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ABSTRACT 

Fault detection and identification strategies utilize knowledge of the systems and measurements to accurately and quickly 

predict faults. These strategies are important to mitigate full system failures, and are particularly important for the safe and 

reliable operation of aerospace systems. In this paper, a relatively new estimation method called the sliding innovation 

filter (SIF) is combined with the interacting multiple model (IMM) method. The corresponding method, referred to as the 

SIF-IMM, is applied on a magnetorheological actuator which was built for experimentation. These types of actuators are 

similar to hydraulic-based ones, which are commonly found in aerospace systems. The method is shown to accurately 

identify faults in the system. The results are compared and discussed with other popular nonlinear estimation strategies 

including the extended and unscented Kalman filters. 

Keywords: Aerospace systems, fault detection, identification, robustness, Kalman filter, sliding innovation filter 

 

1. BRIEF INTRODUCTION  

Electromechanical systems are frequently subject to diverse operational modes resulting from various factors, such as 

design, environmental conditions, or faults. Modeling each operational mode can facilitate the application of adaptive 

estimation strategies to enhance estimation accuracy and enable effective fault detection. In the case of the 

magnetorheological damper examined in this study, it is highly susceptible to changes in temperature and power supply 

faults that can significantly alter its behaviour. Such sudden and unpredictable variations in the system give rise to 

substantial degrees of uncertainty. Designing filtering strategies to estimate the output force using adaptive approaches 

thus is critically reliant on incorporating multiple models to accommodate for all operating modes and to minimize 

estimation error. 

Multiple model (MM) algorithms, which operate on a Bayesian framework for adaptive estimation, comprise 

various forms including static and dynamic MM, generalized pseudo-Bayesian, and the interacting MM (IMM) [1]–[8]. 

The fundamental Bayesian principle underlying MM methods is the updating of the probability of a system existing in a 

particular mode based on new incoming measurements. These algorithms incorporate a finite number of modes and employ 

state estimates to compute the probability of each mode. The IMM-KF is a widely used MM method that employs a number 

of Kalman filters (KFs) equivalent to the number of system models running in parallel. The KF is a popular choice due to 

its optimality and simple corrective gain calculation. Nevertheless, the KF only yields optimal state estimates for linear 

systems with white noise (or zero-mean with normal distribution properties) [9]. The Kalman gain is computed by 

minimizing the trace of the a priori (predicted) state error covariance, which is a measure of the estimation error [9]–[11]. 

The KF has been applied in several fields, such as signal processing, fault detection, and target tracking [9]. However, 

disturbances, nonlinearities, and modeling uncertainties may result in unstable estimates. 

Nonlinear behavior is ubiquitous in natural systems. To approximate nonlinear processes, the extended KF (EKF) 

performs local linearization around the a priori state estimate [9]. Specifically, the nonlinear system model and 

measurement process are approximated using first-order Taylor series to produce Jacobian matrices. The Jacobians can be 

utilized to compute the corrective Kalman gain for the states and their covariance. However, if the system is highly 

nonlinear, the EKF estimates may diverge from the true state trajectory [12]. An alternative approach to capturing nonlinear 

behavior is through sampling. The unscented KF (UKF) generates samples from a probability distribution of states 

propagated through the system model, known as sigma points [13]. The unscented transform is a deterministic sampling 

metho that selects a minimal number of sample points around a mean (in this case, the previous state estimate) [9]. Monte 

Carlo sampling can be used to approximate the mean and covariance of the projected points. Unlike the EKF, the UKF can 
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approximate the updated statistical state mean and state error covariance up to the third order for nonlinear processes [12]. 

Additionally, the UKF does not necessitate taking partial derivatives of the system model or measurement process. 

Nonetheless, the unscented transform is generally more computationally expensive than the EKF [9].  

Variable structure control (VSC) and sliding mode control (SMC) frameworks have been applied in the design of 

sliding mode observers (SMOs) [13]. The SMOs employ an innovation-based approach to determine the observer gain that 

ideally drives the error surface towards the origin [13]. A sliding surface or hyperplane is defined in SMOs to apply a 

discontinuous switching force that keeps the state estimates bounded within a region of the sliding surface [14]. The smooth 

variable structure filter (SVSF), based on the concepts of SMOs, was introduced in 2007 [15].. The SVSF gain is computed 

using the measurement error and a switching term, which bounds the state estimates to the trajectory of the true state 

values, thereby improving the estimation process stability. While classical model-based filters calculate the corrective gain 

using the state error covariance, the original formulation of SVSF did not include this covariance [15].. Subsequently, the 

corrective gain was modified through a process of minimizing the state error covariance to obtain a time-varying smoothing 

boundary layer [15].. The widths of these layers are adjustable based on the level of uncertainty in the estimation process. 

Furthermore, the SVSF has been enhanced through the use of a chattering function for higher-order solutions and fault 

detection [13], [16], [17]. 

The sliding innovation filter (SIF) was first presented in 2020 based on SMOs as an improvement over the SVSF 

[18]. The SIF retains robustness to uncertainties but uses a more concise gain structure and higher estimation accuracy. 

This paper proposes a novel IMM strategy that uses an extension of the SIF for nonlinear systems known as the extending 

sliding innovation filter (ESIF). Like the EKF, the ESIF uses the Jacobian matrix for linear approximation of the system 

to calculate the a priori state error covariance [19], [20]. The IMM algorithm is combined with the ESIF to form the IMM-

ESIF [21]. The efficacy of this proposed estimation strategy is compared with the IMM-EKF and IMM-UKF. These filters 

are applied using a highly nonlinear polynomial model of an experimental MR damper to estimate the force exerted by the 

damper. 

The paper is organized as follows. The estimation methods used in this paper are provided in Section II, followed 

by the IMM algorithm in Section III. Details about the experimental setup are described in Section IV. The mathematical 

model of the MR damper is provided in Section IV, followed by experimental results in Section VI. 

 

2. REVIEW OF ESTIMATION STRATEGIES 

In this section, we provide a review of the main estimation strategies used in this paper. In particular, the Kalman filter 

and sliding innovation filter are summarized. 

2.1 Kalman Filter 

Although it is the most popular method, the KF will be summarized here for completeness. The KF provides the optimal 

solution to the linear estimation problem which is described by (2.1.1) and (2.1.2). The goal of any estimator is to obtain 

the true state value 𝑥𝑘+1 using noisy measurements 𝑧𝑘+1. 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 (2.1.1) 

𝑧𝑘+1 = 𝐶𝑥𝑘+1 + 𝑣𝑘+1 (2.1.2) 

The system and measurement noises are represented by 𝑤𝑘 and 𝑣𝑘, respectively. 𝐴, 𝐵, and 𝐶 represent the system 

(or process) matrix, input gain matrix, and measurement matrix, respectively. In (2.1.1) and (2.1.2), it is assumed that these 

matrices are fixed and do not change with time. The input to the system is defined as 𝑢𝑘. For the KF and most estimation 

methods, it is assumed that the system and measurement noises are statistically zero mean with Gaussian distribution [1]. 

The system and measurement noise are generated using the covariance matrices 𝑄 and 𝑅, respectively. 

The KF is formulated as a predictor-corrector estimator and is an iterative process. The prediction stage involves 

calculating the state estimates based on the previous state values and knowledge of the system, as per (2.1.3). The 

corresponding state error covariance matrix is calculated in (2.1.4) and is used in the update stage to calculate the KF gain 

in (2.1.5) and update the state error covariance as per (2.1.7). 

𝑥̂𝑘+1|𝑘 = 𝐴𝑥̂𝑘|𝑘 + 𝐵𝑢𝑘 (2.1.3) 
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𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘|𝑘𝐴
𝑇 + 𝑄𝑘  (2.1.4) 

The update stage is summarized by (2.1.5) through (2.1.7). The gain calculated in (2.1.5) is used to update the 

state estimates in (2.1.6) based on the measurement error (or innovation). The gain is also used along with the predicted 

state error covariance to update the state error covariance in (2.1.7). 

𝐾𝑘+1 = 𝑃𝑘+1|𝑘𝐶
𝑇(𝐶𝑃𝑘+1|𝑘𝐶

𝑇 + 𝑅𝑘+1)
−1

(2.1.5) 

𝑥̂𝑘+1|𝑘+1 = 𝑥̂𝑘+1|𝑘 + 𝐾𝑘+1(𝑧𝑘+1 − 𝐶𝑥̂𝑘+1|𝑘) (2.1.6) 

𝑃𝑘+1|𝑘+1 = (𝐼 − 𝐾𝑘+1𝐶)𝑃𝑘+1|𝑘(𝐼 − 𝐾𝑘+1𝐶)
𝑇 …

…+ 𝐾𝑘+1𝑅𝑘+1𝐾𝑘+1
𝑇 (2.1.7)

 

Note that 𝑘 refers to the time step, 𝑘|𝑘 refers to the updated values at the previous iteration, and 𝑘 + 1|𝑘 refers to 

the predicted values at time 𝑘 + 1 based on information at time 𝑘. Equations (2.1.3) through (2.1.7) represent the KF 

estimation process for linear systems and measurements defined by (2.1.1) and (2.1.2), respectively. The process is iterative 

and repeats every time step 𝑘. Note that (2.1.7) is known as the Joseph covariance form, and is considered to be numerically 

stable. The basic nonlinear form of the KF, known as the extended Kalman filter (EKF), is based on linearizing the 

nonlinear system and/or measurement equations by first-order Taylor series expansions. This is described later at the end 

of Section 2.3. 

2.2 Unscented Kalman Filter 

Another method of dealing with nonlinearities involves using statistical linear regression of sample points projected using 

the nonlinear system model [22]. The unscented Kalman filter (UKF) is a popular formulation of the sigma-point Kalman 

filter (SPKF). The UKF generates sigma points based on the previous state estimate and covariances. The sigma points are 

then projected using the nonlinear system model to form the a priori state estimate and state error covariance in a process 

known as the unscented transform [23], [24]. Additionally, the points are also projected using the nonlinear measurement 

function as well. This method removes the need for linearization and generally produces a more accurate estimate than the 

Jacobian approximation of the nonlinear system [23], [25]–[27]. 

The UKF algorithm is detailed in the following equations [28].  Given a state space with dimension 𝑛, the state 

𝑥𝑘 can be represented with 2𝑛 + 1 sigma points denoted by 𝑋. The sigma points have a mean of 𝑥̂𝑘|𝑘 and a covariance of 

𝑃𝑘|𝑘. The initial sigma point 𝑋0,𝑘|𝑘 and corresponding weight 𝑊0 are given as follows: 

𝑋0,𝑘|𝑘 = 𝑥̂𝑘|𝑘  (2.2.1) 

𝑊0 = 𝜅/(𝑛 + 𝜅) (2.2.2) 

where 𝜅 is a design parameter. The next 2𝑛 number of sigma points are calculated as follows: 

𝑋𝑖,𝑘|𝑘 = 𝑥̂𝑘|𝑘 + (√(𝑛 + 𝜅)𝑃𝑘|𝑘)
𝑖

 (2.2.3) 

𝑊𝑖 = 1/[2(𝑛 + 𝜅)] (2.2.4) 

where the value 𝑋𝑖,𝑘|𝑘 is the 𝑖𝑡ℎ sigma point and 𝑊𝑖 is the weight that is associated with the 𝑖𝑡ℎ sigma point [29]. The sigma 

points are projected (𝑋̂𝑖,𝑘+1|𝑘) through the nonlinear system function 𝑓  and added together with their corresponding 

weights to produce the a priori state estimate 𝑥̂𝑘+1|𝑘 as follows [9]: 

𝑋̂𝑖,𝑘+1|𝑘 = 𝑓(𝑋𝑖,𝑘|𝑘, 𝑢𝑘) (2.2.5) 

𝑥̂𝑘+1|𝑘 =∑𝑊𝑖𝑋̂𝑖,𝑘+1|𝑘

2𝑛

𝑖=0

 (2.2.6) 

The previous calculations are used to calculate the a priori state error covariance as follows [9]: 

𝑃𝑘+1|𝑘 =∑𝑊𝑖(𝑋̂𝑖,𝑘+1|𝑘 − 𝑥̂𝑘+1|𝑘)(𝑋̂𝑖,𝑘+1|𝑘 − 𝑥̂𝑘+1|𝑘)
𝑇

2𝑛

𝑖=0

 (2.2.7) 

Proc. of SPIE Vol. 12547  1254707-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Nov 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

 

 

The sigma points are also propagated through the nonlinear measurement function. Unlike the KF and EKF, the 

UKF calculates a predicted measurement 𝑧̂𝑘+1|𝑘 which is used to produce the innovation covariance 𝑃𝑧𝑧.𝑘+1|𝑘.  

𝑍̂𝑖,𝑘+1|𝑘 = ℎ(𝑋̂𝑖,𝑘+1|𝑘 , 𝑢𝑘) (2.2.8) 

𝑧̂𝑘+1|𝑘 =∑𝑊𝑖𝑍̂𝑖,𝑘+1|𝑘

2𝑛

𝑖=0

(2.2.9) 

𝑃𝑧𝑧.𝑘+1|𝑘 =∑𝑊𝑖(𝑍̂𝑖,𝑘+1|𝑘 − 𝑧̂𝑘+1|𝑘)…

2𝑛

𝑖=0

                                                   ∗ (𝑍̂𝑖,𝑘+1|𝑘 − 𝑧̂𝑘+1|𝑘)
𝑇

(2.2.10)

 

The cross-covariance (with respect to the state and measurement) is calculated as follows [9]: 

𝑃𝑥𝑧.𝑘+1|𝑘 =∑𝑊𝑖(𝑋̂𝑖,𝑘+1|𝑘 − 𝑥̂𝑘+1|𝑘)

2𝑛

𝑖=0

…

                                                ∗ (𝑍̂𝑖,𝑘+1|𝑘 − 𝑧̂𝑘+1|𝑘)
𝑇
 (2.2.11)

 

The cross-covariance 𝑃𝑥𝑧.𝑘+1|𝑘 and innovation covariance 𝑃𝑧𝑧.𝑘+1|𝑘 are combined to produce the corrective gain 

𝐾𝑘+1 as follows: 

𝐾𝑘+1 = 𝑃𝑥𝑧.𝑘+1|𝑘𝑃𝑧𝑧.𝑘+1|𝑘
−1  (2.2.12) 

To conclude the update state of the UKF, the a posteriori state estimate and a posteriori state error covariance 

are given as follows [9]: 

𝑥̂𝑘+1|𝑘+1 = 𝑥̂𝑘+1|𝑘 + 𝐾𝑘+1(𝑧𝑘+1 − 𝑧̂𝑘+1|𝑘) (2.2.13) 

𝑃𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘 − 𝐾𝑘+1𝑃𝑧𝑧,𝑘+1|𝑘𝐾𝑘+1
𝑇  (2.2.14) 

 In the case of the UKF, there is a trade-off between computational cost and accuracy. While the EKF only 

propagates a single state estimate through a nonlinear process, the UKF uses 2𝑛 + 1 sigma points to achieve a more 

accurate state estimate and state error covariance The UKF is comparable to the EKF for mildly nonlinear systems but has 

better performance when the nonlinear process cannot be approximated by a first order Taylor series [11].    

2.3 Sliding Innovation Filter 

The sliding innovation filter (SIF) is a predictor-corrector estimator based on sliding mode concepts [2]. The difference 

between the KF and SIF is the structure of the corrective gain matrix. The SIF gain is calculated using the measurement 

matrix, innovation, and sliding boundary layer term. An initial estimate is pushed towards the sliding boundary layer which 

is based on the upper limit of uncertainties in the estimation process [2]. If the estimate is within the sliding boundary 

layer, the estimates are forced to switch about the true state trajectory by the SIF gain. Figure 1 illustrates the SIF estimation 

concept. This section describes the linear SIF estimation process. The prediction stage is given by the following equations: 

𝑥̂𝑘+1|𝑘 = 𝐴𝑥̂𝑘|𝑘 + 𝐵𝑢𝑘 (2.2.1) 

𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘|𝑘𝐴
𝑇 + 𝑄𝑘+1 (2.2.2) 

𝑧̃𝑘+1|𝑘 = 𝑧𝑘+1 − 𝐶𝑥̂𝑘+1|𝑘 (2.2.3) 

where 𝑥 refers to the state, 𝑥̂ refers to the estimated state, 𝑢 refers to the system input, 𝑧 refers to the measurement, 𝑧̃ refers 

to the innovation (or measurement error), and 𝑘 refers to the time step. In addition, 𝐴, 𝐵, 𝐶, 𝑃, 𝑄, and 𝑅, are respectively 

defined as the system matrix, input gain matrix, measurement matrix, state error covariance matrix, system noise 

covariance, and measurement noise covariance. Note also that 𝑘 + 1|𝑘 and 𝑘 + 1|𝑘 + 1 refer to predicted and updated 

values, respectively. 
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Figure 1. The sliding innovation filter (SIF) concept illustrating the effects of the switching gain and sliding boundary layer 

[2]. 

The states are predicted in (2.2.1) before being updated in (2.2.5) using the innovation defined in (2.2.3) which is 

also used in the gain formulation in (2.2.4). The state error covariance matrix is predicted in (2.2.2) before being updated 

in (2.2.6). Note that the gain (2.2.4) is also used to update the state error covariance (2.2.6). The update state is summarized 

by the following equations: 

𝐾𝑘+1 = 𝐶
+𝑠𝑎𝑡̅̅ ̅̅ (|𝑧̃𝑘+1|𝑘| 𝛿⁄ ) (2.2.4) 

𝑥̂𝑘+1|𝑘+1 = 𝑥̂𝑘+1|𝑘 + 𝐾𝑘+1𝑧̃𝑘+1|𝑘 (2.2.5) 

𝑃𝑘+1|𝑘+1 = (𝐼 − 𝐾𝑘+1𝐶
+)𝑃𝑘+1|𝑘(𝐼 − 𝐾𝑘+1𝐶

+)𝑇 …

…+ 𝐾𝑘+1𝑅𝑘+1𝐾𝑘+1
𝑇 (2.2.6)

 

where 𝐶+ refers to the pseudoinverse of the measurement matrix, |𝑧̃𝑘+1|𝑘| refers to the absolute innovation value, 𝑇 refers 

to transpose of a vector or matrix, 𝛿 refers to the fixed sliding boundary layer width, and 𝑠𝑎𝑡̅̅ ̅̅  refers to the diagonal matrix 

of the saturated vector values. The sliding boundary layer term may be tuned based on designer knowledge of the system 

(e.g., level of noise) in an effort to minimize the state estimation error. 

Equations (2.2.1) through (2.2.6) represent the SIF estimation process for linear systems and measurements. The 

SIF proof of stability was discussed in detail in [2]. A Lyapunov function was defined based on the updated innovation, 

and was used to prove stability. Note that the nonlinear version of the SIF, the extended SIF (ESIF), is similar to the SIF 

with the main difference being the formulation of the gain [2]. Similar to the EKF, the ESIF uses Jacobian matrices to 

linearize the nonlinear system 𝑓(𝑥̂𝑘|𝑘, 𝑢𝑘) and nonlinear measurement ℎ(𝑥̂𝑘+1|𝑘) functions, respectively as follows: 

𝐹𝑘 =
𝜕𝑓

𝜕𝑥
|
(𝑥𝑘|𝑘,𝑢𝑘)

(2.2.7) 

𝐻𝑘+1 =
𝜕ℎ

𝜕𝑥
|
(𝑥𝑘+1|𝑘)

(2.2.8) 

In its current formulation, the state error covariance matrix 𝑃 defined in the SIF estimation process is not used to update 

the state estimates. However, as will be shown in Section III, it is used to derive a time-varying sliding boundary layer. 

 

3. FORMULATION OF THE SIF-BASED IMM STRATEGY 

The interacting multiple model (IMM) method incorporates a finite number of models and filtering strategies that run in 

parallel. Each filter associated to a particular model produces its own state estimate, sate error covariance, and likelihood 
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that the model is correct. The likelihood is a function of the innovation (measurement error) and its covariance. This in 

turn is used to calculate the mode probabilities which represent the probability of the system existing in a particular mode 

based on the current information.  

The IMM method’s access to additional modeling information presents a clear advantage over single model 

strategies. Combining the IMM with the ESIF adds stability and robustness while increasing adaptability and accuracy 

with access to multiple models. In this paper, the efficacy of this strategy is tested against previous IMM strategies such 

as the IMM-EKF and IMM-UKF when applied to a highly nonlinear MR damper system.  

 

 

Figure 2. Overview of the proposed IMM-ESIF algorithm. 

 

The IMM-ESIF algorithm is shown in Fig. 2. The green arrows indicate measurement input, the blue arrows 

indicate recursion, and the red arrow indicates the overall IMM-RSIF output. A number of SIFs equivalent to the number 

of models are run in parallel. While Fig 2. shows two models for conciseness, there is no limit to the number of models 

that can be incorporated. However, it should be noted that processing time scales linearly with each additional model. The 

IMM-ESIF estimator consists of five steps: mixing probability calculation, ESIF mode-matched filtering, mode probability 

update, and combination of the state estimate and covariance.  

The mixing probabilities 𝜇𝑖|𝑗,𝑘|𝑘 represent the probability of the system in mode 𝑖 and switching to mode 𝑗 at the 

next time step. The mixing probabilities are calculated as follows [8]: 

𝜇𝑖|𝑗,𝑘|𝑘 = 
1

𝑐𝑗̅
𝑝𝑖𝑗𝜇𝑖,𝑘 (3.1) 

𝑐𝑗̅ = ∑𝑝𝑖𝑗𝜇𝑖,𝑘

𝑟

𝑖=1

 (3.2) 
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where 𝑝𝑖𝑗 is the mode transition probability which is a design parameter, 𝜇𝑖𝑘 is the probability of the system existing in 

mode 𝑖, and 𝑟 is the number of system modes.  The previous mode matched state 𝑥̂𝑖,𝑘|𝑘 and covariance 𝑃𝑖,𝑘|𝑘 are used to 

calculate the mixed initial conditions (state 𝑥̂0𝑗,𝑘|𝑘 and covariance 𝑃0𝑗,𝑘|𝑘) for the filter matched to mode 𝑗 as follows [8]: 

𝑥̂0𝑗,𝑘|𝑘 =∑𝑥̂𝑖𝑗,𝑘|𝑘𝜇𝑖|𝑗,𝑘|𝑘

𝑟

𝑖=1

 (3.3) 

𝑃0𝑗,𝑘|𝑘 = ∑𝜇𝑖|𝑗,𝑘|𝑘

𝑟

𝑖=1

{𝑃𝑖,𝑘|𝑘 +⋯

(𝑥̂𝑖,𝑘|𝑘 − 𝑥̂0,𝑘|𝑘)(𝑥̂𝑖,𝑘|𝑘 − 𝑥̂0,𝑘|𝑘)
𝑇
} (3.4)

 

These mixed initial conditions are then fed into the filters matched to mode 𝑗. Each ESIF uses the measurement 

𝑧𝑘+1 as well as any system inputs 𝑢𝑘 to calculate the updated states and corresponding state error covariance.  The initial 

state estimate 𝑥̂0𝑗,𝑘|𝑘 and corresponding state error covariance 𝑃0𝑗,𝑘|𝑘 for each mode 𝑗 are used to calculate the a priori 

states 𝑥̂𝑗,𝑘+1|𝑘 error covariance 𝑃𝑗,𝑘+1|𝑘 as follows: 

𝑥̂𝑗,𝑘+1|𝑘 = 𝑓𝑗(𝑥̂0𝑗,𝑘|𝑘, 𝑢𝑘) (3.5) 

𝑃𝑗,𝑘+1|𝑘 = 𝐹𝑗𝑃0𝑗,𝑘|𝑘𝐹𝑗
𝑇 + 𝑄𝑘  (3.6) 

where 𝑓𝑗 is the nonlinear system state equations of mode 𝑗 and 𝐹𝑗 is the Jacobian matrix of said equations. 

 The mode-matched innovation covariance 𝑆𝑗,𝑘+1|𝑘 and mode-matched a priori measurement error 𝑒𝑗,𝑧,𝑘+1|𝑘 are 

calculated as follows [8]: 

𝑆𝑗,𝑘+1|𝑘 = 𝐶𝑗𝑃𝑗,𝑘+1|𝑘𝐶𝑗
𝑇 + 𝑅𝑘+1 (3.7) 

𝑒𝑗,𝑧,𝑘+1|𝑘 = 𝑧𝑘+1 −  𝐶𝑗𝑥̂𝑗,𝑘+1|𝑘  (3.8) 

where the measurement matrix  𝐶𝑗 is considered linear and constant for the purposes of this paper.  

 The update stage is described by the following four equations. The mode-matched ESIF gain 𝐾𝑗,𝑘+1 is calculated 

via (3.9) and used to update the state estimate 𝑥̂𝑗,𝑘+1|𝑘+1 (3.10). 

𝐾𝑗,𝑘+1 = 𝐻𝑗
+𝑠𝑎𝑡̅̅ ̅̅ (|𝑒𝑗,𝑧,𝑘+1|𝑘| 𝛿⁄ ) (3.9) 

𝑥̂𝑗,𝑘+1|𝑘+1 = 𝑥̂𝑗,𝑘+1|𝑘 + 𝐾𝑗,𝑘+1𝑒𝑗,𝑧,𝑘+1|𝑘 (3.10) 

 The updated state error covariance matrix 𝑃𝑗,𝑘+1|𝑘+1 is generated via (4.11) and is used to produce the a posteriori 

measurement error 𝑒𝑗,𝑧,𝑘+1|𝑘+1 (4.12). 

𝑃𝑗,𝑘+1|𝑘+1 = (𝐼 − 𝐾𝑗,𝑘+1𝐶𝑗)𝑃𝑗,𝑘+1|𝑘(𝐼 − 𝐾𝑗,𝑘+1𝐶𝑗)
𝑇
…

+ 𝐾𝑗,𝑘+1𝑅𝑘+1𝐾𝑗,𝑘+1
𝑇 (3.11)

 

𝑒𝑗,𝑧,𝑘+1|𝑘+𝑘+1 = 𝑧𝑘+1 −  𝐻𝑗 𝑥̂𝑗,𝑘+1|𝑘+1 (3.12) 

Using the mode-mode matched innovation matrix 𝑆𝑗,𝑘+1|𝑘 and the mode-matched updated measurement error  

𝑒𝑗,𝑧,𝑘+1|𝑘, a corresponding likelihood function Λ𝑗,𝑘+1 is calculated as follows [8]: 

Λ𝑗,𝑘+1 =  𝒩(𝑧𝑘+1; 𝑒𝑗,𝑧,𝑘+1|𝑘, 𝑆𝑗,𝑘+1|𝑘) (3.13) 

The likelihood is calculated by applying measurement 𝑧𝑘+1 to a Gaussian probability density function with mean 

𝑒𝑗,𝑧,𝑘+1|𝑘 and covariance 𝑆𝑗,𝑘+1|𝑘. The likelihood can be rewritten as the following equation [8]: 

Λ𝑗,𝑘+1 =
1

√|2𝜋𝑆𝑗,𝑘+1|𝑘|

exp (
−
1
2
𝑒𝑗,𝑧,𝑘+1|𝑘
𝑇 𝑒𝑗,𝑧,𝑘+1|𝑘

𝑆𝑗,𝑘+1|𝑘
) (3.14) 
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The mode-matched likelihood function Λ𝑗,𝑘+1 is then used to update the mode probability 𝜇𝑖,𝑘 as shown [8]: 

𝜇𝑖,𝑘 = 
1

𝑐
Λ𝑗,𝑘+1∑𝑝𝑖𝑗𝜇𝑖,𝑘

𝑟

𝑖=1

 (3.15) 

where the normalizing constant 𝑐 is defined as follows [8]: 

𝑐 =∑Λ𝑗,𝑘+1

𝑟

𝑗=1

∑𝑝𝑖𝑗𝜇𝑖,𝑘

𝑟

𝑖=1

 (3.16) 

Finally, the IMM-ESIF outputs the overall state estimates 𝑥̂𝑘+1|𝑘+1 and corresponding state error covariance 

𝑃𝑘+1|𝑘+1 which are calculated as follows [8]: 

𝑥̂𝑘+1|𝑘+1 =∑𝜇𝑖,𝑘+1

𝑟

𝑗=1

𝑥̂𝑗,𝑘+1|𝑘+1 (3.17) 

𝑃𝑘+1|𝑘+1 = ∑𝜇𝑖,𝑘+1

𝑟

𝑗=1

{𝑃𝑖,𝑘+1|𝑘+1 +⋯

(𝑥̂𝑗,𝑘+1|𝑘+1 − 𝑥̂𝑘+1|𝑘+1)(𝑥̂𝑗,𝑘+1|𝑘+1 − 𝑥̂𝑘+1|𝑘+1)
𝑇
} (3.18)

 

The formulation of the IMM-ESIF can be summarized by (3.1) – (3.18). Note that the estimator’s overall output 

𝑥̂𝑘+1|𝑘+1 from (3.17) and 𝑃𝑘+1|𝑘+1 from (3.18) are not used in the algorithm recursions [8]. The IMM-EKF and IMM-UKF 

follow similar processes with the main difference being their respective corrective gain calculations. 

 

4. EXPERIMENTAL SYSTEM AND RESULTS 

In this section, the experimental MR damper setup and results are discussed. 

4.1 Experimental Setup 

The primary component of the experimental setup used in this paper is the RD-8041-1 MR damper acquired from LORD. 

MR dampers have numerous applications in the automotive and aerospace industry such as isolating vibrations to 

passengers using adaptive suspension systems [30]. A typical MR damper consists of the MR fluid itself, housing, piston, 

diaphragm, and magnetic coil [31]. An electrical current is supplied to the damper in order to increase the viscosity of the 

MR fluid which in turn, increases the damping force. The change in viscosity is attributed to the rearrangement of the 

ferromagnetic particles suspended in the fluid. In the presence of a magnetic field, the particles align to form linear chain 

structures [31]. As the MR damper is driven, the MR fluid moves between different chambers via small orifices in the 

piston assembly and converts mechanical energy into friction losses [31]. 

The experimental setup was developed at McMaster University and the University of Guelph. In order to 

mathematically model the MR damper, an A1 series linear actuator from Ultramotion was used to drive the damper. A 

RAS1-500S-S resistive load cell acquired from Loadstar was used to measure the damping force and a Korad 

programmable power supply was used to supply current to the MR damper. Data acquisition and commands were delivered 

using RS232 serial communication on a laboratory computer. The components were mounted together using an extruded 

t-slotted aluminum frame as seen in Fig. 3. 
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Figure 3. Magnetorheological testing setup used in this study. 

  

The RD-8041-1 is a linear MR damper with continuous variable damping determined by the yield strength of the 

MR fluid in response to a magnetic field. The damper responds in less than 15 milliseconds to changes in the magnetic 

field and can operate at 1 A continuously or 2 A intermittently at 12 V DC. The RD-8041-1 is a monotube shock containing 

high pressure nitrogen gas (300 psi) which fully extends the piston under no load. At ambient temperatures the resistance 

of the coil is 5 Ω and at 71° C the resistance increases to 7 Ω. Extreme temperature changes can drastically alter the 

performance of the MR damper [32]. 

 The Ultramotion linear actuator used to drive the MR damper is a standard servo cylinder with an acme screw to 

prevent back-drive and operates at 180 W. The actuator is capable of 445 N of continuous force and 1001 N at its peak 

with a maximum speed of 178 mm/s. There are several onboard sensors to measure states such as position, torque, 

temperature, and humidity. The position of the linear actuator is measured using the phase index absolute position sensor. 

This sensor is a multi-turn magnetic encoder with a resolution of 1024 counts per revolution used for absolute position 

feedback and commutation. The measurement noise covariance of the sensor is discussed in subsequent sections. The 

torque feedback is calculated using closed loop current feedback on each motor phase. This is then translated into actuator 

output force. Since using current feedback is not an accurate method of calculating output force this results in significant 

error and noise. 

 In general, there is a direct relationship between motor torque and actuator output force. However, there are some 

complicating factors that can significantly impact this relationship. Rotational inertial loads, lubricant viscosity, and seal 

friction can all contribute to output force variability. Factory test data was used in order to convert motor torque into 

actuator output force. The data is collected on each actuator during the acceptance test procedure (ATP) before leaving the 

factory [33]. The current-force curves that are generated are unique to each actuator. However, there is still significant 

noise in force output.  In order to reduce some of the noise in the torque sensor, a first order Butterworth filter was applied 

with a cutoff frequency between 0 and 0.05 of the Nyquist rate. 

 The RAS1-500S-S is a resistive S-Beam load cell capable of measuring both compressive and tensile force 

measurement. The load cell is made from tool steal and has a capacity of 2224 N and a sample rate of 1000 Hz. The 

calibration measurement equipment is traceable to NIST via Pacific Calibration Services. This sensor was used to test the 

efficacy of applying adaptive filtering strategies on the current feedback of the linear actuator. While the noise covariance 

of the loadcell is 26.535 N, the noise covariance of the Ultramotion motor torque sensor is 622.407 N. The comparatively 

high noise distribution of the onboard Ultramotion motor torque sensor makes it a suitable candidate for applying adaptive 

filtering strategies. 

Force-velocity hysteresis curves have been modeled extensively by [33] and [34]. However, at low velocities over 

long stroke lengths, the force of the diaphragm and compressed nitrogen gas is not negligible. Thus, a force-position 

hysteresis curve was modeled by driving the MR damper at a constant velocity over one full stroke. For the MR model 

used in this paper, the actuator speed was set to 30 mm/s and the damping force was recorded by the loadcell over a stroke 

length of 57 mm. Approximately 200 strokes (extension and retraction) were used to model the behavior of the behavior 

at each operational mode (normal, overcurrent, undercurrent). The conditions of the operational modes are discussed 

below. 

There are several different types of faults that can be experienced during MR damper operations. The viscosity 

of the MR fluid is sensitive to extreme temperatures [31] and the particles in the MR fluid are also subject to degradation 

over time [35]. However, this paper focuses on faults caused by minor temperature changes or faulty power supplies which 
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alters the current supplied to the MR damper. Undercurrent and overcurrent fault modes were modeled in addition to the 

normal operating current.  The undercurrent, normal, and overcurrent operational modes are denoted by a supply current 

of 0 mA, 120 mA, and 220 mA, respectively.  

A sample of experimental data used to model the MR damper can be seen in Fig 4. The figures show the actuator 

extending and retracting at a constant speed with MR force being recorded by the loadcell and actuator current sensor. The 

figures also show the application of a first order Butterworth filter on the actuator current sensor in order to reduce some 

of the noise before apply adaptive filtering strategies. 

 

Figure 4. Sample of experimental data used to model the MR damper under normal operating conditions. 

 

The discretized state space equations can be written as follows: 

𝑥1,𝑘+1 =  𝑥1,𝑘 + 𝑇 ∙ 𝑥2,𝑘 (4.1.1) 

𝑥2,𝑘+1 = 𝑥2,𝑘 (4.1.2) 

𝑥3,𝑘+1 =

{
  
 

  
 ∑ 𝑎𝑢𝑘𝑥1,𝑘

9

𝑘=0
;  𝑥2,𝑘 < 0

∑ 𝑎𝑑𝑘𝑥1,𝑘
9

𝑘=0
;  𝑥2  𝑘 > 0

                   ∑
1

2
(𝑎𝑢𝑘 + 𝑎𝑑𝑘)𝑥1,𝑘

9

𝑘=0
;  𝑥2,𝑘 = 0

 (4.1.3) 

where 𝑥1, 𝑥2, 𝑥3, are the position, velocity, and force of MR damper and 𝑇 is the sampling rate. The system and 

measurement noise covariance matrices are defined respectively as follows, based on factory testing: 

𝑄 =  𝑅 ∙ 10−1 (4.1.4) 

𝑅 =   [
5.5134 ∙ 10−4 0 0

0 7.797 ∙ 10−4 0
0 0 622.407

] (4.1.5) 

The system noise was not measured directly but was assumed to be one magnitude smaller than the measurement noise. 

4.2 Experimental Results and Discussion 

The linear actuator drove the MR damper for a total of 11.62 seconds with constant velocity (30 mm/s) during extension 

and retraction. The position and velocity profile captured by the actuator encoder can be seen in Fig. 9. The initial current 

of 120 mA was applied to MR damper which represents normal operation. The MR damper was allowed to fully extend 

and retract before an overcurrent fault (220 mA) was introduced at 3.86 seconds. After another full period of motion, an 
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undercurrent fault (0 mA) was introduced to the MR damper at 7.73 seconds before completing a final extension and 

retraction. 

 

Figure 9. Sample of experimental data used to model the MR damper under normal operating conditions. 

  

The fixed boundary layer applied in the ESIF was tuned based on minimizing the force state estimation error. The 

smoothing boundary layer widths are given by the following: 

𝛿 =   [
5.5134 ∙ 10−4 0 0

0 7.797 ∙ 10−4 0
0 0 80

] (4.2.1) 

For all estimation strategies, the initial conditions were set to the following: 

𝑥̂0 = [4.2788      30.2792    − 303.0187]𝑇 (4.2.2) 

𝑃0|0 = 10 ∗ 𝑄 (4.2.3) 

 For the experiments conducted in this paper, it is assumed that the MR damper operates normally 65% of the time 

and has an equal likelihood of experiencing an undercurrent or overcurrent fault. The initial mode probability 𝜇𝑖,0 is given 

as follows: 

𝜇𝑖,0 = [0.65     0.175     0.175]
𝑇 (4.2.4) 

 Based on experimental procedures, the mode transition matrix 𝑝𝑖,𝑗 is defined by a 3 by 3 diagonal matrix with 

0.65 on the diagonal and 0.175 on the off-diagonal. This transition matrix signifies that there is a 65% probably that the 

system will remain in the current mode. For example, if the system is experiencing normal operation, there is a 65% chance 

the system will continue to undergo normal operation in the next time step. 

 As described previously, the experiment consisted of a test in which all three modes (normal, overcurrent, 

undercurrent) were experienced. After 1 period of actuation in a certain mode, the system transitioned to a different one 

until all modes were introduced. Fig. 10 shows the results of the IMM-EKF, IMM-UKF, and IMM-ESIF for estimating 

the force exerted by the MR damper during testing.  
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Figure 10. Force estimation of the MR damper undergoing mixed operation with normal, overcurrent, and undercurrent 

modes. 

 

The RMSE (root mean squared error) for each estimator was calculated as follows: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖 − 𝑥̂𝑖)

2𝑛
𝑖=1

𝑛
 (4.2.5) 

where 𝑛 is the number of steps. The values shown in Tables 1 and 2 are the average RMSE of the 20 separate trials similar 

to the one shown in Fig. 10. The order in which the modes were experienced were randomized for each trial. 

The IMM-EKF, IMM-UKF, and IMM-ESIF perform comparatively well when the MR is normal operation. As 

shown in Table 1, the IMM-ESIF performs slightly better than the IMM-EKF and IMM-UKF under normal operation. 

However, the benefit of the increased robustness demonstrated by Table 2 which shows the RMSE for mixed operation. 

In the presence of faults and modeling uncertainty, the IMM-ESIF shows a clear advantage over its counterparts. There is 

an 83.7% improvement over the IMM-EKF and 89.4% improvement over the IMM-UKF. It is interesting to note that 

while the UKF generally performs better than the EKF for highly nonlinear system, the EKF outperformed the UKF during 

mixed operation. 

 

Table 1. RMSE for normal operation. 

Estimation Strategy RMSE  (Newtons) 

IMM-EKF 2.37 

IMM-UKF 2.36 

IMM-ESIF 1.97 

 

Table 2. RMSE for mixed operation. 

Estimation Strategy RMSE (Newtons) 

IMM-EKF 17.52 

IMM-UKF 19.20 

IMM-ESIF 2.04 

 

  

The IMM-EKF, IMM-UKF, and IMM-ESIF were all able to properly detect the mode probabilities with varying 

degrees of confidence. Figures 11-13 show the mode probabilities calculated by each estimation strategy. In order to clear 
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depict the mode probabilities, the overall trends are shown as solid lines while spikes in the mode probability are 

represented as dots. The mode probabilities show that the IMM-ESIF misclassifies the correct mode when the velocity of 

the MR damper changes direction. However, the overall classification accuracy of the IMM-ESIF is higher than its 

counterparts. A value “1” for a mode probability refers to a 100% confidence that the system is experiencing that mode 

while a “0” refers to a probability of 0%. Tables 3-5 show confusion matrices for each estimator which are commonly used 

in fault detection and diagnosis. The vertical axis typically represents the predicted mode while the horizontal axis 

represents the actual mode being experienced by the MR damper. For Tables 3-5 mode 1 represents normal operation, 

mode 2 represents an overcurrent fault, and mode 3 represents an undercurrent fault.  

 

 

Figure 11. Normal operation mode probability. 

 

 

Figure 12. Overcurrent fault mode probability. 
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Figure 13. Undercurrent fault mode probability. 

 

Table 3. IMM-EKF confusion matrix. 

                Actual 

 

  Predicted 

 

1 

 

2 

 

3 

1 88.75 % 4.86 % 5.62 % 

2 4.49 % 90.58 % 5.08 % 

3 6.76 % 4.55 % 89.30 % 

 

Table 4. IMM-UKF confusion matrix. 

                Actual 

 

  Predicted 

 

1 

 

2 

 

3 

1 88.99 % 4.84 % 5.43 % 

2 4.48 % 90.61 % 5.07 % 

3 6.53 % 4.55 % 89.50 % 

 

Table 5. IMM-ESIF confusion matrix. 

                Actual 

 

  Predicted 

 

1 

 

2 

 

3 

1 93.78 % 2.66 % 2.09 % 

2 1.26 % 94.58 % 1.55 % 

3 4.97 % 2.76 % 96.36 % 

 

 The confusion matrices show that the IMM-EKF, IMM-UKF, and IMM-ESIF were all able to predict the correct 

mode of operation with relatively high confidence. In general, the classification accuracy of normal operation was the 

lowest. This is because the damping force of normal operation falls between the overcurrent and undercurrent modes as 

shown in Fig. 8. Likewise, the classification overcurrent fault had the highest accuracy because it has greater separation 

from the normal operation than the undercurrent fault. The IMM-UKF had slightly higher classification accuracy than the 

IMM-EKF. However, the IMM-ESIF shows a 4-5% higher accuracy when classifying the correct mode when compared 

to the IMM-EKF and IMM-UKF. Overall, the IMM-ESIF showed significant improvement in both estimation accuracy 

(RMSE) and classification (confusion matrix) when compared to the IMM-EKF and IMM-UKF. 
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5. CONCLUSIONS 

In this paper, a relatively new estimation method called the sliding innovation filter (SIF) is combined with the interacting 

multiple model (IMM) method. The corresponding method, referred to as the SIF-IMM (or ESIF-IMM for nonlinear 

systems and measurements), is applied on a magnetorheological actuator which was built for experimentation. These types 

of actuators are similar to hydraulic-based ones, which are commonly found in aerospace systems. The method is shown 

to accurately identify faults in the system. The results are compared and discussed with other popular nonlinear estimation 

strategies including the extended and unscented Kalman filters. Future work will study data-driven approaches such as 

those based on machine learning. A comprehensive study will follow comparing model-based and data-driven fault 

detection and identification strategies. 
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