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ABSTRACT 

  
 
The sliding innovation filter (SIF) is a recently developed estimation technique that has gained widespread use. It is a 
predictor-corrector filter that utilizes a hyperplane and applies a force to allow estimates to fluctuate about it. SIF belongs 
to the same family as the smooth variable structure filter and sliding mode observer, and it is stable and robust in the face 
of uncertainties. This paper discusses the use of SIF for estimating the states of Power Converters, which play a crucial 
role in Electric Vehicles (EVs) by converting high-voltage DC from the battery to low-voltage AC used by the motor. One 
of the main challenges in Power Converters is accurately estimating their states, such as input voltage, output voltage, and 
inductor current, which are critical for optimal control and efficient operation. The SIF has demonstrated promising results 
in addressing this challenge. 
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1. INTRODUCTION 
Filters play a crucial role in a wide range of estimation applications [1-9] by extracting meaningful information from 
signals and minimizing the impact of uncertainties, disruptions, and noise. The main objective of filters is to enhance the 
overall dynamics performance of the system [10-20] by improving the system controller. However, there are various 
challenges to achieving optimal performance due to the presence of several obstacles, such as limited measured signals, 
non-measured or hidden states, and disturbances and noise. 
In the field of estimation, the sliding innovation filter (SIF) [21-29] is a commonly used filter derived from the sliding 
mode theory. The SIF is known for its resilience to shocks and uncertainty and employs a system model to provide an 
initial estimate, which is then stimulated by input from the system. The estimate is further improved using a corrective 
gain derived from the Lyapunov stability theorem. As a result, the SIF is categorized as a robust filter along with sliding 
mode observers [47-71] and smooth variable structure filters [30-46]. 
Despite its robustness, the performance of the SIF may not always be optimal, particularly in the presence of disruptions 
and noise. Additionally, when there are fewer observed signals than states, the filter becomes heavily dependent on the 
system and measurement matrices, which can hinder the extraction of essential information. This is especially true when 
non-measured states are not directly correlated with the observed states or measures, resulting in decreased accuracy and 
effectiveness. To address these limitations, various alternative approaches have been proposed, including integrating the 
SIF with other filters, such as the Regular [72-87]. 
Plug-in hybrid electric vehicles (PHEVs) have become increasingly popular due to their hybrid technology and ability to 
charge from the utility grid, leading to improved fuel efficiency and reduced pollution compared to internal combustion 
engine (ICE) cars. Wind and solar power are also prominent choices for producing electricity due to their environmental 
friendliness and economic competitiveness. PHEVs and renewable energy systems use a DC/DC power converter, inverter, 
and Power Factor Corrected (PFC) [88-93]. The DC/DC power converter converts the high voltage of the PHEV battery 
to a low voltage for the vehicle's auxiliary systems, which is then boosted to replenish the battery. In renewable energy 
systems, the DC/DC converter adjusts the power source's voltage to match the inverter's voltage. 
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On the other hand, the inverter is responsible for converting DC power generated by the battery or renewable energy 
sources into AC power that can be used to drive the electric motor or to inject energy into the grid in renewable energy 
systems. PFC is crucial for ensuring that the grid current is in phase with the voltage, which helps reduce power loss and 
increase AC power production. Moreover, a comprehensive comparison of sigma-point Kalman filters and smooth variable 
structure filters, with applications in robotics and aerospace systems [94-112]. Recent studies have investigated a variety 
of adaptive Kalman filters in addition to other estimation methods in order to improve the accuracy of state estimation for 
a wide variety of applications. Some of these applications include battery management, motion control, vehicle running 
states, symmetry recognition, unmanned aerial vehicle flight trajectory tracking, smart grids, nanosatellite attitude 
estimation, and generator parameter estimation [113-140]. 
The primary objective of this research is to demonstrate and evaluate the effectiveness of the SIF as a dependable and 
valuable technique for assessing the states of intricate systems, such as power converters utilized in PHEVs. The article 
highlights the SIF's resilience in the presence of uncertainties and disruptions, as well as its ability to provide precise real-
time estimates of system states. 

2. METHODOLOGY 
2.1 EV Battery system 
 
Figure 1 illustrates the power circuit arrangement that is currently being used. The Power Factor Corrected (PFC) boost 
converter is associated with the switch SB, and switches S1 and S2 have the ability to exercise control over the bi-
directional converter. 
 

 
Fig. 1 Power Circuit Configuration [93] 

The EV battery system has the following equations: 
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Where 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1 … 5 are current and voltage for PFC, and Bi-Directional Convertor (BDC) in boost mode, and the voltage 
of the latter one in Buck mode, respectively. R, C, 𝑉𝑉𝑠𝑠 and 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏 are the Resistance, Capacitance, Source voltage, and battery 
voltage.  

2.2 Sliding Innovation Filter (SIF)  
The SIF is comprised of the following two steps: 

1- Prediction Stage,  

The a priori estimate/measurement, (𝐱𝐱�𝑘𝑘+1|𝑘𝑘/𝐳𝐳�𝑘𝑘+1|𝑘𝑘) are obtained as: 

𝐱𝐱�𝑘𝑘|𝑘𝑘−1 = 𝐀𝐀𝑘𝑘−1𝐱𝐱�𝑘𝑘−1|𝑘𝑘−1 + 𝐁𝐁𝑘𝑘−1𝐮𝐮𝑘𝑘−1, 𝐳𝐳�𝑘𝑘|𝑘𝑘−1 = 𝐇𝐇𝑘𝑘𝐱𝐱�𝑘𝑘|𝑘𝑘−1      (6) 
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2- Update/Correction Stage:  

The a posteriori estimate/measurements (𝐱𝐱�k|k/𝐳𝐳�k|k), are generated as: 

𝐱𝐱�𝑘𝑘|𝑘𝑘 = 𝐱𝐱�𝑘𝑘|𝑘𝑘−1 + �𝐇𝐇𝑘𝑘
+�𝐳𝐳𝑘𝑘 − 𝐳𝐳�𝑘𝑘|𝑘𝑘−1��°𝑠𝑠𝑠𝑠𝑠𝑠��𝐳𝐳𝑘𝑘 − 𝐳𝐳�𝑘𝑘|𝑘𝑘−1�,𝚿𝚿𝑘𝑘�, 𝐳𝐳�𝑘𝑘|𝑘𝑘 = 𝐇𝐇𝑘𝑘𝐱𝐱�𝑘𝑘|𝑘𝑘    (7) 

Where the pseudoinverse vector of 𝐇𝐇𝑘𝑘 is represented by 𝐇𝐇𝑘𝑘
+ +, while 𝚿𝚿𝑘𝑘 refers to the boundary layer. 𝐴𝐴°𝐵𝐵 is the Schur 

product. The saturated function is denoted as ' 𝑠𝑠𝑠𝑠𝑠𝑠 '. 

3. RESULTS AND DISCUSSION 
To compare the performance of the SIF filter with the Kalman Filter (KF), we introduce uncertainties into the model 
assumption. This is done by deliberately providing an inaccurate model. The results are then analyzed through Monte Carlo 
Simulations (MCS), which repeat the simulation 1000 times. Figure 2 and Figure 3 depict the MCS root mean squared error 
(RMSE) and maximum absolute error (MAE) for SIF and KF, respectively. The results demonstrate that SIF has RMSE 
values less than 5% of the corresponding values of KF, while the MAE has values that are less than 10% of their 
corresponding values of KF. 

 

 

 
Figure 2. The MCS’s RMSE 
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Figure 3. The MCS’s MAE 

  
(a) (b) 

x1 x2 x3 x4 x5

States

0

0.02

0.04

0.06

0.08

M
AE

 A
m

p.

SIF

x1 x2 x3 x4 x5

States

0

0.5

1

M
AE

 A
m

p.

KF

1 2 3 4

Time (sec) 10
-3

-0.5

0

0.5

E
rr

or

x
1

KF

SIF

1 2 3 4

Time (sec) 10
-3

-5

0

5

E
rr

or
10

-3
x

2

KF

SIF

Proc. of SPIE Vol. 12513  1251308-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 18 Nov 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



  
(c) (d) 

 

 

(e)  

Figure 4. The error of the best solution of (a) first, (b) second, (c) third, (d) fourth and (e) fifth states. 

Figure 4 shows the error in the states for SIF and KF. For the first three states, the figure shows clear superiority performance 
for the SIF. For fourth state, both SIF and KF have similar performance. However, KF takes the lead for the fifth state, 
although the errors in SIF are insignificant. 

 

4. CONCLUSION 

Based on the results of the MCS and individual evaluations, the SIF outperforms the KF in 80% of the states, as evidenced 
by the smaller RMSE magnitude in the SIF. Figure 4 further supports the superiority of the SIF in most states. However, to 
determine the practicality and effectiveness of the proposed strategy in real-time applications, experimental verification is 
needed. Such verification could highlight any limitations or difficulties when implementing the method in real-world 
scenarios, and assess its performance in various operating conditions and system dynamics. 
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