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ABSTRACT

The recent generalized unscented transform (GenUT) is formulated into a recursive Kalman filter framework.
The GenUT constrains 2n + 1 sigma points and their weights to match the first four statistical moments of a
probability distribution. The GenUT integrates well into the unscented Kalman filter framework, creating what
we call the generalized unscented Kalman filter (GUKF). The measurement update equations for the skewness
and kurtosis are derived within. Performance of the GUKF is compared to the UKF under two studies: noise
described by a Gaussian distribution and noise described by a uniform distribution. The GUKF achieves lower
errors in state estimation when the UKF uses the heuristic tuning parameter κ = 3 − n. It is also stated that
when the parameter κ is tuned to an optimal value, the UKF performs identically to the GUKF. The advantage
here is that GUKF requires no such tuning.

Keywords: Generalized unscented Kalman filter, Generalized unscented transform, State estimation, Nonlinear
filter

1. INTRODUCTION

State estimation in a Bayesian filtering framework is exactly solvable under specific assumptions. When the
stochastic models for the system and measurement are linear, and the process and measurement noise are zero
mean and uncorrelated, the well-known Kalman filter (KF) provides the optimal state estimate. However, most
applications are nonlinear and require appropriate methods such as the extended Kalman filter (EKF) and
the unscented Kalman filter (UKF). Despite their achievements, the EKF can struggle with highly nonlinear
systems. The UKF (more specifically, the unscented transform) was designed around symmetric probability
density functions (pdf), and could potentially struggle with asymmetric distributions. Thus, more general
nonlinear filtering methods are needed.

Many works have approximated arbitrary distributions by Gaussian densities. As a result, the Bayesian
filtering equations can be approximated using numerical integration methods. These include Gauss-Hermite
quadrature.1,2 In addition, Monte Carlo integration has been used as in the Gaussian particle filter.3 When
the Gaussian assumptions do not hold up well, others have used generalized Edgeworth series to represent ap-
proximate non-Gaussian densities.4–6 Point-mass methods approximate the densities using point masses located
on a rectangular grid.7 This allows for evaluating the Bayesian filtering equations numerically using discrete
nonlinear convolution.

Monte Carlo methods have been used for nonlinear filtering with great success. These include ensemble
Kalman filters and particle filters.8–10 Comparatively, Monte Carlo filters can handle more drastic nonlinearities
over typical Kalman filter methods at the cost of more computational complexity.

The difficulty of filtering nonlinear systems is mainly due to the challenge of approximating nonlinear func-
tions. The EKF achieves this by a first-order approximation.11 Despite this accomplishment, the EKF only
performs well on nonlinear systems that behave linearly in a local neighborhood, which is often not the case.
Two improvements to the EKF include the iterated EKF12 and the second-order EKF.13 However, these methods
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are more computationally expensive, and in the case of the second-order EKF, numerical instability is a large
concern. The central difference KF takes a spin on the EKF in that it does not require derivatives (i.e., calculation
of Jacobian matrices).14 Quadrature Kalman filters are another class of innovations-based nonlinear filters.15–17

These methods use Gauss Hermite quadrature rules to compute Gaussian-weighted integrals numerically.

Another improvement to nonlinear filtering was made with UKF. Instead of approximating the nonlinear
function of a state, the UKF approximates the state’s transformed probability density.18,19 This method generally
outperforms the EKF at a similar computational cost. However, UKF performance tends to degrade if the
modelled system is highly nonlinear. More Kalman filter variants have been proposed to improve upon the UKF
by using specialized integral formulations to calculate higher-order statistical moments, such as the cubature
KF.20–22

The basis of the present work is to investigate a filter than can capture higher-order statistical moments of the
estimation error. It is important to recognize that there exists various forms or modifications of the unscented
transform, sigma point selection algorithm, and the UKF that can achieve this.19,23 However, many of these
methods require more than 2n + 1 sigma points. In this work, we emphasize a filter that uses 2n + 1 sigma
points.

2. THE UNSCENTED TRANSFORM AND THE UKF

2.1 The Unscented Transform

Consider a random variable x ∈ Rn and nonlinear transformation y = g(x), g : Rn → Rm. The unscented
transform (UT) estimates the pdf of the nonlinearly transformed variate x by propagating a deterministic set of
2n + 1 sigma points through the transformation y. The sigma points are chosen such that they have the same
mean and covariance as the prior distribution. The sigma points are given by

X0 = x̂ , W0 =
κ

n+ κ
,

Xi = x̂+
(√

(n+ κ)Pxx

)
i
, Wi =

1

2(n+ κ)
,

Xi+n = x̂−
(√

(n+ κ)Pxx

)
i
, Wi+n =

1

2(n+ κ)
,

(1)

where Xi is the ith sigma point, x̂ is the mean of x, n is the dimension of x, Pxx is the covariance matrix of x,
Wi is a weighting factor, and κ is a tuning parameter. The term (

√
(n+ κ)Pxx)i is the ith column or row of the

matrix
√

(n+ κ)Pxx.

The sigma points are then propagated through the nonlinear transformation to yield the transformed sigma
points,

Yi = g(Xi). (2)

The mean and covariance of y is then approximated as

ŷ =

2n∑
i=0

WiYi, (3)

Pyy =

2n∑
i=0

Wi [Yi − ŷ] [Yi − ŷ]
T
. (4)

The unscented transform, as presented here, is capable of capturing the transformed mean and covariance
with third-order accuracy (with respect to a Taylor series expansion). The sigma point selection in Eq. (1) was
designed with the standard Gaussian distribution in mind. Notice that the sigma points are symmetric about the
mean. This implies that the sigma points can capture higher-order moments and exactly captures all odd-ordered
moments. The reason being that, for a symmetrical density like a Gaussian, the odd-ordered central moments
are zero.
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Higher-order statistical moments can be captured via the tuning parameter κ. Choosing κ = 3−n minimizes
the difference between the moments of a standard Gaussian and the sigma points up to kurtosis.24 However, the
kurtosis is not guaranteed to be precisely matched. When the distribution is non-Gaussian, it can be uncertain
whether these statistical qualities of the UT hold true. Although it has been shown that the first three moments
could be captured by the UT which provides more information when estimating the mean.25 Despite this, the
work in Ref. 23 shows that the UT does not generalize to an arbitrary probability density.

2.2 The Unscented Kalman Filter

The UT is the core of the UKF which can outperform the EKF at a similar computational cost. The well-known
UKF algorithm is presented in this section.

We consider here a discrete nonlinear process and measurement model with additive noise sequences,

xk = f(xk−1) + wk−1 ,

yk = h(xk) + vk ,
(5)

where k is the discrete time step, xk ∈ Rn is the system state, yk ∈ Rm is the measurement, f is the process
model, h is the measurement model, wk ∈ Rn is the process noise, and vk ∈ Rm is the measurement noise. It is
assumed that the noise vectors wk and vk are zero mean and uncorrelated, i.e.,

E[wiw
T
j ] = δijQ,

E[vivTj ] = δijR,

E[wiv
T
j ] = 0,

for all i, j. Here E[·] denotes the expectation operator, δij is the Kronecker delta function, Q is the process noise
covariance, and R is the measurement noise covariance.

The UKF algorithm is as follows:

1. Initialization:

x̂0|0 = E[x0]

P0|0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

2. Sigma point selection according to Eq. (1).

3. The prediction stage:

Xi,k|k−1 = f (Xi,k−1)

x̂k|k−1 =

2n∑
i=0

WiXi,k|k−1

Pk|k−1 =

2n∑
i=0

Wi [Xi − x̂] [Xi − x̂]
T

Yi,k|k−1 = h (Xi,k−1)

ŷk|k−1 =

2n∑
i=0

WiYi,k|k−1

Proc. of SPIE Vol. 12547  1254703-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 18 Nov 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4. The update stage:

Pν =

2n∑
i=0

Wi

(
Yi,k|k−1 − ŷk|k−1

) (
Yi,k|k−1 − ŷk|k−1

)T
Pxy =

2n∑
i=0

Wi

(
Xi,k|k−1 − x̂k|k−1

) (
Yi,k|k−1 − ŷk|k−1

)T
K = PxyP

−1
ν

x̂k|k = x̂k|k−1 +K
(
yk − ŷk|k−1

)
Pk|k = Pk|K−1 −KPνKT

Here we have used the subscript notation k|k − 1 to denote quantities calculated in the prediction stage and
k|k to denote quantities calculated in the update stage. x̂k|k is the state estimate, Pk|k is the estimation error
covariance, K is the Kalman gain, Pν is the innovation covariance, and Pxy is the cross-covariance between the
estimation error and innovation.

It is important to notice that other UKF variants exist. These UKF filters use an augmented state vector
that includes the process and measurement noise, and tend to perform very well. However, this UKF variant
uses more than 2n+ 1 sigma points. Thus, we are limiting the study to two sigma point filters that use 2n+ 1
sigma points. The second filter will be introduced in the next section.

3. THE GENERALIZED UNSCENTED TRANSFORM AND THE GUKF

3.1 The Generalized Unscented Transform

The limitations of the UT are highlighted in Ref. 23. A summary includes the following. When comparing the
Taylor series expansion of the true mean of the transformation y = g(x), it can be seen that the unscented
transform does not contain odd-powered moments (e.g. skewness). This introduces significant approximation
errors in situations where the odd-powered moments of the distribution of x are non-zero and the transformation
y = g(x) is highly nonlinear. The fourth-order term also fails to capture a part of the true kurtosis even
when the heuristic value of κ = 3 − n is selected when assuming a Gaussian distribution. The UT performs
optimally on Gaussian distributions because the skewness of a Gaussian distribution is zero. However, many
other distributions (continuous and discrete) have non-zero skewness that the UT fails to capture. Similar issues
as just mentioned can be seen when comparing the Taylor series expansion of the true covariance with the UT
expansion of the covariance.

These limitations led to the generalized unscented transform (GenUT).23 The GenUT aims to accurately
capture the mean, covariance matrix, and the diagonal components of both the skewness and kurtosis tensors. It
is noted that for an independent random vector, accurately matching the diagonal components of the skewness
tensor implies an accurate matching of the entire skewness tensor.23 This is achieved by selecting sigma points
that have the flexibility to either be symmetric when x is symmetrically distributed (e.g. Gaussian) or asymmetric
when x is asymmetrically distributed. This is achieved with 2n+ 1 sigma points.

Let us now define the notation. We define the vectors S̆ ∈ Rn and K̆ ∈ Rn which contain the diagonal
components of the skewness tensor and the kurtosis tensor, respectively,

S̆ =
[
S111, S222, . . . , Snnn

]T
K̆ =

[
K1111,K2222, . . . ,Knnnn

]T
.

Let x be a vector, P be a square matrix, and k be some positive integer. We define the element-wise product
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(Hadamard product) as ⊙, such that

x⊙n = x⊙ x⊙ · · · ⊙ x︸ ︷︷ ︸
n times

P⊙−n =

P ⊙ P ⊙ · · · ⊙ P︸ ︷︷ ︸
n times

−1

We also define element-wise division (Hadamard division) as ⊘.

The GenUT involves constraining the sigma points and their weights to match the first four moments of a
distribution. With a prescribed mean x̂, covariance P , skewness tensor diagonal S̆, and kurtosis tensor diagonal
K̆, the sigma points are calculated as

X0 = x̂ , W0 ,

Xi = x̂− ui

√
Pxxi, W ′

i ,

Xi+n = x̂− vi
√

Pxxi, W ′′
i+n ,

(6)

for i = 1, 2, . . . , n. The weights are defined as W ′ = [W1,W2, . . . ,Wn]
T and W ′′ = [W1+n,W2+n, . . . ,W2n]

T .
The parameter u > 0 is chosen by the filter designer or calculated as

u =
1

2

(
−
√
P

⊙−3
S̆ +

√
4
√
P

⊙−4
K̆ − 3

(√
P

⊙−3
S̆
)⊙2

)
(7)

and
v = u+

√
P

⊙−3
S̆. (8)

The weights are then calculated as

W ′′ = 1⊘ v ⊘ (u+ v) ,

W ′ = W ′′ ⊙ v ⊘ u ,

W0 = 1−
2n∑
i=1

Wi ,

(9)

and the total weight vector is W =
[
W0 W ′T W ′′T ]T .

If information is known about the sigma points beforehand, the GenUT allows for the sigma points to be
further constrained. See Ref. 23 for more details.

3.2 The Generalized Unscented Kalman Filter

Extending the GenUT into a recursive filter framework is straightforward. However, we note a few differences
when comparing to the UKF:

• The GenUT requires a prescribed skewness and kurtosis in addition to the mean and covariance.

• As a result of the above point, the diagonals of the skewness and kurtosis tensors need to be updated in
the filter algorithm.

To achieve the second point, we require the following assumptions and definitions. First, it is assumed that
the measurement model is linear in all states, or if nonlinear, can be formed into an m-vector, i.e., H ∈ Rm.
Then, the measurement model used for the update step is the diagonal of the measurement model:

H̆ = diag(H) .
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Likewise, we define the following as the diagonals of previously defined terms

Kd = diag(K) ,

P̆ = diag(P ) ,

R̆ = diag(R) ,

S̆ = diag(S) ,

K̆ = diag(K) .

The measurement skewness and measurement kurtosis are defined as

S̆m = diag(Sm) ,

K̆m = diag(Km) .

Once again, we assume the process and measurement noise are zero mean and uncorrelated. The skewness and
kurtosis update equations as

S̆k|k = (1−Kd ⊙ H̆)⊙3 ⊙ S̆k|k−1 −K⊙3
d ⊙ S̆m , (10)

K̆k|k = (1−Kd ⊙ H̆)⊙4 ⊙ K̆k|k−1 + 6(1−Kd ⊙ H̆)⊙2 ⊙ P̆k|k−1 ⊙K⊙2
d ⊙ R̆−K⊙4

d ⊙ K̆m , (11)

where 1 =
[
1 1 . . . 1

]T ∈ Rn and 0 =
[
0 0 . . . 0

]T ∈ Rn. See Appendix A for the derivations of
Eqs. (10) and (11).

Extending the GenUT into the UKF structure defines what we call the generalized unscented Kalman filter
(GUKF). The GUKF algorithm is as follows:

1. Initialization:

x̂0|0 = E[x0]

P0|0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

S̆0|0 = E[(x0 − x̂0)
⊙3]

K̆0|0 = E[(x0 − x̂0)
⊙4]

2. Sigma point selection according to Eqs. (6)-(9).

3. The prediction stage:

Xi,k|k−1 = f (Xi,k−1)

x̂k|k−1 =

2n∑
i=0

WiXi,k|k−1

Pk|k−1 =

2n∑
i=0

Wi [Xi − x̂] [Xi − x̂]
T

Yi,k|k−1 = h (Xi,k−1)

ŷk|k−1 =

2n∑
i=0

WiYi,k|k−1
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4. The update stage:

Pν =

2n∑
i=0

Wi

(
Yi,k|k−1 − ŷk|k−1

) (
Yi,k|k−1 − ŷk|k−1

)T
Pxy =

2n∑
i=0

Wi

(
Xi,k|k−1 − x̂k|k−1

) (
Yi,k|k−1 − ŷk|k−1

)T
K = PxyP

−1
ν

x̂k|k = x̂k|k−1 +K
(
yk − ŷk|k−1

)
Pk|k = Pk|K−1 −KPνKT

Kd = diag(K)

S̆k|k = (1−Kd ⊙ H̆)⊙3 ⊙ S̆k|k−1 −K⊙3
d ⊙ S̆m

K̆k|k = (1−Kd ⊙ H̆)⊙4 ⊙ K̆k|k−1 + 6(1−Kd ⊙ H̆)⊙2 ⊙ P̆k|k−1 ⊙K⊙2
d ⊙ R̆−K⊙4

d ⊙ K̆m

The next section details the simulations and results comparing the UKF and GUKF.

4. SIMULATIONS AND RESULTS

4.1 System Model and Noise Properties

The system model is the Van der Pol oscillator in reverse time. This system is highly nonlinear and exhibits
unstable limit cycle behaviour. When the initial state is outside of the limit cycle, the state will diverge.
Conversely, when the initial state is inside the limit cycle, it will converge to zero over time due to nonlinear
damping. The Van der Pol oscillator can be modelled by the set of first order differential equations

ẋ1 = −x2 ,

ẋ2 = −µ(1− x2
1)x2 + x1 .

(12)

The setup of the system and its properties follows that of Ref. 26. In the following simulations, the system is
discretized with a sampling period of 0.1 seconds and the damping parameter is set to µ = 0.2.

4.2 Effect of Noise Distribution

These simulations are based on the premise that the filter designer is assuming that the probability distributions
of the noise sequences are Gaussian. As such, the heuristic value of κ = 3 − n will be used.18 The simulations
explore what happens when the assumed distribution is not Gaussian, but remains symmetrical. Performance is
compared using noise generated from a Gaussian distribution and a uniform distribution. We begin by comparing
the performance of the UKF and GUKF in estimating the states when perturbed by Gaussian process and
measurement noise.

For each of the case studies in Sec. 4.2, the additive process and measurement noise sequences had the
following properties:

• zero mean,

• noise covariances

Qactual = Ractual

[
1× 10−2 0

0 1× 10−2

]
,

• measurement skewness and kurtosis diagonals

S̆m =
[
0 0

]T
,

K̆m =
[
3 3

]T
.
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Figure 1. State estimates with Gaussian distributed process and measurement noise.

Additionally, the initial state, state estimate, process noise covariance, and measurement noise covariance are
chosen as

x0 =

[
1.4
0

]
, x̂0|0 =

[
0
5

]
, Q = Qactual, R = Ractual .

The initial state error covariance is

P0|0 =

[
5 0
0 5

]
.

The choice of initial choices of P0|0 is adequate since the initial estimated state is far from the actual state. Also,
as analysed by Ref. 26 for the same Van der Pol system in Eq. (5), the UKF is robust to the choices of P0|0, Q,
and R.

For the GUKF, the estimation error skewness and kurtosis are initialized as

S̆0|0 =
[
0 0

]T
,

K̆0|0 =
[
3 3

]T
.

4.2.1 Gaussian Distributed Noise

In a theoretical sense, the UKF and GUKF should perform identically when the noise distributions are symmet-
rical. Thus, it is expected that for Gaussian noise both filters perform the same.

In this study, both the process and measurement noise sequences were sampled from a Gaussian distribution
with zero mean and covariance as outlined in Sec. 4.2. This also means that the skewness was approximately
zero and the standardized kurtosis was approximately 3. The state estimates and the state errors are plotted in
Figures 1 and 2, respectively. The root-mean-squared errors are given in Table 1. The errors are quite similar,
but the GUKF outperforms the UKF for the given noise characteristics by 7.21% for the first state (x1).
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Figure 2. Estimation error for the UKF and GUKF with Gaussian distributed process and measurement noise.

Table 1. RMSE of State Estimates

Distribution State UKF GUKF % Improvement

Gaussian N (µ, P ) x1 0.116 0.107 7.21%
x2 0.257 0.255 0.71%

Uniform(a, b) x1 0.115 0.109 5.17%
x2 0.273 0.271 0.77%

4.2.2 Uniformly Distributed Noise

For this study, the noise sequences were sampled from the distribution Uniform(−0.175, 0.175), which gives
zero mean and variance σ2 = 1 × 10−2. The skewness was approximately zero and the standardized kurtosis
approximately equal to 1.8.

The state estimates and their errors were similar to the Gaussian noise case. The RMSE errors we given
in Table 1. We see that the GUKF shows a 5.17% improvement in estimating the first state. The elements of
the covariance matrix and the Kalman gain are plotted in Figures 3 and 4, respectively. The GUKF achieved
a lower covariance in both states. Interestingly, the GUKF Kalman gain for the state x1 is quite different than
that for the UKF. This can be interpreted as the GUKF relies more on the prediction than on the measurement
innovation for state x1.

4.3 Results

The results could indicate that the GUKF is an improvement over the UKF. However, the assumptions made
about the simulation hinder the performance of the UKF. If the UKF parameter κ is tuned to an optimal value,
the UKF and GUKF perform identically. The benefit here is that the GUKF does not require any tuning aside
from the initialized statistics.

The results obtained here are quite similar to those found is Ref. 25. The conclusions from that work were
that the linear update rule only uses the mean and covariance information to determine the Kalman gain. A
Kalman gain that incorporates skewness and kurtosis information could lead to improvements in the GUKF.
This Kalman gain could make use of the fact that the GUKF has the capability to predict the skewness and
kurtosis at each discrete time step, much like the covariance prediction.
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Figure 3. State error covariance of the UKF and GUKF with uniformly distributed process and measurement noise.
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Figure 4. Kalman gain for the UKF and GUKF with uniformly distributed process and measurement noise.

5. CONCLUSION

The studies presented here show the potential of a generalized unscented Kalman filter. The GUKF requires
measurement update equations for the diagonals of the skewness and kurtosis tensors. These updated equations
and their derivations are provided.

Simulations were performed to compare the performance of the GUKF and UKF for Gaussian and non-
Gaussian noise distributions. Improvements were made by the GUKF over the UKF for both cases of noise
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distributions. However, the UKF estimates can be made identical to the GUKF by properly tuning the parameter
κ. The GUKF has the benefit that it does not need to be tuned.

Future work includes extending the GUKF to nonlinear measurements, non-additive noise models, and im-
proving the skewness and kurtosis update through an improved Kalman gain. Additionally, asymmetric dis-
tributions should be used to test the GUKF in estimating the statistics of such a distribution. Under these
circumstances, the performance of the UKF should deteriorate. The difficulty in using an asymmetric distribu-
tion is that they often have a non-zero mean.

APPENDIX A. DERIVATION OF SKEWNESS AND KURTOSIS UPDATE
EQUATIONS

It is important that the diagonals of the skewness and kurtosis tensors are accurately updated so that the GenUT
can generate an adequate set of sigma points for the GUKF. The following subsections outline the derivations
for the update equations of the diagonals of the skewness and kurtosis tensors. Recall that is was assumed that
the measurement model be linear in all states or it can be formulated into an m-vector, i.e., H ∈ Rm. We
represented the diagonal of the measurement model as H̆ = diag(H).

To derive the skewness and kurtosis update equations, we require the equivalent diagonal form of the state
estimation error. The state the estimation error is

x̃k|k = xk − x̂k|k.

Recalling that the state update equation is

x̂k|k = x̂k|k−1 +K(yk −Hx̂k|k−1) ,

where H is the linear measurement model and yk = Hxk + vk, we can write the estimation error as

x̃k|k = xk − x̂k|k−1 −K(Hxk + vk −Hx̂k|k−1)

= (I −KH)x̃k|k−1 −Kvk .

Here, I is the identity matrix. We can extend this to only consider the diagonals of the required matrices and
use element-wise products to get

x̃k|k = (1−Kd ⊙ H̆)⊙ x̃k|k−1 −Kd ⊙ vk , (13)

as needed.

A.1 Update Equation for the Diagonal of the Skewness Tensor

The skewness update equation is derived by expanding the third central moment of the estimation error as

S̆k|k = E
[
x̃⊙3
k|k

]
(14)

= E
[
(xk − x̂k|k)

⊙3
]

= E
[(

(1−Kd ⊙ H̆)⊙ x̃k|k−1 −Kd ⊙ vk

)⊙3
]

= (1−Kd ⊙ H̆)⊙3 ⊙ E
[
x̃⊙3
k|k−1

]
− 3(1−Kd ⊙ H̆)⊙2 ⊙ E

[
x̃⊙2
k|k−1

]
⊙Kd ⊙ E [vk]

+ 3(1−Kd ⊙ H̆)⊙ E
[
x̃k|k−1

]
⊙K⊙2

d ⊙ E
[
v⊙2
k

]
−K⊙3

d ⊙ E
[
v⊙3
k

]
,
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where Eq. (13) was used on the third line. From the last line of Eq. (14) we can recognize the following
expectations

E
[
x̃⊙2
k|k−1

]
= P̆k|k−1 ,

E
[
x̃⊙3
k|k−1

]
= S̆k|k−1 ,

E [vk] = 0 ,

E
[
v⊙2
k

]
= R̆ ,

E
[
v⊙3
k

]
= S̆m .

Also, if the filter is assumed to be unbiased then we have

E
[
x̃k|k−1

]
= 0.

Using these relationships, we can reduce Eq. (14) to the update equation

S̆k|k = (1−Kd ⊙ H̆)⊙3 ⊙ S̆k|k−1 −K⊙3
d ⊙ S̆m . (15)

A.2 Update Equation for the Diagonal of the Kurtosis Tensor

The kurtosis update equation is derived via the fourth central moment about the estimation error,

K̆k|k = E
[
x̃⊙4
k|k

]
(16)

= E
[
(xk − x̂k|k)

⊙4
]

= E
[(

(1−Kd ⊙ H̆)⊙ x̃k|k−1 −Kd ⊙ vk

)⊙4
]

= (1−Kd ⊙ H̆)⊙4 ⊙ E
[
x̃⊙4
k|k−1

]
− 4(1−Kd ⊙ H̆)⊙3 ⊙ E

[
x̃⊙3
k|k−1

]
⊙Kd ⊙ E [vk]

+ 6(1−Kd ⊙ H̆)⊙2 ⊙ E
[
x̃⊙2
k|k−1

]
⊙K⊙2

d ⊙ E
[
v⊙2
k

]
− 4(1−Kd ⊙ H̆)⊙ E

[
x̃k|k−1

]
⊙K⊙3

d ⊙ E
[
v⊙3
k

]
−K⊙4

d ⊙ E
[
v⊙4
k

]
Again, recognizing the expectations and including

E
[
x̃⊙4
k|k−1

]
= K̆k|k−1 ,

E
[
v⊙4
k

]
= K̆m ,

Eq. (16) reduces to the kurtosis update equation

K̆k|k = (1−Kd ⊙ H̆)⊙4 ⊙ K̆k|k−1

+ 6(1−Kd ⊙ H̆)⊙2 ⊙ P̆k|k−1 ⊙K⊙2
d ⊙ R̆

− 4(1−Kd ⊙ H̆)⊙
√

P̆k|k−1 ⊙K⊙3
d ⊙ S̆m

−K⊙4
d ⊙ K̆m .

(17)
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