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ABSTRACT  

Convolutional neural networks (CNNs) are a widely researched neural network architecture that has demonstrated 

exemplary performance in image processing tasks and applications compared to other popular deep learning and machine 

learning methods resulting in state-of-the-art performance in many image processing tasks such as image classification 

and segmentation. CNNs operate on the principle of automated learning of filters or kernels in contrast with hand-crafted 

digital filters to extrapolate features from images effectively. This paper aims to investigate whether a matrix's determinant 

can be used to preserve information in CNN convolutional layers. Geometrically the absolute value of the determinant is 

defined as a scaling factor of the linear transformation resulting from matrix multiplication. When an image's size is 

reduced into a feature space through a convolutional layer of a CNN, some information is lost. The intuition is that the 

scaling factor that results from the determinant of the pooling layer matrix can enhance the feature space introducing 

scaling as a piece of information in the feature space as well as lost relations between adjacent pixels.  
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1. INTRODUCTION

In the past few years, the advent of machine learning and deep learning has provided a good performance on a variety 

of problems that span from image classification to natural language processing and forecasting. The increase in 

computational capabilities achieved through the use of graphical processing units (GPUs) for training and newly formed 

architectures have pushed the envelope in such tasks. In particular computer vision has received widespread attention in 

the literature, increasing the performance of models on image-related problems such as image classification, object 

recognition, and image segmentation. The modern framework of CNNs developed from the work of Fukushima et al. [1] 

on Necognitron, developed in 1980 and later refined by Lecun et al. through the multi-layer neural network called Le-Net 

for handwritten digits recognition and document recognition [2] [3]. Since then, the technology has been refined to 

overcome various issues encountered during training, most notably AlexNet [4] was a stepping stone in the development 

of deeper neural network models that can achieve very high accuracy on various image processing tasks. Krizhevsky et al. 

paved the way for CNN architectures with deep structures and multiple layers leading to the creation of ZFNet [5], 

GoogleNet [6], and ResNet [7]. The increase in model dimension and depth has allowed these models to get better feature 

representation and extrapolation, however, also resulting in greater complexity and making them more prone to overfitting. 

Convolutional neural networks are made of blocks of different dimensions composed of a convolutional layer, a 

pooling layer, and an activation layer repeated over to create deeper structures. The performance of a given model is 

influenced not only by its structure and therefore the type and dimension of layers used but also by the type of loss function, 

regularization, and optimization used. In particular, the pooling layer has been shown to have a significant effect on model 

performance. There are two main pooling categories, local and global pooling, where local pooling preserves the channel 

dimension while global pooling aggregates the maximum of all channels to one. Within these categories, the most used 

pooling functions are average and maximum pooling which respectively take the average and the maximum of each pool. 

This paper proposes a new pooling function, based on max pooling that aims to enhance the performance of CNN on image 

processing by leveraging the determinant of the pools to preserve information lost during the pooling operation. The 

maximum pooling function inherently loses the relations between adjacent pixels while the proposed normalized 

determinant pooling function preserves image segment features resulting in more defined borders within the image and 

increasing classification performance. The performance of the proposed pooling layer was benchmarked on the same two 

CNN architectures across multiple multi-label classification datasets such as MNIST [3], FashionMNIST [8], and 

EuroSAT [9]. 
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2. CONVOLUTIONAL NEURAL NETWORKS

CNNs layers differ from regular fully connected neural networks in the relationships between hidden layers. Contrary 

to a multilayer perceptron (MLP) the convolutional layers only connect to a subset of the neurons present in the previous 

layer which allows for better feature extraction, isolating areas, and edges of images. Using learnable kernels, the images 

are convoluted producing feature maps of various dimensions depending on model size [10]. Each neuron map is referred 

to as the neuron’s receptive field and is the result of the convolution followed by an activation function such as a rectifier, 

sigmoid, or tanh [2]. There exist multiple types of convolutions such as tiled convolution, dilated convolution, transposed 

convolution, and depth-wise separable convolution, which fall outside the scope of this article in which the focus will be 

placed on regular convolution and pooling functions [2], [11]. The overall architecture of CNNs uses convolutional blocks 

to extract the feature maps which are then projected and flattened to fully connected layers that are used to output the 

model prediction in the case of classification tasks.  

2.1 Convolutional Layers 

CNNs are capable of higher accuracy and more efficient feature extraction thanks to the convolutional layers present 

in the models. Contrary to a general fully connected artificial neural network the convolutional layer is only connected to 

a small region of the input volume, called receptive field size, which reduces the number of neurons in the overall 

architecture and allows the model to focus on salient parts extracting relevant features. For example, if we have an image 

of size 32x32x3 a fully connected network will have 3072 learnable parameters for processing the input while if we use a 

convolutional layer with a receptive field of 5x5 there will only be only 75 weights in that layer, reducing the complexity 

through the optimization of its structure [12].  

The convolutional layer, therefore, slides kernels of given sizes across the input image to extract features, training the 

kernel weights to act as filters which are usually of small spatial dimensions. Convolution can be used for inputs of various 

dimensions, for 2D images the convolutions can be described as a form of template matching or feature detection [11]. 

The feature maps are obtained through element-wise matrix multiplication of the pool and the kernel, where the pool is a 

subsection of the original input. The kernel is therefore slid throughout the image depending on the dimensionality of the 

original input, of the kernel, and on the stride selected. The stride is the scalar value associated with the sliding of the 

kernel in terms of the distance between the previous and current position of the pool element covered. A visual 

representation of the sliding of the kernel across and input can be seen in Figure 1, the result of the convolution, also 

referred to as cross-correlation in the case of symmetric weight vectors, is the element-wise matrix multiplication of the 

pool and the kernel.   

Figure 1. Visual representation of Kernel operation in convolutional layers. 
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Figure 2. Visual representation of padding and stride in convolutional neural networks. 

Mathematically the convolution weights or kernel parameters can be evaluated in a two-dimensional convolution as 

follows:   

𝑌𝑖,𝑗 =  [𝑊 ∗ 𝑋](𝑖, 𝑗) =  ∑ ∑ 𝑤𝑢,𝑣𝑥𝑖+𝑢,𝑗+𝑣

𝑊−1

𝑣=0

𝐻−1

𝑢=0

(1) 

where 𝑊 ∈ 𝑅𝐻 𝑥 𝑊 is the filter, 𝑋 ∈ 𝑅𝑛 𝑥 𝑚 is the input patch centered at (𝑖, 𝑗) of the layer [11].

The output of the kernel operation is usually passed through an activation function that introduces nonlinearities, 

which is a desirable feature for the subsequent layers. Typical activation functions are ReLU, sigmoid, and tanh, and take 

the mathematical form: 

𝑧𝑖,𝑗 = 𝑎(𝑌𝑖,𝑗) (2) 

Another component of the convolutional layers is padding. Zero-padding is the process of adding a border of zeros 

around the input image to give further control of the dimensionality of the output volume, which makes the output the 

same size as the input and takes the name of the same convolution, a padded convolution can be seen in Figure 2. Padding 

is calculated mathematically for an input size of (Height, Width, Depth), kernel size R, size of zero-padding Z, and stride 

S as follows [12]: 

(𝐻 ∗ 𝑊 ∗ 𝐷) − 𝑅 + 2𝑍

𝑆 + 1

(3) 

Multiple convolutional layers can be used to hierarchically detect low-level features in the first layers such as curves, 

borders, and edges to then extract higher-level abstractions in the subsequent stacked layers. 

2.2 Pooling Layers 

After the convolutional layer, a pooling layer is used to gradually reduce the dimensions of the representations, 

increasing the efficiency by further reducing the computational complexity. Pooling operations can be separated in global 

and local pooling where the former pools the value across every channel reducing the dimension of the image to a single  
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Figure 3. Visual representation of max pooling function. 

channel containing the scalar values representing the feature vectors of each feature across the feature map. While the latter 

maintains the channel dimensionality, pooling locally each channel based on the function chosen. The most used pooling 

methods are maximum and average pooling, which respectively take the maximum and the average of each pool returning 

a scalar value and placing it in the subsequent matrix of reduced dimension. A visual representation of maximum pooling 

can be seen in Figure 3. Pooling functions are used to gradually reduce the input’s dimension while preserving key 

information within the input image. The reduction in information processed by the subsequent layers addresses the problem 

of overfitting the training data by only focusing on salient pixels, with the tradeoff of losing some information. The 

downside of maximum and average pooling is that while increasing the efficiency of the information processed by focusing 

the attention on important regions of the image such as edges and curves, the relationship between adjacent pixels is 

inherently lost in the pooling operation [13]. The maximum value in each pool only represents local information, often 

overlooking relationships within the window. 

A pooling function proposed to alleviate some of the information loss encountered in maximum and average pooling 

is spectral pooling [13]. The idea is to train the filters in the frequency domain parametrizing the weights as maps of 

complex numbers. Spectral pooling preserves considerably more information when compared to maximum pooling for the 

same number of parameters, the truncation and reduction of dimensionality act as a low-pass filter exploiting the non-

uniformity of the spectral density [13]. Furthermore, spectral pooling allows better control of output dimensionality 

allowing for gradual map size reduction as a function of the layer and has shown faster convergence and optimization 

procedures during training. Other pooling methods include gated pooling, stochastic pooling, tree pooling, and S3 pooling 

[10]. 

2.3 Fully Connected Layers 

The last layer in a CNNs architecture is the MLP layer or fully connected layer. This layer flattens in the last 

convolutional block output and maps it in full to a linear layer. In multiclass classification problems this last layer will 

have the last dimension equal to the number of classes in the problem followed by a softmax activation function to 

normalize the linear layer output into a probability distribution with the following properties: 

𝑝(𝑦 = 𝑐|𝑥; 𝜃) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑓(𝑥, 𝜃) (4) 

0 ≤ 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑎)𝑐 ≤ 1

∑ 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑎)𝑐

𝐶

𝑐=1

= 1 

𝑋 ∈ 𝑅 𝐶 → [0,1]𝐶
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3. METHODOLOGY

A new pooling method is introduced in this article, offering an alternative to common pooling methods to enhance 

performance by decreasing the information loss derived by dimensionality reduction. To encode the dimensionality 

reduction within the pooling a normalized determinant function was used to scale the result of a maximum pooling 

operation. The determinant of pixel entries conceptually retains the diagonal difference between pixels of the pools in the 

pooling step. As result of the enhanced maximum pooling function outputs a reduced image with higher values for the 

edges and borders while also retaining some of the background information, in contrast with the normal maximum pooling 

which completely flattens the background. To test the proposed pooling method a simple CNN model was implemented 

and tested on three datasets to benchmark its performance against conventional pooling methods. In this article, a multilabel 

classification problem was used to determine if the function could perform equally or better than the conventional 

maximum pooling function. 

3.1 Normalized Determinant Pooling 

The normalized determinant pooling layer is implemented as a dimensionality reduction layer after the convolutional 

layer to better extract key features from the input image, creating related feature maps to enhance the training. 

Mathematically the pooling function is implemented as a scaling normalizing constant of the pool determinant multiplied 

by the result of a maximum pooling function and then added to the maximum pooling function itself: 

𝑌𝑖,𝑗 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝑋𝑖,𝑗) + 𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝑋𝑖,𝑗) ∙ 𝑒−
𝐷𝑒𝑡(𝑋𝑖,𝑗)

2

2 (5) 

Where Xi,j  is the input pool, Yi,j is the reduced output of j pool in image i, max pool is a function returning the highest value 

in a pool as shown in Figure 3,  and Det is the function returning the determinant of the convolution result. For a 2x2 

kernel, the determinant is expressed as follows: 

𝐷𝑒𝑡(𝑋𝑖,𝑗) = 𝑎𝑑 − 𝑏𝑐 (6) 

𝑋𝑖,𝑗 = [
𝑎 𝑏
𝑐 𝑑

 ] 

The function’s output can be visualized as a filter, Figures 4 and 5 show the result of a given image reduced by the 

function. It is clear when representing the function as an image filter that a lot more information is preserved compared to 

maximum pooling. In Figure 4 the shape of the petal is retained while also reducing the image and focusing on key aspects. 

In Figure 5 much of the shape of the lion’s body is preserved as well as an overall shape of the background, contrary to 

the maximum pooling results which completely flatten out the background and lose much of the shape of the animal’s 

body. 

Figure 4. Representation of determinant pooling layer applied to flower image. 

Proc. of SPIE Vol. 12523  1252309-5



Figure 5. Representation of determinant pooling layer applied to lion image. 

3.2 CNN Model 

The convolutional model used to test the proposed pooling method is composed of two convolutional layers followed 

by pooling and relu activation functions, the output of the last convolutional block is then flattened and passed through 

two linear layers, culminating in a softmax activation function that outputs the probability of each class. The proposed 

pooling method was implemented through a custom function that fits within the PyTorch framework to optimize the 

process. Stochastic gradient descent was used as the optimizer for the model and tested at variable learning rates and 

hyperparameters to find the best combination. The loss used to evaluate the performance of the model was the negative 

log-likelihood loss, which is a very common loss for multiclass classification problems. The structure of the CNN model 

can be seen in Figure 6. Note that the batch size used for training was 64 images. 

Figure 6.  Overview of the model used for the MNIST dataset, dimensions vary depending on input size. 

4. RESULTS AND DISCUSSION

To benchmark the performance of the proposed pooling function a multilabel classification experiment was carried 

out on three datasets, MNIST, Fashion MNIST, and EuroSAT. The datasets were chosen to assess the validity of the new 

pooling function and its effectiveness in terms of possible advantage in classification accuracy given by the preservation 

of information combined with the dimensionality reduction and focus on salient features. The model was run with different 

combinations of pooling, testing both pooling layers as determinant pooling and just the first one to be the determinant 

pooling layer while the second one being a classical max pooling layer. The MNIST datasets were used to assess if the 

function was able to outperform conventional pooling functions on simple mono-channel images while the EuroSAT was 

used to assess its performance on higher dimensional images with three or more channels. The tests were carried out using 

different learning rates to optimize the learning process as well as at multiple epochs to determine the performance at 

different stages of the learning process, short and long training. 
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Epochs Learning Rate First Pooling 

Function 

Second Pooling 

Function 

Accuracy 

1 0.05 Max Max 96.9 % 

1 0.05 Det Det 92.67 % 

1 0.05 Det Max 95.56 % 

10 0.025 Max Max 98.66 % 

10 0.025 Det Det 95.04 % 

10 0.025 Det Max 98.07 % 

The first dataset used to test the proposed pooling function was the MNIST dataset, which contains 60,000 images of 

handwritten digits. The multilabel classification task is performed to recognize the written number probabilistically using 

softmax activation, the digits are all numbers in the set 1 to 10. As shown in Table 1, the max pooling function performed 

best in shorter and longer training at different learning rates. This is most likely due to the scarcity of information contained 

in the low-resolution images. The main point of the determinant pooling function was to preserve some of the information 

loss encountered by conventional pooling functions, but the results show that it is not very effective when using low-

resolution mono channel images because there is not much information to preserve, and therefore a max pooling proves to 

be more effective. 

Table 2. Model accuracy on Fashion MNIST dataset at multiple learning rates and training lengths. 

Epochs Learning Rate First Pooling 

Function 

Second Pooling 

Function 

Accuracy 

1 0.05 Max Max 77.85 % 

1 0.05 Det Det 75.99 % 

1 0.05 Det Max 78.56 % 

10 0.025 Max Max 84.72 % 

10 0.025 Det Det 81.13 % 

10 0.025 Det Max 83.46 % 

After testing one of the simplest multi-label classification problems, the FashionMNIST dataset was used as a 

progressive step toward evaluating the proposed pooling function on more information-rich images. This dataset contains 

Zalando greyscale images of pieces of clothing, it contains 60,000 training examples, and also has 10 categories to classify 

from. As shown in Table 2 a combination of determinant pooling in the first layer and max pooling in the second layer 

performs best in the low epochs range, thanks to the preservation of information and thicker edge extraction due to the 

determinant pooling function. The increase in performance from the traditional max pooling function in both layers shows 

that there is benefits to preserving some of the key information in the pooling layers, allowing the model to converge and 

learn faster at equal learning rates. Although when trained for longer epochs the max pooling function still performs better, 

likely due to overfitting of the model to the training set. Considering that the images contained in this dataset are still mono 

channel low-resolution images, the tendency shown in the tests performed on the MNIST dataset by which max pooling is 

better performing on low-resolution images still holds when trained extensively and will most likely result in higher 

accuracy when the weights are trained near global optimum.  

Table 1. Model accuracy on MNIST dataset at multiple learning rates and training lengths. 
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Epochs Learning Rate First Pooling 

Function 

Second Pooling 

Function 

Accuracy 

1 0.05 Max Max 32.23 % 

1 0.05 Det Det 36.15 % 

1 0.05 Det Max 40.68 % 

20 0.1 Max Max 58.07 % 

20 0.1 Det Det 51.3 % 

20 0.1 Det Max 68.67 % 

To assess the performance of the proposed pooling function on multi-channel and higher resolution images the 

EuroSAT dataset was chosen because of the rich background information contained in the images as well as the 13 spectral 

bands contained in the 27,000 images dataset. This dataset was collected by the Sentinel-2 satellite and provided by the 

Earth observation program Copernicus. The dataset is used to classify the type of land use of the collected images such as 

residential, highway, and pasture, along with 7 other classes. The results in Table 3 show how the combination of 

determinant pooling on the first layer and max pooling on the second outperforms all other combinations by a considerable 

margin. In shorter training periods the proposed model is more efficient in making the model converge faster, confirming 

the discoveries made on the previously tested datasets, as well as performing better when trained on multiple epochs. This 

increase in performance is likely due to the preservation of background information from the proposed pooling function 

compared to the classic ones. Examples of correct labeling performed by the model can be seen in Figure 7. The max pool 

function flattens the background extensively causing loss of information while the proposed pooling function can retain 

some of that information while still reducing the dimensionality of the input and highlighting edges and borders.  

The accuracy of the model could be enhanced by training the model for more epochs and by increasing the size of the 

model by adding more convolutional layers to extract features from the images. Further studies will be conducted to assess 

the performance of the proposed pooling function on larger models and trained for more epochs on the selected datasets. 

Furthermore, given the nature of the pooling function in preserving background information and reinforcing the edges and 

borders of the pooled images, it might perform best on image segmentation tasks, which will be explored in the future.  

Figure 7. EuroSAT classification examples 

Table 3. Model accuracy on EuroSAT dataset at multiple learning rates and training lengths. 
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5. CONCLUSION

A new pooling function was introduced in this article called determinant pooling, which is a modified pooling function 

that preserves more information during the dimensionality reduction of pooling layers. The efficacy of the newly proposed 

pooling method was benchmarked against three datasets MNIST, Fashion MNIST, and EuroSAT, due to the difference in 

their compositions. The pooling function was tested against and in combination with max pooling and showed promising 

results in model convergence and performance on multi-channel and information-rich images. The ability to preserve 

background information and to reinforce the edges and border proved very effective on the EuroSAT dataset especially 

due to their importance in the multi-label classification task. 
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