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ABSTRACT  

The field of estimation theory is concerned with providing a system with the ability to extract relevant information about 

the environment, resulting in more effective interaction with the system’s surroundings through more well-informed, robust 

control actions. However, environments often exhibit high degrees of nonlinearity and other unwanted effects, posing a 

significant problem to popular techniques like the Kalman filter (KF), which yields an optimal only under specific 

conditions. One of these conditions is that the system and measurement noises are Gaussian, zero-mean with known 

covariance, a condition often hard to satisfy in practical applications. This research aims to address this issue by proposing 

a machine learning-based estimation approach capable of dealing with a wider range of noise types without the need for a 

known covariance. Harnessing the generative capabilities of machine learning techniques, we will demonstrate that the 

resultant model will prove to be a robust estimation strategy. Experimental simulations are carried out comparing the 

proposed approach with other conventional approaches on different varieties of functions corrupted by noises of varying 

distribution types. 

Keywords: Estimation theory, Kalman filter, machine learning, robust estimation, signal filtering, nonlinear systems, non-

Gaussian noise 

  

1. BRIEF INTRODUCTION  

The Kalman filter (KF) is regarded as one of the greatest discoveries in practical estimation theory, being a linear quadratic 

estimator, which provides the optimal solution to the linear estimation problem, assuming white measurement and 

disturbance noise. However, when the assumption of the distribution of the noise being white and Gaussian no longer 

holds, the KF fails to yield an optimal or reliable estimate. 

Machine learning has been shown to be a very effective tool in the research community in the last decade. Specifically, 

generative models like autoencoders (AE), generative adversarial networks (GANs), transformers and more have 

demonstrated the ability to learn the underlying distribution of training data and model it so that new samples may be 

generated from this distribution.  

This work proposes a machine learning-based approach to state estimation with the goal of overcoming the limitations 

associated with the KF in non-Gaussian noise conditions. We propose and design several machine learning algorithms, 

namely AE networks with varying architectures in the encoder and decoder, which will be trained to accurately filter and 

estimate the state of a system from measurements corrupted with different kinds of noise distributions. Experimental 

simulations will be carried out to compare the performance of the proposed machine learning-based models against that of 

the KF’s. 

The remainder of this paper is organized as follows: a background on the Kalman filter and estimation problem is 

detailed in Section 2. Then, the methodology behind the proposed research is outlined in Section 3, followed by a detailed 

discussion of the results in Section 4, Finally, concluding remarks and suggestions for future work are provided in Section 

5. 
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2. BACKGROUND 

2.1 Kalman filtering 

Linear dynamic systems can be expressed in state-space representation as follows [1], [2]: 

𝒙𝑘+1 = 𝑨𝒙𝑘 +𝑩𝒖𝑘 +𝒘𝑘 (1) 

𝒛𝑘 = 𝑯𝒙𝑘 + 𝒗𝑘 (2) 

where 𝒙 represents the system state vector, 𝑨 is the discretized linear system model matrix of differential equations, 𝑩 is 

the input gain matrix, 𝒖 is the input vector, 𝒘 is the system noise, 𝒛 is the measurement vector, 𝑯 is the linear measurement 

matrix, 𝒗 represents the measurement noise, and 𝑘 represents the current timestep. 

 The Kalman filter (KF) works under the assumptions that the system model is relatively well-known, and the 

initial states are also known, and finally, that the system and measurement noise is normal and Gaussian meaning that it is 

white with zero mean and known respective covariance matrices [3].  The KF works as a predictor-corrector; the system 

model is used to obtain an a priori or predicted estimate of the states, whereupon measurements combined with the Kalman 

gain matrix are used to apply a correction term to create an a posteriori or updated state estimate [4], [5]. 

The a priori state estimate is first computed using the process model, as can be seen in (3). Then, the a priori state 

covariance matrix is calculated based on the process model and the associated modeling noise covariance matrix 𝑸𝑘, as 

shown in (4): 

𝒙𝑘+1|𝑘 = 𝑨𝒙𝑘+1|𝑘 + 𝑩𝑢𝑘 (3) 

𝑷̂𝑘+1|𝑘 = 𝑨𝑷𝑘|𝑘𝑨
𝑇 + 𝑸𝑘 (4) 

The Kalman gain computation in (5) is based on (4), and is then used to update the state estimate in (6): 

𝑲𝑘+1 = 𝑷𝑘+1|𝑘𝑯
𝑇𝑺𝑘+1

−1  (5) 

𝒙𝑘+1|𝑘+1 = 𝒙𝑘+1|𝑘 + 𝑲𝑘+1𝝂𝑘+1 (6) 

where 𝝂 and 𝑺 are two important terms known as the innovation (or residual), and the innovation covariance, respectively. 

In the equations below, 𝑹 is the measurement noise covariance. 

𝝂𝑘+1 = 𝒛𝑘 − 𝑯𝑨𝒙𝑘+1|𝑘 (7) 

𝑺𝑘+1 = 𝑯𝑷𝑘+1|𝑘𝑯
𝑇 + 𝑹𝑘+1 (8) 

The innovation, from (7), represents the difference between the actual measurements and the a priori estimate of the 

measurements. The innovation covariance, as in (8), characterizes the uncertainty in the measurement predictions. These 

two terms provide an important insight into the estimation process and are often used to assess the filter’s overall estimation 

ability. 

The a posteriori state error covariance matrix is then calculated in (9), and the process repeats iteratively: 

𝑷𝑘+1|𝑘+1 = (𝑰 − 𝑲𝑘+1𝑯)𝑷𝑘+1|𝑘(𝑰 − 𝑲𝑘+1𝑯)
𝑇 +𝑲𝒌+𝟏𝑹𝒌+𝟏𝑲𝒌+𝟏

𝑇  (9) 

where 𝑰 is the identity matrix. In a successful application of the KF, the state estimates will rapidly converge, providing 

the optimal statistical estimate based on the given information. The a posteriori covariance update in (9) is known as the 

‘Joseph covariance form’ and is often preferred due to its superior numerical characteristics. The Joseph form ensures that 

the covariance update remains positive-definite, a critical condition in the estimation process to produce meaningful results 

[3]. 

  

 

Proc. of SPIE Vol. 12547  1254706-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Nov 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



2.2 Autoencoders 

An autoencoder (AE) is a type of unsupervised deep learning network symmetric in structure with fewer nodes in the 

middle layers. It has a section that encodes inputs into a lower-dimensional representation and another section that decodes 

or reconstructs that input again. The goal of training an AE is to learn a reduced encoding of data efficiently and then 

reconstruct it. As illustrated in Figure 1, the input layer passes the input data to the hidden layer, where the lower-

dimensional encoding is learned. Then, the encoding is passed from the hidden layer to the output layer, where it is decoded 

and reconstructed as much as possible. The number of hidden layers in an AE is arbitrary, with the condition that for each 

part of the network, e.g., the encoder, each subsequent hidden layer must have fewer neurons than the previous layer. This 

architecture imposes a bottleneck in the network, restricting the amount of information that can traverse through and in 

turn forcing a compressed knowledge of the original input [6], [7]. 

 

 

Figure 1. Schematic of an autoencoder network’s architecture, where the left side is the encoder and the right side is the 

decoder. 

 
 

2.3 Long Short-term Memory Networks 

Long Short-Term Memory networks (LSTM) are an extension of recurrent neural networks (RNN), a form of deep 

neural network primarily used for time-series data proposed by Hochreiter and Schmidhuber in 1997 [8]. Each neuron in 

an LSTM is a cell with ‘memory’ that can store information, maintaining its own state, in contrast to RNNs that merely 

take the current input from their previous hidden state to output a new hidden state. The improved memory capacity of 

LSTMs is thanks to the introduction of input and output “gates” into the cell, which were shortly followed by the 

introduction of the forget gate by Gers et al. in 2000 [9]. For a thorough review of LSTMs and the different variants, we 

refer the reader to a recent survey paper by Yu et al. [10]. LSTMs currently constitute the state-of-the-art in many real-

world applications such as text, writing and speech recognition, as well as natural language processing. They are also well-

known for addressing the vanishing gradient problem that is generally associated with RNNs [8].   

 

 

3. METHODOLOGY 

3.1 Dataset Generation 

The proposed machine learning-based estimation models were trained using an approach known as domain 

randomization [11] on several types of functions: exponential, sigmoidal and sinusoidal functions. In order to test and 

evaluate the performance of the models, testing sets were generated of curves which were drawn from the same function 
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and noise family type used during training but were never observed or witnessed by the trained models. Each function 

from the training dataset constituted a ground truth 𝜙𝑔, which was subsequently added with noise 𝜙𝑛, creating the simulated 

measurement data 𝜙: 

𝜙 = 𝜙𝑔 + 𝜙𝑛 (10) 

The simulated curves in the datasets involved in this study were generated by the following functions: 

 

𝜙𝑔(𝑡; 𝛼) = 𝑒𝛼𝑥 − 1 (11) 

𝜙𝑔(𝑡; 𝛼) = 𝛼(1 + 𝑒−0.15(𝑡−60))
−1

 (12) 

𝜙𝑔(𝑡; 𝛼, 𝛽) = 𝛼 sin 𝛽𝑡 (13) 

 

For equations (11)-(13) above, 𝛼 and 𝛽 are scalar constants sampled uniformly in [0.05, 0.085] which is the main 

mechanism behind the diversity and randomization of the curves in the training and testing set. 

As for the simulated noise that is added to the ground truth curves, they consist of Gaussian, bimodal and Cauchy 

distributions of noise. The Gaussian noise was sampled from a distribution with zero mean and constant known variance. 

The bimodal noise consisted of a mixture model comprising of two equally weighted Gaussian distributions, with means 

of -5 and 5, and a common constant covariance. Finally, a standard Cauchy distribution was also used as the third noise 

distribution to examine the effects of. 

 

3.2 Model Training and Tuning 

The first model implemented for this study is an AE network with a basic fully connected multi-layered perception 

architecture. The network architecture consists of 8 layers, 4 of which are in the encoder section and the remaining 4 in the 

decoder. In the encoder, the first layer has a total of 128 neurons, followed by 64 in the second layer, then 32 neurons in 

the third layer and finally, 16 neurons in the last layer of the encoders. This architecture is mirrored by the decoder, which 

goes from 16 to 32 neurons in the first layers, to 64 in the second layer, 128 in the third layer, and finally the output layer 

which consists of a single output neuron. The parametric rectified linear unit (PReLU) was used as the activation function 

in each of the layers, except for the final output layer after the decoder. A regularization method known as dropout was 

also implemented, with a probability of 1% for any neuron to be dropped. The goal of this is to help the model prevent 

overfitting the training data. The criterion or objective used to train the model was the mean squared error (MSE) loss 

alongside an Adam optimizer with a learning rate of 1e-4. A sampling time of 0.1 seconds was used for all the models in 

this study. 

The second model under study is an AE-LSTM network, with the difference from the first model being the fact that 

LSTM cells are used internally in the encoder and decoder architecture instead of perceptrons. However, in the encoder, 

only two LSTM layers are employed with 256 and 64 cells in the first and second layer, respectively. In the decoder, this 

architecture is mirrored with 64 and 256 cells in the first and second respective layers, followed by a final output layer. 

Unlike the AE, the Huber loss was the choice for the criterion or objective function as it demonstrates more stable and 

improved performance than the MSE loss in this setting. Similar to the AE case, an Adam optimizer was used, however 

with a slightly larger learning rate of 1e-3. It is important to note that the choice of such hyperparameter values in this case 

and in the previous case of the AE were chosen after performing an extensive grid search of all the possible hyperparameter 

values. 
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3.3 Model Evaluation and Testing 

Each of the three different kinds of models (KF, AE, and AE-LSTM) will be implemented 3 times, resulting in a total 

of 3 tuned models of each architecture or algorithm under study. The first set of models will be trained on a dataset 

corrupted with Gaussian, white noise, while the second and third set of models will be trained on datasets of bimodal and 

Cauchy noise, respectively. An extra model was designed and trained for each of the 3 cases, which was an enlarged 

version of the simple AE architecture described in the previous subsection. In this model, the size of the layers was 

increased by a factor of 10 to observe whether or not a more complex architecture would affect the performance of the 

model. Once trained, each model will be evaluated according to the average root mean squared error (RMSE) value of the 

estimates for the curves in the testing set. The performance results for each model in the different circumstances are 

discussed in the following section. 

 

4. RESULTS AND DISCUSSION 

In this section, the performance of each model in varying noise types is presented. In Table I, the average RMSE of 

each model over the entire training set is presented in the case of Gaussian noise, whereas Table II and Table III highlight 

the RMSE of each model in the case of bimodal and Cauchy noise, respectively. In each table, the AE-S model represents 

the AE with the original architecture described in section 3.2, and AE-L represents the AE model with the increased number 

of neurons in each layer, as described in section 3.3. As discussed, the models were evaluated on three types of curves, 

exponential, sigmoidal and sinusoidal curves, and the ratio of each model’s RMSE to the lowest RMSE is also presented 

in the below tables for further comparison purposes. 

 

 
 

As evident from Table I above, and as can be expected based on theoretical knowledge discussed throughout this paper, 

the KF yields the best estimate compared to all of the other models. No matter the type of curve, the KF’s estimate is the 

most accurate. The AE-S and AE-L both perform relatively poorly compared to the KF, which has an RMSE value 3 times 

lower than both AE architectures. Similarly, the AE-LSTM model performs slightly better than the simpler AE-S and AE-

L, but is still half or three times less accurate than the KF in performance. 

 

TABLE I 

RMSE OF STUDIED MODELS AND RESPECTIVE RATIO COMPARED TO BEST MODEL FOR GAUSSIAN NOISE 

Model Exp. RMSE Exp. Ratio Sig. RMSE Sig. Ratio Sin. RMSE Sin. Ratio 

KF 0.033 1.00 0.043 1.00 0.081 1.00 

AE-S 0.112 3.39 0.191 4.44 0.230 2.84 

AE-L 0.103 3.12 0.156 3.63 0.192 2.37 

AE-LSTM 0.089 2.70 0.092 2.14 0.154 1.90 
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Figure 2. State estimate computed by the AELSTM in the case of Gaussian distributed noise. 

 

 

 
 

In the case of bimodal noise, we begin to witness signs of the KF’s degradation in performance. Whilst still yielding a 

relatively acceptable range of RMSE values, it is evident from Table II that the AE-LSTM is the model which outperforms 

all the others. This is true in the case of all three types of curves. Interestingly enough, the AE-S renders estimates which 

are still less accurate than the KF in the case of the exponential and sinusoidal curves, whereas the AE-L is more accurate 

than both the AE-S and KF. This leads to the notion that it may be possible to achieve more accurate estimates out of an 

AE model. However, this is associated with its own limitations, as it was encountered throughout this study that the 

computational expense of the AE-L model exceeded that of the AE-S by almost 3 magnitudes. This renders the AE-L as 

an impractical solution, despite possibly being able to achieve further improved estimates with more complex architectures. 

Most interestingly, however, is the fact that the AE-LSTM yields estimates which are significantly more accurate than the 

other models, by up to 8 times compares to the KF and AE-S, and up to 7 times better than the AE-L. 

TABLE II 

RMSE OF STUDIED MODELS AND RESPECTIVE RATIO COMPARED TO BEST MODEL FOR BIMODAL NOISE 

Model Exp. RMSE Exp. Ratio Sig. RMSE Sig. Ratio Sin. RMSE Sin. Ratio 

KF 1.134 7.61 1.244 7.97 0.712 3.96 

AE-S 1.199 8.05 1.135 7.28 1.280 7.11 
AE-L 1.021 6.85 0.982 6.29 1.043 5.69 

AE-LSTM 0.149 1.00 0.156 1.00 0.180 1.00 
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Figure 3. State estimate computed by the AELSTM in the case of bimodal distributed noise. 

 

 

These findings are further corroborated in the case of Cauchy noise, as can be seen from the RMSE results presented in 

Table III. From this table, we confirm that the AE-LSTM offers a practical solution to the non-Gaussian noise limitations 

encountered by the KF, performing up to 3 times better than the KF. An interesting observation can be made in that the 

effect of Cauchy noise on the RMSE results of all models is significantly less than that of the bimodal noise distribution. 

Further investigation into ways to remedy the extreme degradation in estimate accuracy in the case of these noises is an 

interesting avenue for future research. 

 

 

 
 

 

TABLE III 

RMSE OF STUDIED MODELS AND RESPECTIVE RATIO COMPARED TO BEST MODEL FOR CAUCHY NOISE 

Model Exp. RMSE Exp. Ratio Sig. RMSE Sig. Ratio Sin. RMSE Sin. Ratio 

KF 1.182 2.85 1.198 3.72 1.288 2.01 

AE-S 1.239 2.99 1.034 3.21 1.399 2.18 
AE-L 0.821 1.98 0.837 2.60 1.203 1.88 

AE-LSTM 0.415 1.00 0.322 1.00 0.641 1.00 
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Figure 4. State estimate computed by the AELSTM in the case of Cauchy distributed noise. 

 

5.  CONCLUSION 

This paper aims to address the limitations of traditional estimation theory filters like the KF when faced with varying 

noise distributions that are non-Gaussian. Machine learning models, specifically generative models, have been proposed 

as a means of capturing the true underlying distribution of the data in order to output a reliable estimate when faced with 

non-Gaussian noise. Through experimental simulations involving several types of curves, it was demonstrated by this 

research that the proposed AELSTM model can address the issues related with non-Gaussian noise distributions. While 

simpler models like the AE can perform well with complex architectures, this poses other issues in terms of computational 

power requirements. This study will serve as a foundation for further investigation into combining and balancing the 

optimality of the KF with the robustness of the machine learning algorithms examined in this paper. 
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