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ABSTRACT 

Estimating the position of a unmanned ground vehicle (UGV) that is navigating a complex road is a challenging task. 

Numerous algorithms have been developed to estimate the maneuvering status of the UGV. In this study, a newly 

developed filtering technique called the sliding innovation filter (SIF) is combined with multiple model technique to 

improve the estimation accuracy. The SIF uses the measured states as a discontinuous hyperplane to constrain the estimates 

to stay close to it. By combining the benefits of both methods, the proposed filter minimizes chatter during position 

estimation when the UGV is maneuvering. The effectiveness of the proposed method is evaluated on a UGV navigating 

an S-shaped road, and the results are compared to those obtained using the standard SIF. 
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1. INTRODUCTION  

In fault and diagnostic applications, estimation methods are crucial because they provide monitoring and evaluation of a 

plant's state based on data obtained through sensors. The goal of the estimating process is to analyze the signals received 

from the sensors in order to derive information that may not be clearly observable, such as hidden states that describe the 

dynamic behavior of the system, system parameters, and overall system health. Extracting this data allows for in-depth 

analysis of the system's health and monitoring of its evolution over time. As such, it may be used as a foundation for 

spotting out-of-the-ordinary occurrences that may point to systemic issues. An alarm may be triggered whenever a problem 

is found, allowing for rapid response and corrective action. Since estimating approaches account for the constraints and 

uncertainties associated with sensor readings, the state assessment of the system is both more accurate and reliable. Reduce 

the influence of noise or disturbances in the sensor data using an estimation approach, such as a filter, to improve the 

quality of the estimated information and provide more reliable problem and diagnostic findings [1-10]. Because sensors 

are inherently limited, their output is often noisy. Estimation methods using filters are used to lessen the significance of 

such disruptions or noise. When processing sensor data, filters are employed to get rid of or significantly reduce the impact 

of any background noise. When the approximated data is used in conjunction with the controller, the system's reaction is 

improved. Filters can enhance efficiency and functionality in fault and diagnostic applications by minimizing the impact 

of noise on the estimation process [11-21]. When it comes to filtering estimating methods, there are two primary schools 

of thought. One emphasizes finding the best possible answer given a set of restrictions, while the other emphasizes finding 

the optimum solution. One such method is the Kalman filter (KF), which has found use in many different areas for estimate 

and tracking [22-37]. 

The KF is a mathematical procedure that gives the best possible estimation of the state of a system using only imperfect 

or noisy data. Using the dynamics of the system, the measured data, and the statistical features of noise, it calculates a 

likely state for the system. Accurate prediction of a system's status is vital for efficient decision making, making the KF 

popular in applications including navigation, tracking, and control. The capacity of the KF to deal with uncertain and noisy 

readings is one of its main strengths. Because it employs a recursive method to update the estimate of the system's status 

in real time as new measurements become available, it is particularly useful in such situations. Additional extensions of 

the KF, such as the Extended Kalman Filter (EKF) [38-43] and the Unscented Kalman Filter (UKF) [44-61], give 

approximate solutions for nonlinear systems. While the KF is useful, it does have certain restrictions. Some situations may 

not satisfy its underlying assumptions of practical applicability, such as linearity, Gaussian noise, and complete 

understanding of system dynamics.  
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The KF's optimum performance also is dependent on the precision of the starting state estimate and the precision of the 

measurement data. Filtering estimating methods that employ stability functions like Lyapunov functions fall under the 

second class of methods. Sliding mode observers (SMOs) [62–86], smooth variable structure filters (SVSFs) [87–103], 

and sliding innovation filters (SIFs) [104–112] are only a few examples. Some of the drawbacks of the first group are 

mitigated by SMO, SVSF, and SIF filters. The second group aims to provide the first group with the robustness and stability 

in estimate that it lacks. In spite of disturbances and uncertainties, these filters will maintain a stable estimation process 

thanks to stability factors like Lyapunov functions. The second set of filters is less likely to provide a perfect answer, but 

they do guarantee consistency and durability, which might be crucial in certain circumstances. It is possible that the 

performance and limitations of each set of filters might be improved by combining them. To improve the estimation 

process, it is recommended to combine at least two filters, one from each class. Both groups suffer from the problems 

implied by their names: the first lacks resilience and stability and is susceptible to a variety of limitations, while the second 

fails to give an ideal solution. Increasing performance while decreasing the overall number of constraints may be achieved 

by combining at least two filters, one from each category [113-123]. It may also be accomplished by the use of many 

models that are fused together, as in an interacting multiple model (IMM) [124-135]. 

The research paper aims to investigate the application of the sliding innovation filter (SIF) and the interacting multiple 

model (IMM) strategy in aeronautical actuator systems. Overall, the research paper aims to provide a comprehensive 

analysis of the application of the SIF-IMM approach in aeronautical actuator systems, including its architecture, 

performance, and potential implications for practical use. It may contribute to the existing literature on estimation 

techniques for aeronautical systems and serve as a reference for future research and applications in this area. 
 

 

2. IMM-SIF 

2.1 SIF 
The sliding innovation filter, which was developed by 2020 and documented in reference [110], is a unique approach that 

utilizes the true state as a hyperplane for reference during the estimation process. The estimated state is constrained to 

remain within a certain neighborhood of this hyperplane in order to ensure stability. The filter operates in two distinct 

steps, which are further explained below. 

1- Prediction Stage,  

The a priori estimate, 𝐱̂𝑘+1|𝑘, and its measurement, 𝐳̂𝑘+1|𝑘, are calculated as: 

𝑥̂𝑘|𝑘−1 = 𝐴𝑥̂𝑘−1|𝑘−1          (1) 

𝑧̂𝑘|𝑘−1 = 𝑥̂𝑘|𝑘−1           (2) 

2- Correction Stage,  

The a posteriori estimate, 𝐱̂𝑘|𝑘, and its measurements, 𝐳̂𝑘|𝑘, are calculated as: 

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + [(𝑧𝑘 − 𝑧̂𝑘|𝑘−1)]°𝑠𝑎𝑡(|𝑧𝑘 − 𝑧̂𝑘|𝑘−1|, 𝛹𝑘)      (3) 

𝑧̂𝑘|𝑘 = 𝑥̂𝑘|𝑘           (4) 

Where 𝛹𝑘 is the designed boundary layer, 𝐴°𝐵 is schur product, and 𝑠𝑎𝑡 is the saturated function. 

 2.2 IMM-SIF 
The proposed filter, which is the interacting multiple model sliding innovation filter (IMM-SIF), is based on [106] and is 

summarized here. The filter consists of three stages: 

 

1- Prediction Stage:  

The a priori estimate, 𝑥̂𝑗,𝑘|𝑘−1, and its covariance matrix, 𝑃𝑗,𝑘|𝑘−1, for model 𝑗, are calculated as: 

𝑥̂𝑗,𝑘|𝑘−1 = 𝐴𝑗𝑥̂𝑘−1|𝑘−1           (5) 
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𝑃𝑗,𝑘|𝑘−1 = 𝐴𝑗𝑃𝑘−1|𝑘−1𝐴𝑗
𝑇 + 𝑄𝑘−1         (6) 

Where 𝑄𝑘−1 is the system covariance matrix. Then we calculate the innovation covariance matrix, 𝑆𝑗,𝑘|𝑘−1, with the use of 

measurement’s noise covariance matrix, 𝑅𝑘, as follows: 

𝑆𝑗,𝑘|𝑘−1 = 𝐻𝑘𝑃𝑗,𝑘|𝑘−1𝐻𝑘
T + 𝑅𝑘         (7) 

2- Correction Stage:  

The a posteriori estimate, 𝑥̂𝑗,𝑘|𝑘, its covariance matrix, 𝑃𝑗,𝑘|𝑘, and likehood function, 𝛬𝑗,𝑘+1, for model 𝑗, are calculated as: 

𝐾𝑘 = 𝑑𝑖𝑎𝑔 (𝑠𝑎𝑡(|𝑧𝑘 − 𝐻𝑘𝑥̂𝑗,𝑘|𝑘−1|, 𝛹𝑘))        (8) 

 

𝑥̂𝑗,𝑘|𝑘 = 𝑥̂𝑗,𝑘|𝑘−1 + 𝐾𝑗,𝑘(𝑧𝑘 − 𝐻𝑘𝑥̂𝑗,𝑘|𝑘−1)        (9) 

𝑃𝑗,𝑘|𝑘 = (𝐼 − 𝐾𝑗,𝑘)𝑃𝑗,𝑘|𝑘−1          (10) 

𝛬𝑗,𝑘 =

𝑒𝑥𝑝(
−

1
2
(𝑧𝑘−𝐻𝑘𝑥̂𝑗,𝑘|𝑘−1)(𝑧𝑘−𝐻𝑘𝑥̂𝑗,𝑘|𝑘−1)

𝑇

𝑆𝑗,𝑘|k−1
)

√|2𝜋𝑆𝑗,𝑘|k−1|
       (11) 

3- Fusion Stage:  

We update mode probability for model 𝑗, 𝜇𝑗,𝑘, using the mixing probabilities, 𝑝𝑖𝑗, and the likehood function as follows: 

𝜇𝑗,𝑘 =
1

∑ 𝛬𝑗,𝑘+1 ∑ 𝑝𝑖𝑗
𝑛
𝑖=1 𝜇𝑖,𝑘

𝑛
𝑗=1

𝛬𝑗,𝑘+1 ∑ 𝑝𝑖𝑗
𝑟
𝑖=1 𝜇𝑖,𝑘, 𝑗 = 1,… , 𝑛      (12) 

We fuse the outputs from each model together using 

𝑥̂𝑘|𝑘 = ∑ 𝜇𝑗,𝑘𝑥̂𝑗,𝑘|𝑘
𝑟
𝑗=1           (13) 

𝑃𝑘|𝑘 = ∑ 𝜇𝑗,𝑘 {𝑃𝑗,𝑘|𝑘 + (𝑥̂𝑗,𝑘|𝑘 − 𝑥̂𝑘|𝑘)(𝑥̂𝑗,𝑘|𝑘 − 𝑥̂𝑘|𝑘)
𝑇
}𝑟

𝑗=1       (14) 

3. SYSTEM UNDER SCOPE 

This paper examines a sophisticated maneuvering system that involves a UGV moving in the x-y plane at varying velocities 

and shapes. The maneuvering model is considered to be nonlinear due to the non-linear relationships to the maneuvering 

angle and sinusoidal signals involved. The model comprises of five states, which are the positions on the x- and y-axes (𝑥1 

and 𝑥3, respectively), the velocities on both axes (𝑥2 and 𝑥4, respectively), and the maneuvering rotational angle (𝑥5). It is 

assumed that all the states can be measured. However, in this paper, the model can be reduced to 4 states, as state five is 

omitted. The matrix hence become linear but variable with time. The discrete form of the model is defined by equations 

(15) to (16), which include the sensor equations. 

[

𝑥1,𝑘+1

𝑥2,𝑘+1

𝑥3,𝑘+1

𝑥4,𝑘+1

] =

[
 
 
 
 1
0
0
0

    

𝑠𝑖𝑛(𝜔𝑇)

𝜔

𝑐𝑜𝑠(𝜔𝑇)
1−𝑐𝑜𝑠(𝜔𝑇)

𝜔

𝑠𝑖𝑛(𝜔𝑇)

    

0
0
1
0

    

−
1−𝑐𝑜𝑠(𝜔𝑇)

𝜔

−𝑠𝑖𝑛(𝜔𝑇)

−
𝑠𝑖𝑛(𝜔𝑇)

𝜔

𝑐𝑜𝑠(𝜔𝑇) ]
 
 
 
 

[

𝑥1,𝑘

𝑥2,𝑘

𝑥3,𝑘

𝑥4,𝑘

] + [

𝑤1,𝑘

𝑤2,𝑘

𝑤3,𝑘

𝑤4,𝑘

] → 𝑥𝑘+1 = 𝐴𝑘(𝑥𝑘) + 𝑤𝑘   (15) 

𝑧𝑘+1 = 𝑥𝑘+1 + 𝑣𝑘+1          (16) 

𝐴𝑘 is measured at three operational time, 0𝑜, 3𝑜 and −3𝑜, to be as follows: 
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𝐴1 = [

1
0
0
0

    

1
1
0
0

    

0
0
1
0

    

0
0

−1
1

] , 𝐴2 = [

1
0
0
0

    

0.995
0.9986
0.0262
0.0523

    

0
0
1
0

    

−0.0262
−0.0523
−0.995
0.9986

], and 𝐴3 = [

1
0
0
0

    

0.995
0.9986
0.0262

−0.0523

    

0
0
1
0

    

−0.0262
0.0523
−0.995
0.9986

], respectively. 

 

4. RESULTS AND DISCUSSION 

In this paper, the IMM-SIF is applied to system in section 3, which represent an unmanned ground vehicle’s (UGV) 

movement in the path of Fig 1. The results are summarized by Fig 2, which represents the real and estimated trajectories, 

Fig 3., which represents the real and estimate maneuvering of the UGV, Table 1, which represents the root mean squared 

error (RMSE), and Table 2, which represents the accuracy in retrieving the rotational mode. 

 
Fig 1. UGV path in 2-D environment  

 

From Fig 2, the results show a good match between the estimated and actual trajectories. Table 1 also agrees with the 

results as the RMSE of the positions are 0.3547 and 2.633 m in a system that moves in km. The velocities have small 

RMSEs as well with magnitude less than 0.024 m/s while the actual speed could reach 300 m/s. The confusion matrix of 

Table 2 and Fig 3 show that the proposed algorithm can detected the turning mode with accuracy above 99%. 

 
Table 1. RMSE of the simulated results 

 𝑀𝐴𝐸 in 

 𝑥1 (𝑚) 𝑥2(𝑚/𝑠) 𝑥3 (𝑚) 𝑥4(𝑚/𝑠) 

IMM − SIF 0.3547 0.0231 2.6330 0.0238 

 

Table 2. IMM-SIF Mode Probability Results (Confusion Matrix) 

 Actual Condition 

Predicted 

Condition 

 CCW CW 

CCW 1% 100% 
CW 99% 0% 
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Fig 2. The trajectories of the real system and the proposed method estimation including (a) x-position, (b) y-position, (c) 

x-velocity and (d) y-velocity 

 

 
Fig 3. Operation Mode for the real system and the proposed method estimation 
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5. CONCLUSIONS 

In this concise study, the combined approach of IMM-SIF was employed to estimate the UGV’s trajectories in 2-D path 

S-Shape path. The findings revealed that the IMM-SIF approach yielded estimates with maximum RMSE of 2.633 which 

is less than 1% of the magnitude. Additionally, the IMM-SIF approach demonstrated a high accuracy rate of at least 99% 

in predicting the operation mode. Moreover, the study highlights the importance of estimation methods in fault and 

diagnostic applications, as they provide monitoring and evaluation of a plant's state based on data obtained through sensors. 

The proposed filtering technique can be used as a foundation for spotting out-of-the-ordinary occurrences that may point 

to systemic issues. Furthermore, the study suggests that combining at least two filters, one from each class, can improve 

the estimation process by increasing performance while decreasing the overall number of constraints. Overall, this study 

provides valuable insights into the development of more effective filtering techniques for autonomous UGV navigation 

and has potential implications for various other fields that rely on estimation methods. 

In addition to the promising results obtained in this study, there are several avenues for further exploration and expansion 

of the IMM-SIF approach in the field of fault detection. Additionally, comparative studies could be carried out to 

benchmark the IMM-SIF approach against other estimation techniques, such as KF or other sliding mode observer 

methods. This would provide insights into the relative advantages and limitations of the IMM-SIF approach compared to 

other existing methods, and contribute to the body of knowledge in the field of fault and diagnosis applications. 
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