎̂𝑘+1|𝑘 + 𝐶𝑅𝑘+1
−1 𝑧𝑘 (2.2.8) 

 Equations (2.2.3) through (2.2.8) constitute the main formulas used in the information filter. Furthermore, 

note that the actual inverses do not have to be calculated, as the states are solved in a recursive manner. 

2.3 Sliding Innovation Filter 

The sliding innovation filter (SIF) is a predictor-corrector estimator based on sliding mode concepts [32]. The 

difference between the KF and SIF is the structure of the corrective gain matrix. The SIF gain is calculated using the 

measurement matrix, innovation, and sliding boundary layer term. An initial estimate is pushed towards the sliding 

boundary layer which is based on the upper limit of uncertainties in the estimation process [32]. If the estimate is 

within the sliding boundary layer, the estimates are forced to switch about the true state trajectory by the SIF gain. 
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Figure 1 illustrates the SIF estimation concept. This section describes the linear SIF estimation process. The prediction 

stage is given by the following equations: 

𝑥̂𝑘+1|𝑘 = 𝐴𝑥̂𝑘|𝑘 + 𝐵𝑢𝑘 (2.3.1) 

𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘|𝑘𝐴
𝑇 + 𝑄𝑘+1 (2.3.2) 

𝑧̃𝑘+1|𝑘 = 𝑧𝑘+1 − 𝐶𝑥̂𝑘+1|𝑘 (2.3.3) 

where 𝑥 refers to the state, 𝑥̂ refers to the estimated state, 𝑢 refers to the system input, 𝑧 refers to the measurement, 𝑧̃ 

refers to the innovation (or measurement error), and 𝑘 refers to the time step. In addition, 𝐴, 𝐵, 𝐶, 𝑃, 𝑄, and 𝑅, are 

respectively defined as the system matrix, input gain matrix, measurement matrix, state error covariance matrix, 

system noise covariance, and measurement noise covariance. Note also that 𝑘 + 1|𝑘 and 𝑘 + 1|𝑘 + 1 refer to predicted 

and updated values, respectively. 

 

Figure 1. The sliding innovation filter (SIF) concept illustrating the effects of the switching gain and sliding boundary 

layer [32]. 

The states are predicted in (2.3.1) before being updated in (2.3.5) using the innovation defined in (2.3.3) 

which is also used in the gain formulation in (2.3.4). The state error covariance matrix is predicted in (2.3.2) before 

being updated in (2.3.6). Note that the gain (2.3.4) is also used to update the state error covariance (2.3.6). The update 

state is summarized by the following equations: 

𝐾𝑘+1 = 𝐶+𝑠𝑎𝑡̅̅ ̅̅ (|𝑧̃𝑘+1|𝑘| 𝛿⁄ ) (2.3.4) 

𝑥̂𝑘+1|𝑘+1 = 𝑥̂𝑘+1|𝑘 + 𝐾𝑘+1𝑧̃𝑘+1|𝑘 (2.3.5) 

𝑃𝑘+1|𝑘+1 = (𝐼 − 𝐾𝑘+1𝐶
+)𝑃𝑘+1|𝑘(𝐼 − 𝐾𝑘+1𝐶

+)𝑇 …

… + 𝐾𝑘+1𝑅𝑘+1𝐾𝑘+1
𝑇 (2.3.6)

 

where 𝐶+ refers to the pseudoinverse of the measurement matrix, |𝑧̃𝑘+1|𝑘| refers to the absolute innovation value, 𝑇 

refers to transpose of a vector or matrix, 𝛿 refers to the fixed sliding boundary layer width, and 𝑠𝑎𝑡̅̅ ̅̅  refers to the 

diagonal matrix of the saturated vector values. The sliding boundary layer term may be tuned based on designer 

knowledge of the system (e.g., level of noise) in an effort to minimize the state estimation error. 

Equations (2.3.1) through (2.3.6) represent the SIF estimation process for linear systems and measurements. 

The SIF proof of stability was discussed in detail in [32]. A Lyapunov function was defined based on the updated 

innovation, and was used to prove stability. Note that the nonlinear version of the SIF, the extended SIF (ESIF), is 

similar to the SIF with the main difference being the formulation of the gain [32]. Similar to the EKF, the ESIF uses 

Jacobian matrices to linearize the nonlinear system 𝑓(𝑥̂𝑘|𝑘 , 𝑢𝑘) and nonlinear measurement ℎ(𝑥̂𝑘+1|𝑘) functions, 

respectively as follows: 
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𝐹𝑘 =
𝜕𝑓

𝜕𝑥
|
(𝑥𝑘|𝑘,𝑢𝑘)

(2.3.7) 

𝐻𝑘+1 =
𝜕ℎ

𝜕𝑥
|
(𝑥𝑘+1|𝑘)

(2.3.8) 

In its current formulation, the state error covariance matrix 𝑃 defined in the SIF estimation process is not used to 

update the state estimates. However, as will be shown in Section III, it is used to derive a time-varying sliding boundary 

layer. 

 

3. DERIVATION OF THE SLIDING INNOVATION INFORMATION FILTER 

In this section, a new information filter based on the SIF is derived, and is referred to as the smooth innovation 

information filter (SIIF). To begin, consider the predicted and updated information vectors again, respectively as 

follows: 

𝑎̂𝑘+1|𝑘 = 𝑃𝑘+1|𝑘
−1 𝑥̂𝑘+1|𝑘 (3.1) 

𝑎̂𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘+1
−1 𝑥̂𝑘+1|𝑘+1 (3.2) 

Next, the inverse of the covariances (or the information matrices) need to be solved. First, the predicted 

information matrix will be found. Consider the following definition: 

𝐴𝑞 = 𝐴−𝑇𝑃𝑘|𝑘
−1𝐴−1 (3.3) 

From the definition of the state error covariance matrix in (2.3.2), we then have: 

𝑃𝑘+1|𝑘
−1 = [𝐴𝑞

−1 + 𝐼𝑄𝑘+1𝐼
𝑇]

−1
(3.4) 

Rewriting (3.4) allows the matrix inversion lemma to be applied [35]: 

[𝑎1
−1 + 𝑎2𝑎3𝑎2

𝑇]−1 = [𝐼 − 𝑎1𝑎2(𝑎2
𝑇𝑎1𝑎2 + 𝑎3

−1)−1𝑎2
𝑇]𝑎1 (3.5) 

Which yields a more complete form of (3.4) as follows: 

𝑃𝑘+1|𝑘
−1 = [𝐼 − 𝐴𝑞(𝐴𝑞 + 𝑄𝑘+1

−1 )
−1

] 𝐴𝑞 (3.6) 

Alternatively, we have the following for the predicted information matrix: 

𝑃𝑘+1|𝑘
−1 = [𝐼 − 𝐴𝑟]𝐴𝑞 (3.7) 

𝐴𝑟 = 𝐴𝑞(𝐴𝑞 + 𝑄𝑘+1
−1 )

−1
(3.8) 

Next, the updated information matrix needs to be solved. Consider the following, which is the inverse of (2.3.6): 

𝑃𝑘+1|𝑘+1
−1 = [(𝐼 − 𝐾𝑘+1𝐶)𝑃𝑘+1|𝑘(𝐼 − 𝐾𝑘+1𝐶)𝑇 + 𝐾𝑘+1𝑅𝑘+1𝐾𝑘+1

𝑇 ]
−1

(3.9) 

Note that 𝐾𝑘+1 in this case is the SIF-based gain. Similar to before, consider the following definition: 

𝐴𝑠 = [(𝐼 − 𝐾𝑘+1𝐶)𝑃𝑘+1|𝑘(𝐼 − 𝐾𝑘+1𝐶)𝑇]
−1

(3.10) 

Such that: 

𝐴𝑠 = (𝐼 − 𝐾𝑘+1𝐶)−𝑇𝑃𝑘+1|𝑘
−1 (𝐼 − 𝐾𝑘+1𝐶)−1 (3.11) 

The updated information matrix can then be rewritten as follows: 

𝑃𝑘+1|𝑘+1
−1 = [𝐴𝑠

−1 + 𝐾𝑘+1𝑅𝑘+1𝐾𝑘+1
𝑇 ]−1 (3.12) 

Doing so allows the use of the matrix inversion lemma. This allows us to solve for the complete form of (3.9), as per: 
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𝑃𝑘+1|𝑘+1
−1 = [𝐼 − 𝐴𝑠𝐾𝑘+1(𝐾𝑘+1

𝑇 𝐴𝑠𝐾𝑘+1 + 𝑅𝑘+1
−1 )−1𝐾𝑘+1

𝑇 ]𝐴𝑠 (3.13) 

Alternatively, we have the following for the updated information matrix: 

𝑃𝑘+1|𝑘+1
−1 = [𝐼 − 𝐴𝑡𝐾𝑘+1

𝑇 ]𝐴𝑠 (3.14) 

𝐴𝑡 = 𝐴𝑠𝐾𝑘+1(𝐾𝑘+1
𝑇 𝐴𝑠𝐾𝑘+1 + 𝑅𝑘+1

−1 )−1 (3.15) 

 Now that both the information matrices have been defined by (3.7) and (3.14), the next step in deriving the 

SIIF is to formulate the prediction and update equations for the information vectors. These were defined earlier by 

(3.1) and (3.2). Substitution of (3.7) into (3.1), and making use of our definition in (2.3.1), yields the following: 

𝑎̂𝑘+1|𝑘 = [𝐼 − 𝐴𝑟]𝐴𝑞(𝐴𝑥̂𝑘|𝑘 + 𝐵𝑢𝑘) (3.16) 

Substitution of (3.3) into (3.1.6) yields: 

𝑎̂𝑘+1|𝑘 = [𝐼 − 𝐴𝑟]𝐴
−𝑇𝑃𝑘|𝑘

−1𝐴−1𝐴𝑥̂𝑘|𝑘 + [𝐼 − 𝐴𝑟]𝐴
−𝑇𝑃𝑘|𝑘

−1𝐴−1𝐵𝑢𝑘 (3.17) 

Simplifying (3.1.7) and utilizing (3.2) yields the predicted information vector as follows: 

𝑎̂𝑘+1|𝑘 = [𝐼 − 𝐴𝑟]𝐴
−𝑇(𝑎̂𝑘|𝑘 + 𝑃𝑘|𝑘

−1𝐴−1𝐵𝑢𝑘) (3.18) 

The same approach may be used to solve for the updated information vector equation, starting with manipulating (3.2): 

𝑎̂𝑘+1|𝑘+1 = [𝑃𝑘+1|𝑘
−1 + 𝐾𝑘+1]𝑥̂𝑘+1|𝑘+1 (3.19) 

Substitution of (2.3.5) into (3.19) yields: 

𝑎̂𝑘+1|𝑘+1 = [𝑃𝑘+1|𝑘
−1 + 𝐾𝑘+1

−1 ](𝑥̂𝑘+1|𝑘 + 𝐾𝑘+1𝑧̃𝑘+1|𝑘) (3.20) 

Expanding (3.20) gives: 

𝑎̂𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘
−1 𝑥̂𝑘+1|𝑘 + 𝑃𝑘+1|𝑘

−1 𝐾𝑘+1𝑧̃𝑘+1|𝑘 + 𝐾𝑘+1
−1 𝑥̂𝑘+1|𝑘 + 𝑧̃𝑘+1|𝑘 (3.21) 

Simplifying (3.21) further yields the following solution for the updated information vector: 

𝑎̂𝑘+1|𝑘+1 = 𝑎̂𝑘+1|𝑘 + 𝐾𝑘+1
−1 𝑧𝑘+1 (3.22) 

Equations (3.1) through (3.22) are the derivation of the sliding innovation information filter. The following 

sets of equations summarize the iterative process for the SIIF. 

𝑎̂𝑘+1|𝑘 = [𝐼 − 𝐴𝑟]𝐴
−𝑇(𝑎̂𝑘|𝑘 + 𝑃𝑘|𝑘

−1𝐴−1𝐵𝑢𝑘) (3.23) 

𝑃𝑘+1|𝑘
−1 = [𝐼 − 𝐴𝑞(𝐴𝑞 + 𝑄𝑘+1

−1 )
−1

] 𝐴𝑞 (3.24) 

𝑎̂𝑘+1|𝑘+1 = 𝑎̂𝑘+1|𝑘 + 𝐾𝑘+1
−1 𝑧𝑘+1 (3.25) 

𝑃𝑘+1|𝑘+1
−1 = [𝐼 − 𝐴𝑠𝐾𝑘+1(𝐾𝑘+1

𝑇 𝐴𝑠𝐾𝑘+1 + 𝑅𝑘+1
−1 )−1𝐾𝑘+1

𝑇 ]𝐴𝑠 (3.26) 

Where the support equations are defined as follows: 

𝐴𝑞 = 𝐴−𝑇𝑃𝑘|𝑘
−1𝐴−1 (3.27) 

𝐴𝑟 = 𝐴𝑞(𝐴𝑞 + 𝑄𝑘+1
−1 )

−1
(3.28) 

𝐴𝑠 = (𝐼 − 𝐾𝑘+1𝐻)−𝑇𝑃𝑘+1|𝑘
−1 (𝐼 − 𝐾𝑘+1𝐻)−1 (3.29) 

𝐴𝑡 = 𝐴𝑠𝐾𝑘+1(𝐾𝑘+1
𝑇 𝐴𝑠𝐾𝑘+1 + 𝑅𝑘+1

−1 )−1 (3.30) 
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4. COMPUTER EXPERIMENTS 

In this section, a simple target tracking example will be considered to demonstrate the application of the sliding 

innovation information filter. 

4.1 Target Tracking Problem Setup 

The target tracking problem involved in this study is based on a generic air traffic control (ATC) scenario found in 

[23] and is as described in [36] and [37]. A radar stationed at the origin provides direct position-only measurements, 

with a standard deviation of 50 𝑚 in each coordinate. The average motion of the target of interest is illustrated in 

Figure 2 (next page). 

As shown in Figure 2, an aircraft starts from an initial position of [25,000 𝑚, 10,000 𝑚] at time 𝑡 =  0 𝑠, 

and flies westward at 120 𝑚/𝑠 for 125 𝑠. A coordinated turn is then performed by the aircraft for a period of 90 𝑠 at 

a rate of 1˚/𝑠. Then, the aircraft proceeds to fly southward at 120 𝑚/𝑠 for 125 𝑠, followed by another coordinated 

turn for 30 𝑠 at 3˚/𝑠. Finally, the aircraft continues to fly westward until it reaches the ultimate points of its trajectory, 

indicating the end of the simulation. 

The behaviour of civilian aircraft in ATC scenarios may be modeled by two different modes of operation: 

uniform motion (UM) which involves a straight flight path with a constant speed and course, and maneuvering which 

includes turning or climbing and descending [23]. In the case of this study, maneuvering refers to a coordinated turn 

(CT) model, where a turn is made at a constant turn rate and speed. The uniform motion model used for this target 

tracking problem is given by (4.1) [23, 38]. 

 

Figure 2. True target trajectory for the nonlinear estimation problem. 

 

 𝑥𝑘+1 = [

1 0 𝑇 0
0 1 0 𝑇
0 0 1 0
0 0 0 1

] 𝑥𝑘 +

[
 
 
 
 
 
1

2
𝑇2 0

0
1

2
𝑇2

𝑇 0
0 𝑇 ]

 
 
 
 
 

𝑤𝑘  (4.1) 

The state vector of the aircraft may be defined as follows: 

 𝑥𝑘 = [𝜉𝑘 𝜂𝑘 𝜉𝑘̇ 𝜂̇𝑘]
𝑇 (4.2) 
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The first two states refer to the position along the 𝑥-axis and 𝑦-axis, respectively, and the last two states refer 

to the velocity along the 𝑥-axis and 𝑦-axis, respectively. The sampling time used in this simulation was 5 seconds. 

When using the CT model, the state vector needs to be augmented to include the turn rate, as shown in (4.3) [23]. The 

CT model may be considered nonlinear if the turn rate of the aircraft is not known. Note that a left turn corresponds 

to a positive turn rate, and a right turn has a negative turn rate. This sign convention follows the commonly used 

trigonometric convention (the opposite is true for navigation convention) [23]. As per [23, 38], the CT model is given 

by (4.4). 

 𝑥𝑘 = [𝜉𝑘 𝜂𝑘 𝜉𝑘̇ 𝜂̇𝑘 𝜔𝑘]
𝑇 (4.3) 

 𝑥𝑘+1 =

[
 
 
 
 
 
 1 0

𝑠𝑖𝑛𝜔𝑘𝑇

𝜔𝑘

−
1 − 𝑐𝑜𝑠𝜔𝑘𝑇

𝜔𝑘

0

0 1
1 − 𝑐𝑜𝑠𝜔𝑘𝑇

𝜔𝑘

𝑠𝑖𝑛𝜔𝑘𝑇

𝜔𝑘

0

0 0 𝑐𝑜𝑠𝜔𝑘𝑇 −𝑠𝑖𝑛𝜔𝑘𝑇 0
0 0 𝑠𝑖𝑛𝜔𝑘𝑇 𝑐𝑜𝑠𝜔𝑘𝑇 0
0 0 0 0 1]

 
 
 
 
 
 

𝑥𝑘 +

[
 
 
 
 
 
 
1

2
𝑇2 0 0

0
1

2
𝑇2 0

𝑇 0 0
0 𝑇 0
0 0 𝑇]

 
 
 
 
 
 

𝑤𝑘 (4.4) 

Since the radar stationed at the origin provides direct position measurements only, the measurement equation 

may be linearly formed as follows: 

 𝑧𝑘 = [
1 0 0 0 0
0 1 0 0 0

] 𝑥𝑘 + 𝑣𝑘 (4.5) 

Equations (4.1) through (4.5) were used to generate the true state values of the trajectory and the radar 

measurements for this target tracking scenario. As previously mentioned, the EKF uses a linearized form of the system 

and measurement matrices. In this case, the system defined by (4.4) is nonlinear, such that the Jacobian of it yields a 

linearized form as shown in (4.6). The terms in the last column of (4.6) are correspondingly defined in (4.7) [23]. 

 [∇𝑥𝐹𝑘,𝑥
𝑇 ]

𝑇
|
𝑥𝑘=𝑥𝑘

=

[
 
 
 
 
 
 
 1 0

𝑠𝑖𝑛𝜔̂𝑘𝑇

𝜔̂𝑘

−
1 − 𝑐𝑜𝑠𝜔̂𝑘𝑇

𝜔̂𝑘

𝐹𝜔̂1

0 1
1 − 𝑐𝑜𝑠𝜔̂𝑘𝑇

𝜔̂𝑘

𝑠𝑖𝑛𝜔̂𝑘𝑇

𝜔̂𝑘

𝐹𝜔̂2

0 0 𝑐𝑜𝑠𝜔̂𝑘𝑇 −𝑠𝑖𝑛𝜔̂𝑘𝑇 𝐹𝜔̂3

0 0 𝑠𝑖𝑛𝜔̂𝑘𝑇 𝑐𝑜𝑠𝜔̂𝑘𝑇 𝐹𝜔̂4

0 0 0 0 1 ]
 
 
 
 
 
 
 

 (4.6) 

 [

𝐹𝜔̂1

𝐹𝜔̂2

𝐹𝜔̂3

𝐹𝜔̂4

] =

[
 
 
 
 
 
 
 
(𝑐𝑜𝑠𝜔̂𝑘𝑇)𝑇

𝜔̂𝑘

𝜉𝑘̇
̂ −

(𝑠𝑖𝑛𝜔̂𝑘𝑇)

𝜔̂𝑘
2 𝜉𝑘̇

̂ −
(𝑠𝑖𝑛𝜔̂𝑘𝑇)𝑇

𝜔̂𝑘

𝜂̇𝑘̂ −
(−1 + 𝑐𝑜𝑠𝜔̂𝑘𝑇)

𝜔̂𝑘
2 𝜂̇𝑘̂

(𝑠𝑖𝑛𝜔̂𝑘𝑇)𝑇

𝜔̂𝑘

𝜉𝑘̇
̂ −

(1 − 𝑐𝑜𝑠𝜔̂𝑘𝑇)

𝜔̂𝑘
2 𝜉𝑘̇

̂ −
(𝑐𝑜𝑠𝜔̂𝑘𝑇)𝑇

𝜔̂𝑘

𝜂̇𝑘̂ −
(𝑠𝑖𝑛𝜔̂𝑘𝑇)

𝜔̂𝑘
2 𝜂̇𝑘̂

−(𝑠𝑖𝑛𝜔̂𝑘𝑇)𝑇𝜉𝑘̇
̂ − (𝑐𝑜𝑠𝜔̂𝑘𝑇)𝑇𝜂̇𝑘̂

(𝑐𝑜𝑠𝜔̂𝑘𝑇)𝑇𝜉𝑘̇
̂ − (𝑠𝑖𝑛𝜔̂𝑘𝑇)𝑇𝜂̇𝑘̂ ]

 
 
 
 
 
 
 

 (4.7) 

To generate the results for this section, the following values were used for the initial state error covariance 

matrix 𝑃0|0, the system noise matrix 𝑄, and the measurement noise matrix 𝑅. 

 𝑃0|0 =

[
 
 
 
 
𝑅11 0 0 0 0
0 𝑅22 0 0 0
0 0 100 0 0
0 0 0 100 0
0 0 0 0 1]

 
 
 
 

 (4.8) 
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 𝑄 = 𝐿1

[
 
 
 
 
 
 
 
 
 
 
𝑇3

3
0

𝑇2

2
0 0

0
𝑇3

3
0

𝑇2

2
0

𝑇2

2
0 𝑇 0 0

0
𝑇2

2
0 𝑇 0

0 0 0 0
𝐿2

𝐿1

𝑇
]
 
 
 
 
 
 
 
 
 
 

 (4.9) 

 𝑅 = 502 [
1 0
0 1

] (4.10) 

Note that 𝐿1 and 𝐿2 are referred to as power spectral densities, and were defined as 0.16 and 0.01, respectively 

[38]. The system and measurement noise (𝑤𝑘 and 𝑣𝑘) were generated using their respective covariance values (𝑄 and 

𝑅). Also, when using the UM model, the fifth row and column of (4.8) and (4.9) were truncated. For the standalone 

SVSF estimation process, the limit on the sliding boundary layer widths were defined as 𝛿 =
[500 1,000 500 1,000 1]𝑇. These parameters were tuned based on some knowledge of the uncertainties (i.e., 

magnitude of noise) and with the goal of decreasing the estimation error. It is required to transform the measurement 

matrix into a square matrix (i.e., identity), such that an ‘artificial’ measurement is created. It is possible to derive 

‘artificial’ velocity measurements based on the available position measurements. For example, consider the following 

artificial measurement vector 𝑦𝑘  for the SIF: 

 𝑦𝑘 =

[
 
 
 
 

𝑧1,𝑘

𝑧2,𝑘

(𝑧1,𝑘+1 − 𝑧1,𝑘)/𝑇

(𝑧2,𝑘+1 − 𝑧2,𝑘)/𝑇

0 ]
 
 
 
 

 (4.11) 

 The accuracy of (4.11) depends on the sampling rate 𝑇. Applying the above type of transformation to non-

measured states allows a measurement matrix equivalent to the identity matrix. The estimation process would continue 

as in the previous section, where 𝐻 = 𝐼. Note however that the artificial velocity measurements would be delayed one 

time step. Furthermore, it is assumed that the artificial turn rate measurement is set to 0, since no artificial measurement 

could be created based on the available measurements. A total of 500 Monte Carlo runs were performed, and the 

results were averaged. 

4.2 Results and Discussion 

In this study’s computer experimentation, both the information filter (IF) and the sliding innovation information filter 

(SIIF) were implemented and applied to the target tracking problem and setup described in earlier sections. Results of 

the target tracking are shown below in Figure 3. The IF and SIIF-based methods both were able to follow the target 

trajectory, however the SIIF-based methods followed more closely regardless of which flight model was used (e.g., 

uniform motion or coordinated turn). The IF-UM filter yielded good results when the aircraft was traveling straight, 

but fell off the true trajectory track when the aircraft turn. This was to be expected given that the filter dynamics did 

not match the target dynamics at this point. The EIF-CT performed well during the turn however it was unable to track 

the aircraft as well (the estimate kept jumping back and forth based on the turn dynamics in the filter). The absolute 

position error for each filter is shown in Figure 4. It is noticeable from this figure that the SIIF and ESIIF yielded 

relatively similar results, regardless of the type of model used by the filter (e.g., uniform motion or coordinated turn). 

This is primarily attributed to the robust estimation process inherent to the switching gain involved in the standard SIF 

(and now SIIF). A second case was studied, in which the measurement at 50 seconds was increased by one-hundred 

(multiplicator). In this case, the robustness of the SIIF was further demonstrated and reinforced by the faulty 

measurements. The IF-based methods were unable to overcome the measurement error, however the SIIF and ESIIF 

were able to maintain the true target state trajectory. The results of this case are shown in Figures 5 and 6. 
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Figure 3. True and estimated target trajectories for the nonlinear estimation problem. Note the legend is defined as 

follows: IF-UM and SIIF-IM are the information filter and sliding innovation information filter with the uniform 

motion model, respectively; and, EIF-CT and ESIIF-CT are the extended IF and SIIF with the coordinated turn 

model, respectively. 

 

 
Figure 4. Absolute position estimation errors for the target tracking problem. 
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Figure 5. True and estimated target trajectories with the presence of measurement errors at half-way point. 

 

 
Figure 6. Absolute position errors for the filters with presence of measurement errors at half-way point. 

 

5. CONCLUSIONS 

In this paper, the relatively new sliding innovation filter (SIF) is reformulated as an ‘information filter.’ An information 

filter is one that propagates the inverse of the state error covariance, which is used in the state and parameter estimation 

process. This paper introduced preliminary work completed on developing the information form of the sliding 

innovation filter. The recursive equations used in the sliding innovation information filter (SIIF) are derived and 

summarized. Preliminary results of application to a target tracking problem are also studied. The results demonstrate 
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the robustness of the SIF-based information filter as compared to the well known IF, which is based on the Kalman 

filter. 
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